Using Non-Functional Requirements
in Component-Based Software Construction

Pere Botella, Xavier Franch, Xavier Burgués
botella@lsi.upc.es, franch@lsi.upc.es, diafebus@lsi.upc.es
Dept. Llenguatges i Sistemes Informatics (LSI)
Technical University of Catalunya (UPC)
Pau Gargallo 5, 08028 Barcelona, Catalunya (Spain)
FAX: 34-3-4017014. Phone: 34-3-4016994

Abstract

The mainconcernof this paperis to presenthe author'sapproacho supportsoftwaredevelopmenin

the componentprogramming framework taking functional and non-functional requirementsinto

account. Functional requirementsare written as algebraic specifications, while non-functional
informationis boundto specificationsandimplementationdy meansof ad hoc modules:the non-
functional information is usedto select automatically the most appropriateimplementationsof

softwarecomponentgthe selectionalgorithmis not presentechere). The existenceof multiple type
implementationgs supportedoy a procesamodelbasedon the prototypingparadigm.Prototypingis

achievedby meansof a mixed execution mechanismbeing able to operatein the context of

incremental software development process allowing the execution of incomplete (partially
implemented)systems.The ideaswe presenthere are not bound to any particular programming
language, giving rise to a method of wide applicability.

Key words and phrases: component software design, non-functional requirements,
prototyping.

1 Introduction

Componenprogramming[RES94,Jaz95]is a usefulandwidely spreadway of building complex
softwaresystemsby meansof combining,reusingand producingsoftwarecomponentsand can be
seenas a generalterm to denote well-known conceptsas object-orientedor modular software
development. What a component doestéedby its functionalproperties Differentimplementations
must satisfy them but they will differ on some non-functional aspects, as execution time or reliability.

Among other possibilities, we are interestedin software componentsas an encapsulationof
abstract data typegADT), described by algebraic specificatiaraimplementedisinganimperative
programminglanguage.To be more precise,componentsconsistof: a) the definition of an ADT
statingboth functionaland non-functionalcharacteristicsand b) one or more implementationseach
one including a descriptionof its non-functionalbehaviour.In this framework, we conceivethe
developmenbf a systemasa refining processjn which eachstepcanbe: Specifyanew ADT; Add
more propertiesto an incompletelyspecifiedoperation;Start or continuean implementationof an
ADT, possiblyimporting someotherADTSs; Reusea specificimplementatiorof an ADT to fit some
particular requirements on it; Execute the current system to test it for errors and/or to tune it up.

Thereare someaspectf our approachthat makesthem different (and, of course,betterin our
view) with respectto otherrelatedexistingonesapproachesthe definition of a completeandformal
notationto statenot only the usualfunctional aspectsof softwarebut also non-functionalones;the
automatic selection of the implementationfor a given specification, improving the reuse and
maintaining multiple implementationsjn a single system;an ad hoc processmodel addressedo

1 This work hasbeenpartially supportedby the spanishresearchprogrammePRONTIC undercontractTIC92-0667
and also by the OBJECTFLOW project.

supportprototypingin the frameworkdefinedby the existenceof multiple implementationsfinally,
executionis possibleat eachstepof developmentcombiningin the generalcasespecificationsand
implementations (maybe different ones for the same ADT).

The restof the paperis structuredasfollows. Section2 presentgshe notationto write functional
specifications and non-functional information (the implementation selection algorithm is not
presentedhere,see[Fra96] and[FB96]). Section3 describeghe softwareprocessassistantSection4
presentghe mixed executionmechanismFinally, section5 outlinessomeconclusionsand mentions
some related work.

2 A Notation to Express Functional and Non-Functional Information

We presentin this sectiona formal notationto enrich an imperativeprogramminglanguagewith
both functional and non-functional information. Tlu@ctionalpartis just outlinedbecausét consists
of well-known constructsin the algebraicspecificationframework. A more detailedexplanationis
given for the non-functional part, which we will calF-languagefrom now on.

2.1 Specification of functional behaviour

We adoptalgebraicspecificationsasthe languageo statethe functionalbehaviourof components.
At least,a specificationdeclareghe nameof the type beingdefinedandthe list of operationsof the
type, including their arity. Next, conditionalequationdor the type may appearwhich areinterpreted
by defaultwith initial semanticspptionally, operationsmay be left incompletelyspecified,stating
just some universal equations that they must fulfill.

