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Abstract
The main concern of this paper is to present the author's approach to support software development in
the component programming framework taking functional and non-functional requirements into
account. Functional requirements are written as algebraic specifications, while non-functional
information is bound to specifications and implementations by means of ad hoc modules: the non-
functional information is used to select automatically the most appropriate implementations of
software components (the selection algorithm is not presented here). The existence of multiple type
implementations is supported by a process model based on the prototyping paradigm. Prototyping is
achieved by means of a mixed execution mechanism being able to operate in the context of
incremental software development process allowing the execution of incomplete (partially
implemented) systems. The ideas we present here are not bound to any particular programming
language, giving rise to a method of wide applicability.

Key words and phrases: component software design, non-functional requirements,
prototyping.

1 Introduction

Component programming [RES94, Jaz95] is a useful and widely spread way of building complex
software systems by means of combining, reusing and producing software components, and can be
seen as a general term to denote well-known concepts as object-oriented or modular software
development. What a component does is stated by its functional properties. Different implementations
must satisfy them but they will differ on some non-functional aspects, as execution time or reliability.

Among other possibilities, we are interested in software components as an encapsulation of
abstract data types (ADT), described by algebraic specifications and implemented using an imperative
programming language. To be more precise, components consist of: a) the definition of an ADT
stating both functional and non-functional characteristics, and b) one or more implementations, each
one including a description of its non-functional behaviour. In this framework, we conceive the
development of a system as a refining process, in which each step can be: Specify a new ADT; Add
more properties to an incompletely specified operation; Start or continue an implementation of an
ADT, possibly importing some other ADTs; Reuse a specific implementation of an ADT to fit some
particular requirements on it; Execute the current system to test it for errors and/or to tune it up.

There are some aspects of our approach that makes them different (and, of course, better in our
view) with respect to other related existing ones approaches: the definition of a complete and formal
notation to state not only the usual functional aspects of software but also non-functional ones; the
automatic selection of the implementation for a given specification, improving the reuse and
maintaining multiple implementations, in a single system; an ad hoc process model addressed to
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support prototyping in the framework defined by the existence of multiple implementations; finally,
execution is possible at each step of development, combining in the general case specifications and
implementations (maybe different ones for the same ADT).

The rest of the paper is structured as follows. Section 2 presents the notation to write functional
specifications and non-functional information (the implementation selection algorithm is not
presented here, see [Fra96] and [FB96]). Section 3 describes the software process assistant. Section 4
presents the mixed execution mechanism. Finally, section 5 outlines some conclusions and mentions
some related work.

2 A Notation to Express Functional and Non-Functional Information

We present in this section a formal notation to enrich an imperative programming language with
both functional and non-functional information. The functional part is just outlined because it consists
of well-known constructs in the algebraic specification framework. A more detailed explanation is
given for the non-functional part, which we will call NF-language from now on.

2.1 Specification of functional behaviour

We adopt algebraic specifications as the language to state the functional behaviour of components.
At least, a specification declares the name of the type being defined and the list of operations of the
type, including their arity. Next, conditional equations for the type may appear, which are interpreted
by default with initial semantics; optionally, operations may be left incompletely specified, stating
just some universal equations that they must fulfill.

For instance, we present next a NETWORK software component specification, to be used as an
ADT for activity networks, establishing precedence relationships between some kind of tasks
(represented by natural numbers). We introduce operations to create an empty network, to create a
network with an initial task (create2), to add and remove precedence relationships, to get the
immediate successors of a task and to obtain a topological sort, which returns a valid order of
execution of the tasks. The specification imports LIST_OF_NATURAL which is assumed to offer as
many operations as necessary. We give the equations for succ and top_sort, that show the two usual
kinds of specifications: succ is completely defined (i.e., its behaviour is uniquely determined for every
network), while top_sort is not: it is just stated that if a task m precedes a task n then m must appear
before n in the resulting list.

