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Abstract—This work compares the application of Rein-
forcement Learning (RL) and Swarm Intelligence (SI) based
methods for resolving the problem of coordinating multiple
High Altitude Platform Stations (HAPS) for communications
area coverage. Swarm coordination techniques are essential
for developing autonomous capabilities for multiple HAPS/UAS
control and management. This paper examines the perfor-
mance of artificial intelligence (AI) capabilities of RL and
SI for autonomous swarm coordination. In this work, it was
observed that the RL approach showed superior overall peak
user coverage with unpredictable coverage dips; while the SI
based approach demonstrated lower coverage peaks but better
coverage stability and faster convergence rates.

I. INTRODUCTION

HAPS is defined by the International Telecommunications
Union (ITU) as “a station located on an object at an altitude
of 20 to 50 Km and at a specified, nominal, fixed point
relative to the earth™ [1]. At this stratospheric altitude, wind
profile is described as mild and suitable for hosting plat-
forms with minimal station keeping requirements [2]. HAPS
can be used to provide persistent communications coverage
to mobile and fixed users; leveraging its unique technical
strengths which combines those of terrestrial and satellite
communication systems [2]-[4]. The capacity to offer large
footprints with signal latency similar to terrestrial systems
further places it as a dominant aerial infrastructure. As an
aerial platform, it can be easily recovered and redeployed
to meet various operational scenarios, an additional capa-
bility that neither satellite nor terrestrial systems can offer
effectively [S]. However, HAPS are actually distinct from
low altitude platforms (LAPS) [6], which typically operate
within the troposphere, with lower endurance capabilities and
footprints.

The state of the art in operating unmanned HAPS systems
require between two (2) to four (4) ground-based crew mem-
bers overseeing various aspects of mission planning, flight
control, sensor operation and data assessment;also known
as many-to-one ratio [7], [8]. The current capability implies
that deploying multiple HAPS platforms as a network may
be technically and economically challenging. Operational
complexity and cost will likely scale accordingly in scenarios
where the platforms work together as a swarm. However,
deploying multiple HAPS can extend area coverage capacity

using a network of HAPS. The challenge of flipping the
many-to-one ratio to one-to-many ratio is at the core of the
multiple HAPS coordination problem. To solve the operating
ratio problem will involve designing HAPS platforms with
some level of autonomy. Autonomy will eliminate the need
for direct human intervention on many operational levels
and elevate HAPS platforms/systems to higher layers in the
decision making logic hierarchy. Another challenge lies in
defining, designing and integrating autonomy solutions and
concepts relevant to each use-case or problem.

This work, therefore, focuses on analysing the application
of Reinforcement learning (RL) and Swarm Intelligence (SI)
in the multiple HAPS coordination problem for communica-
tions area coverage. Both algorithms were applied within
the same problem scenario and evaluated for performance
using metrics like user coverage and algorithm convergence.
The performance of the two algorithms were analysed within
the context of this work, where multiple HAPS platforms
(swarm) are deployed to provide area coverage to mobile
users. Self-organising capability is identified as the key au-
tonomy index for any swarm based unmanned aerial systems
(UAS) implementation; figure 1 shows a conceptual multiple
HAPS network.

In this paper, section I gives an overview of HAPS and
the multiple HAPS coordination problem. Section II intro-
duces the concept of autonomy; while section III provides
some background on the RL and SI algorithms. Section IV,
describes the modeling and simulation methodology applied
in this work. In section V, simulation results and analysis
are presented. Finally, section VI draws conclusions on the
work and considers future work.

II. FULLY OR SEMI-AUTONOMOUS AND COOPERATIVE
HAPS SWARM

This work investigates the implementation of semi or
fully autonomous high altitude platform swarm with self-
organising capabilities for communications area coverage.
The autonomous capability of the HAPS is defined within
the context of decision making or self governance within the
specific problem area [5]. However, levels of autonomy exist
and may depend on design, functions and specifics of the
mission [9]. In the application of HAPS or UAS platforms,
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Fig. 1. Conceptual Multiple HAPS Network

