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Abstract

In many situations the resources in the organizations are focused on the improve-
ment of processes in order to reduce their costs. Seen in this way, the use of an
energy management, system can offer a reduction of costs in both the economic and
technical aspects. From the technical point of view, we extend the useful life of
the elements of the system, while from the economic point of view, we will try to
minimize the costs of complying with the constraints of the problem. In order to
develop the optimization model included in the energy management system, some
inputs are necessary, such as, for example, the demand of the system or the price of
energy for the next period of time considered. In this work, two families of machine-
learning models are applied to forecast system demand, one based on decision trees
and the other based on neural networks. The use of these models is currently being
extended due to the improvement of the computing and processing capacity of the
computers. In addition to this phenomenon, the growth of the available data vol-
ume allows to have a very broad knowledge of the behavior of a recurrent process,
making these models able to learn the behavior of the series.

The objective sought in the present study is to optimize a system integrated by
an electric vehicle charger, an energy storage system, a building and a cogenera-
tion plant. For this, an optimization model focused on reducing system costs has
been developed, deciding in each period of time what amount of energy to acquire,
at what level to start the cogeneration plant and what to do with the potential
energy. The use of a cogeneration plant in the system makes it necessary to take
into account the generation of heat derived from the ignition of the machine when
modeling the problem. Finally, in order to know the amount of energy, both elec-
trical and thermal that will be required, a machine-learning model obtained from
comparing different models and selecting the one that minimizes a given metric are
used.

Keywords: energy management system, machine-learning, cogeneration plant, decision
trees, neural networks, energy storage system



Resumen

En muchas situaciones, los recursos en las organizaciones se focalizan en la mejora
de procesos para asi reducir sus costes a futuro. Visto de este modo, la utilizacion
de un sistema de gestion eléctrico puede ofrecer una reduccion de costes tanto en
la parte econémica como en la técnica. Desde el punto de vista técnico, se incluyen
las restricciones técnicas necesarias para alargar la vida 1util de los elementos del
sistema mientras que desde el punto de vista econémico, se minimizaran los costes
de cumplir las restricciones del sistema.

Para poder desarrollar el modelo de optimizacién a incluir en el gestor energético
algunos inputs son necesarios, como por ejemplo, la demanda del sistema o el pre-
cio de la energia para el siguiente periodo de tiempo que se considerara de un dia.
Para obtener estos valores, se aplican dos familias de modelos de machine-learning,
uno basado en arboles de decisiéon y otro basado en redes neuronales. El uso de
estos modelos se estd extendiendo actualmente debido a la mejora de la capacidad
de procesamiento y de calculo de los ordenadores. Ademas de este fenémeno, el
crecimiento del volumen de datos disponible permite tener un conocimiento muy
amplio del comportamiento de un proceso recurrente, haciendo que estos modelos
puedan aprender el comportamiento de la serie.

El objetivo buscado en el presente estudio es optimizar un sistema integrado por un
cargador de vehiculo eléctrico, un sistema de almacenamiento eléctrico, un edificio y
una planta de cogeneracion. Para ello, se ha desarrollado un modelo de optimizacién
focalizado en reducir los costes del sistema, decidiendo en cada periodo de tiempo
que cantidad de energia adquirir, a que nivel encender la planta de cogeneracion y
que hacer con el potencial excedente. La utilizacién de una planta de cogeneracién
en el sistema hace que se sea necesrario tener en cuenta la generacién de calor deri-
vada del encendido de la planta al modelizar el problema. Finalmente, para poder
conocer la cantidad de energia, tanto eléctrica como térmica que se requerira, se
emplea un modelo de machine- learning obtenido de comparar distintos modelos y
seleccionar el que minimize una métrica determinada.

Keywords: sistema de gestion, machine-learning, maquina de cogeneracion, arboles de
decision, redes neuronales
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Chapter 1
Introduction

The increase in the use of electric vehicles (EV) planned for the next few years will
require an important fast charging infrastructure to cover all users mobility needs
[4],]16]. In urban environments in which the electrical distribution network may
be close to the limit of its capacity, the installation of fast chargers, whose electric
power is 50 kW per load point, could lead to costly investments to strengthen the
network and increase its capacity. COFAST solves this problem by generating in-
situ electricity, thus avoiding charging through the network.

This work is the extension of the COFAST model developed in IREC (Institut de
Recerca en Energia de Catalunya).In this previous model, the optimization of the
cogeneration plant was decided only based on the building demand, and the storage
system and the charging point management were not integrated. The aim of this
thesis is to design, build and evaluate an integral solution that consists of a fast-
charging station for electric vehicles (EV) powered with a cogeneration plant that
works with natural gas and supported by an electric storage system. The objective
is reducing the grid-dependence of electric vehicle charging stations (EVSE) and
increasing the overall energy efficiency.

The energy management system described is combining two interests, one focused
in the technical requirements of the system like power limitations and other part
focused on an economic model that minimizes the total users costs. The model
takes into account the costs (gas natural costs and maintenance costs), the costs
of the energy imported from the grid and the benefits obtained from the energy
exported to the grid.

The model will be integrated in the energy management system of charging points
for electric vehicles and a building with high termal demand, such as a sports center
or a district heating network. The use of a cogeneration plant allows much better
use of energy than the most common solutions (normally grid electricity and nat-
ural gas boilers) since the waste heat from electrical generation is used to satisfy
the thermal demand of the building.

It has been shown that the use of electric vehicles and natural gas compared to
other fuels has a very positive impact on air quality in cities. The use of these
technologies contribute to the fulfillment of the objectives 2020 of energy and en-
vironment set by the European Commission with the horizon in 2020.

To obtain a realistic solution this model needs two external inputs that will be the
power demand and water temperature. For this purpose, different machine-learning
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techniques have been analyzed and evaluated.

Nowadays, the introduction of deep models has generated the possibility of train-
ing models with a high volume of data. These models should allow the learning of
existing patterns in the data and giving accurate predictions. To contrast this idea
a series of much simpler algorithms focused on making partitions of the subspace
of the variables of the model were applied. The partitioning of the space is made
by recursive binary partioning. Then, it will be interesting to test if tree methods
will be able to measure the effect of previous states just separating the values by a
rule generated by some feature.

The idea behind these methodologies come from [1] and [14], where both methodolo-
gies were applied to forecast time series problems. In [2] models like Convolutional
Neural Networks (CNN) and Long Short Term Memory Networks (LSTM) were ap-
plied in predicting power demmand. In [15], both Recursive Partioning (RPART)
and Conditional Inference Trees (CTREE) were applied to forecast time series us-
ing a Bootstrap aggregating (Bagging) approach to give stability to the model.
One of the objectives of this thesis is to find the best machine learning model not
only in terms of accuracy but also in terms of computation times. It’s important to
take care of computation time because this model should be added to a production
environment and provide a scalable solution.

In order to provide forecasts to define this inputs, a proces integrated by two mod-
ules, one that will forecast the next day for electrical demand and one to forecast
the water temperature will be presented. To obtain the best model, a set of models
will be performed over the chosen days and it’s metrics compared ,.

In the following chapters, we give the details of the problems we have addressed
and the formulations and solution techniques we have developed. In Chapter 1 a
general introduction is described. This part also includes an overview of the sys-
tem.Then, in Chapter 2, the theory behind the forecasting algorithms is detailed
and the different models applied are defined formally, as well as the main features of
the family of problems addressed in this thesis. In Chapter 3 COFAST is formally
defined, detailing the diferent parameters, variables and constraints. In Chapter
4, results are presented. Finally, Chapter 5 includes the comparison of the struc-
ture of the solutions obtained for the studied policies. This comparison provides
guidelines for the best scheduling policy to use for the recurrent service and best
forecasting model to generate accurate descriptions of thermal temperature and
power consumption.
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1. System overview

The novelty of the COFAST solution (Fig. [1)) for fast charging stations lies on two
elements:

» CHP Plant: A Combined Heat and Power supply system. Generates energy
using natural gas as input. In this process also generates residual heat used to
heat water.

= EMS: Energy Management System. System of computer tools used by operators
to monitor, control, and optimize the performance.

