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Abstract

Nowadays, the improvement of turbomachinery components within the gas turbine industry relies
heavily on the use of high-fidelity optimization techniques and the user experience with a range
of specialized sub-tools such as: the geometry modeler, the grid generator, the flow solver and the
optimizer. Since the CFD analysis can take very long run times and often very rich design spaces are
explored, the gradient-free optimization approaches can be extremely expensive for industrial appli-
cations. In this regard, the use of a gradient-based approaches, such as the adjoint CFD methods,
is desirable, since they are computationally efficient specially for large number of design variables.
The adjoint method is a popular technique to obtain the gradients of an objective function with
respect to the grid coordinates at a relatively low cost. A common approach is to use the grid
point coordinates as design variables, which offers a very rich design space but the connection to
the CAD geometry is lost. This problem can be partially solved by transforming the optimal shape
defined by grid points back to smooth CAD shape, but this step can take significant time and it is
not guaranteed that the final approximated CAD shape will meet the design requirements and con-
straints. Therefore, the ideal would be to use the CAD geometry modeler within the optimization
framework, since CAD is the industry adopted standard for the design of components. However, in
the context of gradient-based optimization, this requires an additional sensitivity computation step.
The partial derivative of the grid coordinates with respect to the CAD-based design variables, re-
ferred in this work as the grid sensitivities, will need to be computed as well. This can be done with
finite differences, by perturbing the design variables to generate perturbed CAD models. However,
some difficulties can arise if the CAD topology changes or the labels change when a design variable
is updated, making this approach not feasible.

In this work, the difficulties of using CAD and adjoint based methods for the optimization of
turbomachinery components are addressed and will be tested in the LS89 turbine cascade. First,
the CAD kernel and the grid generator will be differentiated using Algorithmic Differentiation (AD),
delivering the grid sensitivities. The use of AD to compute the grid sensitivities allows to circum-
vent the CAD topology and labelling problems that can arise when using finite differences and also
allows to deliver accurate grid sensitivities. Secondly, the integration of the CAD in the design
chain will be demonstrated in a single-point and multi-point aerodynamic optimization of the LS89
turbine cascade application. The performance gradients required by the optimizer will be computed
by combining the sensitivities provided by the adjoint solver and the grid sensitivities computed by
AD. Substantial aerodynamic improvements will be presented in this work for the optimization of
the LS89 for both design point and off-design conditions. However, the aerodynamic improvements
are bound to the CAD-based parameterization used throughout the optimization, and it could hap-
pen that the parameterization is not good enough to move the model boundary in the direction
indicated by the adjoint sensitivities. To investigate this, a novel parametric effectiveness indicator
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will be defined, which allows to rate the quality of a set of CAD based parameters to produce the
shape change that the adjoint sensitivities dictate in a constrained or unconstrained problem. If, in
the beginning of the optimization, the parametric effectiveness is high, it is expected to reach a final
solution with increased performance. Finally, the use of adaptive shape parameterization or mul-
tilevel optimization, where the optimization starts with a small number of design variables (coarse
parameterization) and ends with a large number (fine parameterization), will be investigated, since
this can be an effective strategy to explore rich design spaces and to improve convergence rate,
robustness and final solution of the optimization. For this purpose, the parametric effectiveness
will be used in a novel multilevel shape refinement procedure to introduce the minimum amount of
design variables required to modify the shape in the direction the adjoint sensitivities dictate. The
novelty of the multilevel optimization strategy will lie in using the parametric effectiveness to refine
the design space and create the best parameterization to be used during the optimization.
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Chapter 1.

Introduction

Abstract. This chapter serves to introduce the main issues which industry is currently facing
in the context of aerodynamic shape optimization and to explain the contributions of this thesis to
alleviate these problems. Finally, the outline of this thesis is presented.



2 Chapter 1. Introduction

1.1. Motivation

Many attempts have been made to improve the design of gas turbines over the last decades. The
main efforts have been concentrated in improving the thermal and propulsive efficiencies, extending
the life of the components, increasing the power and reducing the emissions. Most of the techno-
logical improvements have come with the computational advances. First, the use of high-fidelity
analysis has deepened the understanding of the flow physics and this has allowed to make engi-
neering judgements to further improve the designs. Also, the introduction of shape optimization in
the engineering design framework has enabled to find non-intuitive and innovative geometries with
better performance. Therefore, increasing the use of high-fidelity tools and shape optimization at
the early stage of the design phase can significantly reduce the time required to find the optimal
geometry and handing it over to manufacturing. However, nowadays the industry still faces some
challenges associated to the use of shape optimization within the design phase. This thesis exam-
ines some of the main bottlenecks related to the use of gradient-based optimization techniques in
an industrial design framework. The methodologies proposed in this thesis allow to integrate the
Computer Aided Design (CAD) within the optimization and to improve the robustness, complete-
ness and efficiency of the design system in order to explore high-dimensional design spaces at a
relatively low computational cost.

