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Uncovering temporal regularity
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Uncovering meaningful regularities in complex oscillatory signals is a challenging problem with ap-
plications across a wide range of disciplines. Here we present a novel approach, based on the Hilbert
transform (HT). We show that temporal periodicity can be uncovered by averaging the signal in a
moving window of appropriated length, τ , before applying the HT. As a case study we investigate
global gridded surface air temperature (SAT) datasets. By analysing the variation of the mean rota-
tion period, T , of the Hilbert phase as a function of τ , we discover well-defined plateaus. In many
geographical regions the plateau corresponds to the expected one-year solar cycle; however, in re-
gions where SAT dynamics is highly irregular, the plateaus reveal non-trivial periodicities, which
can be interpreted in terms of climatic phenomena such as El Niño. In these regions, we also find
that Fourier analysis is unable to detect the periodicity that emerges when τ increases and gradually
washes out SAT variability. The values of T obtained for different τs are then given to a standard
machine learning algorithm. The results demonstrate that these features are informative and consti-
tute a new approach for SAT time series classification. To support these results, we analyse synthetic
time series generated with a simple model and confirm that our method extracts information that is
fully consistent with our knowledge of the model that generates the data. Remarkably, the variation
of T with τ in the synthetic data is similar to that observed in real SAT data. This suggests that our
model contains the basic mechanisms underlying the unveiled periodicities. Our results demonstrate
that Hilbert analysis combined with temporal averaging is a powerful new tool for discovering hidden
temporal regularity in complex oscillatory signals.

Keywords: atmospheric dynamics, time series analysis, Hilbert analysis

Extracting meaningful information from complex oscilla-
tory signals is a challenging task with applications across
disciplines. Here we propose a novel technique, based on
Hilbert analysis, and apply it to global observational sur-
face air temperature (SAT) datasets. We show that, by
combining moving temporal average with Hilbert anal-
ysis, we can uncover underlying regularities in SAT dy-
namics, which are not always detected by Fourier spec-
tral analysis. Specifically, by changing the length, τ , of
the moving temporal average and analysing how the mean
rotation period of the Hilbert phase, T , depends on τ ,
we discover, in specific geographical regions, well-defined
plateaus that reveal hidden periodicity in SAT dynam-
ics. A main advantage of the technique proposed here is
that it allows continuous tuning of the time scale in which
SAT variability is washed out. Moreover, using a machine
learning algorithm, we show that the variation of T with τ

can be used for classification of SAT dynamics in different
regions.

I. INTRODUCTION

Our climate is an extremely complex, nonlinear system
with interacting sub-systems and feedback loops that act at

a)Electronic mail: cristina.masoller@upc.edu.;
http://www.fisica.edu.uy/~cris/.

various spatial and temporal scales1. To advance in the under-
standing of the climate system, models with different levels
of complexity can be used2,3. While simple models only pro-
vide a good understanding of basic phenomena, state-of-the-
art models allow for unprecedented predictability4; however,
the complexity of the models can obscure the interpretation of
their predictions.

In the last two decades, the availability of satellite data and
advances in data mining5 have lead to the development of
many data-driven approaches to understand, characterise and
predict our climate, directly from the observed data. Standard
tools in climate data analysis include Empirical Orthogonal
Functions, Fourier and Wavelet methods6–8. In recent years
alternative approaches, well-known in other disciplines, are
being increasingly used because they have been demonstrated
to be able to extract meaningful information for climate pre-
dictability9–15.

The Hilbert transform (HT), which has been used to inves-
tigate a wide range of oscillatory signals (physiological, geo-
physical, neurological, etc.16–22), is a useful tool for climate
data analysis24,25 because climatological variables typically
have a degree of seasonality due to solar forcing. The HT pro-
vides, for an oscillatory time series, an analytic signal from
which instantaneous amplitude, phase, and frequency can be
derived (see Section II B). While the Hilbert transform can
be applied to any signal, the instantaneous amplitude coin-
cides with the envelope of the signal, and the instantaneous
frequency corresponds to the frequency of the maximum of
the power spectrum computed in a running window, only if
the signal is “narrow band” (see Sec. A2.1 in26 and references
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therein). Signals that do not fulfil the “narrow band” criterion
are often pre-filtered in a narrow frequency band. However, in
the specific case of surface air temperature (SAT) with daily
resolution, we have shown that the Hilbert transform applied
to raw, unfiltered SAT time series allows to uncover mean-
ingful information23, in spite of the fact that SAT time series
are not narrow band. We unveiled spatially coherent global
patterns of high frequency dynamics24 and we uncovered the
geographical regions that have experienced important changes
in SAT dynamics over the last 30 years25. This success of the
Hilbert method for extracting relevant information is due to
the fact that, in many geographical regions, SAT time series
have well-defined periodicity imposed by the annual cycle of
solar forcing.

