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Abstract We present a model for rate-independent, unidirectional, partial damage in visco-1

elastic materials with inertia and thermal effects. The damage process is modeled by means2

of an internal variable, governed by a rate-independent flow rule. The heat equation and3

the momentum balance for the displacements are coupled in a highly nonlinear way. Our4

assumptions on the corresponding energy functional also comprise the case of the Ambrosio–5

Tortorelli phase-field model (without passage to the brittle limit). We discuss a suitable weak6

formulation and prove an existence theorem obtained with the aid of a (partially) decoupled7

time-discrete scheme and variational convergence methods. We also carry out the asymptotic8

analysis for vanishing viscosity and inertia and obtain a fully rate-independent limit model9

for displacements and damage, which is independent of temperature.10
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1 Introduction14

Gradient damage models have been extensively studied in recent years, in particular in order15

to understand the behavior of brittle or quasi-brittle materials. In this paper we present a16

model for rate-independent, unidirectional, partial damage in visco-elastic materials with17

inertia and thermal effects. Thus we deal with a PDE system composed of the (damped)18

equation of elastodynamics, a rate-independent flow rule for the damage variable, and the19

heat equation, coupled in a highly nonlinear way. We prove an existence result basing on20

time-discretization and variational convergence methods, where the analytical difficulties21

arise from the interaction of rate-independent and rate-dependent phenomena. We study also22

the relationship of our model with a fully rate-independent system by time rescaling.23

Following Frémond’s approach [24], damage is represented through an internal variable,24

in the context of generalized standard materials [29]. The damage process is unidirectional,25

meaning that no healing is allowed; we do not use the term “irreversibility” to avoid confusion26

with thermodynamical notions. In our model the evolution of this variable is rate-independent:27

this choice is due to the consideration that, to damage a certain portion of the material, one28

needs a quantity of energy that is independent of the rate of damage, see e.g. [32]. Rate-29

independent damage has been widely explored over the last years, cf. e.g. [6,18,19,26,34,30

44,67,68]. For different studies on rate-dependent damage we refer to e.g. [8,9,22] in the31

isothermal case and [3,28,62,63] for temperature-dependent systems.32

Energy can be dissipated not only by damage growth, but also by viscosity and heat,33

both phenomena having a rate-dependent nature. Rate-independent processes coupled with34

viscosity, inertia, and also temperature have first been analyzed in the two pioneering papers35

[56,57], cf. also [45, Chapter 5]. Under the assumption of small strains, the momentum equa-36

tion is linearized and is formulated using Kelvin–Voigt rheology and inertia. The nonlinear37

heat equation is coupled with the momentum balance through a thermal expansion term:38

this reflects the fact that temperature changes produce additional stresses. Here, we extend39

Roubíček’s ansatz for the temperature-dependent setting to a unidirectional process, thus40

dealing with a discontinuous rate-independent dissipation potential, cf. (1.2) below. Exis-41

tence results for an Ambrosio–Tortorelli-type system with unidirectional damage, inertia,42

and damping were already provided in [37] in the isothermal case.43

44

The PDE system. More precisely, we address the analysis of the following PDE system:45

ρü − div (D(z, θ)e(u̇)+ C(z)e(u)− θ B) = fV in (0, T )×�,
(1.1a)

46

∂R1(ż)+ DzG(z,∇z)− div (DξG(z,∇z))+ 1
2 C
′(z)e(u) : e(u) � 0 in (0, T )×�,

(1.1b)
47

θ̇ − div (K(z, θ)∇θ) = R1(ż)+ D(z, θ)e(u̇) : e(u̇)− θ B : e(u̇)+ H in (0, T )×�,
(1.1c)

48

49

where the unknowns are the displacement vector field u, the damage variable z, and the50

absolute temperature θ , all the three being functions of the time t ∈ (0, T ) and of the position51

x in the reference configuration of a material �, a bounded subset of R
d , with d ∈ {2, 3}.52

Here, e(u) := 1
2 (∇u + ∇u�) denotes the linearized strain tensor.53

In (1.1a), the constant ρ > 0 is the mass density. Moreover, D(z, θ) and C(z) are the54

viscous and the elastic stress tensors and are both bounded, symmetric, and positive definite55

on symmetric matrices, uniformly in z and θ . This reflects two hypotheses of the model,56
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motivated by analytical reasons: first, we cannot renounce the presence of some damping in57

the momentum balance; second, we restrict ourselves to the case of partial damage, assuming58

that even in its most damaged state the material keeps some elastic properties. In order to59

account for the phenomenological effect that an increase of damage reduces the stored elastic60

energy, see e.g. [35], it is assumed that the elastic tensor C(z) depends monotonically on the61

internal variable z, cf. also [22,24,52].62

According to the rate-independent and unidirectional nature of the damage process, R1 is63

a 1-homogeneous dissipation potential of the form64

R1(v) :=
{
|v| if v ≤ 0 ,

+∞ otherwise,
(1.2)65

which enforces the internal variable z to be nonincreasing in time. Indeed, we assume that66

z = 1 marks the sound material and z = 0 the most damaged state.67

The gradient term G(z,∇z) is needed to regularize damage; in particular, this term also68

allows for a nonconvex dependence on z as in many phase-field models. Moreover, for69

suitable choices we retrieve the Modica-Mortola term appearing in the Ambrosio–Tortorelli70

functional, see Remark 2.2. The flow rule (1.1b) is given as a subdifferential inclusion, where71

∂ denotes the subdifferential in the sense of convex analysis of R1 while Dz and Dξ stand for72

the Gâteaux derivatives of G(·, ξ) and G(z, ·), respectively. This is a compact way to write73

a (semi)-stability condition of Kuhn–Tucker type.74

The term θ B, where B is a fixed symmetric matrix, derives from thermodynamical consid-75

erations and is a coupling term between the momentum (1.1a) and the heat equation (1.1c).76

The information on the heat conductivity of the material is contained in the symmetric matrix77

K(z, θ). We suppose that K(z, ·) satisfies subquadratic growth conditions uniformly in z,78

which are borrowed from [63] and which are in the same spirit as in [23]. These conditions79

are fundamental in the proof of some a priori estimates; see the discussion below (1.4) for80

appropriate examples from materials science.81

All the aforementioned quantities are independent of time and space, whilst the external82

force fV and the heat source H are functions of both. The system is complemented with the83

natural boundary conditions84

(D(z, θ)e(u̇)+ C(z)e(u)− θ B) ν = fS on (0, T )× ∂N�, (1.3a)85

u = 0 on (0, T )× ∂D�, (1.3b)86

DξG(z,∇z) ν = 0 on (0, T )× ∂� , (1.3c)87

K(z, θ)∇θ · ν = h on (0, T )× ∂� , (1.3d)88
89

where ∂D� and ∂N� := ∂�\∂D� are the Dirichlet and the Neumann part of the boundary,90

ν denotes the outer unit normal vector to ∂�, and fS and h are prescribed external data91

depending on time and space. As for the Dirichlet data, we restrict to homogeneous boundary92

conditions, see Remark 2.7 for a discussion on this choice. Moreover, Cauchy conditions are93

given on u(0), u̇(0), z(0), and θ(0). We refer to Sect. 2.1 for the precise assumptions on the94

domain and the given data.95

96

The energetic formulation. Due to the rate-independent character of the flow rule (1.1b)97

and to the nonconvexity of the underlying energy, proving the existence of solutions to the98

PDE system (1.1) in its pointwise form seems to be out of reach. As customary in rate-99

independent processes, we will resort to a weak solvability concept, based on the notion100
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of energetic solution, see [40] and references therein. For fully rate-independent systems,101

governed (in the classical PDE-formulation) by the static momentum balance for u and the102

rate-independent flow rule for z, the energetic formulation consists of two properties:103

• global stability: at each time t the configuration (u(t), z(t)) is a global minimizer of the104

sum of energy and dissipation;105

• energy-dissipation balance: the sum of the energy at time t and of the dissipated energy106

in [0, t] equals the initial energy plus the work of external loadings.107

Over the last decade, this approach has been extensively applied to several mechanical prob-108

lems and in particular to fracture, see e.g. [13,14,20], and damage, see e.g. [44,67,68].109

However, in a context where other rate-dependent phenomena are present, the global110

stability condition is too restrictive. Following [56,57] we will replace it with a semistability111

condition, where the sum of energy and dissipation is minimized with respect to the internal112

variable z only, while the displacement u(t) is kept fixed, see also [7,59,61]. Accordingly,113

we will weakly formulate system (1.1) by means of114

• semistability,115

• the (dynamic) momentum equation in a weak sense,116

• a suitable energy-dissipation balance,117

• the heat equation in a weak sense.118

119

Existence result. Theorem 2.6 states the existence of energetic solutions to the initial-120

boundary value problem for system (1.1). For the proof we rely on a well-established method121

for showing existence for rate-independent processes [40], adjusted to the coupling with vis-122

cosity, inertia, and temperature in [57]. Although we follow the approach of the latter paper,123

let us point out that the results therein do not account for some properties of our model,124

namely,125

• the unidirectionality of damage, see (1.2),126

• the dependence of the viscous tensor D(z, θ) on damage and temperature.127

These features are important for the modeling of volume-damage, as well as for the phase-128

field approximation of fracture and surface damage models, see also Remark 2.2, and cause129

some analytical difficulties.130

As in many works on rate-independent systems, our existence proof is based on time-131

discretization and approximation by means of solutions to incremental problems. Differently132

from [57], in our discrete scheme the approximate flow rule is decoupled from the other two133

equations, which may produce more efficient numerical simulations. Moreover, the assump-134

tion of a constant heat capacity allows us to avoid a so-called enthalpy transformation and,135

together with the subquadratic growth of the heat conductivity, to deduce a priori estimates136

and the positivity of the temperature by carefully adapting the methods developed in [23,63].137

When taking the time discrete-to-continuous limit, we first pass to the limit in the weak138

momentum balance. From this we also deduce a (time-continuous) mechanical energy139

inequality by lower semicontinuity arguments. Next we pass to the limit in the semista-140

bility inequality using so-called mutual recovery sequences. As a further step we verify that141

the mechanical energy balance is satisfied as an equality: this follows from the momentum142

balance and the semistability so far obtained. This result allows us to conclude the conver-143

gence of the viscous dissipation terms, which, in turn, is crucial for the limit passage in the144

heat equation. See Sects. 4.1–4.3.145

146
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Some remarks on the thermal properties of system (1.1) and its applicability. For the ther-147

modynamical derivation of the PDE system (1.1) one may follow the thermomechanical148

modeling by Frémond in [24, Chapter 12] or Roubíček in [57]. In particular, the free energy149

density associated with (1.1) is given by150

F(e(u), z,∇z, θ) := 1
2 C(z)e(u) : e(u)+ G(z,∇z)+ ϕ(θ)− θ B : e(u) , (1.4)151

which leads to the entropy density S and the internal energy density U of the form152

S(e(u), z,∇z, θ) = −∂θ F = B : e(u)− ϕ′(θ) ,153

U (e(u), z,∇z, θ) = F + θ S = 1
2 C(z)e(u) : e(u)+ G(z,∇z)+ ϕ(θ)− θ ϕ′(θ) ,154

155

where ϕ is a function such that cV(θ) := ∂θU = −θ ϕ′′(θ) is the specific heat capacity,156

and S and U satisfy a Gibbs’ relation: ∂θU = θ ∂θ S. Starting from the entropy equation,157

which balances the changes of entropy with the heat flux and the heat sources given by the158

dissipation rate and the external sources H ,159

θ ∂θ S θ̇ + div j = R1(ż)+ (D(z, θ)e(u̇)− θ B) : e(u̇)+ H ,160

and then invoking Fourier’s law j = −K(z, θ)∇θ as well as the above Gibbs’ relation, the161

choiceϕ(θ) = θ(1−log θ) indeed results in the heat equation (1.1c) with cV(θ) = const. = 1.162

In fact, the temperature dependence of the heat capacity can be described by the classical163

Debye model, see e.g. [69, Sect. 4.2, p. 761]. In a first approximation it predicts a cubic growth164

of cV with respect to temperature up to a certain, material-specific temperature, the so-called165

Debye temperature θD, whereas for θ 	 θD it can be approximated by cV ≡ const. Thus,166

the use of (1.1c) with cV(θ) = const. (normalized to cV(θ) = 1 for shorter presentation) is167

justified if the temperature range of application is assumed to be above Debye temperature,168

i.e., θ 	 θD. Indeed, our main existence Theorem 2.6, see also Proposition 3.2, contains169

an enhanced positivity estimate, which ensures that the temperature θ , as a component of170

an energetic solution (u, z, θ), always stays above a tunable threshold (to be tuned to θD),171

provided that the initial temperature and the heat sources H are suitably large, see (2.16).172

In this context, let us here also allude to our hypothesis on the heat conductivity tensor173

K(z, θ), which is assumed to have subquadratic growth in θ , see (2.6b). According to experi-174

mental findings, cf. [16,31], polymers such as e.g. polymethylmethacrylate (PMMA), exhibit175

such a subquadratic growth of the heat conductivity. In contrast, for metals the heat conduc-176

tivity is ruled by the electron thermal conductivity. For this, the Wiedemann–Franz law states177

a linear dependence on the temperature, cf. [11, Chapter 17]. Moreover, let us mention that178

the analytical results in [23] are obtained under the assumption of superquadratic growth,179

which is justified by the examples on nonlinear heat conduction given in [70], that are related180

to radiation heat conduction or electron/ion heat conduction in a plasma. Thus, in conclusion,181

the thermal properties of our model rather comply with polymers than with metals.182

183

Vanishing viscosity and inertia. Finally, in Sect. 5 ahead we will address the analysis of184

system (1.1) as the rates of the external load and of the heat sources become slower and185

slower. Therefore, we will rescale time by a factor ε and perform the asymptotic analysis186

as ε ↓ 0 of the rescaled system, i.e. with vanishing viscosity and inertia in the momentum187

equation, and vanishing viscosity in the heat equation. Before entering into the details of our188

result, let us briefly overview some related literature.189

On the one hand, the asymptotic analysis for vanishing viscosity and inertia of the sole190

momentum balance has been the subject of earlier work: we refer, e.g., to [50] for study of the191
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purely elastic limit of dynamic viscoelastic solutions to a frictional contact problem, in terms192

of a graph solution notion. This problem was approached from a more abstract viewpoint193

in [46], with applications to finite-dimensional mechanical systems featuring elastic–plastic194

behavior with linear hardening in [42]. On the other hand, a well-established approach to195

fully rate-independent systems consists in viscously regularizing the rate-independent flow196

rule for the internal variable (typically coupled with a purely elastic equilibrium equation for197

the displacements), and taking the vanishing-viscosity limit. This leads to parameterized/BV198

solutions, encoding information on the energetic behavior of the system at jumps, see e.g. [12,199

17,48,49], as well as e.g. [33,34,39] for applications to fracture and damage. We also mention200

[1,53] for finite-dimensional singularly perturbed second order potential-type equations. The201

convergence of kinetic variational inequalities to rate-independent quasistatic variational202

inequalities was tackled in [43].203

Let us point out that our analysis is substantially different from the “standard” vanishing-204

viscosity approach to rate-independent systems, since in our context viscosity (and inertia205

for the momentum equation) vanish in the heat and momentum balances, only, while we206

keep the flow rule for the damage parameter rate-independent. In fact, our study is akin207

to the vanishing-viscosity and inertia analysis that has been addressed, in the momentum208

equation only, for isothermal, rate-independent processes with dynamics in [56,58], leading209

to an energetic-type notion of solution. We also refer to [15,66] for a combined vanishing-210

viscosity limit in the momentum equation and in the flow rule, in the cases of perfect plasticity211

and delamination, respectively.212

The coupling with the temperature equation attaches an additional difficulty to our own213

vanishing-viscosity analysis. Because of this, it will be essential to assume an appropriate214

scaling of the tensor of heat conduction coefficients: in fact, we shall require that the conduc-215

tivity matrix (K in (1.1c)) diverges as inertia and viscosity vanish. This reflects the fact that in216

the slow-loading regime heat propagates at infinite speed. Thus, in the slow-loading limit we217

will obtain that the temperature is spatially constant and its evolution is fully decoupled from218

the one of the mechanical variables. Indeed, in Theorem 5.3. we will prove convergence as219

ε ↓ 0 of energetic solutions (uε, zε, θε) of the rescaled system to a triple (u, z,
) such that220

– (u, z) is local solution (according to the notion introduced in [41,58]) to the (fully221

rate-independent) system consisting of the static momentum balance and of the rate-222

independent flow rule for damage;223

– under a suitable scaling condition on the heat sources, the spatially constant function 
224

satisfies an ODE that involves a nonnegative defect measure arising from the limit of the225

viscoelastic dissipation term.226

Plan of the paper. The assumptions on the material quantities and the statement of the227

existence results for energetic solutions are given in Sect. 2. In Sect. 3 we present the properties228

of time-discrete solutions, hence in Sect. 4 we prove the main theorem by passing to the229

time-continuous limit by variational convergence techniques. Finally, Sect. 5 is devoted to230

the asymptotics for vanishing viscosity and inertia.231

2 Setup and Main Result232

Notation: Throughout this paper, for a given Banach space X we will denote by 〈·, ·〉X the233

duality pairing between X∗ and X , and by BV([0, T ]; X), resp. C0
weak([0, T ]; X), the space234

of the bounded variation, resp. weakly continuous, functions with values in X . Notice that we235

shall consider any v ∈ BV([0, T ]; X) to be defined at all t ∈ [0, T ]. We also mention that236
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the symbols c, C, C ′ . . . will be used to denote a positive constant depending on given data,237

and possibly varying from line to line. Furthermore in proofs, the symbols Ii , i = 1, . . ., will238

be place-holders for several integral terms popping up in the various estimates. We warn the239

reader that we will not be self-consistent with the numbering so that, for instance, the symbol240

I1 will occur in several proofs with different meanings.241

2.1 Assumptions242

We now specify the assumptions on the domain �, on the nonlinear functions featured in243

(1.1), on the initial data, and on the loading and source terms, under which our existence244

result, Theorem 2.6, holds. Let us mention in advance that, in order to simplify the exposition245

in Sects. 2–4, and in view of the analysis for vanishing viscosity and inertia in Sect. 5, cf.246

(5.32), we will suppose that the matrix of thermal expansion coefficients is a given symmetric247

matrix B ∈ R
d×d
sym . We instead allow the elasticity and viscosity tensors to depend on the state248

variables z and (z, θ), respectively, thus we need to impose suitable growth and coercivity249

conditions. We will also make growth assumptions for the matrix of heat conduction coeffi-250

cients, which are suited for our analysis and which are in the line of [23,63]. These growth251

conditions will play a key role in the derivation of estimates for the temperature θ , in that it252

will allow us to cope with the quadratic right-hand side of (1.1c). Before detailing the standing253

assumptions of this paper, let us mention that, to ease the presentation, we will assume the254

functions of the temperature featuring in the model to be defined also for nonpositive values255

of θ . At any rate, later on we will prove the existence of solutions such that the temperature256

is bounded from below by a positive constant, see (2.14)–(2.16).257

Assumptions on the domain. We assume that258

� ⊂ R
d , d ∈ {2, 3} , is a bounded domain with Lipschitz-boundary ∂� such that

∂D� ⊂ ∂� is nonempty and relatively open and ∂N� := ∂�\∂D� .
(2.1)259

Moreover, we will use the following notation for the state spaces for u and z:260

H1
D(�;Rd) := {v ∈ H1(�;Rd) : v = 0 on ∂D� in the trace sense} ,

Z := {z ∈ W 1,q(�) : z ∈ [0, 1] a.e. in �} , (2.2)261

with fixed q > 1, cf. (2.5d). Analogous notation will be employed for the Sobolev spaces262

W 1,γ
D , γ ≥ 1.263

Assumptions on the material tensors. We require that the tensors B ∈ R
d×d , C : R →264

R
d×d×d×d , and D : R× R→ R

d×d×d×d fulfill265

B ∈ R
d×d
sym and set CB := |B| , (2.3a)266

C ∈ C0,1(R;Rd×d×d×d) and D ∈ C0(R× R;Rd×d×d×d) , (2.3b)267

C(z), D(z, θ) ∈ R
d×d×d×d
sym and are positive definite for all z ∈ R , θ ∈ R , (2.3c)268

∃C1
C
, C2

C
> 0 ∀ z ∈ R ∀ A ∈ R

d×d
sym : C1

C
|A|2 ≤ C(z)A : A ≤ C2

C
|A|2 , (2.3d)269

∃C1
D
, C2

D
> 0 ∀ z ∈ R ∀ θ ∈ R ∀ A ∈ R

d×d
sym : C1

D
|A|2 ≤ D(z , θ)A : A ≤ C2

D
|A|2 .

