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Abstract. LetX be a smooth quasi-projective d-dimensional variety
over a field k and let D be an effective, non-reduced, Cartier divisor
on it such that its support is strict normal crossing. In this note, we
construct cycle class maps from (a variant of) the higher Chow group
with modulus of the pair (X;D) in the range (d+n, n) to the relative
K-groups Kn(X ;D) for every n ≥ 0.
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1 Introduction

In [6], Bloch introduced his higher Chow groups CHq(X, p) for a variety X over
a field k with the goal of defining an integral cohomology theory which ratio-
nally gives the weight-graded pieces of Quillen’s algebraic K-theory Kp(X)(q).
The higher Chow groups are defined as the homology of a certain explicit com-
plex of algebraic cycles, and when X is a smooth quasi-projective variety over
k, they are known to agree with the motivic cohomology groups defined by Vo-
evodsky [35] (see e.g. [26, Theorem 1.2]). To compare the higher Chow groups
of X and the relevant graded pieces of Kp(X), Bloch constructed functorial
Chern classes

cq,p : K2q−p(X)→ CHq(X, 2q − p)

which can be shown to satisfy standard properties.

The situation is much more mysterious when X is not smooth. The theory
of algebraic cycles with modulus, developed in [5] and motivated by the work
of Kerz and Saito [18], is an evolution of the theory of additive Chow groups
introduced by Bloch-Esnault [7] (and later developed by Park, Krishna-Levine,
Krishna-Park) with the aim of understanding the algebraic K-theory of non-
reduced schemes, such as the truncated polynomial ring k[t]/(tn), in terms of
algebraic cycles. In this sense, it can be seen as an attempt to generalize Bloch’s
higher Chow groups in order to capture some extra infinitesimal information.

To fix the ideas, let X be a scheme, equidimensional and of finite type over k,
and let D be an effective Cartier divisor on it. The higher Chow groups with
modulus are defined as the homology of the relative cycle complex zq(X |D, ∗), a
subcomplex of Bloch’s cycle complex zq(X, ∗) consisting of cycles satisfying an
additional condition along D (see 2.3 for the precise definition). It is expected
that (a sheafified version of) the cycle complex with modulus zq(X |D, ∗)[−2q]
of the pair (X;D) can play the role of Bloch’s complex in the framework of a
relative motivic theory (or theory of motives with modulus), as currently under
development in the program of Kahn-Saito-Yamazaki (see [13], [14], [15]). From
this perspective, there should be a close relationship between the groups of
relative cycles and the relative K-groups K∗(X;D), defined as the homotopy
groups of the homotopy fiber of the restriction map K(X) → K(D). The
problem of comparing relative K-groups with Chow groups with modulus (or
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additive Chow groups) is central in works of many authors (we recall here [4],
[7], [19], [20], [30], [31], [32]).
An approach conceptually similar to the one originally proposed by Bloch (al-
though significant new ingredients are required) has been recently exploited by
Iwasa-Kai, culminating with the construction of relative Chern classes (see [12,
Theorem 5.8])

cq,p : K2q−p(X;D)→ CHq
Nis(X |D, 2q − p),

where CHq
Nis(X |D, 2q − p) denotes the Nisnevich hypercohomology group

H∗(XNis, z
q(−| − ×D, ∗)) (i.e. the relative motivic cohomology of the pair

as introduced in [5]). The classes cq,p are functorial in (X ;D) and coincide
with Bloch’s Chern classes when D = ∅.

In the other direction, not much progress has been made towards the construc-
tion of cycle class maps from the groups of cycles with modulus to the relative
K-groups. One of the reasons for this is the intrinsic difficulty in showing that
a priori defined relations (such as the one given by the modulus condition)
among cycles give rise to relations in the K-groups, and the fact that one is
naturally led to consider K-groups of singular, non-reduced schemes in doing
so. We investigated the already challenging relationship between the group
CH0(X|D) = CH0(X|D, 0) of zero-cycles with modulus and the relative K0

group K0(X ;D) in [4].

A standard method, which dates back to the works of Bloch and Levine, to
construct classes in higher K-groups Kn(X) of a regular k-variety X is to
construct classes in a suitable multi-relative K0 group, namely

K0(X ×�
n
• ;X × ∂�

n
• )

where �n ≃ An
k and ∂�n is the standard boundary divisor on �n (see 2). The

homotopy invariance property of K-groups of regular schemes gives in fact a
natural isomorphism

K0(X ×�
n;X × ∂�n)

≃
−→ Kn(X),

compatible with Adams operations on both sides. It is then possible to show
that a codimension p cycle in X ×�n, in good position with respect to all the
faces of �n, gives rise to a class in K0(X × �n;X × ∂�n)(p), and therefore in
Kn(X)(p) (see [24, Lemma 2.2 and Theorem 3.1]).
Unfortunately (actually, this is one of the main features of the theory), the
relative K-groups Kn(X;D) are typically far from being A1-invariant, so that
the classical argument cannot go through. Our approach in this work is to
replace the homotopy invariance property with an appropriate application of
the P1-bundle formula, available without regularity assumptions. This allows
us to construct a new model for the relative K-theory of a pair (X;D) (see
Proposition 3.6).
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To some extent, this can be seen as K-theoretic analogue of the �
(−1)

=
(P1,−∞)-invariance property of higher Chow groups with modulus, recently
established by Miyazaki [28], and it’s the starting point for the construction of
a motivic homotopy category for modulus triples, without A1-invariance, which
is the content of [2] (see also [1, Chapter II]).

We can now state our main Theorem.

Theorem 1 (see Theorem 4.6). Let X be a smooth quasi-projective k-variety
of dimension d and let D be an effective Cartier divisor on it. Assume that the
support of Dred is a strict normal crossing divisor. Then the cycle class map
(4.2), obtained by sending a zero cycle α ∈ zd+n(X|D,n) to its fundamental
class (see 4.0.1), induces a group homomorphism

cycd+n

X|D
: CHd+n(X |D,n)Mssup,Q → Kn(X;D)(d+n)

for each n ≥ 0, where Kn(X;D)(d+n) is the kd+n characteristic subspace of the
Adams operation ψk acting on Kn(X;D)Q (for a fixed integer k > 1, see 3.3
for details). When D = ∅, the maps cycd+n

X|∅
agree with the cycle class maps

defined by Bloch [6] and Levine [24].

The subscriptMssup refers to a slightly different modulus condition on algebraic
cycles, stronger then the one considered in [5], which we call strong sup-modulus
condition, following the terminology introduced in [21] in the case of additive
higher Chow groups (see Definition 2.3). Note that for n = 0, the group
CHd(X |D, 0)Mssup

agrees with the Kerz-Saito Chow group of zero cycles with
modulus. The appearance of the strong sup-modulus condition, instead of the
classical sum condition considered elsewhere, is quite natural in our approach,
and is related to the fact that the above-mentioned invariance property of
relative K-theory is built on a certain iterated construction, which forces us to
consider “one face at the time” of the closed box �

n
= (P1)n. We expect this

new phenomena to play some role in the future development of the theory.
In this work, we consider the range (d + n, n) for d = dimX, i.e. the groups
which might be called of zero cycles with coefficients in Milnor K-theory. In
this sense, the groups CHd+n(X|D,n)Mssup

can be seen as a cycle-theoretic
incarnation of the K-groups of reciprocity functors of Ivorra-Rülling [11] (the
T -functor, in their terminology) or of the K-groups of geometric type consid-
ered by Sugiyama [33]. In fact, as consequence of our Theorem 1, we get the
following Corollary (see 4.2 for a quick review of the notation)

Corollary 2 (see Corollary 4.10). In the notations of Theorem 1, assume
moreover that X is proper over k and that k is perfect. Then there is a canonical
homomorphism

cycgeo
X|D,n

: Kgeo
sum(h0(X;D),Gm, . . . ,Gm)⊗Q→ Kn(X;D)(d+n)

for each n ≥ 0. Here Kgeo
sum(−) denotes Sugiyama’s K-group of geometric type

of the SC-reciprocity sheaves h0(X ;D) and Gm (n-times).
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In some special cases, e.g. X = Ar over an algebraically closed field of char-
acteristic zero and D an effective divisor with deg(Dred) < r, the groups
CHr+n(Ar|D,n) are known to be zero by results of Krishna-Park [22, The-
orem 1.2 and Theorem 1.3]. There are other vanishing results for special fields
and for special type of affine varieties, reflecting corresponding vanishing on
the T -groups. For an example where the groups CHr+n(Ar|D,n) are not zero,
see [8].
Before giving a brief description of the content of the paper, we make a couple
of other remarks about our result.

1. For our construction, we work with the naive cycle complex rather then
with the sheafified version zq(−| − ×D, ∗)Nis considered in [12] for the
definition of relative Chern classes. We expect that the composition of
cycd+n

X|D
with the Chern class cd+n,2d+n agrees, up to a rational factor,

with the canonical map CHd+n(X|D,n)Mssup
→ CHd+n

Nis (X|D,n).

2. In order to show that the map defined on the set of generators factors
through the rational equivalence, we need to consider suitable liftings of
classes of 1-cycles with modulus in relative K-theory, but this lift is not
canonical enough to be used to produce a cycle class map for 1-cycles.
We explain in 4.4 what is the obstruction for generalizing our method to
the construction of cycle classes for higher dimensional cycles.

3. We work with a fixed pair (X;D), and we do not consider the problem
of comparing the pro-groups

cycd+n

X|mD
: {CHd+n(X|mD,n)}m,Q → {Kn(X,mD)(d+n)}m,Q.

In the special case X = Spec(A) for A a henselian DVR over k with
uniformizer π and D = Spec(A/π), a partial result in this direction (but
in every range) has been obtained by [12] (see Theorem 6.1 in loc. cit.).

We finally remark that we expect the maps cycd+n

X|D
to be injective. We verified

this for n = 0 and k algebraically closed when X is affine or a quasi-projective
surface in [4, Theorem 1.5 and Theorem 1.7]. Independently from the results
of this paper, an alternative and different construction of a cycle class map for
higher zero cycles with modulus to relative K-groups has been recently found
by Gupta-Krishna in [10].

This paper is organized as follows. In Section 1, we review some definitions and
elementary results about the cycle complexes with modulus, and we introduce
the alternative modulus condition Mssup. We refer the reader to [5] for a more
detailed treatment of the subject. In Section 2, we discuss some results on
multi-relative K-theory, and we explain how to use iteratively the P1-bundle
formula to obtain a delooping of the relativeK-theory spectrumK(X;D). This
is what allows us to shift the problem of constructing classes in higher relative
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K-groups to the problem of constructing classes in some co-multi-relative K0-
group.
Finally, in Section 3 we present the proof of our main Theorem. Using our new
model, the construction of the cycle class map follows the lines of the proof of
Levine of the rational isomorphism between Bloch’s higher Chow groups and
the weight-graded pieces of Quillen’s K-theory groups (see Section 2 of [24]),
but a new argument is necessary to show that the resulting map lifts from
Kn(X) to the relative group Kn(X ;D). This is where the modulus condition
on cycles (and in particular the choice of the Mssup-condition) comes into the
picture, and a delicate local analysis (explained in 4.3) is required.