For instance we presentnext a NETWORKsoftwarecomponentspecification,to be usedas an
ADT for activity networks, establishing precedencerelationshipsbetweensome kind of tasks
(representedby naturalnumbers).We introduceoperationsto createan empty network, to createa
network with an initial task (created, to add andremove precedenceelationships,to get the
immediatesuccessor®f a task and to obtain a topological sort, which returns a valid order of
executionof the tasks.The specificationimports LIST_OF_NATURAIlwhich is assumedo offer as
many operationsasnecessaryWe give the equationdor succandtop_sort that showthe two usual
kinds of specificationssuccis completely defined (i.e., its behaviour is uniquidgyerminedor every
network),while top_sortis not: it is just statedthatif ataskm precedes taskn thenm mustappear
beforen in the resulting list.

specification moduleNETWORK
imports LIST_OF NATURAL
type network
operations creataeturns network
create2 (naturaéturns network
add, remove (network, natural, natuedljrns network
succ (network naturegjurns list_of natural
incompletetop_sort (network)eturns list_of natural
equations
... equations for the type (including error conditions)
succ(create, m) = LIST_OF_NATURAL.empty
succ(add(d, m, n), m) = LIST_OF_NATURAL.put(succ(remove(d, m, n), m), n)
[m <> x] => succ(add(d, m, n), x) = succ(d, Xx)
[belongs(succ(d, m), n)] => before(top_sort(d), m, n) = true
end module

2.2 The NF-language
The NF-language is designed to state three kinds of non-functional information:

« Non-functionalproperty (short, NF-property: any attribute of softwarewhich servesas a
meanto describeit and possibly to evaluateit. Among the most widely acceptedones
[[EEE92, ISO91], we mention: time and space efficiency, reusability, maintainability,
reliability and usability. In our approach, we let also more specific attributes to appear.
In the generalcase we studya given softwarecomponentvith respecto a particularsetof

NF-properties; we say then that the componeah&acterizedy this set.

* Non-functional behaviour of a componentimplementation (short, NF-behaviou): any
assignment to the NF-properties characterizing the implemented software component.

* Non-functional requirement over a software component(short, NF-requirement any
constraint referred to some NF-properties from the set characterizing the component.

Next figure shows how non-functional information is collected into various modules. NF-
propertiesare declaredn NF-declarationmodules boundto specificationsThey mayimport one or
more property modules which should be used to define NF-propertiesof wide applicability,
appearingin many NF-declarationmodules,evenin different software systems.In fact, property
modulesallow usersto define their own libraries of NF-propertieswhich can be importedfreely in
softwaresystems NF-behaviourof implementationds statedin NF-behaviourmodules bound to
them. Also, NF-behaviour modules will usually include NF-requirementsover the software
components imported by the implementation.

, PROPERTY
|mporTs MODULE
SPECIFICATION NF-DECLARATION
MODULE MODULE
i implementation \ PROPERTY
relation i
imports MODULE
IMPLEMENTATION NF-BEHAVIOUR
MODULE MODULE

Declaration of NF-properties

NF-propertiesappearingn NF-declaratiormodulesmay be of four differentkinds: 1) boolean to
representsoftware attributes which simply hold or fail (ex.: full portability); 2) numerical, to
introduce software attributesthat can be measuredex.: reusability degree);3) by enumerationto
represensoftwareattributeswhich canbe classifiedinto somecategoriegex.: kind of userinterface);
4) efficiency, to establishthe executiontime and spaceof typesand operations.Lower and upper
limits of numericalNF-propertiesnay be specified;also, the setof valid valuesof a NF-propertyby
enumeration may be listed together with the NF-property name.

Efficiency NF-propertiesneednot to be explicitly declared;they comeinto existencefrom the
correspondingoftwarecomponenspecificationn the ADT framework,we measureefficiency with
the big-Oh asymptoticnotation [Knu76], which givesrise to a few specific operatorsin the NF-
languagesuchaspower,logarithmandby the like. Valuesof this kind of NF-propertiesaregivenin
termsof somemeasureunits, which represenproblemdomains’size andwhich mustalsoappearn
NF-declaration modules.