specification module NETWORK
imports LIST_OF_NATURAL
type network
operations   create returns network
                     create2 (natural) returns network
                     add, remove (network, natural, natural) returns network
                     succ (network natural) returns list_of_natural
incomplete top_sort (network) returns list_of_natural
equations
      ... equations for the type (including error conditions)
      succ(create, m) = LIST_OF_NATURAL.empty
      succ(add(d, m, n), m) = LIST_OF_NATURAL.put(succ(remove(d, m, n), m), n)
      [m <> x] => succ(add(d, m, n), x) = succ(d, x)
      [belongs(succ(d, m), n)] => before(top_sort(d), m, n) = true
end module



2.2 The NF-language

The NF-language is designed to state three kinds of non-functional information:

• Non-functional property (short, NF-property): any attribute of software which serves as a
mean to describe it and possibly to evaluate it. Among the most widely accepted ones
[IEEE92, ISO91], we mention: time and space efficiency, reusability, maintainability,
reliability and usability. In our approach, we let also more specific attributes to appear.

  In the general case, we study a given software component with respect to a particular set of
NF-properties; we say then that the component is characterized by this set.

• Non-functional behaviour of a component implementation (short, NF-behaviour): any
assignment to the NF-properties characterizing the implemented software component.

• Non-functional requirement over a software component (short, NF-requirement): any
constraint referred to some NF-properties from the set characterizing the component.

Next figure shows how non-functional information is collected into various modules. NF-
properties are declared in NF-declaration modules, bound to specifications. They may import one or
more property modules, which should be used to define NF-properties of wide applicability,
appearing in many NF-declaration modules, even in different software systems. In fact, property
modules allow users to define their own libraries of NF-properties which can be imported freely in
software systems2. NF-behaviour of implementations is stated in NF-behaviour modules, bound to
them. Also, NF-behaviour modules will usually include NF-requirements over the software
components imported by the implementation.
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Declaration of NF-properties

NF-properties appearing in NF-declaration modules may be of four different kinds: 1) boolean, to
represent software attributes which simply hold or fail (ex.: full portability); 2) numerical, to
introduce software attributes that can be measured (ex.: reusability degree); 3) by enumeration, to
represent software attributes which can be classified into some categories (ex.: kind of user interface);
4) efficiency, to establish the execution time and space of types and operations. Lower and upper
limits of numerical NF-properties may be specified; also, the set of valid values of a NF-property by
enumeration may be listed together with the NF-property name.

Efficiency NF-properties need not to be explicitly declared; they come into existence from the
corresponding software component specification. In the ADT framework, we measure efficiency with
the big-Oh asymptotic notation [Knu76], which gives rise to a few specific operators in the NF-
language, such as power, logarithm and by the like. Values of this kind of NF-properties are given in
terms of some measure units, which represent problem domains’ size and which must also appear in
NF-declaration modules.
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A NF-declaration module for NETWORK is shown next. Note that NF-properties at different
abstraction levels (general ones as reliability and more concrete ones as programmer’s name) can
coexist freely. We have chosen to define a related subset of the NF-properties in a separate property
module, IMPLEMENTATION_ISSUES, so that they can be used in other components. Concerning
efficiency, we have introduced two measure units, one for the number of tasks and the other for the
number of explicit precedence relationships.

property module IMPLEMENTATION_ISSUES
properties
boolean dynamic_storage
numerical links_number
enumerated data_structure = (hashing, avl, heap, chained, others)
end module

declaration module for  NETWORK
imports IMPLEMENTATION_ISSUES
properties
boolean fully_portable, external_programmer
numerical reliability [0..5]
    (* 0: non-reliable; 1-4: increasing degree of testing; 5: formal verification *)
enumerated programmer_name
measure units n_tasks, n_preceds
end module

Statement of NF-behaviour

Each implementation V for a given software component specification D should state its NF-
behaviour with respect to the NF-properties characterizing D in the NF-behaviour module bound to V.
For instance, the behaviour of an implementation IMP_NET_1 for the definition NETWORK using a
graph implemented by an adjacency matrix may look as the module below. See the use of arithmetic
operators to state efficiency interpreted in the big-Oh notation [Bra85].

behaviour module for  IMP_NET_1
behaviour
      fully_portable; programmer_name = Franch; reliability = 3
      links_number = 0; data_structure = others
      space(network) = pot(n_tasks, 2); time(create, create2) = pot(n_tasks, 2)
      time(add, remove) = 1; time(succ) = n_tasks
      time(top_sort) = pot(n_tasks, 2); space(top_sort) = n_tasks
end module

By default, auxiliary space for operations is O(1) and logical properties do not hold.