Notations

Throughout this note, we fix a field k. All schemes are assumed to be separated
and of finite type over k unless otherwise specified. For two k-schemes X and
Y , we write X×Y for X×k Y . If Z is any closed subscheme of a scheme X , we
denote by |Z| its support, i.e. the underlying closed subspace of X . Similarly,
if E is an effective Cartier divisor on X , we denote by |E| its support.

2 A recollection on relative cycle complexes

Let P1
k = Proj(k[Y0, Y1]) be the projective line over k and let y = Y1/Y0 be the

standard rational coordinate function on it. For n ∈ N \ {0}, 1 ≤ i ≤ n, let
pni : (P

1)n → P1 be the projection onto the i-th component. We use on (P1)n

the rational coordinate system (y1, . . . , yn), where yi = y ◦ pi. Let

�
n = (P1

k \ {1})
n

be the open (n-dimensional) box and let ιni,ε : �
n → �n+1 be the closed em-

bedding

ιni,ε(y1, . . . , yn) = (y1, . . . , yi−1, ε, yi, . . . , yn),

for n ∈ N, 1 ≤ i ≤ n+ 1, ε ∈ {0,∞},

of the codimension one face given by yi = ε, for ε ∈ {0,∞}. The assignment
n 7→ �n defines an extended cocubical object �• in the category of k-schemes,
in the sense of [27, 1.5]. We conventionally set �0 = Spec(k).
A face of the open box �n is a closed subscheme F defined by equations of the
form

yi1 = ε1, . . . , yir = εr ; εj ∈ {0,∞}.

For a face F , we write ιF : F →֒ �n for the inclusion. We write Fn
i,ε for the face

of �n given by yi = ε for ε ∈ {0,∞} and i = 1, . . . , n (i.e. the image of ιn−1
i,ε in

�n). The strict normal crossing divisor
∑

i,ε F
n
i,ε on �n will be denoted ∂�n

and called the boundary divisor of �n.
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If no confusion arises, we also write Fn
i,η for the divisor of (P1)n given by yi = η

for η ∈ {0, 1,∞}, and put Fn =
∑

1≤i≤n

Fn
i . Finally, we write �

n
for (P1)n and

we call it the closed box.

2.1 Moduli conditions on higher cycles

Let X be a (reduced) equidimensional scheme over k, and let D be an effective
Cartier divisor on X. Let X be the open complement of D in X. Let n > 0
and suppose that W is an integral closed subscheme of X ×�n. Let W denote

the closure of W in X ×�
n
and W

N
denote its normalization. Write

ϕW : W
N
→ X ×�

n

for the composition of the natural map W
N
→ W with the closed immersion

W → X ×�
n
. We say that

i) W satisfies the M∑ modulus condition (the sum-modulus condition) if
we have the inequality

ϕ∗
W
(D ×�

n
) ≤ ϕ∗

W
(X × Fn).

ii) W satisfies the Mssup modulus condition (the strong sup-modulus condi-
tion) if there exists an integer 1 ≤ i ≤ n such that we have the inequality

ϕ∗
W
(D ×�

n
) ≤ ϕ∗

W
(X × Fn

i,1).

The above definitions are generalizations of [21]. The sum-modulus condition
is by far the most used in literature and it’s the point of view adopted in [5].
Note that the strong-sup condition is strictly stronger then the sum condition
(though there are “conjectures” about the resulting cycle complexes to be quasi-
isomorphic, see again [21]).

Remark 2.1. There are other possible moduli conditions on cycles that are
reminiscent of older stages of the theory. For example, in [21] (generalizing the
original definition of Bloch-Esnault [7]) one can find a sup-modulus condition,
where the relevant inequality of divisors is checked on the supremum over i of
ϕ∗
W
(X × Fn

i,1).

Let Y be a scheme equidimensional over k, D and F two effective Cartier
divisors on Y . Assume that D and F have no common components. Let X be
the open complement X = Y − (F +D). The following Lemma is taken from
[5] and uses the same argument as [21, Proposition 2.4].

Lemma 2.2. Let W be an integral closed subscheme of X and let V ⊂W be an
integral closed subscheme of W . Let W (resp. V ) be the closure of W (resp.

of V ) in Y . Let ϕW : W
N
→ Y (resp. ϕV : V

N
→ Y ) be the normalization

morphism. Then the inequality ϕ∗
W (D) ≤ ϕ∗

W (F ) as Cartier divisors on W
N

implies the inequality ϕ∗
V (D) ≤ ϕ∗

V (F ) as Cartier divisors on V
N
.
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414 Federico Binda

Definition 2.3. Let M ∈ {M∑,Mssup}. We write Cr(X |D,n)M for the set
of all integral closed subschemes V of codimension r in X × �n satisfying the
following conditions:

1. V has proper intersection with X × F for all faces F of �n.

2. For n = 0, Cr(X |D, 0) = Cr(X)D is the set of integral closed subschemes
of X not intersecting D.

3. For n > 0, V satisfies the M -modulus condition on X ×�
n
.

An element in Cr(X|D,n)M is called an admissible cycle with M -modulus D
of codimension r, or simply an admissible cycle with modulus D if M =M∑.

Remark 2.4. Any of the above modulus conditionsM imply that V ∩(D×�
n
) ⊂

X ×Fn as closed subsets of X ×�
n
. Hence V ∩ (D×�n) = ∅ and V is closed

in X × �n. This implies that Cr(X|D,n)M can be viewed as a subset of the
set of all integral closed subschemes W of codimension r on X × �n which
intersects properly with X × F for all faces F of �n.

Let V ⊂ W be integral closed subschemes of X × �n and assume that W
satisfies one of the modulus conditions M ∈ {M∑,Mssup}. Lemma 2.2 shows
that the same is true for V . This, together with the good position assumption
on admissible cycles, proves the following Lemma.

Lemma 2.5. Let V ∈ Cr(X|D,n)M and let F be a face of dimension m of �n.
Then the cycle (idX ×ιF )∗(V ) on X ×F ≃ X ×�m belongs to Cr(X|D,m)M .

Definition 2.6. We denote by zr(X|D,n)M the free abelian group on the set
Cr(X |D,n)M . By Lemma 2.5, the cocubical object of schemes n 7→ �n gives
rise to an extended cubical object (see again [27, 1.5]) in the category of abelian
groups

1
n 7→ zr(X|D,n)M , n ≥ 0.

In particular, the groups zr(X|D,n)M define a chain complex with boundary

∂ =
∑

1≤i≤n

(−1)i(∂∞i − ∂
0
i ),

where ∂εi : z
r(X|D,n)M → zr(X |D,n−1)M is the pullback along (idX ×ι

n−1
i,ε )∗

for ε ∈ {0,∞}. We call the associated non-degenerate complex (see [27, 1.2])
zr(X |D, ∗)M the cycle complex of X with (M)-modulus D. Its homology groups
are denoted by

CHr(X|D,n)M = Hn(z
r(X|D, ∗)M )

and called higher Chow groups of X with (M)-modulus D. Note that we have
a natural inclusion of cycle complexes

zr(X|D, ∗)Mssup
⊂ zr(X |D, ∗)MΣ

,

and therefore natural homomorphisms

CHr(X |D,n)Mssup
→ CHr(X |D,n)MΣ

= CHr(X |D,n).
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Remark 2.7. Every admissible cycle with modulus V ∈ Cr(X |D,n)M is closed
in X × �n as noticed in Remark 2.4. In particular, we can naturally view
the complex zr(X|D, ∗) as a subcomplex of the (non-degenerate) cubical cycle
complex zr(X, ∗) of Bloch (see [24, Section 3] for a proof that the cubical
version coincides with the original simplicial version of [6]). This gives a map

CHr(X |D,n)→ CHr(X,n)

from higher Chow groups with modulus (for one of the two M -conditions) to
Bloch’s higher Chow group. Of course, when D = ∅, there is no modulus
condition to check and our definition recovers the usual cubical higher Chow
groups.

Remark 2.8. Higher Chow groups with moduli conditions are a generaliza-
tion of the additive higher Chow groups introduced by Bloch-Esnault [7] and
subsequently studied by Park [30], Rülling [31], Krishna-Levine [20] and oth-
ers. For X = Y × A1

k, with Y an integral scheme of finite type over k, and
D = m · Y × {0} ⊂ Y × A1

k for some m > 0, the groups CHr(X|D,n) coincide
with TCHr(Y, n+ 1;m).
The Definition proposed above, for the MΣ condition, was initially conceived
by Kerz and Saito as generalization to higher cycles of the Chow group of zero
cycles with modulus used in [18] to study wildly ramified class field theory for
varieties over finite fields. We refer the reader to [5] for a systematic treatment.

2.2 Easy functorialities

Although we don’t need them in this note, we briefly recall some functorial
properties of the relative cycle complexes. Let (X,D) and (Y ,E) be two pairs
consisting of reduced equidimensional schemes X and Y over k and effective
Cartier divisors D and E respectively on them. When X and Y are smooth
over k, we call the pairs (X,D) and (Y ,E) modulus pairs. Let f : Y → X be a
morphism in Sch(k) and assume that the pullback f∗(D) is defined as effective
Cartier divisor on Y . We say that f is admissible (resp. coadmissible) if there
is an inequality f∗(D) ≥ E (resp. if there is an inequality f∗(D) ≤ E). The
proofs of the following Lemmas are straightforward.

Lemma 2.9. Let f : (Y ,E) → (X,D) be a flat admissible morphism of pairs.
The flat pullback of cycles induces a morphism of complexes

f∗ : zr(X |D, ∗)M → zr(Y |E, ∗)M

compatible with composition in the sense that f∗g∗ = (g ◦ f)∗ for composable
admissible flat morphisms f and g.

Lemma 2.10. Let f : (Y ,E) → (X,D) be a proper coadmissible morphism of
pairs. Then there is a well defined push-forward map of cycles

f∗ : z
r+dimX−dimY (Y |E, ∗)M → zr(X |D, ∗)M .
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3 Relative K-theory

3.1 Generalities on relative and multirelative K-theory

Let Y be a Noetherian separated scheme. Write K
TT (Y ) = K(Y ) for the

K-theory (Ω)-spectrum of Thomason-Trobaugh on the Waldhausen category
of strict perfect complexes on Y . For a closed subscheme jZ : Z →֒ Y , the
spectrum of algebraic K-theory of Y relative to Z is the homotopy fiber of the

morphism of spectra K(Y )
j∗Z−→ K(Z),

K
TT (Y ;Z) = hofib(K(Y )

j∗Z−→ K(Z).)

Its homotopy groups, π∗(K
TT (Y ;Z)) = K∗(Y ;Z), are called the K-theory

groups of Y relative to Z or simply groups of relative K-theory. By construc-
tion, there is an exact sequence of homotopy groups

. . .→ KTT
∗+1(Z)→ KTT

∗ (Y ;Z)→ KTT
∗ (Y )→ KTT

∗ (Z)→ KTT
∗−1(Y ;Z)→ . . .