2 A currentline of researchis the developmentof a predefinedcataloguecontainingthe most widely accepted
non-functional properties together with various existing metrics.

A NF-declarationmodule for NETWORKIis shown next. Note that NF-propertiesat different
abstractionlevels (generalonesas reliability and more concreteonesas programmer’'sname)can
coexistfreely. We havechosento definea relatedsubsetof the NF-propertiesn a separatgroperty
module, IMPLEMENTATION_ISSUESo that they can be usedin other componentsConcerning
efficiency, we haveintroducedtwo measureunits, onefor the numberof tasksandthe otherfor the
number of explicit precedence relationships.

property module IMPLEMENTATION_ISSUES

properties

booleandynamic_storage

numerical links_number

enumerateddata_structure = (hashing, avl, heap, chained, others)
end module

declaration modulefor NETWORK
imports IMPLEMENTATION_ISSUES
properties
booleanfully _portable, external_programmer
numerical reliability [0..5]
(* 0: non-reliable; 1-4: increasing degree of testing; 5: formal verification *)
enumeratedprogrammer_name
measure unitsn_tasks, n_preceds
end module

Statement of NF-behaviour

Each implementationV for a given software componentspecificationD should state its NF-
behaviour with respect to tiéF--propertiescharacterizindd in the NF-behavioumoduleboundto V.
For instance the behaviourof animplementationMP_NET _1for the definition NETWORKusinga
graphimplementediy an adjacencymatrix may look asthe modulebelow. Seethe useof arithmetic
operators to state efficiency interpreted in the big-Oh notation [Bra85].

behaviour modulefor IMP_NET_1
behaviour
fully_portable; programmer_name = Franch; reliability = 3
links_number = 0; data_structure = others
space(network) = pot(n_tasks, 2); time(create, create2) = pot(n_tasks, 2)
time(add, remove) = 1, time(succ) = n_tasks
time(top_sort) = pot(n_tasks, 2); space(top_sort) = n_tasks
end module

By default, auxiliary space for operations is O(1) and logical properties do not hold.

Statement of NF-requirements

NF-requirementsstate conditions over implementationsof software components.Syntactically,
they are usualbooleanexpressiongnrichedwith somead hoc constructsfor non-functionality(see
examplesdelow). Their purposeis to representhe environmentwhereimplementationsareto be put
in. They may appearboth in NF-declaratiormodulesand NF-behaviouronesand they may involve
again measure units introduced in NF-declaration modules.

NF-requirementsn NF-declaratiormodulesstatethe conditionsthat everyimplementatiorof the
componenmmustfulfill in orderto be usefulin the system.We enrich below the declarationmodule
for NETWORKwith some relationships between NF-properties and measure units.

declaration modulefor NETWORK

imports IMPLEMENTATION_ISSUES

properties ... the same as before

measure unitsn_tasks, n_preceds

relations
n_preceds <= pot(n_tasks, 2); dynamic_storage => reliability < 5
(not fully_portable and external_programmer) => reliability = 0

end module

property module IMPLEMENTATION_ISSUES
properties ... the same as before
relations dynamic_storage => links_number > 0
data_structure = heap => (links_number = 0) and not dynamic_storage
end module

NF-requirementsappearingin a NF-behaviourmodule boundto an implementationV statethe
conditionsthat the implementationf all the softwarecomponentamported by V must fulfill in
orderto beusefulin V. They shouldbe completeenoughto selecta singleimplementatiorfor each
imported softwarecomponentln the generalcase,V may include a list of NF-requirementover
every imported component; NF-requirements inltsteareappliedin orderof appearancentil oneof
thefollowing conditionsholds: 1) a singleimplementations selected?) applyingthe next NF-
requirementwould yield to an empty set of implementations3) all the NF-requirementdhiavebeen
applied. In the last two cases,more than one implementationmay satisfy a given list and then
requirementswould have to be reviewed. As an alternative, a concreteimplementationfor a
component may be selected directly by its name.