Using the Hilbert transform, here we propose a novel
framework for detecting underlying temporal regularities in
complex oscillatory signals. As a case study we consider SAT
time series in a grid over the Earth’s surface, covering the last
39 years with daily resolution. We show that underlying reg-
ularities can be extracted from the Hilbert phase, if SAT is
averaged over a moving window of appropriate length, τ , be-
fore applying the HT. Our approach is based on the analysis
of how the mean rotation period, T , of the Hilbert phase (see
Methods) depends on τ . We discover that it has a non-trivial
dependence, with one or more plateaus that reveal the pres-
ence of stochastic periodicity in SAT dynamics, which is un-
covered when smoothing SAT time series in a window of τ

days, with τ in a plateau.

To gain further insight, we analyse how the instantaneous
Hilbert phase ϕ(t) depends on the date of the year, for various
values of τ . For τ within a plateau, the plot of ϕ(t) vs. date un-
veils temporal structures, which provide a qualitative way to
evaluate differences in SAT dynamics in different regions. We
discuss, as particular examples, the phase and SAT dynam-
ics in six geographical regions, which we refer to as regular
(T ∼ 1 year, regardless of τ), quasi-regular (T reaches a one
year plateau, for τ large enough), double period (T ∼ half year
in a range of values of τ), irregular (in the plot of T vs. τ no
plateau is found), El Niño (T vs. τ displays a plateau at T ∼ 4
years, which is consistent with the El Niño phenomenon) and
QBO (because in this site a plateau is found at T ∼ 2.5 years,
which is consistent with the Quasi-Biennial Oscillation).

To further demonstrate that the analysis of the variation of
the mean rotation period of the Hilbert phase, T , with the
length of the average window, τ , indeed extracts meaningful
information from SAT time series, we use the k-means clus-
tering algorithm to classify the gridded sites of the dataset into
distinct geographical regions, based on the variation of T with
τ . We also compare Hilbert and Fourier analysis and show
that the extracted oscillatory component with periodicity T is
not always detected by Fourier analysis. These differences can
be expected as only for narrow band signals the instantaneous
frequency corresponds to the frequency of the maximum of
the power spectrum computed in a running window26.

II. METHODOLOGY

A. Datasets

ERA-Interim reanalysis32 covers the period from 1979 to
2017 with daily time resolution, and spatial resolution of
73× 144 (2.5◦ in latitude and in longitude). Therefore, we
have N = 73× 144 = 10512 SAT time series, each with L =
14245 data points (i.e., days). NCEP Reanalysis 233, which is
used in Appendix B for the purpose of comparison, has daily
resolution and a spatial resolution of 192×94 (1.875◦ in lon-
gitude and approximately 1.9◦ in latitude). To indicate the raw
SAT time series we use the notation r j(t), where j∈ [1,N] rep-
resents the geographical site and t ∈ [1,L] represents the day.

B. Hilbert analysis

First, we smooth the time series r j(t) by taking a temporal
average over a moving window of length τ . Then, we remove
the linear trend and normalise the time series to zero mean
and unit variance. The smoothed, detrended and normalised
time series is referred to as x j(t). The Hilbert transform of
x j(t), H[x j](t) = y j(t), allows to define the analytic signal,
h j(t) = x j(t)+ iy j(t), from which we calculate the instanta-
neous phase time series ϕ j(t) = arctan(y j(t)/x j(t)). Taking
into account the individual signs of x j(t) and y j(t), we can ob-
tain ϕ j(t) in the interval [−π,π]. The next step is to unwrap
the phase series, adding multiples of 2π at each time step to
avoid the sudden jumps between π and −π . Because the HT,
calculated over a finite time, gives error near the extremes of
the series, after the calculations we disregard the initial and
final 2 years. Thus, we analyse phase time series of 35 years
(from 1981 to 2015) with L = 12783 data points.

