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ZERO CYCLES WITH MODULUS AND ZERO CYCLES ON SINGULAR

VARIETIES

FEDERICO BINDA AND AMALENDU KRISHNA

Abstract. Given a smooth variety X and an effective Cartier divisor D ⊂ X, we show
that the cohomological Chow group of 0-cycles on the double of X along D has a canonical
decomposition in terms of the Chow group of 0-cycles CH0(X) and the Chow group of 0-
cycles with modulus CH0(X|D) on X. When X is projective, we construct an Albanese
variety with modulus and show that this is the universal regular quotient of CH0(X|D).

As a consequence of the above decomposition, we prove the Roitman torsion theorem for
the 0-cycles with modulus. We show that CH0(X|D) is torsion-free and there is an injective
cycle class map CH0(X|D) →֒ K0(X,D) if X is affine. For a smooth affine surface X, this is
strengthened to show that K0(X,D) is an extension of CH1(X|D) by CH0(X|D).
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1. Introduction

When X is a smooth quasi-projective scheme over a base field k, the motivic cohomology
groups of X admit an explicit description in terms of groups of algebraic cycles, called higher
Chow groups, first defined by Bloch [7]. These groups have all the properties that one ex-
pects, including Chern classes and a Chern character isomorphism from higher K-groups, as
established in [32] and [11], generalizing the well-known relationship between the Chow ring
of cycles modulo rational equivalence and the Grothendieck group of vector bundles.

Leaving the safe harbor of smooth varieties leads to a different world, where the picture
is substantially less clear. One of the simplest examples of singular varieties is the nilpotent
thickening Xm = X ×k k[t]/(t

m) of a smooth scheme X. For such a scheme, the beautiful
correspondence between motivic cohomology, algebraic cycles andK-groups is destroyed, since
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one has

H∗
M(X,Q(∗)) = H∗

M(Xm,Q(∗))

according to the currently available definitions, preventing the existence of a Grothendieck-
Riemann-Roch–type formula relating the motivic cohomology groups of Xm with its higher
K-groups

With the aim of understanding the algebraic K-theory of the ring k[t]/(t2) in terms of
algebraic cycles, Bloch and Esnault first conceived the idea of algebraic cycles “with modulus”
– called additive Chow groups at the time – defined by imposing suitable congruence condition
at infinity on admissible cycles. This idea subsequently became the starting point of the
discovery of the theory of additive cycle complexes and additive higher Chow groups of schemes
in the works of Rülling [40], Park [37] and Krishna-Levine [25].

The additive higher Chow groups are conjectured to give a cycle-theoretic interpretation of
the relativeK-groupsK∗(X×kA

1,Xm) for a smooth schemeX. In recent works of Binda-Saito
[5] and Kerz-Saito [20], the construction of the additive higher Chow groups was generalized to
develop a theory of higher Chow groups with modulus. These groups, denoted CH∗(X|D, ∗),
are designed to study the arithmetic and geometric properties of a smooth variety X with
fixed conditions along an effective (possibly non-reduced) Cartier divisor D on it, and are
supposed to give a cycle-theoretic description of the mysterious relative K-groups K∗(X,D),
defined as the homotopy groups of the homotopy fibre of the restriction map K(X)→ K(D).
On the arithmetic side, when X is a smooth variety over a finite field, Kerz and Saito studied
the group CH0(X |D) for X an integral compactification of X and D a non-reduced closed
subscheme supported on X \D (see [20] and 5.1 for the definition), and this has proven to be
a fundamental ingredient in the study of wildly ramified class field theory.

Although recently established results by various authors (see [18], [41]) have indicated that
the Chow groups with modulus (and, more generally, the relative motivic cohomology groups
of [5]) have some of the above expected properties, many questions remain widely open.

In order to provide new evidence that the Chow groups with modulus are the right motivic
cohomology groups to compute the relative K-theory of a smooth scheme with respect to an
effective divisor, one would like to know if these groups share enough of the known structural
properties of the Chow groups without modulus, and to relate them to some geometric or
cohomological invariants of the pair (X,D). This is the subject of this paper. Our interest is
to establish these properties and present (an almost complete) picture for the Chow groups
of 0-cycles with modulus.

We now state our main results. The precise statement of each of these results and the
underlying hypothesis and notations will be explained at appropriate places in this text.

1.1. Albanese variety and Roitman torsion theorem with modulus. One of the most
important things known about the ordinary Chow group of 0-cycles of a smooth projective
variety is that it admits a universal abelian variety quotient (the Albanese variety) which is
useful for studying the question of the representability of the Chow group. The celebrated
theorem of Roitman [39] (see also [35] for the case of positive characteristic) says that this
quotient map is isomorphism on torsion. This theorem has had profound consequences in the
study of the Chow group of 0-cycles. One of the main goals of this paper is to establish these
results (under some restrictions in positive characteristic) for the Chow group of 0-cycles with
modulus.

Theorem 1.1 (see Theorems 10.3 and 11.3). Let X be a smooth projective scheme over an al-
gebraically closed field k and let D ⊂ X be an effective Cartier divisor. Then there is a smooth
connected algebraic group Alb(X|D) and a group homomorphism ρX|D : CH0(X|D)deg 0 →
Alb(X|D) which is a universal regular quotient of CH0(X|D)deg 0.
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Theorem 1.2 (see Theorem 10.4 and 11.5). Let X be a smooth projective scheme over an al-
gebraically closed field k and let D ⊂ X be an effective Cartier divisor. Let n ∈ N be an integer

prime to the characteristic of k. Then ρX|D induces an isomorphism ρX|D : nCH0(X|D)deg 0
≃
−→

nAlb(X|D) on the n-torsion subgroups.

Note that when k = C and Dred ⊂ X is a normal crossing divisor, Theorem 1.1 has been
proven, using a completely different approach, in [5].

1.2. Bloch’s conjecture for 0-cycles with modulus. Let X be a smooth projective sur-
face over C. Recall that the well-known Bloch conjecture predicts that the Abel-Jacobi map
ρX : CH0(X)deg 0 → Alb(X) is an isomorphism if H2(X,OX ) = 0. Assuming this, we can
show that the analogous statement for the Chow group with modulus also holds. In par-
ticular, the Bloch conjecture for 0-cycles with modulus is true if X is not of general type.
Remarkably, instead of the vanishing of the second cohomology group of the structure sheaf
OX , we have to assume the vanishing of the second cohomology group of the ideal sheaf ID
of D.

Theorem 1.3 (see Theorem 10.8). Let X be a smooth projective surface over C and let
D ⊂ X be an effective Cartier divisor. Let ID denote the sheaf of ideals defining D. Assume
that the Bloch conjecture is true for X. Then the map ρX|D : CH0(X|D)deg 0 → Alb(X|D) is

an isomorphism if H2(X,ID) = 0.

1.3. Torsion theorem for 0-cycles with modulus on affine schemes. Assume now that
X is a smooth affine variety over an algebraically closed field k. One of the consequences of
Roitman’s theorem is that the Chow group of 0-cycles on X has no torsion, and this itself
has had many applications to projective modules on smooth affine varieties. Here comes the
extension of this statement to the 0-cycles with modulus.

Theorem 1.4 (see Theorem 14.1). Let X be a smooth affine scheme of dimension d ≥ 2 over
an algebraically closed field k and let D ⊂ X be an effective Cartier divisor. Then CH0(X|D)
is torsion-free.

In the presence of a modulus, however, the classical argument to deduce Theorem 1.4 from
Roitman’s Theorem does not go through. For example, the localization sequence for the
ordinary Chow groups, which is one of the steps of the proof of the classical case, fails in the
modulus setting, as explained in [23, Theorem 1.5]. Our approach is to deduce Theorem 1.4
directly from Theorem 1.9 below.

1.4. Cycle class map to relative K-theory. In the direction of understanding the relation
between 0-cycles with modulus and relative K-theory, we have the following results.

Theorem 1.5 (see Theorem 12.4). Let X be a smooth quasi-projective scheme of dimension
d ≥ 1 over a perfect field k and let D ⊂ X be an effective Cartier divisor. Then, there is a
cycle class map

cycX|D : CH0(X|D)→ K0(X,D).

This map is injective if k is algebraically closed and X is affine.

When X has dimension 2, we can prove the following stronger statement which completely
describes K0(X,D) in terms of the Chow groups with modulus.

Theorem 1.6 (see Theorem 14.6 and 14.7). Let X be a smooth affine surface over an al-
gebraically closed field k and let D ⊂ X be an effective Cartier divisor. Then, the canonical
map CH0(X|D)→ CH0(X|Dred) is an isomorphism and there is an exact sequence

0→ CH0(X|D)→ K0(X,D)→ CH1(X|D)→ 0.
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Finally, for arbitrary quasi-projective surfaces, we prove the following structural result, that
we may see as an integral version of a Riemann-Roch–type formula for the relative K0-group
of the pair (X,D).

Theorem 1.7 (see Theorem 13.4). Let X be a smooth quasi-projective surface over an alge-
braically closed field k and let D ⊂ X be an effective Cartier divisor. Then, there is a cycle
class map cycX|D : CH0(X|D)→ K0(X,D) and a short exact sequence

0→ CH0(X|D)→ K0(X,D)→ Pic(X,D)→ 0.

1.5. Bloch’s formula. As an application of Theorem 1.7, we get the following Bloch’s for-
mula for cycles with modulus on surfaces.

Theorem 1.8. (Bloch’s formula) Let X be a smooth quasi-projective surface over an alge-
braically closed field k. Let D ⊂ X be an effective Cartier divisor. Then, there are isomor-
phisms

CH0(X|D)
≃
−→ H2

zar(X,K
M
2,(X,D))

≃
−→ H2

nis(X,K
M
2,(X,D)).

1.6. The decomposition theorem. Essentially no case of the above results was previously
known, and in order to prove them, we develop a new approach to study the Chow groups
with modulus by drawing inspiration from the world of cycles on singular varieties. Given a
smooth scheme X with an effective Cartier divisor D, we consider the notion of ‘doubling’ X
along D. This idea has previously been used by Milnor [36] to study the patching of projective
modules over commutative rings (see [36, Chap. 2]), and also by Levine [32] to study algebraic
cycles in a different context. Doubling X along D gives rise to a new scheme, that we denote
by S(X,D), which is, in general, highly singular.

The novelty of our approach is the observation that the Chow group of 0-cycles with
modulus CH0(X|D) can (under some conditions) be suitably realized as a direct summand
of the cohomological Chow group of 0-cycles on S(X,D) in the sense of Levine-Weibel [33].
This allows us to transport many of the known statements about the Chow groups of 0-
cycles on (possibly singular) schemes to 0-cycles with modulus. The following decomposition
theorem can therefore be called the central result of this paper (see Theorem 7.1 for a precise
statement).

Theorem 1.9. Let X be a smooth quasi-projective scheme over a perfect field k. Let D ⊂ X
be an effective Cartier divisor. Then, there is a split short exact sequence

0→ CH0(X|D)→ CH0(S(X,D))→ CH0(X)→ 0.

In fact, it turns out that this approach can be taken forward to study the Chow groups with
modulus CH∗(X|D) in any dimension using the theory of Chow groups of singular schemes
developed by Levine [29]. This generalization will be studied in a different project. In this
paper, we shall show how this approach works for the relative Picard groups, apart from the
above result for 0-cycles.

We conclude this Introduction by remarking that an Albanese variety with modulus has
been previously constructed by Kato and Russell in [19] and [42]. Their construction uses
different techniques and starts from a definition of the Chow group of 0-cycles with modulus
that does not agree with the one proposed by Kerz and Saito: as a consequence of this
discrepancy, our construction and the Kato-Russell construction are not directly related.

1.7. Outline of the proofs. This paper is organized as follows. Our principal task is to
prove the decomposition Theorem 1.9 for the Chow group of 0-cycles. The proof of this takes
up the next five sections of this paper. We describe the double construction in §2 and we
prove several properties of it that are used throughout the paper.
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The proof of Theorem 1.9 requires a non-trivial Bertini-type argument which allows us to
give a new description of the Cartier curves in the definition of the Chow group of 0-cycles on
the double. We do this first for surfaces and we then explain how to reduce the general case
to this one. This is done in §5. To relate the 0-cycles with modulus with the group of 0-cycles
on the double, we define a variant of the Levine-Weibel Chow group of 0-cycles on the double
and then show that the two definitions agree in as many cases as possible (see Theorem 3.17).
This is done in §3.

We construct the Albanese variety with modulus attached to the pair (X,D) in §8 which
turns out to be a commutative algebraic group of general type. In characteristic zero, we
give an explicit construction of the Albanese variety with modulus using a relative version
of Levine’s modified Deligne-Beilinson cohomology. We then use Theorem 1.9 to prove the
universality of this Albanese and also the Roitman torsion theorem. We use Theorem 1.9 and
the main results of [22] to deduce the Bloch conjecture for 0-cycles with modulus in §8. Other
applications to affine schemes are obtained in §12, § 13 and § 14.

Notations

Let k be a field. Since our arguments are geometric in nature, all schemes in this text
are assumed to be quasi-projective over k and we shall let Schk denote this category. Let
Smk denote the full subcategory of Schk consisting of smooth schemes over k. We shall let
Schess

k denote the category of schemes which are essentially of finite type over k. For a closed
subscheme Z ⊂ X, we shall denote the support of Z by |Z|. For a scheme X, the notation
Xsing will mean the singular locus of the associated reduced scheme Xred. The nature of the
field k will be specified in each section of this paper.

2. The double construction

The doubling of a scheme along a closed subscheme is the building block of the proofs of
our main results of this paper. In this section, we define this double construction and study
its many properties. These properties play crucial roles in the later parts of this paper.

2.1. The definition of the double. Recall that given surjective ring homomorphisms fi : Ai →
A for i = 1, 2, the subringR = {(a1, a2) ∈ A1×A2|f1(a1) = f2(a2)} of A1×A2 has the property
that the diagram

(2.1) R
p1

//

p2
��

A1

f1
��

A2
f2

// A

is a Cartesian square in the category of commutative unital rings, where pi : R → Ai is the
composite map R →֒ A1 ×A2 → Ai for i = 1, 2. Using the fact that every morphism X → Y
in Schk, with Y affine, factors through X → Spec (O(X))→ Y , one can easily check that the
diagram

(2.2) Spec (A)
f1

//

f2
��

Spec (A1)

p1
��

Spec (A2) p2
// Spec (R)

is a Cartesian and co-Cartesian square in Schk.



ZERO CYCLES WITH MODULUS AND ZERO CYCLES ON SINGULAR VARIETIES 7

Let us now assume that X ∈ Schk and let ι : D →֒ X be a closed subscheme. If f1 = f2 = ι,
we see that the construction of (2.1) is canonical and so it glues (see [15, Ex. II.2.12]) to give
us the push-out scheme S(X,D) and a commutative diagram

(2.3) D
ι

//

ι

��

X

ι+
�� id

��

X ι−
//

id --

S(X,D)

∆

$$❍
❍❍

❍❍
❍❍

❍❍

X.

One can in fact check, by restricting to affine parts of X and then by using the gluing
construction, that the top square in (2.3) is co-Cartesian in Schk. It is also a Cartesian
square. The scheme S(X,D) constructed above will called the double of X along D. We shall
mostly write S(X,D) in short as SX if the closed subscheme D ⊂ X is fixed and remains
unchanged in a given context.

Notice that there is a canonical map π : X∐X
(ι+,ι−)
−−−−→ S(X,D) which is an isomorphism over

S(X,D) \D. Given a map ν : C → S(X,D), we let C+ = C×S(X,D)X+, C− = C×S(X,D)X−

and E = C ×S(X,D) D. Here, X± is the component of X ∐ X where π restricts to ι±. We
then have

(2.4) E = C ×S(X,D) D = C+ ×X D = C− ×X D.

More generally, we may often consider the following variant of the double construction.

Definition 2.1. Let j : D →֒ X be a closed immersion of quasi-projective schemes over k and
let f : T → X be a morphism of quasi-projective schemes. We shall say that T is a join of T+
and T− along D, if there is a push-out diagram

(2.5) f∗(D)
j+

//

j−
��

T+

ι+

��

T− ι−
// T

such that T± are quasi-projective schemes and j± are closed immersions.

The following lemma related to the double construction will be often used in this text.

Lemma 2.2. Let ν : C → S(X,D) be an affine morphism. Then the push-out C+ ∐E C− is
a closed subscheme of C. This closed immersion is an isomorphism if C is reduced.

Proof. There is clearly a morphism C+ ∐E C− → C. Showing that this map has the desired
properties is a local question on X. So it suffices to verify these properties at the level of
rings.

If we set X = Spec (A), S(X,D) = Spec (R) and let I be the defining ideal for D, then we
have an exact sequence of R-modules

(2.6) 0→ R
φ
−→ A×A→ A/I → 0.

Since ν is affine, we can write C = Spec (B). Let J ⊂ B be the ideal defining the closed
subscheme E. Tensoring (2.6) with B, we get an exact sequence

(2.7) B
φB−−→ B+ ×B− → B/J → 0

and this shows that C+∐EC− →֒ C is a closed immersion of schemes. It is also clear that this
inclusion is an isomorphism in the complement of E. Furthermore, the surjectivity of the map
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C+ ∐ C− → C shows that the above inclusion is also surjective on points. We conclude from
this that the closed immersion C+ ∐E C− →֒ C induces identity on the underlying reduced
schemes. In particular, it is an isomorphism if C is reduced. Equivalently, φB is injective. �

2.2. More properties of the double. We now prove some general properties of the double
construction that will be used repeatedly in this text. We shall also show that the double
shares many of the nice properties of the given scheme if the underlying closed subscheme is
an effective Cartier divisor. This will be our case of interest in the sequel.

For X ∈ Schk, let k(X) denote the sheaf of rings of total quotients of X. For a reduced
scheme X, let kmin(X) denote the product of the fields of fractions of the irreducible compo-
nents of X. Note that there are maps of sheaves of rings OX →֒ k(X) → kmin(X) and the
latter map is an isomorphism if X is reduced and has no embedded primes.

Proposition 2.3. Let X be a scheme in Schess
k and let ι : D →֒ X be a closed subscheme not

containing any irreducible component of X. Then the following hold.

(1) There are finite maps

X ∐X
π
−→ S(X,D)

∆
−→ X

such that (X \D) ∐ (X \D)
π
−→ S(X,D) \ D = ∆−1(X \D) is an isomorphism. In

particular, S is affine (projective) if and only if X is so.
(2) S(X,D) is reduced if X is so. In this case, one has

kmin(S(X,D) \D) ≃ kmin(X \D)× kmin(X \D).

If D contains no component of X, then kmin(S(X,D) \D) = kmin(S(X,D)).

(3) The composite map D
ι±◦ι
→ ∆∗(D)

∆
−→ D is identity and |∆∗(D)| = |D|.

(4) If Y ⊆ X is a closed (resp. open) subscheme of X and Y ∩D is the scheme-theoretic
intersection, then S(Y, Y ∩D) is a closed (resp. open) subscheme of S(X,D). There
is an inclusion of subschemes S(Y, Y ∩D) →֒ ∆∗(Y ) which is an isomorphism if Y is
open.

(5) Let Y be a subscheme of X. Then |∆∗(Y ) ∩D| = |Y ∩D| = |S(Y, Y ∩D) ∩D|.
(6) S(X,D)sing = D ∪∆−1(Xsing). In particular, S(X,D)sing = D if X is non-singular.
(7) If f : Y → X is a flat morphism, then S(Y, f∗(D)) ≃ S(X,D)×

X
Y . In particular, the

map S(f) : S(Y, f∗(D))→ S(X,D) is flat (resp. smooth) if f is so.
(8) π is the normalization map and D is a conducting subscheme, if X is normal.

Proof. To prove the proposition, we can assume that X = Spec (A) is affine. Let p1, p2 : A×
A→ A denote the projections and let q : A→ A/I be the quotient map. Set qi = q ◦ pi. Set
ψi = pi ◦ φ for i = 1, 2. Let δ : A →֒ R →֒ A × A denote the diagonal map. We then have
ψi ◦ δ = idA for i = 1, 2 and this yields

A×A = φ ◦ δ(A)⊕Ker(p2);

(2.8) R = δ(A) ⊕Ker(ψ2) = δ(A) ⊕ I × {0} ≃ A⊕ I.

Since A×A is a finite free A-module and R is an A-submodule, it follows that R is a finite
A-module. This proves (1). The item (2) follows immediately from (2.6).

The ideal of D inside S(X,D) is Ker(R
q◦ψi
−−−→ A/I), which is I × I. Since δ∗(I) ⊆ I × I, we

see that D ⊆ ∆∗(D) and the composite D →֒ ∆∗(D)
∆
−→ D is clearly identity. Furthermore,

it is clear that R[(a, b)−1] = A[a−1] × A[b−1] and δ∗(I)[(a, b)−1] = R[(a, b)−1], whenever
a, b ∈ I \ {0}. Hence, we have |∆∗(D)| = |D|. This proves (3).

To prove (4), we only need to consider the closed part. Let A′ = A/J , where J is the ideal
defining Y and let R′ = {(a′, b′) ∈ A′×A′|a′− b′ ∈ (I + J)/J}. Let a denote the residue class
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of a ∈ A modulo J . Suppose there exist a, b ∈ A such that a − b ∈ (I + J)/J . This means
a− b ∈ I + J and so we can write a− b = α+ β, where α ∈ I and β ∈ J . We set a′ = a− β
and b′ = b. This yields a′ − b′ = a − b − β = α ∈ I and a′ − a = β ∈ J, b′ − b = 0 ∈ J . We
conclude that (a′, b′) ∈ R and it maps to (a, b) ∈ R′. Hence R։ R′.

An element of δ∗(J) is of the form (aα, bα), where a, b,∈ A,α ∈ J and a − b ∈ I. This
element clearly dies in R′. Hence S(Y, Y ∩D) ⊆ ∆∗(Y ).

To prove (5), let SY = S(Y, Y ∩D). Then

|∆∗(Y ) ∩D| = |∆∗(Y ) ∩∆∗(D)| = |∆∗(Y ∩D)|,

where the first equality follows from (3). On the other hand, we have

|SY ∩D| = |ι
Y
1 ◦ ι

Y (Y ∩D)| = |∆∗
Y (Y ∩D)| = |∆∗(Y ∩D)|,

where the second equality follows from (3) with X replaced by Y . The item (5) now follows.
The item (6) follows from (1) and the fact that more than one components of S(X,D) meet
along D.

To prove (7), let Y = Spec (B) and tensor (2.6) with B. The flatness of B over A yields
the short exact sequence

0→ R⊗
A
B

φ
−→ B ×B → B/IB → 0

and this proves the first part of (7). The second part follows because a base change of a flat
(resp. smooth) map is flat (resp. smooth).

The item (8) follows because π is finite and birational and the ideal of π∗(D) in X ∐X is
ID × ID which is actually contained in OS(X,D). So D is a conducting subscheme. �

2.3. Double along a Cartier divisor. Recall that a morphism f : X → S of schemes is
called a local complete intersection (l.c.i.) at a point x ∈ X if it is of finite type and if there
is an open neighborhood U of x and a factorization

Z

g

��

U

i

DD✟✟✟✟✟✟✟

f
// S,

where i is a regular closed immersion and g is a smooth morphism. We say that f is a local
complete intersection morphism if it is so at every point of X. We say that f is l.c.i. along a
closed subscheme S′ →֒ S if it is l.c.i. at every point in f−1(S′).

Proposition 2.4. Continuing with the notations of Proposition 2.3, assume further that D
is an effective Cartier divisor on X. Then the following hold.

(1) ∆ is finite, flat and OS(X,D) is a locally free OX -module of rank two via ∆.
(2) S(X,D) is Cohen-Macaulay if X is so.
(3) If f : Y → X is any morphism, then there is a closed immersion of schemes S(Y, f∗(D)) →֒

S(X,D)×
X
Y . This embedding is an isomorphism if f is transverse to D →֒ X.

(4) If f : Y → X is any morphism such that Y is Cohen-Macaulay and f∗(D) does not con-
tain any irreducible component of Y , then the embedding S(Y, f∗(D)) →֒ S(X,D)×

X
Y

is an isomorphism. In this case, f∗(D) is an effective Cartier divisor on Y .
(5) If f : Y → X is l.c.i. along D, then Y×

X
S(X,D)→ S(X,D) is l.c.i. along D.

Proof. We can again assume that X = Spec (A) is affine such that I = (a) is a principal ideal
such that a ∈ A is not a zero-divisor. It follows then that I is a free A-module of rank one.
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We can now apply (2.8) to conclude (1) as the finiteness of R over A is already shown in
Proposition 2.3.

To prove (2), let m ( R be a maximal ideal and let n = δ−1(m). Then An → Rn is a finite
and flat map and hence An → Rm is a faithfully flat local homomorphism of noetherian local
rings of same dimension. Since An is Cohen-Macaulay and since this local homomorphism
preserves regular sequences, it follows that depth(Rm) ≥ dim(An) = dim(Rm). Hence, Rm is
Cohen-Macaulay.

To prove (3), we let Y = Spec (B) and tensor (2.6) (over A) with B to get an exact sequence

0→ Tor1A(A/I,B)→ R⊗
A
B

φ
−→ B ×B → B/IB → 0

and S(B, IB) is (by definition) the kernel of the map B×B → B/IB. In particular, we get a
surjective map of rings R⊗

A
B ։ S(B, IB). This proves the first part of (3). The transversality

of B with A/I means precisely that Tor1A(A/I,B) = 0 and we get that R⊗
A
B

≃
−→ S(B, IB).