For instancea NF-requiremenver LIST_OF_NATURALN implementationMP_NET_1could
be:first, implementatiormustbe asreliableaspossible;next, the costof the operationgo build a list
andtheir auxiliary spacemustbe asfastaspossible(i.e., O(1) in the big-Oh notation);last, traversal
should be as fast as possible. We use a few predefined operators “which have an intuitive meaning.

behaviour modulefor IMP_NET_1

behaviour ... the same as before

requirements onLIST_OF_NATURAL:
max(reliability)
time(empty, put) = 1 and space(ops(LIST_OF NATURAL)) =1
min(time(traversal))

end module

3 The Software Process Assistant

We describein this sectiona software processassistantoasedon the idea of prototyping with
incomplete programs. “Incomplete program$ stands for programs which may contain non-
implementedtypes, and/or objects with no associatedmplementation.Execution of incomplete
programs is interesting in the context of program development through prototyping bihesaissce

3 This corresponds with the usual case of having requirements with different degree of importance.

4 In fact, the algorithm may be tuned so that a single implementationis automaticallyselectedfrom the set of
candidates satisfying the list of NF-requirements.

of implementationfor typesand objectsmay be delayeduntil the entire behaviourof the module
hierarchyhasbeenprovedcorrect. This sectionproposego performthis “proof’ throughtesting,by
means of the construction of a sequence of executable prototypes.

Let H be a hierarchy of modulesand let lib be a library of software components.The main
capabilities offered by the assistant are:

1.- Define the signatureof a module:define(H, spec_mod) During this definition, more
concreteordersmay be used:create(name)to createthe empty module,add_type(spec_mod,
name) andadd_op(spec_modop); also,reusefrom library canbe madeasexplainedat point
4,

2.- Specifya module:specify(H, spec_mod) The modulecanbe alreadydefinedor not. In
orderto obtainthe equationsthe assistanguidesthe userinto theinitial semantic§ramework,
asking for:

2.i Which arethe constructorof everytype, thatis, the minimal setof operationgo build
any value: constructors(spec_mod,set_of_ops) Constructorsmay be introducedas
private.

2.ii Which are the relationships among those constructors: congruence(spec_maod,
set_of_eqns)

2.iii For each other operation, which are the equations defining its behaviour:
specify_op(spec_mod, set_of eqns)

In the last step, a default proceduremay be applied under requestto decomposethe
parameterof the operationbeing specifiedusing the constructorsof their type. Prototyping
may be doneat any point during specification;also, specificationmay be left (temporarily or
permanently) incomplete, which may affect prototyping.

3.- Implementa definedor specifiedmodule:implement(H, name_specjmpl_mod). In
order to allow prototyping of the implementation to occus@snaspossible the assistanasks
for:

3.i The representation of the type plus its abstraction function plusgiementatiorof the
constructor operations: represent(impl_mod, name_type, repr), abstr(impl_mod,
name_type,set_of _eqgnsor code)for the abstractiorfunction (which may be specified
or implemented seenext section)and impl_op(impl_mod, name_op, code) for each
constructor.

3.ii For each other operation, its implementatiompl_op(impl_mod, name_op, code)

So, prototypingmay take placeafter 3.i andalsoafter every operationimplementedn 3.ii.
Implementation may be left temporarily incomplete, which may affect prototyping.

4.- Reusea modulefrom thelibrary: use(mod,lib, name_specrens) andinstantiate(mod,
lib, name_specassoc rens). Thatis, the moduleis usedor instantiatednsidea modulemod
that is being defined, specified or implementethsstands for the symbol renamingsdeand
assocsstandsfor the binding betweenformal and actual parametersn the instantiation(the
fitting morphismin theinitial semanticsapproach)ln caseof usingor instantiatinga module
with a given implementation, its name is added as the last parameter.