autonomy can be a spectrum of capabilities ranging from
zero autonomy to full autonomy. For instance, the Pilot
Authority and Control of Tasks (PACT) assigns levels of
authority, from level O (full human pilot authority) to level
5 (full UAV autonomy) [10]. The Autonomous Levels For
Unmanned Systems (ALFUS) is more general but very
useful model that describes levels of autonomy in unmanned
systems [8]. However, the future is that aerial vehicles
will have fully autonomous algorithms managing high level
mission objectives like maintaining network connectivity,
data rate and communications coverage [11]. The question of
autonomy is not a linear problem or easily calibrated against
any particular autonomy spectrum model. The position this
paper assumes is that the definition and application of auton-
omy will be problem and application specific. For instance,
a solar-powered fixed-wing unmanned HAPS deployed for
communications area coverage will demand a different set
of autonomy requirements in comparison to a quadcopter
used for parcel delivery. For this reason, the scope and
dimension of autonomy defined for this work is specific to
communications area coverage, where the swarm of HAPS
self-organises to maximise area coverage for a set of mobile
users.

III. REINFORCEMENT LEARNING & SWARM
INTELLIGENCE IN UNMANNED AERIAL SYSTEMS

The application of reinforcement learning and swarm
intelligence to various problem domains is covered in litera-
ture. However, this work focuses on the application of these
techniques in UAS/HAPS related areas and specifically for
autonomous coordination of UAV swarm for communica-
tions area coverage. It is important to isolate the specific

problem area as these techniques vary significantly with
application scenario.

A. Application of Reinforcement Learning in Unmanned
Aerial Systems & HAPS

Reinforcement learning (RL) also known as adaptive (or
approximate) dynamic programming (ADP) is now a popular
technique in solving complex sequential decision-making
problems [12]. RL is a paradigm of learning whereby the
agent (HAPS in this case) learns through exploring or
interacting with its environment. These interactions involve
the agent taking actions that trigger transitions from one
state to another with associated rewards or punishments. The
details and mathematical abstractions for these relationships
are covered in the literature. However, this paper will address
applications of RL in the literature that are relevant to the
problem domain.

A paper by Pham et al [13], proposed a distributed Multi-
Agent Reinforcement Learning (MARL) algorithm to tackle
the problem of UAV team cooperation for full coverage of
an unknown field of interest. This approach demonstrated
that teams of UAVs can succeed in the mission without
the need of a mathematical model, however, the work
was not application specific and further concluded that the
stochastic aspect of the problem was not addressed. The
stochastic nature of an environment is a critical aspect
for consideration and one which this paper highlights (e.g.
the mobility of the users/subscribers). In this work the
behaviour of the RL algorithm in the presence of stochastic
user mobility is considered a key performance indicator.
Adaptive state focus Q-learning was applied to solve the
problem of learning convergence [14]. To solve the lack
of convergence, the learner dynamically expands its state
space by incorporating more state information; which is
essentially state information of other agents. This approach
assumes that the other agents must be accessible and have
useful or better state information; this assumption may be
problematic and may not resolve the slow convergence issue.
An area coverage control in conjunction with reinforcement
learning was applied to asymptotically converge UAV agents
in optimal configurations but does not consider the impact of
intermittent communication network [15]. Cooperative UAS
swarm must be able to function if there is a loss of connec-
tivity; this is another performance indicator that should be
considered within this work. The work by Hung & Givigi
[16], considered the application of reinforcement learning
(using Q-learning) to the flocking problem but in the context
of followers learning a control policy in the leader-follower
topology. This differs from the equal hierarchy topology
explored in this work, and moreover does not address the
area communications coverage specific scenario. Nguyen et
al [17], applied Apprenticeship Bootstrapping via Inverse
Reinforcement Learning using Deep Q-learning (ABS via
IRL-DQN) to a UAV and UGV (Unmanned Ground Vehicle)
coordination task. The UAV was required to maintain about
three UGVs in its camera field of view (FoV), however,



it differs from the communications area coverage problem
considered in this paper. It is not the aim of this paper to
provide an exhaustive list of all RL based UAV applications
but to identify implementations that reinforces the context of
the work.

However, in this paper, the Q-learning approach was
adopted; the central idea in the Q-learning algorithm is to
store the state-action pair value Q(s, a) called Q-values of
each iteration as the agents interact with the environment (Q
stands for “Quality”). At the beginning of the simulation the
Q-values are initialised to zero and stored in a table or an
array. The agent visits some state s, and takes action a, and
then transits into another state. The immediate reward gained
from this action is stored and the Q-value updated using the
following mathematical relationship [12], [18];

Qs,a) = (1 — a)Q(s,a) + a|r+ ’Ymal‘t+1Q(St+17at+1)l
(1

Where r denotes the reward at time t, 0 < o < 1 is a
given learning rate and < is discount factor. The expression
is used to update the Q-table until the values converge to
a near-optimal solution. In the simulation carried out, the
HAPS are defined as agents and user mobility modeled as
part of the environment and ’states’ are pre-selected as fixed
coordinates (beacons). The agent can execute two action set:
Relocate from or Remain within a ’state’ as user density
changes due to user mobility. Reward (or penalty) signals
are fed back to the HAPS to reinforce actions that influence
goals (e.g. maximise user coverage) positively or otherwise.