Finally, we calculate the mean rotation period of the Hilbert
phase as

T j = 2π
∆t

∆ϕ j
(1)

where ∆t is the time interval between the first and the last day
of the time series (in units of years) and ∆ϕ j (in radians) is the
variation of the unwrapped phase during this time interval.

We repeat these calculations for all the odd values of the
smoothing length τ between 1 day (no smoothing) and 149
days. We limit the length to this range in order to avoid fil-
tering out the seasonal cycle. At the end, we obtain the mean
period T as a function of the smoothing length τ . We will see
that analysing this dependence we can unveil temporal regu-
larities of the original SAT series.

C. Analysis of synthetic series

To give a first proof of our analysis method, we begin by
applying it to synthetic time series generated with a simple
model. We will show that our analysis returns information
which is fully consistent with our knowledge of the equation
that generates the series. In other words, the variation of T
with τ is as one would expect, considering the parameters used
to generate the synthetic time series.
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FIG. 1. Mean period T as a function of the smoothing length τ . We
show the results from 20 realisations of the synthetic series (the error
bars represent the standard deviations).

The model that we consider is the sum of two sinusoidal
oscillations (the annual cycle and a slower oscillation) and au-
toregressive noise:

S(t) =
a
√

2cos(ωslt)+b
√

2cos(ωyt)+ cε(t)√
a2 +b2 + c2

, (2)

where ωsl =
1
4 2π rad/year represents a slow 4-year cycle,

ωy = 2π rad/year represents a one-year cycle, and ε(t) repre-
sents AR(1) noise with zero mean and unit variance and with
persistence γ ∈ [0,1]. We use AR(1) because it is the usual
null hypothesis to model climate data34. With this model,
using a sampling time ∆t = 1 day, we generate time series
of the same length as ERA daily reanalysis (14245 days).
The parameters a,b,c allow us to vary the amplitude of the
three components, while the normalization factors (

√
2 and√

a2 +b2 + c2) keep constant the first and second moment of
the distribution of S(t) values (zero mean and unit variance).

From the synthetic time series we calculate the variation of
T as a function of τ , following the method that we described
in Section II B. Figure 1 displays the results obtained from
four different choices of the parameter set. For (a = 0,b =
5,c = 1,γ = 0.5), the mean period is always equal to 1 year,
regardless of the smoothing length. This is an expected re-
sult, since these parameters produce a time series dominated
by the 1-year oscillation, a circumstance that is not changed
by smoothing. For (a = 0,b = 5,c = 5,γ = 0.5), the mean
period is initially near to 0, but it grows with smoothing and
reaches a stable plateau at T = 1 year. This is compatible with
the fact that noise has the same weight as the 1-year oscil-
lation, so the fast oscillations produced by noise contribute to
the evolution of Hilbert phase and give a fast dynamics. When
we smooth sufficiently (τ ≈ 20 days), we reduce the fast noisy
oscillations and leave the 1-year oscillation as the dominating
component. For (a = 6,b = 3,c = 9,γ = 0.1), again the mean
period is initially near to 0, but with smoothing it grows un-
til it reaches a stable plateau at T = 4 years. This is easily
explained by the fact that noise has more weight than the reg-
ular oscillations, while the 4-year oscillation has more weight
than the 1-year oscillation. By smoothing, we gradually wash
out the fast noisy oscillation modes and we are left with a
time series in which the 4-year oscillation dominates on the 1-
year oscillation and on the remaining noisy oscillations. For

(a = 7,b = 8,c = 4,γ = 0.1), the mean period starts with a
low value (lower than 1 year), then it increases and reaches a
plateau of T = 1 year. Then, it increases again until it finally
reaches a plateau at T ≈ 4 years. This behaviour is explained
by the fact that smoothing initially eliminates the effects of
noise on the mean period. Since the 1-year cycle has a slightly
bigger weight than the 4-year cycle, the former cycle initially
prevails, giving a plateau of T = 1 year. But, starting from
τ ≈ 80 days, the smoothing reduces significantly the ampli-
tude of the 1-year oscillation, so that the 4-year oscillation
starts to prevail, leading to the final plateau at T ≈ 4 years.