(2.3e)
270

271
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In the expressions above, R
d×d
sym denotes the subset of symmetric matrices in R

d×d and272

R
d×d×d×d
sym is the subset of symmetric tensors in R

d×d×d×d . In particular,273

C(z)i jkl=C(z) j ikl=C(z)i jlk=C(z)kli j and D(z, θ)i jkl=D(z, θ) j ikl=D(z, θ)i jlk=D(z, θ)kli j .274

In addition to (2.3), we impose that C(·) is monotonically nondecreasing, i.e.,275

∀ A ∈ R
d×d
sym ∀ 0 ≤ z1 ≤ z2 ≤ 1 : C(z1)A : A ≤ C(z2)A : A . (2.4)276

Assumptions on the damage regularization. We require that G : R×R
d → R∪ {∞} fulfills277

Indicator: For every (z, ξ) ∈ R× R
d : G(z, ξ) <∞ ⇒ z ∈ [0, 1] ; (2.5a)278

Continuity: G is continuous on its domain dom(G) , G ≥ 0 , and G(0, 0) = 0 ;279

(2.5b)280

Convexity: For every z ∈ R, G(z, ·) is convex; (2.5c)281

Growth: There exist constants q>1 and C1
G ,C2

G > 0 such that for every (z, ξ) ∈ dom(G)282

C1
G(|ξ |q − 1) ≤ G(z, ξ) ≤ C2

G(|ξ |q + 1) . (2.5d)283

284

Remark 2.1 (Properties of the regularizing term) Since we are encompassing the feature that285

z(·, x) is decreasing for almost all x ∈ �, starting from an initial datum z0 ∈ [0, 1] a.e. in�,286

the z-component of any energetic solution to (1.1) will fulfill z(t, x) ≤ 1 a.e. in�. Therefore,287

we could weaken (2.5a) and just require that the domain of G is a subset of [0,∞).288

Furthermore, we may require the third of (2.5b) without loss of generality, since adding289

a constant to G shall not affect our analysis.290

Further observe that the above assumptions (2.5) ensure that the integral functional291

G : Lr (�)× Lq(�;Rd)→ R ∪ {∞} , G(z, ξ) :=
∫
�

G(z, ξ) dx292

is lower semicontinuous with respect to strong convergence in Lr (�) for any r ∈ [1,∞)293

and weak convergence in Lq(�;Rd), cf. e.g. [21, Theorem 7.5, p. 492]. In addition, G is294

continuous with respect to strong convergence in
(
Lr (�)× Lq(�;Rd)

) ∩ dom(G).295

Remark 2.2 (Example: Phase-field approximation of fracture) Starting from the work of296

Ambrosio and Tortorelli [2], gradient damage models have been extensively used in recent297

years to predict crack propagation in brittle or quasi-brittle materials, by means of phase-298

field approximation [4]. In this approach, a sharp crack is regularized by defining an internal299

variable that interpolates continuously between sound and fractured material. In the mathe-300

matical literature, evolutionary problems for phase-field models were considered for instance301

in the fully quasistatic case [25], in viscoelasticity as a gradient flow [5], and in dynamics302

[37], always for isothermal systems. A thermodynamical model for regularized fracture with303

inertia was proposed and treated numerically e.g. in [52]. The passage to the limit from phase-304

field to sharp crack, though successfully treated in the quasistatic [25] and in the viscous case305

[5], is by now an open problem in dynamics and is outside the scope of this contribution.306

In this context, typical examples for the regularizing term are functionals of Modica-307

Mortola type,308

G
q
MM(z,∇z) =

∫
�

Gq
MM(z,∇z) dx with Gq

MM(z,∇z) := |∇z|q +W (z)+ I[0,1](z) ,309
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where q > 1, W is a suitable potential, and I[0,1](z) := 0 if z ∈ [0, 1], I[0,1](z) := +∞310

otherwise. Such regularization agrees with the above assumptions up to an additive constant.311

Notice that in Sect. 3, to construct discrete solutions, we will consider unilateral minimum312

problems of the type313

min
z∈Z

{∫
�

1
2 C(z)e(u) : e(u) dx +

∫
�

G(z,∇z) dx + R1(z − z̄)

}
314

for given u ∈ H1
D(�;Rd) and a given z̄ ∈ Z defined in (2.2). Setting C(z) := (z2+ δ) I with315

δ > 0, and G := G2
MM with W (z) := 1

2 (1+ z2), the minimum problem is equivalent to316

min
0≤z≤z̄

{∫
�

( 1
2 (z

2 + δ) |e(u)|2 dx +
∫
�

1
2δ (1− z)2 dx +

∫
�

δ |∇z|2 dx

}
,317

that is the classical minimization of the Ambrosio–Tortorelli functional, see [2,25]. The318

generalization to G = Gq
MM with q > 1 was considered in [30]. In this case one may want319

an effective dependence of the viscous tensor on z, choosing D(z, θ) = C(z) as in [37].320

Assumptions on the heat conductivity. On K : R× R→ R
d×d we assume that321

K ∈ C0(R× R;Rd×d ) , K(z, θ) ∈ R
d×d
sym for all z ∈ R , θ ∈ R , (2.6a)322

∃ κ ∈ (1, κd ) ∃ c1, c2 > 0 ∀ (z, θ) ∈ R× R ∀ ξ ∈ R
d :

{
c1(|θ |κ + 1)|ξ |2 ≤ K(z, θ)ξ · ξ ,
|K(z, θ)| ≤ c2(|θ |κ + 1) ,

(2.6b)

323

324

where κd = 5/3 for d=3 and κd = 2 for d=2.325

The bound κd essentially comes into play in the derivation of the Fifth a priori estimate326

(cf. the proof of Proposition 3.4), and when passing from time-discrete to continuous in327

the heat equation, cf. Proposition 4.9. Essentially, it arises as a consequence of the enhanced328

integrability of the approximating temperature variables obtained by interpolation in (3.32k).329

Assumptions on the initial data. We impose that330

u0 ∈ H1
D(�;Rd) , u̇0 ∈ L2(�;Rd) , z0 ∈ Z , (2.7a)331

332

θ0 ∈ L1(�) , and θ0 ≥ θ∗ > 0 a.e. in �, (2.7b)333

where the state spaces H1
D(�;Rd) and Z are defined in (2.2).334

Assumptions on the loading and source terms. On the data fV, fS, H , and h we require that335

336

fV ∈ H1(0, T ; H1
D(�;Rd)∗) , fS ∈ H1(0, T ; L2(∂N�;Rd)) , (2.8a)337

H ∈ L1(0, T ; L1(�)) ∩ L2(0, T ; H1(�)∗) , H ≥ 0 a.e. in (0, T )×�,
h ∈ L1(0, T ; L2(∂�)) , h ≥ 0 a.e. in (0, T )× ∂� . (2.8b)338

339

For later convenience, we also introduce f : [0, T ] → H1
D(�;Rd)∗ defined by340

〈 f (t), v〉H1
D(�;Rd ) := 〈 fV(t), v〉H1

D(�;Rd )+
∫
∂N�

fS · v dHd−1(x) for all v ∈ H1
D(�;Rd ) . (2.9)341

It follows from (2.8a) that f ∈ H1(0, T ; H1
D(�;Rd)∗).342
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2.2 Weak Formulation and Main Existence Result343

As already mentioned, following [57], the energetic formulation of (the initial-boundary344

value problem associated with) system (1.1) consists of the variational formulation of the345

momentum and of the heat equations (1.1a) and (1.1c), with suitable test functions, and of a346

semistability condition joint with a mechanical energy balance, providing the weak formula-347

tion of the damage equation (1.1b). The latter relations feature the mechanical (quasistatic)348

energy associated with (1.1), i.e.,349

E(t, u, z) :=
∫
�

( 1
2 C(z)e(u) : e(u)+ G(z,∇z)) dx − 〈 f (t), u〉H1

D(�;Rd ) ,350

as well as the rate-independent dissipation potential, given as the integrated version of (1.2)351

R1(ż) :=
∫
�

R1(ż) dx . (2.10)352

In Definition 2.3 below, the choice of the test functions for the weak momentum equation353

reflects the regularity (2.11a) required for u, which in turn will derive from the standard354

energy estimates that can be performed on system (1.1). As we will see, such estimates only355

yield θ ∈ L∞(0, T ; L1(�)). In fact, the further regularity (2.11c) for θ shall result from356

a careful choice of test functions for the time-discrete version of (1.1c), and from refined357

interpolation arguments, drawn from [23]. Finally, the BV([0, T ];W 2,d+δ(�)∗)-regularity358

for θ follows from a comparison argument. The choice of the test functions in (2.12d) is the359

natural one in view of (2.11).360

Definition 2.3 (Energetic solution (2.11)–(2.12)) Given a quadruple of initial data (u0, u̇0,361

z0, θ0) satisfying (2.7), we call a triple (u, z, θ) an energetic solution of the Cauchy problem362

for the PDE system (1.1) complemented with the boundary conditions (1.3) if363

u ∈ H1(0, T ; H1
D(�;Rd)) ∩W 1,∞(0, T ; L2(�;Rd)) , (2.11a)364

z ∈ L∞(0, T ;W 1,q(�)) ∩ L∞((0, T )×�) ∩ BV([0, T ]; L1(�)) ,

z(t, x) ∈ [0, 1] for a.a. (t, x) ∈ (0, T )×�, (2.11b)365

θ ∈ L2(0, T ; H1(�)) ∩ L∞(0, T ; L1(�)) ∩ BV([0, T ];W 2,d+δ(�)∗) , (2.11c)366
367

such that the triple (u, z, θ) complies with the initial conditions368

u(0) = u0 , u̇(0) = u̇0 , z(0) = z0 , θ(0) = θ0 a.e. in �,369

and with the following properties:370

• unidirectionality: for a.a. x ∈ �, the function z(·, x) : [0, T ] → [0, 1] is nonincreasing;371

• semistability: for every t ∈ [0, T ]372

∀ z̃ ∈ Z : E(t, u(t), z(t)) ≤ E(t, u(t), z̃)+ R1(z̃ − z(t)) , (2.12a)373

where Z is defined in (2.2);374

• weak formulation of the momentum equation: for all t ∈ [0, T ]375

ρ

∫
�

u̇(t) · v(t) dx − ρ
∫ t

0

∫
�

u̇ · v̇ dx ds

+
∫ t

0

∫
�

(D(z, θ)e(u̇)+C(z)e(u)−θ B) : e(v) dx ds

= ρ
∫
�

u̇0 · v(0) dx +
∫ t

0
〈 f, v〉H1

D(�;Rd ) ds

(2.12b)376

123

Journal: 10884-JODY Article No.: 9666 TYPESET DISK LE CP Disp.:2018/5/5 Pages: 54 Layout: Small



R
ev

is
ed

Pr
oo

f

J Dyn Diff Equat

for all test functions v ∈ L2(0, T ; H1
D(�;Rd)) ∩W 1,1(0, T ; L2(�;Rd));377

• mechanical energy equality: for all t ∈ [0, T ]378

ρ
2

∫
�

|u̇(t)|2 dx + E(t, u(t), z(t))+
∫
�

(z0−z(t)) dx

+
∫ t

0

∫
�

(D(z, θ)e(u̇)−θ B) : e(u̇) dx ds

= ρ
2

∫
�

|u̇0|2 dx + E(0, u0, z0)+
∫ t

0
∂tE(s, u(s), z(s)) ds ,

(2.12c)379

where ∂tE(t, u, z) = − 〈
ḟ (t), u

〉
H1

D(�;Rd )
;380

• weak formulation of the heat equation: for all t ∈ [0, T ]381

〈θ(t), η(t)〉W 2,d+δ(�)−
∫ t

0

∫
�

θ η̇ dx ds +
∫ t

0

∫
�

K(θ, z)∇θ · ∇η dx ds

=
∫
�

θ0 η(0) dx +
∫ t

0

∫
�

η |ż| dx ds+
∫ t

0

∫
�

(D(z, θ)e(u̇) : e(u̇)−θ B) : e(u̇)η dx ds

+
∫ t

0

∫
∂�

hη dHd−1(x) ds +
∫ t

0

∫
�

Hη dx ds

(2.12d)382

for all test functions η ∈ H1(0, T ; L2(�)) ∩ C0([0, T ];W 2,d+δ(�)), for some fixed383

δ > 0. Here and in what follows, |ż| denotes the total variation measure of z (i.e., the384

heat produced by the rate-independent dissipation), which is defined on every closed set385

of the form [t1, t2] × C ⊂ [0, T ] ×� by386

|ż| ([t1, t2]×C) :=
∫

C
R1(z(t2)− z(t1)) dx ,387

and, for simplicity, we shall write
∫ t

0

∫
�
η |ż| dx ds instead of

∫∫
[0,t]×� η |ż| ( ds dx).388

Since z has at most BV-regularity as a function of time, it may have (at most countably389

many) jump points, where the left and right limits z(t−), z(t+) ∈ L1(�) differ. Indeed,390

from z ∈ L∞(0, T ;W 1,q(�)) ∩ BV([0, T ]; L1(�)) it is immediate to deduce that, at every391

t ∈ [0, T ] (with the standard conventions z(0−) := z(0) and z(T+) := z(T )), both z(t−)392

and z(t+) are elements in W 1,q(�), with z(t−) = lims↑t z(s) and z(t+) = lims↓t z(s) w.r.t.393

the weak topology of W 1,q(�). In particular, the right limit z(0+) exists, and it may be394

z(0+) �= z(0) = z0 (observe that, by (2.7) the initial condition is fulfilled as an equality395

in W 1,q(�)). In that case, the mechanical energy balance (2.12c) records the jump of the396

stored/dissipated energies at the initial time.397

Remark 2.4 (Total energy balance) Summing up the mechanical energy inequality (2.12c)398

and the weak heat equation (2.12d) tested by η ≡ 1, yields the total energy balance399 ∫
�

ρ
2 |u̇(t)|2 dx + E(t, u(t), z(t))+

∫
�

θ(t) dx =
∫
�

ρ
2 |u̇0|2 dx + E(0, u0, z0)+

∫
�

θ0 dx

+
∫ t

0
∂tE(s, u(s), z(s)) ds +

∫ t

0

∫
�

H dx ds +
∫ t

0

∫
∂�

h dHd−1(x) ds .

400

Remark 2.5 (Improved regularity on ü) From the definition of energetic solution we can gain401

improved regularity for the time derivatives of the displacement. Indeed, let (u, z, θ) be as402
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in (2.11) and such that the weak momentum equation (2.12b) holds. Then (1.1a) holds in the403

sense of distributions and404

ρ ‖ü‖L2(0,T ;H1
D(�;Rd )∗) = sup

‖v‖≤1

∫ T

0

∫
�

(D(z, θ)e(u̇)+ C(z)e(u)− θ B) : e(v) dx dt405

−
∫ T

0
〈 f, v〉H1

D(�;Rd ) dt ,406

where the supremum is taken over all functions such that ‖v‖L2(0,T ;H1
D(�;Rd )) ≤ 1. The left-407

hand side of the previous equality is uniformly bounded thanks to (2.3), (2.9), and (2.11), thus408

we deduce that ü ∈ L2(0, T ; H1
D(�;Rd)∗). Since the spaces H1

D(�;Rd) ⊂ L2(�;Rd) ⊂409

H1
D(�;Rd)∗ form a Gelfand triple, in view of e.g. [36, Chapter 1, Sec. 2.4, Proposition 2.2],410

we conclude that411 ∫ t2

t1
〈ü, u̇〉H1

D(�;Rd ) dt

= 1
2 〈u̇(t2), u̇(t2)〉H1

D(�;Rd )− 1
2 〈u̇(t1), u̇(t1)〉H1

D(�;Rd )

= 1
2‖u̇(t2)‖2

L2(�;Rd )
− 1

2‖u̇(t1)‖2
L2(�;Rd )

(2.13)412

for every t1, t2 ∈ [0, T ]. Hence, u̇ can be used as a test function in (2.12b).413

We are now in a position to state the main result of this paper. The last part of the assertion414

concerns the strict positivity of the absolute temperature θ . In particular, under (2.15) below415

we are able to specify, in terms of the given data, the constant which bounds θ from below.416

Theorem 2.6 (Existence of energetic solutions (2.11)–(2.12)) Under assumptions (2.1)–417

(2.4), (2.5), and (2.6), and (2.8) on the data fV, fS, H, and h, for every quadruple418

(u0, u̇0, z0, θ0) fulfilling (2.7) with z0 satisfying (2.12a), there exists an energetic solution419

(u, z, θ) to the Cauchy problem for system (1.1).420

Moreover, there exists θ̃ > 0 such that421

θ(t, x) ≥ θ̃ > 0 for a.a. (t, x) ∈ (0, T )×� . (2.14)422

Furthermore, if in addition423

∃ H∗ > 0 : H(t, x) ≥ H∗ for a.a. (t, x) ∈ (0, T )×�424

and θ0(x) ≥
√

H∗/c̄ for a.a. x ∈ �, (2.15)425

where c̄ := (CB)
2

2C1
D

, then426

θ(t, x) ≥ max
{
θ̃ ,
√

H∗/c̄
}

for a.a. (t, x) ∈ (0, T )×� . (2.16)427

The proof of Theorem 2.6 will be developed in Sects. 3 and 4 by time-discretization (see428

Propositions 4.1–4.2).429

Remark 2.7 (Time-dependent Dirichlet loadings) The existence of energetic solutions can430

be proven also when time-dependent Dirichlet loadings are considered for the displacement431

u instead of the homogeneous Dirichlet condition (1.3), in the case the viscous tensor D is432

independent of z and θ . This restriction is due to technical reasons, related to the derivation433

of suitable estimates for the approximate solutions to (1.1).434

An alternative damage model, that still features a (z, θ)-dependence of D, is discussed in435

[38], where a time-dependent loading for u can be encompassed in the analysis, albeit under436

suitable stronger conditions.437
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Remark 2.8 (Failure of “entropic” solutions) As already mentioned, the regularity for the438

temperature θ ∈ L2(0, T ; H1(�))∩BV([0, T ];W 2,d+δ(�)∗) results from careful estimates439

on the heat equation (1.1c), tailored on the quadratic character of its right-hand side and440

drawn from [23]. There, the analysis of the full system for phase transitions proposed by441

Frémond [24], featuring a heat equation with an L1 right-hand side, was carried out.442

The techniques from [23] have been recently extended in [63] to analyze a model for443

rate-dependent damage in thermo-viscoelasticity. Namely, in place of the 1-homogeneous444

dissipation potential R1 from (1.2), the flow rule for the damage parameter in [63] features445

the quadratic dissipation R2(ż) = 1
2 |ż|2 if ż ≤ 0, and R2(ż) = ∞ else. Consequently, the446

heat equation in [63] is of the type447

θ̇ − div (K(z, θ)∇θ) = |ż|2 +D(z)e(u̇) : e(u̇)− θ B : e(u̇)+ H in (0, T )×� . (2.17)448

In [63], under a weaker growth condition on K than the present (2.6), it was possible to prove449

an existence result for a weaker formulation of (2.17), consisting of an entropy inequal-450

ity and of a total energy inequality. The resulting notion of “entropic” solution, originally451

proposed in [23], indeed reflects the strict positivity of the temperature, and the fact that452

the entropy increases along solutions. Without going into details, let us mention that this453

entropy inequality is (formally) obtained by testing (2.17) by ϕ θ−1, with ϕ a smooth test454

function, and integrating in time. This procedure is fully justified because θ can be shown to455

be bounded away from zero by a positive constant, hence ϕ(t) θ−1(t) ∈ L∞(�) for almost456

all t ∈ (0, T ), and the integrals
∫ T

0

∫
�
|ż|2ϕ θ−1 dx dt and

∫ T
0

∫
�

D(z)e(u̇) : e(u̇)ϕ θ−1 dx dt457

resulting from the first and second terms on the right-hand side of (2.17) are well-defined.458

In the present rate-independent context, proving an existence result for the entropic459

formulation of (1.1c) seems to be out of reach. Indeed, in such formulation the term460 ∫ T
0

∫
�
|ż|2ϕ θ−1 dx dt would have to be replaced by

∫
[0,T ]×� ϕ θ

−1|ż|( dx dt), with |ż| the461

total variation measure of z, cf. (2.12d), but the above integral is not well defined since ϕ θ−1
462

is not a continuous function.463

3 Time-Discretization464

3.1 The Time-Discrete Scheme465

Given a partition466

0 = t0
n < · · · < tn

n = T with tk
n − tk−1

n = T
n =: τn ,467

we construct a family of discrete solutions (uk
n, zk

n, θ
k
n )k=1,...,n by solving recursively the468

time-discretization scheme (3.3) below, where the data f , H , and h are approximated by469

local means as follows470

f k
n := 1

τn

∫ tk
n

tk−1
n

f (s) ds , Hk
n := 1

τn

∫ tk
n

tk−1
n

H(s) ds , hk
n := 1

τn

∫ tk
n

tk−1
n

h(s) ds , (3.1)471

and the above integrals need to be understood in the Bochner sense.472

We mention in advance that we have to add the regularizing term−τndiv (|e(uk
n)|γ−2e(uk

n))473

in the discrete momentum equation, with γ > 4. Basically, the reason for this is that we need474

to compensate the quadratic term in e(uk
n) on the right-hand side of the discrete heat equation475

(3.3c). In practice, the term −τndiv (|e(uk
n)|γ−2e(uk

n)) will have a key role in proving that476

the pseudomonotone operator in terms of which the (approximate) discrete system can be477
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reformulated is coercive, and thus such system admits solutions. Because of this additional478

regularization, it will be necessary to further approximate the initial datum u0 from (2.7a) by479

a sequence (cf. [10, p. 56, Corollary 2])480

(u0
n)n ⊂ W 1,γ

D (�;Rd) such that u0
n → u0 in H1

D(�;Rd) as n →∞ , (3.2)481

where W 1,γ
D (�;Rd) = {v ∈ W 1,γ (�;Rd) : v = 0 on ∂D� in the trace sense}.482

For the weak formulation of the discrete heat equation, we also need to introduce the483

function space appropriate for θ , dependent on a given z̄ ∈ L∞(�)484

Xz̄ :=
{
ϑ ∈ H1(�) :

∫
�

K(z̄, ϑ)∇ϑ · ∇v dx is well defined for all v ∈ H1(�)
}
.485

In fact, the above space encodes the sharpest property that we will be able to obtain for486

our discrete solutions (uk
n, zk

n, θ
k
n )

n
k=1. This will be proven by approximating system (3.3) by487

truncations, so that in the truncated system the heat equation is standardly weakly formulated488

in H1(�)∗. Passing to the limit as the truncation parameter tends to infinity, with a careful489

comparison argument in the discrete heat equation (cf. the proof of [63, Lemma 4.4] for all490

details), it is possible to prove that θk
n ∈ Xzk

n
.491

We consider the following weakly-coupled discretization scheme (in fact, only the momen-492

tum and the heat equation are coupled, while the discrete equation for z is decoupled from493

them):494

Problem 3.1 Starting from495

u0
n , z0

n := z0 , θ0
n := θ0 ,496

and setting u−1
n := u0

n − τnu̇0, find (uk
n, zk

n, θ
k
n )

n
k=1 ⊂ W 1,γ

D (�;Rd)×W 1,q(�)× Xzk
n

such497

that the following hold:498

– Minimality of zk
n:499

zk
n ∈ argmin

{
R1(z − zk−1

n )+ E(tk
n , uk−1

n , z) : z ∈ Z
}
; (3.3a)500

501

– Time-discrete weak formulation of the coupled momentum balance and the heat equation:502

Find uk
n ∈ W 1,γ

D (�;Rd) and θk
n ∈ Xzk

n
such that503

ρ

∫
�

uk
n−2uk−1

n +uk−2
n

τ 2
n

· v dx

+
∫
�

(
D(zk−1

n , θk−1
n ) e

(
uk

n−uk−1
n

τn

)
+C(zk

n)e(u
k
n)−θk

n B+ τn |e(uk
n)|γ−2e(uk

n)
)
: e(v) dx

=
〈

f k
n , v

〉
H1

D(�;Rd )
for all v ∈ W 1,γ

D (�;Rd) ,

(3.3b)

504

505

506 ∫
�

θk
n−θk−1

n
τn

η dx +
∫
�

K(zk
n, θ

k
n )∇θk

n · ∇η dx

=
∫
�

zk−1
n −zk

n
τn

η dx +
∫
�

(
D(zk−1

n , θk−1
n ) e

(
uk

n−uk−1
n

τn

)
− θk

n B

)
: e

(
uk

n−uk−1
n

τn

)
η dx

+
∫
∂�

hk
nη dHd−1(x)+

〈
Hk

n , η
〉

H1(�)
for all η ∈ H1(�) .