5.- Choosean implementationfor an module, a type or an object: choose_mod(mod,
name_spechame_impl) for modules,choose_type(modname_type,name_impl) for types
and choose_const(modname_const,name_impl), choose_funct_result(mod,name_funct,
name_impl) and choose_var(modname_funct, name_var, name_impl) for the appropriate

kind of object(the last oneincludesparameters)for modules,we may also usethe ordersin
point 4. All the bindings are made inside the implementation modate

6.- Store a module into the librarstore(H, lib, module)

7.- Prototypea function: prototype(H, name_module,name_function) The assistanfisks
for the input parametervaluesand then the required function is executed,calling either a
conventionalinterpreterif the function is implementedor the term-rewriting systemif not.
Input parameteraluesmay be persistentobjectsaswell asinput / outputdevices,which are
treatedasabstractatatypes.Prototypingis the crucial functionality of the assistantandit can
be invoked at any moment when specifying or implementing a module

4 Mixed execution

We describenow the executionstrategythat we havedesignedor our system.The main goal of
this strategyis the ability to executesoftwaresystemsat any stageof developmentsupportingthusa
prototypingsoftwareprocessvhereimplementation®f componentsan be incrementallyaddedand
tested. It shoulthe saidthatthis processwill usuallybeinefficient, but we areinterestedn testability
ratherthan in efficiency; we remarkthat the final productwill haveall of its componentdotally
implemented and it will not be executed using this strategy.

There are two situations that must be coped in order to a$ssifall executability.First, it canbe
the case for aADT to be selectedvith morethana singleimplementatiorin the system.Secondthe
current version of the system may combine modules just specified with others for which an
implementationhas beenselected;even more, specificationscan contain operationsnot completely
defined, while implementations may be only partial during their development.

4.1 Coexistence of multiple implementations

The coexistenceof multiple implementationgs problematiconly whentwo objectsof the same
type but differentimplementationsnteract,asit happensn concatx, y) andx :=y, beingx andy two
lists implemented in different ways. To support this free interaction it is necessary to have a method to
transformthe correspondingdata structuresin the adequatemanner.Insteadof having particular
methods for every pair of existing implementations, we have preferred to defimenaonframework
whereimplementationsare translatedo andfrom: the specificationof the type, and so the methods
are: the abstractionfunction to transforma datastructureto an expression(a term) formed by the
operationsof thetype, andthe representatiornrelation to performthe inversestep;both constructions
were already introduced in [Hoa72].

While the representatiomelationis no morethanthe executionof the operationsappearingn the
terminto the goal implementationthe abstractiorfunction mustbe explicitly given. It is codedasa
specialfunction returninga term andit appearsnside NF-behaviourmodules.We show below the
abstraction function for the adjacency-matrix implementdfidh_NET_1

behaviour modulefor IMP_NET_1

abstraction (n: network)returns t: TERM(network)

var i, j: integer
t := create
fori:=1to maxdo (* max maximum number of tasks *)
for j := 1to maxdoif nli, j] thent := add(t, i, j)

end module

Note the useof a predefinedtype constructor, TERMt), usedto modelisetermsin the algebraic
framework. Inside the abstraction functi@ajlsto operationf the type beingabstractedcreateand
addin the example) are interpreted as building-term operations.

4.2 Coexistence of specifications and implementations

Incorporating specificationsinto the executionprocessis conceptuallysimple if we consider
specificationsjust as anotherimplementation.The only difference hasto be with the execution
technique: specifications are executed using term-rewriting, while implementatemsecutedy an
interpreter.This kindof mixed executionmay be usedto obtainthe outputfor a giveninput (in order
to comparethe resultagainstthe expectedone during testing)or to checkif animplementatiornof a
partially specified operation satisfies some property for a given input.

An executionwill startasa processto evaluatean expressionEachnode of the expressionwill
correspond to a function which may have teeRecutednterpretingits codeor elserewriting it using
its specificationt may be necessaryo changea call to anoperationof an ADT by a call to aroutine
implementingit or viceversaandsomedatastructuresnay haveto be transformednto the term they
representusing the abstractionfunction. Thesestepson the evaluationare nothing but changesof
subexpressions by equivalent ones.