(3.1)
where KTT

∗ (Y ) and KTT
∗ (Z) denote, respectively, the Thomason-Trobaugh K-

theory groups of Y and Z. When Y is equipped with an ample family of line
bundles as in [34, Definition 2.1.1], the choice of the Waldhausen category is
not critical, as remarked by [34, 3.4]. To simplify the notation, we will drop
the superscript TT from the K-theory spectra.

3.1.1 Iterated homotopy fiber

Let T be another closed subscheme of Y . We denote by K
|T |(Y ) or by

K(Y on T ) the K-theory spectrum of the cosimplicial biWaldhausen category
of perfect complexes on Y that are acyclic on the open complement Y \ T . As
customary, we call it the K-theory spectrum of Y with support on T . When U
is itself quasi compact, Thomason’s (proto)-localization theorem [34, 5.1] gives
a homotopy fiber sequence

K
|T |(Y )→ K(Y )

ι∗U−→ K(U)

apart possibly from the failure of surjectivity of the map K0(Y ) → K0(U).
Similarly, for F a family of supports on Y we denote by K

F(Y ) the corre-
sponding K-theory spectrum. In the relative setting, we get the analogue
fibration sequence

K
|T |(Y ;Z)→ K(Y ;Z)→ K(U ;Z ∩ U)

where the term K
|T |(Y ;Z) is defined as the homotopy fiber of the induced map

K
|T |(Y )→ K

|T∩Z|(Z).

Definition 3.1. Let I be a finite set and let P(I) be the set of subsets of I,
seen as category with morphisms given by inclusions. We call I-cube a functor
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X : P(I) → C from P(I) to some category C. An n-cube is an I-cube with
respect to a set I that has cardinality n. Given a subset J of I, the inclusion
P(J)→ P(I) defines a J-subcube of an I-cube X .

Let Y be a Noetherian separated scheme. Let Y1, . . . , Yn be a set closed sub-
schemes. We define an n-cube of schemes as follows. For every I ⊂ {1, . . . , n},
let YI be the subscheme YI =

⋂
i/∈I Yi. For I = {1, . . . , n}, we conventionally

set Y∅ = Y , and we write Yi = Y{1,...,i−1,i+1,...,n} for short. If ϕI,J : I ⊂ J ,
there is a corresponding closed embedding of subschemes of Y

ϕI,J : YI =
⋂

i/∈I

Yi →
⋂

j /∈J

Yj = YJ .

Pulling back along ϕI,J defines a (contravariant) n-cube of spectra I 7→ K(YI).

Definition 3.2. The total (homotopy) fiber of K(Y•) is, by definition

Fib(K(Y•)) = hofib(K(Y∅)→ holim
←−−−
I 6=∅

K(YI)).

The iterated homotopy fiber of the K-theory spectra of Y• is the Ω-spectrum
inductively defined by

K(Y ;Y1, . . . , Yn) = hofib(K(Y ;Y1, . . . , Yn−1)→ K(Yn;Y1∩Yn, . . . , Yn−1∩Yn))

Assume that each intersection scheme YI is provided with a family of supports
F(YI) such that, for every i ∈ I and every Z ∈ F(YI), the intersection of Z with
Yi is contained in F(YI\{i}). We can repeat the above construction replacing
everywhere the K-theory spectra with the corresponding spectra with support,
obtaining in this way a corresponding spectrum K

F(Y ;Y1, . . . , Yn).

3.1.2 Iterated homotopy cofiber

We present now a dual construction. Let X be a Noetherian separated scheme
(admitting an ample family of line bundles, as above) and let iY : Y →֒ X be
a closed subscheme of X . Assume that the morphism iY is a regular closed
immersion. In particular, iY is a perfect projective morphism in the sense of
[34, Definition 2.5.2], and by [34, 3.16.5] there is a well defined push-forward
map (iY )∗ : K

TT (Y )→ K
TT (X). We denote byK(X/Y ) the homotopy cofiber

of (iY )∗,
K(X/Y ) = hocof(K(Y )→ K(X)).

More generally, suppose that we are given a family of closed subschemes
Y1, . . . , Yn of X . As before, consider the n-cocube of schemes (see Definition
3.1) Y•, setting Y{1,...,n} = X . Assume now that, for every I ⊂ J ⊂ {1, . . . , n},
the morphism ϕI,J is a regular closed immersion. This gives, again by [34,
3.16.5], a well-defined push-forward map between the K-theory spectra (so, it
is a covariant construction)

(ϕI,J )∗ : K(YI) −→ K(YJ ).
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We define in this way an n-cube of spectra, KW (Y•). The total (homotopy)
cofiber of K(Y•) is by definition

Cof(K(Y•)) = hocof( hocolim
−−−−−→
I 6={1,...,n}

K(YI)→ K(Y{1,...,n})).

Definition 3.3. We keep the above assumptions on X and Y1, . . . , Yn. The it-
erated homotopy cofiber of the K-theory spectra of X and Y∗ is the Ω-spectrum
defined inductively

K(X/Y1, . . . , Yn)

= hocof(K(Yn/Y1 ∩ Yn, . . . , Yn−1 ∩ Yn)→ K(X/Y1, . . . , Yn−1)).

Remark 3.4. The following remark holds for the total homotopy fiber as well.
There is unique natural map K(X/Y1, . . . , Yn)→ Cof(K(Y•)), that is a homo-
topy equivalence. The existence of the map and the fact that it is an equivalence
is dual to [9, C.6] (this is also dual to [29, Proposition 5.5.4], that the reader can
consult for a detailed proof). For every permutation σ of the set {Y1, . . . , Yn},
we have maps

K(X/Y1, . . . , Yn)→ Cof(K(Y•))← K(X/Yσ(1), . . . , Yσ(n))

that are homotopy equivalences. In particular, there is a canonical “zig-zag”
datum joining K(X/Y1, . . . , Yn) and K(X/Yσ(1), . . . , Yσ(n)), and thus the space
of homotopies between different iterated homotopy cofibers is contractible. We
will then forget the difference between the choices of order of the set of sub-
schemes Y∗.

3.2 A model for relative K-theory

We put ourselves back into the geometric situation. Let Y be a regular k-variety
and consider the n-cube of schemes defined by Y ×�n = Y × (P1 \ {1})n. Let
∂�n denote the strict normal crossing divisor given by the union of the faces
Fn
i,ε, for ε ∈ {0,∞} and i ≤ n. Using the homotopy property of K-theory of

regular schemes, there is a natural homotopy equivalence (see [24, Theorem
3.1])

K(Y ×�
n;Y × ∂�n)→ Ωn

K(Y )

(where the left-hand side denotes for short the iterated homotopy fiber with
respect to the boundary divisor Y ×∂�n of Y ×�n defined in Section 2) giving
the isomorphisms

K0(Y ×�
n;Y × ∂�n)

≃
−→ Kn(Y ),

for every n. This construction gives a nice delooping of K-theory, and allows
us to construct classes in higher K-groups by constructing classes in (multi)-

relative K0. For Y not regular, the canonical morphism K(A1
Y )

ι∗0−→ K(Y ) fails
to be a homotopy equivalence, and the construction has to be modified. We
take inspiration from [24] in doing so.
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The new ingredient is the following: instead of homotopy invariance, we use
the projective bundle formula, available by [34] for any quasi-compact and
quasi-separated scheme. We recall the statement.

Theorem 3.5 (see [34], Theorem 4.1). Let X be a quasi-compact and quasi-
separated scheme. Let E be an algebraic vector bundle of rank r over X and let
π : PEX → X be the associated projective space bundle. Then there is a natural
homotopy equivalence

r∏
K(X)

∼
−→ K(PEX) (3.2)

given by the formula (x0, x1, . . . , xr−1) 7→
∑r−1

i=0 π
∗(xi)⊗ [OPE(−i)].

Let X be a scheme of finite type over k (though the reader is free to keep
working with X quasi-compact and quasi-separated in this subsection). By
(3.2), there is an isomorphism

K∗(P
1
X) ≃ K∗(X)[O]⊕K∗(X)[O(−1)], (3.3)

where K∗(X)[O] and K∗(X)[O(−1)] are written with respect to the external
product

K(X) ∧K(P1
Z)→ K(P1

X)

and [O] and [O(−1)] are elements in K0(P
1
Z). It is convenient for us to change

basis for the direct sum decomposition to

{[O], [O]− [O(−1)]},

so to get
K∗(P

1
X) ≃ K∗(X)[O]⊕K∗(X)([O]− [O(−1)]). (3.4)

For i ∈ {0, 1,∞}, let ιi be the regular embedding

ιi : X × {i} → P1
X

and let π : P1
X → X be the projection. We have the associated pullback mor-

phisms
ι∗i : K(P1

X)→ K(X) for i ∈ {0, 1,∞},

π∗ : K(X)→ K(P1
X)

and the push-forward morphisms

ιi,∗ : K(X)→ K(P1
X) for i ∈ {0, 1,∞}.

Note that since the projection π has a section, π∗ is a split monomorphism,
corresponding to the canonical inclusion of the first direct summand of (3.4).
For ι = ι0, ι∞ or ι1 and for every j ∈ Z we have ι∗(OP1(j)) = O. Thus

ι∗[OP1 ] = [O] = 1, and ι∗([O]− [O(−1)]) = 0
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in K0(X). Hence we see that on the direct sum decomposition of K∗(P
1
X),

the pullback morphisms along the three rational sections all agree and they
correspond to the canonical projection on the first component, splitting the
pullback along the projection π∗. In particular, one has that the map

K(P1
X)

ι∗0−ι∗
∞−−−−→ K(X) (3.5)

is homotopy equivalent to the zero map.
By the Projection Formula [34, 3.17], the diagram

K(X) ∧K(X)
π∗∧ι∗//

⊗

((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
K(P1

X) ∧K(P1
X)

⊗ // K(P1
X)

K(X)

ι∗

77♦
♦♦♦

♦♦♦
♦♦♦♦

commutes, up to canonically chosen homotopy. Thus we see that the push-
forward along the inclusion ι is a monomorphism on the K-groups, split by π∗,
that corresponds to the inclusion on the second direct summand of (3.4), since
[ι∗OX ] = [O]− [O(−1)] in K0(P

1
X). In particular, the homotopy cofiber

K(P1
X/X × {1}) = K(P1

X/X × F
1
1 )

is homotopy equivalent to K(X) via the projection map π∗. For ε ∈ {0,∞},
consider the homotopy fiber

K(P1
X ;X × F 1

ε /X × F
1
1 ) = hofib(K(P1

X/X × F
1
1 )

ι∗ε−→ K(X))

Where F 1
ε = {ε} ⊂ P1

k. Since ι
∗
ε is a homotopy equivalence, K(P1

X ;X×F 1
ε /X×

F 1
1 ) is contractible and thus the iterated homotopy fiber/cofiber

K(P1
X ;X×F 1

0 , X × F
1
∞/X × F

1
1 ) (3.6)

≃ hocof(K(X)
ι1,∗
−−→ K(X × P1;X × F 1

0 , X × F
1
∞))

is homotopy equivalent to ΩK(X).
More generally, consider X × (P1)n = X ×�

n
. An iterated application of the

projective bundle theorem shows that K(X × (P1)n = X ×�
n
) decomposes as

2n-copies of the K-theory spectrum of X , two copies for each copy of P1 in the
closed box �

n
.