507

(3.3c)508
509
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The above time-discrete problem has been carefully designed in such a way as to be510

weakly-coupled in that, for each k ∈ {1, . . . , n}, it can be solved successively starting from511

(3.3a) and then solving the system (3.3b)–(3.3c). See [63, Remark 4.3] for similar ideas.512

Our existence result for Problem 3.1 reads:513

Proposition 3.2 Let the assumptions of Theorem 2.6 hold true. Then there exists a solution514

(uk
n, zk

n, θ
k
n )

n
k=1 ⊂ W 1,γ

D (�;Rd)×W 1,q(�)× H1(�)515

to Problem 3.1, satisfying the following properties: There exists θ̃ > 0 such that516

θk
n ≥ θ̃ > 0 for all k = 1, . . . , n , for all n ∈ N . (3.4)517

Furthermore, if in addition (2.15) holds, then518

θk
n ≥ max

{
θ̃ ,
√

H∗/c̄
}
> 0 for all k = 1, . . . , n , for all n ∈ N , (3.5)519

with H∗ and c̄ from (2.15).520

While the existence of solutions for (3.3a) follows from the direct method of the calculus521

of variations in a straightforward manner, the existence proof for system (3.3b)–(3.3c) is522

more involved, due to the quasilinear character of the discrete heat equation. This is due to523

the fact that the viscous dissipation D(zk−1
n , θk−1

n )e
( uk

n−uk−1
n

τn

) : e
( uk

n−uk−1
n

τn

)
as well as the524

thermal stresses θk−1
n B : e( uk

n−uk−1
n

τn

)
only happen to be of L1-summability as a consequence525

of (3.3b). Observe in particular that C(zk
n),D(z

k−1
n , θk−1

n ) ∈ (L∞(�)∩W 1,q(�)
)d×d×d×d ,526

and we do not impose the assumption q > d , which would guarantee the continuity of the527

coefficients. As it is demonstrated by the counterexample in [54], in absence of continuous528

coefficients, it is not ensured that the solution of (3.3b) enjoys elliptic regularity. Because of529

this expected lack of additional regularity, the existence of solutions for the coupled system530

(3.3b)–(3.3c) will be verified by means of an approximation procedure, in which the L1 right-531

hand side in (3.3c) is replaced by a sequence of truncations. For this we proceed along the lines532

of [63] where the analysis of a time-discrete system analogous to (3.3a)–(3.3c) was carried533

out. The existence of solutions to the approximate discrete system in turn follows from an534

existence result for a wide class of elliptic equations, in the framework of the Leray-Schauder535

theory of pseudo-monotone operators. We will then conclude the existence of solutions to536

(3.3b)–(3.3c) by passing to the limit with the truncation parameter. In such a step, we shall537

exploit the strict positivity of the approximate discrete temperatures, cf. (3.15) below. This538

property and the convergence of the approximate discrete temperatures clearly imply the539

strict positivity (3.4). Arguing directly on the non-truncated discrete heat equation, we will540

also obtain the enhanced positivity property (3.5) which, unlike (3.13), in fact provides a541

tunable threshold from below to the discrete temperatures.542

In the forthcoming proof, we will use that for any convex (differentiable) function ψ :543

R→ (−∞,+∞]544

ψ(x)− ψ(y) ≤ ψ ′(x)(x−y) for all x, y ∈ dom(ψ) . (3.6)545

Proof Existence of a minimizer to (3.3a): We first verify the coercivity of the functional546

z �→ E(tk
n , uk−1

n , z) + R1(z − zk−1
n ) : W 1,q(�) → R ∪ {∞}, where R1 is the dissipation547

potential (2.10). Indeed, by the positivity of R1(·) and assumption (2.5d) on the density G548

we have549

E(tk
n , uk−1

n , z)+R1(z − zk−1
n ) ≥

∫
�

G(z,∇z) dx − C ≥ C1
G‖z‖q

W 1,q (�)
− C1

GLd(�)− C ,550
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where we also used that G(z(x),∇z(x)) < ∞ implies z(x) ∈ [0, 1], cf. (2.5a). By the551

convexity and the continuity assumptions (2.5b)–(2.5c) on G and by the properties of R1 we552

conclude that the functional553

E(tk
n , uk−1

n , ·)+ R1((·)− zk−1
n ) : W 1,q(�)→ R ∪ {∞}554

is weakly sequentially lower semicontinuous. Since Z = {z ∈ W 1,q(�) : z ∈555

[0, 1] a.e. in �}, see (2.2), is a closed subset of a reflexive Banach space, the direct method556

of the calculus of variations ensures the existence of a minimizer zk
n ∈ Z.557

Existence of an approximate solution to system (3.3b)–(3.3c): As in [63, proof of Lemma558

4.4], we approximate (3.3b)–(3.3c) by a suitable truncation of the heat conductivity matrix559

K, in such a way as to reduce to an elliptic operator with bounded coefficients in the discrete560

heat equation. In a similar manner we treat the L1 right-hand sides in order to improve561

their integrability. Accordingly, we truncate all occurrences of θk
n in the respective terms of562

system (3.3b)–(3.3c). We show that the approximate system thus obtained admits solutions by563

resorting to an existence result from the theory of elliptic systems featuring pseudo-monotone564

operators drawn from [60]. Hence, we pass to the limit with the truncation parameter and565

conclude the existence of solutions to (3.3b)–(3.3c).566

Let zk
n be a solution of (3.3a). In what follows, we shall denote by K = K(x, θ) the567

function K(zk
n(x), θ). Let M > 0. We introduce the truncation operator568

TM (θ) :=

⎧⎪⎨
⎪⎩

0 if θ < 0,

θ if 0 ≤ θ ≤ M,

M if θ > M,

569

and we set570

KM : �× R→ R
d×d , KM (x, θ) := K(x,TM (θ)).571

Since K ∈ C0(R × R;Rd×d) and 0 ≤ zk
n(x) ≤ 1 for almost all x ∈ �, it is immediate to572

check that there exists a positive constant CM such that |KM (x, θ)| ≤ CM for almost all573

x ∈ � and θ ∈ R. The truncated version of system (3.3b)–(3.3c) thus reads: find (u, θ) ∈574

W 1,γ
D (�;Rd)× H1(�) such that575

ρ

∫
�

u−2uk−1
n +uk−2

n
τ 2

n
· v dx +

∫
�

(
D(zk−1

n , θk−1
n ) e

(
u−uk−1

n
τn

)
+ C(zk

n)e(u)

−TM (θ)B+ τn |e(u)|γ−2e(u)
) : e(v) dx

=
〈

f k
n , v

〉
H1

D(�;Rd )
for all v ∈ W 1,γ

D (�;Rd) ,

(3.7a)

576

577

578 ∫
�

θ−θk−1
n
τn

η dx +
∫
�

KM (x, θ)∇θ · ∇η dx

=
∫
�

zk−1
n −zk

n
τn

η dx +
∫
�

(
D(zk−1

n , θk−1
n ) e

(
u−uk−1

n
τn

)
− TM (θ)B

)
: e

(
u−uk−1

n
τn

)
η dx

+
∫
∂�

hk
nη dHd−1(x)+

〈
Hk

n , η
〉

H1(�)
for all η ∈ H1(�) .

(3.7b)

579

580
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Observe that system (3.7) rewrites as581

ρ

∫
�

u · v dx

+ τn

∫
�

(
D(zk−1

n , θk−1
n )e(u)+ τnC(zk

n)e(u)− τnTM (θ)B+ τ 2
n |e(u)|γ−2e(u)

)
: e(v) dx

= ρ
∫
�

(2uk−1
n − uk−2

n ) · v dx + τn

∫
�

D(zk−1
n , θk−1

n )e(uk−1
n ) : e(v) dx + τ 2

n

〈
f k
n , v

〉
H1

D(�;Rd )

for all v ∈ W 1,γ
D (�;Rd ) ,

(3.8a)

582

583

584

∫
�

θ η dx + τn

∫
�

KM (x, θ)∇θ · ∇η dx − 1
τn

∫
�

D(zk−1
n , θk−1

n )e(u) : e(u)η dx

+
∫
�

TM (θ)B : e(u)η dx + 2
τn

∫
�

D(zk−1
n , θk−1

n )e(u) : e(uk−1
n )η dx

−
∫
�

TM (θ)B : e(uk−1
n )η dx

=
∫
�

θk−1
n η dx + 1

τn

∫
�

D(zk−1
n , θk−1

n )e(uk−1
n ) : e(uk−1

n )η dx

+
∫
�

(zk−1
n − zk

n)η dx + τn

∫
∂�

hk
nη dHd−1(x)+ τn

〈
Hk

n , η
〉

H1(�)
for all η ∈ H1(�) ,

(3.8b)

585

586

which in turn can be recast in the form587

Ak,M (u, θ) = Bk−1 .588

Here, Ak,M : W 1,γ
D (�;Rd)× H1(�)→ W 1,γ

D (�;Rd)∗ × H1(�)∗ is the elliptic operator,589

acting on the unknown (u, θ), defined by the left-hand sides of (3.8a) and (3.8b), while Bk−1590

is the vector defined by the right-hand side terms in system (3.8). It can be verified that591

Ak,M is a pseudo-monotone operator in the sense of [60, Chapter II, Definition 2.1]: without592

entering into details, we may in fact observe that Ak,M is given by the sum of either bounded,593

radially continuous, monotone operators, or totally continuous operators, cf. [60, Chapter II,594

Definition 2.3, Lemma 2.9, Cor. 2.12]. Furthermore, crucially exploiting the presence of the595

regularizing term −τndiv (|e(u)|γ−2e(u)), with γ > 4, in the discrete momentum balance,596

we may show that Ak,M is coercive on W 1,γ
D (�;Rd)× H1(�). This can be checked directly597

on system (3.8), testing (3.8a) by u and (3.8b) by θ and adding the resulting equations: it is598

then sufficient to deduce from these calculations an estimate for ‖u‖
W 1,γ

D (�;Rd )
and ‖θ‖H1(�).599

We refer to [63, proof of Lemma 4.4] for all the detailed calculations, which show that, since600

γ > 4, the term−τndiv (|e(u)|γ−2e(u)) can absorb the quadratic terms in e(u) on the right-601

hand side of (3.7b). In this way, it is possible to carry out the test of (3.8b) by θ and obtain602

the bound for ‖θ‖H1(�): for this, one also exploits that the operator with coefficients KM603

is uniformly elliptic thanks to (2.6b). Since Ak,M is pseudo-monotone and coercive, we are604

in a position to apply [60, Chapter II, Theorem 2.6] to system (3.8), for every M ∈ N thus605

deducing the existence of a solution (u, θ) which shall be hereafter denoted as (uk
n,M , θ

k
n,M ).606

Positivity of θk
n,M : First of all, we show that θk

n,M ≥ 0 a.e. in �. To this end, we test the607

(approximate) discrete heat equation (3.7b) by −(θk
n,M )

− = min{θk
n,M , 0}. We thus obtain608
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∫
�

1
τn
|(θk

n,M )
−|2 dx +

∫
�

1
τn
θk−1

n (θk
n,M )

− dx +
∫
�

KM (x, θ
k
n,M )∇(θk

n,M )
− · ∇(θk

n,M )
− dx

= −
∫
�

zk−1
n −zk

n
τn

θk
n,M dx −

∫
�

D(zk−1
n , θk−1

n ) e
(

u−uk−1
n
τn

)
: e

(
u−uk−1

n
τn

)
θk

n,M dx

−
∫
�

TM (θ
k
n.M )B : e

(
u−uk−1

n
τn

)
θk

n,M dx +
∫
∂�

hk
nθ

k
n,M dHd−1(x)+

〈
Hk

n , θ
k
n,M

〉
H1(�)

.

609

Now, the second term on the left-hand side is non-negative, since we may suppose, by610

induction, that θk−1
n ≥ 0 a.e. in � (in fact, for k = 0 the strict positivity (3.4) holds with611

θ̃ = θ∗, thanks to (2.7b)). The third term is also non-negative, by ellipticity of KM . As for612

the right-hand side, the first, second, fourth, and fifth terms are negative, since zk−1
n ≥ zk

n613

a.e. in �, and by the positivity properties of the data D, H , and h. The very definition of the614

truncation operator TM does ensure that the third term is null. All in all, we conclude that615 ∫
�
|(θk

n,M )
−|2 dx ≤ 0, whence (θk

n,M )
− = 0 a.e. in �, i.e. the desired positivity. Let us now616

prove that θk
n,M fulfills (3.4), namely617

θk
n,M ≥ θ̃ > 0 a.e. in �. (3.9)618

Following the lines of [63, proof of Lemma 4.4] we develop a comparison argument drawn619

from [23]. In this context, we will use the following estimate620

D(z̄, θ̄ )ē : ē − TM (θ̄)B : ē ≥ C1
D
|ē|2 − |ē|CB|θ̄ | ≥ C1

D

2 |ē|2 − (CB)
2

2C1
D

|θ̄ |2 . (3.10)621

Exploiting (3.10) and also using that zk−1 ≥ zk a.e. in �, the positivity (2.8b) of the data H622

and h and of θk−1
n , we deduce from (3.3c) that θk

n,M fulfills623 ∫
�

θk
n,Mη dx+τn

∫
�

KM (z
k
n, θ

k
n,M )∇θk

n,M ·∇η dx ≥
∫
�

θk−1
n η dx−τnc̄

∫
�

(
θk

n,M

)2
η dx

(3.11)624

for all η ∈ H1(�) ∩ L∞(�) with η ≥ 0 a.e. in �, with the constant c̄ = (CB)
2

2C1
D

independent625

of k. Hence, we compare θk
n,M with the solution vk ∈ R of the finite difference equation626

vk = vk−1 − τnc̄ v2
k , k = 1, . . . , n, with v0 := θ∗ > 0 . (3.12)627

Now, it is possible to show that628

vk ≥ θ̃ :=
(

c̄T + 1

θ∗

)−1

. (3.13)629

We test the difference of (3.11) and (3.12) by the function Lε(vk−θk
n,M ), with630

Lε(x) :=

⎧⎪⎨
⎪⎩

0 if x ≤ 0,
x
ε

if 0 < x < ε,

1 if x ≥ ε,
631

and we conclude that632 ∫
�

(vk−vk−1)−(θk
n,M−θk−1

n )Hε(vk−θk
n,M ) dx = τn c̄

∫
�

((
θk

n,M

)2−v2
k

)
Hε(vk−θk

n,M ) dx ≤ 0 .

(3.14)633

Observe that, in order to conclude that the above integral is negative, it was essential to634

preliminarily show that θk
n,M ≥ 0 a.e. in�. Assume now that θk−1

n ≥ vk−1 (which is true for635
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k = 0, cf. (2.7b)). Letting ε ↓ 0 in (3.14) yields that θk
n,M ≥ vk a.e. in �. Hence, in view of636

(3.13) we conclude the desired (3.9).637

Passage to the limit as M→∞: We now consider a family (uk
n,M , θ

k
n,M )M

of solutions to638

the truncated system (3.7): we shall derive some a priori estimates on (uk
n,M , θ

k
n,M )M

which639

will allow us to extract a (not relabeled) subsequence converging as M→∞ to a solution of640

system (3.3b)–(3.3c). For the ensuing calculations, it is crucial to observe that641

∃ θ̃ such that θk
n,M ≥ θ̃ > 0 for all M > 0 . (3.15)642

This follows from the very same arguments as for (3.4): indeed, notice that θ̃ does not depend643

on M .644

Hence, let us first test (3.7a) by (uk
n,M−uk−1

n )/τn , (3.7b) by 1, and add the resulting645

relations. Taking into account the cancelation of the coupling terms between (3.7a) and646

(3.7b), by convexity, cf. (3.6), we obtain647

ρ

2τ 3
n

∫
�

|uk
n,M − uk−1

n |2 dx + 1
2τn

∫
�

C(zk
n)e(u

k
n,M ) : e(uk

n,M ) dx

+ 1
γ

∫
�

|e(uk
n,M )|γ dx + 1

τn

∫
�

θk
n,M dx

≤ ρ

2τ 3
n

∫
�

|uk−1
n − uk−2

n |2 dx + 1
2τn

∫
�

C(zk
n)e(u

k−1
n ) : e(uk−1

n ) dx

+ 1
γ

∫
�

|e(uk−1
n )|γ dx + 1

τn

∫
�

θk−1
n dx

+
〈

f k
n ,

uk
n,M−uk−1

n
τn

〉
H1

D(�;Rd )

+
∫
�

(
zk−1

n −zk
n

τn
+ Hk

n

)
dx

+
∫
∂�

hk
n dHd−1(x) ≤ Ck,n ,

648

where the constant Ck,n is uniform with respect to the truncation parameter M (but depends649

on k and n). Therefore, also on account of (3.15) we infer that650

‖uk
n,M‖W 1,γ (�;Rd ) + ‖θk

n,M‖L1(�) ≤ Ck,n , (3.16)651

for a (possibly different) constant Ck,n uniform w.r.t. M but depending on k and n. From now652

till the end of the discussion of the limit passage M →∞, we will omit the dependence of653

such constants on k and n. As a straightforward consequence of (3.16), if we define654

SM = {x ∈ � : θk
n,M ≤ M} ,655

using Markov’s inequality, it is not difficult to infer from (3.16) that656

|�\SM | → 0 as M →∞ . (3.17)657

Secondly, we test (3.7b) by TM (θ
k
n,M ). Using that658

θ TM (θ) ≥ |TM (θ)|2 and KM (x, θ)∇θ · ∇TM (θ) = K(x,TM (θ))∇TM (θ) · ∇TM (θ),659

we obtain660

1
2τn

∫
�

|TM (θ
k
n,M )|2 dx +

∫
�

K(x,TM (θ
k
n,M ))∇TM (θ

k
n,M ) · ∇TM (θ

k
n,M ) dx

≤ 1
2τn

∫
�

|θk−1
n |2 dx + I1 + I2 + I3 + I4 ,

(3.18)661
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where, taking into account (2.3e) and the previously obtained (3.16), we have662

I1 :=
∣∣∣∣
∫
�

D(zk−1
n , θk−1

n )e
(

uk
n,M−uk−1

n
τn

)
: e
(

uk
n,M−uk−1

n
τn

)
TM (θ

k
n,M ) dx

∣∣∣∣
≤ C

∥∥∥∥e
(

uk
n,M−uk−1

n
τn

)∥∥∥∥
4

L4(�;Rd×d )

+ 1
8τn

∫
�

|TM (θ
k
n,M )|2 dx ,

663

I2 :=
∣∣∣∣
∫
�

TM (θ
k
n,M )B : e

(
uk

n,M−uk−1
n

τn

)
TM (θ

k
n,M ) dx

∣∣∣∣
≤ C

∥∥∥∥e
(

uk
n,M−uk−1

n
τn

)∥∥∥∥
L2(�;Rd×d )

‖TM (θ
k
n,M )‖2

L4(�)

≤C‖TM (θ
k
n,M )‖2

L4(�)
≤ c1

4

∫
�

|∇TM (θ
k
n,M )|2 dx + ‖TM (θ

k
n,M )‖2

L1(�)
,

664

I3 :=
∣∣∣∣
∫
�

zk
n−zk−1

n
τn

TM (θ
k
n,M ) dx

∣∣∣∣ ≤ C + 1
8τn

∫
�

|TM (θ
k
n,M )|2 dx ,665

I4 :=
∣∣∣∣ 〈Hk

n ,TM (θ
k
n,M )

〉
H1(�)

+
∫
∂�

hk
n TM (θ

k
n,M ) dHd−1(x)

∣∣∣∣
≤ 1

16τn

∫
�

|TM (θ
k
n,M )|2 dx + c1

2

∫
�

|∇TM (θ
k
n,M )|2 dx + C .