This proves (3).
Suppose next that Y is Cohen-Macaulay and no irreducible component of Y is contained

in f∗(D). It suffices to show in this case that Tor1A(A/I,B) = 0. Let f : A→ B be the map
on the coordinate rings. That no component of Y is contained in f∗(D) means that f(a)
does not belong to any minimal prime of B. The Cohen-Macaulay property of B implies that
it has no embedded associated prime. In particular, f(a) does not belong to any associated
prime and hence is not a zero-divisor in B.

We have a short exact sequence

0→ A
a
−→ A→ A/I → 0

which says that Tor1A(A/I,B) = Ker(B
f(a)
−−→ B) and we have just shown that the latter group

is zero. We have also shown above that f(a) is not a zero-divisor on B and this implies that
f∗(D) is an effective Cartier divisor on Y . This proves (4). The item (5) follows from (1) and
an elementary fact that l.c.i. morphisms are preserved under a flat base change. �

3. Chow group of 0-cycles on singular schemes

In this section, we give a definition of the Chow group of 0-cycles on singular schemes that
modifies slightly the one given in [33]. While using the same set of generators, we change the
geometric condition imposed on the curves giving the rational equivalence. In many cases, we
are able to show that this new definition coincides with the classical one. It turns out that
the modified Chow group of 0-cycles has better functorial properties and is more suitable for
proving Theorem 1.9.

3.1. Some properties of l.c.i and perfect morphisms. Recall that a finite type morphism
f : X → S of noetherian schemes is called perfect if the local ringOX,x has finite Tor-dimension
as a module over the local ring OS,f(x) for every point x ∈ X. Equivalently, given any point
x ∈ X, there are affine neighborhoods U of x and V of f(x) such that O(U) is an O(V )-module
of finite Tor-dimension. Recall also the following

Proposition 3.1 (Proposition 5.12, [47]). Let f : X → S be a proper and perfect morphism of

noetherian schemes. Then there is a well defined push-forward map K0(X)
f∗
−→ K0(S) between

the Grothendieck groups of vector bundles.

Some known elementary properties of l.c.i and perfect morphisms are recalled in the fol-
lowing lemmas.

Lemma 3.2. (1) The l.c.i. and perfect morphisms are preserved under flat base change.



ZERO CYCLES WITH MODULUS AND ZERO CYCLES ON SINGULAR VARIETIES 11

(2) A flat morphism of finite type is perfect.
(3) An l.c.i. morphism is perfect.
(4) l.c.i. and perfect morphisms are closed under composition.
(5) l.c.i. and perfect morphisms satisfy faithfully flat (fpqc) descent.

Lemma 3.3. Let f : X → S be a finite type morphism of noetherian schemes such that for
every x ∈ f−1(Ssing), the map f is l.c.i. at x. Then f is perfect.

Proof. It follows from the definition of a perfect morphism because if x ∈ X is such that
s = f(x) is a regular point of S, then OX,x has finite Tor-dimension over OS,s. This property
for the points over the singular locus of S follows from the hypothesis of the lemma. �

3.2. Divisor classes for singular curves. We fix a field k. For X an equidimensional quasi-
projective k-scheme and Y ( X a closed subscheme of X not containing any component of
X, write Z0(X,Y ) for the free abelian group on the closed points of X not in Y .

A curve C will be in what follows a quasi-projective k-scheme of pure dimension 1. We let
k(C) denote the ring of total quotients of C. Let {η1, . . . , ηr} denote the set of generic points
of C with closures {C1, · · · , Cr}. Let T be a set of closed points of C containing Csing and
Z = T ∪ {η1, . . . , ηr}. Write OC,Z for the semi-local ring on the points of T . This yields a
sequence of maps

(3.1) O×
C,Z →֒ k(C)× →

r∏

i=1

k(Ci)
×.

We let θ(C,Z) denote the composite map. Letting k(C,Z)× = O×
C,Z , the localization se-

quence in K-theory yields a natural map

(3.2) ∂C,Z : k(C,Z)× → ∐p∈C\Z G0(p) = Z0(C,Z).

If C is a reduced curve, it is a Cohen-Macaulay scheme and hence the second map in (3.1)
is an isomorphism. Thus the group O×

C,Z is the subgroup of k(C)× consisting of those f which
are regular and invertible in the local rings OC,x for every x ∈ Z. In this case, the boundary
∂C,Z(f) has a familiar expression: if we let θ(C,Z)(f) = {fi}, then div(f) =

∑
i div(fi), where

div(fi) is the divisor of the rational function fi on the integral curve Ci. If C is not reduced,
∂C,Z has a more complicated expression which we do not use in this text.

3.3. A Chow group of 0-cycles on singular schemes. Let X be an equidimensional
reduced quasi-projective scheme over k of dimension d ≥ 1. Let Xsing and Xreg denote the
singular and regular loci of X, respectively. Let Y ( X be a closed subset containing Xsing,
but not containing any component of X. Write again Z0(X,Y ) for the free abelian group on
closed points of X \ Y . We shall often write Z0(X,Xsing) as Z0(X).

Let f : X ′ → X be a proper morphism from another reduced equidimensional scheme
over k. Let Y ′ ( X ′ be a closed subset not containing any component of X ′ such that
f−1(Y ) ∪X ′

sing ⊆ Y
′. Then there is a push-forward map

(3.3) f∗ : Z0(X
′, Y ′)→ Z0(X,Y ).

This is defined on a closed point x′ ∈ X ′ \ Y ′ with f(x′) = x by f∗([x
′]) = [k(x′) : k(x)] · [x] .

Definition 3.4. Let C be a reduced curve in Schk and let ν : C → X be a finite morphism.
We shall say that ν : (C,Z)→ (X,Y ) is a good curve relative to (X,Y ) if there exists a closed
proper subscheme Z ( C such that the following hold.

(1) No component of C is contained in Z.
(2) ν−1(Y ) ∪ Csing ⊆ Z.
(3) ν is locally complete intersection morphism at every point x ∈ C such that ν(x) ∈ Y .



12 FEDERICO BINDA AND AMALENDU KRISHNA

Given any good curve (C,Z) relative to (X,Y ), we have a pushforward map as in (3.3)

Z0(C,Z)
ν∗−→ Z0(X,Y ).

We shall write R0(C,Z,X) for the subgroup of Z0(X,Y ) generated by the set {ν∗(div(f))|f ∈
O×
C,Z}, where div(f) for a rational function f ∈ O×

C,Z is defined as in (3.2) for reduced curves.

Let R0(X,Y ) denote the subgroup of Z0(X,Y ) which is the image of the map

(3.4)
⊕

ν : (C,Z)→(X,Y ) good

R0(C,Z,X) → Z0(X,Y ).

We define the Chow group of 0-cycles on X relative to Y to be the quotient

(3.5) CH0(X,Y ) =
Z0(X,Y )

R0(X,Y )
.

We write CH0(X,Xsing) as CH0(X) for short and call it the Chow group of 0-cycles on X.
The following result shows that we can always assume that the morphisms ν : C → X are

l.c.i in the definition of our rational equivalence.

Lemma 3.5. Let (X,Y ) be as above. Given any good curve ν : (C,Z) → (X,Y ) relative to
(X,Y ) and any f ∈ O×

C,Z , there exists a good curve ν ′ : (C ′, Z ′) → (X,Y ) relative to (X,Y )

and f ′ ∈ O×
C′,Z′ such that the following hold.

(1) ν∗(div(f)) = ν ′∗(div(f
′)).

(2) ν ′ : C ′ → X is an l.c.i. morphism.

Proof. Let U1 ⊆ C be an open subset of C containing S1 = ν−1(Xsing) such that (Csing \S1)∩
U1 = ∅. This is possible because S1 is a finite set. Let π : (C \ S1)N → C \ S1 denote the
normalization map. It follows that π : π−1(U1 \ S1) → U1 \ S1 is an isomorphism. Setting
U2 = (C \ S1)

N , we see that that U1 and U2 glue along π−1(U1 \ S1) to give a unique scheme
C ′ and a unique map p : C ′ → C. This scheme has the property that p is finite, p−1(U1)→ U1

is an isomorphism and p−1(C \ S1) = (C \ S1)
N .

Setting Z ′ = p−1(Z) and f ′ = p∗(f) ∈ k(C ′)×, we see that f ′ ∈ O×
C′,Z′ and div(f) =

p∗(div(f
′)). If we let ν ′ = ν ◦ p, we get ν∗(div(f)) = ν ′∗(div(f

′)). Furthermore, ν ′−1(Xreg)→
Xreg is a finite type morphism of regular schemes and hence is an l.c.i. morphism. Since ν is
l.c.i. over Xsing and p is an isomorphism in a neighborhood of ν−1(Xsing), we conclude that
ν ′ is an l.c.i. morphism. �

3.4. The Levine-Weibel Chow group. We now recall the Levine-Weibel (cohomological)
Chow group of 0-cycles for singular schemes as defined in [33, Definition 1.2]. Let X be an
equidimensional quasi-projective scheme of dimension d ≥ 1 over k, X ) Y ⊇ Xsing a closed
subscheme not containing any component of X.

Definition 3.6. A Cartier curve on X relative to Y is a purely 1-dimensional closed sub-
scheme C →֒ X that has no component contained in Y and is defined by a regular sequence
in X at each point of C ∩ Y .

One example of Cartier curves we shall encounter in this text is given by the following.

Lemma 3.7. Let X be a connected smooth quasi-projective scheme over k and let D ⊂ X be
an effective Cartier divisor. Let ν : C →֒ X be an integral curve which is not contained in D.
Assume that C is l.c.i along D. Let ∆: S(X,D) → X denote the double construction. Then
S(C, ν∗D) is a Cartier curve on S(X,D) relative to D.

Proof. We write S(X,D) and S(C, ν∗(D)) as SX and SC , respectively, in this proof. Since
the inclusion ν : C →֒ X is l.c.i. along D, it follows Proposition 2.4 that the square
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(3.6) SC

∆C

��

Sν
// SX

∆X

��

C ν
// X

is Cartesian. It also follows from Proposition 2.4(5) that Sν : SC →֒ SX is l.c.i. along D.
Moreover, a combination of Proposition 2.4(4) and Proposition 2.3(2) tells us that SC is
reduced with two components, both isomorphic to C. We conclude that SC →֒ SX is a
(reduced) Cartier curve relative to D. �

Given a Cartier curve ι : C →֒ X relative to Y , we let RLW0 (C, Y,X) denote the image

of the composite map k(C,C ∩ Y )×
∂C,C∩Y
−−−−−→ Z0(C,C ∩ Y )

ι∗−→ Z0(X,Y ). We let RLW0 (X,Y )
denote the subgroup of Z0(X,Y ) generated by RLW0 (C,Z,X), where C ⊂ X runs through all
Cartier curves relative to Y .

Definition 3.8. The Levine-Weibel Chow group of 0-cycles of X relative to Y is defined as
the quotient

CHLW0 (X,Y ) = Z0(X,Y )/RLW0 (X,Y ).

The group CHLW0 (X,Xsing) is often denoted by CHLW0 (X).

We recall here the following important moving Lemma, due to Levine, that simplifies the
set of relations in case X satisfies additional assumptions.

Proposition 3.9 (See Lemma 1.4 [30] and Lemma 2.1 [6]). Let X be an equidimensional
quasi-projective k-scheme and let Xsing ⊂ Y ( X be a closed subset of X as above. Assume
that X is reduced. Then the subgroup RLW0 (X,Y ) of Z0(X,Y ) agrees with the subgroup
RLW0 (X,Y )red, generated by divisors of rational functions on reduced Cartier curves on X
relative to Y . If X is moreover irreducible, then the Cartier curves generating the rational
equivalence can be chosen to be irreducible as well.

Lemma 3.10. Let X be a reduced quasi-projective k-scheme. Then there is a canonical
surjection

(3.7) CHLW0 (X,Y ) ։ CH0(X,Y ).

Proof. The map (3.7) is induced by the identity on the set of generators, so we just have to
show that it is well defined. Since X is reduced, by Proposition 3.9, we can assume that the
Cartier curves defining the rational equivalence on the Levine-Weibel Chow group are reduced.
Now, we just note that a reduced Cartier curve is a good curve relative to (X,Y ). �

Lemma 3.11. Let X be a reduced quasi-projective scheme over k and let Y ( X be a closed
subset containing Xsing and containing no components of X. Let (C,Z) be a good curve relative
to (X,Y ). Then there are cycle class maps cycC : Z0(C,Z)→ K0(C) and cycX : Z0(X,Y )→
K0(X) making the diagram

(3.8) Z0(C,Z)
cycC

//

ν∗
��

K0(C)

ν∗
��

Z0(X,Y ) cycX
// K0(X)

commutative.
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Proof. Since ν−1(Y ) ∪ X ′
sing ⊆ Y ′, we have a push-forward map ν∗ : Z0(C,Z) → Z0(X,Y ),

given by ν∗([x]) = [k(x) : k(ν(x))] · [ν(x)]. Since ν is l.c.i. along Xsing, it follows from
Lemma 3.3 that the map ν : C → X is perfect. Hence, there is a push-forward map on
K0-groups ν∗ : K0(C)→ K0(X) by Proposition 3.1.

To construct the cycle class maps and show that the square commutes, let x ∈ C \ Z be
a closed point and set y = ν(x). Let ιx : Spec (k(x)) → C and ιy : Spec (k(y)) → X be the
closed immersions. Since these maps as well as ν are perfect (see Lemma 3.3), we have the
induced push-forward maps on Grothendieck groups of vector bundles and a commutative
diagram by Proposition 3.1:

(3.9) Z = K0(k(x))
ιx∗

//

ν∗
��

K0(C)

ν∗
��

Z = K0(k(y)) ιy∗

// K0(X).

Setting cycC([x]) to be ιx∗(1), we get the cycle class maps cycC : Z0(C) → K0(C) and
cycX : Z0(X)→ K0(X) such that (3.8) commutes. �

Lemma 3.12. Suppose that X is reduced and purely 1-dimensional. Then there is a canonical
isomorphism CH0(X,Y ) ≃ CHLW0 (X,Y ) ≃ Pic(X).

Proof. Let ν : C → X be a finite map from a reduced curve and let Z ( C be a closed subset
such that (C,Z) is good relative to (X,Y ). By Lemma 3.11, there is a commutative diagram:

(3.10) Z0(C,Z)
cycC

//

ν∗
��

K0(C)

ν∗
��

Z0(X,Y ) cycX
// K0(X).

Let f ∈ O×
C,Z . It follows from [33, Proposition 2.1] that cycC(div(f)) = 0. In particular, we

get cycX ◦ ν∗(div(f)) = ν∗ ◦ cycC(div(f)) = 0. It follows again from [33, Proposition 1.4] that
ν∗(div(f)) = 0 in CHLW0 (X,Y ) ≃ Pic(X) →֒ K0(X). We have thus shown that the surjective
map CHLW0 (X) ։ CH0(X) is also injective, hence an isomorphism. �

Lemma 3.13. Let X be a reduced quasi-projective scheme of dimension d ≥ 1 over k and let
Y ( X be a closed subset containing Xsing and containing no components of X. Then the cycle
class map cycX : Z0(X,Y )→ K0(X) given by Lemma 3.11 descends to group homomorphisms

cycX : CH0(X,Y )→ K0(X); cycLWX : CHLW0 (X,Y )→ K0(X)

making the diagram

(3.11) CHLW0 (X,Y )

cycLW
X %%❑

❑❑
❑❑

❑❑
❑❑

❑

can
// // CH0(X,Y )

cycX
zz✉✉
✉✉
✉✉
✉✉
✉

K0(X)

commutative.

Proof. The fact that cycX yields a cycle class map cycLWX : CHLW0 (X,Y )→ K0(X) is proved
in [33, Proposition 2.1]. To show that cycX descends to a map on our modified version of the
Chow group, let ν : (C,Z) → (X,Y ) be a good curve relative to (X,Y ) and let f ∈ O×

C,Z .

We then have cycX ◦ ν∗(div(f)) = ν∗ ◦ cycC(div(f)) by Lemma 3.11. On the other hand,
it follows from Lemma 3.12 that cycC(div(f)) = 0. This shows that cycX is defined on the
Chow groups. The commutativity of (3.11) is clear from the definitions. �
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3.5. Comparison of two Chow groups in higher dimension. In this section, we prove a
comparison theorem for the two Chow groups in higher dimension. More comparison results
in positive characteristic will be given in Theorems 7.3 and 9.8.

Suppose that the field k is algebraically closed and let d = dim(X). Write F dK0(X) for
the subgroup of K0(X) generated by the cycle classes of smooth, closed points in X. In [29,
Corollary 5.4] (see also [30, Corollary 2.7]), Levine showed the existence of a top Chern class
cd : F

dK0(X)→ CHLW0 (X) such that cd◦cyc
LW
X is multiplication by (d−1)!. In particular, the

kernel of cycLWX is torsion. An immediate consequence of Lemma 3.13 is then the following.

Corollary 3.14. Let X be a reduced quasi-projective scheme over an algebraically closed field
k. Then the canonical map CHLW0 (X)Q → CH0(X)Q is an isomorphism.

In order to integrally compare the two Chow groups in dimension ≥ 2, we use the following.

Proposition 3.15. Let k be an algebraically closed field of characteristic zero and let X be a
reduced projective scheme of dimension d ≥ 1 over k. Then cycLWX is injective.

Proof. Let α ∈ CHLW0 (X) be such that cycLWX (α) = 0. By Levine’s theorem recalled above,

we know that α is a torsion class in CHLW0 (X).
To show that α = 0, we can use the Lefschetz principle argument and rigidity of the Chow

group of zero-cycles over algebraically closed fields and assume that k = C. Let H2d
D∗(X,Z(d))

denote the modified Deligne-Beilinson cohomology of X defined in [31, § 2] (see also Section
8 below). There is then a short exact sequence

0→ Ad(X)→ H2d
D∗(X,Z(d))→ H2d(Xan,Z(d))→ 0

and it was shown in [31, § 2] that there is a Chern class map cdD∗,X : K0(X)→ H2d
D∗(X,Z(d))

which induces an Abel-Jacobi map AKd
X : CHLW0 (X)deg 0 → Ad(X) given by AKd

X = cdD∗,X ◦

cycLWX , where CHLW0 (X)deg 0 := Ker(CHLW
0 (X)→ H2d(Xan,Z(d))).

Since H2d(Xan,Z(d))) is torsion-free and α is torsion, it follows that α ∈ CHLW0 (X)deg 0.

In particular, it is a torsion class in CHLW0 (X)deg 0. A cycle class map

ÃK
d

X : CHLW0 (X)deg 0 → Ad(X)

is also constructed in [9, § 2] and it is shown in [22, Lemma 2.2] that ÃK
d

X = AKd
X up to a

sign. Now, cycLWX (α) = 0 implies that cdD∗,X ◦ cyc
LW
X (α) = 0 in Ad(X). We conclude that α

is a torsion class in CHLW0 (X)deg 0 such that ÃK
d

X(α) = 0. We now apply [6, Theorem 1.1]
to conclude that α = 0. This finishes the proof. �

Remark 3.16. Let X be a projective variety over an algebraically closed field k of exponential
characteristic p ≥ 1 and let Y ( X be a closed subset of X containing Xsing and containing

no components of X. When codimX(Y ) ≥ 2, the map cycLWX : CHLW0 (X) → F dK0(X) is an
isomorphism modulo p-torsion by [30, Theorem 3.2]. In particular, this shows directly that for
such (X,Y ) the canonical map CHLW0 (X,Y )→ CH0(X,Y ) is an isomorphism up to p-torsion.
Since in this text we are interested in studying cycles on a double (S(X,D),D), that is not
regular in codimension 1, we can’t invoke directly Levine’s result even in the projective case
over a field of characteristic 0, and we need the detour of Proposition 3.15.

We can now deduce our final result comparing the two Chow groups as follows.

Theorem 3.17. Let X be a reduced quasi-projective scheme of dimension d ≥ 1 over an
algebraically closed field k. Then the canonical map CHLW0 (X)→ CH0(X) is an isomorphism
in the following cases.

(1) d ≤ 2.
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(2) X is affine.
(3) char(k) = 0 and X is projective.

Proof. In each case, it suffices to show using Lemma 3.13 that cycLWX is injective. The case
d ≤ 1 follows from Lemma 3.12. The d = 2 case follows from [28, Theorem 7], where it is shown
that the map CHLW0 (X)→ F 2K0(X) is an isomorphism. If X is affine, this follows from [24,
Corollary 7.3] and [30, Corollary 2.7]. The last case follows from Proposition 3.15. �

3.6. Some functorial properties of the Chow group of 0-cycles. Recall that any proper
map φ : X ′ → X admits a push-forward map on the Chow groups of 0-cycles when X is
smooth. This can not be true if X is singular. But we expect such a push-forward to exist in
the singular case provided f is an l.c.i. morphism. Our next goal is to prove this in special
cases. We shall use this result later in this text.

Proposition 3.18. Let X,Y be again as in Lemma 3.13. Let p : X ′ → X be a proper
morphism which is l.c.i. over Xsing such that X ′ is reduced. Let Y ′ ( X ′ be a closed subset
containing p−1(Y ) ∪ X ′

sing and not containing any component of X ′. Then there are push-

forward maps p∗ : CH0(X
′, Y ′) → CH0(X,Y ) and p∗ : K0(X

′) → K0(X) and a commutative
diagram

(3.12) CH0(X
′, Y ′)

cycX′
//

p∗

��

K0(X
′)

p∗

��

CH0(X,Y ) cycX
// K0(X).

Proof. It follows from our assumption and Lemma 3.3 that p is perfect and hence there is
a push-forward map p∗ : K0(X

′) → K0(X). We have seen before that there is also a push-
forward map p∗ : Z0(X

′, Y ′)→ Z0(X,Y ).
Let us now consider a good curve ν ′ : (C,Z)→ (X ′, Y ′) relative to (X ′, Y ′). It follows from

our assumption that ν = p ◦ ν ′ : (C,Z)→ (X,Y ) is a good curve relative to (X,Y ). We have

the push-forward maps Z0(C,Z)
ν′∗−→ Z0(X

′, Y ′)
p∗
−→ Z0(X,Y ) such that ν∗ = p∗ ◦ ν

′
∗. This

shows that p∗(ν
′
∗(div(f))) = ν∗(div(f)) for any f ∈ O

×
C,Z . This implies that p∗ descends to a

push-forward map on the Chow groups. The commutativity of (3.12) is shown exactly as in
the proof of Lemma 3.11. �

Combining this with Theorem 3.17, we have a similar result for the Levine-Weibel Chow
group of 0-cycles. Note that this type of functoriality was not previously known.

Proposition 3.19. Let X be as in Theorem 3.17. Let p : X ′ → X be a proper morphism
between reduced quasi-projective schemes over k. Let Y denote the singular locus of X and let
Y ′ ⊂ X ′ be a closed subscheme containing p−1(Y )∪X ′

sing and not containing any component of

X ′. Assume that p is l.c.i. along Y . Then there is a push-forward map p∗ : CH
LW
0 (X ′, Y ′)→

CHLW0 (X,Y ).

Proof. Proposition 3.18 says that there are maps

CHLW0 (X ′, Y ′)→ CH0(X
′, Y ′)

p∗
−→ CH0(X,Y )← CHLW0 (X,Y )

and Theorem 3.17 says that the last map is an isomorphism. The result follows. �

3.7. Cycles in good position. LetX be a smooth quasi-projective scheme of pure dimension
d over a field k. For any closed subsetW ( X, let Z0(X,W ) denote the free abelian group on
the set of closed points in X \W . Let R0(X)W denote the subgroup of Z0(X,W ) generated by
cycles of the form ν∗div(f), where f is a rational function on an integral curve ν : C →֒ X such
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that C 6⊂ W and f ∈ O×
C,C∩W . We denote by CH0(X)W the quotient Z0(X,W )/R0(X)W .

It is the group of 0-cycles that are in good position with respect to W (i.e., 0-cycles missing
W ). We have a canonical map CH0(X)W → CH0(X). The following result is a consequence
of Bloch’s moving lemma.

Lemma 3.20. Let X be a smooth quasi-projective scheme over k. Let W ⊂ X be a proper
closed subscheme of X. Then the map CH0(X)W → CH0(X) is an isomorphism.

Proof. We can assume that X is connected. Let Z1(X)W denote the free abelian group on
integral curves in X × P1

k which have the following properties.

(1) C ∩ (X × {0,∞}) is finite.
(2) C ∩ (W × P1) is finite.
(3) C ∩ (W × {0,∞}) = ∅.
(4) C 6= {x} × P1 for any x ∈ X.

Then, the moving lemma of Bloch [7] says that the inclusion of chain complexes

(Z1(X)W
∂∞−∂0−−−−→ Z0(X,W ))→ (Z1(X)

∂∞−∂0−−−−→ Z0(X))

induces isomorphism on H0. In particular, we get exact sequence

Z1(X)W
∂∞−∂0−−−−→ Z0(X,W )→ CH0(X)→ 0.