Statement of NF-requirements

NF-requirements state conditions over implementations of software components. Syntactically,
they are usual boolean expressions enriched with some ad hoc constructs for non-functionality (see
examples below). Their purpose is to represent the environment where implementations are to be put
in. They may appear both in NF-declaration modules and NF-behaviour ones and they may involve
again measure units introduced in NF-declaration modules.



NF-requirements in NF-declaration modules state the conditions that every implementation of the
component must fulfill in order to be useful in the system. We enrich below the declaration module
for NETWORK with some relationships between NF-properties and measure units.

declaration module for  NETWORK
imports IMPLEMENTATION_ISSUES
properties ... the same as before
measure units n_tasks, n_preceds
relations
    n_preceds <= pot(n_tasks, 2); dynamic_storage => reliability < 5
    (not fully_portable and external_programmer) => reliability = 0
end module

property module IMPLEMENTATION_ISSUES
properties ... the same as before
relations dynamic_storage => links_number > 0
     data_structure = heap => (links_number = 0) and not dynamic_storage
end module

NF-requirements appearing in a NF-behaviour module bound to an implementation V state the
conditions that the implementations of all the software components imported by V must fulfill in
order to be useful in V. They should be complete enough to select a single implementation for each
imported software component. In the general case, V may include a list of NF-requirements over
every imported component; NF-requirements in the list are applied in order of appearance3 until one of
the following conditions holds: 1) a single implementation is selected; 2) applying the next       NF-
requirement would yield to an empty set of implementations; 3) all the NF-requirements have been
applied. In the last two cases, more than one implementation may satisfy a given list and then
requirements would have to be reviewed4. As an alternative, a concrete implementation for a
component may be selected directly by its name.

For instance, a NF-requirement over LIST_OF_NATURAL in implementation IMP_NET_1 could
be: first, implementation must be as reliable as possible; next, the cost of the operations to build a list
and their auxiliary space must be as fast as possible (i.e., O(1) in the big-Oh notation); last, traversal
should be as fast as possible. We use a few predefined operators ˝which have an intuitive meaning.

behaviour module for  IMP_NET_1
behaviour ... the same as before
requirements on LIST_OF_NATURAL:
     max(reliability)
     time(empty, put) = 1 and space(ops(LIST_OF_NATURAL)) = 1
     min(time(traversal))
end module

3 The Software Process Assistant

We describe in this section a software process assistant based on the idea of prototyping with
incomplete programs. “ Incomplete programs” stands for programs which may contain non-
implemented types, and/or objects with no associated implementation. Execution of incomplete
programs is interesting in the context of program development through prototyping because the choice
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of implementation for types and objects may be delayed until the entire behaviour of the module
hierarchy has been proved correct. This section proposes to perform this “proof”  through testing, by
means of the construction of a sequence of executable prototypes.

Let H be a hierarchy of modules and let lib be a library of software components. The main
capabilities offered by the assistant are:

1.- Define the signature of a module: define(H, spec_mod). During this definition, more
concrete orders may be used: create(name) to create the empty module, add_type(spec_mod,
name) and add_op(spec_mod, op); also, reuse from library can be made as explained at point
4.

2.- Specify a module: specify(H, spec_mod). The module can be already defined or not. In
order to obtain the equations, the assistant guides the user into the initial semantics framework,
asking for:

2.i Which are the constructors of every type, that is, the minimal set of operations to build
any value: constructors(spec_mod, set_of_ops). Constructors may be introduced as
private.

2.ii Which are the relationships among those constructors: congruence(spec_mod,
set_of_eqns).

2.iii For each other operation, which are the equations defining its behaviour:
specify_op(spec_mod, set_of_eqns).

In the last step, a default procedure may be applied under request to decompose the
parameters of the operation being specified using the constructors of their type. Prototyping
may be done at any point during specification; also, specification may be left (temporarily or
permanently) incomplete, which may affect prototyping.