666

667

where in the estimate for I2 we have used the previously obtained bound (3.16), the668

Gagliardo-Nirenberg inequality ‖v‖L4(�) ≤ C‖v‖σ
H1(�)

‖v‖1−σ
L1(�)

for σ = 9/10, and the669

Young inequality. As by (2.6b) it is KMξ · ξ ≥ c1|ξ |2, combining the above estimates with670

(3.18) and taking into account (3.16), we conclude that671

‖TM (θ
k
n,M )‖L2(�) +

∫
�

K(x,TM (θ
k
n,M ))∇TM (θ

k
n,M ) · ∇TM (θ

k
n,M ) dx ≤ C .672

Now, the coercivity (2.6b) implies673 ∫
�

K(x,TM (θ
k
n,M ))∇TM (θ

k
n,M ) · ∇TM (θ

k
n,M ) dx

≥ c1

∫
�

|TM (θ
k
n,M )|κ |∇TM (θ

k
n,M )|2 dx = c

∫
�

|∇(TM (θ
k
n,M ))

(κ+2)/2|2 dx .
674

From this, recalling the continuous embedding H1⊂L6 we infer675

‖TM (θ
k
n,M )‖H1(�) + ‖TM (θ

k
n,M )‖L3κ+6(�) ≤ C . (3.19)676

Thirdly, we test (3.7b) by θk
n,M . Relying on estimate (3.19) to bound the second term on677

the right-hand side of (3.7b) and mimicking the above calculations, we obtain678

‖θk
n,M‖H1(�) + ‖θk

n,M‖L3κ+6(SM )
≤ C . (3.20)679

With estimates (3.16), (3.19), and (3.20), combined with well-known compactness arguments,680

we find a pair (u, θ) such that, along a not relabeled subsequence, (uk
n,M , θ

k
n,M ) ⇀ (u, θ)681

in W 1,γ
D (�;Rd) × H1(�). The argument for passing to the limit as M→∞ in (3.7), also682

based on (3.17), is completely analogous to the one developed in the proof of [63, Lemma683

4.4], therefore we refer to the latter paper for all details.684
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Positivity of the discrete temperature, ad (3.4): The strict positivity (3.4) is now inherited685

by θk
n in the limit passage, as M →∞, in (3.4).686

Refined positivity estimate for the discrete temperature, ad (3.5): Under the additional687

strict positivity (2.15) of H , arguing as in the above lines we infer that θk
n fulfills688 ∫

�

θk
nη dx + τn

∫
�

K(zk
n, θ

k
n )∇θk

n · ∇η dx ≥
∫
�

θk−1
n η dx +

∫
�

τn
(
H∗ − c̄

(
θk

n

)2 )
η dx689

for all η ∈ L∞(�) with η ≥ 0 a.e. in �, with c̄ > 0 the same constant as in (3.11). Hence,690

we compare θk
n with the solution ṽk ∈ R691

ṽk = ṽk−1+τn(H∗− c̄ ṽ2
k ) , k = 1, . . . , n , with ṽ0 := max

{
θ∗,

√
H∗/c̄

}
> 0 , (3.21)692

The very same arguments from [63, proof of Lemma 4.4], cf. also the previous discussion,693

allow us to show for all k = 0, . . . , n that θk
n (x) ≥ ṽk for almost all x ∈ �. Since ṽk >694

ṽk−1 − τnc̄ ṽ2
k , and ṽ0 ≥ v0 = θ∗, a comparison with the solution vk of the finite-difference695

equation (3.12) and induction over k yield that ṽk ≥ vk . Hence ṽk ≥ θ̃ > 0. We now aim to696

prove that697

ṽk ≥
√

H∗/c̄ for all k = 1, . . . , n . (3.22)698

We proceed by contradiction and suppose that H∗ > c̄ ṽ2
k̄

for a certain k̄ ∈ {1, . . . , n}. Then,699

we read from (3.21) that ṽk̄ > ṽk̄−1. Since ṽk̄−1 > 0, we then conclude that H∗ > c̄ ṽ2
k̄
>700

c̄ ṽ2
k̄−1

. Proceeding by induction, we thus conclude that H∗ > c̄ ṽ2
0 , which is a contradiction to701

(3.21). Therefore, (3.22) ensues. This concludes the existence proof for system (3.3b)–(3.3c).702

��703

3.2 Time-Discrete Version of the Energetic Formulation704

We now define the approximate solutions to the energetic formulation of the initial-boundary705

value problem for system (1.1) by suitably interpolating the discrete solutions (uk
n, zk

n, θ
k
n )

n
k=1706

from Proposition 3.2. Namely, for t ∈ (tk−1
n , tk

n ], k = 1, . . . , n, we set707

un(t) := uk
n , θn(t) := θk

n , zn(t) := zk
n , (3.23a)708

un(t) := uk−1
n , θn(t) := θk−1

n , zn(t) := zk−1
n , (3.23b)709

710

and we also consider the piecewise linear interpolants, defined by711

un(t) := t−tk−1
n
τn

uk
n + tk

n−t
τn

uk−1
n , zn(t) := t−tk−1

n
τn

zk
n + tk

n−t
τn

zk−1
n , θn(t) := t−tk−1

n
τn

θk
n + tk

n−t
τn
θk−1

n .

(3.23c)712

In what follows, we shall understand the time derivative of the piecewise linear interpolant713

un to be defined also at the nodes of the partition by714

u̇n(t
k
n ) := uk

n−uk−1
n

τn
, for k = 1, . . . , n . (3.23d)715

This will allow us, for instance, to state (3.27) for all t ∈ [0, T ]. We also introduce the716

piecewise constant and linear interpolants of the discrete data ( f k
n , Hk

n , hk
n)

n
k=1 in (3.1) by717

setting for t ∈ (tk−1
n , tk

n ]718

f n(t) := f k
n , Hn(t) := Hk

n , hn(t) := hk
n ,719
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and fn(t) := t−tk−1
n
τn

f k
n + tk

n−t
τn

f k−1
n with time derivative ḟn(t) := f k

n − f k−1
n

τn
. It follows720

from (2.8) that, as n→∞,721

f n → f in L p(0, T ; H1
D(�;Rd)∗) for all 1 ≤ p <∞ ,722

f n
∗
⇀ f in L∞(0, T ; H1

D(�;Rd)∗) , (3.24a)723

f n(t)→ f (t) in H1
D(�;Rd)∗ for all t ∈ [0, T ] , (3.24b)724

fn ⇀ f in H1(0, T ; H1
D(�;Rd)∗) , (3.24c)725

Hn → H in L1(0, T ; L1(�)) ∩ L2(0, T ; H1(�)∗) ,726

hn → h in L1(0, T ; L2(∂�)) . (3.24d)727
728

Finally, we consider the piecewise constant interpolants associated with the partition, i.e.,729

τ n(t) := tk
n and τ n(t) := tk−1

n for t ∈ (tk−1
n , tk

n ] .730

In Proposition 3.3 we show that the approximate solutions introduced above indeed fulfill731

the discrete version of the energetic formulation from Definition 2.3. In order to check the732

discrete momentum equation (3.27b) and (3.27e), we shall make use of the following discrete733

by-part integration formula, for every (rk)
n
k=1 ⊂ X and (sk)

n
k=1 ⊂ X∗, with X a given Banach734

space:735

n∑
k=1

〈sk, rk − rk−1〉X = 〈sn, rn〉X − 〈s0, r0〉X −
n∑

k=1

〈sk − sk−1, rk−1〉X . (3.25)736

In the discrete mechanical energy inequality (3.27c) below, the mechanical energy E will be737

replaced by738

En(t, u, z) :=
∫
�

(
1
2 C(z)e(u) : e(u)+ τn

γ
|e(u)|γ

)
dx+G(z,∇z)− 〈

f n(t), u
〉
H1

D(�;Rd )
with τn = T

n .

(3.26)739

Proposition 3.3 (Time-discrete version of the energetic formulation (2.12) & total energy740

inequality) Let the assumptions of Theorem 2.6 hold true. Then the interpolants of the time-741

discrete solutions (un, un, un, zn, zn, zn, θn, θn, θn) obtained via Problem 3.1 and (3.23)742

satisfy the following properties:743

• unidirectionality: for a.a. x ∈ �, the functions zn(·, x) : [0, T ] → [0, 1] are nonincreas-744

ing;745

• discrete semistability: for all t ∈ [0, T ]746

∀ z̃ ∈ Z : En(t, un(t), zn(t)) ≤ En(t, un(t), z̃)+ R1(z̃ − zn(t)) ; (3.27a)747

• discrete formulation of the momentum equation: for all t ∈ [0, T ] and for every (n +748

1)-tuple (vk
n)k=0,...,n ⊂ W 1,γ

D (�;Rd), setting vn(s) := vk
n and vn(s) := s−tk−1

n
τn

vk
n +749

tk
n−s
τn
vk−1

n for s ∈ (tk−1
n , tk

n ],750

123

Journal: 10884-JODY Article No.: 9666 TYPESET DISK LE CP Disp.:2018/5/5 Pages: 54 Layout: Small



R
ev

is
ed

Pr
oo

f

J Dyn Diff Equat

ρ

∫
�

(u̇n(t) · vn(t)− u̇0 · vn(0)) dx − ρ
∫ τ n(t)

0

∫
�

u̇n(s−τn) · v̇n(s) dx ds

+
∫ τ n(t)

0

∫
�

(
D(zn, θn)e(u̇n)+ C(zn)e(un)− θn B+ τn |e(un)|γ−2e(un)

) : e(vn) dx ds

=
∫ τ n(t)

0

〈
f n, vn

〉
H1

D(�;Rd )
ds ,

(3.27b)751

where we have extended un to (−τn, 0] by setting un(t) := u0
n + t u̇0;752

• discrete mechanical energy inequality: for all t ∈ [0, T ]753

ρ
2

∫
�

|u̇n(t)|2 dx + En(t, un(t), zn(t))+
∫
�

(z0−zn(t)) dx

+
∫ τ n(t)

0

∫
�

(
D(zn, θn)e(u̇n)−θn B

) : e(u̇n) dx ds

≤ ρ
2

∫
�

|u̇0|2 dx + En(0, u0
n, z0)−

∫ τ n(t)

0

〈
ḟn, un

〉
H1

D(�;Rd )
ds ;

(3.27c)754

• discrete total energy inequality: for all t ∈ [0, T ]755

ρ
2

∫
�

|u̇n(t)|2 dx + En(t, un(t), zn(t))+
∫
�

θn(t) dx

≤ ρ
2

∫
�

|u̇0|2 dx + En(0, u0
n, z0)+

∫
�

θ0 dx

−
∫ τ n(t)

0

〈
ḟn, un

〉
H1

D(�;Rd )
ds+

∫ τ n(t)

0

[∫
∂�

hn dHd−1(x)+
∫
�

Hn dx

]
ds;

(3.27d)756

• discrete formulation of the heat equation: for all t ∈ [0, T ] and for every (n + 1)-757

tuple (ηk
n)

n
k=0 ⊂ H1(�), setting ηn(s) := ηk

n and ηn(s) := s−tk−1
n
τn

ηk
n + tk

n−s
τn
ηk−1

n for758

s ∈ (tk−1
n , tk

n ],759 ∫
�

θn(t)ηn(t) dx −
∫
�

θ0ηn(0) dx −
∫ τ n(t)

0

∫
�

θn(s)η̇n(s) dx ds

+
∫ τ n(t)

0

∫
�

(
K(zn, θn)∇θn

) · ∇ηn dx ds

=
∫ τ n(t)

0

∫
�

ηn |żn | dx ds
∫ τ n(t)

0

∫
�

(
D(zn, θn)e(u̇n)− θn B

) : e(u̇n) ηn dx ds

+
∫ τ n(t)

0

[∫
∂�

hn ηn dHd−1(x)+ 〈
Hn, ηn

〉
H1(�)

]
ds .

(3.27e)760

Proof The discrete momentum and heat equations (3.27b) and (3.27e) follow from testing761

(3.3b) and (3.3c) by the discrete test functions (vk
n)

n
k=0 ⊂ W 1,γ

D (�;Rd) and (ηk
n)

n
k=0 ⊂762

H1(�), respectively, and applying the discrete by-part integration formula (3.25). From the763

discrete minimum problem (3.3a) we infer764

E(tk
n , uk−1

n , zk
n) ≤ E(tk

n , uk−1
n , z̃)+

∫
�

(zk−1
n − z̃) dx765

−
∫
�

(zk−1
n − zk

n) dx ≤ E(tk
n , uk−1

n , z̃)+
∫
�

(zk
n − z̃) dx766
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for all z̃ ∈ Z with z̃ ≤ zk−1
n . By (3.3a) and the definition of the dissipation R1 we have767

zk
n ≤ zk−1

n , whence the unidirectionality and the discrete semistability (3.27a) hold.768

To deduce the mechanical energy inequality (3.27c) we choose zk−1
n as a competitor in769

(3.3a) and get770

∫
�

(zk−1
n − zk

n) dx +
∫
�

(
1
2 C(zk

n)e(u
k−1
n ) : e(uk−1

n )+ G(zk
n,∇zk

n)
)

dx

≤
∫
�

(
1
2 C(zk−1

n )e(uk−1
n ) : e(uk−1

n )+ G(zk−1
n ,∇zk−1

n )
)

dx .
(3.28)771

Moreover, we test (3.3b) by v = uk
n − uk−1

n . To this aim, we observe that by convexity (3.6)772

ρ

∫
�

uk
n−2uk−1

n +uk−2
n

τ 2
n

· (uk
n−uk−1

n ) dx ≥ ρ

∫
�

(
1
2

∣∣uk
n−uk−1

n

∣∣2
τ 2

n
− 1

2

∣∣uk−1
n −uk−2

n

∣∣2
τ 2

n

)
dx , (3.29a)773 ∫

�

C(zk
n)e(u

k
n) : (e(uk

n)−e(uk−1
n )) dx ≥

∫
�

1
2

(
C(zk

n)e(u
k
n) : e(uk

n)−C(zk
n)e(u

k−1
n ) : e(uk−1

n )
)

dx ,

(3.29b)

774

∫
�

τn |e(uk
n)|γ−2e(uk

n) : (e(uk
n)−e(uk−1

n )) dx ≥
∫
�

(
τn
γ
|e(uk

n)|γ − τn
γ
|e(uk−1

n )|γ
)

dx . (3.29c)775

776

Further, let t ∈ (0, T ] be fixed, and let 1 ≤ j ≤ n fulfill t ∈ (t j−1
n , t j

n ]. We sum (3.29a)–777

(3.29c) over the index k = 1, . . . , j . Applying the by-part integration formula (3.25) we778

conclude that779

j∑
k=1

〈
f k
n , uk

n − uk−1
n

〉
H1

D(�;Rd )
=
∫ τ n(t)

0

〈
f n, u̇n

〉
H1

D(�;Rd )
ds

= 〈
f n(t), un(t)

〉
H1

D(�;Rd )
− 〈 f (0), u0〉H1

D(�;Rd )−
∫ τ n(t)

0

〈
ḟn, un

〉
H1

D(�;Rd )
ds .

(3.30)780

All in all we infer781

ρ
2

∫
�

|u̇n(t)|2 dx +
∫ τ n(t)

0

∫
�

(
D(zn, θn) e (u̇n)−θn B

) : e(u̇n) dx ds

+
∫
�

1
2 C(zn(t))e(un(t)) : e(un(t)) dx +

∫
�

τn
γ
|e(un(t))|γ dx − 〈

f n(t), un(t)
〉
H1

D(�;Rd )

≤ ρ
2

∫
�

|u̇0|2 dx +
∫
�

τn
γ
|e(u0)|γ dx − 〈 f (0), u0〉H1

D(�;Rd )−
∫ τ n(t)

0

〈
ḟn, un

〉
H1

D(�;Rd )
ds

+
j∑

k=1

∫
�

1
2 C(zk

n)e(u
k−1
n ) : e(uk−1

n ) dx .

782

We add the above inequality to (3.28), summed over k = 1, . . . , j . Observing the cancelation783

of the term
∑ j

k=1

∫
�

1
2 C(zk

n)e(u
k−1
n ) : e(uk−1

n ) dx , we conclude (3.27c).784

Finally, the discrete total energy inequality ensues from adding the discrete mechanical785

energy inequality (3.27c) with the discrete heat equation (3.3c), tested for η = τn and added786

up over k = 1, . . . , j . We observe the cancelation of some terms, and readily conclude787

(3.27d). ��788
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3.3 A Priori Estimates789

The following result collects a series of a priori estimates on the approximate solutions,790

uniform with respect to n ∈ N. Let us mention in advance that, in its proof we will start from791

the discrete total energy inequality (3.27d) and derive estimates (3.32a), (3.32b), (3.32d),792

(3.32h), for un, u̇n, zn , as well as estimate (3.32i) below for ‖θn‖L∞(0,T ;L1(�)). The next793

crucial step will be to obtain a bound for the L2(0, T ; H1(�))-norm of θn . For this, we will794

make use of a technique developed in [23], cf. also [63]. Namely, we will test the discrete795

heat equation (3.3c) by (θk
n )
α−1, with α ∈ (0, 1). Exploiting the concavity of the function796

F(θ) = θα/α, we will deduce that797

∫ T

0

∫
�

K
(
zn, θn

)∇(θ α/2n

) · ∇(θ α/2n

)
dx dt +

∫
�

θα0
α

dx ≤
∫
�

θ
α
n (T )
α

dx + C
∫ T

0

∫
�

θ
α+1
n (t) dx dt ,798

where the positive and quadratic terms on the right-hand side of (3.3c) have been confined to799

the left-hand side and thus can be neglected. Hence, relying on the growth (2.6b) of K, we will800

end up with an estimate for θ
α/2
n in L2(0, T ; H1(�)), from which we will ultimately infer801

the desired bound (3.32j), whence (3.32k) by interpolation. We will be then in a position to802

exploit the mechanical energy inequality in order to recover the dissipative estimate (3.32c).803

Estimate (3.32l) will finally ensue from a comparison in (3.3c).804

In the following proof we will also use the concave counterpart to inequality (3.6), namely805

that for any concave (differentiable) function ψ : R→ (−∞,+∞]806

ψ(x)− ψ(y) ≤ ψ ′(y)(x−y) for all x, y ∈ dom(ψ) . (3.31)807

Proposition 3.4 (A priori estimates) Let the assumptions of Theorem 2.6 hold true and808

consider a sequence (un, un, un, zn, zn, θn, θn, θn)n complying with Proposition 3.3. Then809

there exists a constant C > 0 such that the following estimates hold uniformly with respect810

to n ∈ N:811

‖un‖L∞(0,T ;H1
D(�;Rd )) ≤ C , (3.32a)812

τ
1/γ
n ‖un‖L∞(0,T ;W 1,γ

D (�;Rd ))
≤ C , (3.32b)813

‖un‖H1(0,T ;H1
D(�;Rd )) ≤ C , (3.32c)814

‖u̇n‖L∞(0,T ;L2(�;Rd )) ≤ C , (3.32d)815

‖u̇n‖BV([0,T ];W 1,γ
D (�;Rd )∗) ≤ C , (3.32e)816

R1(zn(T )− z0) ≤ C , (3.32f)817

‖zn‖L∞((0,T )×�) ≤ 1 , (3.32g)818

‖zn‖L∞(0,T ;W 1,q (�)) ≤ C , (3.32h)819 ∥∥θn
∥∥

L∞(0,T ;L1(�))
≤ C , (3.32i)820 ∥∥θn

∥∥
L2(0,T ;H1(�))

≤ C , (3.32j)821

∥∥θn
∥∥

L p((0,T )×�) ≤ C for any p ∈
{ [1, 8/3] if d=3 ,
[1, 3] if d=2 ,

(3.32k)822 ∥∥θn
∥∥

BV([0,T ];W 1,∞(�)∗) ≤ C , (3.32l)823
824

where R1 is from (2.10).825
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Observe that estimate (3.32c) implies (3.32a), and that (3.32k) is a consequence of (3.32i) and826

(3.32j). Nonetheless, we have chosen to highlight (3.32a) and (3.32k) for ease of exposition,827

both in the proof of Proposition 3.4 and for the compactness arguments of Proposition 4.1.828

Proof Estimate (3.32f) follows from (2.5a), (2.7a), the definition of R1, and the monotonicity829

of zn and zn . We divide the proof of the other estimates in subsequent steps.830

First a priori estimates, ad (3.32a), (3.32b), (3.32d), (3.32g), (3.32h), (3.32i): We start831

from the discrete total energy inequality (3.27d). For its left-hand side, we observe that the832

first and the third term are nonnegative. For the second one, we use that, in view of (2.3d),833

(2.5d), and (2.8a), we have834

En(t, un(t), zn(t)) ≥ C1
C

∫
�

|e(un(t))|2 dx + C1
G

∫
�

|∇zn(t)|q dx + τn
γ

∫
�

|e(un(t))|γ dx

− ∥∥ f n

∥∥
L∞(0,T ;H1

D(�;Rd )∗)‖un(t)‖H1
D(�;Rd ) − C

≥ C

(
‖un(t)‖2

H1
D(�;Rd )

+ τn‖un(t)‖γ
W 1,γ

D (�;Rd )
+ ‖zn(t)‖q

W 1,q (�)

)
− C ,

(3.33)835

for almost all t ∈ (0, T ), where we have also used Poincaré’s and Korn’s inequal-836

ities. Concerning the right-hand side of (3.27d), we use that |∂tEn(t, un(t), zn(t))| ≤837

‖ ḟn‖H1
D(�;Rd )∗‖un(t)‖H1

D(�;Rd ) for almost all t ∈ (0, T ). The remaining terms on the right-838

hand side are bounded, uniformly with respect to n ∈ N, in view of the properties of the839

initial and given data (2.7) and (3.2), and of (3.24d). All in all, from (3.27d) we deduce840

C‖un(t)‖2
H1

D(�;Rd )
≤ C + 1

2

∫ τ n(t)

0
‖un(s)‖2

H1
D(�;Rd )

ds + 1
2

∫ τ n(t)

0

∥∥ ḟn
∥∥2

H1
D(�;Rd )∗ ds .841

Also in view of the bounds on ḟn by (3.24c), estimate (3.32a) then follows from the Gronwall842

Lemma. As a by-product, we conclude that843

∫ τ n(t)

0
|∂tEn(s, un(s), zn(s))| ds ≤ C

∫ τ n(t)

0

∥∥ ḟn(s)
∥∥

H1
D(�;Rd )∗ ds ≤ C . (3.34)844

Inserting this into (3.27d) we also infer estimates (3.32d), (3.32i), and that845

|En(t, un(t), zn(t))| ≤ C for a constant independent of n ∈ N and t ∈ (0, T ). This implies846

(3.32b) and the first estimate in (3.32h) via (3.33). Then the second estimate in (3.32h)847

immediately follows from the very definition of the interpolants (3.23). Moreover, (3.32g) is848

a direct consequence of the boundedness of the energy, which implies zn, zn ∈ [0, 1] a.e. in849

�, for a.e. t ∈ (0, T ).850

Second a priori estimate: We fix α ∈ (0, 1). Exploiting that θk
n ≥ θ̃ > 0, we may test851

(3.3c) by (θk
n )
α−1, thus obtaining852

4(1−α)
α2

∫
�

K(zk
n, θ

k
n )∇(θk

n )
α/2 · ∇(θk

n )
α/2 dx +

∫
�

D(zk
n)e

( uk
n−uk−1

n
τ

) : e( uk
n−uk−1

n
τ

)
(θk

n )
α−1 dx

+
∫
�

zk−1
n −zk

n
τ

(θk
n )
α−1 dx +

〈
Hk

n , (θ
k
n )
α−1

〉
H1(�)

+
∫
∂�

hk
n(θ

k
n )
α−1 dHd−1

=
∫
�

θk
n−θk−1

n
τ

(θk
n )
α−1 dx +

∫
�

θk
n B : e( uk

n−uk−1
n

τ

)
(θk

n )
α−1 dx

.= I1 + I2 ,

(3.35)853

123

Journal: 10884-JODY Article No.: 9666 TYPESET DISK LE CP Disp.:2018/5/5 Pages: 54 Layout: Small



R
ev

is
ed

Pr
oo

f

J Dyn Diff Equat

where we used that854

K(zk
n, θ

k
n )∇θk

n · ∇(θk
n )
α−1 = (α − 1)(θk

n )
α−2

K(zk
n, θ

k
n )∇θk

n · ∇θk
n855

= 4(α−1)
α2 K(zk

n, θ
k
n )∇(θk

n )
α/2 · ∇(θk

n )
α/2

856

and moved the term
∫
�

K(zk
n, θ

k
n )∇θk

n∇(θk
n )
α−1 dx to the opposite side. It follows from (3.31)857

with ψ(x) := xα
α

that858

I1 ≤
∫
�

ψ(θk
n ) dx −

∫
�

ψ(θk−1
n ) dx ,859

whereas we estimate I2 by860

I2 ≤ C1
D

2

∫
�

∣∣∣e( uk
n−uk−1

n
τ

)∣∣∣2 (θk
n )
α−1 dx + C

∫
�

|θk
n |2(θk

n )
α−1 dx

.= I3 + I4 ,861

where C1
D

from (2.3e) is such that
∫
�

D(zk
n)e

( uk
n−uk−1

n
τ

) : e
( uk

n−uk−1
n

τ

)
(θk

n )
α−1 dx on the left-862

hand side of (3.35) is bounded from below by C1
D

∫
�

∣∣∣e( uk
n−uk−1

n
τ

)∣∣∣2 (θk
n )
α−1 dx , which in863

turn dominates I3. Taking into account that the second, the third and the fourth integrals on864

the left-hand side of (3.35) are nonnegative also thanks to (2.8b) and summing up over the865

index k, we end up with866

4(1−α)
α2

∫ τ n(t)

0

∫
�

K
(
zn, θn

)∇(θα/2n

) · ∇(θα/2n

)
dx ds +

∫
�

θα0
α

dx867

≤
∫
�

θn(t)α

α
dx + C

∫ τ n(t)

0

∫
�

θn(t)
α+1 dx ds . (3.36)868

Since α ∈ (0, 1) and θk
n ≥ θ̃ > 0, we have869 ∫

�

θn(t)α

α
dx ≤ 1

α

∫
�

θn(t) dx + C ≤ C ,870

where the latter estimate follows by (3.32i). From (2.6b) we deduce that871 ∫ τ n(t)

0

∫
�

K
(
zn, θn

)∇(θα/2n

) · ∇(θα/2n

)
dx ds ≥ c1

∫ τ n(t)

0

∫
�

(
θn
)κ |∇(θα/2n

)|2 dx ds

= C
∫ τ n(t)

0

∫
�

∣∣(θn
)κ+α−2∣∣∣∣∇θn

∣∣2 dx ds = C
∫ τ n(t)

0

∫
�

|∇(θ(κ+α)/2n

)|2 dx ds .