In aerodynamic shape optimization, the problem typically consists in minimizing certain per-
formance measure subject to certain manufacturing and aerodynamic constraints within limited
computational resources. Typically, the grid node coordinates are used as design variables [3–5] and
hence the link to the geometry defined in the CAD model is lost. This means that it is required
to approximate the optimal shape defined by the cloud of points by a smooth CAD shape [6, 7]
and this is a complex step that can take significant time and can impair the optimality of the final
shape. Another drawback of allowing every grid point to move in each spatial direction during the
optimization is that it is very difficult to satisfy any geometry or assembly constraints. For example,
keeping the blade trailing edge thickness or the axial chord length fixed cannot be imposed directly
on the grid nodes. Since the industrial standard for representing a shape is through CAD, this work
examines integrating the CAD in a gradient-based shape optimization process. This introduces
an additional bottleneck: the computation of the grid sensitivities, which represent the geometric
derivative of the surface grid point coordinates w.r.t. CAD-based design parameters, is required.
Typically, this can be done by using finite differences but this is restricted to problems where the
topology (i.e., the number and arrangement of surfaces, edges and vertices over the model boundary)
remains constant. Another approach is to use the design velocity approach [8] to compute these
shape sensitivities, but this approach also introduces inaccuracies which originate from the surface
mesh to mesh projection errors and the finite difference sources of error (i.e. the limited arithmetic
precision and the truncation error). Both the finite difference approach and the design velocity
approach can introduce large inaccuracies in the computation of the gradients if an appropriate
step size is not chosen. This thesis addresses these issues and proposes a alternative strategy to
compute the shape sensitivities, which consists in differentiating the CAD kernel and grid generator
using algorithmic differentiation.
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Since the full shape optimization problem is continuous but, in most cases, there is not any analyt-
ical solution, the problem is solved numerically by projecting it unto a finite set of design variables
that govern the shape changes. Despite the integration of the CAD in the design and optimization
framework can guarantee the satisfaction of manufacturing constraints and the optimality of the
shape, it can also introduce other type of problems related to the efficiency of the optimization pro-
cess. For example, too large number of design variables can increase significantly the time required
to update the CAD model. Also, too few or too large number of design variables can lead to slow
design improvement. Furthermore, since the choice of the CAD parameters constraints how the
model boundary can change, a poor choice may prevent the exploration of innovative geometries.
This thesis tackles these issues by developing two novel methodologies. First, a novel parametric
effectiveness indicator is used to rate the quality of a set of CAD design variables to move the geom-
etry boundary in the ideal direction dictated by the adjoint solution. The parametric effectiveness
aids the designer to choose what is the best CAD-based parameterization to use for optimization.
Secondly, this parametric effectiveness is used to develop a multilevel strategy in which the opti-
mizer performs a rapid, low-dimensional exploration of the design space first and then progressively
explores higher-dimensional design spaces that approximate the continuous problem. This allows to
create the best CAD-based parameterization to use during the multilevel optimization and to find
non-intuitive geometries. This progressive parameterization strategy results in a more autonomous,
robust and efficient design methodology.

1.2. Contribution of this thesis

This work has been conducted within the Industrial Optimal Design using Adjoint CFD (IODA)
project (http://ioda.sems.qmul.ac.uk) and funded by through the European Union HORIZON 2020
Framework Programme for Research and Innovation under Grant Agreement No. 642959. The
central goal of this thesis is to propose efficient CAD-based and adjoint methodologies to tackle the
main issues that the industry is currently facing in the context of aerodynamic shape optimization.
The broad contributions of this thesis are:

• Differentiation of the CAD kernel and grid generator to deliver accurate sensitivities. This
approach allows to: (1) circumvent the inaccuracies introduced by the design velocity approach
and finite differences; (2) avoid CAD topology and labelling problems that can arise when using
finite differences.