On the other hand, there is an isomorphism (∂∞ − ∂0)(Z1(X)W ) → R0(X)W given by
∂([C]) 7→ div(N(f)), where f is the projection map C → P1

k, C
′ is its image in X and

N(f) is the norm of f under the finite map k(C ′) →֒ k(C). One checks easily that N(f) ∈
O×
C′,C′∩Y . �

4. The pull-back maps ∆∗ and ι∗±

Let k be a field. Let X be a smooth and connected quasi-projective scheme of dimension
d ≥ 1 over k and let D ⊂ X be an effective Cartier divisor. Our goal in this section is to
define pull-back maps ∆∗ : CH0(X)→ CH0(S(X,D)) and ι∗± : CH0(S(X,D))→ CH0(X). As
before, we shall write S(X,D) in short as SX as long as the divisor D is understood. We shall
denote the closed subschemes ι±(X) of SX by X±, each of which is a copy of X.

4.1. The map ∆∗. We define the map ∆∗ : Z0(X,D)→ Z0(SX ,D) by letting ∆∗([x]) be the
0-cycle on SX associated to the closed subscheme {x}×XSX . It follows from Proposition 2.3(1)
that ∆∗([x]) = [x+]+ [x−], where x± is the point x in X± \D. Note also that D = (SX)sing by
Proposition 2.3(6) since X is non-singular. We show that ∆∗ preserves rational equivalences.

Theorem 4.1. Let X be a smooth quasi-projective scheme of dimension d ≥ 1 over k and let
D ( X be an effective Cartier divisor. Then ∆∗ : Z0(X,D)→ Z0(SX ,D) induces a map

∆∗ : CH0(X)→ CH0(SX).

Proof. In view of Lemma 3.20, we need to show that ∆∗((f)C) ∈ R0(SX ,D) for C →֒ X an
integral curve not contained in D and f ∈ O×

C,C∩D. Let ν : CN → X denote the induced

map from the normalization of C and let E = ν∗(D). We then have f ∈ O×
CN ,E

and (f)C =

ν∗(div(f)). We can thus assume that C is normal and allow the possibility that ν need not be a
closed immersion. With this reduction, we now need to show that ∆∗◦ν∗(div(f)) ∈ R0(SX ,D).
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Since ∆ is flat, it follows from (3.6) that there is a commutative square (see [12, Proposi-
tion 1.7])

(4.1) Z0(C,E)
ν∗

//

∆∗
C

��

Z0(X,D)

∆∗
X

��

Z0(SC , E)
Sν∗

// Z0(SX ,D).

where the bottom horizontal arrow is well defined since S−1
ν (D) ⊆ E. Note that by Propo-

sition 2.4, the map Sν : SC → SX is l.c.i along D. We also have a commutative square of
monomorphisms

(4.2) O×
C,E

∆∗
C

��

ιC
// k(C)×

∆∗
C

��

O×
SC ,E ιSC

// k(C)× × k(C)×.

Setting g = ∆∗
C(f) ∈ O

×
SC ,E

, it is then clear that ιSC
(g) = (f, f) ∈ k(C)×× k(C)× = k(SC)

×.
This yields

div(∆∗
C(f))) = div(f, f) = div(f) + div(f) = ∆∗

C(div(f)).

Combining this with (4.1), we get

∆∗
X ◦ ν∗(div(f)) = Sν∗ ◦∆

∗
C(div(f)) = Sν∗(div(∆

∗
C(f))) = Sν∗(div(g)).

Since (SC , E) is clearly a good curve relative to (SX ,D), the last term lies in R0(SX ,D).
This finishes the proof. �

4.2. The maps ι∗±. Recall that ι± : X →֒ SX denote the two inclusions of X in SX via the
map π : X ∐X → SX . We define two pull-back maps ι∗± : CH0(SX) → CH0(X). We do this
for ι+ as the other case is identical. By Proposition 2.3, we have that (SX)sing = D and
(SX)reg = (X \D)∐ (X \D), so that the natural map

(4.3) Z0(SX ,D)→ Z0(X,D)⊕Z0(X,D)

is an isomorphism. We define then ι∗+ : Z0(SX ,D) → Z0(X,D) to be the first projection of
the direct sum in (4.3). Notice that there are push-forward inclusion maps ι±∗ : Z0(X,D)→
Z0(SX ,D) such that ι∗+ ◦ ι+∗ = Id and ι∗+ ◦ ι−∗ = 0.

Proposition 4.2. The map Z0(SX ,D)
(ι∗+,ι

∗
−)

−−−−→ Z0(X,D)⊕Z0(X,D) descends to the pull-back
maps

(4.4) ι∗± : CH0(SX)→ CH0(X)

such that ι∗± ◦∆
∗ = Id.

Proof. For the rational equivalence, we argue as follows: suppose at first that ν : C →֒ SX is
an l.c.i curve relative to D and contained in SX (so, it is in particular a Cartier curve on the
double). Set E = ν−1(D)∪Csing. Let C

′
± denote the unique reduced closed subscheme of X±

such that C ′
± \D = (C \D) ∩X±. Then C ′

+ is a closed subscheme of C with dim(C ′
+) ≤ 1.

It’s easy to check that dim(C ′
+) = 0 would violate the condition of C being locally defined by

a regular sequence at every point of intersection C ∩D ⊂ SX , so that we can assume that C ′
+

(and similarly C ′
−) is a union of some irreducible components of C.

Let f ∈ O×
C,E. Let C = C ′

+ ∪ C
′
− = (

r+
∪
i=1

Ci+) ∪ (
r−
∪
j=1

Cj−). We can clearly assume that we

have Ered = C ′
+ ∩ C

′
− and a commutative square
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(4.5) O×
C,E

ι∗+
��

θC
// k(C)×

ι∗+

��

≃
// k(C ′

+)
× × k(C ′

−)
×

p+
ww♦♦♦

♦♦♦
♦♦♦

♦♦♦
♦

O×
C′

+,E θC′
+

// k(C ′
+)

×.

We can write θC(f) = (f+, f−) with f± ∈ k(C
′
±)

× and divC(f) (= (f)C) = (f+)C++(f−)C− ,
by definition. We now consider the diagram

(4.6) Z0(C
′
+, E)⊕Z0(C

′
−, E)

p+
((◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗

Z0(C,E)
ν∗

//

ι∗+
��

≃
oo Z0(SX ,D)

ι∗+
��

≃
// Z0(X,D) ⊕Z0(X,D)

p+
vv♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠

Z0(C
′
+, E) ν+∗

// Z0(X,D).

This diagram is clearly commutative and yields

(4.7)

ι∗+ ◦ ν∗((f)C) = ν+∗ ◦ ι
∗
+((f)C)

= ν+∗ ◦ ι
∗
+

[
ι+∗((f+)C′

+
) + ι−∗((f−)C′

−
))
]

= ν+∗((f+)C′
+
) + 0

= ν+∗((f+)C′
+
).

On the other hand, ν+∗((f+)C′
+
) =

r+∑
i=1

div(f i+) by definition, where

f+ = (f1+, · · · , f
r+
+ ) ∈ k(C ′

+)
× =

r+∏

i=1

k(Ci+)
×.

Since each div(f i+) ∈ R0(X), we conclude that ι∗+ ◦ ν∗((f)C) ∈ R0(X). In particular, we

obtain that the maps ι∗± descend to group homomorphisms ι∗± : CHLW0 (SX)→ CH0(X) from
the Levine-Weibel Chow group.

For the general case of a good curve ν : C → SX which is not necessarily an embedding,
we can assume by Lemma 3.5 that C → SX is a finite l.c.i. morphism. We now factor ν as

C →֒ PNSX

π
−→ SX , where π is the projection and µ : C →֒ PNSX

is a regular embedding. By

Proposition 2.3, we can identify PNSX
= PNS(X,D) with S(P

N
X ,P

N
D). We have then a commutative

diagram

(4.8) Z(PNSX
,PND) = Z(S(P

N
X ,P

N
D),P

N
D)

ι∗±
//

π∗

��

Z(PNX)

π∗

��

Z(SX ,D)
ι∗±

// Z(X)

by the definition of ι∗±. For f ∈ O×
C,ν∗D, we have ι∗±(µ∗((f)C)) ∈ R0(P

N
X) by the embed-

ded case. In particular, we get ι∗±(ν∗((f)C)) = ι∗±π∗µ∗((f)C) = π∗ι
∗
±(µ∗((f)C)) ∈ R0(X),

completing the proof. �
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5. 0-Cycles on SX and 0-cycles with modulus on X

5.1. Overture. The goal of this section is to define the difference map τ∗X from the Chow
group of 0-cycles on SX to the Chow group of 0-cycles with modulus D on X. The heart of
this section is the proof that this difference map kills the group of rational equivalences in
the Chow group with modulus CH0(X|D). We start by recalling the definition of the Chow
group with modulus, following Kerz and Saito.

5.2. 0-cycles with modulus. Let k be any field. Given an integral normal curve C over
k and an effective divisor E ⊂ C, we say that a rational function f on C has modulus E
if f ∈ Ker(O×

C,E → O
×
E). Here, OC,E is the semilocal ring of C at the union of E and the

generic point of C. In particular, Ker(O×
C,E → O

×
E) is just k(C)× if |E| = ∅. Let G(C,E)

denote the group of such rational functions.
Let X be an integral scheme of finite type over k and let D be an effective Cartier divisor

on X. Let Z0(X \ D) be the free abelian group on the set of closed points of X \ D. Let
C be an integral normal curve over k and let ϕC : C → X be a finite morphism such that
ϕC(C) 6⊂ D. The push forward of cycles along ϕC gives a well defined group homomorphism

τC : G(C,ϕ∗
C (D))→ Z0(X \D).

Recall now the following Definition

Definition 5.1 (Kerz-Saito). We define the Chow group CH0(X|D) of 0-cycles of X with
modulus D as the cokernel of the homomorphism

(5.1) div :
⊕

ϕC : C→X

G(C,ϕ∗
C (D))→ Z0(X \D),

where the sum is taken over the set of finite morphisms ϕC : C → X from an integral normal
curve such that ϕC(C) 6⊂ D.

It is known that the Chow group of 0-cycles with modulus is covariantly functorial for proper
maps: if f : X ′ → X is proper,D andD′ are effective Cartier divisors onX andX ′ respectively
such that f∗(D) ⊂ D′, then there is a push-forward map f∗ : CH0(X

′|D′) → CH0(X|D) (see
[5, Lemma 2.7] or [26, Proposition 2.10]).

5.3. Setting and goals. From now on, we fix a smooth connected quasi-projective scheme
X over k and an effective Cartier divisor D ⊂ X on it. Let SX be the double of X along D
as defined in § 2. Let ι± : X → SX denote the closed embeddings of the two components X+

and X− of the double. We want to construct maps

τ∗X : CH0(SX)→ CH0(X|D) and p±,∗ : CH0(X|D)→ CH0(SX)

and prove that τ∗X ◦ p±,∗ = Id. At the level of the free abelian group Z0(SX ,D), the map τ∗X
is simply ι∗+ − ι

∗
−:

Z0(SX ,D) = Z0(X \D)⊕Z0(X \D)→ Z0(X \D),

(α+, α−) 7→ α+ − α− = ι∗+((α+, α−))− ι
∗
−((α+, α−))

We construct the first map in several steps, starting by considering only embedded l.c.i.
curves in the definition of the rational equivalence on the double SX (or, in other words, by
proving the existence of the map τ∗X for the Levine-Weibel Chow group of zero cycles). The
general case is then treated using the same trick as in Proposition 4.2, thanks to the following
Lemma.
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Lemma 5.2. Assume that for every smooth connected quasi-projective scheme Y over k
and effective Cartier divisor E on Y , the map τ∗Y given above descends to a well defined
homomorphism

τ∗Y : CHLW0 (S(Y,E))→ CH0(Y |E).

Then the map CHLW0 (SX) → CH0(X|D) factors through CH0(SX), giving a well defined
homomorphism

τ∗X : CH0(SX)→ CH0(X|D).

Proof. Let δ : Z0(SX ,D)→ CH0(X|D) be the composition

Z0(SX ,D)→ CHLW0 (SX)→ CH0(X|D).

We have to show that δ factors through CH0(SX), defined using good l.c.i. curves as in
Definition 3.4. Using again Lemma 3.5, we have to show more precisely that δ(ν∗(divC(f)) = 0
for every ν : C → SX finite l.c.i. morphism from a reduced curve C that is good relative to
(SX ,D) and for every rational function f on C that is regular and invertible along E =
(ν−1(D) ∪ Csing). We factor ν as composition ν = π ◦ µ, where µ : C →֒ PNSX

= S(PNX , P
N
D )

(using Proposition 2.3) is a regular embedding and π : PNSX
→ SX is the projection. In

particular, µ(C) = C is a Cartier curve on the double S(PNX , P
N
D ) relative to PND .

It follows from (4.8) and the formula δ = ι∗+ − ι
∗
− that the square

Z0(P
N
SX
,PND)

δ
PN
SX
//

π∗

��

CH0(P
N
X |P

N
D)

π∗

��

Z0(SX ,D)
δ

// CH0(X|D)

commutes, where δPN
SX

is the composition Z0(P
N
SX
,PND)→ CHLW0 (S(PNX ,P

N
D))→ CH0(P

N
X |P

N
D).

That is, δ(ν∗((f)C)) = δ(π∗(µ∗(f)C)) = π∗(δPN
SX

(µ∗((f)C))).

By assumption, we have δPN
SX

(µ∗((f)C)) = 0 ∈ CH0(P
N
X |P

N
D). Since the push-forward map

π∗ : CH0(P
N
X |P

N
D)→ CH0(X|D) is well defined, we can conclude. �

We have therefore reduced the problem to showing that the map τ∗X is well defined from
the Levine-Weibel Chow group of zero cycles.

To begin, we need to keep some control over the Cartier curves on the double SX which
generate R0(SX ,D)LW . We do this in the next few lemmas.

5.4. The Cartier curves on the double SX . Our next goal is to use the specific structure
of SX as a join of two smooth schemes to refine the set of Cartier curves used to define
CHLW0 (SX ,D) = CHLW0 (SX). In this section, by Cartier curve on SX (resp. X) we will
always mean curve on SX (resp. X) which is Cartier with respect to D. For the rest of § 5,
we shall assume that the ground field k is infinite and perfect.

Notation 5.3. Let S be a quasi-projective k-scheme and let L be a line bundle on S. For a
global section t ∈ H0(S,L), we write (t) for the divisor of zeros of s, that we consider as a
closed subscheme of S.

Lemma 5.4. Let X be a connected smooth quasi-projective scheme of dimension d ≥ 3 over
k. The group of rational equivalences RLW0 (SX ,D) is generated by the divisors of functions on
(possibly non-reduced) Cartier curves C →֒ SX relative to D, where C satisfies the following.
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(1) There is a locally closed embedding SX →֒ PNk and distinct hypersurfaces

H1, · · · ,Hd−2 →֒ PNk

such that Y = SX ∩H1 ∩ · · · ∩Hd−2 is a complete intersection which is geometrically
reduced.

(2) X± ∩ Y = X± ∩H1 ∩ · · · ∩Hd−2 := Y± are integral.
(3) No component of Y is contained in D.
(4) C ⊂ Y .
(5) C is a Cartier divisor on Y .
(6) Y± are smooth away from C.
(7) C is Cohen-Macaulay.

Proof. Let C →֒ SX be a reduced Cartier curve relative to D and let f ∈ O×
C,C∩D. Since C is

Cartier along D = (SX)sing, it follows that it is Cartier in SX along each of its generic points.
We will replace C by the curves of desired type using a combination of [30, Lemma 1.3]

and [30, Lemma 1.4] as follows. We also refer to [17, Chap. I, § 6] for the Bertini theorem for
geometrically reduced schemes and [43, Theorem 12] irreducible schemes.

Since SX is reduced quasi-projective, X is integral and C →֒ SX is Cartier along D, we can
apply [30, Lemma 1.3] to find a locally closed embedding SX →֒ PNk and distinct hypersurfaces

H1, · · · ,Hd−2 →֒ PNk such that:

(1) Y = SX ∩H1 ∩ · · · ∩Hd−2 is a complete intersection which is (geometrically) reduced
(note that since k is perfect, Y is reduced if and only if is geometrically reduced).

(2) X± ∩ Y = X± ∩H1 ∩ · · · ∩Hd−2 := Y± are integral.
(3) No component of Y is contained in D.
(4) C ⊂ Y .
(5) C is locally principal in Y in a neighborhood of the finite set C∩D and at each generic

point of C.

Since X± = X are smooth, we can apply [21, Theorem 1] to further assume that Y± are
smooth away from C±. Here C± denotes C ∩X± = C ×SX

X±.
Since Y →֒ SX is constructed as a complete intersection of hypersurfaces of arbitrarily large

degrees (see [30, Lemma 1.4]), we can furthermore find a locally principal closed subscheme
C1 of Y such that

a) C ⊂ C1.
b) C1 equals C at every generic point of C.

c) (C1 \ C) ∩ C ∩D = ∅.

Since Y is geometrically reduced, it follows from Lemma 2.2 that Y is the join of Y± along
D and there is a short exact sequence

(5.2) 0→ OY → OY+ ×OY− → OY ∩D → 0.

Since C1 is locally principal in Y , it follows that C1 ∩X± = C1 ∩ Y± are locally principal
in Y±. Since Y± are integral surfaces, it follows that C1 ∩X± are Cartier divisors in Y±. It
follows from (5.2) that C1 is a Cartier divisor in Y . Since SX is Cohen-Macaulay and Y ⊂ SX
is a complete-intersection, it follows that Y is also Cohen-Macaulay. Since C1 ⊂ Y is a Cartier
divisor, we conclude that C1 is Cohen-Macaulay.

It follows from (c) that f extends to a function g ∈ O×
C1,C1∩D

by setting g = f on C and

g = 1 on C1 \ C. In particular, we have div(f) = div(g). This finishes the proof. �

We now further refine the rational equivalence by specifying the shape of the Cartier curves
that generate the group of relations.
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Lemma 5.5. Let X be a connected smooth quasi-projective scheme of dimension d ≥ 2
over k. Let ν : C → SX be a (possibly non-reduced) Cartier curve relative to D ⊂ SX .
Assume that either d = 2 or there are inclusions C ⊂ Y ⊂ SX , where Y is a geometrically
reduced complete intersection surface and C is a Cartier divisor on Y , as in Lemma 5.4. Let
f ∈ O×

C,ν∗D ⊂ k(C)×, where k(C) is the total quotient ring of OC,ν∗D.

We can then find two Cartier curves ν ′ : C ′ →֒ SX and ν ′′ : C ′′ →֒ SX relative to D satisfying
the following.

(1) There are very ample line bundles L′,L′′ on SX and sections t′ ∈ H0(SX ,L
′), t′′ ∈

H0(SX ,L
′′) such that C ′ = Y ∩ (t′) and C ′′ = Y ∩ (t′′) (with the convention Y = SX

if d = 2).
(2) C ′ and C ′′ are geometrically reduced.
(3) The restrictions of both C ′ and C ′′ to X via the two closed immersions ι± are integral

curves in X, which are Cartier and smooth along D.
(4) There are functions f ′ ∈ O×

C′,(ν′)∗D and f ′′ ∈ O×
C′′,(ν′′)∗D such that ν ′∗(div(f

′)) +

ν ′′∗ (div(f
′′)) = ν∗(div(f)) in Z0(SX ,D).

Proof. In this proof, we shall assume that Y = SX if d = 2. In this case, a Cartier curve on
SX along D = (SX)sing must be an effective Cartier divisor on SX . Hence we can assume
that C is an effective Cartier divisor on Y for any d ≥ 2. Notice that Y = Y+ ∐D Y−, again
by Lemma 2.2.

Arguing as in Lemma 5.4, since SX (and hence Y ) is quasi-projective over k, we can find

an effective Cartier divisor C̃ on Y such that

(1) C ⊂ C̃.

(2) C̃ \ C ∩ (C ∩D) = ∅.
(3) OY (C̃) is a very ample line bundle on Y .

We can extend the function f on C to a function f̃ on C̃ by setting f̃ = f on C and f̃ = 1
on C̃ \ C. Condition (2) guarantees that f̃ is regular and invertible at each point of C̃ ∩D,

and it is clear by construction that div(f̃) = div(f). Replacing C with C̃ (and changing the
notation for simplicity), we can thus assume that C is a Cartier divisor on Y such that the
associated line bundle OY (C) is very ample. Choose t0 ∈ H

0(Y,OY (C)) such that C = (t0).
Since Y is geometrically reduced, standard Bertini (see the proof of [30, Lemma 1.3]) allows
us to choose another divisor C∞ in the linear system H0(Y,OY (C)) such that:

(1) C∞ is reduced.
(2) C∞ ∩ C ∩D = ∅.
(3) C∞ contains no component of C.
(4) D contains no component of C∞.

Denote by t∞ the section of OY (C) with C∞ = (t∞). As before, we extend the function f
on C to a function h on C∞ ∪ C by setting h = f on C and h = 1 on C∞. Notice that h is
meromorphic on C∞ ∪ C and regular invertible in a neighborhood of (C∞ ∪ C) ∩D by (2).
Let S denote the finite set of points S = {poles of f} ∪ (C ∩C∞). Note that S ∩D = ∅.

Choose now a very ample line bundleL = j∗(OPr(1)) on SX , corresponding to an embedding
j : SX → Prk for r ≫ 0 of SX as locally closed subscheme. We can assume that r is sufficiently
large so that L|Y ⊗OY

OY (C) is also very ample on Y . Since k is infinite, there is a dense

open subset VX of the dual projective space (Prk)
∨ such that for L ∈ VX , the scheme theoretic

intersections L · SX = L×Pr
k
SX and L · Y = L×Pr

k
Y satisfy the following list of properties:

a) L · SX and L · Y are geometrically reduced (since both SX and Y are),
b) Y 6⊂ L · SX ,
c) L ·X± = L×Pr

k
X± and L · Y± = L×Pr

k
Y± are integral (since X± and Y± are),

d) L · Y ∩ (C ∪ C∞) ∩D = ∅,
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e) L · Y ⊃ S,
f) L · Y intersects C∞ ∪ C in a finite set of points.

The hyperplane L corresponds to a section l of the linear system H0(Prk,OPr (1)). Write s∞
for the global section of L that is the restriction of l to SX . Then L · SX = (s∞). Note that
we can assume that s∞ does not have poles on (C ∪ C∞) ∩D. Let SX be the closure of SX
in Prk and let I be the ideal sheaf of SX \ SX in Prk. We can find a section s′∞ of the sheaf
I ⊗OPN

k
(m) for some m≫ 0, which restricts to a section s∞ on SX satisfying the properties

(a) - (f) on SX = SX \ V (I). This implies in particular that SX \ (s∞) = SX \ (s
′
∞) is affine.

Thus, up to taking a further Veronese embedding of Prk (replacing s∞ with s′∞) we can assume
that (a) - (f) as above as well as the following hold

g) SX \ (s∞) = SX \ L · SX is affine.
We now know that Y± is smooth away from C and d) tells us that (s∞) intersects Y± along

D at only those points which are away from C. It follows that (s∞)∩Y±∩D ⊂ (s∞)∩(Y+)reg.
We can then use the Bertini theorem of Altman and Kleiman [21, Theorem 1] to ensure that
(s∞)∩(Y+)reg is smooth away from the subscheme (C∪C∞)∩X+ where we ask the containment
condition. In particular, we can assume that (s∞) ∩ Y+ is smooth along D. The same holds
for Y− as well. We conclude that we can moreover achieve the following property

h) (s∞) ∩ Y± are smooth along D.
Consider again the function h on C ∪C∞. By our choice of S, h is regular on (C ∪C∞)\S.

By g) above, h extends to a regular function H on the affine open U = SX \ (s∞). Since H
is a meromorphic function on SX which has poles only along (s∞), it follows that for N ≫ 0
the section HsN∞ is an element of H0(U,L⊗N ) which extends to a section s0 of L⊗N on all
SX . Since h is regular and invertible at each point of C ∪C∞∩D and since s∞ does not have
zeros or poles on C ∪ C∞ ∩D, it follows that (s0) ∩ (C ∪ C∞) ∩D = ∅ and (using f) above)
that (s0) does not contain any component of C ∪C∞. Note that up to replacing s0 by s0s

i
∞,

we are free to choose N as large as needed.
Write IC∪C∞ for the ideal sheaf of C ∪ C∞ in SX . We can then find sections s1, . . . , sm of

H0(SX ,L
⊗N⊗IC∪C∞) such that the rational map φ : SX 99K Pm−1

k that they define is a locally
closed immersion on SX \ (C ∪C∞). In particular, there exists an affine open neighbourhood
Ux of every x ∈ SX \ (C ∪ C∞) where at least one of the si is not identically zero and where
the k-algebra k[s1/si, . . . , sm/si] generated by s1/si, . . . , sm/si coincides with the coordinate
ring of Ux. But then the same must be true for the algebra k[s0/s1, s1/si, . . . , sm/si] obtained
by adding the element s0/si. Hence, the rational map ψ : SX 99K Pmk given by the sections
(s0, s1, . . . , sm) of H0(SX ,L

⊗N) is also a locally closed immersion on SX \ (C ∪ C∞), and
since the base locus of the linear system associated to (s0, s1, . . . , sm) is (s0)∩ (C ∪C∞), it is
in fact a morphism away from (s0) ∩ (C ∪ C∞).