Embeeded PC -
Aux. MORItOing YIEM  coooy Management
4 System

Control wnit
Aux. control system

Au. Thenmal Combined heat and

F "] tation  Aux, mppn
ast Charge Statio: X, CONSUMEp consumgtion Encrgy Storage poWer System

Fic. 1. Management system workflow.

Grid

The system described consist of an integrated fast charging station fueled by a small
CHP system (142 kW electric power and 207 kW thermal power), which aims to
provide fast charging services (54kW) to electric vehicles, satisfy electrical demands
from an adjacent building, or to export to the grid. The system also includes a
lithium ion battery with a capacity of 25 kWh.

Now, a definition of the parts that integrate the model will be performed to give a
detailed analysis of the system.

= System engine : Transforms gas natural into electricity and residual heat
produced in the gas natural combustion. This heating is directly transferred
to the water heating circuit that is connected to a district heating and cooling
grid. The CHP runs in parallel to the electric grid and will control the offered
electric power output, and adjust it to the required power output sent from the
EMS.

s Charging Station: High power converter, responsible to adapt three-phase
electrical energy into the levels and modes required by the EV. The system will
change the Maximum available power in the EVSE in order to guarantee the
technical and contractual limits in the grid connection.
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Storage system : Composed by an ion lithium battery and battery charger/
inverter. In this part of the system, the management system will measure
power set-points and check that the voltage and limits sent by the battery are
not exceeded (system constraints).

Control system: The brain of the management system. The software that
controls the whole system. Includes the optimization model, sends/receives
data from an industrial PLC, control the cooling/heat recovery circuit and
some security sequences (for emergency stop).

Objectives

The objectives of the present work are as follows:

To develop a machine-learning model for forecasting the next 24h electrical
demand in quarter hour intervals.

To develop a machine-learning model for forecasting the next 24h thermal de-
mand in quarter hour intervals.

To develop an optimization model that integrates the CHP operation, the EV
charging processes, the building demand and the energy storage system man-
agement.

To implement the forecast models in python and R.

To implement the optimization model in python with Scip.

To evaluate the integrated model with the input from the forecasting models.

These modules and optimization models should be implemented and tested in a
software platform that will be installed in the project pilot, the implementation
should be able to operate 24/7.



Chapter 2
Forecasting Methods

This section covers the definition of the different forecasting methodologies applied.
Let’s start first describing neural networks to focus then in tree-based methodolo-
gies.

1. Neural Networks

Artificial neural networks are computer programs that operate similarly to the
neurons in the human brain (biological systems). These networks are a field of
machine learning called deep learning.

To define a neural network let’s imagine a black box model that takes inputs,
let’s call them features, and apply some transformations to achieve a result value
(output). This machine learning approach has small units called neurons or units
grouped into several layers that are connected to each other. Most neural networks
are fully connected, which means each unit in its layer is connected tho other units
in the closest layers. The connections between units are represented by the weight
value, which can be either positive or negative. The amount of relation is measured
with the value of these weights.

To sum up, it’s important to notice all the elements that integrate a neural network.

» Input units: Units designed to recive the information (features) and attempt
to learn about the process.

= Hidden layers: Layers that connects input units with output units applying
transformations to change the diemensionality of the input space.

= Qutput units: Representation of inputs information over the applied transfor-
mations.

The real challenge here is finding the right weights (neuron value) in order to
compute the correct results. To achieve that, backpropagation is applied. This
methodology consists of propagating the error obtained when predicting the ex-
pected value to the previous layers of the network and, at each layer, modify a
little bit the weights. This methodology uses some metric like, mean square error
(MSE) to compute the difference between predicted and real value on a training
set. With that error, the results are propagated throw the layers modifying a little

5
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bit the weights of the network. After that, the network evaluates again the output
and the same metric is applied. This procedure is what backpropagation does re-
calculate the weights taking into account the error obtained in previous iterations.
One commonly used algorithm to find the set of weights that minimizes the error
is gradient descent.

Gradient Descent is used while training a machine learning model. It is an optimiza-
tion algorithm, based on a convex function, that modifies iteratively it’s parameters
to minimize a given function to its local minimum.

J(w) Initial ! __— Gradient

Global cost minimum

L7 W)

>
w

Fic. 1. Gradient descent algorithm.

1.0.1. Recurrent Neural Networks (RNN). Thoughts have persistence but the neu-
ral networks about we talked before can’t achieve this. If an event has to be classified
to decide what kind of event is happening at the desired point, it is unclear how a
neural network could be able to learn about previous events to inform later ones.
Recurrent neural networks,, address this problem observed in neural networks.
They are networks with loops in them, allowing information to persist and this
makes the idea of copy the network multiple times and passing the information to
a successor each time.

The usage of this methodologies in predicting load demand is deeply used. A
combination of a convolutional neural network with a recurrent neural network
to forecast time series is described in . These approaches outperform the ones
developed using traditional methodologies such as autoregresive models.



1. NEURAL NETWORKS 7

INEES

- .
— > >

ééé

Fic. 2. Unrolled RNN. [17]

-

To understand better the difference, let’s think about how neural networks work.
A feed-forward network has no memory of the input that it received previously and
only consider the current input without having any notion of time.

Recurrent neural networks are loops, and they can take into consideration what
they learned from previous inputs.

Recurrent Neural Network Feed-Forward Neural Network

Fic. 3. RNN vs ANN.

One of the appeals of RNNs is the idea that they might be able to connect previous
information to the present task, but when the gap between relevant information
in the past and the moment to be used grows, they become unstable. This could
make that the network is unable to learn to connect the information.

During the training of RNN, the information goes in loop resulting in very large
updates to the model weights. This is due to the accumulation of gradient errors
during an update. At an extreme, the values of weights can become so large be-
coming NalN values (exploding gradient). The same situation could occur but in
the other direction. This situation is the vanishing gradient problem where values
start to reduce until reach values of zero. The explosion occurs through exponential
growth by repeatedly multiplying gradients through the network layers that have
values larger than 1 or vanishing occurs if the values are less than 1.

In ||§|| problems of recurrent neural networks are treated, defining the problems of
time dependence between relevant inputs and desired outputs and talking about
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vanishing errors.

To solve those issues, Hochreiter and Schmidhuber proposed Long-Short Term
Memory networks (LSTM). These networks are explicitly designed to avoid the
long-term dependency problem. They also have this chain-like structure, but the
repeating module has a different structure. Instead of having a single neural net-
work layer, there are four, interacting in a special way to define which things to
remember and which things to forget.

An RNN, LSTM and GRU developed to forecast the Turkish electricity market are
described in |20]. The results obtained yield better results than existing ones based
on traditional methodologies such as ARIMA or classical neural networks (ANN).

1.0.2. Long Short Term Memory. Long Short Term Memories (LSTM) are a kind
of recurrent neural network comprised of a special architecture. The ideas behind
this network are the problem of the vanishing/exploding gradient and the long term
memory of networks. The architecture of the network consists of four layers that
interact to decide the evolution of information.

Before start explaining the LSTM workflow, let’s detail a little bit the input values
shown below.

= 2, : input vector

s W,., W, : weight matrices
s C; : Cell state vector

= f; : Forget gate

= i; : Input gate

= o; : Output gate

Now we will define the activation functions performed below.

» 0, : sigmoid function
= 0. : hyperbolic tangent function

The network takes three inputs. X; is the input of the current time step. h;_1 is
the output from the previous LSTM unit and C;_; is the memory of the previous
unit, which is the most important input. As for outputs, h; is the output of the
current network. Cy is the memory of the current unit.

Forget layer, takes h;_1 and x; and with that, output a number between 0 and 1 for
each value in C;_1. 1 will be keep this and 0 discard this. This idea is to remember
or forget things from past state attending to the value obtained in the previous step.

(1) fe =04 % (W [hy—1, 7] + by)

The first value is called the forget value. If you shut it, no old memory will be kept.
If it’s fully opened, all old memory will pass through. f; x Cy_1
The process of store information in the cell has two parts:

= The input gate layer which decides the values that will be updated
s The tanh layer that creates a vector of candidate values C;
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Combining this ones we will create an update to the state

(2) iy = 0g(W; % [hy—1, 2] + b;) values to update

(3) Cy = ao(W, * [hi—1, 4] + be) candidate values

A tanh layer creates a vector of all the possible values from the new input

The second value is the new memory value. New memory will come and merge
with the old memory. Exactly how much new memory should come in is controlled
by the second valve.