• Demonstration of the CAD integration in an optimization framework. The performance gra-
dients propagated to the CAD design variables will be compared to finite differences and used
in single point and multi-point optimizations of the LS89 to improve the aerodynamic per-
formance of the turbine cascade at design point and off-design conditions respectively. The
integration of the CAD in the optimization frameworks allows to: (1) guarantee geometry
or assembly constraints; (2) produce smooth geometries; (3) deliver the optimal geometry in
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the industry accepted format for manufacturing (there is no longer the need to convert the
optimal shape defined by a cloud of points to a CAD geometry).

• Definition of a novel parametric effectiveness indicator to rate how good a set of CAD-based
parameters is to move the model boundary in the direction that the adjoint sentitivities dictate
in a constrained optimization problem. The constraints can be of any type: aerodynamic,
geometrical, structural, etc. A high parametric effectiveness is a key to the success of any
optimization process. The parametric effectiveness can be used, at least, in the following
three manners: (1) to select the best CAD-based parameterization to use for optimization;
(2) to create a non-intuitive CAD-based parameterization that is ideal for moving the geometry
boundary in the desired direction; (3) to select the most effective subset of parameters to use
in an optimization.

• Definition of a novel multilevel shape refinement approach, which uses the parametric effec-
tiveness for efficient CAD-based adjoint optimization. This strategy allows to create the best
CAD-parameterization to use during the optimization and to find non-intuitive geometries in
an efficient manner.

In this thesis, no contributions were made towards the development of the CFD solver, the ajoint
solver and the optimizers, which were treated as black-boxes. The differentiation of the CAD
kernel and grid generator was done using ADOL-C [9], an AD tool developed at the Department of
Mathematics at the University of Paderborn that is written in C++ and uses overloaded operators
and functions.

1.3. Outline of the thesis

The thesis is organized through the following chapters.

Chapter 1 introduces the main issues that the industry is currently facing in the context of aerody-
namic shape optimization and to explain the contributions of this thesis to alleviate these problems.

Chapter 2 contains a literature review of the most widely used methods for gradient evaluation,
shape parameterization and CAD-based optimization. The shortcomings of using finite differences
or the design velocity approach for the computation of gradients in a CAD and adjoint based opti-
mization framework are explained. It also describes in detail the main methods used in this thesis
to generate the CAD geometry and the fluid mesh, to perform the flow analysis and to handle the
flow sensitivity aspects. The benefits of using adaptive shape parameterization in an optimization
framework, as opposed to a static parameterization, are also introduced.

Chapter 3 presents an alternative approach to finite differences and the design velocity approach
to compute the grid sensitivities. The differentiation of the CAD kernel and grid generator is pro-
posed in order to compute accurate sensitivities and to avoid the robustness issues that can arise
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with finite differences.

The integration of the CAD kernel and grid generator within a CFD adjoint-based optimization
framework, by expressing the optimization problem through CAD parameters, is demonstrated by
performing a single point optimization of the LS89 turbine cascade in chapter 4. Large aerodynamic
improvements are reported at design point and the aerodynamic performance of the optimal design
is analysed in detail. However, the performance of the optimal design deteriorates rapidly at higher
outlet isentropic Mach numbers.

Chapter 5 builds up on the results presented in chapter 4 by extending the study to a multi-point
optimization, in order to improve the off-design performance of the turbine cascade.

Chapter 6 defines a novel parametric effectiveness indicator, which can be used to rate the ability
of a set of CAD-design variables to move the geometry boundary in the direction dictated by the
adjoint solution. This allows to select and to create the best CAD-parameterization to use for
optimization purposes. The parametric effectiveness deals with constraints of any type: geometric,
structural, aerodynamic, etc.

Chapter 7 presents an efficient strategy that uses the parametric effectiveness to dynamically
create the best CAD-based parameterization during the course of the optimization. The proposed
method allows to preserve the richness of the design space by progressively refining the CAD model
in a multi-level optimization framework.

Finally, the thesis terminates with the main conclusions and future work.





Chapter 2.

Optimization using CAD and adjoint based methods

In chapter 1, an introduction to the main problems that the industry is currently facing in the context of

CAD-based optimization is presented and the main contributions of this thesis are outlined. A broader litera-

ture review is presented in this chapter, together with the description of the main methods used in this thesis.