In particular, ψ is birational (hence separable) and has image of dimension at least two,
so that the linear system V = (s0, s1, . . . , sm) is not composite with a pencil. By the clas-
sical Theorem of Bertini (see, for example, [51, Theorem I.6.3]), a general divisor E in V is
generically geometrically reduced. Moreover, E is itself a Cohen-Macaulay scheme (since SX
is Cohen-Macaulay). But a locally Noetherian Cohen-Macaulay scheme that is generically
reduced is in fact reduced by [14, Prop. 14.124]. Hence the general divisor E in V is indeed
geometrically reduced (hence reduced). We can apply the same argument to E · Y , noting
that being a complete intersection in SX , the surface Y is Cohen-Macaulay.

Since Y± and X± are all integral, a general divisor E of V will be moreover irreducible
when restricted to X± and Y±. We can therefore assume that there is a global section s′0
of H0(SX ,L

⊗N ) of the form s′0 = s0 + α with α ∈ (s1, . . . , sm), that satisfies the following
properties:

a’) (s′0) and (s′0) ∩ Y are (geometrically) reduced.



ZERO CYCLES WITH MODULUS AND ZERO CYCLES ON SINGULAR VARIETIES 25

b’) Y 6⊂ (s′0).
c’) (s′0) ∩X± and (s′0) ∩ Y± are integral.
d’) (s′0) ∩ (C ∪C∞) ∩D = ∅.
e’) C∞ ∪C contains no component of (s′0) ∩ Y .
f’) (s′0) ∩ Y± are smooth along D.

The items a’) and c’) follow from the previous discussion. Properties b’), d’) and e’) are
clearly open conditions on the space of sections V , and are therefore satisfied by the general
divisor. As for the last item f’), it follows from the classical Theorem of Bertini on smoothness
applied to Y±, the assumption on Y± and the item d’).

We then have

s′0
sN∞

=
HsN∞ + (αs−N∞ )sN∞

sN∞
= H + αs−N∞ = H ′, (say).

Since α vanishes along C ∪ C∞ and s∞ does not vanish identically on U ∩ (C ∪ C∞) by
f), it follows that H ′

|(C∪C∞)∩U = H|(C∪C∞)∩U = h|U . In other words, we have s′0/s
N
∞ = h as

rational functions on C ∪ C∞. We can now compute:

ν∗(div(f)) = (s′0) · C −N(s∞) · C

0 = div(1) = (s′0) · C∞ −N(s∞) · C∞.

Setting (sY∞) = (s∞) ∩ Y and (s′Y0 ) = (s′0) ∩ Y , we get

ν∗(div(f)) = (s′0) · (C − C∞)−N(s∞)(C − C∞)
= (s′Y0 ) · (div(t0/t∞))−N(sY∞) · (div(t0/t∞))
= ιs′Y0 ,∗(div(f

′))−NιsY∞,∗(div(f
′′)),

where f ′ = (t0/t∞)|(s′Y0 ) ∈ O
×
(s′Y0 ),D∩(s′Y0 )

(by (d’)) and f ′′ = (t0/t∞)|(sY∞) ∈ O
×
(sY∞),D∩(sY∞)

(by

(d)).
It follows from h) and f’) that (s′Y0 )|X+

, (s′Y0 )|X−
, (sY∞)|X+

and (sY∞)|X−
are all smooth along

D. Setting L′′ = (L′)N , t′′ = (s′0) and t
′ = (s∞), the curves C ′ = (t′) ∩ Y and C ′′ = (t′′) ∩ Y

together with the functions f ′ and f ′′ satisfy the conditions of the Lemma. �

Remark 5.6. It follows from Lemma 2.2 that each of the curves C ′ and C ′′ constructed in the
proof of the lemma is of the form C+ ∐E C− for E = ν∗+(D) = ν∗−(D) and ν± : C± →֒ X are
integral Cartier curves in X, which are smooth along D. Moreover, by construction, C± are
the zero loci of the restrictions t± to Y± of a global section of a very ample line bundleM on
SX . It follows that (t+)|D and (t−)|D agree.

5.5. The map τ∗X : the case of curves and surfaces. For any smooth quasi-projective
scheme X over k with effective Cartier divisor D ⊂ X, we have defined in 5.3 the map

(5.3) τ∗X : Z0(SX ,D)→ Z0(X,D) by τ∗X([x]) = ι∗+([x])− ι
∗
−([x]),

where x ∈ SX \D is a closed point.
Suppose first that X is a smooth curve. We can clearly assume that X is connected. If

f ∈ O×
SX ,D

and θX : O×
SX ,D

→ k(SX)
× = k(X+)

××k(X−)
× is the natural map, then θX(f) =

(f+, f−) with f± ∈ O
×
X±,D

= O×
X,D. It follows from (2.6) that g := f+f

−1
− ∈ Ker(O×

X,D → O
×
D).

Moreover, τ∗X(div(f)) = ι∗+(div(f))− ι
∗
−(div(f)) = div(f+)− div(f−) = div(g). We conclude

that τ∗X descends to a map

(5.4) τ∗X : CHLW0 (SX) = CH0(SX)→ CH0(X|D).
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Proposition 5.7. Let X be a smooth connected quasi-projective surface over k with an ef-
fective Cartier divisor D. Then the map τ∗X : Z0(SX ,D) → Z0(X|D) of (5.3) descends to a

group homomorphism CHLW0 (SX)→ CH0(X|D).

Proof. We shall continue to use the notations and various constructions in the proof of
Lemma 5.5. We have shown in Lemma 5.5 that in order to prove that τ∗X preserves the
subgroups of rational equivalences, it suffices to show that τ∗X(div(f

′)) ∈ R0(X|D), where f ′

is a rational function on a Cartier curve ν : C ′ →֒ SX that we can choose in the following way.

(1) There is a very ample line bundle L on SX and sections t ∈ H0(SX ,L), t± = ι∗±(t) ∈
H0(X, ι∗±(L)) such that C ′ = (t) and C ′

± = (t±).
(2) C ′ is a (geometrically) reduced Cartier curve of the form C ′ = C ′

+ ∐E C ′
−, where

E = ν∗(D) such that C ′
± are integral curves on X, none of which is contained in D

and each of which is smooth along D (see Remark 5.6).

Let ιD = ι+ ◦ ι = ι− ◦ ι : D →֒ SX denote the inclusion map. Then, it follows from (1) that

(5.5) (t+)|D = ι∗D(t) = (t−)|D.

Let (f ′+, f
′
−) be the image of f ′ in O×

C′
+,E
× O×

C′
−,E

→֒ k(C ′
+) × k(C ′

−). It follows from

Lemma 2.2 that there is an exact sequence

0→ OC′,E → OC′
+,E
×OC′

−,E
→ OE → 0.

In particular, we have

(5.6) (f ′+)|E = (f ′−)|E ∈ O
×
E .

Let us first assume that C ′
+ = C ′

− as curves on X. Let C denote this curve and let

CN denote its normalization. Let π : CN → C →֒ X denote the composite map. Since
C is regular along E by (2), we get f ′+, f

′
− ∈ O

×
CN ,E

. Setting g := f ′+f
′−1
− ∈ O×

CN ,E
, it

follows from (5.6) that g ∈ Ker(O×
CN ,E

→ O×
E). Moreover, τ∗X(div(f

′)) = ι∗+(div(f
′)) −

ι∗−(div(f
′)) = div(f ′+)− div(f−) = π∗(div(g)). We conclude from (5.1) that τ∗X descends to a

map τ∗X : CHLW0 (SX)→ CH0(X|D).
We now assume that C ′

+ 6= C ′
−. Let S denote the set of closed points on C ′

+ ∪ C
′
−, where

f ′+ or f ′− has a pole. It is clear that S ∩D = ∅. We now repeat the constructions in the proof

of Lemma 5.5 to find a very ample line bundle L on X and a section s∞ ∈ H
0(X,L) such

that

a) (s∞) is integral (because X is smooth and connected).
b) (s∞) ∩ (C ′

+ ∪ C
′
−) ∩D = ∅.

c) (s∞) ⊃ S.
d) (s∞) 6⊂ C ′

+ ∪ C
′
−.

e) (s∞) is smooth away from S.
f) X \ (s∞) is affine.

It follows that f ′± extend to regular functions F ′
± on U = X \ (s∞). Since F ′

± are mero-

morphic functions on X which have poles only along (s∞), it follows that F ′
±s

N
∞ are elements

of H0(U,LN ) which extend to sections s0,± of LN on all of X, if we choose N ≫ 0.
Since s∞, F

′
+ and F ′

− are all invertible on C ′
+∪C

′
− along D, we see that (s0)± are invertible

on C ′
+∪C

′
− along D. In particular, s0,± /∈ H0(X,L⊗N⊗IC+∪C−). As before, we can moreover

find α± ∈ H
0(X,L⊗N ⊗IC+∪C−) ⊂ H

0(X,LN ) such that s′0,± := s0,±+α± have the following
properties.

a’) (s′0,±) are integral.

b’) (s′0,±) 6⊂ C
′
+ ∪C

′
−.

c’) (s′0,±) ∩ (C ′
+ ∪C

′
−) ∩D = ∅.
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d’) (s′0,±) are smooth away from C ′
+ ∪ C

′
−.

We then have

s′0,±
sN∞

=
F ′
±s

N
∞ + (α±s

−N
∞ )sN∞

sN∞
= F ′

± + α±s
−N
∞ = H ′

±, (say).

Since α± vanish along C ′
+ ∪ C

′
− and s∞ does not vanish identically along U ∩ (C ′

+ ∪ C
′
−),

it follows that (H ′
±)|(C′

+∪C′
−)∩U = (F ′

±)|(C′
+∪C′

−)∩U . Since (F ′
±)|C′

+∪C′
−

are invertible regular

functions on C ′
+ ∪C

′
− along D, it follows that (H ′

+)|C′
+∪C′

−
and (H ′

−)|C′
+∪C′

−
are both rational

functions on C ′
+ ∪ C

′
− which are regular and invertible along D. In particular, we have

(5.7) (H ′
+)|E = (F ′

+)|E = (f ′+)|E =† (f ′−)|E = (F ′
−)|E = (H ′

−)|E ,

where =† follows from (5.6).
Since s′0,+ and s′0,− are both invertible functions on C ′

− in a neighborhood of C ′
− ∩ D by

c’), it follows that the restriction of s′0,−/s
′
0,+ on C ′

− is a rational function on C−, which is

regular and invertible in a neighborhood of C ′
− ∩D. On the other hand, we have

(5.8)
s′0,−
s′0,+

=
s′0,−/s

N
∞

s′0,+/s
N
∞

=
H ′

−

H ′
+

,

as rational functions on X. Since H ′
+ and H ′

− are also well-defined non-zero rational functions
on C ′

−, we conclude that s′0,−/s
′
0,+ and H ′

−/H
′
+ both restrict to an identical and well-defined

rational function on C ′
−, which is invertible along D.

We now compute

τ∗X(div(f
′)) = ι∗+(div(f

′))− ι∗−(div(f
′))

= div(f ′+)− div(f ′−)
=

[
(s′0,+) · C

′
+ − (sN∞) · C ′

+

]
−

[
(s′0,−) · C

′
− − (sN∞) · C ′

−

]

=
[
(s′0,+) · C

′
+ − (s′0,+) · C

′
−

]
−

[
(s′0,−) · C

′
− − (s′0,+) · C

′
−

]

−
[
(sN∞) · C ′

+ − (sN∞) · C ′
−

]

=
[
(s′0,+) · (C

′
+ − C

′
−)

]
−

[
C ′
− · (s

′
0,−)− (s′0,+))

]
−

[
(sN∞) · (C ′

+ − C
′
−)

]

= (s′0,+) · (div(t+/t−))− C
′
− · (div(s

′
0,−/s

′
0,+))−N(s∞) · (div(t+/t−))

= (s′0,+) · (div(t+/t−))− C
′
− · (div(H

′
−/H

′
+))−N(s∞) · (div(t+/t−)).

It follows from b) and c’) that t± restrict to regular invertible functions on (s′0,+) and (s∞)

along D. We set h1 = ( t+t− )|(s′0,+)
, h2 = (

H′
−

H′
+
)
|C′

−

and h3 = ( t+t− )|s∞
. Let (s′0,+)

N → (s′0,+),

(C ′
−)

N → C ′
− and (s∞)N → (s∞) denote the normalization maps. Let ν1 : (s

′
0,+)

N → X,

ν2 : (C
′
−)

N → X and ν3 : (s∞)N → X denote the composite maps. Since (s′0,+), C
′
− and

(s∞) are all regular along D by (2), e) and d’), it follows from (5.5) and (5.7) that h1 ∈
G((s′0,+), ν

∗
1 (D)), h2 ∈ G((C

′
−)

N , ν∗2(D)) and h3 ∈ G((s∞)N , ν∗3 (D)). We conclude from (5.1)

that τ∗X(div(f
′)) dies in CH0(X|D). In particular, τ∗X descends to a map τ∗X : CHLW0 (SX)→

CH0(X|D). This finishes the proof. �

5.6. The map τ∗X : the case of higher dimensions. We are left to show that the map

τ∗X : Z0(SX ,D) → Z0(X|D) of (5.3) descends to a group homomorphism CHLW0 (SX) →
CH0(X|D) when X has dimension at least 3 when k is infinite and perfect. This is the
content of the following.

Proposition 5.8. Let X be a smooth connected quasi-projective scheme over k of dimension
d ≥ 3 with an effective Cartier divisor D. Then the map τ∗X : Z0(SX ,D)→ Z0(X|D) of (5.3)

descends to a group homomorphism CHLW0 (SX)→ CH0(X|D).
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Proof. Let ν : C →֒ SX be a reduced Cartier curve relative to D and let f ∈ O×
C,E, where

E = ν∗(D). By Lemma 5.4, we can assume that there are inclusions C →֒ Y →֒ SX satisfying
the conditions (1) - (6) of Lemma 5.4. The only price we pay by doing so is that C may
no longer be reduced (but still Cohen-Macaulay). But we solve this by replacing C with a
reduced Cartier curve (which we also denote by C) that is of the form given in Lemma 5.5.
We shall now continue with the notations of proof of Lemma 5.5.

We write C = (t)∩Y , where t ∈ H0(SX ,L) such that L is a very ample line bundle on SX .
Let t± = ι∗±(t) ∈ H

0(X, ι∗±(L)) and let C± = (t±) ∩ Y = (t±) ∩ Y±. Let ν± : C± →֒ X denote
the inclusions. It follows from our choice of the section that (t±) are integral. If C+ = C−,
exactly the same argument as in the case of surfaces in Proposition 5.7 applies to show that
τ∗X(div(f)) ∈ R0(X|D). So we assume C+ 6= C−.

Let ∆(C) = C+ ∪ C− denote the scheme-theoretic image in X under the finite map ∆.
Since X is smooth and connected, the Bertini Theorem of Altman and Kleiman [21, Theorem
1] allows us to find once again a complete intersection integral surface T ⊂ X satisfying the
following.

(1) T ⊃ ∆(C).
(2) T ∩ (t±) are integral curves.
(3) T is smooth away from ∆(C).

Set tT± = (t±)|T . Since C± are integral and contained in T ∩ (t±), it follows that

(5.9) (tT±) = C±.

Let S be the finite set of points of ∆(C), where f+ = ν∗+(f) or f− = ν∗−(f) have poles.
It is clear that S ∩ D = ∅. We now choose another very ample line bundle M on X and
s∞ ∈ H

0(X,M) (see the proof of Lemma 5.5) such that

i) (s∞) is integral.
ii) The intersections (s∞) ∩ T and (s∞) ∩ (t±) are proper and integral.
iii) (s∞) ⊃ S.
iv) (s∞) ∩∆(C) ∩D = ∅.
v) X \ (s∞) is affine.
vi) (s∞) is smooth away from S.
vii) (s∞) ∩ T is smooth away from ∆(C).
viii) (s∞) ∩ T 6⊂ ∆(C).

As shown in the proof of Lemma 5.5, it follows from (3), iv) and vii) above that (sT∞) :=
(s∞) ∩ T is smooth along D. Using v), we can lift f± ∈ k(C±)

× to regular functions F± on
U = X \ (s∞). Using an argument identical to that given in the proof of Proposition 5.7, we
can extend the sections s0,± = sN∞F± (for some N ≫ 0) to global sections s0,± ofMN on X
so that their zero loci satisfy:

a) (s0,±) and (s0,±) ∩ T are integral.
b) (s0,±) ∩ T ∩∆(C) ∩D = ∅.
c) (s0,±) ∩ T 6⊂ ∆(C).
d) (s0,±) ∩ T are smooth away from ∆(C).

As we argued in the proof of Lemma 5.5, it follows from iv), vii), c) and d) that (sT∞) and
(sT0,±) := (s0,±) ∩ T are smooth along D.

Setting H± = s0,±/s
N
∞ and using the argument of the proof of Proposition 5.7, we get

H± ∈ k(X)× and they restrict to rational functions on C+ as well as C− which are regular
and invertible along D. Moreover, we have

(5.10) (H+)|E = (F+)|E = (f+)|E =† (f−)|E = (F−)|E = (H−)|E ,
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where =† follows from our assumption that f ∈ O×
C,E . It follows that the restriction of

the rational function s0,−/s0,+ = H−/H+ to C− is an element of O×
C−,C−∩D such that

(H−/H+)|E = 1.

We now compute

τ∗X(div(f)) = ι∗+(div(f))− ι
∗
−(div(f))

= div(f+)− div(f−)
=

[
(sT0,+) · C+ −N(sT∞) · C+

]
−

[
(sT0,−) · C− −N(sT∞) · C−

]

=
[
(sT0,+) · C+ − (sT0,+) · C−

]
−

[
(sT0,−) · C− − (sT0,+) · C−

]

−N
[
(sT∞) · C+ − (sT∞) · C−

]

=
[
((sT0 )+) · (C+ − C−)

]
−

[
C− · ((s

T
0,−)− (sT0,+))

]
−N

[
(sT∞) · (C+ − C−)

]

=†
[
(sT0,+) · ((t

T
+)− (tT−))

]
−

[
C− · ((s

T
0,−)− (sT0,+))

]
−N

[
(sT∞) · ((tT+)− (tT−))

]

= (sT0,+) · (div(t
T
+/t

T
−))− C− · (div(s0,−/s0,+))−N(sT∞) · (div(tT+/t

T
−))

= (sT0,+) · (div(t
T
+/t

T
−))− C− · (div(H−/H+))−N(sT∞) · (div(tT+/t

T
−)),

where =† follows from (5.9).
It follows from iv) and b) that tT+/t

T
− restricts to regular and invertible functions on (sT0,+)

and (sT∞) along D. Since t ∈ H0(SX ,L) and t± = ι∗±(t) ∈ H0(X, ι∗±(L)), it follows that
(t+)|D = ι∗D(t) = (t−)|D, where ιD = ι+ ◦ ι = ι− ◦ ι : D →֒ SX denotes the inclusion map.

In particular, (tT+/t
T
−)|E = 1. We have seen before that (H−

H+
)
|C−

is a regular and invertible

function on C− along D and (H−

H+
)
|E

= 1.

We set h1 = (
tT+
tT−
)
|(sT0,+)

, h2 = (H−

H+
)
|C−

and h3 = (
tT+
tT−
)
|sT∞

. We conclude now using exactly

the same argument as in the proof of Proposition Proposition 5.7. Let (sT0,+)
N → (sT0,+),

(C−)
N → C− and (sT∞)N → (sT∞) denote the normalization maps. Let ν1 : (s

T
0,+)

N → X,

ν2 : (C−)
N → X and ν3 : (s

T
∞)N → X denote the composite maps. The curves (sT0,+) and

(sT∞) are all smooth along D, and C− is smooth along D by Lemma 5.5. It follows that h1 ∈
G((sT0,+)

N , ν∗1 (D)), h2 ∈ G((C−)
N , ν∗2(D)) and h3 ∈ G((s

T
∞)N , ν∗3 (D)). We conclude from (5.1)

that τ∗X(div(f)) dies in CH0(X|D). In particular, τ∗X descends to a map τ∗X : CHLW0 (SX) →
CH0(X|D). This finishes the proof. �

5.7. The maps p±,∗. Let X and D and k be as above. Now that we have constructed the
map τ∗X , we build two maps in the opposite direction.

p±,∗ : Z0(X|D) ⇒ Z0(SX ,D)

by p+,∗([x]) = ι+,∗([x]) (resp. by p−,∗([x]) = ι−,∗([x])) for a closed point x ∈ X\D. Concretely,
the two maps p+,∗ and p−,∗ copy a cycle α in one of the two components of the double SX
(the X+ or the X− copy). Since α is supported outside D (by definition of R0(X|D)), the
cycles p+,∗(α) and p−,∗(α) give classes in CH0(SX).

Proposition 5.9. The maps p±,∗ descend to group homomorphisms p±,∗ : CH0(X|D) →
CH0(SX).

Proof. Let ν : C → X be a finite map from a normal integral curve such that ν(C) 6⊂ D
and let E = ν∗(D). Since both X and C are smooth, the map ν is automatically a local
complete intersection. Let f ∈ k(C)× be a rational function on C such that f ∈ G(C,E) (in
the notations of 5.2).

Since C is smooth, it follows from Proposition 2.3 that SC := S(C,E) is reduced and is
smooth away from E. If follows from Proposition 2.4 that the double map SC → SX is l.c.i.
along D. In particular, the pair (SC , E) is a good curve relative to (SX ,D). We now consider
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the rational function h = (h+, h−) := (f, 1) on SC . The modulus condition satisfied by f on
C guarantees that h is regular and invertible along E ⊂ SC . It is also easy to see that the
divisor of h trivializes p+,∗(ν∗div(f)). The argument for p−,∗ is symmetric. �

To summarize, we have shown the following.

Theorem 5.10. Let X be a smooth connected quasi-projective scheme of dimension d ≥ 1
over an infinite perfect field k and let D ⊂ X be an effective Cartier divisor. Then there are
maps

(5.11) τ∗X : CH0(SX)→ CH0(X|D) and p±,∗ : CH0(X|D)→ CH0(SX).

such that τ∗X(α) = ι∗+(α)− ι
∗
−(α) and p±,∗(β) = ι±,∗(β) on cycles.

Proof. This is a combination of Lemma 5.2 and of Propositions 5.7, 5.8 and 5.9. �

6. Reduction to infinite base field

In the previous section, our results were based on the assumption that the ground field k is
infinite. In order to prove our main theorem for finite fields, we shall use the following descent
tricks for cycles on singular varieties and cycles with modulus.

Proposition 6.1. Let k →֒ k′ be separable algebraic (possibly infinite) extension of fields. Let
X be a reduced quasi-projective scheme over k and let X ′ = Xk′ := X⊗k k

′. Let prk′/k : X
′ →

X be the projection map. Then the following hold.

(1) There exist pull-back maps pr∗k′/k : CHLW0 (X) → CHLW0 (X ′) and pr∗k′/k : CH0(X) →

CH0(X
′) which commute with the canonical map CHLW0 (X)→ CH0(X).

(2) If there exists a sequence of separable field extensions k = k0 ⊂ k1 ⊂ · · · ⊂ k′ with

k′ = ∪iki such that Xi := Xki for each i ≥ 1, then we have lim
−→
i

CH0(Xi)
≃
−→ CH0(X

′).

The same holds for CHLW0 (−) as well.
(3) If k →֒ k′ is finite, then there exists a push-forward (prk′/k)∗ : CH0(X

′) → CH0(X)

such that (prk′/k)∗ ◦ pr
∗
k′/k is multiplication by [k′ : k].

Proof. The proofs of (1) and (2) for CH0(−) and CHLW0 (−) are identical. So we consider only
CH0(−) in the proof below.

We first note that as k →֒ k′ or k →֒ ki is a separable algebraic extension, the scheme X ′

is reduced and X ′
sing = Xsing ×k k

′. The same holds for each Xi as well.

Let x ∈ X \ Xsing be a closed point. Since prk′/k is flat, it follows from our hypothesis

that pr∗k′/k([x]) is a well defined 0-cycle in Z0(X
′,X ′

sing). We thus have a pull-back map

pr∗k′/k : Z0(X,Xsing)→ Z0(X
′,X ′

sing).

We show that this map preserves rational equivalences. So let ν : (C,Z) → (X,Xsing)
be a good curve and let f : C 99K P1

k be a rational function which is regular in an open
neighborhood Z ( U ⊆ C. The base change via k →֒ k′ gives a diagram of Cartesian squares

(6.1) Zk′

��

� � // Uk′
� � //

��

Ck′
νk′

//

��

X ′

prk′/k
��

Z � � // U � � // C ν
// X.

Since k →֒ k′ is a separable field extension, we see that Ck′ is reduced and Ck′ \ Zk′ =
(C \ Z)k′ is regular. We also have ν−1

k′ (X
′
sing) = ν−1

k′ (Xsing ×k k
′) ⊆ Zk′ . Moreover, the

flatness of prk′/k ensures that the map νk′ : Ck′ → X ′ is l.c.i. over X ′
sing. It follows that

νk′ : (Ck′ , Zk′) → (X ′,X ′
sing) is a good curve. Since f : C 99K P1

k is regular and invertible
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along U , it follows that f ′ := fk′ : Ck′ 99K P1
k′ is a rational function which is regular and

invertible along Uk′ .
Let D ⊂ C ×k P

1
k denote the closure of the graph of f with the reduced structure. Note

that this graph is already reduced over the regular locus of f . Let p : C ×k P
1
k → P1

k and
q : C ×k P

1
k → C denote the projection maps so that p|U = f |U . We thus have a commutative

diagram

(6.2) P1
k′

��

Dk′
qk′

//

��

pk′
oo Ck′

νk′
//

��

X ′

prk′/k

��

P1
k D q

//
p

oo C ν
// X.