Update the old cell state C;_; into the new cell state Cy. Multiply the old state by
f+ (forgeting the things choosed). Then add i; * C, which are the candidate values
scaled by the amount of updating that we decided for each state value.

(4) Ci=fixCi1+irxCy

Now, let’s talk about deciding which parts of the information to pass through the
connections..

First a sigmoid layer, to choose the parts of the cell state that we are going to
output. Second put the cell state through tanh (values between -1 and 1) and
multiply by the output of the sigmoid gate to output only the choosed parts.

(5) or = 0g(Wolhi—1, 2] + b,) to choose just some parts
(6) ht = O0¢ * O'C(Ct)

C; will be the current state reescaled between -1 & 1

® ® 6
t | t

™ ra I'\
0 - T >
anh
A Mg A
o [o]
Lt —p
A >y

| |
& ® ©

Fig. 4. LSTM Diagram.|17]

On the LSTM diagram, the top pipe is the memory pipe. The input is the old
memory (a vector). The first cross that passes through is the forget value. It
is actually an element-wise multiplication operation, so if you multiply the old
memory C;_1 with a vector that is close to 0, that means you want to forget most
of the old memory. You let the old memory goes through if your forget valve equals
1.

The tested LSTM structures will be treated in Model Development section so first,
gradient and vanishing exploding problems will be explained.

LSTM was invented specifically to avoid the vanishing gradient problem. The



10 2. FORECASTING METHODS

long dependencies between sequence data is called long-term dependencies because
the distance between the relevant information and the point where it’s needed to
make a prediction is very wide. As the distance grows, RNN has a hard time of
computation to learn this dependency because it encounters either vanishing or
exploding gradient problem. These problems arise during the training of a deep
network. Layers go through multiple matrix multiplications making that when
arrive at earlier layers could have small values. If they are smaller than one then
they tend to shrink exponentially to zero. While on the other hand if they have large
values (greater than one) they get larger and eventually blowing up and crashing
the model, this is the exploding gradient problem. Both things are problematic and
that’s why LSTM appeared, to solve that problem or try it at least.

Now, let’s define mathematically the problem. Let’s define the one-dimensional
case.

Being a hidden state h; at time step t. Defining it simple without biases we have:

(7) ht = O'(’U)htfl)

Taking the derivative of hy,

ohy o vt
(8) (“)ht = H wo' (why_p) = w' H o' (why )
¢ k=1

k=1

The factored w' ~* is the crucial one. If the weight is not equal to 1, it will either
decay or grow to zero exponentially fast.
In LSTMs, you have the cell state s;. The derivative there is of the form

t'—t
aSt/

(9) sy H o (Vetk)
k=1

Here v, is the input to the forget gate. There is no exponentially fast decaying
factor involved. Consequently, there is at least one path where the gradient does
not vanish.
To deal with exploding or vanishing gradients some methods have proven to be
effective, like using an L1 or L2 penalty on the recurrent weights or simply use
LSTM models. Tanh activation is used in LSTM’s because control these problems.
Is a function whose second derivative can sustain for a long range before going to
zero. The suitability of this function is its velocity of convergence which is found
to converge faster in practice.

10 tanh(z) = &%
(10) anh(z) = S
These methodologies are effective but one of the most useful to solve this problem
is gradient clipping; which places a predefined threshold on the gradients to prevent
it from getting too large, and by doing this, it doesn’t change the direction of the
gradients it only changes its length. The proposed clipping is simple and compu-
tationally efficient, but it does however introduce an additional hyper-parameter,
namely the threshold.
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(11) llgll > threshold
threshold * g
- R

where g is the gradient and ||g|| is the norm of the gradient.

Model structure implemented in this thesis was extracted from [1]. LSTM architec-
tures were modified, adding some useful features related to the forecast variable/s.
After LSTM architecture, the other approach evaluated in this thesis is presented.
This method is the Convolutional LSTM, a methodology that combines convolu-
tions with long short term memory layers.

1.0.3.  Convolutional LSTM. First, let’s define what a convolution is [17]. A con-
volution is a mathematical operation on two functions, let’s call them s and g, to
produce a third function that will express how the shape of one is modified by
the other. To analyze the idea we will use an example of an object that tries to
reach a position ¢ by realizing two movements, a and b. After the first drop, the
ball will move a units away from the starting point with probability s(a) where s
is the probability distribution function. Then we pick the ball from a and drop
it again reaching a distance of b. The probability that reaches this distance will
be g(b). Then, fixing that ¢ = a + b we will have that the related probability will
be s(a) * g(b). Then to evaluate the likelihood function of the object reaching a
distance of ¢ we have to consider all the possibilities of reach ¢ partitioning space
in a and b. This solution is achieved by applying the sum of all the combinations
of s(a) * g(b), which can be defined as,

(13) Z s(a) * g(b)

a+b=c

In particular, the convolution of s and g evaluated at c is defined as:

(14) (sx9)(c) = D s(a)*g(b)

a+b=c

and subsituting b = ¢ — a, we will have the definition of a convolution, which is:

(15) (sx9)(c)= Y s(a)*glc—a)

a+b=c

But, what are convolutional neural networks. In a CNN; like with neural networks,
each neuron receives several inputs, takes a weighted sum over them, pass it through
an activation function and responds with an output. This kind of networks, expect
that data has a three-dimensional structure. The idea is that it can take an input
image, assign importance (learnable weights and biases) to various aspects/objects
in the image and be able to differentiate one from the other. Convolutional networks
use convolutions and pooling to capture spatially local patterns. The interesting
part is that this convolutional approach could be applicable to a regression task
due to spatial correlations within the data. During training, the weights in the
kernel are optimized to detect relevant spatial patterns over a small region. After
the convolution, we apply a nonlinear activation function.
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After processing the grid with one or more convolution filters and flatten the out-
put we pass both flattened outputs and the previous hidden states to an LSTM
layer. Finally, the LSTM sends an output, which is then reshaped and used both
to predict the next step and as an input at the next time step.

The structure of CNN-LSTM was developed respecting the structure found in [2].
CNN-LSTM model involves using Convolutional Neural Network (CNN) layers for
feature extraction on input data combined with LSTMs to support sequence pre-
diction.

The CNN does not directly support sequence input; instead, a 1 dimension CNN
is capable of reading across sequence input. These can then be interpreted by an
LSTM decoder. The approach evaluated in this document refers to hybrid models
that use a CNN and LSTM. The CNN expects the input data to have the same
3-dimensional structure as the LSTM model.

The defined architecture comprises two convolutional layers followed by a max
pooling layer, where:

s Fully-Connected layer: Every node in the first layer is connected to every node
in the second layer. Normally this layer will be used as a final layer to output
the final predicted value.

= Convolutional layer: A convolutional layer can be seen as a feature extractor.
It takes the input and apply a special transformation on it. As a result, each
of the transformed values get the most interesting part of the original input.

The results of the structures are then flattened into 1-dimensional array (fully-
connected). The first convolutional layer acts across the input sequence and projects
the results onto feature maps. The second performs the same operation on the
feature maps created by the first layer, attempting to amplify any salient features.

Convolutional Neural
Network Long Short-
Term Memory Network
Avrchitecture

Fic. 5. Convolutional methodology [2]

The main difference in this CNN-LSTM approach is that has been developed using
a GPU architecture to speed up the computation times. The main problem of this
kind of networks is that has long computational time and some exploding gradient
problems.
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1.1. Tree-Based Models. Tree based learning algorithms are considered to be
one of the best and mostly used supervised learning methods. Tree based meth-
ods empower stability and ease of interpretation. Unlike linear models, they map
non-linear relationships and could be used for both classification or regression prob-
lems. Methods like decision trees, random forest or gradient boosting are tree-based
methods.