Abstract. This chapter serves to present some of the most widely used methods in the literature
for gradient evaluation, shape parameterization and CAD-based optimization. It also presents the
main methods used in this thesis to generate the CAD geometry and the fluid mesh, to perform
the flow analysis and to handle the flow sensitivity aspects. Finally, the benefits of using adaptive
shape parameterization in an optimization framework, as opposed to a static parameterization, are
also introduced.
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2.1. Optimization methods

Optimization methods can be broadly distinguished in two main families: gradient-free (global)
and gradient-based (local). Gradient-free methods only use the value of the objective function,
whilst gradient-based methods require the computation of the gradient of the cost function and
constraints. Each of these two main families have their own advantages and disadvantages. The
computational resources for the global optimization algorithms, such as genetic algorithms or parti-
cle swarm methods, grows exponentially with the number of design variables and hence their use in
industry chain design processes is sometimes restricted to very small test cases. The gradient-free
methods are suitable for performing a global exploration of the design space using a population of
individuals and identifying the region where the global minimum is located but this comes at the
cost of low convergence rates and expensive computational costs [10, 11]. On the other hand, the
use of local optimization algorithms, such as gradient based methods, can reduce significantly the
computational effort, provided that the gradient is computed with the adjoint method, for which
the cost is independent of the number of design variables [12]. However, the local optimization
algorithms might find a local minimum in the design space instead of the global one.

In the context of this thesis, gradient-based approaches such as the adjoint CFD methods will be
chosen for optimization purposes.

2.2. Literature review on gradient evaluation methods

The design of complex engineering systems and subsystems involves analysing solutions in an it-
erative manner by perturbing the design variables α⃗ = (α1, α2, ..., αn) of a baseline system. For
gradient-based optimization strategies, the iterative process includes the generation of numerical
solutions, determination of design sensitivities and the provision of these gradients to an optimizer
which finds a new set of design variables by perturbing them in the appropriate direction. These
perturbations are based on the performance sensitivities dJ/dα⃗, which express the derivative of the
objective function J (e.g. total pressure losses, entropy generation, maximum Von Misses stress,
etc.) with respect to the design parameters. This is usually done by calculating the derivatives sep-
arately for the various disciplines used in the system analysis (e.g. grid generation, Computational
Fluid Mechanics, Computational Solid Mechanics, etc.) and then combining them using the chain
rule to obtain the total gradient of the system. There are different available techniques to compute
the gradient of the objective function J with respect to the design variables . The derivatives may be
obtained analytically, by differentiating the analysis code, or numerically, by using finite differences.
The choice of the gradient evaluation technique is very important, since the speed of the gradient
evaluation and the accuracy of the gradient can affect significantly the efficiency of the gradient
based optimization algorithm. The advantages and downsides of these methods are presented in
more detail in the following subsections.
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2.2.1. Finite Difference Method

Using Finite Differences (FD) to compute the performance sensitivities dJ/dα⃗ is the most simple
method. One can use the forward (Eq. 2.1), backward (Eq. 2.2) or central difference (Eq. 2.3)
schemes to compute the performance sensitivites.

dJ

dα⃗
=
J(α + δIi) − J(α)

δ
+O(δ) (2.1)

dJ

dα⃗
=
J(α) − J(α − δIi)

δ
+O(δ) (2.2)

dJ

dα⃗
=
J(α + δIi) − J(α − δIi)

2δ
+O(δ2) (2.3)

where δ is a chosen step size and Ii is the unit vector of the ith column of an identity matrix. In
order to compute dJ/dα⃗ at each optimization iteration, it would be required to evaluate the cost
function J(α) only once but the term J(α+ δIi) or J(α− δIi) would need to be computed as many
times as the number of design variables. Therefore, the cost of evaluating the gradient with FD
at each optimization iteration is proportional to the number of design variables. This can repre-
sent a large computational effort and the designer might decide to explore more affordable design
spaces by reducing the number of design variables. Secondly, using FD introduces inaccuracies in
the gradients. The sources of the inaccuracies are two: the truncation error O and the subtractive
cancellation error. The inaccuracies are very sensitive to the chosen step size and the step size
needs to be relatively small to have a small truncation error. However, if the step size is too small,
the numerical representation of the subtraction operation becomes less accurate due to the limited
machine accuracy. There is an optimum step size which would yield the lowest inaccuracies but
the designer does not know a priori what step size is the best for each design variable. In order
to compute a reasonably accurate finite-difference gradient, it would be necessary to compute the
gradient for a range of m step sizes and select the best step size. This would further increase
the computational cost associated to the evaluation of the gradients for one optimization iteration,
which would then be proportional to (m ⋅ n).