We now have

νk′∗(div(f
′)) = νk′∗ ◦ qk′∗([p

∗
k′(0)] − [p∗k′(∞)])

= νk′∗ ◦ qk′∗([p
∗
k′ ◦ pr

∗
k′/k(0)− p

∗
k′ ◦ pr

∗
k′/k(∞)])

= νk′ ∗ ◦ qk′∗([pr
∗
k′/k ◦ p

∗(0)− pr∗k′/k ◦ p
∗(∞)])

=† νk′∗ ◦ pr
∗
k′/k ◦ q∗([p

∗(0) − p∗(∞)])

= νk′ ∗ ◦ pr
∗
k′/k(div(f))

=†† pr∗k′/k ◦ ν∗((div(f)),

where =† and =†† follow from [12, Proposition 1.7] because all squares in (6.2) are Cartesian,
vertical maps are all flat and q as well as ν is finite. We conclude that pr∗k′/k ◦ ν∗((div(f)) ∈

R0(X
′,X ′

sing) and this proves (1).

We now consider (2). It is clear that the map lim−→
i

CH0(Xi) → CH0(X
′) is surjective. To

show injectivity, suppose there is some i ≥ 0 and α ∈ Z0(Xi, (Xi)sing) such that pr∗k′/ki(α) ∈

R0(X
′,X ′

sing). We can replace k by ki and assume i = 0.

Let νj : (Cj, Zj) → (X ′,X ′
sing) be good curves and let f j : Cj 99K P1

k′ be a rational

function which is regular and invertible in a neighborhood U j of Zj for j = 1, · · · , r such that

pr∗k′/k(α) =
r∑
j=1

νj∗(div(f
j)).

Since each Cj has a factorization Cj →֒ P
Nj

X′ → X ′, we can find some i ≫ 0 and curves

W j over ki, a closed subscheme T j ( W j, an open neighborhood V j ⊆ W j of T j and

invertible regular function gj : V j → P1
ki

such that (Cj , Zj) ≃ (W j , T j)k′ , U
j = V j

k′ and

f j = gjk′ . Furthermore, we can find a finite map δj : (W j , T j) → (Xki , (Xki)sing) such that

(Cj, Zj) ≃ (W j , T j)k′ and ν
j = δjk′ for each j = 1, · · · , r. Since ki →֒ k′ is separable, it also

follows that W j \ T j is regular.
Since the map X ′ → Xi is faithfully flat, it follows from Lemma 3.2 and our hypothesis on

(Xi)sing that each W j → Xi is l.c.i. along (Xi)sing and (δj)−1((Xi)sing) ⊆ T j . It follows that
each (W j , T j) is a good curve relative to (Xki , (Xki)sing). Moreover, we have shown in the

proof of (1) (with k replaced by ki) in this situation that νj∗(div(f
j)) = pr∗k′/ki(δ

j
∗(div(g

j))).

We now set αi = pr∗ki/k(α) and let β = αi−
r∑
j=1

δj∗(div(g
j)) ∈ Z0(Xi, (Xi)sing). It then

follows that pr∗k′/ki(β) = pr∗k′/ki(αi)−
r∑
j=1

νj∗(div(f
j)) = pr∗k′/k(α)−

r∑
j=1

νj∗(div(f
j)) = 0 in

Z0(X
′,X ′

sing). Since the map pr∗k′/ki : Z0(Xi, (Xi)sing)→ Z0(X
′,X ′

sing) of free abelian groups

is clearly injective, we get β = 0, which means that αi ∈ R0(Xi, (Xi)sing). This proves (2).
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If k →֒ k′ is a finite extension, then Spec (k′)→ Spec (k) is an l.c.i. morphism. In particular,
it follows from Lemma 3.2 that prk′/k : X ′ → X is finite, flat l.c.i. morphism. The push-

forward map (prk′/k)∗ : CH0(X
′)→ CH0(X) now follows from our hypothesis on the singular

locus of X ′ and Proposition 3.18. The property (prk′/k)∗ ◦ pr
∗
k′/k = [k′ : k] is obvious. This

finishes the proof. �

Proposition 6.2. Let k →֒ k′ be a separable algebraic (possibly infinite) extension of fields.
Let X be a smooth quasi-projective scheme over k with an effective Cartier divisor D. Let
X ′ = Xk′ and D

′ = Dk′ denote the base change of X and D, respectively. Let prk′/k : X
′ → X

be the projection map. Then the following hold.

(1) There exists a pull-back pr∗k′/k : CH0(X|D)→ CH0(X
′|D′).

(2) If there exists a sequence of separable field extensions k = k0 ⊂ k1 ⊂ · · · ⊂ k′ with

k′ = ∪iki, then we have lim−→
i

CH0(Xki |Dki)
≃
−→ CH0(X

′|D′).

(3) If k →֒ k′ is finite, then there exists a push-forward prk′/k ∗ : CH0(X
′|D′)→ CH0(X|D)

such that (prk′/k)∗ ◦ pr
∗
k′/k is multiplication by [k′ : k].

Proof. Let x ∈ X \D be a closed point. Since prk′/k is smooth, it follows from our hypothesis

that pr∗k′/k([x]) is a well defined 0-cycle in Z0(X
′|D′). We thus have a pull-back map pr∗k′/k :

Z0(X|D)→ Z0(X
′|D′). To show that this map preserves rational equivalence, we shall use a

presentation of R0(X|D) which is different from the one given in § 5.2 (see [5] or [26]).
Let C →֒ X ×k P

1
k be an integral curve satisfying the following properties.

(1) C ∩ (D ×k P
1
k) is finite.

(2) C ∩ (D ×k {0,∞}) = ∅.
(3) The Weil divisor ν∗(X×{1})−ν∗(D×P1

k) is effective, where ν : CN → C →֒ X×k P
1
k

is the composite finite map.

The group of rational equivalences R0(X|D) coincides with the subgroup of Z0(X|D) gen-
erated by [C0]− [C∞], where C runs over all curves as above.

Let C ∈ X ×k P
1
k be any such curve. It follows again from the smoothness of prk′/k that

C ′ = pr∗k′/k(C) = Ck′ →֒ (X ×k P1
k)k′ = X ′ ×k′ P

1
k′ satisfies conditions (1)-(3) above. In

particular, [C ′
0]− [C ′

∞] dies in CH0(X
′|D′). However, the flatness of prk′/k again shows that

[C ′
∞] = pr∗k′/k([C∞]) and [C ′

0] = pr∗k′/k([C0]) so that pr∗k′/k([C0] − [C∞]) dies in CH0(X
′|D′).

This proves (1).
It is clear that the map lim

−→
i

CH0(Xi|Di) → CH0(X
′|D′) is surjective. To show injectivity,

suppose there is some i ≥ 0 and α ∈ Z0(Xi|Di) such that pr∗k′/ki(α) ∈ R0(X
′|D′). We can

replace k by ki and assume i = 0.
Let Cj →֒ X ′×k′ P

1
k′ = (X×k P

1
k)k′ for j = 1, · · · , r be a collection of curves as in the proof

of (1) so that pr∗k′/k(α) = (
r∑
j=1

[Cj0 ])− (
r∑
j=1

[Cj∞]). Let νj : Cj,N → X ′×k′ P
1
k′ denote the maps

from the normalizations of the above curves.
We can then find some i≫ 0 and integral curvesW j →֒ Xi×kiP

1
ki

such that Cj =W j×ki k
′

for each j = 1, · · · , r. In particular, we have Cj0 = pr∗k′/ki(W
j
0 ) and Cj∞ = pr∗k′/ki(W

j
∞) for

j = 1, · · · , r. Since prk′/ki is smooth, it follows that Cj,N = W j,N
k′ for each j. Moreover, it

follows from [26, Lemma 2.2] that condition (3) above holds on each W j,N . It follows that
each W j defines a rational equivalence for 0-cycles with modulus Di on Xi.
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We now set αi = pr∗ki/k(α) and let β = αi − (
r∑
j=1

([W j
0 ] − [W j

∞])) ∈ Z0(Xi|Di). It then

follows that pr∗k′/ki(β) = pr∗k′/ki(αi)−
r∑
j=1

([Cj0 ]− [Cj∞]) = pr∗k′/k(α)−
r∑
j=1

([Cj0 ]− [Cj∞]) = 0 in

Z0(X
′|D′). Since the map pr∗k′/ki : Z0(Xi|Di) → Z0(X

′|D′) of free abelian groups is clearly

injective, we get β = 0, which means that αi ∈ R0(Xi|Di). This proves (2). The existence of
push-forward is already known as remarked above and the formula (prk′/k)∗ ◦ pr

∗
k′/k = [k′ : k]

is obvious from the definitions. �

7. The main results on the Chow groups of 0-cycles

In this section, we apply the technical results of the previous section to prove our main
theorem on the Chow groups of 0-cycles with modulus and the Chow group of 0-cycles on
singular varieties. We shall also derive our first set of applications. We shall derive a new
presentation of the Chow group of 0-cycles with modulus and prove our main comparison
theorem for the two Chow groups of 0-cycles for the double.

Theorem 7.1. Let k be a field and let X be a smooth quasi-projective scheme of dimension
d ≥ 1 over k with an effective Cartier divisor D ⊂ X.

Then, there are maps

(7.1) ∆∗ : CH0(X)→ CH0(SX); ι∗± : CH0(SX)→ CH0(X) and

p±,∗ : CH0(X|D)→ CH0(SX)

such that ι∗± ◦∆
∗ = Id on CH0(X).

If k is perfect, then there is also a map

(7.2) τ∗X : CH0(SX)→ CH0(X|D)

such that τ∗X ◦ p±,∗ = ± Id on CH0(X|D). Moreover, the sequences

(7.3) 0→ CH0(X|D)
p+,∗
−−→ CH0(SX)

ι∗−
−→ CH0(X)→ 0

and

(7.4) 0→ CH0(X)
∆∗

−−→ CH0(SX)
τ∗X−−→ CH0(X|D)→ 0

are split exact.

Proof. We can clearly assume that X is connected. All the maps (except (7.2)) involved in
the theorem are well defined thanks to the results of the previous sections. On the level of
cycles, we clearly have ι∗± ◦∆

∗ = Id on Z0(X,D) and τ∗X ◦ p±,∗ = ± Id on Z0(X|D). We are
only thus left with proving (7.2) when k is finite and the exactness of the two sequences in
general.

Note that the maps τ∗X : Z0(SX ,D) → Z0(X|D) ։ CH0(X|D) are defined over any field
and for any field extension k →֒ k′, the diagram

(7.5) Z0(SX ,D)
ι∗±

//

pr∗
k′/k

��

Z0(X|D)

pr∗
k′/k

��

Z0(SX′ ,D′)
ι∗±

// Z0(X
′|D′)

commutes, where X ′ = Xk′ . In particular, we have τ∗X′ ◦ pr∗k′/k = pr∗k′/k ◦ τ
∗
X .

We have to show that the composite map τ∗X : Z0(SX ,D) → CH0(X|D) kills the rational
equivalences, assuming k is finite. Let us therefore assume that ν : (C,Z) → (SX ,D) is a
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good curve and that f : C 99K P1
k is a rational function which is regular and invertible on a

neighborhood of Z. Let α = ν∗(div(f)). We need to show that τ∗X(α) = 0 in CH0(X|D).
We choose two distinct primes ℓ1 and ℓ2 different from char(k) and let ki denote the pro-ℓi

extension of k for i = 1, 2. Since each ki is a limit of finite separable extensions of the perfect
field k, the hypotheses of Propositions 6.1 and 6.2 are satisfied.

It follows from Proposition 6.1 that pr∗ki/k(α) ∈ R0(SXki
,Dki) for i = 1, 2. It follows from

the case of infinite perfect fields and (7.5) that τ∗Xki
(αki) = 0 for i = 1, 2. Equivalently,

pr∗ki/k ◦ τ
∗
X(α) = 0 for i = 1, 2. Using Proposition 6.2, we can find two finite extensions k′1 and

k′2 of k of relatively prime degrees such that pr∗k′i/k
◦ τ∗X(α) = 0 for i = 1, 2. We conclude by

applying Proposition 6.2 once again τ∗X(α) = 0 in CH0(X|D). This proves (7.2).
Now we prove the split exactness of the two sequences in the theorem. Since a cycle

Z0(X|D) does not meet D, it is clear that ι∗− ◦ p+,∗ = 0. Similarly, τ∗X ◦∆
∗ = 0 by definitions

of these maps and Lemma 3.20. Using the first part of the theorem, we only have to show
that both sequences are exact at their middle terms.

Let γ ∈ CH0(SX). We can write γ = α+ + β−, where α+ is a cycle supported on the
component ι+(X) and β− is a cycle supported on the component ι−(X). We see then that
γ = p+,∗(α− β) +∆∗(β), where α and β are the cycles α+ and β− seen in X \D (identifying
the two copies of X), so that every element in the kernel of ι∗− is clearly in the image of p+,∗.
We have therefore shown that the sequence (7.3) is split exact.

Next, suppose α ∈ CH0(SX) is such that τ∗X(α) = 0. Since (7.3) is split exact, as we just
showed, we can write α = p+,∗(α1) + ∆∗(α2). We then have

τ∗X(α) = 0
⇔ τ∗X ◦ p+,∗(α1) + τ∗X ◦∆

∗(α2) = 0
⇔ α1 + 0 = 0
⇔ α = ∆∗(α2).

We have therefore shown that the sequence (7.4) is split exact. �

7.1. A refinement of the definition of 0-cycles with modulus. As a consequence of
Theorem 7.1, we now give the following simplified presentation of the Chow group of 0-cycles
with modulus when the ground field is infinite and perfect.

Let X be a smooth quasi-projective scheme of dimension d ≥ 1 over an infinite perfect
field k and let D ⊂ X be an effective Cartier divisor. Let Rmod

0 (X|D) ⊂ Z0(X|D) be the
subgroup generated by divC(f), where C ⊂ X is an integral curve not contained in D and is
smooth along D and f ∈ Ker(O×

C,D → O
×
C∩D). Here, OC,D denotes the semi-local ring of C

at (C ∩D) ∪ {η} with η being the generic point of C. Set CHmod
0 (X|D) = Z0(X|D)

Rmod
0 (X|D)

. There

is an evident surjection CHmod
0 (X|D) ։ CH0(X|D).

Corollary 7.2. Let X be as above. Then the map CHmod
0 (X|D) ։ CH0(X|D) is an isomor-

phism.

Proof. Under the given assumption, we get maps

CHmod
0 (X|D)→ CH0(X|D)

p+,∗
−−→ CH0(SX)

τ∗X−−→ CH0(X|D).

The proofs of Propositions 5.7 and 5.8 show that τ∗X actually factors through the map

CH0(SX)→ CHmod
0 (X|D). We thus get maps

CHmod
0 (X|D)→ CH0(X|D)

p+,∗
−−→ CH0(SX)

τ∗X−−→ CHmod
0 (X|D),

whose composite is clearly the identity. In particular, the map CHmod
0 (X|D)→ CH0(X|D) is

injective. The corollary now follows. �
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7.2. The comparison theorem. Using the modified presentation of CH0(X|D) from Corol-
lary 7.2, we prove the following comparison theorem for the two Chow groups of the double.

Theorem 7.3. Let k be an infinite perfect field and let X be a smooth quasi-projective scheme
of dimension d ≥ 1 over k with an effective Cartier divisor D. Then the canonical map
CHLW0 (SX)→ CH0(SX) is an isomorphism.

Proof. In view of Lemma 3.12, we can assume d ≥ 2. Recall from § 5.7 that there are
two maps p±,∗ : Z0(X|D) ⇒ Z0(SX ,D). As the first step in the proof of the theorem,
we strengthen Proposition 5.9 by showing that these maps descend to group homomor-
phisms p±,∗ : CH0(X|D) → CHLW0 (SX). To show this, we can use Corollary 7.2 and replace

CH0(X|D) by CHmod
0 (X|D).

So let ν : C →֒ X be an integral curve not contained in D which is smooth along D and
let f ∈ Ker(O×

C,D → O
×
C∩D). Since C is smooth along D, the inclusion ν is l.c.i. along D.

Since C is reduced, it follows from Proposition 2.3 that SC := S(C,E) is reduced, where we
let E = ν∗(D). It follows from Proposition 2.4 that the double map ν ′ : SC →֒ SX is l.c.i.
along D. In other words, SC →֒ SX is a Cartier curve.

We now consider the rational function h = (h+, h−) := (f, 1) on SC . The modulus condition
satisfied by f on C guarantees that h is regular and invertible along E ⊂ SC . It is clear as
in Proposition 5.9 that the divisor of h trivializes p+,∗(ν∗div(f)). The argument for p−,∗ is

symmetric. We denote the maps CH0(X|D) → CHLW0 (SX) obtained as above by pLW±,∗ . It is

clear that the composite CH0(X|D)
pLW
±,∗
−−−→ CHLW0 (SX) ։ CH0(SX)

τ∗X−−→ CH0(X|D) are the
identity maps (up to a sign).

Recall from Lemma 3.20 that CH0(X) is the quotient of free abelian group on the closed
points of X \ D by the subgroup generated by div(f), where f is a rational function on an
integral curve C not contained in D and f is regular invertible along D. Using an easier
version of Lemma 5.5, one can now see that the rational equivalences for CH0(X) can be
defined by further restricting integral curves on X which are smooth along D. In particular,
they are l.c.i. on X along D. Using such curves, one can check from the proof of Theorem 4.1
that the map ∆∗ : CH0(X) → CH0(SX) can actually be lifted to the pull-back map ∆LW,∗ :
CH0(X)→ CHLW0 (SX).

We next consider the composite maps CHLW0 (SX) ։ CH0(SX)
ι∗±
−→ CH0(X), which we

denote by ιLW,∗± . It is then clear that ιLW,∗± ◦∆LW,∗ = Id on CH0(X). Now, the proof of (7.3)
works in verbatim to give a split exact sequence

0→ CH0(X|D)
pLW
+,∗
−−−→ CHLW0 (SX)

ιLW,∗
−
−−−→ CH0(X)→ 0.

We thus have a commutative diagram of split exact sequences

0 // CH0(X|D)
pLW
+,∗
// CHLW0 (SX)

ιLW,∗
−

//

can

��

CH0(X) // 0

0 // CH0(X|D)p+,∗

// CH0(SX)
ι∗−

// CH0(X) // 0.

We conclude from this that the map CHLW0 (SX)→ CH0(SX) is an isomorphism. �

8. Albanese with modulus over C

It is classically known that a smooth projective variety X over an algebraically closed field
has an abelian variety, called the Albanese variety Alb(X) of X, associated to it, which is
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Cartier dual to the Picard variety Pic0(X). The Albanese comes equipped with a (surjective)
Abel-Jacobi map from the Chow group CH0(X)deg 0 of zero cycles of degree zero on X, that
is universal among regular maps to abelian varieties. When X is a smooth projective curve
with an effective Cartier divisor D on it, a universal regular quotient for what we now call the
Chow group of zero cycles with modulus, CH0(X|D)deg 0, was already constructed by Serre in
[45] under the name of the generalized Jacobian variety. Serre showed that this generalized
Jacobian is a commutative algebraic group which is an extension of the Jacobian variety of
the curve by a linear algebraic group.

If X is now a smooth projective variety of arbitrary dimension over the field of complex
numbers C and D ⊂ X is an effective Cartier divisor such that Dred is a strict normal crossing
divisor, a universal regular quotient of CH0(X|D) was constructed in [5] as a relative inter-

mediate Jacobian J
dim(X)
X|D . However, not many properties of this universal regular quotient

are known and the techniques used in the construction are not known to generalize to cover
the general case.

In this paper, we use our doubling trick to give a direct and explicit construction of the
relative Albanese Alb(X|D) and show that it is the universal regular quotient of the Chow
group of 0-cycles with modulus. As a result of our construction, we are able to prove the
Roitman torsion theorem for the Chow group of 0-cycles with modulus. In this section, we
use the modified Deligne cohomology of Levine [31] to construct the universal regular quotient
when the base field is C. By Theorem 3.17, we can identify the Levine-Weibel Chow group
of zero cycles with our modified definition 3.3.

8.1. Relative Deligne cohomology. Let X be a smooth projective connected scheme over
C. Let D be any effective Cartier divisor on it. As before, we write SX for the double
construction applied to the pair (X,D). We shall frequently refer to the following square:

(8.1) D � � j
//

� _

j
��

X� _

i−
��

X � �

i+
// SX .

Let r ≥ 1 be an integer. Following Levine [31], we denote by Z(r)D
∗

SX
(resp. Z(r)D

∗

D ) the

modified Deligne-Beilinson complex on SX (resp. on D). Since SX is projective, both are
given by the “naive” Deligne complexes

Z(r)D
∗

SX
= Z(r)SX

→ OSX

d
−→ Ω1

SX
→ . . .→ Ωr−1

SX

Z(r)D
∗

D = Z(r)D → OD
d
−→ Ω1

D → . . .→ Ωr−1
D

on (SX)an (resp. on Dan), the analytic space associated to SX (resp. to D).
We can consider the complex Z(r)D

∗

X on X as well. Since X is smooth and projective,

we have by definition Z(r)D
∗

X = Z(r)DX , where Z(r)DX is the classical Deligne complex. Let
i± : X →֒ SX be the inclusions of the two components in the double SX and let ∆: SX → X be
the natural projection. We denote by π : X∐X → SX the map (i+, i−) from the normalization.
Finally, we let j : D →֒ X denote the inclusion of D in X. Recall from Proposition 2.3(8) that
D is a conducting subscheme for π.

We define the following objects in the bounded derived category of complexes of sheaves of
abelian groups on (SX)an (resp. on Xan):

Z(r)D
∗

X|D = Cone(Z(r)D
∗

SX

i∗−
−→ Ri−,∗Z(r)

D
X)[−1]

Z(r)D
∗

(X,D) = Cone(Z(r)DX
j∗
−→ Rj∗Z(r)

D∗

D )[−1].
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We define the complexes Z(r)X|D and Z(r)(X,D) in a similar fashion.
Note that the maps are all finite, so that the derived functors Ri−,∗ and Rj∗ are superfluous.

Since all the maps over which we are taking the cones are actually surjective as maps of
complexes, the cones can be computed directly as kernels in the category of complexes of
sheaves on SX . We have the following commutative diagram relating them

(8.2) 0→ Z(r)D
∗

X|D
//

ΦX,D

��

Z(r)D
∗

SX

i∗−
//

i∗+
��

Z(r)DX → 0

j∗

��

0→ Z(r)D
∗

(X,D)
// Z(r)DX

j∗
// Z(r)D

∗

D → 0.

8.2. Construction of the Albanese varieties. Let r = d = dim(X). In order to simplify

the notation, we denote by SX
π
−→ SX the normalization of SX , i.e., the disjoint union of two

copies of X. This gives an induced map πD : D = D ∐ D → D. We shall use the relative
complexes Z(d)D

∗

X|D and Z(d)D
∗

(X,D) to define in the usual way two natural receptors for the

group of algebraic cycles with modulus that are homologically trivial. Coherently with the
excision Theorem 7.1 in the projective case over the complex numbers, we will show that the
two, a priori different constructions, give rise to the same invariant naturally attached to the
pair (X,D), that we call the Albanese variety with modulus.

8.2.1. The Albanese with modulus. By construction, the map ∆: SX → X satisfies ∆ ◦ i± =
IdX, and therefore induces a splitting of the restriction maps i∗± from the cohomology of SX
to the cohomology of X. This gives the commutative diagram of the analytic cohomology
groups

0→ H2d(SX ,Z(d)
D∗

X|D)
//

ǫX|D

��

H2d(SX ,Z(d)
D∗

SX
)

ǫSX

��

i∗−
// H2d(X,Z(d)DX )→ 0

ǫX

��

∆∗
oo

0→ H2d(SX ,Z(d)X|D) // H2d(SX ,Z(d)SX
)

i∗−
// H2d(X,Z(d)X )→ 0,

∆∗
oo

where the vertical maps are induced by the natural projections Z(d)D∗ → Z(d).
SinceX is smooth projective and connected, we haveH2d(X,Z(d)X ) = Z andH2d(SX ,Z(d)SX

)

= Z⊕Z, one copy for each component of SX . In particular, the restriction map i∗− sends (0, 1)

to 1 and we can identify H2d(SX ,Z(d)X|D) with the other copy of Z. Under this identification,

we denote by Ad(X|D) the kernel of the natural map

0→ Ad(X|D)→ H2d(SX ,Z(d)
D∗

X|D)
ǫX|D
−−−→ Z

and call it the Albanese variety of X with modulus D.
By construction, we have an isomorphism

Ad(X|D) = H2d−1(SX ,Ω
<d
(SX ,X−))/H

2d−1(SX ,Z(d)X|D),

where Ω<d(SX ,X−) denotes Cone(Ω<dSX

i∗−
−→ Ω<dX )[−1]. Following [9], we define the generalized

Albanese variety of SX , denoted A
d(SX), as the kernel of the map

H2d(SX ,Z(d)
D∗

SX
) ։ H2d(SX ,Z(d)SX

).
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This gives a split short exact sequence

(8.3) 0→ Ad(X|D)
p+,∗
−−→ Ad(SX)

i∗−
// Ad(X)→ 0,

∆∗
oo

whereAd(X) = Alb(X) is the usual Albanese variety ofX, namely, H2d−1(X,Ω<dX )/H2d−1(X,Z(d)X ).