To illustrate the possibilitiesof mixed execution(for more details, see[BF95]) we show some
examplesof evaluationof the expressiorsucgcreate1), 1). Let's supposethat an implementation
has beenselectedfor NETWORK then, we considerthree different scenariosdependingon how
developed is the implementation

Scenario 1. create2is the only implementedfunction. We assumeits codificationto be a loop
overthematrix’ rows, assigningalseto eachpositionexceptfor the taskidentified by the parameter.
Theevaluationwill proceedhis way (seefigure below): 1) Changethe call to create2by a call to its
implementation pbtainingabsti(creates ner {1)). 2) Interpretit to obtaina matrix. 3) Compute
the abstractionfunction, obtainingthe term t. built up with successiveapplicationsof add one for
each natural in the range from 2 to MAX. 4) Rewrite succ(t, 1), obtaining a term of type
list_of naturalwhich will be interpreted if an implementation for lists has been selected for the result.

succ
1 2 succ
succ —» > A 3 ;
/\ 1
abstr abstr 1

create2 1 | |

| Crealte%/l P NET 1
1

1

Scenario 2: create, succ and add are implemented;the rest of the functions are not. The
specificationof create2shouldstatethat create2(x)is equivalentto add(add(...(add(createx, 1), X,
2), ..., X, max) Now, the evaluationwill be: 1) Rewrite create2obtainingthe termt as before. 2)
Bottom-up interpretation afreate add andsucc

Scenario 3: create2is the only implementedunction. We assuméts codificationto be first the
creationof the emptynetworkandthenaloop overi from 1 to MAX exceptfor x, calling add(x,i) in

5 f| stands for the routine of the implementation moduteplementing.

the body. Stepsof the evaluation:1) interpretationof create2 The loop builds up the term t. 2)
Rewritesucc(t, 1)

5 Conclusions

We havepresentedn this papermanyfacetsof a single project.In this project(namedExcalibur)
we aredesigninga languagdo specifyandimplementcomponent@ndan environmentfor it, but the
language and the environment are thetprojectgoal by themselvesbut a pretextto experimentwith
our methodological ideas. To be precise, we have introduced:

- A formally definednotationto statenon-functionalissuesof softwaresystemsAlthough some
previouswork hasbeendoneat the process-leve{see[MCN92]), we do not know of any approachat
the product-level with theamefeaturesasours(in spiteof manyclaimsin this sensgSha84,Win90,
MCN92, Jaz95]). There are many non-formalised or patighosalgMat84, LG86, Win89, CGN94,
SY94] which results are subsumedin our work; also, [CZ90, CZ91] presenta very interesting
framework close to ours, but restrictedto non-functionalpropertiestaking numerical values. Our
notationleadsto a systemin which multiple implementationgoexists togetherwith an algorithmto
select the best one for a given specification. A few proposals butmpthrtantrestrictionshavebeen
proposed in this direction (the language SETL [Sc+86] or the LIBRA system [Kan86]).

- A softwareprocessassistanbasedon the idea of prototypingwith incompleteprograms.The
guidance trouglan assistanfor the processmodelis a commonideain the fields of SoftwareProcess
Modelling and Process-centered Software Environm¢@RN94]).

- A mixed executionmechanismbeing able to deal with incomplete systems.This makesour
approachwell-suited for a prototyping software process.Executionis possible even combining
multiple implementationsand having incompletelyspecifiedoperations(which canonly be usedin
restrictedqueries)or partial implementationsTo assurefull executability,the abstractionfunction
may be usedin some contexts. Some approachesexist in this sense(the executionsystemin
AsspegiqugCK90] or the environmentfor the LEDA multiparadigmlanguage[Bud95]); however,
we do not know of any of them as flexible as ours.

Currently, a first prototypeof the selectionalgorithmandthe executionsystemexists.It mustbe
remarkedthat, insteadof having different interpretersfor all the programminglanguageswe are
interestedn’, we arebuilding a singleinterpreterof an ad hoc notationcompleteenoughto translate
implementationsn C++, Eiffel, Ada-95, etc., into it; this notationwill be usedduring prototyping
only andit will disappeamncethe final versionof the systemis obtained.This strategydecreases
considerably the task of adapting our system to new programming languages.

References

[BF95] X Burgués,X. Franch.“Evaluation of Expressiondn a Multiparadigm Framework”. In
Proceedings of 7PLILP, Utrecht (The Netherlands), LNCS 982, Springer-Verlag, 1995.

[Bra85] G. Brassard. “Crusade for a Better Notation”. SIGACT News, 16(4), 1985
[Bud95] T.A. Budd.:“Multiparadigm Programming in LetlaAddison-Wesley, 1995.