B. Application of Swarm Intelligence in Unmanned Aerial
Systems

Generally, swarm intelligence is inspired by biological
systems and their collective behaviour as an organised group
[19]. A swarm in this context are simple agents interacting
locally within themselves and their environment without
any central control leading to an emergent global behaviour
[20]. It is important to highlight the decentralised control
architecture of swarm creatures which is highly desirable in
practical scenarios. In literature different applications of this
technique to various problems are available but this work
addresses only UAV related applications.

A swarm intelligence approach based on Particle Swarm
Optimisation (PSO) was explored by [21], to coordinate
multiple UAVs but applied within the target tracking and
energy consumption problem context. The application of
swarm intelligence for real time UAV coordination for search
operations was proposed by Varela et al [22], and specifically
applied in an environmental monitoring and pollution source
detection problem scenario. An analysis of swarm intelli-
gence based coordination under three specific scenarios was
covered by Monteiro et al [23]. These scenarios assessed
several features including the self-segregation and self-
aggregation and a metric to analyse cohesion of the swarm.
The application of swarm intelligence for communications

area coverage using fixed-wing unmanned multiple HAPS
platforms has unique application requirements. Though in
literature different application of swarm intelligence in UAV
coordination have been cited but the area coverage scenario is
largely unavailable. Due to the advances in machine learning
and artificial intelligence, swarm intelligence as originally
conceived is not popularly applied.

A swarm intelligence based algorithm (a variant of the
bee algorithm) is developed for this work and leverages
the strengths of swarm self-organising capabilities. The
fundamental concepts to achieving swarm intelligence are
self-organisation and division of labour [19], [24]; both
influenced the logic behind the algorithm. The participating
HAPS in the swarm exchange essential data as they explore
the environment akin to foraging. By exchanging critical data
and using swarm techniques the HAPS provide persistent
and resilient coverage over the area of interest. Figure 2,
shows the flow chart for the applied swarm intelligence
algorithm, its key aspects, and application to the multiple
HAPS coordination problem.

IV. MODELING AND SIMULATION BACKGROUND

In this work, a swarm of multiple solar-powered fixed-
wing unmanned HAPS with communications payload, pro-
viding area coverage over a specified geographical region
was modeled and simulated. In modeling this system some
aspects of the system was abstracted to simplify the model
without losing relevant system attributes.The following con-
ceptual models (see list below) were implemented in soft-
ware and constitutes a key aspect of the modeling and simu-
lation process or methodology for this research work. These
models are simplified enough to meet the specific scope
and interest of the research using standard mathematical
and physics models of aerodynamics and communications
without compromising theoretical or practical considerations
[5].

« HAPS Flight Dynamics Model (FDM).

« HAPS Propulsion Model.

« HAPS Navigation Model.

« HAPS to Ground Link Model.

o Inter-HAPS Link Model.

o User/Subscriber Mobility Model.

Some models, for instance the HAPS FDM were im-
plemented mostly from first principles for higher accuracy,
and fidelity of model validation and verification procedures.
MATLAB in-built functions were used where appropriate.
This practice, in addition to modular codes provided another
layer of validation and easy verification through debugging
and antibugging. The need for model fitness for purpose and
fidelity also informed the decision not to use various open
source software/models e.g. JSBSim flight dynamics model.

The parameters in table I, describes the HAPS system
communications and link budget parameters which ulti-
mately defines the profile of the service segment e.g. HAPS
communications payload power and link data rates. The
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Fig. 2. Swarm Intelligence Algorithm Flow Chart

link budget is based on a payload power of 80 Watts,
with the simulated HAPS network supporting about 500
subscribers/users spread over a large area (typical coverage
density profile for HAPS). In such thinly populated sce-
narios, terrestrial networks would not be economical and
satellites may be too expensive and ineffective.