Write Jd(SX) for the quotient

Jd(SX) =
H2d−1(SX ,C(d))

F 0H2d−1(SX ,C(d)) + imageH2d−1(SX ,Z(d))
.

It is a semi-abelian variety by a result of Deligne. By [9, Lemma 3.1], there is a natural
surjection

ψ : Ad(SX)→ Jd(SX)

whose kernel is a C-vector space. Moreover, there is a unique structure of algebraic group on
Ad(SX) making ψ a morphism of algebraic groups, with unipotent kernel.

Notice that there is a short exact sequence

(8.4) 0→ G→ Ad(SX)
π∗

−→ Ad(X)×Ad(X)→ 0

where G is simply defined as the kernel of the map π∗, that is surjective since H2d(SX ,Z(d)) ≃
H2d(SX ,Z(d)) and H2d−1(SX ,Ω

<d
SX

) ։ H2d−1(SX ,Ω
<d
SX

) because of GAGA and the fact that π

is finite and birational. A combination of (8.3) and (8.4) gives then the short exact sequence

(8.5) 0→ G→ Ad(X|D)
φ
−→ Ad(X)→ 0,

where the (surjective) forgetful map φ is same as the map i∗+ ◦ p+,∗ : A
d(X|D)→ Ad(X).

8.2.2. The relative Albanese. Taking cohomology of the bottom exact sequence in (8.2), we
get exact sequence

H2d−1(D,Z(d)D
∗

D )→ H2d(X,Z(d)D
∗

(X,D))→ H2d(X,Z(d)DX )→ 0,

where the term H2d(D,Z(d)D
∗

D ) = 0 for dimension reasons.

We denote by Ad(X,D) the kernel of the natural map

H2d(X,Z(d)D
∗

(X,D))→ H2d(X,Z(d)(X,D)) ≃ H
2d(X,Z(d)X ) = Z,

and call it the relative Albanese variety of the pair (X,D). It fits in a short exact sequence

0→
H2d−1(D,Z(d)D

∗

D )

H2d−1(X,Z(d)DX )
→ Ad(X,D)→ Ad(X)→ 0

The vertical maps in (8.2) induce then the following diagram

(8.6) 0 // Ad(X|D)
p+,∗

//

φd
X|D

��

ϕ

$$ $$❏
❏❏

❏❏
❏❏

❏❏
❏❏

Ad(SX)

i∗+
��

i∗−
// Ad(X)→ 0

��

0→
H2d−1(D,Z(d)D

∗

D )

H2d−1(X,Z(d)DX )
// Ad(X,D) // Ad(X) // 0.

Proposition 8.1. Let X be a smooth projective C-scheme of dimension d ≥ 1. Then the
natural map φdX|D : Ad(X|D)→ Ad(X,D) of (8.6) is an isomorphism.
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Proof. If d = 1, it follows from [33, Proposition 1.4] and Proposition 12.2 that A1(X|D) ≃
Pic(X,D). On the other hand, we have

A1(X,D) = H2(X,Z(2)D
∗

(X,D)) ≃ H
1(X, (1 + ID)

×),

where ID is the ideal sheaf ofD ⊂ X. It follows from [48, Lemma 2.1] that H1(X, (1+ID)
×) ≃

Pic(X,D) and the proposition follows. We can thus assume that d ≥ 2.
We can assume that X is connected. Since the singular cohomology satisfies the Mayer-

Vietoris property with respect to the square (8.1), we are left to show that

(8.7) H2d−1(SX ,Ω
<d
(SX ,X−))

i∗+
−→ H2d−1(X,Ω<d(X,D))

is bijective. Here, Ω<d(X,D) = Cone(Ω<dX → Ω<dD )[−1] and the morphism between the cohomol-

ogy groups is induced by the restriction along i+ : X →֒ SX .
Using GAGA, it is equivalent to prove the bijectivity for the cohomology of the asso-

ciated Zariski sheaves of differential forms. It is easy to check from (2.6) that i∗∗ induces

an isomorphism IX−

≃
−→ ID, where ID is the ideal sheaf for D ⊂ X+. Furthermore,

(SX \ D) = (X− \ D) ∐ (X+ \ D). This information can be used to get a commutative
diagram of exact sequences

(8.8) 0 // Ω
[1,d−1]
(SX ,X−)[−1]

//

i∗+
��

Ω<d(SX ,X−)
//

i∗+

��

IX−
//

≃

��

0

0 // Ω
[1,d−1]
(X,D) [−1]

// Ω<d(X,D)
// ID // 0.

We therefore have to prove that the map of Zariski cohomology groups

(8.9) H2d−2(SX ,Ω
[1,d−1]
(SX ,X−))

i∗+
−→ H2d−2(X,Ω

[1,d−1]
(X,D) )

is bijective.
We start by proving surjectivity. Letting F1[−1] and F2[−1] denote the kernel and the

cokernel of the left vertical arrow in (8.8), respectively, we have an exact sequence

(8.10) 0→ F1 → Ω
[1,d−1]
(SX ,X−)

i∗+
−→ Ω

[1,d−1]
(X,D) → F2 → 0.

Setting G = Ω
[1,d−1]
(SX ,X−)/F1, we obtain a diagram of exact sequences

H2d−2(F1) // H2d−2(SX ,Ω
[1,d−1]
(SX ,X

−
))

// H2d−2(G) // H2d−1(F1)

H2d−3(F2) // H2d−2(G) // H2d−2(X,Ω
[1,d−1]
(X,D) )

// H2d−2(F2).

Since d ≥ 2 and Fi are complexes of coherent sheaves supported on D, a standard spectral
sequence argument shows that H2d−2+j(Fi) = 0 for i = 1, 2 and j ≥ 0. Analyzing the
spectral sequence computing the cohomology groupH2d−3(F2), we see that thanks to the same

dimension argument used above, the only surviving term is given by Hd−1(Ωd−1
(X,D)/Ω

d−1
(SX ,X−)).

We thus get an exact sequence

(8.11) 0→
Hd−1(Ωd−1

(X,D)/Ω
d−1
(SX ,X−))

H2d−3(X,Ω
[1,d−1]
(X,D) )

→ H2d−2(SX ,Ω
[1,d−1]
(SX ,X−))

i∗+
−→ H2d−2(X,Ω

[1,d−1]
(X,D) )→ 0
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and this proves the surjectivity of i∗+.
We now prove injectivity. Write Dsing for |D|sing. Let U = X \Dsing →֒ X and write DU

for the restriction of D to U . We note that (DU )red is a smooth (possibly non connected)

divisor on U . We claim that the restriction to U of the sheaf F3 = Ωd−1
(X,D)/Ω

d−1
(SX ,X−) is zero.

Note that since F3 is anyway supported on D, our claim actually implies that F3 is supported
on Y = Dsing. Since dim(Y ) ≤ d − 2, this will give the desired vanishing of the cohomology

group Hd−1(Ωd−1
(X,D)/Ω

d−1
(SX ,X−)). Since the first term of the sequence (8.11) is a quotient of

Hd−1(Ωd−1
(X,D)/Ω

d−1
(SX ,X−)), this will complete the proof of the proposition.

We now prove the claim. Since all the components of (DU )red are regular and disjoint,
we can assume that at a point y of U , a local equation for DU is given by xn, where
(x, x1, . . . , xd−1) is a regular system of parameters in A = OX,y. Write A′ = A/(xn),

B = A/(x) and let R be the double construction applied to the pair (A, (xn)). Write Ωd−1
(R,A−)

for the kernel of the second projection i∗− : Ωd−1
R/C ։ Ωd−1

A/C and write Ωd−1
(A,A′) for the kernel of

the restriction map j∗ : Ωd−1
A/C ։ Ωd−1

A′/C. The claim is equivalent to showing that the induced
map

(8.12) i∗+ : Ωd−1
(R,A−)

→ Ωd−1
(A,A′)

is surjective.
Since A is a regular local ring of dimension d, B is a regular local ring of dimension d−1 and

the infinitesimal lifting property (see [16, Proposition 4.4]) gives a splitting of the projection
A′ → B. Since the relative embedding dimension of A′ in A is 1, this gives an isomorphism
A′ ≃ B[x]/(xn). We can then compute the following modules

Ω1
A′/C = (Ω1

B/C ⊗B A
′)⊕ (

n−2⊕

j=0

Bxjdx) as B-module;

Ωd−1
A′/C = (Ωd−2

B/C ⊗B A/(x
n−1)dx)⊕ (Ωd−1

B/C ⊗B A
′)

=
d−1⊕
i=1

A/(xn−1)dx ∧ dx1 ∧ . . . ∧
∨
dxi ∧ . . . ∧ dxd−1 ⊕A

′dx1 ∧ . . . ∧ dxd−1;

Ωd−1
A/C =

d−1⊕

i=1

(Adx ∧ dx1 ∧ . . . ∧
∨
dxi ∧ . . . ∧ dxd−1)⊕Adx1 ∧ . . . ∧ dxd−1.

One can easily check from the above expressions that Ωd−1
(A,A′) is generated by the forms

xndx1 ∧ . . . ∧ dxd−1 and (xn−1dx ∧ dx1 ∧ . . . ∧
∨
dxi ∧ . . . ∧ dxd−1)

d−1
i=1 as A-module.

We now consider the diagram

0→ Ωd−1
(R,A−)

i∗+
��

// Ωd−1
R/C

i∗+
��

i∗−
// Ωd−1

A/C → 0

��

0→ Ωd−1
(A,A′)

// Ωd−1
A/C

// Ωd−1
A′/C → 0.

We can lift (up to multiplication by elements in C×) the generators xndx1 ∧ . . . ∧ dxd−1

and (xn−1dx ∧ dx1 ∧ . . . ∧
∨
dxi ∧ . . . ∧ dxd−1)

d−1
i=1 of Ωd−1

(A,A′) via the projection i∗+ to elements

(xn, 0)d(x1, x1) ∧ . . . ∧ d(xd−1, xd−1),

(d(xn, 0) ∧ d(x1, x1) ∧ . . . ∧
∨

d(xi, xi) ∧ . . . ∧ d(xd−1, xd−1))
d−1
i=1 in Ωd−1

R/C
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and we immediately see that they go to zero via the second projection i∗−, so that they lift

to elements in Ωd−1
(R,A−), proving that (8.12) is surjective and therefore completing the proof of

the proposition. �

As a consequence of Proposition 8.1, (8.4) and (8.5), it follows that Ad(X|D) is an extension

of the abelian variety Ad(X) by the linear group G =
H2d−1(D,Z(d)D

∗

D )

H2d−1(X,Z(d)DX )
.

Remark 8.2. If X is a surface, then one checks that Z(2)D
∗

(X,D) is quasi-isomorphic to the

complex j!(Z)→ ID → Ω1
(X,D) (see [31, § 4]), where j : X\D →֒ X is the open inclusion. When

Dred is a strict normal crossing divisor, the complex j!(Z) → ID → Ω1
(X,D) is used in [5] to

construct a universal regular quotient of CH0(X|D)deg 0. One consequence of Proposition 8.1
is that it provides a cohomological proof that the Albanese variety with modulus of § 8.2.1
coincides with the one constructed in [5] whenX is a surface andDred is strict normal crossing.
The universality Theorem 10.3 will tell us, more generally, that the two constructions agree
in higher dimension as well, whenever Dred is strict normal crossing divisor.

9. An interlude on regular homomorphisms

Let k be an algebraically closed field and let Y be a projective reduced scheme over k.
Let CHLW0 (Y ) = CHLW0 (Y, Ysing) and CH0(Y ) = CH0(Y, Ysing) be the groups of zero-cycles
associated to Y . Let U be a dense open subscheme of Yreg and choose a base point xi in every
irreducible component Ui of U . The following Definition is taken from [9].

Definition 9.1. Let G be smooth commutative algebraic group over k. We say that a group
homomorphism ρ′ : CHLW0 (Y )deg 0 → G of abstract groups is a regular homomorphism if the
map π : U → G with π|Ui

(x) = ρ′([x] − [xi]) is a morphism of schemes (i.e., there exists a
morphism of schemes whose restriction to closed points coincides with π).

The same definition allow us to talk about regular homomorphisms from the Chow group
CH0(Y )deg 0 instead.

Remark 9.2. In [9, Definition 1.14], there are other equivalent definitions of regular map
from the Levine-Weibel Chow group of 0-cycles on a singular projective variety to a smooth
commutative algebraic group. We will not need this explicitly, but we recall one of them for
the reader who wishes to remove a reference to the base points.

Let U be an open dense in Yreg. Let U1, . . . , Us be the irreducible components of U . Consider
the map

γ(−) : ΠU =
s⋃

i=1

Ui × Ui → CHLW0 (Y )deg 0

defined by γ(−)(u, u′) = [u]− [u′]. We have then:

Proposition 9.3 (Corollary 1.13, [9]). Let G be a smooth commutative algebraic group. Let
ρ′ : CHLW0 (Y )deg 0 → G be a group homomorphism. Then the following conditions are equiv-
alent.

i) The composition ρ′ ◦ γ(−) : ΠYreg → G is a morphism of scheme.
ii) The morphism ρ′ is regular in the sense of Definition 9.1.

As above, the expression “the map φ is a morphism of schemes”, stands for “there exists a
morphisms of schemes whose restriction to closed points coincides with φ”.
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9.1. The case of the double. Let X be now a smooth connected projective k-variety,
equipped with an effective Cartier divisorD and letX+ andX− denote as above the irreducible
components of the double SX of X along D. Given any dense open subset V ⊂ (SX)reg, we
denote by V+ and V− the intersection of V with Xo

+ and Xo
− respectively. We adapt the

definition of regular homomorphism recalled above to the particular geometry of the double
SX .

Definition 9.4. Let G be a smooth commutative algebraic group over k. A homomorphism

ρ′ : CH0(SX)deg 0 → G

is called a regular homomorphism if given base points x0,± on each irreducible components
V± of some open dense subscheme V of (SX)reg, the composition of ρ′ with the map

πVx0,± : V → CH0(SX)deg 0, x 7→ [x]− [x0,θ(x)],

where θ(x) = ± according to x ∈ V±, is a morphism of schemes. In a similar fashion, one can
define the notion of regular homomorphism using the Levine-Weibel Chow group of 0-cycles
on the double SX .

It follows from [9, Lemma 1.4] that the image of a regular homomorphism is a connected
algebraic closed subgroup of G. The initial object (whose underlying map is necessarily
surjective) in the category of regular maps CH0(SX)deg 0 → G is called the universal reg-
ular quotient of CH0(SX)deg 0. It was shown in [9] that the universal regular quotient of

CHLW (Y )deg 0 always exists for any projective variety Y over k. We state this theorem below
for SX .

Theorem 9.5. ([9, Theorem 1]) There exists a smooth connected algebraic group Alb(SX),
together with a regular surjective homomorphism ρSX

: CHLW0 (SX)deg 0 → Alb(SX) such that

ρSX
is universal among regular homomorphisms from CHLW0 (SX)deg 0 to smooth commutative

algebraic groups. When k = C, then Alb(SX) coincides with the Albanese variety Ad(SX)
introduced in (8.3).

9.2. The universal semi-abelian quotient of CH0(Y )deg 0. Let Y be a reduced projective
scheme of dimension d ≥ 1 over an algebraically closed field k. Let us assume the char-
acteristic of k to be positive in this subsection. In this case, do not know if the canonical
map CHLW0 (Y ) → CH0(Y ) is an isomorphism. A weaker question is if the Albanese map
ρY : CHLW0 (Y )deg 0 → Alb(Y ) factors through CH0(Y )deg 0. We expect this to be true, but we
do not yet know how to verify this either. The reason for this is that, one does not know any
description of the Albanese variety in positive characteristic except its existence. We however
show in this section that the semi-abelian Albanese variety of Y indeed has this property. We
shall use this to prove a comparison result for the two Chow groups in positive characteristic.

The following description of the semi-abelian Albanese variety of Y is recalled from [34,
§ 2]. Let π : Y N → Y denote the normalization map. Let Cl(Y N ) and PicW (Y N ) denote
the class group and the Weil Picard group of Y N . Recall (see e.g. [50]) that PicW (Y N ) is
the subgroup of Cl(Y N ) consisting of Weil divisors which are algebraically equivalent to zero
in the sense of [12, Chap. 19]. Let Div(Y ) denote the free abelian group of Weil divisors
on Y . Let Λ1(Y ) denote the subgroup of Div(Y N ) generated by the Weil divisors which are

supported on π−1(Ysing). This gives us a map ιY : Λ1(Y )→ Cl(Y N )
PicW (Y N )

.

Let Λ(Y ) denote the kernel of the canonical map

(9.1) Λ1(Y )
(ιY ,π∗)
−−−−→

Cl(Y N )

PicW (Y N )
⊕Div(Y ).
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The semi-abelian Albanese variety of Y is the Cartier dual of the 1-motive

[Λ(Y )→ PicW (Y N )]

and is denoted by Jd(Y ). It follows from [34, § 4] that Jd(Y ) is the universal semi-abelian quo-
tient of the Esnault-Srinivas-Viehweg Albanese variety Alb(Y ). Let ρsemi

Y : CHLW0 (Y )deg 0 ։

Jd(Y ) denote the universal regular homomorphism.

Lemma 9.6. Let f : Z → Y be a smooth projective morphism of relative dimension r. Then
there is a push-forward map f semi

∗ : Jd+r(Z)→ Jd(Y ) and a commutative diagram

(9.2) Z0(Z,Zsing)

ρsemi
Z

��

f∗
// Z0(Y, Ysing)

ρsemi
Y

��

Jd+r(Z)
f∗

// Jd(Y ).

Proof. Since f is smooth and projective, it follows that fN : ZN → Y N is also smooth and
projective. It is clear that the flat pull-back fN,∗ takes integral Weil divisors to integral Weil
divisors. It is also clear that this map preserves Weil divisors which are algebraically equivalent
to zero. Since Zsing = f−1(Ysing), we see that fN,∗(Λ1(Y )) ⊂ Λ1(Z). Furthermore, it follows
from [12, Proposition 1.7] that fN,∗(Ker(Λ1(Y ) → Div(Y)) ⊂ Ker(Λ1(Z) → Div(Z)). We
conclude that f∗ induces a morphism of 1-motives f∗ : [Λ(Y ) → PicW (Y N )] → [Λ(Z) →
PicW (ZN )] and hence a map f∗ : J

d+r(Z)→ Jd(Y ).
To show the commutative diagram (9.2), we need to observe that Jd(Y ) is a quotient of

the Cartier dual JdSerre(Y ) of the 1-motive [Λ1(Y ) → PicW (Y N )] and this dual semi-abelian
variety is the universal object in the category of morphisms from Yreg to semi-abelian varieties

(see [44]). Since Zreg = f−1(Yreg), it follows from this universality of JdSerre(Y ) that there is a

commutative diagram as in (9.2) if we replace Jd(Y ) by JdSerre(Y ). The commutative diagram

Jd+rSerre(Z)
f∗

//

����

JdSerre(Y )

����

Jd+r(Z)
f∗

// Jd(Y )

now finishes the proof. �

Proposition 9.7. The semi-abelian variety Jd(Y ) is the universal regular semi-abelian variety
quotient of CH0(Y )deg 0.

Proof. Let S denote the singular locus of Y . It is enough to show that ρsemi
Y : CHLW0 (Y )deg 0 ։

Jd(Y ) factors through the canonical map CHLW0 (Y )deg 0 ։ CH0(Y )deg 0. Let then ν : C → Y

be a finite l.c.i map from a good curve C relative to S ⊂ Y and let f ∈ O×
C,E for E =

Csing ∪ ν
−1(S).

As in Lemma 5.2, we factor ν as composition ν = π ◦µ, where µ : C →֒ PNY is a regular em-
bedding and π : PNY → Y is the projection. By Lemma 9.6, we have the commutative diagram

Z0(P
N
Y ,P

N
S )deg 0

π∗
//

ρ̃semi

PN
Y

��

Z0(Y, S)deg 0

ρ̃semi
Y

��

Jd+N (PNY ) π∗
// Jd(Y )
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where ρ̃semi denotes on both vertical sides of the diagram the composition of the universal map
ρsemi with the canonical map Z0(−)deg 0 → CHLW0 (−)deg 0. Since ρ̃semi

PN
Y

(µ∗((div)C(f))) = 0 in

Jd+N (PNY ), the result follows. �

Using Proposition 9.7 and Theorem 11.1, we obtain the following comparison between the
torsion parts of the Levine-Weibel Chow group and our modified definition.

Theorem 9.8. Let Y be an equidimensional reduced projective scheme of dimension d ≥ 1
over an algebraically closed field k of exponential characteristic p. Then the canonical map

CHLW0 (Y ){l}
≃
−→ CH0(Y ){l} between the l-primary torsion subgroups, is an isomorphism for

every prime l 6= p.

Proof. Let L denote the kernel of the canonical surjective map CHLW0 (Y ) ։ CH0(Y ). We
first show that L is a p-primary group of bounded exponent. It follows from Proposition 9.7
that the semi-Albanese map ρsemi

Y from CHLW0 (Y )deg 0 to Jd(Y ) factors through CH0(Y )deg 0.

Since ρsemi
Y is an isomorphism on n-torsion subgroups for n prime to p by Theorem 11.1,

we immediately deduce that L (which is same as Ker(CHLW0 (Y )deg 0 → CH0(Y )deg 0) is a
p-torsion group. We now show that L has a bounded exponent.

We first note from Lemma 3.13 that there is a factorization

CHLW0 (Y )
can
−−→ CH0(Y )

cycY−−−→ K0(Y )

of the cycle class map cycLWY from the Levine-Weibel Chow group to K0(Y ). On the other
hand, it follows from [29, Corollary 5.4] (see also [30, Corollary 2.7]) that the kernel of the
map cycLWY is a group of exponent Nd := (d− 1)!. We conclude that Nd · L = 0.

We write Nd = paq, where a ≥ 0 and p ∤ q. We fix a cycle α ∈ L. Since L is a p-primary
group, we can write pnα = 0 for some n ≫ a. We then have an identity xq + ypn−a = 1 for
some x, y ∈ Z. This yields

paα = (xq + ypn−a)paα = (xqpa + ypn)α = xNdα+ ypnα = 0.

Since a ∈ Z depends only on Nd and not on α, we get pa · L = 0.
It is easy to see using 5-lemma that for every prime l 6= p, there is an exact sequence

0→ L{l} → CHLW0 (Y ){l} → CH0(Y ){l} → L⊗Z Ql/Zl.

Since L is a p-primary group of bounded exponent and Ql/Zl is p-divisible, we must have

L{l} = 0 = L⊗Z Ql/Zl. In particular, CHLW0 (Y ){l}
≃
−→ CH0(Y ){l} �

Corollary 9.9. Let k be an algebraically closed field of exponential characteristic p. Let Y be
an equidimensional reduced projective scheme of dimension d ≤ p. Then the canonical map
CHLW0 (Y )→ CH0(Y ) is an isomorphism.

9.3. Regular homomorphism from Chow group with modulus. We now turn to the
definition of a regular morphism for the Chow group of 0-cycles with modulus. Let (X,D) be
as in 9.1. We write Xo for the open complement of D in X.

Definition 9.10. We fix a closed point x0 ∈ X
o. For U ⊂ Xo open with x0 ∈ U , we define

the map of sets

πUx0 : U → CH0(X|D)deg 0, x 7→ [x]− [x0],

where [x] and [x0] denote the classes of x and x0 respectively in CH0(X|D). For a commutative
algebraic group G over k, we say that a homomorphism of abelian groups

ρ : CH0(X|D)deg 0 → G

is regular if there exists an open subset U of Xo and a closed point x0 ∈ U such that
ρ ◦ πUx0 : U → G is a morphism of algebraic varieties.
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10. The Abel-Jacobi map with modulus and its universality

Let X be a smooth projective scheme of dimension d ≥ 1 over C and let D ⊂ X be an
effective Cartier divisor. In this section, we show that Ad(X|D) constructed in § 8.2.1 has a
natural structure of a connected commutative algebraic group and it is the universal regular
quotient of CH0(X|D)deg 0 via an Abel-Jacobi map. Since we are working over C, we keep

identifying CHLW0 (Z) with CH0(Z) in this section (using Theorem 3.17) for any projective
scheme Z.

10.1. The Abel-Jacobi map. Let (X,D) be as above. We write again Xo for the open
complement of D in X and SX for the double construction applied to the pair (X,D). Recall
from [10] (see also [9, Lemma 2.1]) that given x ∈ (SX)reg = Xo ∐ Xo, there is a unique

element [x] ∈ H2d
{x}(SX ,Z(d)

D∗

SX
) mapping to the topological cycle class of x in H2d

{x}(SX ,Z(d))

as well as to the de Rham cycle class of x in H2d
{x}(SX ,Ω

≥d
SX

). Using the canonical forget

support map H2d
{x}(SX ,Z(d)

D∗

SX
) → H2d(SX ,Z(d)

D∗

SX
) and extending linearly, this gives rise to

a well defined map

cycDSX
: Z0(SX ,D)→ H2d(SX ,Z(d)

D∗

SX
)

that composed with H2d(SX ,Z(d)
D∗

SX
)→ H2d(SX ,Z(d)SX

) = Z⊕ Z coincides with the degree
map. The same construction on X gives rise to the diagram

(10.1) Z0(SX ,D)
i∗−

//

cycDSX
��

Z0(X,D) ⊂ Z0(X)

cycDX
��

H2d(SX ,Z(d)
D∗

SX
)

i∗−
// H2d(X,Z(d)DX )

whose commutativity is easily checked. We also note that cycD commutes with the map

∆∗ : Z0(X,D)→ Z0(SX ,D).