III. RESULTS

A. Variation of T with τ

In this section we apply our analysis technique to real SAT
time series. We begin by analysing how T varies with τ .

Figure 2 displays the colour maps of T , obtained with τ =
1, 31, 99 and 149 days. White colour indicates a mean period
of 1 year; red colour represents faster dynamics, while blue
colour represents slower dynamics. As one could expect, as τ

is increased the regions of fast dynamics are washed out. With
τ = 31 days, a blue area of slow dynamics begins to emerge
in the central Pacific Ocean. This is due to the fact that in this
area large-scale variability modes (such as El Niño) produce
temperature oscillations with time scale of several years and
whose amplitude is larger than the annual oscillation.

In order to gain insight into how the slow dynamics
emerges, we focus the analysis on six geographical sites (indi-
cated with symbols in the colour maps) that are representative
of different types of SAT dynamics. The symbols in Fig. 2
indicate the position of the six sites, which will be referred to
as: regular, quasi-regular, double period, irregular, El Niño,
and QBO.

Figure 3 displays, for the six sites, the variation of T with
τ . We can see that, except for the irregular site, in the other
sites T shows a plateau in some range of values of τ . For the
regular, quasi-regular and double period sites the plateau is at
T = 1 year. The double period site shows also an irregular
plateau at T ≈ 0.5 years. For the El Niño and QBO sites, the
plateau is at T ≈ 4 years and T ≈ 2.5 years, respectively. To
demonstrate the robustness of these results, in Appendix B we
analyse another reanalysis dataset (NCEP Reanalysis 2) and
obtain qualitatively similar variation of T with τ , with differ-
ences that can be attributed to the different spatial resolutions
of the two reanalysis. As an additional test, we analyse SAT
time series with a different temporal resolution: we consider
ERA-Interim reanalysis with monthly resolution and find re-
sults that are consistent with those obtained from daily SAT
data (shown in Fig. 2) with τ = 31,99 days.

B. Analysis of Hilbert phase dynamics

In order to demonstrate that the plateau uncovers underly-
ing regularity in SAT dynamics, we represent for each site the
scatter plot of SAT vs. date of the year and Hilbert phase vs.
date of the year, without pre-smoothing (Fig. 4) and with pre-
smoothing (Fig. 5), using values of τ that are in the plateau in
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FIG. 2. Influence of temporal averaging on the mean rotation period. The colour maps display T (measured in years) computed after smoothing
SAT in a moving window of length τ = 1, 31, 99 and 149 days. The symbols indicate the geographical sites discussed in the text: regular
(circle), quasi-regular (triangle), double period (square), irregular (plus), El Niño (cross), QBO (star). At https://youtu.be/5oX5i5uCm_8
a video shows the evolution of T as τ increases from 1 to 149 days.
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FIG. 3. Variation of the mean period T with the length τ of the smoothing window. The solid line represents the studied site, while the dashed
lines represent the four neighbouring sites.

each site (in the irregular site there is no plateau and thus we
use the largest value of τ).

In Fig. 4 the width of the SAT curves is a measure of the
interannual variability in each location (note the different ver-
tical scales of the SAT panels). We can observe that the con-
tinental extratropical site (the regular one) has larger interan-
nual variability than the two continental tropical sites (quasi-
regular and double period), which in turn have larger interan-

nual variability than the three tropical oceanic sites (irregular,
El Niño, and QBO). This is consistent with current under-
standing of atmospheric variability. Regarding the seasonal
variations, the continental sites show well defined evolutions
with one or two maxima that are well captured in the phase
scatter plots. On the contrary, the tropical oceanic sites show
a weak or null seasonal cycle. The two easternmost sites show
an interannual variability that is maximum during boreal win-

https://youtu.be/5oX5i5uCm_8
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FIG. 4. Hilbert analysis applied to SAT series without pre-filtering. In each site, the scatter plots display SAT vs. date of the year (upper panels,
in red) and Hilbert phase vs. date of the year (lower panels, in blue). We also indicate the coordinates of each site.

ter and minimum during boreal spring. In Fig. 5 we see that
clear structures emerge in the scatter plots of SAT vs. date and
phase vs. date, when pre-filtering SAT using a window of spe-
cific length τ . Taken together, Figs. 3, 4 and 5 allow us to
uncover and to characterise SAT regularity in each site.