V. RESULTS AND ANALYSIS

The simulation was run with four (4) HAPS covering an
area of about 102,100km2, with 500 users distributed over
the area of interest. The initial distribution of the HAPS and
the ground users is shown in figure 3. The ground users
move randomly with a mobility model that is not predictable
by the HAPS. However, in order to provide a method
to validate the algorithms and simulation method; certain
benchmarks were introduced. One of such benchmarks was
to keep the HAPS platforms fixed (circling around a fixed
coordinate), and note the performance. The outcome of this

TABLE I
HAPS SYSTEM COMMUNICATIONS AND LINK BUDGET PARAMETERS

S/N | Item
Half Power Beam
1 Width (HPBW) 145 degrees

Normalised Signal

Specification Justification

Specific to Model

2 to Noise Ratio | 10 dB Assumed for Link
(Eb/No)
Power to support 1
3 EIRP Depends on subscriber at edge
Slant Range
of cover
4 | Data Rate 10 Kbit/s Desired Link Data
Rate
HAPS Transmitter N
5 Antenna Efficiency 0.75 Assumed for Model
6 Ground Recelver 1 Assumed for Model
Antenna Gain
7 Signal Frequency 7 GHz Assumed for Model
g | System Noise Tem- | 350 Standard

perature

experiment will provide a means to measure the performance
of the coordination algorithms, and compare outcomes. The
following coverage measurement indices are applied;

o Local Coverage: Measures individual HAPS Coverage.
« Global Coverage: Measures Total Coverage (All HAPS
combined).

Also note that in computing coverage, no user can be covered
by more than one HAPS at a time. This is also applicable to
the HAPS; this way duplication of coverage is avoided. It is
assumed in this simulation that hard hand-off is implemented
in the system (as each HAPS completely releases a user,
before the next HAPS attaches it).

HAPS 3, is deliberately located initially where the user
density is zero, providing another validation and evaluation
condition. In any swarm coordination scenario, it is desirable
to see ’starved’ or dislocated agents find solution or ’forage’
within the foraging space. The performance of this disadvan-
taged HAPS(agent) will test the self-organisation and coor-
dination robustness of the algorithms in this specific problem
environment. The simulation was run for 6 hours, which is
reasonable in this problem domain as convergence rate is
required to be fast, else users may not be connected and
revenue will suffer or in emergency or life-critical missions,
lives may be at stake. Previous runs of this simulation also
demonstrates that a 6 hour window provides a reasonable
time to test convergence, isolate any potential user density
dispersion issues and computational overheads. However,
extended runs are also carried out to test other aspects or
parameters as the research warrants.

A. Performance Analysis without any Coordination Algo-
rithms

This scenario represents the “do nothing” solution, where
all the HAPS maintain a fixed circling formation without any
coordination algorithms. The performance of the simulated
HAPS network is bench-marked with this experiment. Any
claim to improved performance due to the coordination
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Fig. 3. Initial HAPS versus Ground Users Distribution

algorithms must have better global coverage outcomes than
the ’do nothing’ case. As shown in figure 4, HAPS 1, 2
and 4 maintained their local performance of 45, 110 and 58
users respectively throughout the duration of the experiment.
While HAPS 3, as expected had zero coverage throughout
the same period. The global coverage performance, (see
figure 5, rose from 183 and converged at about 210 users and
remained within this threshold throughout the simulation.
This outcome provides a performance benchmark as stated
earlier, and also shows the peak performance of the system
under this circumstance with no upward trends in view.

B. Performance Analysis - Reinforcement Learning Algo-
rithm

In the application of RL for HAPS coordination, it is
observed from figure 6, that the algorithm records remark-
able peak coverage results, for instance HAPS 3, achieved
coverage of over 100 users. Individual HAPS at various
times during the simulation recorded good local coverage,
reaching almost 250 users. However, due to the exploration-
exploitation dilemma, local coverage drops as the HAPS
explores other ’states’ with probability e. This trend is
noticed across all HAPS, as their coverage randomly drops,
due to exploration decisions. In contrast the SI method
showed stable but lower peak coverages. However, the global
coverage performance (see figure 7) of the RL algorithm
peaked at above 400 users and clearly demonstrates superior
global coverage performance. It is possible that the RL
algorithm will achieve some convergence after a long run,
however, the nature of the technique inherently explores
its environment with some probability. This is a strength
and not a weakness and guarantees that the HAPS is