Let Cof(K(X × (�
n
)/X × Fn

•,1) be total homotopy cofiber of the n-cube of
schemes

{X × Fn
i,1 →֒ X × (P1)n}ni=1,

where we recall that Fn
i,1 denotes the face yi = 1 on the i-th copy of P1, with

respect to the push-forward along the inclusion of faces with value 1. It is clear
by construction and the computation in (3.4) that Cof(K(X× (�

n
)/X×Fn

•,1)
is homotopy equivalent to K(X).
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For ∅ 6= I ⊂ {1, . . . , n} × {0,∞}, consider the subscheme X × ∂�
n

I of X ×�
n

given by

X × ∂�
n

I =
⋂

(k,ε) 6∈I

X × Fn
k,ε →֒ X ×�

n

For fixed I, consider for every k with (k, 0), (k,∞) ∈ I, the inclusion of the
face ιnk,1 : X ×F

n
k,1 → X× ∂�

n

I . This defines another (co)cube of schemes, and
a corresponding (co)cube of spectra with maps induced by push-forward

ιn1,k,∗ : K(X × Fn
k,1)→ K(X × ∂�

n

I = X × FI′ ×

k
∨

P1 × FI′′)

for a partition I = I ′ ∪ I ′′ with the obvious convention. We denote by
Cof(K(X × ∂�

n

I )/X ×F
n
•,1) its total homotopy cofiber. The following Propo-

sition is now proved by descending induction on n, starting from (3.6) applied

to X ×�
n
= (X ×�

n−1
)× P1

Proposition 3.6. The total homotopy fiber/cofiber

K(X ×�
n
;X × ∂�

n
/X × Fn)

= hofib(Cof(K(X × �
n
)/X × Fn

•,1)→ holim
←−−−
I 6=∅

Cof(K(X × ∂�
n
I )/X × F

n
•,1))

is homotopy equivalent to the n-th loop Ωn
K(X).

Let X be as above and let Y be a closed subset of X (if the reader is still
considering X quasi-compact and quasi-separated, she might want to assume
that the open complement U = X \ Y is quasi compact as well). The closed
immersion ιY gives a pullback morphism on the K-theory spectra, and gives
induced pullback morphisms between the cubical objects X ×�

n
and Y ×�

n
.

Definition 3.7. We denote by K((X ;Y ) × �
n
; (X ;Y ) × ∂�

n
/(X ;Y ) × Fn)

the homotopy fiber

hofib(K(X ×�
n
;X × ∂�

n
/X × Fn)

ι∗Y−→ K(Y ×�
n
;Y × ∂�

n
/Y × Fn)).

By Proposition 3.6, we get a natural homotopy equivalence

K((X ;Y )×�
n
; (X ;Y )× ∂�

n
/(X ;Y )× Fn)

∼
−→ Ωn

K(X ;Y ) (3.7)

for the relative K theory spectrum K(X ;Y ).

3.3 Adams operations on K-groups and variants

We collect some useful facts about Adams operations on relative K-theory with
support. For their construction (and much more), we refer the reader to [25,
Section 5 and 7] or to [23].
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Suppose that X is a Noetherian scheme equipped with an ample family of line
bundles. Then the K-groups of X , with rational coefficients, come equipped
with group homomorphisms (Adams operations)

ψk : Kn(X)Q → Kn(X)Q, k ≥ 1

which turn the graded ring
⊕

nKn(X)Q into a special λ-ring. By e.g. [23,
Proposition 4.1.2], they are functorial for maps of schemes.
When we take homotopy groups, the identification of Kn(P

1
X/X × {1})Q with

the summand Kn(X)Q of Kn(P
1
X)Q via π∗ is compatible with Adams opera-

tions. In fact, the operations ψk are compatible with products by [23, Theorem
4.2.1.iv], and they satisfy ψk([O]) = [O] by [23, Theorem 4.2.1.i]. In particular,
the decomposition (3.4) is compatible with the action of ψk for every k ≥ 1.
One can extend the argument to the relative K-groups, even with support,
thanks to the following result of Levine.

Theorem 3.8 (Corollary 5.6 [25]). Let X be a Noetherian scheme over a
Noetherian ring S, admitting an ample family of line bundles. Let Y1, . . . , Yn
be closed subschemes of X, and let W be another closed subscheme of X. Then
there is a special K0(S) − λ-algebra structure for the relative K-theory with
supports (see Definition 3.2)

K |W |
p (X ;Y1, . . . , Yn)

which is natural in the tuple (X ;Y1, . . . , Yn;W ). In particular, the long exact
relativization sequence

. . .→ K |W |
p (X ;Y1, . . . ,Yn)→ K |W |

p (X ;Y1, . . . , Yn−1)

→ K |W∩Yn|
p (X ∩ Yn;Y1 ∩ Yn, . . . Yn−1 ∩ Yn)→ . . .

and the long exact localization sequence

. . .→ K |W |
p (X ;Y1, . . . ,Yn)→ Kp(X ;Y1, . . . , Yn)

→ Kp(X \W ;Y1 \W, . . . , Yn \W )→ . . .

are sequences of special K0(S)− λ-algebras.

If we apply Theorem 3.8 to the case X × P1, Y1 = X × F 1
0 and Y2 = X × F 2

∞

(and S = k for a field k, say), we get functorial Adams operations on the multi
relativeK-groupsKn(P

1
X ;X×F 1

0 , X×F
1
∞)Q, compatible with the relativization

diagram

Kn(P
1
X ;X × F 1

0 , X × F
1
∞)Q //

��

Kn(P
1
X ;X × F 1

0 )Q

��
Kn(P

1
X ;X × F 1

∞)Q // Kn(P
1
X)Q.
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As remarked in Section 3.2, the P1-bundle formula implies that the pullback
ι∗ε , for ε ∈ {0,∞}, factors through the cofiber Kn(P

1
X/X × F

1
1 )Q and gives an

isomorphism Kn(P
1
X/X × F

1
1 )Q

ι∗ε−→ Kn(X × F 1
ε ). Since ι∗ε commutes with ψk

for every k ≥ 1, this isomorphism is compatible with the Adams operations on
both sides (where the operations on the cofiber groups are simply the operations
on Kn(X)Q transported to Kn(P

1
X)Q via π∗), and is functorial in X . Putting

things together, we finally see that the iterated homotopy fiber/cofiber groups

Kn(P
1
X ;X × F 1

0 , X × F
1
∞/X × F

1
1 )Q

are naturally equipped with functorial (in X) Adams operations ψk, and that
the isomorphism

Kn(P
1
X ;X × F 1

0 , X × F
1
∞/X × F

1
1 )Q → πn(ΩK(X))Q = Kn+1(X)Q

given by (3.6) is also compatible with Adams operations on both sides.
Clearly, the same holds if we replace P1

X with X × (P1)n and we iterate the
argument. In particular, thanks to Levine’s result, we get functorial Adams
operations on the multi-relative fiber/cofiber groups

ψk : Kn(X ×�
n
;X × ∂�

n
/X × Fn)Q → Kn(X ×�

n
;X × ∂�

n
/X × Fn)Q

and that the isomorphism given by Proposition 3.6 is compatible with them.
If now Y is any closed subset of X , we can consider the homotopy groups of the
homotopy fiber K((X ;Y )×�

n
; (X ;Y )×∂�

n
/(X ;Y )×Fn) as in Definition 3.7.

Another application of Theorem 3.8 gives Adams operations on the K-groups

K∗((X ;Y )×�
n
; (X ;Y )× ∂�

n
/(X ;Y )× Fn)Q

compatible with the relativization sequence for the pair (X ;Y ) and with the
isomorphism given by (3.7).
We finally introduce some some notations. Fix an integer k > 1. In the setting
of Theorem 3.8, we denote by

K |W |
p (X ;Y1, . . . , Yn)

(q)

the kq-characteristic subspace of ψk acting on K
|W |
p (X ;Y1, . . . , Yn)Q. This is

the set of v ∈ K
|W |
p (X ;Y1, . . . , Yn)Q such that, for some N > 0, we have

(ψk − kq · id)N (v) = 0.

The functoriality of the Adams operations on relative K-groups with supports
shows that the subspaces

K |W |
p (X ;Y1, . . . , Yn)

(q) ⊂ K |W |
p (X ;Y1, . . . , Yn)Q

are functorial in the tuple (X ;Y1, . . . , Yn;W ) (see the remark in [24, p. 259]).
With this notation, the isomorphism (3.7) restricted to the q-characteristic
subspace takes (on π0) the form

K0((X ;Y )×�
n
; (X ;Y )× ∂�

n
/(X ;Y )× Fn)(q) ≃ Kn(X ;Y )(q). (3.8)
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4 A cycle class map for “higher” 0-cycles with modulus

Assume that X is an integral and regular quasi-projective k-variety, and let D
be an effective Cartier divisor on it. Assume that the support |Dred| of D is a
strict normal crossing divisor on X . We will make systematic use of the results
of 3.3 about Adams operations on K-groups, as well as some other classical
facts from [25, Section 5] and [24, Section 2].
Write d = dimX. Recall from Definition 2.6 that for every n ≥ 0, the group
zd+n(X |D,n) is the free abelian group generated by the set Cd+n(X |D,n) of
closed points P in X × �n such that P /∈ D × �n and P /∈ X × Fn

i,ε for
i = 1, . . . , n and ε ∈ {0,∞}. Clearly, this set coincides with the set of closed
points in X ×�

n
that are disjoint from D×�

n
and that do not meet any face

X × Fn
i,η, for i = 1, . . . , n and η ∈ {0, 1,∞}.

4.0.1 The fundamental class of a cycle

Take a point P in Cd+n(X|D,n). Since X is regular and quasi-projective, the
module OP is quasi-isomorphic in the derived category ofOX×�n-modules (and
in the category of OX×�

n -modules) to a bounded complex of vector bundles.
In particular, we have an isomorphism

Q = K0(k(P ))Q = K0(k(P ))
(0) ≃
−→ K

|P |
0 (X ×�

n)(d+n) = K
|P |
0 (X ×�

n
)(d+n).

where the last equality follows from the fact that P 6∈ |
∑n

i=1 F
n
i,1|. The image

of the class of 1 along the natural morphism K
|P |
0 (X × �

n
)(d+n) → K0(X ×

�
n
)(d+n) defines a class [OP ], that we call the fundamental class of the point

P .
Let Kd+n

0 (X × �
n
)(d+n) be the direct limit of the groups K

|P |
0 (X × �

n
)(d+n)

as P ranges over the set of finite unions of (closed) points P in Cd+n(X |D,n).
Sending P to its fundamental class gives a group homomorphism

zd+n(X|D,n)Q
cycd+n

−−−−→ Kd+n
0 (X×�

n
)(d+n),

r∑

j=1

aj [Pj ] 7→
r∑

j=1

aj [OPj
]. (4.1)

Since any P in Cd+n(X|D,n) is disjoint from D × �
n
and from the bound-

ary divisor X × ∂�
n
, we have a natural homotopy equivalence between

K
|P |(X ×�

n
) and the multi-relative K-spectrum with support K|P |((X ;D)×

�
n
; (X;D) × ∂�

n
). The group homomorphism (4.1) gives then a group ho-

momorphism to the multi-relative K0-group (defined again as direct limit over
P ∈ Cd+n(X |D,n) of the K-groups with support)

zd+n(X|D,n)Q
cycd+n

−−−−→ Kd+n
0 ((X ;D)×�

n
; (X ;D)× ∂�

n
)(d+n).