[CGN94]D. Cohen,N. Goldman,K. Narayanaswamy.Adding Performancénformationto ADT
Interfaces. In Procs. of Interface Definition Languages Workslsd@PLAN Notices 29(8), 1994.

[CK90] C. Choppy,S. Kaplan.“Mixing Abstractand ConcreteModules. In Proceedingsof 12"
ICSE Nice (France), 1990.

6 The programming languages are O.-O. ones to support the coexistence of multiple implementations.

[CZ90] S. CéardenasM.V. Zelkowitz. “Evaluation Criteria for Functional Specifications. In
Proceedings of 12CSE Nice (France), 1990.

[CZ91] S. CardenasM.V. Zelkowitz. “A Management ool for Evaluationof SoftwareDesigns.
IEEE Transactions on Software Engineering, 17(9), 1991.

[FB96] X. Franch, X. Burgués, “Supporting Incremental Component Programming with
Functional and Non-Functionallnformatior. Acceptedfor publicationin Proceedingsof SCCC
conferenceValdivia (Chile), 1996.

[FKN94] A. Finkelstein, J. Kramer, B. Nuseibeh (eds.), Software Process Modelling and
TechnologyJohn Wiley & Sons ed., 1994

[Fra94] X. Franch?Combining Different Implementations of Types in a PrograimProceedings
Joint of Modular Languages Conferent#m (Germany), 1994.

[Fra96] X. Franch. “Automatic ImplementationSelectionfor Software Componentsusing a
Multiparadigm Languageto state Non-Functionallssues. Ph.D. Thesis,Universitat Politécnicade
Catalunya, (Spain), 1996. Available in catala (english extended summary currently in progress).

[Hoa72] C.A.R. Hoare. “Proof of Correctnessof Data Representatioris In Programming
Methodology Springer-Verlag, 1972.

[I[EEE92] IEEE ComputerSociety.|[EEE Standardfor a SoftwareQuality Metrics Methodology
IEEE Std. 1061-1992, Institute of Electrical and Electronical Engineers, New York, 1992.

[ISO91] International Standards Organization. Software Product Evaluation - Quality
Characteristics and Guidelines for their Use. ISO/IEC Standard ISO-9126, 1991.

[Jaz95] M. Jazayeri."ComponentProgramming- a FreshLook at Software Components In
Proceedings of 5SESEG Barcelona (Catalunya, Spain), 1995.

[Kan86] E. Kant. “On the Efficient Synthesisof Efficient Programs. In Readingsin Artificial
Intelligence and Software Engineerjrigorgan Kaufmann, 1986.

[Knu76] D.E. Knuth. “Big Omicron and Big Omega and Big Theta”. SIGACT News, 8(2), 1976.

[LG86] B. Liskov, J. Guttag. Abstractionand Specificationin ProgramDevelopmentThe MIT
Press, 1986.

[Mat84] Y. Matsumoto.“SomeExperiencesn PromotingReusableSoftwaré. IEEE Transactions
on Software Engineering, 10(5), 1984.

[MCN92] J. Mylopoulos, L. Chung, B.A. Nixon. “Representingand Using Nonfunctional
Requirements: A Process-Oriented Apprda¢BEE Trans. on Soft. Engineering, 18(6), 1992.

[RES94] “Special Feature: Component-Basedsoftware Using RESOLVE'. ACM Software
Engineering Notes, 19(4), Oct. 1994.

[Sc+86] J. Schwartz et &rogramming with Sets: Introduction to SEBpringer-Verlag, 1986

[Sha84]M. Shaw.”AbstractionTechniquesn ModernProgramming-anguages IEEE Software,
1(10), 1984.

[SY94] P.C-Y. Sheu, S. Yoo. “A Knowledge-BasedProgram Transformation Systeni. In
Proceedings BCAISE Utrecht (The Netherlands), LNCS 811, 1994.

[Win89] J.M. Wing. “SpecifyingAvalon Objectsin Larch’. In Proceeding®f TAPSOFT'89\Vol.
2, Barcelona (Catalunya, Spain), LNCS 352, 1989.

[Win90] J.M. Wing. “A Specifier's Introductionto Formal Methods. IEEE Computer23(9),
1990.

https://www.researchgate.net/publication/2299031