The use of tree-based models to predict time series is descriibed in literature. Works
such as [12] describes tree-methods such as Recursive Partitioning and Regression
Trees (RPART), Conditional Inference Trees (CTREE) with Bootstrap Aggregat-
ing (BAGGING), and Random Forest (RF) models for short term load forecasting.
These models are based on decision trees. A decision tree is a method in which the
respounse variable is separated into branches based on a condition (variable). The
end of the branch that doesn’t split anymore is the decision (leaf) that determines
the value of the response. In order to find a good solution (not overfiting) the idea
is to trim it down until good and reproducible solutions are obtained. Other posible
solution is to avoid growing large trees (early stopping).

1.1.1. RPART. This algorithm works by splitting the dataset recursively, which
means that the subsets are further split until a predetermined termination criterion
is reached. The method used to select the covariate to perform the splits in the
response variable is an information measure (such as Gini index or Entropy). These
methods are based on the degree of heterogeneity of the leaf nodes. For example,
a leaf that contains only a single class has impurity zero.

The algorithm essentially minimizes the cost, which is a linear combination between
the error (misclassified instances) R(T) and the number of leaf nodes in the tree
7.

(16) Co(T) = R(T) + a|T|

When o« = 0 the fully grown tree is returned. When « increases, a penalty is
proportional to the number of leaf nodes. This tends to cause the minimum cost
to occur for a tree that is a subtree of the original one. In practice, we vary « and
pick the value that gives the sub tree that results in the smallest cross-validated
prediction error.

To conclude, the idea behind this method is that the algorithm works by making the
best possible choice (selected covariate) at each stage without considering if these
choices remain optimal in future stages. The algorithm doesn’t find a globally
optimal tree.

1.1.2. CTREE. Conditional decision trees are created using statistical tests to
select split points (covariates) on attributes rather than using a loss function [10].
The significance test or the multiple significance tests computed at each start of
the algorithm, which consists of selecting the covariate, choose a split and recourse,
are permutation tests. Permutation tests are a type of statistical significance tests
in which the distribution of the statistic under the null hypothesis is obtained by
calculating all possible values of the test statistic under rearrangements of the labels
on the data points. If labels are exchangeable, under the null hypothesis, then the
resulting tests will obtain exact significance levels.
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The idea behind conditional trees focuses on two steps. First, recursive binary
partitioning is applied using regression models that describe the conditional distri-
bution of a response variable Y given the status of m covariates. Then we assume
that the conditional distribution of the response Y given covariates X depends on
the function of the covariates.

(17) D(Y[X) = D(Y|X1, ., Xp) = DY (X1, X))

We restrict to partition based regression relationships, for example r disjoint cells
By, ..., B, partitioning the covariate space

(18) X = U By
k=1

A model of the relationship is fitted based on a learning sample L,, a random
sample of n independent and identically distributed random variables observations
(possibly with some X;; omitted),

(19) Ln = (}/727X1i7 ,sz), 1= 1, N

Then an algorithm for recursive binary partition for a given learning sample L,,
can be formulated using weights W = (wy,...,ws) where each node of a tree is
represented by a vector of case weights. This algorithm is then implemented in the
following three steps:

= For weights W, the null hypothesis of independence between the covariates and
the response is tested. If this hypothesis can’t be rejected then the algorithm
stops. Otherwise, the covariate X, with the strongest association to Y is
chosen.

» Choose a set A* € X, to split X, into two disjoint sets A* and X, \ A*.
The case weights wicf; and wyign: determine the two subgroups with wies:; =
wil (X i € A*) and wrigne,; = wil (X4 € A*) for all i =1,...,n (I(.) denotes
the indicator function).

= Recursively repeats steps 1 and 2 with modified case weights respectively.

These models were applied using an ensemble method called Bootstrapped Aggre-
gation (Bagging). This method creates multiple models of the same type from
different sub-samples of the same dataset. Finally, the predictions from each sepa-
rate model are combined to provide a superior result. In this case the aggregation
method were the median to obtain a value not influenced by extreme results.

1.1.3. Random Forest. This method builds an ensemble of decision trees, most of
the time trained with the bagging method. The general idea behind that is the
combination of learning models that increases the overall result. We can think of
random forests as a bagging classifier but this method adds additional randomness
to the model, while growing the trees. This method doesn’t search for the most
important feature in the set, it searches for the best feature among a random subset
of features.

A Random forest is by definition a collection of decision trees with the principal
difference being that while deep decision trees tends to suffer from overfitting,
Random Forest was designed to prevent overfitting while adding randomness.
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Fic. 6. Random Forest workflow

1.1.4. Bagged Models. Bootstrap Aggregation is an ensemble technique that is
used typically when a reduction of variance is desired.

Ensemble methods are models that combine several decisions trees classifiers to
produce better predictive performance than a single decision tree classifier. The
main principle behind the ensemble model is that a group of weak learners come
together to form a strong learner, thus increasing the accuracy of the model. This
increase in accuracy is because these methods reduce noise and bias.

In bagging, input data is sampled to generate multiple sets of input data. Then
with these sets a tree-based method is applied for each tree and the combination
of these weak learners is made applying some statistic. In this thesis, the median
is implemented because it reduces noise by attacking the second quantile of the
underlying distribution generated by trained trees. For each of those learners, the
same baseline predictor (RPART & CTREE) is run to get a trained model for each
set. Each tree is trained 100 times, taking samples of the 85% of the size of the
training set.

1.2. Variables. Like it is said above, an important part of a time series model
is the past but sometimes other variables are needed to achieve good predictions.
Variables like weekday, month or the response variable laged by some time period
are aplied but also other more sophisticated ideas were developed. Finally, a random
forest model is used as a feature selection method. With this approach, after
generate a big amount of variables, a random forest is applied to select the ones
that explain more about the response variable.

1.2.1.  Fourier terms. The Fourier Transform is a tool that breaks a waveform
(a function or signal) into an alternate representation, characterized by sine and
cosines. The Fourier Transform shows that any waveform can be re-written as the
sum of sinusoidal functions. A function is periodic, with fundamental period T, if
the following is true for all t:

(20) fE+T) = f(t)



16 2. FORECASTING METHODS

This means that a function of time with period T will have the same value in T
seconds. The fundamental period is the value of T (greater than zero) that is the
smallest possible T for which Eq. [20]is always true.

A Fourier Series, with period T, is an infinite sum of sinusoidal functions (cosine
and sine), each with a frequency that is an integer multiple of 1/7" (the inverse of
the fundamental period). This idea could be extended to non-periodic functions
using the Fourier Transform. The Fourier Transform of a function ¢(t) is defined

1.2.2. Moving windows and signal split. The first approach performed is a moving
window, a time series approach that consist in the generation of features applying
statistics over the response variable. In this thesis, the mean and median were
evaluated.

The second approach is a method for time series decomposition. Like it’s said in
[11], time series data can exhibit a variety of patterns, and it is often helpful to
split a time series into several components, each representing an underlying pattern
category.

When decomposing a time series into components time series is comprising three
components: a trend-cycle component, a seasonal component, and a remainder
component.

If an additive decomposition is assumed then,

(22) ye =S+ 1, + Ry

where y; is the data, S; is the seasonal component, T} is the trend-cycle compo-
nent, and R; is the remainder component, all evaluated at period t. Alternatively,
a multiplicative decomposition would be written as

(23) ye = S x Ty X Ry

When deciding which of them to use, the additive decomposition is the most ap-
propriate if the seasonal fluctuation does not vary with the level of the time series.
When the variation in the seasonal pattern, or the variation around the trend-cycle,
appears to be proportional to the level of the time series, then a multiplicative de-
composition is more appropriate.
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Fia. 7. STL Decomposition for electric demand

1.2.3. Feature selection. Feature selection is a process to reduce the number of
variables, including only the most representative or important features. This pro-
cess has three main benefits. First, increase the interpretability. Second, reduces
the variance of the model and therefore the overfitting. Finally, it reduces the com-
putational cost and time of training a model.

Random forests consist of hundred decision trees, each of them built over a ran-
dom extraction of the observations from the dataset and a random extraction of
the features. Not every tree sees all the features or all the observations, and this
guarantees that the trees are uncorrelated and therefore less prone to over-fitting.
Every node in the decision trees is a condition on a single feature, designed to split
the dataset into two so that similar response values end up in the same set. The
idea of the importance of each feature is derived from how pure (optimal) each of
the buckets is. For classification, it is typically either Gini impurity or information
gain/entropy and for regression trees it is variance.