Composing now with the map induced on π0 by the natural morphism of spectra

K((X ;D)×�
n
; (X ;D)×∂�

n
)→ K((X;D)×�

n
; (X;D)×∂�

n
/(X;D)×Fn),
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and the natural map

Kd+n
0 ((X ;D)×�

n
; (X;D)×∂�

n
)(d+n) → K0((X;D)×�

n
; (X ;D)×∂�

n
)(d+n)

we finally obtain a group homomorphism

zd+n(X|D,n)Q
cycd+n

−−−−→ K0((X ;D)×�
n
;(X;D)× ∂�

n
/(X;D)× Fn)(d+n)

(4.2)

≃ Kn(X ;D)(d+n),

where the last isomorphism follows from (3.7). We will show that this map
factors through the higher Chow group CHd+n(X|D,n)Q,Mssup

defined using
the strong sup-condition.

Remark 4.1. If we forget about Adams grading, we can still use the fact that
we have a chain of natural isomorphisms

Z = K0(k(P )) ≃ K
|P |
0 (X ×�

n
) ≃ K

|P |
0 ((X ;D)×�

n
; (X;D)× ∂�

n
)

to integrally define a group homomorphism

zd+n(X|D,n)→ Kn(X ;D).

It is not clear, however, if this map factors through the rational equivalence on
cycles for n > 0. This is the case when n = 0, and the interested reader can
check that our cycle class map agrees with the one constructed in [4, Theorem
12.4].

4.1 Exploiting the modulus condition: classes of curves

We want to study now how to relate a 1-cycle with modulus with a suit-
ably defined class in the relative K-groups. We first discuss how the good-
position conditions allow us to construct classes in the relative K0-groups

K0(X × �
n+1

;X × ∂�
n+1

). This part of the argument is analogue to [24,
Lemma 2.2].

Given any integral curve C ⊂ X × �n+1 that is in good position with respect

to every face X × Fn+1
i,ε , write C for its closure in X × �

n+1
. Let OC be its

structure sheaf and write ιC : C → X×�
n+1

for the closed immersion. Since X
is regular, the coherent O

X×�
n+1 module OC is quasi-isomorphic to a bounded

complex of vector bundles. Suppose moreover that C is itself regular. As for
the case of points, sending 1 to the class of OC gives an isomorphism

K0(k(C))Q = K0(k(C))(0)
≃
−→ K

|C|
0 (X ×�

n+1
)(d+n).

Suppose now that W is an arbitrary purely 1-dimensional cycle in X × �
n+1

.
Write z0(W )Q for the Q-vector space on the components of W . Assume that

Documenta Mathematica 23 (2018) 407–444



426 Federico Binda

W is reduced. Removing the 0-dimensional subset W ′ of singular points of W
does not change the group z0(W )Q = z0(W \W ′)Q. The regularity of X gives
then an isomorphism (see the argument at page 263 of [24] )

z0(W )Q
≃
−→ K

|W\W ′|
0 (X ×�

n+1
\W ′)(d+n) ≃ K

|W |
0 (X ×�

n+1
)(d+n). (4.3)

Write zd+n(X×�
n+1

)W for the subgroup of zd+n(X×�
n+1

) supported onW ,

where zd+n(X × �
n+1

) denotes as customary the group of codimension d+ n

cycles on X ×�
n+1

. The isomorphism (4.3) gives then the map

zd+n(X ×�
n+1

)W
cycW−−−→ K

|W |
0 (X ×�

n+1
)(d+n).

4.1.1 Lifting classes - I

Let now F be a component of ∂�
n
and assume that F intersects each compo-

nent of W properly. We have a commutative diagram

zd+n(X ×�
n+1

)WQ
cycW //

·X×F
��

K
|W |
0 (X ×�

n+1
)(d+n)

ι∗
X×F

��

zd+n(X × F )W∩X×F
Q

cycW∩X×F // K |W∩X×F |
0 (X × F )(d+n).

If [T ] in zd+n(X × �
n+1

)WQ is such that T · (X × F ) = 0, the commutativ-
ity of the above diagram implies that the class ι∗

X×F
(cycW [T ]) is trivial in

K
|W∩X×F |
0 (X × F )(d+n). In particular, the class cycW [T ] lifts to the relative

K0-group K
|W |
0 (X × �

n+1
;X × F )(d+n). Since the K1 group with support

K
|W∩X×F |
1 (X × F )(d+n) is equal to zero for weight reasons (see [24, (2.1),

p. 261]), this class is well defined.

Notation 4.2. We write ∂′�
n+1

for the divisor (
∑n+1

i=2 F
n+1
i,0 +Fn+1

i,∞ )+Fn+1
1,∞ and

Fn+1 (resp. Fn) for the divisor
∑n+1

i=1 F
n+1
i,1 (resp. for the divisor

∑n
i=1 F

n
i,1)

of �
n+1

(resp. of �
n
).

Suppose that [T ] satisfies T · (X×Fn+1
i,ε ) = 0 for all i = 2, . . . , n+1, ε ∈ {0,∞}

and T ·(X×Fn+1
1,∞ ) = 0. We can iterate the argument of 4.1.1 to get inductively

a well defined class

cycW [T ] ∈ K
|W |
0 (X × �

n+1
;X × ∂′�

n+1
)(d+n).

Projecting to the iterated cofiber along the faces Fn+1
i,1 for i = 1, . . . , n + 1,

gives then a class (that we still denote in the same way)

cycW [T ] ∈ K
|W |
0 (X ×�

n+1
;X × ∂′�

n+1
/X × Fn+1)(d+n)

and forgetting the support we end up with a class

cycd+n[T ] ∈ K0(X ×�
n+1

;X × ∂′�
n+1

/X × Fn+1)(d+n).
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4.1.2 Cycle classes of normalized cycles

Let N(zd+n(X|D,n+1)Mssup
) be the group of admissible cycles in the normal-

ized complex of zd+n(X |D, •)Mssup
(see [27, p.7] for the definition of normalized

subcomplex associated to a cubical object in an abelian category). To simplify
this already heavy notation, we suppress the subscript Mssup in what follows.
A cycle in N(zd+n(X|D,n+1)) is a 1-dimensional cycle Z in X×�n such that,
for every face Fn+1

i,ε , for i = 1, . . . , n + 1, ε ∈ {0,∞} but with (i, ε) 6= (1, 0),

it satisfies Z · Fn+1
i,ε = 0. Moreover, Z is in good position with respect to the

remaining face X×Fn+1
1,0 and it satisfies the Mssup modulus condition. We can

furthermore assume that no component of Z is a vertical coordinate line, i.e.,
the pullback along a projection pj : X×�n+1 → X×�n of a point P ∈ X×�n.

The group of 0-cycles with modulus CHd+n(X |D,n)Mssup
is then by [27, Lemma

1.6] the cokernel

N(zd+n(X |D,n+ 1))Q
·X×Fn+1

1,0

−−−−−−→ zd+n(X|D,n)Q

→ CHd+n(X |D,n)Q,Mssup
→ 0.

Let Z be a normalized admissible cycle

Z =

r∑

k=1

mkZk ∈ N(zd+n(X|D,n+ 1)).

The closure Z of Z in X × �
n+1

is the closure of its components Z1, . . . , Zr.
Note that the class

cycZ [Zk] ∈ K
|Z|
0 (X ×�

n+1
)(d+n)

is the image of cycZk
[Zk] ∈ K

|Zk|
0 (X ×�

n+1
)(d+n) via the natural map

ρZk,Z
: K

|Zk|
0 (X ×�

n+1
)(d+n) → K

|Z|
0 (X ×�

n+1
)(d+n)

≃
r⊕

k=1

K
|Zk|
0 (X ×�

n+1
)(d+n)

where isomorphism follows from (4.3). In particular, the class cycZ [Z] is the
sum

∑r
k=1mkρZk,Z

cycZk
[Zk]. By definition of the Mssup-modulus condition,

each Zk satisfies the condition 2.1 ii) with respect to some face j = j(k) ∈
{1, . . . , n+ 1}. Given this, we will need to show the following

Claim 4.3. With the above notations, assume that |Dred| is a strict normal
crossing divisor on X. Then the image of the class cycZ [Zk] in the cofiber
group

K
|Z|
0 (X ×�

n+1
/X × Fn+1

j,1 )(d+n)

vanishes along the restriction to K
|Z|
0 (D ×�

n+1
/D × Fn+1

j,1 )(d+n).
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Note that the required vanishing can be checked on K0-group with support in
Zk, and that this immediately implies the same vanishing in the bigger group
with support in Z. This Claim will allow us to lift the image of cycZ [Zk] to a
class in the relative group

K
|Z|
0 ((X ;D)×�

n+1
/X × Fn+1

j,1 )(d+n) (4.4)

modulo the image of K
|Z∩D×�

n+1
|

1 (D × �
n+1

/D × Fn+1
j,1 )(d+n). In the proof

we will see how the modulus condition on the cycle plays a substantial role.

Remark 4.4. Since D is not regular, we cannot conclude as before that

K
|Z|
1 (D ×�

n+1
/D × Fn+1

j,1 )(d+n) = 0.

In fact, the vanishing of K
|W∩X×F |
1 (X × F )(d+n) in 4.1.1 is a special case of

[24, Claim (2.1)], that uses the regularity of X and of the face F in an essential
way. Since the class we are after is necessary only to produce relations in the
relative K0, we will not worry about the problem of the choice of the lifting.
Of course, this would be the first problem to solve in order to construct a cycle
class map for 1-cycles with modulus. See Remark 4.8 below for a comment in
positive characteristic.

We postpone the proof of Claim 4.3 to Section 4.3. Write pj
X

for the natural
map

pj
X
: K

|Z|
0 (X ×�

n+1
)(d+n) → K

|Z|
0 (X ×�

n+1
/X × Fn+1

j,1 )(d+n)

and pj,i
X

for the map

pj,i
X
: K

|Z|
0 (X × �

n+1
/X × Fn+1

j,1 )(d+n)

→ K
|Z|
0 (X ×�

n+1
/X × (Fn+1

j,1 , Fn+1
i,1 ))(d+n).