In the regular site, we see in Fig. 3 that T as a function
of τ is remarkably constant. The relation between phase and
date of the year, even for the raw SAT (Fig. 4), is a clear lin-
ear growth that gives one cycle per year, and we see in Fig. 5
that taking a temporal average doesn’t change this linear be-
haviour. This is due to the fact that in this site the dominating
mode of SAT oscillation is produced by solar forcing, which
in this region has a period of one year. The phase dynamics
of the regular site is characteristic of continental extratropical
climate, dominated by the annual cycle of solar forcing.

In the quasi-regular site, located in India, we see in Fig. 3
that without smoothing we get T ≈ 0.5 years. As τ increases,
T increases until it reaches a stable plateau of T = 1 year
at τ = 25 days. In the phase-date relation obtained without
smoothing, we see that the phase has additional cycles during
the year: there are years with just one cycle, and years with
two or more cycles. If the smoothing window is long enough
(in Fig. 5 we used τ = 41 days), these additional cycles are
washed out, resulting in a phase-date relation with one cycle
per year. We interpret these results as due to the fact that SAT
in this site has a component with year periodicity, and also
half-year periodicity and faster variability, which are reduced
by the 41-day filtering that leaves the time series dominated
by the annual cycle. We note in Fig. 5 that the phase increase

is not linear during June-September, a result that captures the
effect of the Indian monsoon that produces the small plateau
in temperature in the same months.

The double period site is located in another monsoon re-
gion, in this case the West African monsoon. The plot of the
mean period starts, for no smoothing, with T ≈ 0.2 years. As
τ increases, T has a steep increase until τ ≈ 10 days, then
it shows a slower growth for τ in the range of 10-45 days,
with a mean period of T ≈ 0.5 years. When τ is increased
further, T continues to grow reaching the one year period
at τ ≈ 140 days. We interpret this behaviour as due to the
presence of a component of half-year period whose ampli-
tude is larger than the component with one year periodicity.
In the SAT-date and phase-date scatter plots, with no smooth-
ing (Fig. 4) we see a noisy double cycle, while with 41-day
smoothing (Fig. 5) we are left with a dominant half-year os-
cillatory component. If we increase τ , we gradually eliminate
the half-yearly component and extract a one year periodicity
(not shown). The stochastic half year period in this region
captures the northward movement of the Intertropical Conver-
gence Zone during boreal summer, which strongly affects the
surface temperature leading to peaks before and after the mon-
soon. We need to point out that the quasi-regular and double
period sites have similar characteristics. We can see (Figs.
4 and 5) that their SAT time series are similar and the main
difference is whether the second local minima is smaller or
larger than the mean of the time series. For this reason, there
can be variations from one year to the other: the quasi-regular
site can have years with a double oscillation and the double
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FIG. 5. Hilbert analysis applied to pre-filtered SAT series. As in Fig. 4, but using a smoothing window of length τ in the plateaus shown in
Fig. 3: τ = 41 days for regular, quasi-regular and double period sites; and τ = 101 days for irregular, El Niño and QBO sites. We remark that,
in the red panels (SAT vs. date of the year), the vertical ranges are different from the ones in Fig. 4.

period site can have years with only one oscillation. It is not a
surprising behaviour, since both sites are located in monsoon
regions and have a climate with strong interannual variability
(influenced, among other factors, by El Niño).

The irregular site is the westernmost of the three sites that
we selected in the Pacific Ocean. We see that, for no smooth-
ing, T starts from a low value (T < 0.1 years) and as τ is
increased, T increases without revealing any particular time
scale, i.e., it does not reach any plateau. The phase-date re-
lation with no smoothing does not reveal any structure in the
temperature dynamics, although there is a hint of a double
period seen as a relative increase in the density of points, as
would be expected for a region on the equator. If we smooth
with τ = 101 days, we still get a phase-date plot that doesn’t
suggest any clear time scale. These results indicate that in
this region there is no dominating component of any partic-
ular period, i.e., SAT time series is consistent with the sum
of stochastic processes with different time scales and similar
amplitudes.