When training a tree, it is possible to compute how much each feature decreases
the impurity. The more a feature decreases the impurity, the more important the
feature is.

An interesting idea is that features that are selected at the top of the trees are
in general more important than features that are selected at the end nodes of the
trees. That’s because at top splits the capacity of the model to split the response
is much bigger than in nodes.

To avoid overfitting in all feature selection procedures, it is a good practice to select
the features by examining only the training set.

The use of random forests as feature selection is deeply used in literature. In [13],
random forests are used as a feature selection method to reduce high-dimensional
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data, extracting the minimum subset of important variables. In [8] random forests
are used as a tool for extracting important variables in terms of model interpreta-
tion and also to obtain a good predictive model in terms of accuracy.

1.3. Computation Times. Before talk about computational times and archi-
tectures evaluated, some keywords should be defined:

s CPU: The central processing unit is the hardware within a computer, which
interprets the instructions of a computer program by performing the basic arith-
metic, logic and input/output operations of the system.

» GPU: A graphics processing unit is a specialized electronic circuit designed to
rapidly manipulate and alter memory to accelerate the creation of images in a
frame buffer intended for output to a display device.

s CUDA: CUDA is a parallel computing platform created by Nvidia. It allows
using a CUDA-enabled graphics processing unit (GPU) for general purpose
processing.

» cudnn: The NVIDIA CUDA Deep Neural Network library (cuDNN) is a GPU-
accelerated library of primitives for deep neural networks.

The core idea behind this is that GPU’s are able to do a lot of parallel computations.
A lot more than a CPU can do. While CPU’s are few complex cores, GPU’s are
hundreds of simpler cores with a thousand of concurrent hardware threads.

We saw that the computationally intensive part of the neural network is made up of
multiple matrix multiplications. We can simply do this by doing all the operations
at the same time instead of doing it one after the other. This is in a nutshell why
we use GPU instead of a CPU for training a neural network.

1.4. Evaluation Measures. To sum up, all the ideas explained, the best models
will be tested by applying some metric evaluations. After testing the statistical
methods proposed, it is necessary to evaluate the results in order to compare the
different methods. With metrics, we will be able to check the quality of the models.
MAPE and RMSE was tested.

Each machine learning model is trying to solve a problem with a different objective
using a different dataset and hence, it is important to understand the context
before choosing a metric [6]. MAPE is one of the most useful technique in time
series forecasting that consist in measure the closeness of g(X) to Y;. In this case
g(X) will be the forecasted value and Y; the real value. RMSE basically measures
root, average squared error of our predictions. For each point, it calculates square
difference between the predictions and the target and then, the values are averaged
and the square root is applied. The higher this value, the worse the model is, like
with MAPE.

n

100% Z |Yt —g(X)
no = Yt

(24) MAPE = |

(25) RMSE = \/JE(Yt— g(X))
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MAPE could be sensible to the scale of data. When small values are evaluated
exists the risk to achieve very high inconsistent values.

In time series, MAPE is more used in the literature so we will focus on it when
diferent models will be described.






Chapter 3
Optimization Model

This section introduces the model definition of the COFAST solution and it’s mod-
elization.

1. Model Implementation

Parameters

I set of EV chargers

H set of time horizon (h)

T's = Time step for CHP economic optimization (h)
T set of time intervals (T') = H/T;

Cen = Natural gas equivalent electrical price (€ /kWh)
Cr = CHP maintenance cost (€ )

Con = CHP start up cost (€ )

Cy = cost of unserved EV demand (€ /kWh)

Cy = battery degradation cost (€ /kWh)

Self = Self consumption of CHP (kWh)

A = Maximum CHP operation level € [0, 1]

A = Minimum CHP operation level € [0, 1]

. = Maximum CHP electrical power for A (kW)

> = Minimum CHP electrical power for A (kW)
Py, = Maximum CHP thermal power for A (kW)
Pyp, = Minimum CHP thermal power for A (kW)
PC; = Maximum electrical power of EV charger i € I (kW)
PBC = Maximum battery charge power (kW)
PBC = Minimum battery charge power (kW)
PBD = Maximum battery discharge power (kW)
PBD = Minimum battery discharge power (kW)
SOC;,; = Initial state of charge (%)

SOC = Maximum battery state of charge (%)
SOC = Minimum battery state of charge (%)

<

21
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S = Maximum number of CHP starts within 24 hours
OB = Battery capacity (kWh)
PG = Maximum interconnection electrical power (kW)

ForteT,

C! = Electricity tarif cost (€ /kWh) in period t

V! = Electricity pool price (€ /kWh) in period t

V= Thermal power selling price (€ /kWh) in period t

DC! = Electrical power demand from the EV charger i € I (kW)
DR! = Electrical forecast power demand (kW) in period t

DR, = Thermal forecast power demand (kW) in period t

Variables

CHP variables:
ForteT,

= 1 if CHP machine operates in period t
“ 1 0 otherwise

1 if CHP start up in period t

0 otherwise

At = CHP operation level in period t

w' = CHP Natural gas consumption in period t

P! = Total CHP generated electrical power in period t

P}, = CHP generated thermal power in period t

PR! = CHP generated electrical power sent to demand in period t

PV! = CHP generated electrical power exported to the grid in period t
PC! = CHP Generated electrical power to EV station, in period t, for i € T

PBL,p = CHP generated electrical power to charge battery in period t
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Battery variables:

ForteT,

if battery charges in period t

- 1
"= 0 otherwise

PBD! =
PBV! =
PBC! =
S0Ct =

PNt =

Total discharged battery electrical power in period t
Exported battery electrical power in period t
Discharged battery electrical power to EV station in period t, for i € T

Battery state of charge at end in period t

Battery ramp at period t

Grid variables:

ForteT,

if system imports from grid in t

‘ 1
vt = .
0 otherwise

PGR' =
PGB! =

PGC!

Imported interconnection electrical power to demand in period t
Imported interconnection electrical power to battery in period t

Imported interconnection electrical power to EV station in period t, for ¢ € T



24 3. OPTIMIZATION MODEL

The optimization model objective is to achieve the minimum costs over all time
periods but with some considerations:

s The electrical demand must be fulfilled by the grid or the cogeneration plant.

s The EV demmand must be fullfilled by the cogeneration plant, the grid and
the battery.

= The energy storage system could be charged by the grid or using the cogener-
ation plant.

First of all, let’s describe the objective function used in the optimization problem.

(26) min Ts» Can - Pl+Cy- f'+ Con - 2'
teT

+TsY Ct (PGRt +PGB'+ > PGCf)
teT el

+Ts» |Cy- <DC§ - Y (PGC} + PBCY + PCf))
teT el

~Ts 3 [VE PV + V- PRI
teT

+Cy- Z PN?

teT

The first term of the objective function, describes how to minimize the cost function
taking into account the costs and benefits of energy purchased and sold from and
to the grid respectively and also the mantainance costs of the cogeneration plant
and the costs of purchasing the necesary natural gas.

The peculiarities of managing a real environment forces us to include a penalty
term in the objective function in order to control some specific aspects as the
total number of starting up processes, the battery charge-discharge cycles and the
gap between demanded and fullfilled demand. Adding this term to the objective
function will allow the model to control the amount of each variable in the processes.
The important part of the system is the capacity of integrate the system generation
(building, grid and electric vehicle) and the battery system.

To facilitate the process of defining the constraints of the model, they will be divided
according to the part of the system that they are restricting or limiting.
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CHP Constraints.

(27) 2> fi—fion YteT

(28) > <3S
teT
(29) A< WteT
?efpe
(30) R§>(At—A-ft)<A A>+Pe-ft VI €T
Py, — P,
(31) Pth(/\tA~ft)<H>+Bh~ft vieT

(32) AP <N wvteT

(33) P! = PB{yp+ PRL+PV! 4 Self-f'+> PC!  VteT
iel
(34) Pt <Pe-ft VteT

Eq. , , and modelate the start-up of the CHP plant, where also the
maximum number of start-up processes during a day is controlled. Eq. ( [30)
and define the lower bounds of power and thermal generation and the lower
bound of natural gas consumption, considering a linear interpolation between the
minimum and maximum technical limits. Eq. sets the CHP operation level.
Eq. defines the power generation of the CHP plant. Finally, is the upper
bound for the generation of the CHP plant.