(3.37)872

In order to clarify the estimate for the second term on the right-hand side of (3.36), we now873

use the placeholder874

wn := (θn)
(κ+α)/2 ,875

so that (θn)
α+1 = (wn)

2(α+1)/(α+κ). Hence, neglecting the (positive) second term on the876

left-hand side of (3.36), we infer877 ∫ τ n(t)

0

∫
�

|∇wn |2 dx ds ≤ C + C
∫ τ n(t)

0

∫
�

|wn |ω dx ds with ω = 2 α+1
α+κ . (3.38)878

We now proceed exactly in the same way as in [23], cf. also [63]. Namely, the Gagliardo-879

Nirenberg inequality for d=3 (for d=2 even better estimates hold true) yields880

‖wn‖Lω(�) ≤ C‖∇wn‖σL2(�;Rd )
‖wn‖1−σ

Lr (�) + C ′‖wn‖Lr (�)881
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for suitable constants C and C ′, and for 1 ≤ r ≤ ω and σ satisfying 1/ω = σ/6+ (1−σ)/r .882

Hence σ = 6(ω − r)/ω(6− r). Observe that σ ∈ (0, 1) since ω = 2(α + 1)/(α + κ) < 6,883

which is satisfied because κ > 1. Hence we transfer the Gagliardo-Nirenberg estimate into884

(3.38) and use Young’s inequality in the estimate of the term885

C
∫ τ n(t)

0
‖∇wn‖ωσL2(�;Rd )

‖wn‖ω(1−σ)Lr (�) ds886

≤ 1
2

∫ τ n(t)

0
‖∇wn‖2

L2(�;Rd )
ds887

+C ′
∫ τ n(t)

0
‖wn‖2ω(1−σ)/(2−ωσ)

Lr (�) ds .888

In the previous inequality we have used the fact that ωσ < 2, which holds since ω < 2 and889

σ < 1 by (3.38). The term 1
2

∫ τ n(t)
0 ‖∇wn‖2

L2(�;Rd )
ds may be absorbed into the left-hand890

side of (3.38). All in all, we conclude891 ∫ τ n(t)

0

∫
�

|∇wn |2 dx ds ≤ C +C
∫ τ n(t)

0
‖wn‖2ω(1−σ)/(2−ωσ)

Lr (�) ds +C ′
∫ τ n(t)

0
‖wn‖ωLr (�) ds .

(3.39)892

Now, let us choose893

1 ≤ r ≤ 2/(α+κ).894

Then, we have for almost all t ∈ (0, T ) that895

‖wn(t)‖Lr (�) =
(∫

�

(
θn(t)

)r(κ+α)/2 dx

)1/r

=
(∫

�

θn(t) dx

)1/r

≤ C (3.40)896

for a constant independent of t , where again we have used estimate (3.32i). Observe that,897

since we have previously imposed κ + α − 2 ≥ 0, we ultimately find that (3.40) must hold898

for r = 1 and that, moreover, α = 2− κ ∈ (2− κd , 1), with κd = 5/3 if d=3 and κd = 2 if899

d=2, so that wn = θn . From (3.39)–(3.40) we then infer900 ∫ τ n(t)

0

∫
�

∣∣∇θn
∣∣2 dx ds ≤ C . (3.41)901

Third a priori estimate, ad (3.32j) and (3.32k): From (3.41) we deduce (3.32j) in view902

of the previously obtained (3.32i) via Poincaré’s inequality. Estimate (3.32k) ensues by903

interpolation between L2(0, T ; H1(�)) and L∞(0, T ; L1(�)), relying on (3.32j) and (3.32i)904

and exploiting the Gagliardo-Nirenberg inequality. For later convenience, let us also point905

out that, we indeed recover the following bound906 ∥∥(θn)
(κ+α)/2∥∥

L2(0,T ;H1(�))
≤ C (3.42)907

for arbitrary α ∈ (0, 1). For this, it is sufficient to observe that second term on the right-hand908

side of (3.36) now fulfills
∫ τ n(t)

0

∫
�
θn(t)α+1 dx ds ≤ C thanks to estimate (3.32k). Then,909

by (3.37) we find that
∫ τ n(t)

0

∫
�
|∇(θ(κ+α)/2n

)|2 dx ds ≤ C , whence (3.42) via Poincaré’s910

inequality.911

Fourth a priori estimate, ad (3.32c) and (3.32e): From the discrete mechanical energy912

inequality (3.27c) we infer913

C1
D

∫ τ n(t)

0

∫
�

|e(u̇n)|2 dx ds ≤ C +
∫ τ n(t)

0

∫
�

θn B : e(u̇n) dx ds (3.43)914
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where we have used (3.33), (3.34), and the fact that the terms
∫
�
|u̇0|2 dx and E(0, u0

n, z0)915

are bounded, uniformly with respect to n ∈ N, in view of (2.7a) and (3.2). Exploiting the916

previously obtained estimate (3.32j) we find917 ∫ τ n(t)

0

∫
�

θn B : e(u̇n) dx dt ≤ C1
D

2

∫ τ n(t)

0

∫
�

|e(u̇n)|2 dx dt + C
∫ τ n(t)

0

∫
�

|θn |2 dx ds

≤ C1
D

2

∫ τ n(t)

0

∫
�

|e(u̇n)|2 dx dt + C .

918

Inserting this into (3.43) we conclude (3.32c) via Korn’s inequality, again exploiting the919

definition of the interpolants (3.23). Finally, estimate (3.32e) ensues from a comparison920

argument in (3.3b), taking into account the previously proven (3.32b), (3.32c), (3.32j), as921

well as (3.24a).922

Fifth a priori estimate, ad (3.32l): Let κ be as in (2.6). In (3.3c) we use a test function923

η ∈ W 1,∞(�), thus we find924 ∣∣∣∣
∫
�

θk
n−θk−1

n
τn

η dx

∣∣∣∣ ≤
∣∣∣∣
∫
�

K(zk
n, θ

k
n )∇θk

n · ∇η dx

∣∣∣∣+
∣∣∣∣ 〈RHSk

n, η
〉
W 1,∞(�)

∣∣∣∣ , (3.44)925

where the terms on the right-hand side of (3.3c) are summarized in RHSk
n . It follows from926

assumptions (2.3) and (2.8b) that927 ∣∣∣∣ 〈RHSk
n, η

〉
W 1,∞(�)

∣∣∣∣
≤ C

(∥∥∥e
(

uk
n−uk−1

n
τn

)∥∥∥2

L2(�;Rd×d )
+ ‖θk

n ‖2
L2(�)

+
∥∥∥ zk

n−zk−1
n

τn

∥∥∥
L1(�)

+‖hk
n‖L2(∂�) + ‖Hk

n ‖L1(�)

)
‖η‖L∞(�)

.= �k
n‖η‖L∞(�) .

(3.45)928

Furthermore, with (2.6) we find for every α ∈ (1/2, 1)929 ∣∣∣∣
∫
�

K(zk
n, θ

k
n )∇θk

n · ∇η dx

∣∣∣∣930

≤ ‖∇η‖L∞(�;Rd )c2‖((θk
n )
κ + 1)∇θk

n ‖L1(�;Rd )931

≤ ‖∇η‖L∞(�;Rd )c2

(
‖(θk

n )
(κ−α+2)/2‖L2(�)‖(θk

n )
(κ+α−2)/2∇θk

n ‖L2(�;Rd )932

+Ld(�)1/2‖∇θk
n ‖L2(�;Rd )

)
. (3.46)933

934

Inserting (3.45) and (3.46) into (3.44) and summing over the index k = 1, . . . , n, we find for935

every time-dependent function η ∈ C0([0, T ];W 1,∞(�)) that936 ∣∣∣∣∣
∫ τ n(t)

0

∫
�

θ̇n η dx ds

∣∣∣∣∣937

≤ C‖∇η‖L∞((0,T )×�;Rd )

(∥∥θn
∥∥(κ−α+2)/2

Lκ−α+2((0,T )×�)‖
(
θn
)(κ+α)/2‖L2(0,T ;H1(�))938

+ ∥∥∇θn
∥∥

L2((0,T )×�;Rd )

)
939

+ ‖η‖L∞((0,T )×�)
∫ τ n(t)

0
�n ds , (3.47)940

941

123

Journal: 10884-JODY Article No.: 9666 TYPESET DISK LE CP Disp.:2018/5/5 Pages: 54 Layout: Small



R
ev

is
ed

Pr
oo

f

J Dyn Diff Equat

where �n denotes the piecewise constant interpolant of the values (�k
n)k . Note that the942

estimate on ‖(θk
n )
(κ+α−2)/2∇θk

n ‖L2(�;Rd ) ensues from (3.37) and (3.42). Now, observe that943 ∥∥θn
∥∥(κ−α+2)/2

Lκ−α+2((0,T )×�) ≤ C944

thanks to (3.32k) if p = κ−α+2 satisfies the constraints in (3.32k). Recall that the parameter945

α for which (3.42) holds can be chosen arbitrarily close to 1. Therefore, such constraints for946

p = κ − α + 2 are valid since, by (2.6b), κ ∈ (1, κd) with κd = 5/3 if d=3 and κd = 2947

if d=2. Finally, it follows from (3.24d), (3.32c), (3.32f), and (3.32j) that
∫ T

0 �n dt ≤ C.948

Ultimately, from (3.47) we conclude (3.32l). ��949

4 Passage from Time-Discrete to Continuous950

Based on the a priori bounds deduced in Proposition 3.4, exploiting compactness results à la951

Aubin–Lions as well as a version of Helly’s selection principle, we are now in a position to952

extract a subsequence of solutions of the time-discrete problems converging to a limit triple953

(u, z, θ) in suitable topologies. In (4.1) below we have collected all of these convergences with954

some redundancies: for example, (4.1g) and (4.1i) imply (4.1h) and (4.1j), but the latter are955

stated for later reference. Subsequently, we will verify that the triple (u, z, θ) is an energetic956

solution of the time-continuous problem as stated in Definition 2.3.957

Proposition 4.1 (Convergence of the time-discrete solutions) Let the assumptions of Theo-958

rem 2.6 be satisfied. Then, there exists a triple (u, z, θ) : [0, T ] ×�→ R
d ×R× [0,∞) of959

regularity (2.11) such that for a.a. x ∈ � the function t �→ z(t, x) ∈ [0, 1] is nonincreasing,960

(2.14) holds, as well as (2.16) under the assumption (2.15), and there exists a subsequence961

of the time-discrete solutions (un, un, un, zn, zn, θn, θn)n from (3.23) such that962

un
∗
⇀ u in L∞(0, T ; H1

D(�;Rd)) , (4.1a)963

un ⇀ u in H1(0, T ; H1
D(�;Rd)) , (4.1b)964

u̇n
∗
⇀ u̇ in L∞(0, T ; L2(�;Rd)) , (4.1c)965

un(t), un(t) ⇀ u(t) in H1
D(�;Rd) for all t ∈ [0, T ] , (4.1d)966

u̇n(t) ⇀ u̇(t) in L2(�;Rd) for all t ∈ [0, T ] , (4.1e)967

zn , zn
∗
⇀ z in L∞(0, T ;W 1,q(�)) ∩ L∞((0, T )×�) , (4.1f)968

zn(t) ⇀ z(t) in W 1,q(�) for all t ∈ [0, T ] , (4.1g)969

zn(t)→ z(t) in Lr (�) for all r ∈ [1,∞) and for all t ∈ [0, T ] , (4.1h)970

zn(t) ⇀ z(t) in W 1,q(�) for all t ∈ [0, T ]\J , (4.1i)971

zn(t)→ z(t) in Lr (�) for all r ∈ [1,∞) and for all t ∈ [0, T ]\J , (4.1j)972

θn , θn ⇀ θ in L2(0, T ; H1(�)) , (4.1k)973

θn , θn , θn → θ in L2(0, T ; Y ) for all Y such that H1(�) � Y ⊂ W 2,d+δ(�)∗ ,
(4.1l)

974

θn , θn , θn → θ in L p((0, T )×�) for all p ∈
{ [1, 8/3) if d=3 ,
[1, 3) if d=2 ,

(4.1m)975

θn(t) ⇀ θ(t) in W 2,d+δ(�)∗ for all t ∈ [0, T ] , (4.1n)976
977
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The set J ⊂ [0, T ] appearing in (4.1i)–(4.1j) denotes the jump set of z ∈ BV([0, T ]; L1(�)).978

Finally,979

|żn | → |ż| in the sense of measures on [0, T ] ×� . (4.1o)980

Proof Convergence of the displacements: The convergences (4.1a), (4.1b), and (4.1c) follow981

by compactness from (3.32a), (3.32c), and (3.32d). As un(t) − un(t) = (t − tk
n )u̇n(t) and982

un(t)−un(t) = (t−tk−1
n )u̇n(t), we immediately deduce from (4.1b) that the sequences un , un ,983

and un have the same limit in L∞(0, T ; H1
D(�;Rd)), and the pointwise weak convergences984

(4.1d) ensue. Furthermore, due to estimate (3.32e), by compactness, there exists a further985

subsequence such that u̇n ⇀ u̇ in BV([0, T ];W 1,γ
D (�;Rd)∗) as well as u̇n(t) ⇀ u̇(t) in986

W 1,γ
D (�;Rd)∗ for all t ∈ [0, T ]. Thanks to (3.32d), arguing by contradiction and using that987

L2(�;Rd) is dense in W 1,γ
D (�;Rd)∗, we may also conclude that u̇n(t) ⇀ u̇(t) in L2(�;Rd)988

for all t ∈ [0, T ], i.e. (4.1e).989

Convergence of the damage variables: From estimates (3.32f) on the R1-total varia-990

tion of (zn)n (by monotonicity of zn), combined with (3.32h), a generalized version of991

Helly’s selection principle, cf. e.g. [51, Theorem 6.1], allows us to extract a subsequence992

such that zn(t) ⇀ z(t) and zn(t) ⇀ z(t) weakly in W 1,q(�) for all t ∈ [0, T ], and993

z, z ∈ L∞(0, T ;W 1,q(�)). Moreover, the limit functions z and z inherit the monotonic-994

ity in time from zn and zn , hence z, z ∈ BV([0, T ]; L1(�)), and their jump sets J995

and J are at most countable. Let t ∈ [0, T ]\(J ∪ J ) fixed. Then, by (3.23), for every996

n ∈ N we have zn(t − τn) = zn(t) and therefore as n→∞ we get z(t) = z(t). Let now997

t ∈ J ∪ J and let (t−j ) j
, (t+j ) j

⊂ [0, T ]\(J ∪ J ) be such that t−j ↗ t and t+j ↘ t .998

Since z and z coincide on [0, T ]\(J ∪ J ), we deduce that the left and the right limit satisfy999

z−(t) = lim j z(t−j ) = lim j z(t−j ) = z−(t) and z+(t) = lim j z(t+j ) = lim j z(t+j ) = z+(t).1000

Therefore J = J and the convergences (4.1f), (4.1g), (4.1i) hold. From this, using (3.32g)1001

we conclude that (4.1h) and (4.1j) hold true as well. In this line, we conclude by observing1002

that (4.1o) follows from the fact that
∫
�
(zn(0) − zn(T )) dx , i.e. the total variation of żn on1003

[0, T ] × �, converges to the total variation
∫
�
(z(0) − z(T )) dx of ż, also relying on the1004

argument from [57, Proposition 4.3, proof of (4.80)].1005

Convergence of the temperature variables: Due to estimate (3.32j) we have θn ⇀ θ1006

in L2(0, T ; H1(�)). Exploiting the definition of the interpolants (3.23), similarly to the1007

arguments for the damage variables, we conclude that also θn ⇀ θ in L2(0, T ; H1(�)),1008

thus (4.1k) is proven. From this, convergences (4.1l) and (4.1m) for (θn, θn)n follow by a1009

generalized Aubin–Lions Lemma, cf. [60, Corollary 7.9, p. 196], making use of the estimates1010

(3.32j), (3.32k), and (3.32l). Taking into account that |θn(t, x)| ≤ max{|θn(t, x)|, |θn(t, x)|}1011

for almost all (t, x) ∈ (0, T ) × �, (a generalized version of) the Lebesgue Theorem yields1012

convergence (4.1m) for (θn)n as well. All in all, we conclude the weak convergence (4.1k),1013

as well as (4.1l), for (θn)n . Convergence (4.1n) is a consequence of [51, Theorem 6.1]. The1014

positivity properties (2.14) and (2.16) (under the additional (2.15)) then follow from their1015

discrete analogues (3.4) and (3.5), respectively, combined with (3.32k). ��1016

The fact that the limit triple (u, z, θ) is an energetic solution of the limit problem will be1017

verified in Sects. 4.1–4.3 right below. For this, in Sect. 4.1, we first pass from time-discrete to1018

continuous in the weak momentum balance (3.27b) using suitably chosen time-discrete test1019

functions and deduce a time-continuous limit inequality for the mechanical energy balance1020

(3.26) by lower semicontinuity arguments. Secondly, in Sect. 4.2 we pass to the limit in the1021

semistability inequality (3.27a) using mutual recovery sequences. As a further step in Sect.1022

4.3 it has to be verified that the limit triple (u, z, θ) indeed satisfies the mechanical energy1023

balance as an equality by deducing the reverse inequality from the momentum balance and1024
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the semistability so far obtained. This result allows us to conclude the convergence of the1025

viscous dissipation terms, which, in turn, is crucial for the limit passage in the heat equation1026

(3.27e).1027

Altogether, these steps amount to the following1028

Proposition 4.2 (Energetic solution of the limit problem) Let the assumptions of Theo-1029

rem 2.6 be satisfied and let (u, z, θ) be a triple of regularity (2.11) obtained as a limit, in1030

the sense of convergences (4.1), of a sequence of solutions to Problem 3.1. Then, (u, z, θ) is1031

an energetic solution of the time-continuous problem (1.1), supplemented with the boundary1032

conditions (1.3), in the sense of Definition 2.3.1033

Proof The statement of the proposition follows directly by combining Propositions 4.3, 4.6,1034

and 4.9 and Theorem 4.5. ��1035

4.1 Limit Passage in the Momentum Balance and the Energy Inequalities1036

Based on the convergence properties (4.1) we now pass from time-discrete to time-continuous1037

in the weak momentum balance. By lower semicontinuity we will then carry out the limit1038

passage in the mechanical as well as in the total energy inequality and obtain their analogues1039

for the limit problem.1040

Let us mention in advance that, while the passage to the limit in most of the terms of the1041

momentum balance can be treated in a straightforward way by exploiting the convergence1042

properties (4.1), the quadratic terms arising from the stored elastic energy and the viscous1043

dissipation, which involve the state-dependent coefficients D(zn, θn) and C(zn), need special1044

attention. For these terms the limit will be deduced by exploiting the L∞-bounds (2.3) on C1045

and D and the dominated convergence theorem.1046

Proposition 4.3 (Limit passage in the weak momentum balance) Let the assumptions of1047

Theorem 2.6 be satisfied. Then, a limit triple (u, z, θ) extracted as in Proposition 4.1 solves1048

the time-continuous momentum balance (2.12b) at every t ∈ [0, T ]. In particular, it holds1049

u̇ ∈ H1(0, T ; H1
D(�;Rd)∗) ∩ C0

weak([0, T ]; L2(�;Rd)).1050

Proof Let v ∈ L2(0, T ; H1
D(�;Rd)) ∩ H1(0, T ; L2(�;Rd)) be a test function for (2.12b).1051

It follows from, e.g., [10, p. 56, Corollary 2] and [60, p. 189, Lemma 7.2], that for every1052

ε > 0 there exists1053

v� ∈ L2(0, T ;C1(�;Rd)) ∩ L2(0, T ; H1
D(�;Rd)) ∩ H1(0, T ; L2(�;Rd)) :

‖v − v�‖L2(0,T ;H1
D(�;Rd ))∩H1(0,T ;L2(�;Rd )) ≤ ε and v� = v on ∂D� in the trace sense.