By [9, Lemma 2.6], the cycle class map cycDSX
factors through the Chow group CH0(SX) and

therefore determines a homomorphism

ρSX
: CH0(SX)deg 0 → Ad(SX),

where CH0(SX)deg 0 denotes the kernel of the degree map deg : CH0(SX) ։ Z⊕Z, that is the
generalized Abel-Jacobi map of [9]. Since the cycle class map to Deligne cohomology anyway
factors through the usual Chow group of 0-cycles for smooth projective varieties (see [10]),
we have then the following commutative diagram, with split exact rows

(10.2) 0→ CH0(X|D)deg 0
p+,∗

//

ρX|D

��

CH0(SX)deg 0

ρSX

��

i∗−
// CH0(X)deg 0 → 0

ρX
��

∆∗
oo

0→ Ad(X|D)
p+,∗

// Ad(SX)
i∗−

// Ad(X)→ 0,
∆∗

oo

where ρX : CH0(X)deg 0 → Ad(X) is the usual Abel-Jacobi map and

ρX|D : CH0(X|D)deg 0 → Ad(X|D)

is the induced map on the kernels. Note that thanks to the existence of the splitting ∆∗ of i∗−
and its compatibility with the degree maps, the exactness of the first row follows immediately
from our main Theorem 7.1. We shall call ρX|D the Abel-Jacobi map with modulus.
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10.2. Regularity of ρX|D. We now fix base points x0,± = x0 on each irreducible components
of (SX)reg and consider the diagram

(10.3) Xo
+ ∐X

o
−

π
(SX)reg
x0,±

//

ψ

��

CH0(SX)deg 0

i∗−
��

// // Ad(SX)

ĩ∗−
��
✤
✤
✤

Xo
πXo
x0

// CH0(X)deg 0
// // Ad(X),

where ψ|X− = IdX and ψ|X+ = x0 so that the left square commutes.
ψ is a morphism of schemes and the composite map on the bottom is a regular morphism

of schemes. It follows that the composite map

Xo
+ ∐X

o
− → CH0(SX)deg 0 → CH0(X)deg 0 → Ad(X)

is a morphism of schemes. It follows from the universal property of Ad(SX) that there is a

unique regular homomorphism of algebraic groups ĩ∗− : Ad(SX) → Ad(X) such that the right
square commutes.

On the other hand, the right square in (10.2) also commutes. Since CH0(SX)deg 0 → Ad(SX)

is surjective, it follows that ĩ∗− = i∗−. We conclude that the map i∗− on the bottom row of (10.2)

is a regular homomorphism of connected commutative algebraic groups. Since Ad(X|D) is
the inverse image of the identity element under this homomorphism, it follows that Ad(X|D)
is a commutative algebraic group. We have thus shown that Ad(SX) is an extension of the
abelian variety Ad(X) by the connected commutative algebraic group Ad(X|D).

Lemma 10.1. The group homomorphism ρX|D : CH0(X|D)deg 0 → Ad(X|D) is regular and

surjective, making Ad(X|D) a regular quotient of CH0(X|D)deg 0.

Proof. The surjectivity of the generalized Abel-Jacobi map ρX|D is a consequence of the
definition. Indeed, ρSX

is surjective by Theorem 9.5 while ρX is classically known to be
surjective. The surjectivity of ρX|D follows then from the existence of the splitting

∆∗ : CH0(X)deg 0 → CH0(SX)deg 0

that makes the induced map Ker(ρSX
)→ Ker(ρX) surjective (see (10.2)).

For the regularity, let V be an open dense subset of (SX)reg such that ρSX
◦ πVx0 is regular.

By Theorem 9.5, such V exists. Up to shrinking V further, we can assume that V is of the
form U ∐ U , for U ⊂ Xo open (dense) subset of X disjoint from D. Let iU,+ denote the
inclusion U → U ∐ U of the first component. Then we clearly have

ρSX
◦ p+,∗ ◦ π

U
x0 = ρSX

◦ πU∐U
x0,± ◦ iU,+

so that the composition U → CH0(X|D)deg 0 → Ad(X|D) →֒ Ad(SX) is a morphism of

schemes. Since Ad(X|D) →֒ Ad(SX) is a closed immersion, we get the claim. �

10.3. Universality of ρX|D. Our next goal is to prove that the Abel-Jacobi map with mod-

ulus ρX|D : CH0(X|D)deg 0 → Ad(X|D) makes Ad(X|D) the universal regular quotient of
CH0(X|D)deg 0.

Lemma 10.2. The homomorphism ∆∗ : Ad(X)→ Ad(SX) of (10.2) is a morphism of schemes.

Proof. We have seen in the proof of Lemma 10.1 that there is a dense open subset U ⊂ Xo and

a closed point x0 = x0,± ∈ U such that the composition U∐U
πU∐U
x0,±−−−→ CH0(SX)deg 0 → Ad(SX)

is a morphism of schemes. Let iU,± : U →֒ U ∐ U denote the inclusions into the first and the
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second component, respectively. Again from the proof of Lemma 10.1, we have that the maps
ρSX
◦ πU∐U

x0,± ◦ iU,± are both morphisms of schemes. In particular, the composition

(10.4) θU : U
ψ
−→ Ad(SX)×A

d(SX)
+
−→ Ad(SX)

is also a morphism of schemes, where ψ = (ρSX
◦ πU∐U

x0,± ◦ iU,+, ρSX
◦ πU∐U

x0,± ◦ iU,−) and the
second arrow in (10.4) is the addition.

We now consider a diagram

(10.5) U
πU
x0
// CH0(X)deg 0

ρX
//

∆∗

��

Ad(X)

��
✤
✤
✤

U // CH0(SX)deg 0 ρSX

// Ad(SX),

where the first arrow on the bottom is (πU∐U
x0,± ◦ iU,+) + (πU∐U

x0,± ◦ iU,−). It is clear from the
definition of ∆∗ in the middle that the left square of (10.5) commutes. The composite map
on the bottom is same as θU , which we just showed above to be a morphism of schemes. We
conclude that the map ρSX

◦∆∗ is a regular homomorphism. It follows from the universality

of Ad(X) that there is a unique morphism of algebraic groups ∆̃∗ : Ad(X) → Ad(SX) such
that the right square of (10.5) commutes.

On the other hand, we have seen in (10.2) that right square also commutes if we replace

∆̃∗ by ∆∗. Since ρX is surjective, we must have ∆̃∗ = ∆∗. In particular, ∆∗ is morphism of
schemes. �

10.3.1. To prove the universality of Ad(X|D), we begin with the following construction.
Consider the homomorphism

τ∗ : Ad(SX)→ Ad(SX), τ∗ = IdSX
−∆∗ ◦ i∗−.

Note that ∆∗ is a morphism of schemes by Lemma 10.2 and we have shown in § 10.2 that i∗−
is also a morphism of schemes. We conclude that τ∗ is morphism of algebraic groups.

Note that τ∗ uniquely factors through Ad(X|D), since i∗− ◦ τ
∗ = 0 and we have already

identified Ad(X|D) with the fiber over the identity element of Ad(X) via i∗−. The map τ∗

gives then an explicit isomorphism of algebraic groups

(10.6) (τ∗, i∗−) : A
d(SX)

≃
−→ Ad(X|D)×Ad(X).

Moreover, since i∗∗ ◦∆
∗ = IdAd(X), we get an extension of commutative algebraic groups

(10.7) 0→ Ad(X)
∆∗

−−→ Ad(SX)
τ∗
−→ Ad(X|D)→ 0.

We now claim that the diagram

(10.8) CH0(SX)deg 0
τ∗X
//

ρSX

��

CH0(X|D)deg 0

ρX|D

��

Ad(SX)
τ∗

// Ad(X|D)

commutes. To see this, we can can write, using Theorem 7.1, any element α ∈ CH0(SX)deg 0
as α = p+,∗(α1)+∆∗(α2). Since τ

∗
X ◦∆

∗ = 0, by definitions, we get ρX|D ◦ τ
∗
X(α) = ρX|D(α1)

by (10.2).
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On the other hand, τ∗ ◦∆∗ = 0 and τ∗ ◦ p+,∗ = IdAd(X|D) so that

τ∗ ◦ ρSX
(α) = τ∗ ◦ ρSX

◦ p+,∗(α1) + τ∗ ◦ ρSX
◦∆∗(α2)

=† τ∗ ◦ p+,∗ ◦ ρX|D(α1) + τ∗ ◦∆∗ ◦ ρX(α2)
= ρX|D(α1),

where =† follows from (10.2). This proves the commutativity of (10.8).

Theorem 10.3. The Abel-Jacobi map ρX|D : CH0(X|D)deg 0 → Ad(X|D) makes Ad(X|D)
the universal regular quotient of CH0(X|D)deg 0.

Proof. We only need to prove the universality. Let G be a commutative algebraic group
and let ψ : CH0(X|D)deg 0 → G be a regular homomorphism. Let U ⊂ Xo be an open

dense subset so that the composite ψ ◦ πUx0 is a morphism of schemes, for x0 ∈ U a base

point. Let V = U ∐ U . We claim that δ = ψ ◦ τ∗X ◦ π
V
x0,± is a morphism of schemes, where

τ∗X : CH0(SX)deg 0 → CH0(X|D)deg 0 is splitting the map p+,∗ of Theorem 7.1. Indeed, it is
actually enough to show that the restriction of δ to the two components U± of V is a morphism
of schemes. But we have, for x ∈ U+:

ψ ◦ τ∗X ◦ π
V
x0,±(x) = ψ ◦ τ∗X([x]+ − [x0,+]) = ψ([x]− [x0]) = ψ ◦ πUx0(x),

where [x]+ denotes the class in CH0(SX) of the closed point x in the component X+ of SX .
Since ψ◦πUx0 is by assumption a morphism of schemes, this proves the claim for the restriction
to U+. Similarly for x ∈ U−, we have

ψ ◦ τ∗X ◦ π
V
x0,±(x) = ψ ◦ τ∗X([x]− − [x0,−]) = ψ(−[x] + [x0]) = −ψ ◦ π

U
x0(x)

that is also a morphism of schemes, since G is an algebraic group.
By the claim and Theorem 9.5, there is then a unique morphism of algebraic groups

ψ̃ : Ad(SX)→ G such that there is a commutative square

CH0(SX)deg 0
τ∗X

// //

ρSX

��

CH0(X|D)deg 0

ψ

��

Ad(SX)
ψ̃

// G.

We now claim that the composition

Ad(X)
∆∗

−−→ Ad(SX)
ψ̃
−→ G

is equal to the constant map Ad(X)→ 0. Indeed, since the left square of the diagram

CH0(X)deg 0
∆∗

//

ρX
����

CH0(SX)deg 0
τ∗X

//

ρSX

��

CH0(X|D)deg 0

ψ

��

Ad(X)
∆∗

// Ad(SX)
ψ̃

// G

also commutes by (10.2) and since ρX is surjective, it is enough to show that ψ̃ ◦∆∗ ◦ρX = 0.

But ψ̃◦∆∗◦ρX = ψ̃◦ρSX
◦∆∗ = ψ◦(τ∗X ◦∆

∗
X) = 0 since τ∗X ◦∆

∗
X = 0. This proves the claim.

Using this face, the exact sequence (10.7) and the commutative diagram (10.8), it follows
immediately that there exists a unique morphism of algebraic groups ψG : Ad(X|D) → G
such that ψG ◦ ρX|D = ψ. This finishes the proof. �
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10.4. Roitman’s theorem for 0-cycles with modulus. The first application of our ap-
proach to study algebraic cycles with modulus was already given in Theorem 14.1. As second
application, we now prove the following Roitman torsion theorem for 0-cycles with modulus
on smooth projective schemes over C. This will be generalized to positive characteristic in
the next section.

Theorem 10.4. Let X be a smooth projective variety of dimension d ≥ 1 over C and let
D ⊂ X be an effective Cartier divisor. Then the Abel-Jacobi map ρX|D : CH0(X|D)deg 0 →

Ad(X|D) induces an isomorphism on the torsion subgroups.

Proof. We have the following commutative diagram with split exact rows

(10.9) 0→ CH0(X|D)deg 0
p+,∗

//

ρX|D

��

CH0(SX)deg 0
i∗−

//

ρSX

��

CH0(X)deg 0 → 0

ρX
��

0→ Ad(X|D) p+,∗

// Ad(SX)
i∗−

// Ad(X)→ 0.

Since the maps i∗− on the top and the bottom rows are split by ∆∗, the two sequences
remain exact even after passing to the torsion subgroups. The statement then follows from
the theorem of Roitman [39] for ρX and the theorem of Biswas-Srinivas [6] for ρSX

. �

10.5. Bloch’s conjecture for 0-cycles with modulus. Let X be a reduced projective
surface over C. Recall that the Chow group of 0-cycles CH0(X) is said to be finite dimensional

if the Abel-Jacobi map ρX : CH0(X)deg 0 → A2(X) is an isomorphism. Recall that the famous
Bloch conjecture about 0-cycles on surfaces says the following.

Conjecture 10.5. (Bloch) Let X be a smooth projective surface over C such that H2(X,OX ) =
0. Then CH0(X) is finite dimensional.

This conjecture is known to be true for surfaces of Kodaira dimension less than two [8]
and is open in general. It has been shown by Voisin [49] that a generalized version of this
conjecture in higher dimensions is very closely related to the Hodge conjecture.

Let X be a smooth projective surface over C and let D ⊂ X be an effective Cartier divisor.
Let ID denote the subsheaf of ideals in OX defining D. We shall say that CH0(X|D) is finite
dimensional if the map ρX|D : CH0(X|D)deg 0 → Ad(X|D) is an isomorphism. We can now
state the following analogue of the Bloch conjecture for 0-cycles with modulus.

Conjecture 10.6. Let X be a smooth projective surface over C. Let D ⊂ X be an effective
Cartier divisor such that H2(X,ID) = 0. Then CH0(X|D) is finite dimensional.

Remark 10.7. As explained in [5, 2.1.2], the Chow groups with modulus can be used to define
a notion of Chow groups with compact support for the complement Xo = X \ |D|. In this
perspective, we can view Conjecture 10.6 as an analogue of Bloch’s conjecture for the open
surface Xo.

As an application of Theorem 7.1, we can show the following.

Theorem 10.8. Let X be a smooth projective surface over C. Let D ⊂ X be an effective
Cartier divisor such that H2(X,ID) = 0. Assume that Conjecture 10.5 holds for X. Then
CH0(X|D) is finite dimensional.

Proof. We first observe that π : SX := X ∐X → SX is the normalization map and hence the
Bloch conjecture for X is same as that for SX . Since H2(X,ID) ։ H2(X,OX ), it follows
that H2(X,OX ) = 0. In particular, CH0(X) and CH0(SX) are finite dimensional.
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Since the map IX− → ID is an isomorphism (see (8.8)), there is an exact sequence

H2(X,ID)→ H2(SX ,OSX
)→ H2(X,OX )→ 0.

We conclude that H2(SX ,OSX
) = 0. We now apply [22, Theorem 1.3] to conclude that

CH0(SX) is finite dimensional. We remark here that the statement of this cited result assumes
validity of Conjecture 10.5 for all smooth surfaces, but its proof (see [22, § 7]) only uses the
fact that the normalization of the surface (which is already smooth in our case) is finite-
dimensional. We now use (10.9) to conclude that CH0(X|D) is finite dimensional. �

A combination of Theorem 10.8 and [8] yields the following.

Corollary 10.9. Let X be a smooth projective surface over C of Kodaira dimension less than
two. Let D ⊂ X be an effective Cartier divisor such that H2(X,ID) = 0. Then CH0(X|D) is
finite dimensional.

Infinite-dimensionality of CH0(X|D): The following result provides examples of smooth
projective surfaces X with an effective Cartier divisor D ⊂ X such that CH0(X) is finite-
dimensional but CH0(X|D) is not. In particular, it provides a partial converse to Theo-
rem 10.8.

Theorem 10.10. Let X be a smooth projective surface over C. Let D ⊂ X be an effective
Cartier divisor such that H2(X,ID) 6= 0. Assume that X is regular with pg(X) = 0 and that
the Bloch conjecture is true for X. Then CH0(X|D) is not finite-dimensional.

Proof. The exact sequence

H1(X,OX )→ H2(X,ID)→ H2(SX ,OSX
)→ H2(X,OX )→ 0

and our assumption together imply that H2(SX ,OSX
) 6= 0. We claim that the map

ρSX
: CH0(SX)deg 0 → A2(SX)

is not injective. Suppose on the contrary, that ρSX
is injective. But then it must be an

isomorphism. It follows then from [9, Theorem 7.2] (see its proof on pg. 657) that there are

finitely many reduced Cartier curves {C1, · · · , Cr} onX such that the map
r
⊕
i=1

CH0(Ci)deg 0 →

CH0(SX)deg 0 is surjective. However, as H2(SX ,OSX
) 6= 0, [46, Theorem 5.2] tells us that

this is not possible. This proves the claim. Our assumption says that the map ρX in (10.9) is
an isomorphism. It follows that Ker(ρX|D) 6= 0. �

If we let D ⊂ P2
C be a smooth hypersurface of degree 3, we have

H2(P2
C,ID) ≃ H

2(P2
C,OP2

C

(−D)) ≃ H2(P2
C,OP2

C

(−3)) ≃ C.

All conditions of Theorem 10.10 are clearly satisfied and we get an example of a (smooth)
pair (X,D) such that CH0(X)deg 0 = 0 but CH0(X|D) is infinite-dimensional.

11. Albanese with modulus in arbitrary characteristic

In this section, we generalize the results of § 10 for 0-cycles with modulus on smooth
projective varieties over an arbitrary algebraically closed field. Most of the arguments are
straightforward copies of those in § 10. So we keep the discussion brief. We fix an algebraically
closed field k of exponential characteristic p ≥ 1.

Let again Y be a projective reduced k-variety of dimension d and write Alb(Y ) for the
Esnault-Srinivas-Viehweg Albanese variety. While there is an explicit description of Alb(Y ) =
Ad(Y ) over C (as recalled in 8.2) using Hodge theory, in positive characteristic, [9] gives only
an existence statement and little is known on the properties of Alb(Y ) (some pathological
properties of Alb(Y ) for specific singular varieties are studied in [9, § 3]).
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In [34], V. Mallick proves the following Roitman-style theorem.

Theorem 11.1. ([34, Theorem 16]) For any reduced projective variety Y of dimension d over
k and for n coprime with the characteristic of k, the map ρY induces an isomorphism on
n-torsion subgroups

ρY : nCH
LW
0 (Y )deg 0

≃
−→ nAlb(Y ) = nJ

d(Y ).

For the rest of this section, the Albanese variety Alb(Y ) will be denoted by Ad(Y ) to keep
consistency with the notations of the previous sections.

11.1. Albanese with modulus and its universality in any characteristic. Let X be
a smooth projective scheme of dimension d ≥ 1 over k and let D ⊂ X be an effective
Cartier divisor. Write as usual SX for the double construction applied to the pair (X,D).
Using Theorem 7.3, we shall again identify the two Chow groups CHLW0 (SX) and CH0(SX)
throughout this section.

Let U be an open dense subset contained in Xo = X \ D, x0 ∈ U a closed point and
V = U ∐ U ⊂ (SX)reg such that the compositions

πVx0,± : V → CH0(SX)deg 0
ρSX−−→ Ad(SX), πUx0 : U → CH0(X)deg 0

ρX−−→ Ad(X)

are morphisms of schemes (see Definition 9.10 for the notation πVx0,± and πUx0).
Theorem 7.1 gives the familiar split short exact sequence on the group of zero cycles

(11.1) 0→ CH0(X|D)deg 0
p+,∗
−−→ CH0(SX)deg 0

ι∗−
−→ CH0(X)deg 0 → 0

and there is a homomorphism ∆∗ : CH0(X)deg 0 → CH0(SX)deg 0 such that i∗− ◦∆
∗ = Id.

It follows from the discussion in § 10.2 and the proof of Lemma 10.2 that the homomor-
phisms ρX ◦ i

∗
− : CH0(SX)deg 0 → Ad(X) and ρSX

◦ ∆∗ : CH0(X)deg 0 → Ad(SX) are both

regular. It follows from the universality of Ad(X) and Ad(SX) that there are unique homo-
morphisms of algebraic groups i∗− : Ad(SX) → Ad(X) and ∆∗ : Ad(X) → Ad(SX) such that
the diagram

(11.2) 0→ CH0(X|D)deg 0
p+,∗

// CH0(SX)deg 0

ρSX
����

i∗−
// CH0(X)deg 0 → 0

ρX
����

∆∗
oo

Ad(SX)
i∗−

// Ad(X)→ 0
∆∗

oo

is commutative.
It also follows from this commutative diagram that i∗−◦∆

∗ : Ad(X)→ Ad(X) is the identity.

Indeed, any α ∈ Ad(X) can be written as α = ρX(β) and then

(11.3) i∗− ◦∆
∗ ◦ ρX(β) = i∗− ◦ ρSX

◦∆∗(β) = ρX ◦ i
∗
− ◦∆

∗(β) = ρX(β).

Definition 11.2. We define Ad(X|D) to be the closed algebraic subgroup of Ad(SX) given
by the inverse image of the identity element of Ad(X) via ι∗−. As before, we denote the

inclusion Ad(X|D) →֒ Ad(SX) by p+,∗. It follows from (11.2) that there is a unique surjective

homomorphism ρX|D : CH0(X|D)deg 0 ։ Ad(X|D) such that ρSX
◦ p+,∗ = p+,∗ ◦ ρX|D.

The reader can now check easily that using (11.2) and (11.3), the proofs of Lemma 10.1
and Theorem 10.3 go through mutatis mutandis to give the following generalization of the
latter.

Theorem 11.3. The group homomorphism ρX|D : CH0(X|D)deg 0 → Ad(X|D) is regular and

surjective and makes Ad(X|D) the universal regular quotient of CH0(X|D)deg 0.
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Remark 11.4. Since X is smooth and projective, the Albanese variety Ad(X) is an abelian
variety over k. By [9], the generalized Albanese Ad(SX) is a smooth commutative algebraic
group of general type, i.e., an extension of an abelian variety by a linear algebraic group.
An immediate consequence of the definition and of Theorem 11.3 is that the linear part of
Ad(SX) coincides with the linear part of the Albanese with modulus Ad(X|D).

11.2. Roitman theorem in arbitrary characteristic. Using Theorem 11.1, we can now
generalize Theorem 10.4 over any algebraically closed field as follows. We keep the notations
and the assumptions of 11.1.

Theorem 11.5. Let X be a smooth projective variety of dimension d ≥ 1 over an algebraically
closed field k and let D ⊂ X be an effective Cartier divisor. Let n be an integer prime to the
exponential characteristic of k. Then the Albanese map ρX|D : CH0(X|D)deg 0 → Ad(X|D)
induces an isomorphism on n-torsion subgroups

ρX|D : nCH0(X|D)deg 0
≃
−→ nA

d(X|D).

Proof. We consider the commutative diagram

0→ nCH0(X|D)deg 0
p+,∗

//

ρX|D

��

nCH0(SX)deg 0
i∗−

//

ρSX ≃
��

nCH0(X)deg 0 → 0

ρX
��

0→ nA
d(X|D)

p+,∗
//
nA

d(SX)
i∗−

//
nA

d(X)→ 0

It follows from (11.2) that the top and the bottom rows are compatibly split exact. The
original Roitman’s theorem [39] says that the vertical arrow on the left is an isomorphism. It
follows from Theorems 7.3 and 11.1 that the middle vertical arrow is an isomorphism. The
theorem follows. �

Remark 11.6. We note that the linear part of Ad(X|D) (that coincides with the linear part
of Ad(SX)) depends heavily on the geometry of D and will have, in general, both a unipotent
and a torus part. For example, if D is a smooth divisor inside a smooth surface, the presence
of a Gm part in Ad(X|D) depends on the class of D in the Neron-Severi group of X.

12. Cycle class map to relative K-theory

As we mentioned in § 1, one of the motivations for studying cycles with modulus is to find
a cohomology theory which can describe relative K-theory of divisors in a scheme in terms of
algebraic cycles. If the higher Chow groups with modulus are indeed the right objects which
serve this purpose, there must be a cycle class map from the Chow groups with modulus to
relative K-groups. Moreover, this map must describe the Chow group as a part of relative
K-groups in most of the cases. Our goal in this section is to use our double construction
to answer these questions for the 0-cycles with modulus. We first consider the case of line
bundles in this setting.

12.1. Vector bundles on the double and relative Picard groups. Let k be any field
and let X be a smooth quasi-projective scheme over k with an effective Cartier divisor D.
Let Xo be the open complement X \D. We denote as above by SX the double S(X,D).