Interconnection Constraints.

(35) PGB'+Y PGC{+PGR'<PG-v' VteT
i€l
(36) PV!+PBV'<PG-(1-v") WteT

Eq. defines the maximum power that could be demanded by the system to the
grid and Eq. defines the maximum power that could be exported to the grid.



26 3. OPTIMIZATION MODEL

Storage system Constraints.
(37)

PBD! = Z PBC'+ PBV'! WteT
el

(38)

CB-SOC'=CB-SOC*™ ' +T,-(PGB' + PBLyp — PBD') VtcT:t>0
(39)

CB-S0C"=CB-S0C;,; + Ts - (PGB' + PBLyp — PBD") t=0
(40)

SOC" > SOC;,; t=|T -1

(41)

SOC < SOC* < S0C vteT

(42)

PBC-2' < PBLyp+ PGB'<PBC-z' VteT

(43)

PBD-(1-2")<PBD'<PBD-(1-2') VteT

(44)

PBD' - PGB' — PBLyp+ PGB + PB5,;p < PN' VteT
(45)

PBD,_; — PBD, + PGB' + PBLyp < PN' VteT

Eq. modelate the discharge of the battery. Eq. defines the balance of the
state of charge of the battery. In (41) the lower and upper bounds of the state of
charge are fixed. Eq. and add the charge and discharge power bounds
for the storage system. Finally, Eq. and the ramps for the battery are
fixed. These values controls the charging and discharging process, increasing the
life expectancy of the battery.

EV Constraints.

(46) PBC! + PC! + PGC! <PC; Yiel VteT

Eq. defines the upper bound for the electric vehicle (EV) charger.

1.1. Demand Constraints.

(47) PBC! + PC! + PGC! < DC}  Viel VteT
(48) P!=DR. VteT
(49) PL =DR., ~ VteT
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Eq. ([47) sets how the electric vehicle (EV) demand could be fulfilled and Eq.
and (49) defines the power demand of the building settlement.

To conclude, Eq. , and set the non-negativity and the binary con-
straints.

(50) P!, PGR', PGR!,, w', PR!, PV! >0 VteT
(51) ft 2t e {0,1} VteT
(52) PC!,, PBC!, PGC! >0 VteT VYiel






Chapter 4
Results

1. Case Study

The building analyzed will be TubVerd, a distribution network of heat and cold.
Tub Verd is an urban hot and cold network that transports hot water through pipes
buried underground. The initiative takes advantage of the energy coming from the
Waste water Treatment Plant of Matar6 and from the Residus Solids Urbans del
Maresme (CTRSUM). The system heats water for showers, for swimming pools as
well as air to climatize all zones or generate cold for air conditioning.

One of the most important parts of this work is the data evaluated. Power demand
and water temperature has been analyzed from 15 of may to 30 of November of
2018. Other variables such as temperature, humidity and irradiation has been
obtained from sensors installed in Barcelona. This variables will be also inputs of
the machine-learning module to increase his accuracy. In some cases, it is useful
to include this variable because the irradiation can reduce or increase the power
consumption depending if it is used the heating or the cooling system.

A pre-processing step was applied over this data when preparing it to be employed
by machine learning model. This process tried to detect outliers but only extreme

values that are measurement errors. A value of the serie is an extreme measurement
if is over or under some threeshold (53- [54)).

(53) thyp = Pos x Iqr + k

(54) thawn = Ps * Iq’l" * k

Where Pys is the 95th percentile, P is the 5th percentile, k is a usually used value
for scalind the data and Iqr is the interquartile range, the difference between 75th
and 25th percentiles (55)).

(55) IQR=Q3 -1

In Fig. [ and Fig. 2| both series are illustrated.

29
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2. Forecasting Results

2.1. Variable Selection. To obtain the most useful features a random forest is
trained over the whole dataset and then the variables that best fit the model are

selected to be used in the model implementation.

Variable importance
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Analyzing this plot there are two metrics evaluated there, firs one is the percentage
of increment of mean square error (%IncMSE) that measure the increment of error
observed when permuting some levels or values of a variable, for example, if we
permutate some values of moving average (meanvars) variable, the increment of
error will be the 70% percent over the actual value. To obtain that value, the
metric evaluated over the permutated values of each variable were M SFEoop. The
formula is:

(MSE; — MSEoo3)
MSEoos

(56) IncMSE; = * 100

Chosen variables were the ones showed above. Variables such as Hour, Day of
the year, Month and Temperature were chosen but also other variables including
Fourier terms and lagged variables were chosen. Let’s define some of them to give
an idea of the most interesting features when forecasting power consumption.

v S5;,Cs,i=1,...,10 : Fourier Transform (Sinus and Cosinus).

» Sigg, Cigs, © = 1,...,10 : Fourier Transform with diary seasonality (Cosinus).

s Lag : Shifted Load serie

= Lagoeg : Shifted Load serie with diary seasonality. Laged response for 24 hours
or in this case 96 quarters of hour

= Mean,q, : Moving average with a 3 period wiindow.

2.2. Results for Bagged Trees. The idea of use tree-methods to predict elec-
tric and thermal consumption is obtained from [14] where time series forecasting
using feature engineering methods like Fourier terms and the usage of series with-
out trend are applied. These ideas combined with some extra feature engineering
gives a powerful tool for forecasting time series in which daily seasonal patterns
and trend behavior are observed.

The problem when applying this methodology is that,it is also necessary to predict
the trend, using some linear method like an ARIMA. The reason is that tree meth-
ods, based on rules are not able to predict the trend. To do that, the aforementioned
STL method was used. To predict the trend an ARIMA(0,2,0) is performed.

The bagged trees were generated using RPART and CTREE models. These tech-
niques are evaluated over different sets of days. The results showed now faces the
28 and 29 of November of 2018 as weekly forecasts and 24 of November as weekend
forecast. The best results were obtained by applying bagged models. The imple-
mented models were a bagged version of CTREE and a bagged version of RPART.
The use of this method improves the results obtained by simple tree models.

2.2.1. Power consumption forecasting. For weekly data, obtained results achieve a
MAPE which is below the 10%. These results are good enough taking into account
the shape of the series and how it changes during the year. Now, three metrics
will be presented to evaluate both models. Fig. [] - Fig. [7] show the prediccted
versus the observed series for both days and both methods. This thesis focuses on
MAPE as the relevant and most informative metric to evaluate time series forecasts.
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Metric | CTREE | RPART

MAPE
RMSE
MAE

TABLE 1. Metric Tree weekday data (28-11-2018)

4.51
13.1
6.36

6.25
16.45
8.46

Metric | CTREE | RPART

MAPE 6.11 5.81
RMSE 11.5 12.18
MAE 7.03 7.02

TABLE 2. Metric Tree weekday data (29-11-2018)
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The visualization shows that predicted values are following perfectly the evolution
of the series.

For the weekends, the accuracy obtained with these models decreases drastically.
The problem is focused on the randomness of this data. The model has to describe
patterns that change from one weekend to another. This problem is also faced
when comparing Saturdays and Sundays because while both days have a reduction
in consumption and a charge of shape, given that one usually shows a consumption
with three peaks and the other shows a consumption with only two peaks (-).

Metric | CTREE | RPART

MAPE 9.27 9.34
RMSE 17.4 20.1
MAE 10.2 10.7

TABLE 3. Metric Tree based weekend models (25-11-2018)

— Predicted

— Real
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2.2.2. Thermal demand forecasting. When evaluating the quality of predictions

made for water temperature is easy to observe that the metric is very accurate. In
this case, the variance is smaller than with power demand, so when analyzing the

series it’s important to study the value of the metric but also the visualization.