(4.2)1054

In particular, v� ∈ L2(0, T ;W 1,γ (�;Rd)), with γ > 4 the same exponent as in the regular-1055

izing term −τndiv (|e(u)|γ−2e(u)) in time-discrete momentum balance (3.27b). Therefore,1056

the discrete test functions (v�)kn := 1
τn

∫ tk
n

tk−1
n

v�(s) ds for all k = 0, . . . , n fulfill (v�)kn ∈1057

W 1,γ (�;Rd), so that they are admissible test functions for (3.27b). We now consider the1058

piecewise constant and linear interpolants v�n and v�n of the elements ((v�)kn)
n
k=0. In view of1059

(4.2), it can be checked that1060

v�n → v� in L2(0, T ; H1
D(�;Rd)) and v�n → v� in H1(0, T ; L2(�;Rd)) ,

τ
1/γ
n ‖e(v�n)‖Lγ (0,T ;Lγ (�;Rd×d )) → 0 .

(4.3a)1061

Observe that (4.3a) implies1062

v�n(t)→ v∗(t) in L2(�;Rd) for all t ∈ [0, T ] . (4.3b)1063
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Using such sequences (v�n, v
�
n)n of interpolants of smooth, dense test functions, we can now1064

carry out the limit passage in (3.27b). By the convergence properties of the given data (3.24a)1065

and for the smooth test functions (4.3), together with the convergence results (4.1e), (4.1b)1066

and (4.1k) we immediately find1067

ρ

∫
�

(
u̇n(t)·v�n(t)− u̇0·v�n(0)

)
dx1068

−
∫ τ n(t)

0

(∫
�

(
ρu̇n(s−τn)·v̇�n − θn B : e(v�n)

)
dx − 〈

f n, v
�
n

〉
H1

D(�;Rd )

)
ds1069

−→ ρ

∫
�

(
u̇(t)·v�(t)− u̇0·v�(0)

)
dx1070

−
∫ t

0

(∫
�

(
ρu̇·v̇� − θ B : e(v�)) dx − 〈

f, v�
〉
H1

D(�;Rd )

)
ds .1071

1072

Moreover, the convergence of the term involving the γ -Laplacian follows from the estimate1073 ∣∣∣∣
∫ t

0

∫
�

τn |e(un)|γ−2e(un) : e(v�n) dx ds

∣∣∣∣1074

≤ τ
γ−1
γ

n ‖e(un)‖γ−1
Lγ ((0,T )×�;Rd×d )

τ

1
γ

n ‖e(v�n)‖Lγ ((0,T )×�;Rd×d ) → 0 ,1075

due to the uniform bound (3.32b) and the convergence of (v�n)n by (4.3).1076

Finally, in order to handle the remaining quadratic terms with state-dependent coefficients1077

in (3.27b), we will prove that1078 (
D(zn, θn)+ C(zn)

)
e(v�n)→

(
D(z, θ)+ C(z)

)
e(v�) strongly in L2((0, T )×�;Rd×d) .

(4.4)1079

Then, the convergence of the quadratic terms with state-dependent coefficients follows1080

from weak-strong convergence, using that both e(u̇n) ⇀ e(u̇) and e(un) ⇀ e(u) weakly1081

in L2(0, T ; L2(�;Rd×d)) by (4.1b). Now, to verify (4.4) we are going to apply the1082

dominated convergence theorem. For this, we observe that for a.e. t ∈ (0, T ) we have1083

|(D(zn(t), θn(t))+C(zn(t))
) : e(v�n(t))| → |(D(z(t), θ(t))+C(z(t))

) : e(v(t))| pointwise1084

a.e. in�, by assumption (2.3b) and since by convergence results (4.1j) and (4.1l) we can resort1085

to a subsequence (zn(t), zn(t), θn)n that converges pointwise a.e. in � for a.e. t ∈ (0, T ).1086

Moreover, by assumption (2.3) we find an integrable, convergent majorant, i.e.,1087 ∣∣(D(zn, θn)+ C(zn)
)
e(v�n)

∣∣ ≤ (C2
D
+ C2

C
)|e(v�n)| → (C2

D
+ C2

C
)|e(v�)|1088

pointwise a.e. in (0, T )×� and with respect to the strong L2((0, T )×�))-topology by (4.3).1089

Hence, a generalized version of the Dominated Convergence Theorem, cf. e.g., [55, Sect.1090

4.4, Theorem 19], yields (4.4). This concludes the limit passage in the momentum balance1091

for smooth test function as in (4.2). By density this result carries over to all test functions1092

v ∈ L2(0, T ; H1
D(�;Rd))∩ H1(0, T ; L2(�;Rd)). As by (4.1e) we have u̇(t) ∈ L2(�;Rd)1093

for every t ∈ [0, T ], we immediately deduce that (2.12b) holds true at all t ∈ [0, T ].1094

The last assertion follows from Remark 2.5. ��1095

Lemma 4.4 (Energy inequalities by lower semicontinuity) Let the assumptions of Theo-1096

rem 2.6 be satisfied and let (u, z, θ) be a limit triple given by Proposition 4.1. Then for every1097

t ∈ [0, T ] we have1098
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ρ
2

∫
�

|u̇(t)|2 dx + E(t, u(t), z(t))+
∫
�

(z(t)−z0) dx +
∫ t

0

∫
�

(D(z, θ)e(u̇)−θ B) : e(u̇) dx ds

≤ ρ
2

∫
�

|u̇0|2 dx + E(0, u0, z0)−
∫ t

0

〈
ḟ , v

〉
H1

D(�;Rd )
ds .

(4.5)1099

Proof It is enough to pass to the limit in (3.27c) taking into account (3.24b), (4.1d), (4.1e),1100

(4.1j), and (4.1l). ��1101

4.2 Limit Passage in the Semistability Inequality1102

In order to carry out the passage from time-discrete to continuous in the semistability inequal-1103

ity we follow the well-established method of circumventing a direct passage to the limit on the1104

left- and on the right-hand side of the semistability inequality (3.27a). Instead, it is enough1105

to prove a limsup inequality for the difference, cf. also [44,47], using a so-called mutual1106

recovery sequence. This procedure, which allows one to take advantage of some cancela-1107

tions in the regularizing terms for the internal variable G(z,∇z), has been already employed1108

in [44,67,68] in problems concerned with (fully) rate-independent, partial, isotropic and1109

unidirectional damage, featuring a W 1,q(�)-gradient regularization, with q>d in [44], any1110

q>1 in [68] as in the present context, and q=1 in [67]. In what follows, we verify that the1111

recovery sequence constructed in [68], where G(z,∇z) = |∇z|q , is also suited in our setting1112

of semistability with a general gradient term.1113

More precisely, let us fix t ∈ [0, T ] in the energy functionals En from (3.26), and a1114

sequence (vn, ζn)n ⊂ H1
D(�;Rd)× Z such that1115

vn ⇀ v weakly in H1
D(�;Rd) , ζn ⇀ ζ weakly in W 1,q(�) ,

En(t, vn, ζn) ≤ En(t, vn, ζ̂ )+ R1(ζ̂ − ζn) for all ζ̂ ∈ Z ,
(4.6)1116

i.e., ζn is semistable for En(t, vn, ·). Given ζ̃ ∈ Z let the recovery sequence (ζ̃n)n ⊂ Z be1117

defined by1118

ζ̃n := min
{
ζn,max{(ζ̃ − δn, 0)}} =

⎧⎪⎨
⎪⎩
(ζ̃ − δn) on An =

{
0 ≤ (ζ̃ − δn) ≤ ζn

}
,

ζn on Bn =
{
ζ̃ − δn > ζn

}
,

0 on Cn =
{
ζ̃ − δn < 0

}
,

where δn := ‖ζn − ζ‖1/q
Lq (�) .

(4.7)1119

The sequence (ζ̃n)n was introduced in [68] where it was shown that1120

ζ̃n ⇀ ζ̃ in W 1,q(�) for q ∈ (1,∞) from (2.5d) fixed. (4.8)1121

Note however that strong convergence in W 1,q(�) cannot be expected, since ζn ⇀ ζ weakly1122

in W 1,q(�), only. This makes it impossible to show directly that G(ζ̃n,∇ ζ̃n) → G(ζ̃ ,∇ ζ̃ ),1123

since this would require the strong convergence of the gradients. Nevertheless the following1124

result holds.1125

Theorem 4.5 Let the assumptions of Theorem 2.6 be satisfied. Let t ∈ [0, T ] be fixed and1126

consider a sequence (vn, ζn)n ⊂ H1
D(�;Rd) × Z such that (4.6) holds. Given ζ̃ ∈ Z, let1127

(ζ̃n)n ⊂ Z as in (4.7). Then1128

0 ≤ lim sup
n→∞

(
En(t, vn, ζ̃n)−En(t, vn, ζn)+R1(ζ̃n−ζn)

)
≤ E(t, v, ζ̃ )−E(t, v, ζ )+R1(ζ̃−ζ ) .

(4.9)1129

123

Journal: 10884-JODY Article No.: 9666 TYPESET DISK LE CP Disp.:2018/5/5 Pages: 54 Layout: Small



R
ev

is
ed

Pr
oo

f

J Dyn Diff Equat

Therefore the limit ζ is semistable for E(t, v, ·).1130

Proof First of all note that, if ζ̃ ∈ Z does not satisfy 0 ≤ ζ̃ ≤ ζ , then (4.9) trivially holds,1131

since in this case R1(ζ̃ − ζ ) = +∞.1132

Assume now 0 ≤ ζ̃ ≤ ζ for a.e. x ∈ �. Let us estimate the left-hand side of (4.9) as1133

follows:1134

lim sup
n→∞

(
En(t, vn, ζ̃n)− En(t, vn, ζn)+ R1(ζ̃n − ζn)

)
1135

≤ lim sup
n→∞

∫
�

(C(ζ̃n)− C(ζn))e(vn) : e(vn) dx1136

+ lim sup
n→∞

(
G(ζ̃n,∇ ζ̃n)− G(ζn,∇ζn)

)+ lim sup
n→∞

R1(ζ̃n − ζn) (4.10)1137

1138

and then treat each of the terms on the right-hand side of (4.10) separately. Since ζn ⇀ ζ in1139

W 1,q(�), we may choose a (not relabeled) subsequence that converges pointwise a.e. in �.1140

Estimation of lim supn→∞
(
G(ζ̃n,∇ ζ̃n) − G(ζn,∇ζn)

)
: Note that G(ζ̃n,∇ ζ̃n) = G(ζn,1141

∇ζn) on Bn . If ‖ζn − ζ‖Lq (�) > 0, by Markov’s inequality1142

Ld(Bn) ≤ Ld([δn ≤ |ζn − ζ |]) ≤ 1
δn

∫
�

|ζn − ζ | dx ≤ 1
δn
‖ζn − ζ‖Lq (�) → 0 ,1143

with δn from (4.7), while for ‖ζn − ζ‖Lq (�) = 0 it is indeed Ld(Bn) = 0, thus1144

Ld(An ∪ Cn)→ Ld(�) . (4.11)1145

In what follows, XD will denote the characteristic function of a set D. By (2.5b), (2.5d) and1146

(4.7), we deduce1147

lim sup
n→∞

(
G(ζ̃n,∇ ζ̃n)− G(ζn,∇ζn)

)
1148

= lim sup
n→∞

∫
An

G((ζ̃ − δn),∇ ζ̃ ) dx +
∫

Cn

G(0, 0) dx −
∫

An∪Cn

G(ζn,∇ζn) dx1149

≤ lim sup
n→∞

( ∫
�

G(XAn (ζ̃ − δn),XAn∇ ζ̃ ) dx +
∫
�

G(0,XCn∇ ζ̃ ) dx1150

−
∫
�

G(XAn∪Cn ζn,XAn∪Cn∇ζn) dx
)

1151

= lim sup
n→∞

( ∫
�

G(XAn∪Cn (ζ̃n),XAn∪Cn∇ ζ̃ ) dx −
∫
�

G(XAn∪Cn ζn,XAn∪Cn∇ζn) dx
)

1152

≤ G(ζ̃ ,∇ ζ̃ )− lim inf
n→∞ G(XAn∪Cn ζn,XAn∪Cn∇ζn) (4.12a)1153

1154

1155 ≤ G(ζ̃ ,∇ ζ̃ )− G(ζ,∇ζ ), (4.12b)1156
1157

where in the second integral term in the third line we have used the obvious identity XCn 0 = 0.1158

To obtain (4.12a) we have used the dominated convergence theorem, while in order to prove1159

(4.12b) we employed the lower semicontinuity of G : Lq(�) × Lq(�;Rd) → R ∪ {∞},1160

since, by (4.8) and (4.11), we have XAn∪Cn ζn → ζ strongly in Lq(�) and XAn∪Cn∇ζn ⇀ ∇ζ1161

weakly in Lq(�;Rd).1162

Estimation of the remaining terms in (4.10): Since construction (4.7) ensures ζ̃n ≤ ζn1163

for every n ∈ N, as well as ζ̃n → ζ̃ in Lq(�), due to ζn → ζ in Lq(�), we immediately1164

conclude that R1(ζ̃n − ζn)→ R1(ζ̃ − ζ ).1165

We now estimate the difference of the quadratic terms in the mechanical energy. As ζ̃n ≤1166

ζn , by the monotonicity assumption (2.4) we have that (C(ζ̃n) − C(ζn))e(vn) : e(vn) ≤ 0.1167
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Since both ζn → ζ and ζ̃n → ζ̃ in Lq(�), the Lipschitz-continuity of C, cf. (2.3b), implies1168

that C(ζ̃n) − C(ζn) → (C(ζ̃ ) − C(ζ )) in Lq(�;Rd×d×d×d
sym ). Let us consider the auxiliary1169

functional C : Lq(�)× Lq(�)× L2(�;Rd×d)→ R defined by1170

C(ζ, ζ̃ , e) :=
∫
�

(C(ζ(x))− C(min{ζ(x), ζ̃ (x)}))e(x) : e(x) dx .1171

By e.g. [21, Theorem 7.5, p. 492] the functional C is lower semicontinuous with respect to1172

the strong convergence in Lq(�)× Lq(�) and the weak convergence in L2(�;Rd×d). Thus,1173

the first term on the right-hand side of (4.10) can be rewritten and estimated as follows, using1174

(3.32c) and the lower semicontinuity of C,1175

lim sup
n→∞

∫
�

(C(ζ̃n)− C(ζn))e(vn) : e(vn) dx ≤
∫
�

(C(ζ̃ )− C(ζ ))e(v) : e(v) dx .1176

1177

Combining the above established estimates for the three terms on the right-hand side of1178

(4.10) shows that condition (4.9) is satisfied. ��1179

4.3 Energy Equalities and Limit Passage in the Heat Equation1180

We now show that the limit triple (u, z, θ) satisfies the mechanical energy equality (2.12c).1181

The inequality (≤) has been proven in Lemma 4.4. The opposite inequality is found by1182

approximation with Riemann sums, as common in existence proofs of rate-independent and1183

rate-dependent evolutions, see e.g. [13].1184

Proposition 4.6 (Mechanical energy equality) Let the assumptions of Theorem 2.6 be satis-1185

fied, let (u, z, θ) be a triple given by Proposition 4.1, and let t ∈ [0, T ]. Then (2.12c) holds.1186

1187

Proof We fix a sequence of subdivisions (sk
n )0≤k≤kn

of the interval [0, t], with 0 = s0
n <1188

s1
n < · · · < skn−1

n < skn
n = t , limn maxk(sk

n − sk−1
n ) = 0, and1189

∣∣∣∣∣
kn∑

k=1

∫ sk
n

sk−1
n

∫
�

[
C(z(sk

n ))−C(z(s))
]

e(u(s)) : e(u̇(s)) dx ds

∣∣∣∣∣→ 0 . (4.13)1190

The existence of such a sequence is guaranteed by [27], see also [57, Proposition 4.3, Step1191

7]. Taking z(sk
n ) as test function in the time-continuous semistability inequality (2.12a) at1192

time sk−1
n we get1193

E(sk−1
n , u(sk−1

n ), z(sk−1
n ))1194

≤ E(sk−1
n , u(sk−1

n ), z(sk
n ))+

∫
�

(z(sk−1
n )−z(sk

n )) dx1195

= E(sk
n , u(sk

n ), z(sk
n ))+

∫
�

(z(sk−1
n )−z(sk

n )) dx −
∫ sk

n

sk−1
n

∂tE(s, u(s), z(s)) ds1196

+
∫ sk

n

sk−1
n

〈 f (s), u̇(s)〉H1
D(�;Rd ) ds −

∫ sk
n

sk−1
n

∫
�

C(z(sk
n ))e(u(s)) : e(u̇(s)) dx ds .1197

1198
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Next we sum up the previous inequality over k = 1, . . . , kn and we pass to the limit in n in1199

the last term thanks to (4.13), obtaining1200

E(0, u0, z0) ≤ E(t, u(t), z(t))+
∫
�

(z0−z(t)) dx −
∫ t

0
∂tE(s, u(s), z(s)) ds

+
∫ t

0
〈 f (s), u̇(s)〉H1

D(�;Rd ) ds −
∫ t

0

∫
�

C(z(s))e(u(s)) : e(u̇(s)) dx ds .

(4.14)1201

Further, thanks to Remark 2.5 we can test (2.12b) by u̇ and get1202

ρ
2 ‖u̇(t)‖2

L2(�;Rd )
+
∫ t

0

∫
�

(D(z, θ)e(u̇)+ C(z)e(u)− θ B) : e(u̇) dx ds

= ρ
2 ‖u̇0‖2

L2(�;Rd )
+
∫ t

0
〈 f, u̇〉H1

D(�;Rd ) ds ,

(4.15)1203

where we applied the by-part integration formula (2.13), as allowed by [60, Lemma 7.3].1204

Summing up (4.15) with (4.14) we obtain1205

E(0, u0, z0) ≤ E(t, u(t), z(t))+ ρ
2

∫
�

|u̇(t)|2 dx +
∫
�

(z0 − z(t)) dx1206

−
∫ t

0
∂tE(s, u(s), z(s)) ds1207

− ρ
2

∫
�

|u̇0|2 dx +
∫ t

0

∫
�

(D(z(s), θ(s))e(u̇(s))− θ(s)B) : e(u̇(s)) dx ds .1208

1209

Combining this estimate with the reverse inequality (4.5) concludes the proof of (2.12c). ��1210

In order to prove a stronger convergence of the displacements we shall repeatedly make1211

use of the following result. Given two constants C1,C2 with 0 < C1 ≤ C2, let TC1,C2 denote1212

the class of tensors A ∈ R
d×d×d×d that are symmetric, i.e.,1213

Ai jkl = A j ikl = Ai jlk = Akli j ,1214

positive definite and bounded:1215

C1 |A|2 ≤ A A : A ≤ C2 |A|2 for every A ∈ R
d×d
sym . (4.16)1216

1217

Lemma 4.7 Let Kn be the functional defined by1218

Kn(e) :=
∫ T

0

∫
�

An(t, x)e(t, x) : e(t, x) dx dt for every e ∈ L2((0, T )×�;Rd×d) ,1219

where An ∈ L∞((0, T )×�;TC1,C2) are such that1220

An(t, x)→ A∞(t, x) for a.e. t ∈ (0, T ) and a.e. x ∈ �, (4.17a)1221

en ⇀ e∞ weakly in L2((0, T )×�;Rd×d) , (4.17b)1222

1223 lim supn→∞Kn(en) ≤ K∞(e∞) , (4.17c)1224

and K∞ is defined by1225

K∞(e) :=
∫ T

0

∫
�

A∞(t, x)e(t, x) : e(t, x) dx dt for every e ∈ L2((0, T )×�;Rd×d) .1226
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Then, limn→∞Kn(en) = K∞(e∞) and1227

en → e∞ strongly in L2((0, T )×�;Rd×d) . (4.18)1228

Proof It is enough to observe that under the above hypotheses A∞ ∈ L∞((0, T )×�;TC1,C2)1229

and1230

Kn(en − e∞) =
∫ T

0

∫
�

An(t, x)(en(t, x)− e∞) : (en(t, x)− e∞(t, x)) dx dt

= Kn(en)− 2
∫ T

0

∫
�

An(t, x)e∞(t, x) : en(t, x) dx dt +Kn(e∞) .
1231

By (4.16) and (4.17a) we obtain lim supn Kn(en − e∞) ≤ 0. Since An(t, x) ∈ TC1,C2 we1232

have Kn(en − e∞) ≥ C1‖en − e∞‖2
L2((0,T )×�;Rd×d )

, so that (4.18) holds. ��1233

Thanks to the mechanical energy inequality proven above, we may deduce strong conver-1234

gence of the displacements, as provided in the following lemma.1235

Lemma 4.8 (Stronger convergences) Let the assumptions of Theorem 2.6 be satisfied and1236

let (u, z, θ) be a triple given by Proposition 4.1. Then1237

lim
n→∞

∫ T

0

∫
�

D(zn, θn)e(u̇n) : e(u̇n) dx dt =
∫ T

0

∫
�

D(z, θ)e(u̇) : e(u̇) dx dt (4.19)1238

and then1239

e(u̇n)→ e(u̇) strongly in L2((0, T )×�;Rd×d) . (4.20)1240

Proof By lower semicontinuity, taking into account the convergences already proven in1241

Proposition 4.1, together with both the discrete mechanical energy inequality (3.27c) and the1242

mechanical energy equality (2.12c), the following chain of inequalities holds:1243 ∫ T

0

∫
�

D(z, θ)e(u̇) : e(u̇) dx dt +
∫
�

(z0 − z(T )) dx1244

≤ lim inf
n

(∫ T

0

∫
�

D(zn, θn)e(u̇n) : e(u̇n) dx dt +
∫
�

(zn(0)−zn(T )) dx

)
1245

≤ lim sup
n

(∫ T

0

∫
�

D(zn, θn)e(u̇n) : e(u̇n) dx dt +
∫
�

(zn(0)−zn(T )) dx

)
1246

≤ lim sup
n

(
− En(T, un(T ), zn(T ))+ En(0, u0, z0)− ρ

2

∫
�

|u̇n(T )|2 dx + ρ
2

∫
�

|u̇0|2 dx1247

+
∫ T

0

∫
�

θn B : e(u̇n) dx dt +
∫ T

0
∂tEn(s, un, zn) ds

)
1248

≤ −E(T, u(T ), z(T )))+ E(0, u0, z0)− ρ
2

∫
�

|u̇(T )|2 dx + ρ
2

∫
�

|u̇0|2 dx1249

+
∫ T

0

∫
�

θ B : e(u̇) dx dt +
∫ T

0
∂tE(s, u, z) ds1250

=
∫ T

0

∫
�

D(z, θ)e(u̇) : e(u̇) dx dt +
∫
�

(z0−z(T )) dx .1251
1252

Hence all inequalities above are actually equalities and we deduce that (4.19) holds.1253
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Next, we apply Lemma 4.7 with An = D(zn, θn), A∞ = D(z, θ), en = e(u̇n), and1254

e∞ = e(u̇). Indeed, (4.17a) is obtained from the strong convergences (4.1j) and (4.1l) up to1255

the passage to a further subsequence converging pointwise; the weak convergence (4.17b) is1256

given in (4.1b), while (4.17c) is provided by (4.19). Therefore we deduce that (4.20) holds1257

(for the initial subsequence, since the limit is the same for all subsubsequences). ��1258

Finally, we pass to the limit in the heat equation.1259

Proposition 4.9 (Limit passage in the weak form of the heat equation) Let the assumptions of1260

Theorem 2.6 be satisfied, Let (u, z, θ) be a triple given by Proposition 4.1, and let t ∈ [0, T ].1261

Then the weak formulation of the heat equation (2.12d) holds.1262

Proof Let us fix η ∈ H1(0, T ; L2(�)) ∩ C0([0, T ];W 2,d+δ(�)), define ηk
n := η(tk

n ) for all1263

k = 0, . . . , n, and let ηn , ηn be the piecewise linear and constant interpolations of the values1264

(ηk
n). It can be checked that1265

ηn → η in L p(0, T ;W 2,d+δ(�)) for all 1 ≤ p <∞ ,

ηn
∗
⇀ η in L∞(0, T ;W 2,d+δ(�)) ,

ηn → η in H1(0, T ; L2(�)) ∩ C0(0, T ;W 2,d+δ(�)) .