Denote similarly by pj,iD the corresponding map in the K-groups of D. We can
trace the image of the class cycZ [Zk] in the iterated cofiber group

K
|Z|
0 (X ×�

n+1
/X × Fn+1)(d+n)

and its restriction to the corresponding group for D as follows. For i 6= j we
look at the commutative diagram (4.5)
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(4.5) K
|Z|
0 (X ×�

n+1
)(d+n) res //

p,

X

��

K
|Z∩D×�

n+1
|

0 (D ×�
n+1

)(d+n)

pj

D��

K
|Z|
0 (X ×�

n+1
/X × Fn+1

j,1 )(d+n)
resj //

pj,i

X

��

K
|Z∩D×�

n+1
|

0 (D ×�
n+1

/D × Fn+1
j,1 )(d+n)

pj,i

D
��

K
|Z|
0 (X ×�

n+1
/X × (Fn+1

j,1 , Fn+1
i,1 ))(d+n)

resj,i // K |Z∩D×�
n+1

|
0 (D ×�

n+1
/D × (Fn+1

j,1 , Fn+1
i,1 ))(d+n),

D
o
c
u
m
e
n
t
a

M
a
t
h
e
m
a
t
ic
a

2
3
(2

0
1
8
)
4
0
7
–
4
4
4
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where resj and resj,i are the obvious restriction maps (induced by ι∗
D×�

n+1).

Suppose that the component Zk of the cycle Z satisfies the modulus condi-
tion with respect to the face j, as stated in Claim 4.3. Then, the restriction
resj(p

j

X
cycZ [Zk]) vanishes. Since the above diagram commutes, we see that

the same thing holds for the restriction

resj,i(p
j,i

X
(pj

X
(cycZ [Zk]))) = 0

in K
|Z∩D×�

n+1
|

0 (D ×�
n+1

/D × (Fn+1
j,1 , Fn+1

i,1 ))(d+n).

Repeating this process for every face Fn+1
i,1 , i = 1, . . . , n+1, we obtain that the

projection of the class cycZ [Zk] in the iterated cofiber group

r⊕

k=1

K
|Zk|
0 (X ×�

n+1
)(d+n) ≃ K

|Z|
0 (X ×�

n+1
)(d+n)

→ K
|Z|
0 (X ×�

n+1
/X × Fn+1)(d+n)

dies in the group K
|Z|
0 (D×�

n+1
/D×Fn+1)(d+n) (which now does not depend

on the face j = j(k) where the modulus condition for Zk is fulfilled). Since the
class cycZ [Z] is the sum of the classes

∑r
k=1mkcycZ [Zk], each Zk satisfies the

modulus condition with respect to some face Fn+1
j(k),1, and the restriction map

resn+1

Z
: K

|Z|
0 (X × �

n+1
/X × Fn+1)(d+n)

→ K
|Z∩D×�

n+1
|

0 (D ×�
n+1

/D × Fn+1)(d+n)

is obviously a group homomorphism, we finally see that we have

resn+1

Z
(cycZ [Z]) =

r∑

k=1

mkres
n+1

Z
(cycZ [Zk]) = 0.

In particular, from the long exact relativization sequence, we obtain a class
β(Z) in the iterated relative cofiber

β(Z) ∈ K
|Z|
0 ((X ;D)×�

n+1
/(X ;D)× Fn+1)(d+n),

well defined up to a class in the image of the natural map

K
|Z∩D×�

n+1
|

1 (D ×�
n+1

/D × Fn+1)(d+n)

→ K
|Z|
0 ((X ;D)×�

n+1
/(X;D)× Fn+1)(d+n),

and lifting the fundamental class cycZ [Z] of (4.3) along the map

K
|Z|
0 ((X;D)×�

n+1
/(X ;D)×Fn+1)(d+n) → K

|Z|
0 (X×�

n+1
/X×Fn+1)(d+n).
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4.1.3 Lifting classes - II

By assumption, the cycle Z satisfies Z · (X×Fn+1
i,ε ) = 0 for all i = 2, . . . , n+1,

ε ∈ {0,∞} and Z · (X × Fn+1
1,∞ ) = 0. By Remark 2.4, Z is already closed in

X×�n+1, so that any extra point of intersection of Z with a face X×F
n+1

i,ε ⊂

X × �
n+1

is supported on some intersection X × F
n+1

i,ε ∩X × F
n+1
k,1 for some

k ∈ {1, . . . , n+ 1}, k 6= i (we introduce the overline notation F
n+1

i,ε for sake of
clarity).
In particular, the class ι∗

X×Fn+1

i,ε

(cyc[Z]) is trivial in the quotient

K
|Z∩X×Fn+1

i,ε
|

0 (X × Fn+1
i,ε /X × Fn+1

k,1 ∩X × F
n+1
i,ε )(d+n). (4.6)

Remark 4.5. The scheme X×Fn+1
i,ε is regular, and the K0-group with support

on Z∩X×Fn+1
i,ε depends only on the set of points |Z∩X×Fn+1

i,ε |. In particular,
we have isomorphisms

K
|Z∩X×Fn+1

i,ε
|

0 (X × Fn+1
i,ε ))(d+n) ≃ K0(k(Z ∩X × F

n+1
i,ε ))(0)

≃ K0(k(Z ∩X × F
n+1
i,ε ∩X × Fn+1

k,1 ))(0)

showing immediately that ι∗
X×Fn+1

i,ε

(cyc[Z]) dies in the quotient (4.6). This

argument fails without the regularity assumption on X , since we can’t identify
the K0 with support with its support. This is precisely the problem of lifting
classes to the group (4.4) that we discussed before.

The vanishing of ι∗
X×Fn+1

i,ε

(cyc[Z]) in the quotient group (4.6) allows us to lift

it to a class in the relative group

cyc[Z] ∈ K
|Z|
0 (X ×�

n+1
;X × Fn+1

i,ε /X × Fn+1
k,1 )(d+n)

well-defined, since the group

K
|Z∩X×Fn+1

i,ε
|

1 (X × Fn+1
i,ε /X × Fn+1

k,1 ∩X × F
n+1
i,ε )(d+n)

is trivial (in fact, the group K
|Z∩X×Fn+1

i,ε
|

1 (X × Fn+1
i,ε )(d+n) is trivial again by

weight reasons, using again [24, (2.1), p. 261], and so is, a fortiori, the cofiber
group). We repeat the argument for every i = 2, . . . , n+1 and ε ∈ {0,∞} and
one more time for i = 1, ε =∞ to get a class in the iterated cofiber-fiber

cyc[Z] ∈ K
|Z|
0 (X ×�

n+1
;X × ∂′�

n+1
/X × Fn+1)(d+n)

where ∂′�
n+1

and Fn+1
k,1 are defined as in Notation 4.2.

The lifting property that we just showed for cyc[Z] implies in fact the same
property for the chosen “relative” lift β(Z): this is in fact obvious once one
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accepts our claim about the vanishing of the restriction of cyc[Z] to the cofiber

group K
|Z|
0 (D ×�

n+1
/D × Fn+1)(d+n).

In particular, we finally obtain a class — that we keep denoting β(Z) — in the
following multi-relative K-group:

β(Z) ∈ K
|Z|
0 ((X ;D)×�

n+1
; (X ;D)× ∂′�

n+1
/(X;D)× Fn+1)(d+n), (4.7)

which is well defined up to a relative K1-class, supported on |Z ∩D × �
n+1
|.

Forgetting the support gives a class

βd+n[Z] ∈ K0((X ;D)×�
n+1

; (X ;D)× ∂′�
n+1

/(X;D)× Fn+1)(d+n)

well defined up to elements in the image of

K1(D ×�
n+1

;D × ∂′�
n+1

/D × Fn+1)(d+n).

We can actually give a more precise statement. Let Gd+n
0 (X |D,n+ 1) be the

direct limit

Gd+n
0 (X|D,n+ 1)

= colim
−−−→

Z∈N(zd+n(X|D,n+1))Q

K
|Z|
0 ((X ;D)×�

n+1
; (X;D)× ∂′�

n+1
/(X;D)× Fn+1)(d+n).

If we write ΦZ for the composite map

K
|Z∩D×�

n+1
|

1 (D ×�
n+1

;D × ∂′�
n+1

/D × Fn+1)(d+n)

��

K
|Z|
0 ((X;D)×�

n+1
; (X;D)× ∂′�

n+1
/(X;D)× Fn+1)(d+n)

��
Gd+n

0 (X|D,n+ 1)

��

K0((X ;D)×�
n+1

; (X ;D)× ∂′�
n+1

/(X;D)× Fn+1)(d+n)

we see that the class βd+n[Z] is well defined up to the image of ΦZ . Write
Gd+n

1 (X |D,n+ 1) for the limit

Gd+n
1 (X |D,n+ 1)

= colim
−−−→

Z∈N(zd+n(X|D,n+1))Q

K
|Z∩D×�

n+1
|

1 (D ×�
n+1

;D × ∂′�
n+1

/D × Fn+1)(d+n)
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and let

Φ:Gd+n
1 (X |D,n+1)→K0((X ;D)×�

n+1
; (X;D)×∂′�

n+1
/(X;D)×Fn+1)(d+n)

be the induced map. Note that it clearly factors through Gd+n
0 (X |D,n + 1)

(and we still denote by Φ the map obtained in this way). We can at this point
define a map

N(zd+n(X|D,n+ 1))Q
βd+n

−−−→ Kd+n
0 (X|D,n+ 1)

where Kd+n
0 (X|D,n+1) the quotient of Gd+n

0 (X|D,n+1) by the image of Φ.
Using this construction, we can finally prove the following

Theorem 4.6. Let X be a smooth, quasi-projective k-variety of dimension d
and let D be an effective Cartier divisor on X such that |Dred| is a strict normal
crossing divisor. Then the cycle class map

zd+n(X|D,n)Q
cycd+n

−−−−→ K0((X;D)×�
n
; (X;D)× ∂�

n
/(X ;D)× Fn)(d+n)

≃ Kn(X ;D)(d+n)

factors through CHd+n(X |D,n)Q. Here the last isomorphism follows from
(3.8).

Proof. We have to show that the composition cycd+n ◦ (− ·X ×Fn+1
1,0 ) is zero.

Let Z ∈ N(zd+n(X|D,n+ 1))Q and choose a class β(Z) as in (4.7), lifting the

canonical class cyc[Z]. Let W = Z ∩ X × F
n+1

1,0 and W ′ = Z ∩ X × Fn+1
1,0

(both with reduced scheme structure). Clearly, the finite set of points W \W ′

is contained in the union of the faces Fn+1
k,1 of �

n+1
. We have

K
|Z|
0 (X ×�

n+1
)(d+n) //

ι∗
X×F

n+1
1,0

��

K
|Z|
0 (X ×�

n+1
/X × Fn+1)(d+n)

ι∗
X×F

n+1
1,0

��

K
|W |
0 (X × F

n+1

1,0 )(d+n) // K |W |
0 (X × F

n+1

1,0 /X × Fn)(d+n)

≃

��

K
|W ′|
0 (X × Fn+1

1,0 /X × Fn)(d+n)

where the last isomorphism follows from the same argument used in 4.1.3.