Metric ‘ CTREE ‘ RPART

TABLE 4. Metric Tree weekday data (28-11-2018) Temperature

MAPE 2.65 2.04
RMSE 2.62 1.73
MAE 1.88 1.44

Metric | CTREE | RPART

TABLE 5. Metric Tree weekday data (29-11-2018) Temperature

MAPE 1.62 2.1
RMSE 1.68 1.81
MAE 1.15 1.51

— Predicted

— Real
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Fig. 12. Thermal dem- Fig. 13. Thermal dem-
mand (29-11-2018) using mand (29-11-2018) using
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While model metrics looks acceptable, the

visualization shows that the model

doesn’t take at all the evolution of thermal consumption. This effect is due to the
randomness existing inside the day. Each day have more or less a similar evolution
(in terms of intercept), but with some specific patterns that change between days
(Fig. - . While the global pattern is captured by the model, the randomness

not. Analyzing data an increasing tendency
then to take care of this underlying behavior

was detected in water temperature,

, the series was divided in trend and

seasonality. The tree algorithm only takes care of seasonality and the ARIMA takes

care of the trend.

— Predicted
— Real

— Predicted

— Real
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Metric | CTREE | RPART

MAPE 5.02 3.44
RMSE 4.47 3.21
MAE 4.18 2.88

TABLE 6. Metric Tree weekend models (25-11-2018) Temperature
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Date Date
Fig. 14. Temperature, F Fic. 15. Temperature, F
25-11-2018 using RPART 25-11-2018 using CTREE

Time Power D ‘ Time Thermal D ‘ Model
432s 400s RPART
3600s 2940s CTREE
TABLE 7. Computation Times Tree-based models

Analyzing these times of computation, the best approach will be the Bagged RPART
methodology. Metric values are similar for thermal and electric demand compar-
ison of models, but the necessary time to obtain the solution is ten times bigger
when using CTREE methodologies. So, comparing tree-based models, the best ap-
proximation will be using an RPART Bagged model with 100 different trees and a
sample size of 90% of the training data.

2.3. Results for LSTM’s architectures. After describing the results obtained
with tree-based methods lets analyze the results obtained using long short term
memory structures. An interesting point of these methodologies are the capability
of learning long term dependencies. The problem is that a big amount of data is
required and this is sometimes difficult to achieve.

To start, let’s define the different LSTM structures evaluated in this thesis.

Two kinds of LSTM models are tested, one approaches the problem generating
matrices of n*1*m and then using an LSTM architecture to predict the next day
comprised of 96 time periods. The second model generates a 3-dimensional matrix
(days, time steps, variables) to apply then an LSTM architecture to forecast the

— Predicted

— Real
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next 96 time periods.

In the training process, when using CPU’s to train the models, the computational
time has two behaviors. In models that frames the problem using a matrix of di-
mensions n * 1 x m where n are the rows of the training set and m are the used
features, the extra dimension is the time interval. When in models that frames the
problem as a matrix of m x 96 * n the time interval is set to 96 increasing model
complexity and GPU requirements.

To test those methods, some combinations are evaluated for some LSTM param-
eters. Tested parameters were epochs, drops, and layers. In the training process,
some days are also tested to obtain the best configuration.

= epochs: One forward pass and one backward pass of all the training examples

= drops: Percentage of data dropped when training the network. If more than one
layer is evaluated, then drops could be applied in the first step of the training
process, when features are set or when information is passed between layers.

s layers: Hidden states of the model.

A limitation of the problem is that when evaluating these models using GPU’s, the
required amount of RAM grows with the specifications. These specifications are
the ones cited above as the number of epochs or the size of the batch. On the other
hand, when a CPU architecture is used, the RAM limitations are not a problem
but then other problem arises. This problem is related to the computation time
needed to train the model.

When models are set to train an interesting effect is observed.

In models approached using just a time interval, the computational times are sim-
ilar using a CPU or a GPU architecture.

LSTM(nx*1%m) | CPU | GPU

Case 1 1000s | 970s
Case 2 1400s | 1150s
Case 3 1650s | 1270s

TABLE 8. Computation Times LSTM (n*1*m)

The cases shown in the tables refer to the model evaluated under the same config-
uration of drops and epochs but using 1,2 and 3 layers respectively. By increasing
the number of layers the computing time also increases. In models that frame the
problem using a 3D matrix the computational time is much bigger in CPU’s than
in GPU’s.

LSTM(n+96+m) | CPU | GPU

Case 1 2900s | 1800s
Case 2 3300s | 2600s
Case 3 4000s | 3000s

TABLE 9. Computation Times LSTM (n*96*m)
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Like with the model shown above, the cases shown in the tables were evaluated
under the same configuration of drops and epochs but using 1,2 and 3 layers re-
spectively. By increasing the number of layers the computing time also increases.
At the end the idea developed was when the GPU specifications could be fulfilled,
the model is trained using a graphical processor via CUDA architecture, which gives
a fast implementation of the solution. When specifications couldn’t be fulfilled the
CPU architecture is used to train the model.

2.3.1. Power consumption forecasting. Like with tree-models, neural network ar-
chitectures, obtained similar results, achieving a MAPE below 10%. Fig. -
show the predicted versus the observed series for both days and both architectures.

Metric | LSTM (n* 1%m) | LSTM (n * 96 x m)

MAPE 5.7 )
RMSE 14 12.8
MAE 4.7 4.3

TABLE 10. Metric LSTM weekdays (28-11-2018)

Metric | LSTM (n 1% m) | LSTM (n * 96  m)

MAPE 7.4 6
RMSE 16.1 10
MAE 6.9 5.4

TABLE 11. Metric LSTM weekdays (29-11-2018)

275 —— observed 2751 —— observed
—— predicted —— predicted

PP PL IR PL P PSP P L LR R AL PP SR PPILPLPPI PP L LR AL RSP
NIRRT TR BRSSP B R R S RO RSO SCR B
Fia. 16. Electric Fia. 17. Electricl
demmand 28-11-2018 demmand 28-11-2018

(n*1*m) architecture (n*96*m) architecture
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2.3.2. Thermal demand forecasting. With the use of neural networks, the value
obtained for thermal demand was similar to that obtained with tree-based models.
Both models are able to accurately predict the behavior of this series. Because the
results obtained with both architectures are almost identical, only the one that has
obtained a lower metric is shown (Fig. [20] - 2I)).

Metric | LSTM (n 1% m) | LSTM (n * 96 x m)

MAPE 2.1 2.09
RMSE 2.22 1.63
MAE 1.68 1.34

TABLE 12. Metric LSTM weekday (28-11-2018) Temperature

Metric | LSTM (n 1% m) | LSTM (n * 96  m)

MAPE 1.52 1.57
RMSE 1.48 1.51
MAE 1.19 1.41

TABLE 13. Metric LSTM weekday (29-11-2018) Temperature
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Table includes computation times of methods based on a simple architecture
integrated by timesteps and features, a more sophisticated architecture integrated
by days, timesteps and features and the last approach that mixes convolutional
layers and LSTM layers.

Type | LSTM(n*1%m) | LSTM(n*96+m) | CNN

Electric 240s 600s 630s

Thermal 230s 660s 695s
TABLE 14. Computation times RNN models

2.3.3. Optimized LSTM Model. After training the different architectures using
some sets of parameters for epochs, batch size and percentage of drops, the best
implementation was selected evaluating the MAPE metric. The resulted imple-
mentation includes a batch size of 32, 500 epochs and 30 % of drop applied in
the first stage of model definition. With that values, the model is trained again



2. FORECASTING RESULTS

41

in a special way. The idea behind that is to train the model until first predic-
tion need to be made, store it, predict the values for that day and then continue
training the model until other prediction is needed. The interesting point of this
approach is the capability of the software to store, predict and continue training the
model. In models like that, which take a long time to obtain accurate predictions
and need a big amount of data to be useful, the possibility of continue training the
model from a previous state makes them attractive to set them in production areas.