Next, we analyse the El Niño site, the central of the three
sites in Pacific Ocean, located in the so-called cold tongue re-
gion. As in the previous site, without smoothing we find that
T < 0.1 years and then T increases linearly with τ . However,
in contrast to the irregular site, here T reaches a stable plateau
of T ≈ 4 years at τ ≈ 90 days. This means that, if we average
SAT over a sufficiently long temporal window, we are left with
a dominant oscillation whose period is approximately 4 years.
In the phase-date relation a 4-year cycle would be represented

by a line that cycles 4 times in the horizontal direction while
covering vertically the 2π phase range. In the phase-date re-
lation calculated with τ = 101 days (Fig. 5) we see a hint of
such ordered phase dynamics (in the form of tilted regions
with higher density of points), which is not seen in the phase-
date relation computed from the raw data (Fig. 4). This is
interpreted as an effect of El Niño, which has a period be-
tween 3 to 7 years, with maximum amplitude in the equatorial
Pacific cold tongue region.

In the QBO site (the easternmost of the three Pacific sites)
T starts with a steep increase from T ≈ 0.1 years to T ≈
2.5 years for τ ≈ 40 days where there is a plateau. We in-
terpret here that Hilbert phase analysis captures the effects of
the QBO oscillation, which consists in the alternation of zonal
winds between easterlies and westerlies in the tropical strato-
sphere, with a mean period of 28-29 months, and which has
been shown to influence SAT27,28. In the phase-date relation
calculated after averaging SAT in a window of τ = 101 days
(Fig. 5) we see two tilted bands with higher density of points
(consistent with a noisy cycle with 2.5 year period), which are
not so evident in the phase-date relation obtained from the raw
SAT (Fig. 4).

C. Fourier analysis

In this section we investigate if Fourier spectral analysis can
detect the underlying temporal regularities detected through
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FIG. 6. Fourier analysis of SAT time series. The panels display the power spectrum of the SAT time series in the different sites (without
pre-smoothing, in blue). We test the statistical significance of the Fourier peaks with 1000 realisations of AR(1) series with the same variance
and autocorrelation (at lag 1) as the SAT series. We calculate the spectra of the 1000 realisations and then take the 5 and 95 percentiles. We
also smooth these two resulting spectra with a moving average of length 5. The green and orange lines indicate the 5 and 95 percentiles,
respectively, obtained after these calculations. We consider a peak of the original spectrum (in blue) to be statistically significant if it is higher
than the 95-percentile spectrum (in orange). We analyse the influence of smoothing by computing the spectra after averaging the SAT time
series in a window of length τ , and calculate the dominant period, T , as the inverse of the frequency of the highest significant peak in the
spectrum. The insets show the variation of T with τ . We note that the gradual emergence of temporal regularity that occurs as SAT variability
is washed out is not detected in this way, because T is either constant or it changes abruptly with τ .

Hilbert phase analysis. To do this, we analyse how the highest
peak, f , in the power spectrum depends on τ . The plot of T =
1/ f vs. τ presented in Fig. 6 reveals the same variation found
with Hilbert analysis only in the regular site; in the other sites,
the gradual variation of T with τ and the plateaus found are
not detected.

In the regular and in the quasi-regular sites Fourier gives a
period equal to 1 year, regardless of τ , while we have seen
in Fig. 3 that the quasi-regular site starts with a faster dy-
namics and then the period rapidly increases to the stable
value of 1 year. In the double period site, the period starts
at T = 0.5 years and remains constant as τ increases until
τ = 25 days, where it suddenly jumps to T = 1 year. Thus,
here we lose the gradual variation captured with Hilbert anal-
ysis. In the irregular site, we have a similar sudden jump, from
T = 0.5 years to T ≈ 1.3 years at τ ≈ 90 days. In contrast,
Hilbert analysis and the phase-date relation tell us that there
is no dominating oscillatory component with any smoothing
length. In El Niño and QBO sites, T ≈ 11.7 years, regardless
of τ , which is due to the fact that the Pacific has variability
from interannual to interdecadal time scales, and thus, SAT
Fourier spectrum has high energy at low frequencies.

We need to say that we are comparing the results obtained
from our Hilbert approach with the results obtained from a
simplistic application of Fourier transform. It could be in-
teresting (but out of the scope of this paper) to use for this
comparison more information obtained from Fourier trans-
form (for example, by applying some of the techniques de-
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FIG. 7. Classification of the geographical sites in four clusters. The
k-means algorithm is used to classify the geographical sites accord-
ing to their values of T for different choices of τ .

scribed in35).