In particular, the class of ι∗
X×F

n+1

1,0

(cyc[Z]) in the cofiber group K
|W |
0 (X ×

F
n+1

1,0 /X × Fn)(d+n) agrees with the class

ι∗
X×Fn+1(cyc[Z]) ∈ K

|W ′|
0 (X ×�

n+1
/X × Fn)(d+n),
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so that we don’t see the “extra intersection points” given by the closure of Z

in X ×�
n+1

. Thus

cycd+n ◦ (− ·X × Fn+1
1,0 )(Z) = ι∗

X×Fn+1(cyc[Z])

= ι∗
X×F

n+1

1,0

(cyc[Z]) = ι∗
X×F

n+1

1,0

(β(Z))

in

K
|W ′|
0 (X × Fn+1

1,0 /X × Fn)(d+n)

≃ K
|W ′|
0 ((X ;D)×�

n
; (X;D)× ∂�

n
/(X;D)× Fn)(d+n).

where the isomorphism follows from the fact thatW ′ is disjoint from D×�
n+1

.
Let Kd+n

0 (X |D,n) be the direct limit

Kd+n
0 (X|D,n)

= colim
−−−→

P∈(zd+n(X|D,n))Q

K
|P |
0 ((X ;D)×�

n
; (X ;D)× ∂�

n
/(X;D)× Fn)(d+n).

By construction, the cycle class map cycd+n factors through Kd+n
0 (X |D,n),

and we have a commutative diagram

N(zd+n(X|D, n+ 1))Q
βd+n //

·X×F
n+1
1,0

��

Kd+n
0 (X|D, n+ 1)

Ψ

vv

ι∗

X×F
n+1
1,0

��
zd+n(X|D, n)Q

cycd+n

**

// Kd+n
0 (X|D, n)

��
K0((X;D)×�

n
; (X;D)× ∂�

n
/(X;D) × Fn)(d+n)

Now note that the map Ψ has to factor through

K0((X ;D)×�
n+1

; (X ;D)× ∂′�
n+1

/(X;D)× Fn+1)(d+n)

But the latter group is zero. In fact, let Y be either X × �
n
or D × �

n
and

identify Y × P1 with X × �
n+1

or with D × �
n+1

accordingly. We have then
the exact sequence of relative K-groups

. . .→ Kp(Y ×P
1;Y×{0}/Y×{1})→ Kp(Y ×P

1/Y×{1})→ Kp(Y ×{0})→ . . .

However, the projective bundle formula tells us that the maps

Kp(Y × P1/Y × {1})→ Kp(Y × {0})

are all isomorphisms, so that the groups Kp(Y × P1;Y × {0}/Y × {1}) are
trivial. Thus the composition cycd+n ◦ (− · X × Fn+1

1,0 ) is trivial, proving the
Theorem.
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The following remark comes from a discussion with Kay Rülling.

Remark 4.7. In [32], Rülling and Saito constructed regulator maps

ϕr
X|D,Nis

: Z(r)X |D,Nis → τ≥rZ(r)X |D,Nis → K
M
r,X|D,Nis

[−r]

in the bounded derived category Db(XNis), when Dred is a strict normal cross-
ing divisor, and they showed that they induce isomorphisms

ϕr
X|D,Nis

: Hd+r
M,Nis(X |D,Z(r))

≃
−→ Hd(XNis,K

M
r,X|D,Nis

).

Here, KM
r,X|D,Nis

denotes the Nisnevich sheaf of relative Milnor K-theory (its

definition is rather subtle, see [32, 2.3], which is different from [17]). For r =
d+ n, we get by composition a natural map

CHd+n(X |D,n)Mssup
→ H2d+n

M,Nis(X|D,Z(d+ n))
≃
−→ Hd(XNis,K

M
d+n,X|D,Nis

).

(4.8)
If D = ∅, the natural map KM

d+n,X,Nis
→ Kd+n,X,Nis, composed with the edge

homomorphism of the Nisnevich descent spectral sequence gives a further map
to Kn(X), and the total map from the higher Chow groups is known to agree
with the cycle class map defined by Bloch and Levine. It is therefore natural
to ask if there is a similar map in the relative setting

CHd+n(X|D,n)Mssup

(4.8)
−−−→ Hd(XNis,K

M
d+n,X|D,Nis

) 99K Kn(X,D) (4.9)

and if this agrees with the cycle class map which we consider in this work
(after tensoring with Q). For example, if n = 0 the map (4.8) is known to be
an isomorphism when k is a finite field after taking the limit over all divisors
D supported on X \ |D| as consequence of [18] and [17], and it’s clear in this
case that the composite map to (the limit of) Kn(X;D) agrees with (the limit
of) cycd

X|D
(see [4, Theorem 1.8] for a result with fixed D). Note that before

taking the limit, the existence of the dashed map in (4.9) might depend on the
definition of relative Milnor K-theory. Taking the limit over all thickenings
of D, one can apply [32, Proposition 2.8], making the distinction between the
Milnor K-theory defined in [17] and in [32] irrelevant.

Remark 4.8. As the referee pointed out, when char(k) = p > 0, a Frobenius
argument can be used to show that there is an isomorphism

CHd+n(X |D,n)Q
≃
−→ CHd+n(X |Dred, n)Q. (4.10)

This is a particular case (in the Mssup setting) of [28, Theorem 1.3], i.e. the
independence of the higher Chow groups with modulus from the multiplicity
of the divisor D in positive characteristic and after inverting p. This is in turn
a special instance of a general type of phenomena in characteristic p, see [3,
Theorem 3.5] and [15, Corollary 4.2.6].
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Given (4.10), the task in the statement of Theorem 4.6 becomes then to con-
struct a cycle class map to the relativeK-groupKn(X ;Dred)

(d+n). Since |Dred|
is assumed to be a strict normal crossing divisor on X, one can follow the
argument in the proof of [24, Lemma 2.2] to further show the vanishing of

K
|Z|
1 (D×�

n+1
/D×Fn+1

j,1 )(d+n). Indeed, we can remove, without altering this

group, all points of intersection, if any, between Z and Di∩Dj for i 6= j differ-
ent regular components of D, thus reducing to the case where D is regular that
allows us to apply directly [24, (2.1)]. In particular, in this situation the lifting
β(Z) constructed in (4.7) is unique. This gives a simplification of the proof
of Theorem 4.6 in positive characteristic. Of course, in characteristic zero the
isomorphism (4.10) is far from being true (the reader can convince herself by
contemplating the case n = 0), and to prove our main result we need anyway
the detour of Section 4.1.2.

4.2 Relationship with K-groups of geometric type

Before completing the proof of Claim 4.3, we explain how the cycle class map
can be used to relate higher relative K-groups with certain K-groups of geo-
metric type. Assume in this subsection that the base field k is perfect.

In their work towards the construction of a theory of motives without A1-
invariance, Kahn, Saito and Yamazaki introduced in [14] the notion of reci-
procity (pre)sheaf, as generalization of Voevodsky’s notion of homotopy in-
variant (pre)sheaf with transfers. In [13] and [15], the authors proposed an
alternative, stronger, definition, which goes under the name of SC-reciprocity
property (where SC stands for “Suslin-complex”) for (pre)sheaves, and that fits
well with the categorical framework of the theory of motives with modulus.
In particular, for M = (X ;D) a proper modulus pair (i.e., a pair consisting of
a proper k-scheme X and an effective Cartier divisor D such that X = X \D is
smooth over k), there is a distinguished SC-reciprocity presheaf with transfers
h0(M) such that h0(M)(Spec(k)) = CH0(X |D) (see [13, Section 7]). The
subcategory RSC ⊂ PST of SC-reciprocity presheaves comes equipped with
a tensor structure, unlike the category of reciprocity (pre)sheaves.
In [33], Sugiyama introduced a notion of K-group of geometric type Kgeo(−),
analogue in the modulus setting to the K-group of geometric type of Kahn-
Yamazaki [16], with the goal of giving a description in terms of symbols of the
tensor product of SC-reciprocity presheaves. In particular, he obtained

Theorem 4.9 (Theorem 3.1 [33]). Let F1, . . . , Fn be SC-reciprocity presheaves
with transfers. Then there is an isomorphism

Kgeo
sum(k;F1, . . . , Fn) ≃ (F1 ⊗RSC F2 ⊗RSC ⊗ . . .⊗RSC Fn)(Spec(k)).

The “sum” refers, as in our Definition of Section 2.1, to a chosen modulus
condition among symbols (an alternative notion, involving a “max”-modulus
condition, is also discussed). In some special cases, the K-groups Kgeo(−) are
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related to algebraic cycles, and this is what we exploit in the following Corollary
to Theorem 4.6.

Corollary 4.10. Let X be a smooth, proper k-variety of dimension d and
let D be an effective Cartier divisor on X such that |Dred| is strict normal
crossing. Then there is a canonical homomorphism

cycgeo
X|D,n

: Kgeo
sum(k;h0(X ;D),Gm,Gm, . . . ,Gm)⊗Q→ Kn(X ;D)(d+n)

for each n ≥ 0.

Proof. By [33, Proposition 5.7], there is a surjection

Kgeo
sum(k;h0(X;D),Gm,Gm, . . . ,Gm)→ CHd+n(X |D,n)MΣ

(4.11)

(where the K-group on the left hand side has n-copies of Gm). It is however
clear from the proof that the map (4.11) factors through CHd+n(X|D,n)Mssup

.
We recall Sugiyama’s argument for the reader’s convenience. The group
Kgeo

sum(k;h0(X ;D),Gm, . . . ,Gm) is a quotient of

(h0(X ;D)⊗M Gm ⊗ . . .⊗
M Gm)(k),

where ⊗M denotes the tensor product of Mackey functors (see [16, 2.8]). A
typical relation in Kgeo

sum(−) as above is of the form
∑

c∈Co vc(f)Trk(c)/k(α(c)⊗
g1(c) ⊗ . . . gn(c)), where C is a proper integral curve over k, Co is the open
complement of a modulus m on C, f is a function on C having modulus m,
gi are invertible functions on Co and α is an elementary admissible finite cor-
respondence from (C,m) to (X ;D) (see [33, Definition 3.2] for details). If Z

denotes the closure of α in C×X, the above relation gives a 1-cycle in X×�
n+1

image of

ϕ := q × p∗f × p∗g1 . . .× p
∗gn : Z

N
→ X ×�

n+1

where p and q denote the two projections to C and X . Then one has

ϕ∗(D ×�
n+1

) ≤ ϕ∗(X × {1} ×�
n
)

so that the cycle W := Im(ϕ) ∩ X × �n+1 satisfies the Mssup-modulus con-
dition with respect to the face X × Fn+1

1,1 . In particular, it is a relation in

CHd+n(X |D,n)Mssup
and we get a (surjective) map

Kgeo
sum(k;h0(X ;D),Gm,Gm, . . . ,Gm)→ CHd+n(X|D,n)Mssup

. (4.12)

Composing (4.12) with cycd+n

X|D
gives the required homomorphism cycgeo

X|D,n
.