12.1.1. Vector bundles on the double. Let PS = PS(X,D) denote the category of locally free
sheaves of finite rank on SX . Since X is quasi-projective, SX is quasi-projective as well
and therefore it admits an ample family of line bundles. Thus we can replace Thomason
spectrum K(SX) built out of perfect complexes on SX with ΩBQPS, at least for computing
the groups Kp(SX) for p ≥ 0, and similarly for X and D. By construction, the category PS
is equivalent to the category of triples (E,E′, φ), where E and E′ are locally free sheaves on
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X and φ : ι∗DE → ι∗DE
′ is a fixed isomorphism on the restriction to D (see [32], but also [36,

Theorem 2.1]). This description gives us the following.

Lemma 12.1. The composite map of spectra

(12.1) K(SX)
ι∗1,ι

∗
2−−−→ K(X) ∐K(X)

f
−→ K(D)

is homotopy trivial, where

f = ι∗D ⊕−ι
∗
D : K(X) ∐K(X)

(id,−id)
−−−−−→ K(X) ∐K(X)

ι∗D+ι∗D−−−−→ K(D).

Notice that the maps in the definition of f make sense because they are defined in the
homotopy category of spectra which is an additive category.

12.1.2. Relative Picard group. We denote by Pic(X,D) the group of isomorphism classes of

pairs (L, σ) consisting of a line bundle L on X together with a fixed trivialization σ : L|D
≃
−→

OD along D, under tensor product operation. It is called the relative Picard group of the
pair (X,D). Write G for the group of isomorphism classes of triples {(L+,L−, φ)} for L± line

bundles on X with a given isomorphism φ : L+|D
≃
−→ L−|D along D. The above description of

the category of vector bundles on SX gives in particular two maps, one inverse to the other

θ : Pic(SX)→ G, η : G→ Pic(SX)

defined by

θ(L) = (L+ = ι∗+(L),L− = ι∗−(L), φ : ι
∗
Dι

∗
+L ≃ ι

∗
Dι

∗
−L), η((L+,L−, φ)) = L+ ×φ L−

where L+ ×φ L− is the gluing of L+ and L− along φ.
We will then identify the group Pic(SX) with G. In this way we can easily define maps

p±,∗ : Pic(X,D) ⇒ Pic(SX), τ∗X : Pic(SX)→ Pic(X,D)

using formally the same definitions that we gave for 0-cycles in § 5. Explicitly, we have

τ∗X((L+,L−, φ)) = (L+ ⊗L
−1
− , φ⊗ idι∗DL−1

−
)

for φ ⊗ idι∗DL−1
−

: ι∗D(L+ ⊗ L
−1
− ) = ι∗DL+ ⊗OD

ι∗DL
−1
−

φ⊗1
−−→ ι∗D(L−) ⊗ ι

∗
D(L−)

−1 can
−−→ OD, and

p+,∗(L, σ) = L×σ OX = (L,OX , σ) (and similarly for p−,∗).
It is immediate to check that p±,∗ are injective, splitting τ∗X . Moreover, we have maps

ι∗± : Pic(SX) ⇒ Pic(X), ∆∗
X : Pic(X)→ Pic(SX)

given on isomorphism classes by ι∗+((L+,L−, φ)) = L+, ι
∗
−((L+,L−, φ)) = L− and ∆∗

X(L) =
(L,L, id). And one clearly has that the composition ι∗± ◦∆

∗
X is the identity.

We summarize the result in the following Proposition, that is the analogue of Theorem 7.1
for line bundles and is used in § 8.

Proposition 12.2. Let X be a smooth quasi-projective scheme over k and let D ⊂ X be an
effective Cartier divisor. Then there are maps

∆∗ : Pic(X)→ Pic(SX); and ι∗± : Pic(SX)→ Pic(X);

τ∗X : Pic(X)→ Pic(X,D); and p±,∗ : Pic(X,D)→ Pic(SX)

such that ι∗± ◦∆
∗ = Id on Pic(X) and τ∗X ◦p±,∗ = ±Id on Pic(X,D). Moreover, the sequences

0→ Pic(X,D)
p+,∗
−−→ Pic(SX)

ι∗−
−→ Pic(X)→ 0;

0→ Pic(X)
∆∗

−−→ Pic(SX)
τ∗X−−→ Pic(X,D)→ 0

are split exact.
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12.2. Cycle class map for 0-cycles with modulus. The goal of this subsection is the proof
of Theorem 1.5. In order to do define the cycle class map from the Chow group with modulus
to relative K-group and prove its injectivity, we need to have an analogue of Theorem 7.1 for
the relative K-theory. Our strategy for proving this is to first construct a variant of relative
K-theory, which we call the K-theory with modulus, for which Theorem 7.1 is immediate.
We then show that this K-theory with modulus coincides with the known relative K-theory
in as many cases as possible.

Recall that for any map of schemes f : X → Y , the relative K-theory of the pair (X,Y )
is the spectrum defined as the homotopy fiber of the map f∗ : K(Y ) → K(X). Let X be a
smooth quasi-projective scheme over k and let D ⊂ X be an effective Cartier divisor. Let
K(X|D) denote the homotopy fiber of the restriction map i∗− : K(SX) → K(X). It is clear
that K(X|D) is another notation for the relative K-theory K(SX ,X−). We call K(X|D) the
K-theory with modulus. We have i∗− ◦∆

∗ = IdK(X) and a commutative diagram of homotopy
fiber sequences

(12.2) K(X|D)
p+,∗

//

φ
��

K(SX)
i∗−

//

i∗+
��

K(X)

ι∗−
��

K(X,D) // K(X)
ι∗+

// K(D).

We have the following analogue of Proposition 8.1 for affine schemes.

Proposition 12.3. ([36, Theorem 6.2, Lemma 4.1]) Let X = Spec (A) be an affine scheme
and let I be the ideal defining D ⊂ X. Then the map φ defines isomorphisms

φi : Ki(X|D)
∼
−→ Ki(X,D) for i = 0, 1.

We do not know if Proposition 12.3 is true for non-affine schemes. But we can show that
this is indeed the case for curves and surfaces when i = 0. The case of curves follows directly
from Proposition 12.2. We shall prove this for surfaces in Proposition 13.2.

We can now prove the main result of this section:

Theorem 12.4. Let X be a smooth quasi-projective scheme of dimension d ≥ 1 over a perfect
field k and let D ⊂ X be an effective Cartier divisor. Then, there is a cycle class map

cycX|D : CH0(X|D)→ K0(X,D).

This map is injective if k is algebraically closed and X is affine.

Proof. We have a commutative diagram of short exact sequences

(12.3) 0→ CH0(X|D)
p+,∗

//

��
✤
✤
✤

CH0(SX)
i∗−

//

cycSX

��

CH0(X)→ 0

cycX
��

0→ K0(X|D)
p+,∗

//

φ0
��

K0(SX)
i∗−

//

i∗+
��

K0(X)→ 0

ι∗−
��

K0(X,D) // K0(X) // K0(D).

The maps cycX and cycSX
are the cycle class maps of Lemma 3.13 (where Y = (SX)sing for

cycSX
and Y = ∅ for cycX . See also [33, § 2]). The above diagram uniquely defines a cycle

class map map c̃ycX|D : CH0(X|D) → K0(X|D) such that p+,∗ ◦ c̃ycX|D = cycSX
◦ p+,∗. We

set cycX|D = φ0 ◦ c̃ycX|D.
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If k is algebraically closed and X is affine, the map cycSX
is injective by [24, Corollary 7.3].

It follows that c̃ycX|D is injective. We conclude proof of the injectivity of cycX|D using
Proposition 12.3. �

Remark 12.5. There are (at least) two general constructions of a cycle class map

cycd+n,nX|D : CHd+n(X|D,n)→ Kn(X,D)

from higher Chow groups with modulus in the sense of [5] to higher relative K-groups (here
d = dimX). See [3, I.4] for one of them. We will study the properties of this map in a different
work.

13. The case of surfaces

In this section, we shall apply Theorem 7.1 to establish the relation between cycles with
modulus and relative K-theory for surfaces. In particular, we prove a modulus version of
Bloch’s formula. Before we do this, we need to prove a generalization of Proposition 12.3 for
non-affine surfaces.

Lemma 13.1. Let X be a reduced quasi-projective surface over any field k containing at least
three elements. Let F 2K0(X) be the subgroup of K0(X) generated by the cycle classes of

regular points of X. Then, there is a canonical isomorphism H2(X,K2,X )
≃
−→ F 2K0(X).

Proof. By the Thomason-Trobaugh spectral sequence for K-theory, we get an exact sequence

K1(X)→ H0(X,K1,X )
∂
−→ H2(X,K2,X )→ K0(X).

On the other hand, it is well known that the map K1(X) → H0(X,K1,X) is surjective (see,
for example, [23, § 2]). It follows that H2(X,K2) →֒ K0(X).

We are only left to show that H2(X,K2,X ) ։ F 2K0(X). But this follows by the results
of Levine [28], because he shows that there is a surjective map Z0(X,Xsing) = ∐x∈XregZ ։

H2(X,K2,X ) such that the composite Z0(X,Xsing) → H2(X,K2,X ) → K0(X) is the cycle
class map. We only need to remark here that at the outset of [28], Levine assumes the
ground field to be infinite. But the the surjectivity of the map Z0(X,Xsing) ։ H2(X,K2,X )
does not require this assumption. The assumption on the cardinality of k is required to use
Matsumoto’s presentation of Quillen K2 of a field. �

Proposition 13.2. Let X be a smooth quasi-projective surface over a field k containing at
least three elements. Let D ⊂ X be an effective Cartier divisor. Then the canonical map
φ0 : K0(X|D)→ K0(X,D) is an isomorphism.

Proof. We have convergent spectral sequences

(13.1) Hp(SX ,Kq,X|D)⇒ π−p−qK(SX ,X−) = π−p−qK(X|D);

(13.2) Hp(X,Kq,(X,D))⇒ π−p−qK(X,D)

induced by the Thomason-Trobaugh spectral sequence for the K-theory of SX , X and D.
Here, Kq,X|D is the Zariski sheaf associated to U 7→ Kq(U |D ∩ U) and Kq,(X,D) denotes the

Zariski sheaf associated to U 7→ Kq(U,U ∩D). We denote by F iK0(X,D) the filtration on
K0(X,D) induced by (13.1).

Since K0,X|D = Ker(K0,SX
= Z→ K0,X = Z) = 0, we have

0→ F 1K0(X|D)→ K0(X|D)→ H0(SX ,K0,X|D) = 0

and therefore F 1K0(X|D)
≃
−→ K0(X|D). Next, we have the exact sequence

0→ F 2K0(X|D)→ F 1K0(X|D) = K0(X|D)→ H1(SX ,K1,X|D)→ 0
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and a canonical map H2(SX ,K2,X|D) → F 2K0(X|D). Since X is a smooth surface, the

corresponding map H2(X,K2,X ) → F 2K0(X) is an isomorphism and the same holds for the
map H2(SX ,K2,SX

)→ F 2K0(SX) by Lemma 13.1. By construction, the sequence of sheaves

(13.3) 0→ Ki,X|D → Ki,SX
→ Ki,X → 0

is split exact and the space K(X|D) is a retract of K(SX), so that by taking cohomol-
ogy and comparing with the F 2-piece of the filtration on the π0 groups, we obtain that
H2(SX ,K2,X|D) → F 2K0(X|D) is indeed an isomorphism. In particular, we have a short
exact sequence

(13.4) 0→ H2(SX ,K2,X|D)→ K0(X|D)→ H1(SX ,K1,X|D)→ 0.

Consider now the second spectral sequence (13.2). Since K0,(X,D) = 0 as well, we have
another exact sequence

0→ H2(X,K2,(X,D))→ K0(X,D)→ H1(X,K1,(X,D))→ 0

where the first map is injective by [23, Lemma 2.1]. The natural map φ : K(X|D)→ K(X,D)
induces then a commutative diagram, with exact rows

0→ H2(SX ,K2,X|D) //

��

K0(X|D) //

��

H1(SX ,K1,X|D)→ 0

��

0→ H2(X,K2,(X,D)) // K0(X,D) // H1(X,K1,(X,D))→ 0.

As H1(SX ,K1) ≃ Pic(SX) and H
1(X,K1) ≃ Pic(X), applying cohomology to (13.3) with

i = 1 gives

0→ H1(SX ,K1,X|D)→ Pic(SX)
ι∗−
−→ Pic(X)→ 0

and by Proposition 12.2, we have an identification H1(SX ,K1,X|D) = Pic(X,D). Similarly,

we have H1(X,K1,(X,D)) = Pic(X,D) by [48, Lemma 2.1] and hence the right vertical map
is an isomorphism. To finish the proof of the proposition, we are now left with proving the
following Lemma. �

Lemma 13.3. The map H2(SX ,K2,X|D)→ H2(X,K2,(X,D)) is an isomorphism.

Proof. Given an open subset W ⊂ D, let U = SX \ (D \W ) be the open subset of SX . Let
Ki,(SX ,X−,D) be the sheaf on D associated to the presheaf W 7→ Ki(U,X+ ∩ U,X− ∩ U) =

hofib((K(U,X− ∩ U)
i∗+
−→ K(X+ ∩ U,D ∩ U)) (see [38, Proposition A.5]). There is an exact

sequence of K-theory sheaves

ι∗(K2,(SX ,X−,D))→ K2,(SX ,X−) → K2,(X+,D) → ι∗(K1,(SX ,X−,D)),

where ι : D →֒ SX is the inclusion. We have K1,(SX ,X−,D) = ID/I
2
D ⊗D Ω1

D/X by [13,

Theorem 1.1] and the latter term is zero. Since K2,(SX ,X−) = K2,X|D by definition, we get
then an exact sequence

ι∗(K2,(SX ,X−,D))→ K2,X|D → K2,(X+,D) → 0.

Since H2(SX , ι∗(K2,(SX ,X−,D)) = H2(D,K2,(SX ,X−,D)) = 0, the lemma follows. �

We now prove our main result on cycles with modulus on surfaces.

Theorem 13.4. Let X be a smooth quasi-projective surface over an algebraically closed field
k and let D ⊂ X be an effective Cartier divisor. Then the following hold.
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(1) The cycle class map cycX|D : CH0(X|D)→ K0(X,D) induces a short exact sequence

0→ CH0(X|D)→ K0(X,D)→ Pic(X,D)→ 0

and the image of CH0(X|D) agrees with F 2K0(X|D).
(2) There are isomorphisms

CH0(X|D)
≃
−→ H2

zar(X,K
M
2,(X,D))

≃
−→ H2

nis(X,K
M
2,(X,D)).

Proof. The injectivity of the cycle class map follows exactly like Theorem 12.4 by using
Proposition 13.2 instead of Proposition 12.3. Next, (13.4) and Proposition 13.2 show that
the exactness of (1) is equivalent to showing that CH0(X|D) ≃ F 2K0(X|D). But this follows
again by observing that cycSX

and cycX become isomorphisms (using [28, Main Theorem]) if
we replace the middle row of (12.3) by F 2K0(−) which keeps the row exact.

To prove (2), recall that KM2,(X,D) is, by definition, the kernel of the map of Milnor K-

theory sheaves KM2,X ։ KM2,D. If we let KM2,X|D = Ker(∆∗(K
M
2,SX

) → KM2,X), then the top

square of (12.3) has factorization

0→ CH0(X|D)
p+,∗

//

��
✤
✤
✤

CH0(SX)
i∗−

//

cycSX

��

CH0(X)→ 0

cycX
��

0→ H2(SX ,K
M
2,X|D)

p+,∗
//

��

H2(SX ,K
M
2 )

i∗−
//

��

H2(X,KM2 )→ 0

��

0→ K0(X|D) p+,∗

// K0(SX)
i∗−

// K0(X)→ 0.

The commutative square

CH0(X|D) // H2(SX ,K
M
2,X|D)

//

i∗+
��

K0(X|D)

φ0

��

H2(X,KM2,(X,D))
// K0(X,D)

now shows that there is a factorization CH0(X|D) → H2(X,KM2,(X,D)) → K0(X,D) of the

map cycX|D. It follows from (1) that the first map is injective. On the other hand, it follows
from [23, Theorem 1.2] that this map is surjective. We conclude that the map CH0(X|D)→
H2

zar(X,K
M
2,(X,D)) is an isomorphism. Furthermore, [23, Lemma 2.1] implies that

H2
zar(X,K

M
2,(X,D))

≃
−→ H2

nis(X,K
M
2,(X,D))

as required. �

14. 0-cycles with modulus on affine schemes

In Theorem 12.4, we gave our first application of Theorem 7.1 to 0-cycles with modulus on
affine schemes. In this section, we deduce more applications of Theorem 7.1 for such schemes.

14.1. Affine Roitman torsion for 0-cycles with modulus. For affine schemes, our second
application is the following Roitman torsion theorem for 0-cycles with modulus.

Theorem 14.1. Let X be a smooth affine scheme of dimension d ≥ 2 over an algebraically
closed field k and let D ⊂ X be an effective Cartier divisor. Then CH0(X|D) is torsion-free.
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Proof. The proof is immediate from Theorem 7.1 and [24, Theorem 1.1], using the comparison
given by Theorem 7.3 (or Theorem 3.17). �

Remark 14.2. An independent proof of the vanishing of the prime-to-p torsion part of CH0(X|D)
for affine varieties (where p denotes the exponential characteristic of k) can be found in [4].
The argument in loc.cit. does not rely on our decomposition Theorem 7.1, but follows instead
closely the approach of Levine in [30].

14.2. Vanishing theorems. As another application of Theorem 7.1, we get the following
vanishing theorems.

Corollary 14.3. Let X be a smooth affine scheme of dimension d ≥ 2 over Fp and let D ⊂ X
be an effective Cartier divisor. Then CH0(X|D) = 0.

Proof. Using Theorems 3.17 and 7.1, it is enough to know that CH0(SX) = 0. But this follows
form [27, Theorem 6.4.1]. �

The same argument, using [27, Theorem 6.4.2], shows the following.

Corollary 14.4. Let X = Spec (A) be a smooth affine algebra of dimension d ≥ 2 over Q.
Assume that A =

⊕
n≥0An is a graded algebra with A0 = Q. Assume moreover that D ⊂ X

is a divisor on X defined by a homogeneous element of A. Then CH0(X|D) = 0.

14.3. Decomposition of K0(X,D). Let X be a smooth quasi-projective scheme over a field
k and let D ⊂ X be an effective Cartier divisor. Let Z1(X|D) denote the free abelian
group on integral closed subschemes Z ⊂ X of codimension one such that D ∩ Z = ∅. Let
R1(X|D) = lim

−→
U

Ker(O×(U) → O×(D)), where U ranges over open subsets of X containing

D. Note that if D has an affine open neighbourhood in X then this limit is same as the limit
taken over X \ Z, where Z ⊂ X is a divisor disjoint from D and is principal in an affine
neighbourhood of D.

Recall from [5, § 3] that the Chow group of codimension one cycles with modulus CH1(X|D)

is the cokernel of the mapR1(X|D)
div
−−→ Z1(X|D). We often write CH1(X|D) as CHd−1(X|D)

if dim(X) = d. If X is a smooth affine surface, we can refine Theorem 13.4 to completely
describe K0(X,D) in terms of the Chow groups with modulus. In order to do this, we need
the following elementary result from commutative algebra. For any commutative noetherian
ring A and a ∈ A, let Ma denote the localization M [a−1] if M is an A-module.

Lemma 14.5. Let A be a commutative noetherian ring and let I ⊂ A be an ideal. Let P be a

projective A-module of rank one and let φ : P/IP
≃
−→ A/I be a given A/I-linear isomorphism.

Then we can find an element a ∈ A such that a ≡ 1 mod I and an isomorphism φ̃ : Pa
≃
−→ Aa

and a commutative diagram

Pa
φ̃

//

����

Aa

����

P/IP
φ
// A/I.

Proof. As P is projective, we do have an A-linear map φ̃ : P → A and a commutative diagram

P
φ̃

//

����

A

����

P/IP
φ

≃
// A/I.
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Letting M = Coker(φ̃), our assumption says that IM = M . But this implies by the
Nakayama lemma that there exists a ∈ A such that a ≡ 1 mod I and Ma = 0. It follows that

φ̃ : Pa → Aa is surjective and hence an isomorphism. �

Theorem 14.6. Let X be a smooth affine surface over an algebraically closed field k and let
D ⊂ X be an effective Cartier divisor. Then, there is a short exact sequence

(14.1) 0→ CH0(X|D)→ K0(X,D)→ CH1(X|D)→ 0.

Proof. In view of Theorem 13.4, we only need to show that CH1(X|D) ≃ Pic(X,D). Since
H1(X,K1,(X,D)) ≃ Pic(X,D) as we have seen above, we need to show that

CH1(X|D) = CH1(X|D) ≃ H1(X,K1,(X,D)).

For a closed subset Z ⊂ X of dimension one with Z ∩D = ∅, there is an exact sequence
(14.2)
H0(X \ Z,K1,(X\Z,D))→ H1

Z(X,K1,(X,D))→ H1(X,K1,(X,D))→ H1(X \ Z,K1,(X\Z,D)).

The excision theorem says thatH1
Z(X,K1,(X,D)) = H1

Z(X\D,K1,(X,D)) = H1
Z(X\D,K1,X\D)

and it follows easily from the Gersten resolution of K1,X\D and the Thomason-Trobaugh

spectral sequence Hp
Z(X \ D,Kq,X\D) ⇒ Kq−p(Z) that H1

Z(X,K1,X\D) is the free abelian

group on the irreducible components of Z. Using the isomorphism H1(X \ Z,K1,(X\Z,D)) ≃

Pic(X \ Z,D), Lemma 14.5 tells us precisely that lim
−→
Z

H1(X \ Z,K1,(X\Z,D)) = 0.

Taking the colimit (14.2) over all closed subschemes Z as above, we thus get an exact
sequence

(14.3) R1(X|D)→ Z1(X|D)→ H1(X,K1,(X,D))→ 0.

It follows by a direct comparison of this exact sequence with the similar sequence for K1,X

that the arrow on the left is just the divisor map. We conclude that there is a canonical

isomorphism CH1(X|D)
≃
−→ H1(X,K1,(X,D)). �

14.4. Nil-invariance of 0-cycles with modulus. As another application of Theorem 7.1,
we can prove the following result showing that the Chow group of 0-cycles with modulus on
a smooth affine surface depends only on the support of the underlying Cartier divisor.

Theorem 14.7. Let X be a smooth affine surface over a perfect field k and let D ⊂ X be an
effective Cartier divisor. Then the canonical map

CH0(X|D)→ CH0(X|Dred)

is an isomorphism.

Proof. Using Theorem 13.4, it suffices to show that F 2K0(X|D) → F 2K0(X|Dred) is an
isomorphism.

Write X = Spec (A), D′ = Dred = Spec (A/I). Write Sn = S(X,nD′) = Spec (Rn) for the
double construction applied to the pair (A, In). Then we have a chain of inclusions of rings

. . . ⊂ Rn+1 ⊂ Rn ⊂ . . . ⊂ R1 ⊂ R0 = A×A

where Rn = {(a, b) ∈ R0 | a−b ∈ I
n}. This gives a corresponding sequence of maps of schemes

S0 = X ∐X → S1 → S2 → . . . Sn → . . .
∆
−→ X.

By [1, Theorem 3.3] and the fact that SK1(B) = SK1(Bred) for any commutative ring B
(see [2, Chap IX, Propositions 1.3, 1.9]), we have for every n ≥ 1 an exact sequence

0→ SK1(D′)⊕SK1(D′)
SK1(D′)⊕SK1(X∐X)

// F 2K0(Sn) // F 2K0(S0)→ 0.
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(Apply [1, Theorem 3.3] to X = Sn, X̃ = S0 and Y = Dn = Spec (A/In). Note that
F 2K0(Sn) = SK0(Sn) and F

2K0(S0) = SK0(S0) in the notations of [1]). The natural maps
ρn : K0(Sn)→ K0(S1) give then a commutative diagram with exact rows (for n ≥ 1)

(14.4) 0→ SK1(D′)⊕SK1(D′)
SK1(D′)⊕SK1(X∐X)

// F 2K0(Sn) //

ρn

��

F 2K0(S0)→ 0

0→ SK1(D′)⊕SK1(D′)
SK1(D′)⊕SK1(X∐X)

// F 2K0(S1) // F 2K0(S0)→ 0.

It follows that F 2K0(Sn) ≃ F 2K0(S1). Combining this with Proposition 12.3 and the com-
mutative diagram of exact sequences

0→ F 2K0(X,nD
′) //

��

F 2K0(Sn)

ρn
��

i∗−
// F 2K0(X)→ 0

0→ F 2K0(X,D
′) // F 2K0(S1)

i∗−

// F 2K0(X)→ 0,

we get F 2K0(X,nD
′)

≃
−→ F 2K0(X,D

′) for every n ≥ 1. Finally, we have inclusions D′ ⊂ D ⊂
nD′ for n≫ 1 and hence a sequence of maps F 2K0(X,nD

′)→ F 2K0(X,D)→ F 2K0(X,D
′).

It is easy to see using the isomorphism CH0(X|nD
′) ≃ F 2K0(X,nD

′) that two maps in this
sequence are surjective. Since the composite map is injective, the theorem follows. �
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[40] K. Rülling, The generalized de Rham-Witt complex over a field is a complex of zero-cycles, J. Algebraic
Geom., 16 (2007), pp. 109–169.
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