D. Classification of SAT dynamics

To further demonstrate that the analysis of the variation of
T with τ indeed extracts meaningful information, we use the
method of k-means clustering to classify the sites into a given
number of clusters. Specifically, for each site we take as fea-
tures the values of T for τ = 1,9,29,49, . . . ,149 days. Then,
we use the k-means algorithm to classify the 10512 geograph-
ical sites into n clusters based on these features. In Figs. 7
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FIG. 8. Variation of T with τ in each cluster, represented as a 2D
histogram. The colour code indicates the number of sites in each
bin; white represents empty bins.

and 8 we report the results for n = 4 (consistent results where
obtained with larger n, the analysis is in progress and will be
reported elsewhere). It is interesting to note that the map has
similarities with the upper left panel of Fig. 2.

In particular, the blue cluster characterises regions domi-
nated by the seasonal cycle and large temperature variations
(see the regular site). These include the north extratropical
land masses and storm track regions over the Pacific and At-
lantic oceans. In the southern hemisphere, this cluster char-
acterises the extratropical continents and subtropical oceans,
but most of the extratropics are in the orange cluster. This
latter cluster characterises regions with faster dynamics that
are dominated by the annual cycle only after smoothing with
τ > 20 days, which may reflect the importance of subseasonal
variability in the southern hemisphere.

The tropical band is dominated by the green cluster, which
is composed by regions of low temperature variability and
whose spatial structure is closely related to the mean rain-
fall pattern. The green cluster characterises regions where no
plateau is found when increasing the smoothing length. The
largest green region (where the irregular site is located) is the
western Pacific warm pool, which presents temperature vari-
ability that is strongly tied to convection on short time scales
and thus shows up in this study as with irregular behaviour.

Finally, the red cluster characterises the central Pacific, the
region that for τ > 30 days has the slowest dynamics (as can
be seen in Fig. 2). Note that the core of the cold tongue region
has a strong annual cycle and therefore it is within the blue
cluster. The red cluster marks a transition region between
the strong wind-driven equatorial cold tongue dynamics and
the weak and thermodynamic-driven variability of the west-
ern Pacific warm pool. It is a region with relatively weak an-
nual cycle and influenced by El Niño and the QBO and thus
shows slow dynamics (see El Niño and QBO sites). The quasi-
regular and double-period sites are located in cluster borders
because they are monsoon regions and thus rainfall and tem-
perature variations are strongly related during the summer-
time, giving rise to large deviations from the annual cycle.
Similar behaviour is expected in south-east Asia and central
America and subtropical South America.

IV. CONCLUSIONS

In summary, we have presented a novel method for extract-
ing information from complex oscillatory signals. Using SAT
time series, we have shown that Hilbert phase analysis com-
bined with temporal averaging allows to extract different os-
cillatory modes, and by using a machine learning algorithm
it provides a novel way to classify different types of SAT dy-
namics.

The proposed method is based on the analysis of the vari-
ation of the mean period of rotation of the Hilbert phase, T ,
with the length, τ , of the temporal average. We discovered
that T vs. τ exhibits well-defined plateaus, which reveal hid-
den regularity of SAT dynamics.

We have shown that the plateau behaviour and the gradual
variation of T with τ are not necessarily detected by Fourier
analysis because, as τ increases, the frequency of the domi-
nant peak in the power spectrum is either constant or changes
abruptly. Thus, a main advantage of the proposed method is
that it allows to detect the gradual emergence of temporal reg-
ularity that occurs as SAT variability is washed out.

Using synthetic data generated with a simple model, we
have tested and validated the proposed method: in the syn-
thetic data the variation of T with τ is fully consistent with
our knowledge of the model that generates the data. More-
over, the variation of T with τ in the synthetic data was found
to be similar to that in real SAT data, which suggests that, in
spite of the extremely complex atmospheric dynamics, the ba-
sic mechanisms needed for understanding our findings can be
surprisingly simple.
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Appendix A: Overview of Hilbert transform

The Hilbert transform (HT) provides, for a real signal x(t),
an analytic signal h(t), from where an instantaneous ampli-
tude and an instantaneous phase can be defined:

h(t) = x(t)+ iy(t) = A(t)eiϕ(t). (A1)

Here y(t) is the Hilbert transform of x(t):

y(t) = H[x](t) =
1
π
P.V.