Remark 4.11. The same argument can be used to construct a cycle class map
from the variant Kgeo

max(−). We leave the details to the reader.
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4.3 Lifting classes - III

In this Section we finally explain how to construct the desired lifting. We re-
sume the notations of 4.1.2, so suppose that Z is a cycle inN(zd+n(X |D,n+1)),
with irreducible components Z1, . . . Zr. As explained in the previous Section,

it is enough to show that each cycZk
[Zk] projects to a class in K

|Zk|
0 (X ×

�
n+1

/X × Fn+1
j,1 )(d+n) that vanishes when restricted to K

|Zk|
0 (D×�

n+1
/D×

Fn+1
j,1 )(d+n) (for some j depending on k). In order to show it, we exploit the

modulus condition.
By definition, the modulus condition on a cycle W is tested on its irreducible
components. Consider now the case of our cycle Z. The strong sup-modulus
conditions, satisfied by each Zk, takes the following form. Write Zk for the

closure of Zk in X × �
n+1

. Let ϕZk
: Z

N

k → X × �
n+1

be the normalization
morphism followed by the natural inclusion. Then, there exists j = j(k) ∈
{1, . . . , n+ 1} such that

ϕ∗
Zk

(D ×�
n+1

) ≤ ϕ∗
Zk

(X × Fn+1
j,1 ).

In particular, we have an inclusion of sets Zk ∩D × �
n+1
⊆ X × Fn+1

j,1 . For

any point P ∈ Zk ∩D ×�
n+1

, we have the following commutative diagram

K
|Zk|
0 (X ×�

n+1
/X × Fn+1

j,1 )(d+n) // K |P |
0 (D ×�

n+1
/D × Fn+1

j,1 )(d+n)

K
|Zk|
0 (X ×�

n+1
)(d+n)

pj

X

OO

// K |P |
0 (D ×�

n+1
)(d+n)

OO

K
|P |
0 (X × Fn+1

j,1 )(d+n−1)

in+1

j,1,∗

OO

// K
|P |
0 (D × Fn+1

j,1 )(d+n−1)

i
D×F

n+1
j,1

,∗

OO

(4.13)
in which the middle horizontal map is induced by ι∗

D×�
n+1 composed with the

projection

K
|Zk∩(D×�

n+1
)|

0 (D ×�
n+1

)(d+n) =
⊕

Q∈Zk∩(D×�
n+1

)

K
|Q|
0 (D ×�

n+1
)(d+n)

→ K
|P |
0 (D ×�

n+1
)(d+n).

and the top horizontal arrow is induced in a similar way by ι∗
D×�

n+1 composed

with the projection to the P -component on the cofiber group. We have to show
that the restriction to the K0-groups with support in P of ι∗

D×�
n+1([OZk

]) =

ι∗
D×�

n+1(cycZk
[Zk]) is the image of a class αZk,j in K

|P |
0 (D×Fn+1

j,1 )(d+n) along
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the push-forward iD×Fn+1

j,1
,∗ for every P . Since we check this for every point

P , we can assume that the intersection of Zk with the divisor D × �
n+1

is
given by a single closed point, that coincides with the intersection of Zk with
X × Fn+1

j,1 .

In order to treat uniformly the case where Zk is not regular in a neighborhood
of D, we change the notation a bit and consider the following slightly more
general situation (see also [5, Section 5], where we use the same convention).
Let Y be a smooth (connected) k-variety of dimension d + 1, equipped with
a smooth divisor F and an effective Cartier divisor D. Asume that F and D
satisfy together the following condition:

(⋆) There is no common component of D and F , and Dred+F is a (reduced)
simple normal crossing divisor on Y .

Definition 4.12. Let C be an integral curve contained in X = Y − (F +

D). Write C for the closure of C in Y and C
N

for the normalization of C.

Let ϕC : C
N
→ Y be the natural map. We say that C satisfies the modulus

condition with respect to the divisor D and the face F if the following inequality

of Cartier divisors on C
N

holds:

ϕ∗
C
(D) ≤ ϕ∗

C
(F )

Write ιD : D → Y (resp. ιF : F → Y ) for the inclusion of D (resp. of F ) in Y
and write jD,F : D ∩ F → D for the inclusion of the intersection of D and F
inside D. Let C be an integral curve satisfying the modulus condition. Assume
(using the same argument discussed above) that C∩D is given by a single point
P . In the current setting, the diagram (4.13) takes the following form:

K
|C|
0 (Y/F )(d) // K |P |

0 (D/D ∩ F )(d)

KC
0 (Y )(d)

OO

ι∗D // K |P |
0 (D)(d)

OO

K
|P |
0 (F )(d−1)

ιF,∗

OO

// K |P |
0 (D ∩ F )(d−1)

jD,F,∗

OO

We write [C] for the fundamental class of C in KC
0 (Y )(d) given by the class of

the structure sheaf OC .

Proposition 4.13. The restriction ι∗D([C]) = ι∗D([OC ]) of the fundamental

class of C along the divisor D is the image of a class αC in K
|P |
0 (D∩F ) along

the push-forward jD,F,∗.
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Proof. We start by assuming that C is regular in a neighborhood of P . Since
C is not contained in D, the module OC is O(−D)-torsion free and we have an
equality

ι∗D([OC ]) = [OC ⊗OY
OD]

in K
|P |
0 (D), and OC ⊗OY

OD is a module of finite homological dimension over
OD. The class ι∗D([OC ]) is supported on P by assumption, and we can work
locally around P in the following sense. Let OP be the local ring of OY at P .
Since Y is regular at P , OP is a Noetherian regular equicharacteristic local ring
(containing the field k). By Cohen’s structure theorem (together with the fact

that Dred + F is strict normal crossing), its completion ÔP is then isomorphic
to a power series ring KJx1, . . . , xd, t1K, where t1 is the image in OP of a local
parameter for the smooth divisor F . Up to reordering, the ideal ID of the
divisor D in ÔP will be then generated by an element

∏s
i=1 x

mi

i . By [34,

Proposition 3.19], we can replace the group K
|P |
0 (D) with K

|P |
0 (Spec(ÔP /ID))

and the group K
|P |
0 (D ∩ F ) with K

|P |
0 (Spec(ÔP /(ID, t1))). Let ÔC,P be the

completion of the local ring of C at P . After this reduction, the class ι∗D([OC ])

we are after is (the class of) the module ÔC,P ⊗ ÔP /ID. Since C is regular
at P , we can assume that the image of one of the paramenters xi or t1 is a
local parameter for C. Without loss of generality (the proof is substantially
identical in other cases), we assume that this role is played by xd. Thus, we

can write in ÔC,P

xi = xai

d vi, t1 = xbdu1, for i = 1, . . . , d− 1. (4.14)

and elements vi, u1 ∈ Ô
×
C,P

, that we can write as power series in xd. Note that

since the curve is actually passing through the point P , the exponents ai and b
have to be positive. The modulus condition gives then the following inequality

s∑

i=1

miai ≤ b. (4.15)

Write J for the ideal of KJx1, . . . , xd, t1K defined by the equations (4.14): by
construction, it agrees with the kernel of the map

KJx1, . . . , xd, t1K ≃ ÔP → ÔC,P .

By (4.15), the ideal (J,
∏s

i=1 x
mi

i ) and the ideal (
∏s

i=1 x
mi

i , t1, xi − x
ai

d vi)i co-
incide. Now, the module

MC,P = KJx1, . . . , xd, t1K/(
s∏

i=1

xmi

i , t1, xi − x
ai

d vi)i

≃ (KJx1, . . . , xdK/(

s∏

i=1

xmi

i ))Jt1K/(t1, xi − x
ai

d vi)i
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has finite homological dimension as module over

(KJx1, . . . , xdK/(

s∏

i=1

xmi

i ))Jt1K/(t1),

and is supported on P .
It gives then a well defined class [MC,P ] in the K0 group with support

K
|P |
0 (Spec(ÔP /(ID, t1))) which satisfies

jD,F,∗[MC,P ] = [ÔC,P ⊗ ÔP /ID] = ι∗D([OC ])

as required.
We now deal with the case where C is not necessarily regular in a neighborhood

of C ∩ D. Let ϕ : C
N
→ C be the normalization morphism. It fits in a

commutative diagram

C
N
�

� j //

ϕ

��

Y × PM

p

��
C
�

� // Y

(4.16)

where p is the natural projection. The curve C
N

is now regular and embedded
in the smooth variety Y × PM = PM

Y , and satisfies the modulus condition with
respect to PM

D and the face PM
F . In particular, we can apply the normal case to

conclude that the class of C
N

in the cofiber groupK
|C

N
|

0 (Y ×PM/F ×PM) dies
when restricted to D×PM . The covariant functoriality of K-theory for proper
maps of finite Tor-dimension, as in [34, 3.16.4], applied to the diagram (4.16),
gives an equality of K0-classes p∗[OC

N ] = [p∗OC
N ] = [OC ] + [S], where S is

a coherent sheaf on C supported on finitely many points y1, . . . , yr. The class

[p∗OC
N ] in K

|C|
0 (Y )(d) maps then to a class in the cofiber group K

|C|
0 (Y/F )(d)

that is mapped to zero by construction when restricted to K
|P |
0 (D/F ∩D)(d).

Let now T ⊂ C be the subset of C given by the union of the (closed) points yi.

Since Y is regular, we have an isomorphism K
|C|
0 (Y )(d)

≃
−→ K

|C\T |
0 (Y \ T )(d).

In particular, as the sheaf S is supported on T , we have p∗[OC
N ] = [p∗OC

N ] =

[OC ] in K
|C|
0 (Y )(d). We can thus replace [OC ] with the push-forward class

[p∗OC
N ] and we are done.

Applying Proposition 4.13 to the setting of 4.3, we can deduce the following
Proposition, proving Claim 4.3.

Proposition 4.14. The restriction ι∗
D×�

n+1([OZk
]) = ι∗

D×�
n+1(cycZk

[Zk]) of

the fundamental class of Zk along the divisor D×�
n+1

is the image of a class

αZk,j in K
|P |
0 (D × Fn+1

j,1 )(d+n) along the push-forward iD×Fn+1

j,1
,∗.
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pp. 10, 235–320. K-theory (Strasbourg, 1992).

[25] , Lambda-operations, K-theory and motivic cohomology, in Algebraic
K-theory (Toronto, ON, 1996), vol. 16 of Fields Inst. Commun., Amer.
Math. Soc., Providence, RI, 1997, pp. 131–184.

[26] , Techniques of localization in the theory of algebraic cycles, J. Alge-
braic Geom., 10 (2001), pp. 299–363.

[27] , Smooth motives, in Motives and algebraic cycles, vol. 56 of Fields
Inst. Commun., Amer. Math. Soc., Providence, RI, 2009, pp. 175–231.

[28] H. Miyazaki, Cube invariance of higher chow groups with modulus,
(2017). arXiv:1604.06155v3.
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