Time
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never completely biased to exploiting a local optima. This
highlights the impact of the learning algorithm approach to
HAPS coordination problem. From the results RL coverage
performance is better than the SI approach but with the
risk of unpredictable dip in performance since navigation is
driven solely by exploration decisions. The challenge with
the RL based approach lies with balancing the exploration-
exploitation trade-off to encourage more exploitation when
certain peaks are achieved. But since user mobility implies



that ’states’ will be stochastic (specifically non-stationary
stochastic), inducing more uncertainty, the RL approach
demonstrates more resilience to this noise and unpredictable
model of mobile user environment. Additionally unlike the
SI based method, the RL approach does not depend on a
feedback loop or broadcast from the swarm. This quality
adds to its resilience to adversarial attacks or normal cross-
agent communication faults.
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C. Applying decaying Learning Rate and Adaptive epsilon-

greedy in the RL Algorithm

The RL algorithm was deployed initially using static
hyper-parameters, specifically learning rate (1) and epsilon
(0.1). However, to further test the capability of the RL
method a dynamic epsilon greedy value and decaying learn-
ing rate was applied. At the beginning high values were used
and systematically reduced as the simulation progressed.
Epsilon values range between 0 and 1; 1 indicates high
exploration mode (akin to a random walk); while 0 means
extreme exploitation. The figure below shows the result of
running the experiment with decaying hyper-parameters. The
local HAPS coverage (see figure 8) shows more aggressive
exploration at the beginning as the epsilon value was set to
1 and decreased to 0.1 towards the end. The same method
is used to adjust the learning rate, higher at the beginning
and lower towards the end. Note that this run recorded more
zero values for local coverage results (indicative of more
exploration). However, the global result (see figure 9) showed
better global performance reaching peak user coverage of
above 450 users. The effectiveness of RL methods is high-
lighted in this experiment; between the two methods only RL
came close enough to covering all users within the simulation
period. The main objective in multiple HAPS coordination
for communications area coverage is to achieve maximum
user coverage.

Local HAPS Coverage

B0

00 /\

=
p=]
T

Number of Subscribers
=
s
T

! \ ! | ! A
10AM 11AM 12PM 1PN 2PN 3PN 4PN 5PM 6PM
Time

Fig. 8. Local HAPS Coverage with decaying RL Hyper-parameters

D. Performance Analysis - Swarm Intelligence Algorithm

In this experiment the swarm intelligence based algorithm
is tested under the same set of conditions but with the
HAPS allowed to navigate around as required. In figure
10, HAPS 1 and 4, can be seen to have started increasing
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their coverage almost immediately, a positive development.
More significantly HAPS 3, which could not cover any user
in the previous ’do nothing’ condition, increased its local
user coverage from zero to almost 30 users. The cooperative
nature of the ST algorithm is the reason HAPS 3, can discover
how to navigate to ’rich forage’ (high user density) based on
the broadcast (feed-back loop) from the swarm. HAPS 2,
due to its vantage location easily converges and maintains
coverage performance of more than 90 users. The global
coverage performance captured in figure 11, reached over
270 users, with a strong upward trend. This positive improve-
ment trend is a sharp contrast to the *flattening’ performance
trajectory of the ’do nothing’ scenario. In comparison to the
RL technique, the SI method did not show any unpredictable
coverage dips but converged to a solution in less than 60
minutes of simulation time.

VI. CONCLUSIONS AND FUTURE WORK

This paper compares the performance of RL and SI algo-
rithms in the autonomous coordination of a swarm of HAPS
for communications area coverage. It was observed that the
SI algorithm showed faster convergence and more stable user
coverage profile due to the simple rules-based logic. How-
ever, the RL algorithm (applying dynamic epsilon-greedy
technique and decaying learning rate) achieved higher overall
peak user coverage rates but with some coverage dips due to
individual HAPS exploration strategy. RL based techniques
demonstrate inherent coordination resilience due to indepen-
dence from feedback loops and cross-agent communications.
This work therefore, concludes that in designing coordination
algorithms, swarm intelligence based approaches may be
more efficient and reliable but with less optimal coverage
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results; while RL algorithms will achieve better coverage
peaks but at the risk of occasional dips.

Future work will consider how to improve the performance
of both RL and SI based algorithms by focusing on the
observed weaknesses e.g. improve SI based algorithms to
reach higher coverage rates, and resolving the unpredictable
dips in RL solutions while still maintaining stable user
coverage. Another interesting consideration is to develop a
hybrid solution which may combine the strengths of both



algorithms in ways relevant to this research work.
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