∫ +∞

−∞

x(τ)
t− τ

dτ, (A2)

where P.V. means principal value, and A and ϕ can

be calculated as: A(t) =

√
[x(t)]2 +[y(t)]2, and ϕ(t) =

arctan[y(t)/x(t)]. These series, obtained by HT, allow us to
reconstruct the original series as x(t) = A(t)cosϕ(t).
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As a first example, the Hilbert transform of the harmonic
oscillation x(t) = Acos(ωt) is y(t) = Asin(ωt). In the com-
plex plane, (x(t),y(t)) represent the coordinates of a point that
describes a circular trajectory of amplitude A and phase ωt.

As a second example, we calculate the instantaneous am-
plitude and frequency of the oscillation described by

x(t) = e−αt cos
[(

1+ e−2αt)
ω0t
]
. (A3)

Its length is L = 105. We choose ω0 = 2π/500 (which would
describe an oscillation of length 500 in a harmonic oscillator)
and α = 2/L. The results are shown in Figure 9. We can see
that the amplitude A(t) is the exponentially decreasing enve-
lope of the signal x(t), given by the expression e−αt , while the
frequency ω(t) decreases according to

(
1+ e−2αt

)
ω0. We

also note that, near the extremes, A(t) and ω(t) display an
oscillatory behaviour that deviates from the analytical expres-
sions that we have just given.

Appendix B: Comparison with other SAT reanalyses

To demonstrate the robustness of our findings, here we
compare the results obtained from ERA-Interim with those
obtained from NCEP Reanalysis 233, which has daily resolu-
tion and a spatial resolution of 192× 94 (1.875◦ in longitude
and approximately 1.9◦ in latitude). We analyse the same pe-
riod as in the main text (1981–2015).

Figure 10 shows the variation of T with τ , obtained from
NCEP Reanalysis 2, for the six chosen geographical sites.
Comparing with Fig. 3, a good agreement is observed between
the two reanalyses. There are some differences in the sites
near to equator (specifically, double period site and El Niño
site) that may be due to the fact that NCEP and ERA-Interim
reanalysis are not in the same spatial grid, and the gradients
in behaviour can be very large. In other words, in this region
small changes of position can give very different results.

Finally, by considering ERA-Interim reanalysis with
monthly resolution, we test the influence of the temporal res-
olution. In Figure 11 we can see that the mean period ob-
tained with monthly resolution and no smoothing is consistent
with the results presented in Figure 2 and obtained with daily
resolution. Specifically, we note that this map obtained from
monthly SAT data looks qualitatively as an intermediate case
between the maps obtained from daily SAT data with τ = 31
days and τ = 99 days.

Appendix C: Modelling the synthetic series

In Section II C we applied Hilbert analysis to synthetic se-
ries and showed that it returns information which is fully con-
sistent with our knowledge of the equation that generates the
series. Here we also show that this synthetic model provides
a simple way to understand and reproduce the variation of T
with τ found in real SAT data.

Figure 12 displays the variation of T and compares the re-
sults of real and synthetic time series. For each of the four
represented geographical sites, we search for the synthetic se-
ries that best fits the variation of T with τ obtained from the
real SAT series. To find it, we vary a,b,c from 0 to 10 with
steps of 1, while γ varies from 0 to 0.9 with steps of 0.1. For

each choice of the parameter set, we make 20 realisations of
the synthetic series and we calculate the average values of T
as a function of τ . Then, we calculate the sum of the squared
distances between the variation of T given by the real series
and the one given by the synthetic series. We select as the best
fit the parameter set that minimises this sum.

We can see that the regular site is fitted by our model with-
out slow cycle and with low noise (a = 0,b = 6,c = 2). The
quasi-regular site is fitted when the noise is higher, but still
lower than the one-year cycle (a = 1,b = 10,c = 6). The ir-
regular site is fitted when the noise is higher that the one-year
cycle (a = 0,b = 2,c = 6). On the other hand, the El Niño
site is fitted when the slow cycle and the one-year cycle have
comparable amplitudes, and the noise is higher than the cy-
cles’ amplitudes (a = 5,b = 4,c = 9).
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