(4.21)1266

We now pass to the limit in the discrete heat equation (3.27e) tested by ηn . The first three1267

integral terms on the left-hand side of (3.27e) can be dealt with combining convergences1268

(4.1l)–(4.1n) with (4.21). In order to pass to the limit in the fourth one, we argue along the1269

lines of [63, proof of Theorem 2.8] and derive a finer estimate for (K(zn, θn)∇θn)n . Indeed,1270

thanks to (2.6b) we have1271

|K(zn, θn)∇θn | ≤ c2(|θn |(κ−α+2)/2|θn |(κ+α−2)/2|∇θn | + |∇θn |) a.e. in (0, T )×�,1272

with α as in (3.37). From this particular estimate we also gather that |θn |(κ+α−2)/2|∇θn | is1273

bounded in L2((0, T ) × �). Since (θn)n is bounded in L8/3((0, T ) × �) if d=3 (and in1274

L3((0, T )×�) if d=2), choosing α ∈ (1/2, 1) such that κ − α < 2/3 (which can be done,1275

since κ < 5/3), we conclude that |θn |(κ−α+2)/2 is bounded in L2+δ((0, T ) × �) for some1276

δ > 0. All in all, we have that K(zn, θn)∇θn is bounded in L1+δ((0, T )×�;Rd) for some1277

δ > 0. With the very same arguments as in [63, proof of Theorem 2.8], we show that1278

K(zn, θn)∇θn ⇀ K(z, θ)∇θ in L1+δ((0, T )×�;Rd) ,1279

which, combined with convergences (4.21) for ηn , is enough to pass to the limit in the last1280

term on the left-hand side of (3.27e).1281

Combining (4.1b), (4.1m), and (4.21) yields
∫ τ n(t)

0

∫
�
θn B : e(u̇n) ηn dx ds → ∫ t

0

∫
�
θ B :1282

e(u̇) η dx ds as n→∞, while the passage to the limit in the term1283

∫ τ n(t)

0

∫
�

D(zn, θn)e(u̇n) : e(u̇n) ηn dx ds1284

results from (4.20) combined with (4.21). Convergence (4.1o) allows us to deal with the1285

second term on the right-hand side of (3.27e), and we handle the last two terms via (3.24d)1286

and (4.21), again. This concludes the proof of the weak heat equation and of the main existence1287

result Theorem 2.6. ��1288
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5 Asymptotic Behavior in the Slow Loading Regime: The Vanishing1289

Viscosity and Inertia Limit1290

In this section we address the limiting behavior of system (1.1) as the rate of the external1291

load and of the heat sources becomes slower and slower. Accordingly, we will rescale time1292

by a factor ε > 0. For analytical reasons we restrict to the case of a Dirichlet problem in the1293

displacement, namely within this section we shall suppose that1294

∂D� = ∂� . (5.1)1295

Like in the previous sections, we assume that the Dirichlet datum is homogeneous, cf. (1.3b).1296

As ε ↓ 0 we will simultaneously pass to1297

1. a rate-independent system for the limit displacement and damage variables (u, z), which1298

does not display any temperature dependence and which formally reads1299

− div C(z)e(u) = fV in (0, T )×�,1300

∂R1(ż)+ DzG(z,∇z)− div (DξG(z,∇z))+ 1
2 C
′(z)e(u) : e(u) � 0 in (0, T )×�1301

1302

and will be weakly formulated through the concept of local solution to a rate-independent1303

system;1304

2. a limit temperature θ = 
, which is constant in space, but still time-dependent. The limit1305

passage in the heat equation amounts to the trivial limit 0 = 0, once more emphasizing1306

that the limit system does not depend on temperature any more. A rescaling of the heat1307

equation at level ε, however, reveals that 
 evolves in time according to an ODE in the1308

sense of measures and the evolution is driven by the rate-independent dissipation and a1309

measure originating from the viscous dissipation.1310

Indeed, for the limit system we expect that, if a change of heat is caused at some spot in the1311

material, then the heat must be conducted all over the material with infinite speed, so that the1312

temperature is kept constant in space. This justifies a scaling of the tensor of heat conduction1313

coefficients for the systems at level ε. More precisely, we will suppose that1314

Kε(z, θ) := 1
εβ

K(z, θ) with K satisfying (2.6) and β > 0 . (5.2)1315

While Proposition 5.2 holds with β > 0, in Theorem 5.3 we shall require β ≥ 2.1316

5.1 Time Rescaling1317

Let us now set up the vanishing viscosity analysis following [56], where this analysis was1318

carried out for isothermal rate-independent processes in viscous solids, see also [15] in the1319

context of perfect plasticity and [58,66] for delamination, still in the isothermal case. We1320

consider a family ( fV,ε, Hε, hε)ε of data for system (1.1) and we rescale fV,ε, Hε, hε by1321

the factor ε > 0, hence we introduce1322

f ε(t) := fV,ε(εt) H ε(t) := Hε(εt) , hε(t) := hε(εt) for t ∈ [0, T
ε
] .1323

Theorem 2.6 guarantees that for every ε > 0 there exists an energetic solution (uε, zε, θε),1324

defined on [0, T
ε
], to (the Cauchy problem for) system (1.1) supplemented with the data1325

f ε, H ε, hε, and with the matrix of heat conduction coefficients Kε from (5.2). For later1326

convenience, let us recall that such solutions arise as limits of the time-discrete solutions to1327

Problem 3.1. We now perform a rescaling of the solutions in such a way as to have them1328
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defined on the interval [0, T ]. Namely, we set1329

uε(t) := uε( t
ε
) , zε(t) := zε( t

ε
) , θε(t) := θε( t

ε
) for t ∈ [0, T ] .1330

It is not difficult to check that, after transforming the time scale, the triple (uε, zε, θε) (for-1331

mally) solves the following system in (0, T )×�:1332

ε2ρüε − div
(
εD(zε, θε)e(u̇ε)+ C(zε)e(uε)− θε B

) = fε , (5.3a)1333

∂R1(żε)+ DzG(zε,∇zε)− div (DξG(zε,∇zε))+ 1
2 C
′(zε)e(uε) : e(uε) � 0 , (5.3b)1334

εθ̇ε − 1
εβ

div (K(zε, θε)∇θε) = εR1(żε)+ ε2
D(zε, θε)e(u̇ε) : e(u̇ε)1335

− εθε B : e(u̇ε)+ Hε , (5.3c)1336
1337

with the original data fε := fV,ε, Hε, and hε , and complemented with the boundary con-1338

ditions (1.3). Since in the following we will be interested in the limit of (5.3) as ε ↓ 0, for1339

notational simplicity we shall henceforth set ρ = 1 in (5.3a).1340

Energetic solutions for the rescaled system (5.4)–(5.9). For later reference in the limit passage1341

procedure as ε ↓ 0, we recall the defining properties of energetic solutions. Given a quadruple1342

of initial data (u0
ε, u̇0

ε, z0
ε , θ

0
ε ) satisfying (2.7), a triple (uε, zε, θε) is an energetic solution of1343

the Cauchy problem for the PDE system (5.3) if it has the regularity (2.11), it complies with1344

the initial conditions1345

uε(0) = u0
ε , u̇ε(0) = u̇0

ε , zε(0) = z0
ε , θε(0) = θ0

ε a.e. in �, (5.4)1346

and fulfills1347

• semistability and unidirectionality: for a.a. x ∈ �, zε(·, x) : [0, T ] → [0, 1] is nonin-1348

creasing and for all t ∈ [0, T ]1349

∀ z̃ ∈ Z , z̃ ≤ zε(t) : Eε(t, uε(t), zε(t)) ≤ Eε(t, uε(t), z̃)+ R1(zε(t)− z̃) , (5.5)1350

with the mechanical energy1351

Eε(t, u, z) :=
∫
�

( 1
2 C(z)e(u) : e(u)+ G(z,∇z)) dx − 〈 fε(t), u〉H1

D(�;Rd ) ; (5.6)1352

• weak formulation of the momentum equation: for all test functions v ∈ L2(0, T ; H1
D1353

(�;Rd)) ∩W 1,1(0, T ; L2(�;Rd)) and for all t ∈ [0, T ]1354

ε2
∫
�

u̇ε(t) · v(t) dx − ε2
∫ t

0

∫
�

u̇ε · v̇ dx dt

+
∫ t

0

∫
�

(εD(zε, θε)e(u̇ε)+ C(zε)e(uε)− θε B
) : e(v) dx ds

= ε2
∫
�

u̇0
ε · v(0) dx +

∫ t

0
〈 fε, v〉H1

D(�;Rd ) ds ;

(5.7)1355

• mechanical energy equality: for all t ∈ [0, T ]1356

ε2

2

∫
�

|u̇ε(t)|2 dx + Eε(t, uε(t), zε(t))+
∫
�

(z0
ε−zε(t)) dx

+
∫ t

0

∫
�

(εD(zε, θε)e(u̇ε)−θε B) : e(u̇ε) dx ds

= ε2

2

∫
�

∣∣u̇0
ε

∣∣2 dx + Eε(0, u0
ε, z0

ε)+
∫ t

0
∂tEε(s, u(s), z(s)) ds ;

(5.8)1357
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• weak formulation of the heat equation: for all t ∈ [0, T ]1358

ε 〈θε(t), η(t)〉W 2,d+δ −ε
∫ t

0

∫
�

θε η̇ dx ds + 1
εβ

∫ t

0

∫
�

K(θε, zε)∇θε · ∇η dx ds

= ε
∫
�

θ0
ε η(0) dx +

∫ t

0

∫
�

(
ε2

D(zε, θε)e(u̇ε) : e(u̇ε)− εθε B : e(u̇ε)
)
η dx ds

+ ε
∫ t

0

∫
�

η |żε| dx ds +
∫ t

0

∫
∂�

hε η dHd−1(x) ds +
∫ t

0

∫
�

Hε η dx ds

(5.9)1359

for all test functions η ∈ H1(0, T ; L2(�)) ∩ C0(0, T ;W 2,d+δ(�)) (recall that |żε|1360

denotes the total variation measure of zε).1361

Remark 5.1 Let us also observe that testing (5.9) by 1
ε

and summing up with (5.8) leads to1362

the rescaled total energy equality1363

ε2

2

∫
�

|u̇ε(t)|2 dx + Eε(t, uε(t), zε(t))+
∫
�

θε(t) dx

= ε2

2

∫
�

∣∣u̇0
ε

∣∣2 dx + Eε(0, u0
ε, z0

ε)+
∫
�

θ0
ε dx

+
∫ t

0
∂tEε(s, uε(s), zε(s)) ds + 1

ε

∫ t

0

∫
∂�

hε dHd−1(x) ds + 1
ε

∫ t

0

∫
�

Hε dx ds .

(5.10)1364

5.2 A Priori Estimates Uniform with Respect to ε1365

As done in the proof of Theorem 2.6, we shall derive the basic a priori estimates on the1366

rescaled solutions (uε, zε, θε)ε from the total energy equality (5.10). Therefore, it is clear1367

that we shall have to assume that the families of data (Hε)ε and (hε)ε converge to zero in the1368

sense that there exists C > 0 such that for all ε > 01369 ∫ t

0

∫
�

Hε dx ds ≤ Cε ,
∫ t

0

∫
∂�

hε dHd−1(x) ds ≤ Cε . (5.11)1370

Furthermore, we shall suppose that there exists f such that1371

fε → f in H1(0, T ; H1
D(�;Rd)∗) . (5.12)1372

We are now in a position to derive a priori bounds on the rescaled solutions (uε, zε, θε)ε,1373

uniform with respect to ε > 0. These estimates are the time-continuous counterpart of1374

the First–Third a priori estimates in the proof of Proposition 3.4. Actually, the calcula-1375

tions underlying the Second and Third estimates can be performed only formally, when1376

arguing on the energetic formulation of system (5.3). Indeed, these computations are1377

based on testing the weak heat equation (5.9) by θα−1
ε , which is not admissible since1378

θα−1
ε /∈ C0([0, T ];W 2,d+δ(�)).1379

That is why Proposition 5.2 below will be stated not for all energetic solutions to the1380

rescaled system (5.3), but just for those arising from the discrete solutions to (5.3) constructed1381

in Sect. 3.1. More precisely, we shall call “approximable solution” to the rescaled system1382

(5.3) any triple obtained in the time-discrete to continuous limit, for which convergences1383

(4.1) of Proposition 4.1 hold; in Sect. 4 we have shown that any approximable solution is1384

an energetic solution. Now, it can be checked that some of the a priori estimates on the1385

discrete solutions in Proposition 3.4 (i.e. those corresponding to (5.14) below) are uniform1386
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with respect to τ and ε as well. Therefore, Proposition 4.1 ensures that they are inherited by1387

the “approximable” solutions in the limit τ ↓ 0, still uniformly with respect to ε.1388

Nonetheless, to simplify the exposition, in the proof of Proposition 5.2 we will no longer1389

work on the time-discrete scheme but rather develop the calculations directly (and sometimes1390

only formally) on the time-continuous level.1391

Proposition 5.2 (A priori estimates) Assume (2.1)–(2.5), (5.2) with β > 0, (Hε)ε ⊂1392

L1(0, T ; L1(�))∩L2(0, T ; H1(�)∗), (hε)ε ⊂ L1(0, T ; L2(∂�)) fulfill (5.11), and ( fε)ε ⊂1393

H1(0, T ; H1
D(�;Rd)∗) comply with (5.12). In addition to (2.7), let the family of initial data1394

(u0
ε, u̇0

ε, z0
ε , θ

0
ε )ε fulfill1395

|Eε(0, u0
ε, z0

ε)| + ε‖u̇0
ε‖L2(�;Rd ) + ‖θ0

ε ‖L1(�) ≤ C (5.13)1396

for a constant C independent of ε. Let (uε, zε, θε)ε be a family of approximable solutions to1397

system (5.3). Then, there exists a constant C > 0 such that the following estimates hold for1398

all ε > 0:1399

‖uε‖L∞(0,T ;H1
D(�;Rd )) ≤ C , (5.14a)1400

ε‖u̇ε‖L∞(0,T ;L2(�;Rd )) ≤ C , (5.14b)1401

R1(zε(T )− z0
ε) ≤ C , (5.14c)1402

‖zε‖L∞((0,T )×�) ≤ 1 , (5.14d)1403

‖zε‖L∞(0,T ;W 1,q (�)) ≤ C , (5.14e)1404

‖θε‖L∞(0,T ;L1(�)) ≤ C , (5.14f)1405

‖∇θε‖L2(0,T ;L2(�;Rd )) ≤ Cεβ/2 , (5.14g)1406

‖θε‖L2(0,T ;H1(�)) ≤ C , (5.14h)1407

‖θε‖L p((0,T )×�) ≤ C for any p ∈
{ [1, 8/3] if d=3 ,
[1, 3] if d=2 ,

(5.14i)1408

1409

with R1 from (1.2).1410

Sketch of the proof First a priori estimate: ad (5.14a), (5.14b), (5.14c), (5.14d), (5.14e),1411

(5.14f): Estimate (5.14d) is obvious. Estimate (5.14c) follows from the definition of R1,1412

(2.5a), and (2.7a), and the fact that the functions zε(·, x) are nonincreasing. We start from1413

the total energy equality (5.10). Also thanks to (5.12), the energies Eε enjoy the coercivity1414

property (3.33) with constants independent of ε. Therefore, relying on the uniform bound1415

(5.12) for ḟε, and using that θε > 0 a.e. in (0, T )×� for every ε > 0, one can repeat the very1416

same calculations as in the first step of the proof of Proposition 3.4, and conclude that the1417

left-hand side of (5.10) is uniformly bounded from above and from below, whence (5.14a),1418

(5.14b), (5.14e), (5.14f).1419

Second and third a priori estimates: ad (5.14g), (5.14h), and (5.14i): We (formally) test1420

(5.9) by θα−1
ε , integrate in time, and arrive at the (formally written) analogue of (3.35), viz.1421
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c
εβ

∫ t

0

∫
�

K(zε, θε)∇(θα/2ε ) · ∇(θα/2ε ) dx ds + ε2
∫ t

0

∫
�

D(zε, θε)e(u̇ε) : e(u̇ε)θα−1
ε dx ds

+ ε
∫ t

0

∫
�

θα−1
ε |żε| dx ds +

∫ t

0

∫
∂�

hεθ
α−1
ε dHd−1(x) ds +

∫ t

0

∫
�

Hεθ
α−1
ε dx ds

= ε
∫ t

0

∫
�

θ̇εθ
α−1
ε dx ds + ε

∫ t

0

∫
�

θε B : e(u̇ε)θα−1
ε dx ds

.= I1 + I2 .

(5.15)1422

As in the proof of Proposition 3.4, we estimate1423

I1 = ε
∫
�

(θε(t))α

α
dx − ε

∫
�

(θ0
ε )
α

α
dx , (5.16)1424

whereas we estimate I2 =
∫∫
εθε B : e(u̇ε)θα−1

ε by1425

I2 ≤ ε2 C1
D

2

∫ t

0

∫
�

|e(u̇ε)|2θα−1
ε dx ds + C

∫ t

0

∫
�

|θε|2θα−1
ε dx ds , (5.17)1426

where the constant C subsumes the norm |B| as well. Combining (5.15)–(5.17) and then1427

arguing exactly in the same way as in the proof of Proposition 3.4, we end up with the1428

analogue of (3.36), i.e.,1429

1
εβ

∫ t

0

∫
�

K(zε, θε)∇(θα/2ε ) · ∇(θα/2ε ) dx ds +
∫
�

ε
α
(θ0
ε )
α dx ≤

∫
�

ε
α
(θε(t))

α dx1430

+C
∫ t

0

∫
�

θα+1
ε (s) dx ds ,1431

whence 1
εβ

∫ T
0

∫
�

K(zε, θε)∇(θα/2ε )·∇(θα/2ε ) dx dt ≤ C . From this, with the same arguments1432

as in the third step of the proof of Proposition 3.4, cf. (3.41), we infer that1433 ∫ T

0

∫
�

|∇θε|2 dx dt ≤ Cεβ,1434

i.e. (5.14g). Then, (5.14h) follows from (5.14g) and (5.14f), via the Poincaré inequality.1435

Finally, (5.14i) ensues by interpolation, as in the proof of Proposition 3.4. ��1436

Observe that in the proof of Proposition 5.2 we have not been able to repeat the calculations1437

in the Fourth and Fifth estimates, cf. the proof of Proposition 3.4. In particular, from the1438

mechanical energy equality (5.8) we have not been able to deduce an estimate for ε1/2e(u̇ε)1439

in L2(0, T ; L2(�;Rd×d)), since we cannot bound the term
∫ t

0

∫
�
θε : e(u̇ε) dx ds on the1440

right-hand side of (5.8). Therefore, in the proof of our convergence result for vanishing1441

viscosity and inertia, Theorem 5.3 below, we shall have to resort to careful arguments in1442

order to handle the terms containing e(u̇ε), in the passage to the limit in the momentum1443

equation and mechanical energy equality, cf. (5.30)–(5.33). In particular, differently from1444

Proposition 3.4, for a vanishing sequence (εn)n the convergences1445

εne(u̇εn )→ 0 strongly in L2(0, T ; L2(�;Rd×d)) and
∫ t

0

∫
�

θεn : e(u̇εn ) dx ds → 0 ,

θε → 
 strongly in L2(0, T )×�)
(5.18)1446

will now be extracted from the weak heat equation (5.9), using integration by parts and the1447

information that
 is constant in space. It is in this connection that we need to further assume1448

homogeneous Dirichlet boundary conditions for the displacement on the whole boundary1449

∂�, cf. (5.1).1450
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5.3 Convergence to Local Solutions of the Rate-Independent Limit System1451

Let us mention in advance that in Theorem 5.3 we will prove that, up to a subsequence, the1452

functions (uε, zε, θε) converge to a limit triple (u, z,
) such that 
 is spatially constant.1453

As we will see, the pair (u, z) fulfills the (pointwise-in-time) static momentum balance (i.e.1454

without viscosity and inertia), a semistability condition with respect to the energy E arising1455

from Eε (5.6) in the limit ε ↓ 0, and an energy inequality, where the viscous, the inertial,1456

and the thermal expansion contributions are no longer present. This inequality holds on [0, t]1457

for every t ∈ [0, T ] in the general case, and on [s, t] for all t ∈ [0, T ] and almost every1458

s ∈ (0, t), under a further condition on the gradient term in the energy E, i.e. that q > d .1459

Indeed, the three properties (momentum balance, semistability, energy inequality) constitute1460

the notion of local solution [41,58,65] to the rate-independent system driven by R1 and E.1461

Observe that, in fact, the spatially constant 
 does not appear in these relations, because it1462

contributes with a zero term to the momentum balance.1463

Moreover, testing the weak heat equation (5.9) with functions η that are constant in space1464

(which is the property of the limit temperature 
 by (5.14g)) and taking into account the1465

bounds (5.11), (5.13), (5.14f), and convergence (5.18), we find in the limit relation 0 = 0.1466

This shows that the temporal evolution of
 is irrelevant in the rate-independent limit model.1467

In fact, in order to gain insight into the time evolution of 
, we will perform the limit1468

passage in the heat equation (5.9) rescaled by the factor 1/ε and tested by η ∈ H1(0, T ),1469

constant in space. In this way, the heat-transfer term involving Kε = 1
εβ

K will disappear.1470

This will lead to an ODE for the limit function
, cf. (5.26). Such an ODE involves a defect1471

measure μ, i.e. a Radon measure on [0, T ] arising in the limit of the viscous dissipation term1472

‖εD(zε, θε)e(u̇ε) : e(u̇ε)‖L1(�), see (5.27) below.1473

In the following proof, notice that Steps 0–3 can be proven for β > 0, while in Step 41474

we need β ≥ 2. Furthermore, the condition that the tensor B is constant in space will have a1475

crucial role in handling the thermal expansion term θε B : e(u̇ε) in the rescaled heat equation,1476

cf. (5.32) ahead.1477

Theorem 5.3 Assume (2.1)–(2.4), (2.5), (2.8), and, in addition, let (5.1), (5.2) with β ≥ 2,1478

(5.11), and (5.12) be satisfied. Let the initial data (u0
ε, u̇0

ε, z0
ε , θ

0
ε )ε fulfill (2.7), (5.13),1479

εu̇0
ε → 0 in L2(�;Rd) , (5.19)1480

and suppose that there exist u0 ∈ H1
D(�;Rd) and z0 ∈ Z such that1481

u0
ε ⇀ u0 in H1

D(�;Rd), z0
ε ⇀ z0 in Z, Eε(0, u0

ε, z0
ε)→ E(0, u0, z0) as ε ↓ 0 ,

(5.20)1482

with Eε as in (5.6).1483

Then, the functions (uε, zε, θε)ε converge (up to subsequences) to a triple (u, z,
) such1484

that1485

u ∈ L∞(0, T ; H1
D(�;Rd )) , z ∈ L∞(0, T ;W 1,q (�)) ∩ L∞((0, T )×�) ∩ BV([0, T ]; L1(�)) ,


 is constant in space and 
 ∈ L p(0, T ) for any p ∈
{ [1, 8/3] if d=3 ,
[1, 3] if d=2 .

