

Advancement of a density-based debris fragment model and application to on-orbit break-up localisation

Stefan Frey¹, Camilla Colombo¹, Stijn Lemmens² ¹ Politecnico di Milano, ² European Space Agency

36th IADC Plenary Meeting, Tsukuba, Japan, 5-8 June 2018

Introduction

Why a density-based debris model?

- Statistical collision risk estimation from objects down to very small sizes
- Inherently statistical (no need of Monte Carlo runs)
- Insight and fast propagation of cloud evolution in any orbital regime subject to major perturbations
- Application to criticality index computation
- Tracing newly observed fragments back to origin, possibly years away

Based on past work by Letizia, Colombo and Lewis @ Uni of Southampton

- Generalise the method (in LEO some parameter are randomly distributed) to any orbital region
- Remove some simplifying assumptions
- Broader application to space debris population propagation

Force model

Orbital contraction

- The integrals can be approximated quickly numerically or analytically
 - E.g. *Gauss-Legendre* quadrature
 - + Flexible: can work with any drag model
 - + Valid for any eccentricity, i.e. series expansion avoided
 - Multiple density evaluations (usually N = 33)
 - E.g. *King-Hele* (KH) method
 - Requires atmosphere to decay exponentially (next slide)
 - Series expansion in eccentricity (solved for low and high eccentricities by KH)
 - + Only one density evaluation at perigee
 - + Analytical estimation of the Jacobian available

Liu, J. J. F., Alford, R. L., An Introduction to Gauss-Legendre Quadrature, Northrop Services, Inc., 1973.
 King-Hele, D., Theory of Satellite Orbits in an Atmosphere, London Butterworths, 1964

07/06/2018

36th IADC Plenary Meeting, Tsukuba, Japan, 5-8 June 2018

Force model

Atmosphere density model

- The King-Hele method assumes strictly exponential decaying density but in turn requires only one density evaluation at perigee
- Problem: Density decays slower with increasing altitude
- Solution: Smooth exponential atmosphere model

$$\rho(h,T) = \sum_{p} \rho_{0,p}(T) \exp{-\frac{h}{H_p(T)}}$$

- Advantages
 - Fast: only p < 10 exponential evaluations required
 - Smooth: no problem for the integrator
 - Exact: each part is strictly decaying
 - Versatile: can be fit to any reference model
- Example: Fit to Jacchia-77 taking into account solar flux

> Jacchia, L. G., Thermospheric temperature, density, and composition: new models. SAO Special Report, 1977.

DENSITY PROPAGATION

07/06/2018

6

Density Propagation

Formulation

- Fragments/debris modelled as a continuum
- Based on general continuity equation

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{F}) = g$$

- density • n
- t. time
- dynamics • **F**
- sources and sinks g
- Can be turned into a PDE using method of the characteristics
- Requires Jacobian, which is obtainable using analytical formulated dynamics

Propagation method

Population-driven forward propagation

Propagate initial density of a cloud/many clouds/the whole population forward and interpolate where needed.

Ideal if density needs to be known at many points

Target-driven backward propagation

Given a target location and time, propagate characteristics backward to initial density.

Ideal if high accuracy in density is required

Initial points selection

- Curse of dimensionality workaround:
 - Sample initial distribution, e.g. few points where density low
 - Use combination of populationdriven forward to identify the admissible region to be used for target-driven backward propagation

Building of initial condition

- Initial condition for fragmentations from break-up models (e.g. NASA's breakup model)
- Initial condition for background population from observations or space debris environmental tools (e.g. ESA's MASTER)
- Dimensions
 - up to 5 states (a, e, i, Ω , ω)
 - physical properties $(\frac{A}{m}, c_d, c_r)$

N. L. Johnson, P. H. Krisko, J.-C. Liou, and P. D. Anz-Maedor. NASA's new breakup model of EVOLVE 4.0. Advances in Space Research, 28(9):1377-1384, 2001.
 S. Flegel, J. Gelhaus, M. Möckel, C. Wiedemann, and D. Kempf. Maintenance of the ESA MASTER model. Final Report of ESA contract 21705/D/HK, 2010.

36th IADC Plenary Meeting, Tsukuba, Japan, 5-8 June 2018

9

CMPASS

erc

From Keplerian to spatial density

- From propagation, the density is given in Keplerian elements
- For collision risk calculation, a spatial density is required
- Not a point-to-point transformation, hence not straightforward
- If anomaly, node and perigee are randomised, the density can be found as a function of radius and latitude
- Currently ongoing: transforming without assumptions

Spatial density from individual fragments in LEO

1 January 2008

4607 objects

erc

1 January 2010 6047 objects

36th IADC Plenary Meeting, Tsukuba, Japan, 5-8 June 2018

11

BREAK-UP LOCALISATION

Break-up localisation

Need

- Ever increasing observational capabilities will add small fragments of unknown origin to the catalogue (e.g. recent major fragmentation of Transtage 17 (1969-013B) in GEO)
- Already now, almost 2500 unidentified objects are tracked, mostly non-LEO
- Due to lack of observations, origin can only be assigned probabilistically
- Application for density propagation, if number of objects with unknown origin is large
- However, at this point, number of fragments small enough for individual propagation

➢ ROSCOSMOS IADC 2018, (WG 1) Recent major fragmentation of Transtage 17 (1969-013B) in GEO

Observed Fragments in LEO

Break-up localisation

Method

- Propagating back all fragments (individually) lead to peaks in the spatial density indicating break-up epoch and location
- However, ballistic coefficient estimation usually shows large variability, leading to inaccurate semi-major axis and eccentricity
- On the other hand, estimation of node and argument of perigee shown to be robust for several years
- Focusing (concentration) of node indicates break-up

1400 Kosmos-2251

RAAN distribution, all fragments from 2010 back

Break-up localisation

Clustering, classification

 Statistical interference for identification of sources and subsequent assigning of probability, e.g. Gaussian Mixture Model depending on "orbit similarity"

Outlook

- Density based propagation to estimate the evolution of the space debris environment allowing to adapt to new fragmentations easily
- Ideally, together with a criticality index, this method would be employed in rating future space missions towards their compliance with the mitigation guidelines
- This rating could lead to go/no-go decisions, or mandate a more effective post-mission disposal

MILANÓ 1863

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 679086 – COMPASS)

MPASS

erc

Advancement of a density based debris model and application to on-orbit break-up localisation

Stefan Frey¹, Camilla Colombo¹, Stijn Lemmens²
¹ Politecnico di Milano, ² European Space Agency
36th IADC Plenary Meeting, Tsukuba, Japan, 5-8 June 2018