3.- Implement a defined or specified module: implement(H, name_spec, impl_mod). In
order to allow prototyping of the implementation to occur as soon as possible, the assistant asks
for:

3.i The representation of the type plus its abstraction function plus the implementation of the
constructor operations: represent(impl_mod, name_type, repr) , abstr(impl_mod,
name_type, set_of_eqns or code) for the abstraction function (which may be specified
or implemented, see next section) and impl_op(impl_mod, name_op, code) for each
constructor.

3.ii For each other operation, its implementation: impl_op(impl_mod, name_op, code).

So, prototyping may take place after 3.i and also after every operation implemented in 3.ii.
Implementation may be left temporarily incomplete, which may affect prototyping.

4.- Reuse a module from the library: use(mod, lib, name_spec, rens) and instantiate(mod,
lib, name_spec, assoc, rens). That is, the module is used or instantiated inside a module mod
that is being defined, specified or implemented; rens stands for the symbol renamings made and
assocs stands for the binding between formal and actual parameters in the instantiation (the
fitting morphism in the initial semantics approach). In case of using or instantiating a module
with a given implementation, its name is added as the last parameter.

5.- Choose an implementation for an module, a type or an object: choose_mod(mod,
name_spec, name_impl) for modules, choose_type(mod, name_type, name_impl) for types
and choose_const(mod, name_const, name_impl), choose_funct_result(mod, name_funct,
name_impl) and choose_var(mod, name_funct, name_var, name_impl) for the appropriate



kind of object (the last one includes parameters); for modules, we may also use the orders in
point 4. All the bindings are made inside the implementation module mod.

6.- Store a module into the library: store(H, lib, module).

7.- Prototype a function: prototype(H, name_module, name_function). The assistant asks
for the input parameter values and then the required function is executed, calling either a
conventional interpreter if the function is implemented or the term-rewriting system if not.
Input parameter values may be persistent objects as well as input / output devices, which are
treated as abstract data types. Prototyping is the crucial functionality of the assistant, and it can
be invoked at any moment when specifying or implementing a module.

4 Mixed execution

We describe now the execution strategy that we have designed for our system. The main goal of
this strategy is the ability to execute software systems at any stage of development, supporting thus a
prototyping software process where implementations of components can be incrementally added and
tested. It should be said that this process will usually be inefficient, but we are interested in testability
rather than in efficiency; we remark that the final product will have all of its components totally
implemented and it will not be executed using this strategy.

There are two situations that must be coped in order to assure this full executability. First, it can be
the case for an ADT to be selected with more than a single implementation in the system. Second, the
current version of the system may combine modules just specified with others for which an
implementation has been selected; even more, specifications can contain operations not completely
defined, while implementations may be only partial during their development.

4.1 Coexistence of multiple implementations

The coexistence of multiple implementations is problematic only when two objects of the same
type but different implementations interact, as it happens in concat(x, y) and x := y, being x and y two
lists implemented in different ways. To support this free interaction it is necessary to have a method to
transform the corresponding data structures in the adequate manner. Instead of having particular
methods for every pair of existing implementations, we have preferred to define a common framework
where implementations are translated to and from: the specification of the type, and so the methods
are: the abstraction function to transform a data structure to an expression (a term) formed by the
operations of the type, and the representation relation to perform the inverse step; both constructions
were already introduced in [Hoa72].

While the representation relation is no more than the execution of the operations appearing in the
term into the goal implementation, the abstraction function must be explicitly given. It is coded as a
special function returning a term and it appears inside NF-behaviour modules. We show below the
abstraction function for the adjacency-matrix implementation IMP_NET_1:

behaviour module for  IMP_NET_1
...

abstraction (n: network) returns t: TERM(network)
var i, j: integer
    t := create
   for i := 1 to max do    (* max: maximum number of tasks *)
   for j := 1 to max do if  n[i, j] then t := add(t, i, j)
end module



Note the use of a predefined type constructor, TERM(t), used to modelise terms in the algebraic
framework. Inside the abstraction function, calls to operations of the type being abstracted (create and
add in the example) are interpreted as building-term operations.