(5.21)1486

The pair (u, z) fulfills the unidirectionality as well as1487

1. the semistability condition (2.12a) for all t ∈ [0, T ], with the mechanical energy E defined1488

as in (5.6) with fε replaced by the weak limit f of the sequence ( fε)ε , see (5.12);1489
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2. the weak momentum balance for all t ∈ [0, T ]1490 ∫
�

C(z(t))e(u(t)) : e(v) dx = 〈 f (t), v〉H1
D(�;Rd ) for all v ∈ H1

D(�;Rd) ; (5.22)1491

3. the mechanical energy inequality for all t ∈ [0, T ]1492

E(t, u(t), z(t))+
∫
�

(z(0)−z(t)) dx ≤ E(0, u(0), z(0))+
∫ t

0
∂tE(r, u(r), z(r)) dr ;

(5.23)1493

If in addition the function G fulfills the growth condition (2.5d) with q > d, then (u, z) also1494

fulfill1495

E(t, u(t), z(t))+
∫
�

(z(s)−z(t)) dx ≤ E(s, u(s), z(s))+
∫ t

s
∂tE(r, u(r), z(r)) dr

(5.24)1496

for all t ∈ [0, T ] and for almost all s ∈ (0, t).1497

Moreover, assume in addition that there exists H̃ ∈ L1(0, T ) such that1498

1
ε
(‖Hε‖L1(�) + ‖hε‖L1(∂�)) ⇀ H̃ in L1(0, T ). (5.25)1499

Then, 
 fulfills1500

η(t)
∫
�


(t) dx −
∫ t

0
η̇

∫
�


 dx ds − η(0)
∫
�


(0) dx1501

=
∫ t

0
η dμ(s)+

∫ t

0
η

∫
�

|ż| dx ds +
∫ t

0
H̃ η ds (5.26)1502

for a.a. t ∈ (0, T ) and for every η ∈ H1(0, T ) constant in space, with the defect measure μ1503

given by1504

‖εD(zε, θε)e(u̇ε) : e(u̇ε)‖L1(�) → μ in the sense of Radon measures in [0, T ] . (5.27)1505

Proof Step 0, compactness: It follows from Proposition 5.2 that for every vanishing sequence1506

(εn)n there exist a (not relabeled) subsequence and a triple (u, z,
) as in (5.21) such that1507

the following convergences hold1508

uεn

∗
⇀ u in L∞(0, T ; H1

D(�;Rd)) , (5.28a)1509

εnuεn

∗
⇀ 0 in W 1,∞(0, T ; L2(�;Rd)) , (5.28b)1510

zεn

∗
⇀ z in L∞(0, T ;W 1,q(�)) ∩ L∞((0, T )×�) , (5.28c)1511

zεn (t) ⇀ z(t) in W 1,q(�) for all t ∈ [0, T ], (5.28d)1512

zεn (t)→ z(t) in Lr (�) for all 1 ≤ r <∞ and for all t ∈ [0, T ] , (5.28e)1513

θεn ⇀ 
 in L2(0, T ; H1(�)) ∩ L p((0, T )×�) for all p as in (5.14i). (5.28f)1514
1515

Indeed, (5.28a) ensues from (5.14a), and it gives, in particular, that εnuεn → 0 in1516

L∞(0, T ; H1
D(�;Rd)). Then, convergence (5.28b) directly follows from estimate (5.14b).1517

Convergences (5.28c)–(5.28e) ensue from the very same compactness arguments as in the1518

proof of Proposition 4.1, also using the Helly Theorem. Furthermore, (5.28f) follows from1519

estimates (5.14h)–(5.14i) by weak compactness. Observe that in view of (5.14g) we have1520

that1521

∇θεn → 0 in L2(0, T ; L2(�;Rd)) . (5.29)1522
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Therefore, we conclude that ∇
 = 0 a.e. in (0, T ) × �. Since 
 is spatially constant,1523

hereafter we will write it as a function of the sole variable t .1524

We now prove the enhanced convergence1525

θεn → 
 in L2(0, T ; L2(�)) . (5.30)1526

In fact, we use the Poincaré inequality1527

‖θεn −
‖L2(0,T ;L2(�))1528

≤ ‖∇(θεn −
)‖L2(0,T ;L2(�;Rd ))1529

+C(�, T )

∣∣∣∣
∫ T

0

∫
�

(θεn −
) dx ds

∣∣∣∣ −→ 0 ,1530

where the gradient term tends to 0 by (5.29), and the convergence of the second term follows1531

from (5.28f).1532

Finally, let us show that1533

εn e(u̇εn )→ 0 strongly in L2(0, T ; L2(�;Rd×d)) . (5.31)1534

Preliminarily, observe that, since B and the limit function 
 are constant in space, we have1535

by integration by parts1536

∫ t

0

∫
�


B : e(u̇εn ) dx ds =
∫ t

0

∫
∂�


B ν · u̇εn dHd−1(x) ds −
∫ t

0

∫
�

div (
B) · u̇εn dx ds = 0 ,

(5.32)1537

where we used ∂D� = ∂�, hence u̇εn ∈ L2(0, T ; H1
D(�;Rd)) implies that u̇εn = 0 a.e. in1538

(0, T )× ∂�. Using (5.32) in the weak heat equation (5.9) tested by 1 and applying Young’s1539

inequality, we find1540

εn

(∫
�

(θεn (t)− θ0
εn
) dx

)

≥
∫ t

0

∫
�

[
ε2

nD(zεn , θεn )e(u̇εn ) : e(u̇εn )− εn(θεn−
B) : e(u̇εn )
]

dx ds

≥
∫ t

0

∫
�

ε2
n

CD

2 |e(u̇εn )|2 dx ds − C‖θεn −
‖2
L2(0,T ;L2(�))

(5.33)1541

with C = |B|/2. From this, taking into account that (θ0
εn
)
n

is bounded in L1(�) by (5.13),1542

estimate (5.14f) for (θεn )n , and convergence (5.30), we conclude that limεn↓0 εn‖e(u̇εn )1543

‖L2(0,T ;L2(�;Rd×d )) = 0, whence (5.31).1544

In fact, by Korn’s inequality we conclude that1545

εnuεn → 0 in H1(0, T ; H1
D(�;Rd)) . (5.34)1546

Step 1, passage to the limit in the momentum balance (5.7): Convergence (5.34), joint1547

with the boundedness (2.3e) of the tensor D, ensures that the first and the second summands1548

on the left-hand side of (5.7) tend to zero. Arguing as in the proof of Proposition 4.3, we show1549

that for every test function v in (5.7), C(zεn )e(v)→ C(z)e(v) in L2((0, T )×�;Rd×d). We1550

combine this with (5.28a) and, also using (5.28f), we pass to the limit in the third term on1551

the left-hand side of (5.7), recalling that the fourth summand converges to zero similarly to1552

(5.32). As for the right-hand side, by (5.13) we have1553

ε2
nu̇0
εn
→ 0 in L2(�;Rd), (5.35)1554
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hence the first term converges to zero. The second one tends to zero for almost all t ∈ (0, T )1555

by (5.28b), which in particular gives1556

ε2
nu̇εn → 0 in L∞(0, T ; L2(�;Rd)). (5.36)1557

For the third one, we use (5.12). We thus conclude that (5.22) holds at almost all t ∈ (0, T ).1558

In order to check it at every t ∈ [0, T ], we observe that for every t ∈ [0, T ] from1559

the bounded sequence (uεn (t))n (along which convergences (5.28) hold) we can extract1560

a subsequence, possibly depending on t , weakly converging to some ū(t) in H1
D(�;Rd).1561

Relying on convergence (5.28e) for (zεn (t))n and on (5.12) for ( fεn (t)), with the same1562

arguments as above we conclude that
∫
�

C(z(t))e(ū(t)) : e(v) dx = 〈 f (t), v〉H1
D(�;Rd ) for1563

all v ∈ H1
D(�;Rd). Since this equation has a unique solution, we conclude that ū(t) = u(t)1564

for almost all t ∈ (0, T ), and that the whole sequence uεn (t) weakly converges to ū(t) for1565

every t ∈ [0, T ]. In this way u extends to a function defined on [0, T ], such that1566

uεn (t) ⇀ u(t) in H1
D(�;Rd) for all t ∈ [0, T ] , (5.37)1567

solving (5.22) at all t ∈ [0, T ].1568

Step 2, enhanced convergences for (uεn )n: As a by-product of this limit passage, we also1569

extract convergences (5.39) and (5.38) below for (uεn )n , which we will then use in the passage1570

to the limit in the semistability and in the mechanical energy inequality. Indeed, we test (5.7)1571

by uεn , thus obtaining1572

lim sup
n→∞

∫ t

0

∫
�

(
C(zεn )e(uεn )−θεn B

) : e(uεn ) dx ds

≤ lim sup
n→∞

ε2
n

∫ t

0

∫
�

|u̇εn |2 dx dt − lim inf
n→∞

∫ t

0

∫
�

εnD(zεn , θεn )e(u̇εn ) : e(uεn ) dx ds

+ lim sup
n→∞

ε2
n

∫
�

u̇0
εn
· u0
εn

dx − lim inf
n→∞ ε2

n

∫
�

u̇εn (t) · uεn (t) dx

+ lim sup
n→∞

∫ t

0

〈
fεn , uεn

〉
H1

D(�;Rd )
ds

= 0+ 0+ 0+ 0+
∫ t

0
〈 f, u〉H1

D(�;Rd ) ds =
∫ t

0

∫
�

C(z)e(u) : e(u) dx ds

1573

where the first term in the right-hand side converges to zero thanks to (5.34), the second1574

one by the boundedness of D, (5.28a), and (5.34), the third one by (5.35) combined with the1575

boundedness of (u0
εn
)
n
, the fourth one by (5.28a) and (5.36). The fifth term passes to the limit1576

by (5.12) and (5.28a). The last identity follows from (5.22). Remark that the second term in1577

the left-hand side converges to zero by (5.28a) and (5.28f), as done for (5.32).1578

From the above chain of inequalities we thus obtain that1579

lim sup
n→∞

∫ t

0

∫
�

C(zεn )e(uεn ) : e(uεn ) dx ds ≤
∫ t

0

∫
�

C(z)e(u) : e(u) dx ds.1580

Next, we may apply Lemma 4.7 to deduce that e(uεn ) strongly converges to e(u) in1581

L2((0, T ) × �;Rd×d), see also Lemma 4.8. Hence, by Korn’s inequality, we ultimately1582

infer1583

uεn → u in L2(0, T ; H1
D(�;Rd)) . (5.38)1584
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For later convenience, we observe that, in particular, this yields1585 ∫
�

C(zεn (t))e(uεn (t)) : e(uεn (t)) dx →
∫
�

C(z(t))e(u(t)) : e(u(t)) dx for a.a. t ∈ (0, T ) .

(5.39)1586

1587

Step 3, passage to the limit in the semistability condition: In view of the pointwise con-1588

vergences (5.28d)–(5.28e) for zεn and uεn (t) → u(t) in H1
D(�;Rd) (by (5.38)) for all1589

t ∈ [0, T ], we may apply the mutual recovery sequence construction from Theorem 4.5 in1590

order to pass to the limit as εn ↓ 0 in the semistability (5.5). Also taking into account con-1591

vergence (5.12) for ( fεn )n , we conclude that (u, z) comply with the semistability condition1592

(2.12a) for every t ∈ [0, T ].1593

Step 4, passage to the limit in the mechanical energy inequality on (0,t): By lower semi-1594

continuity it follows from convergences (5.12), (5.37), (5.28d), and (5.28c) that1595

lim inf
n→∞ Eεn (t, uεn (t), zεn (t)) ≥ E(t, u(t), z(t)) for all t ∈ [0, T ] . (5.40)1596

Furthermore, combining (5.12) with (5.28a) we infer that1597

∂tEεn (t, uεn , zεn ) = −
〈
ḟεn (t), uεn

〉
H1

D(�;Rd )
→− 〈

ḟ (t), u
〉
H1

D(�;Rd )
= ∂tE(t, u, z) in L2(0, T ) .

(5.41)1598

We are now in a position to pass to the limit in the mechanical energy inequality (5.8). We1599

notice that the first term on the left-hand side of (5.8) is positive. For the second one we use1600

(5.40) and the third one converges to
∫
�
(z(0) − z(t)) dx by (5.28e). The fourth one, given1601

by1602 ∫ t

0

∫
�

(εD(zε, θε)e(u̇ε)−θε B) : e(u̇ε) dx ds,1603

is bounded from below by1604

−
∫ t

0

∫
�

θεn B : e(u̇εn ) dx ds.1605

We can again argue as in (5.32)1606 ∫ t

0

∫
�

θεn B : e(u̇εn ) dx ds

=
∫ t

0

∫
∂�

θεn B ν · u̇εn dHd−1(x) ds −
∫ t

0

∫
�

div (θεn B) · u̇εn dx ds

= 0−
∫ t

0

∫
�

div (θεn B) · u̇εn dx ds ,

(5.42)1607

where we have used that u̇εn complies with homogeneous Dirichlet conditions on ∂D� = ∂�,1608

and then observe that1609

‖div (θεn B) · u̇εn‖L1((0,T )×�) = ‖ε−1
n div (θεn B) · εnu̇εn‖L1((0,T )×�) ≤ C‖εnu̇εn‖L2((0,T )×�) → 0 ,

(5.43)1610

due to estimate (5.14g) and (5.34). Notice that here we have used the fact that β ≥ 2; this is1611

the only point where we use such requirement. As for the right-hand side, we observe that the1612

first term converges to zero by (5.19). The second term passes to the limit by the convergence1613

(5.20) for the initial energies, and the third one by (5.41).1614
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Therefore we conclude that1615

E(t, u(t), z(t))+
∫
�

(z(0)− z(t)) dx ≤ E(0, u(0), z(0))+
∫ t

0
∂tE(s, u, z)ds .1616

Step 5, case q > d, enhanced convergence for (zεn ) and energy convergence: We now1617

prove that1618

lim
n→∞

∫
�

G(zεn (t),∇zεn (t)) dx =
∫
�

G(z(t),∇z(t)) dx for a.a. t ∈ (0, T ) , (5.44)1619

which, combined with (5.12), (5.39) and (5.38) will yield the pointwise convergence of the1620

energies1621

lim
n→∞Eεn (t, uεn (t), zεn (t)) = E(t, u(t), z(t)) for a.a. t ∈ (0, T ) . (5.45)1622

We obtain (5.44) testing semistability (5.5) by a suitable recovery sequence (z̃εn )n for1623

z̃ = z(t); in the following lines, to avoid overburdening notation we will drop t when writing1624

zεn (t), z(t), uεn (t), and u(t). Following [44, Lemma 3.9], where the recovery sequence right1625

below has been introduced to deduce energy convergence, we set1626

z̃εn := max{0, z − ‖zεn − z‖L∞(�)} .1627

Now, for q > d the convergence zεn ⇀ z in W 1,q(�), see (5.28d), implies zεn → z in1628

L∞(�). Thus, it can be checked that1629

z̃εn → z strongly in W 1,q(�) . (5.46)1630

Since z̃εn ≤ zεn , we can choose it as a test function in (5.5). The term− 〈
fεn (t), uεn

〉
H1

D(�;Rd )
1631

on both sides of the inequality cancels out and we deduce1632

lim sup
n→∞

(∫
�

( 1
2 C(zεn )e(uεn ) : e(uεn )+ G(zεn ,∇zεn )) dx

)

= lim sup
n→∞

(∫
�

1
2 C(z̃n)e(uεn ) : e(uεn ) dx +

∫
�

G(z̃εn ,∇ z̃εn ) dx

)
≤ I1 + I2 ,

(5.47)1633

where1634

I1 := lim
n→∞

∫
�

1
2 C(z̃n)e(uεn ) : e(uεn ) dx ≤

∫
�

1
2 C(z)e(u) : e(u) dx ,1635

combining (5.46) with (5.38) via the Lebesgue Theorem. It follows from (5.46), condition1636

(2.5d) on the growth of G from above, and again the Lebesgue Theorem that1637

I2 := lim
n→∞

∫
�

G(z̃εn ,∇ z̃εn ) dx =
∫
�

G(z,∇z) dx . (5.48)1638

Taking into account the previously proven (5.39), from (5.47)–(5.48) we ultimately infer1639

lim sup
n→∞

∫
�

G(zεn ,∇zεn ) dx ≤
∫
�

G(z,∇z) dx ,1640

whence (5.44).1641

Step 6, case q > d , passage to the limit in the mechanical energy inequality on (s, t): We1642

now pass to the limit in (5.8) written on an interval [s, t] ⊂ [0, T ], for every t ∈ [0, T ] and1643

almost all s ∈ (0, t). Clearly, it is sufficient to discuss the limit passage on the right-hand side1644

of (5.8), evaluated at s. The first summand tends to zero for almost all s, thanks to (5.34),1645

which in particular ensures εnu̇εn (s)→ 0 in L2(�;Rd) for almost all s ∈ (0, T ). The second1646
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term passes to the limit by (5.45), while the third and the fourth ones can be dealt with by1647

(5.42)–(5.43) and (5.41), respectively.1648

Step 7, limit passage in the rescaled heat equation and temporal evolution of 
: We con-1649

sider the heat equation (5.9) rescaled by the factor 1/ε and tested by η ∈ H1(0, T ), constant1650

in space, which results in1651

η(t)
∫
�

θε(t) dx −
∫ t

0
η̇

∫
�

θε dx ds

= η(0)
∫
�

θ0
ε dx +

∫ t

0
η

∫
�

(εD(zε, θε)e(u̇ε)−θε B) : e(u̇ε) dx ds

+
∫ t

0
η

∫
�

|żε| dx ds + 1
ε

∫ t

0
η

∫
∂�

hε dHd−1(x) ds + 1
ε

∫ t

0
η

∫
�

Hε dx ds .

(5.49)1652

From the mechanical energy balance (5.8) we deduce by a comparison argument that1653

ε

∫ T

0

∫
�

D(zε, θε)e(u̇ε) : e(u̇ε) dx ds ≤ C , hence also1654

ε

∫ T

0
η

∫
�

D(zε, θε)e(u̇ε) : e(u̇ε) dx ds ≤ C‖η‖∞1655

for every η ∈ H1(0, T ), taking into account (5.12), (5.13) as well as (5.18). This allows us to1656

conclude that there exists a Radon measureμ such that (5.27) holds. A comparison argument1657

in (5.49) leads to1658 ∣∣∣∣ε
∫ t

0
η

∫
�

θε B : e(u̇ε) dx ds

∣∣∣∣ ≤ C‖η‖∞ ,1659

also in view of the bounds (5.11), (5.14i) and (5.14c). Since η is constant in space, inte-1660

gration by parts and an argument along the lines of Step 4 yield that indeed
∫ t

0

∫
�
η θε B :1661

e(u̇ε) dx ds → 0. Moreover, the third convergence in (5.18) implies that θε(t) → 
(t) in1662

L2(�) for a.e. t ∈ (0, T ). Using (5.25), we finally pass to the limit in (5.49) and find that 
1663

satisfies (5.26). ��1664
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