Type | Metric | LSTM (n %96 xm) |

Electric | MAPE
Electric | RMSE
Thermal | MAPE
Thermal | RMSE

5}
12.8
2.09
1.63

TABLE 15. Metric Optimized Architecture (28-11-2018)

Type | Metric | LSTM (n 96 xm) |

Electric | MAPE
Electric | RMSE
Thermal | MAPE
Thermal | RMSE

30.5
100.4
1.8
2.5

TABLE 16. Metric Optimized Architecture (27-07-2018)
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—— predicted

Fia. 22. Power dem-
mand 28-11-2018) Opti-
mized Architecture

800
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500 -

400
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—— predicted

Fig. 23. Power dem-
mand (27-07-2018) Opti-
mized Architecture

The shape of the distribution is very different between the two days evaluated in
this model, both in form and magnitude. It is interesting to comment on how the
model is able to capture the change that occurs in the series.
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3. Model Results

The model was developed using a python interface to apply the SCIP optimization
Suite. The model was implemented in a docker container integrated by the solver
module and some manipulation and visualization modules to obtain a closed devel-
opment system.

This section is divided in two parts, one that evaluates some test to detect if the
plant works as expected and other that evaluate the model over a chosen day.

To evaluate the good procedure of the model, as the interest is to evaluate the
integration of the EV and the energy storage system, a test where the electrical
vehicle performance was evaluated fixing the value of the starting SOC to 1 and
other parameters to appropiate values.

3.1. EV Test. The SOC of the battery is set to 1 or in other words at 100%
of its capacity. A zero electrical demand is fixed for all periods. In this test, two
comparisons are also evaluated, one setting a value of the energy cost smaller than
the exportation costs and another fixing an equal value for the cost of purchase and
export the energy. In addition, in this second case, the cost of the natural gas will
be set higher than the cost of purchasing and selling the energy so that the model
has no other incentive than trying to charge the electric vehicle with the battery.
When a very high sales value and a maximum initial SOC is set, everything that is
generated from the CHP is exported, using the battery to cover the EV (the max-
imum charging/discharging power of the battery is 10 kW). By generating energy
through the CHP, the model can also cover the thermal demand.

Then, the electricity price was fixed at a constant value for selling and purchasing
actions and the cost of the natural gas was increased. The objective was to evaluate
if the battery worked correctly charging the EV.
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3.2. Model Results. Finally, the model was evaluated over a day, integrated
by 96 time periods. The chosen day was the 28th of November 2018. The input
variables used were the forecast electrical demand, the forecast thermal demand,
the energy prices for the day, extracted from and the costs of the energy pur-
chased from the grid. Other inputs were the costs for natural gas and the plant
specifications, such as the maximum plant operation level and the maximum elec-
trical power.

As it was explained before, the system could work using the energy provided by
the cogeneration plant or taking it from the grid and if exists an excess of energy,
the system would export the remaining. The model also allows the system to use
the heating power of the cogeneration plant to heat water.

The main objective of the optimization problem is minimize the costs of supply
the necessary energy to the whole system while trying to minimize some specifica-
tions,such as the number of ignitions of the plant by day.

Now, the main results of the analysis will be shown and also the value achieved by
the objective function. The value achieved by the objective function was 174.37
€, which will be the costs of fulfilling the necessities of the system.

To understand better what the model is doing, Fig. and Fig. shows the
evolution of the different elements of the system, such as the cogeneration plant
(CHP), the building, the battery, the electric vehicle, and the grid.
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Fig. describes on the positive values the energy generation, and on the negative
values the demand. The dashed line correspond to the import prices, and the
continous line to the export prices. It can be seen that when the demand is higher,
during the first periods of the day, where also the prices are higher, the CHP
starts-up to cover partially the demand. During some periods, where the electrical
demand goes beyond the CHP generation, the excedent is sold. The EV demand
is covered during all the studied intervals. At some specific intervals, green bars
identify the battery discharge. In order to illustrate the battery process, since the
impact on the global consumption is small due to the system dimension, Fig. [2§]

shows the battery charge and discharge processes.

FIG. 28. EMS battery model
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Chapter 5
Conclusions & Further Research

This work presents an energy management system componed by two forecasting
modules and an optimization model to enhance the operation of a novel fast charg-
ing point system that incorporates a CHP plant. The incorporation of the economic
aspects in the technical operation of the plant, allows optimizing the system in terms
of economic benefits by optimizing the CHP operation, the imported and exported
energy and the battery charging/discharging strategies. Simulation results suggest
that additional benefits can also be achieved by connecting a CHP station to the
electricity network on the location site. Moreover, results based on real operation
data, provide evidence of the reduction of electricity costs for end consumers by
including the optimal model into the system management. To conclude it’s impor-
tant to detail that in general, the energy management system, allows to a better
response on higher peak load demand and fast response for the EV charging process
by minimizing its cost.

The work has achieved the initial objectives by developing and implementing two
forecast modules and an optimization model, and by integrating them into a real
environment on testing phase.

From the results of the evaluated model, the principal ideas were:

= Energy is exported when the electric demand is lower than total cogeneration
energy generation and the selling price is higher than the electricity cost. It’s
easy to see that when the system sells energy generated with the cogenera-
tion plant, the selling price is higher but also the demand is lower than the
generation.

s The system tries to charge the electric vehicle when there is an excess of energy
and the gap between prices is not favorable (allowing the system to export the
excess of energy). This could be an effect of the unserved EV demand cost,
because depending on the value of this parameter and the cost of imported
energy from the grid, one of them has a higher effect on the objective function.

45
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From the forecasting methodologies, two different approaches were evaluated in this
thesis, one using multiple binary partioning trees and the other applying LSTM ar-
chitectures with stacked layers. Both tested models gave good predictions in terms
of accuracy but, taking into account the small amount of data employed, tree-based
models were the best ones, in terms of computation time and performance. RPART
obtained a MAPE below 10% and only took seven minutes to be trained.

An interesting approach will be evaluated the performance of both models with
more data available, because LSTMs are designed to be used with large volumes
of data because of its capability of learn patterns, while the tree methods are only
based on partioning the sample space by multiple variables sequentially, being his
ability to learn from the data limited.

The main problem of the models applied in this thesis are the weekends. It would
be necessary to evaluate a model fed with only weekends but more data will be
needed to identify the underlying patterns.

Other problems were the machine requirements. When predicting LSTM’s mem-
ory problems were faced. In this terms tree models also outperform the recurrent
networks. When training neural networks in GPU system a good schedule of mem-
ory is needed to avoid lacks of resources.

It’s also interesting to share that while deep neural networks look like a cool idea,
other simpler approaches like decision trees with some ensembling method are some-
times more effective, fast and simpler.

Another interesting idea to analyze further is the feature selection methodology
applied and his limitations. Random Forests and decision trees, in general, based
on impurity reduction are biased towards preferring variables with more categories
(high cardinality). Trees are biased to these type of variables. That’s because is
easier to find a value in which the model could be splitted when the number of
levels are bigger.

Correlated features will show similar and lowered importance, compared to what
their importance would be if the tree was built without correlated counterparts.
Any of these correlated features can be used as the predictor, with no concrete
preference of one over the others. This is not an issue if feature selection is applied
to reduce overfitting, since it makes sense to remove features that are mostly du-
plicated. But when interpreting the data, it can lead to the incorrect conclusion
that one variable is a strong predictor while the others not (related to the response
variable).

The next steps are to apply the model in a production environment, providing the
optimization model with the necessary inputs of electrical and thermal demand.
Another interesting idea would be to apply a training methodology for recurrent
neural networks, based on a process of training, predicting and saving the cur-
rent state to be able to continue training the model. With this, you could have
pre-trained models that would reduce the training time of the algorithms. A first
approximation of this methodology has been implemented to obtain the best model
based on neural networks. This approach allows predicting multiple days saving in
each stage the state of the model to then continue to train and get the following
prediction.
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Acronyms

ANN:

ARIMA:

CHP:
CNN:
CPU:

CTREE:

EV:
EVSE:
EMS:
GPU:
LSTM:
MSE:
MAE:
MAPE:
Ps:
Pys:
PLC:
RNN:

RPART :

Artificial Neural Network

Auto Regressive Integrated Moving Average
Combined Heat and Power
Convolutional Neural Network
Central Processing Unit
Conditional Inference Trees
Electric vehicle

Electric vehicle supply equipment
Energy Management System
Graphics Processing Unit

Long Short Term Memory

Mean Square Error

Mean Absolute Error

Mean Absolute Percentage Error
5th percentile

95th percentile

Programmable Logic Controller
Recurrent Neural Network

Recursive Partioning
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