4.2 Coexistence of specifications and implementations

Incorporating specifications into the execution process is conceptually simple if we consider
specifications just as another implementation. The only difference has to be with the execution
technique: specifications are executed using term-rewriting, while implementations are executed by an
interpreter. This kind of mixed execution may be used to obtain the output for a given input (in order
to compare the result against the expected one during testing) or to check if an implementation of a
partially specified operation satisfies some property for a given input.

An execution will start as a process to evaluate an expression. Each node of the expression will
correspond to a function which may have to be executed interpreting its code or else rewriting it using
its specification. It may be necessary to change a call to an operation of an ADT by a call to a routine
implementing it or viceversa and some data structures may have to be transformed into the term they
represent using the abstraction function. These steps on the evaluation are nothing but changes of
subexpressions by equivalent ones.

To illustrate the possibilities of mixed execution (for more details, see [BF95]) we show some
examples of evaluation of the expression succ(create2(1), 1). Let’s suppose that an implementation
has been selected for NETWORK; then, we consider three different scenarios depending on how
developed is the implementation

Scenario 1: create2 is the only implemented function. We assume its codification to be a loop
over the matrix’ rows, assigning false to each position except for the task identified by the parameter.
The evaluation will proceed this way (see figure below): 1) Change the call to create2 by a call to its
implementation, obtaining abstr(create2IMP_NET_1(1))5. 2) Interpret it to obtain a matrix.  3) Compute
the abstraction function, obtaining the term t. built up with successive applications of add, one for
each natural in the range from 2 to MAX. 4) Rewrite succ(t, 1), obtaining a term of type
list_of_natural which will be interpreted if an implementation for lists has been selected for the result.
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Scenario 2: create, succ and add are implemented; the rest of the functions are not. The
specification of create2 should state that create2(x) is equivalent to add(add(...(add(create, x, 1), x,
2), ..., x, max). Now, the evaluation will be: 1) Rewrite create2 obtaining the term t as before. 2)
Bottom-up interpretation of create, add and succ.

Scenario 3: create2 is the only implemented function. We assume its codification to be first the
creation of the empty network and then a loop over i from 1 to MAX except for x, calling add(x, i) in
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the body. Steps of the evaluation: 1) interpretation of create2. The loop builds up the term t. 2)
Rewrite succ(t, 1).

5 Conclusions

We have presented in this paper many facets of a single project. In this project (named Excalibur)
we are designing a language to specify and implement components and an environment for it, but the
language and the environment are not the project goal by themselves, but a pretext to experiment with
our methodological ideas. To be precise, we have introduced:

- A formally defined notation to state non-functional issues of software systems. Although some
previous work has been done at the process-level (see [MCN92]), we do not know of any approach at
the product-level with the same features as ours (in spite of many claims in this sense [Sha84, Win90,
MCN92, Jaz95]). There are many non-formalised or partial proposals [Mat84, LG86, Win89, CGN94,
SY94] which results are subsumed in our work; also, [CZ90, CZ91] present a very interesting
framework close to ours, but restricted to non-functional properties taking numerical values. Our
notation leads to a system in which multiple implementations coexists, together with an algorithm to
select the best one for a given specification. A few proposals but with important restrictions have been
proposed  in this direction (the language SETL [Sc+86] or the LIBRA system [Kan86]).

- A software process assistant based on the idea of prototyping with incomplete programs. The
guidance trough an assistant for the process model is a common idea in the fields of Software Process
Modelling and Process-centered Software Environments ([FKN94]).

- A mixed execution mechanism being able to deal with incomplete systems. This makes our
approach well-suited for a prototyping software process. Execution is possible even combining
multiple implementations and having incompletely specified operations (which can only be used in
restricted queries) or partial implementations. To assure full executability, the abstraction function
may be used in some contexts. Some approaches exist in this sense (the execution system in
Asspegique [CK90] or the environment for the LEDA multiparadigm language [Bud95]); however,
we do not know of any of them as flexible as ours.

Currently, a first prototype of the selection algorithm and the execution system exists. It must be
remarked that, instead of having different interpreters for all the programming languages we are
interested in6, we are building a single interpreter of an ad hoc notation complete enough to translate
implementations in C++, Eiffel, Ada-95, etc., into it; this notation will be used during prototyping
only and it will disappear once the final version of the system is obtained. This strategy decreases
considerably the task of adapting our system to new programming languages.
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