Despite the disadvantages of the FD method, it has been employed widely for gradient calcula-
tions mainly due to its simplicity of implementation. In [13] and [14] a closed-source commercial
tool was used to represent the geometry of a 3D air duct of the automotive industry and the ge-
ometry of an axial compressor stator respectively. In both cases the geometry was optimized using
CAD and adjoint based approaches, where the gradient of the grid coordinates with respect to the
CAD parameters was calculated by finite-differences approximations. Chand et al. [15] optimized
a turbine blade profile using the Navier-Stokes equations with the loss coefficient as the objective
function and the mass flow rate, the blade loading and the cross sectional area as constraints. Due
to the high computational cost of each optimization cycle, they limited the optimization to just a
few design cycles. Kaplan [16] performed an inverse design optimization of a compressor blade to
recover a prescribed pressure distribution using finite-difference sensitivities.
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2.2.2. Complex Step Method

The Complex Step (CS) method [17, 18] uses the Taylor series expansion of the objective function,
similarly to the FD method, but it uses an imaginary step size iδ instead of the real step size δ used
by the FD method.

dJ

dα⃗
=
Im(J(α + iδIi)))

δ
+O(δ2) (2.4)

where Im represents the imaginary part of the complex cost function, δ is a chosen step size and
Ii is the unit vector of of the ith column of an identity matrix. More details of how Eq. 2.4 was
derived and how it can be automatically implemented in an existing code can be found in [18]. Since
the subtraction term −J(α) of Eq. 2.1 does no longer appear in Eq. 2.4, the round-off errors due
the subtraction operation do no longer exist. This allows the designer to select a very small step size
(e.g. 1.0e−16) and compute the approximated gradients to machine accuracy. The relative error for
a range of step sizes is compared for the FD and CS methods in [18] and [19], showing that as the
step size is reduced the CS method produces more accurate results than the FD method. Therefore,
the main advantages of the CS method is that: (1) it is more robust; (2) it does not require repeated
calculations to find an optimum step size; (3) it can yield machine accurate gradients for very small
step sizes. However, the main disadvantage is that computational cost associated to the gradient
computation is therefore proportional to n + 1.
A CAD integrated adjoint optimization is presented by Mueller [20] where the complex-step method
is used to compute the gradients of the grid coordinates with respect to the CAD parameters. An-
derson [21], Newman [22] and Vatsa [23] used the complex step method to compute the desrivatives
of the lift and drag coefficients with respect to different design variables and compared the accuracy
of the gradients with finite-difference results.

2.2.3. Algorithmic differentiation

Algorithmic Differentiation (AD) is a technique for computing analytic derivatives of programs [24].
The idea of AD is to differentiate analytically each elementary mathematical operation performed
by the code and accumulate the derivatives by applying the chain rule in an automatic fashion.
In this way, it is possible to build up the cost function or derivative of the output with respect
to the input variable, which can then be used for an optimization algorithm. AD methods can be
implemented by either source to source transformation or operator overloading. The former one
consists in transferring the primal evaluation trace into a differentiated evaluation trace. The second
is based on operator and function overloading.

One distinguishes between the forward and reverse mode of AD. In forward mode one is interested
to know the derivative of the outputs depending on one setting of the input sensitivities, whereas
in reverse mode one is interested in the derivative of all the inputs for one single output value.
Both modes allows to accurately compute the sensitivities with the best possible machine accuracy.
If the number of inputs to the analysis code is greater than the number of outputs, the reverse
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mode is preferred since it can provide the derivatives at a lower computational cost. However, if
the number of outputs is greater than the number of inputs, the forward mode becomes the best
choice. For both the forward and reverse modes, it is possible to compute the derivatives in scalar
or vector mode. If the desire was to compute the derivatives for all input parameters in the forward
scalar mode, it would be necessary to run as many simulations as the number of input parameter.
In contrast, the forward vector mode would allow to obtain the gradients with only one run. In
this one-run, you would perform n additional computations but the compiler can perform some
optimization such that you can get some reduction in CPU cost. The same principle applies to
the reverse mode. An introduction to the forward and reverse scalar modes of AD is presented in
section 2.6.
The use and development of AD tools has increased significantly during the last decades. Some

of the most famous AD tools available are: ADOL-C, Tapenade, AUTODIF, Adept, CoDiPack.
There are many interesting applications like Medicine, Physics, Engineering, Chemistry, Mathe-
matics, Bilogy, etc. in which AD tools have helped to improve complex systems. In the area of
Aerodynamics, Albring et al. shows in [25, 26] how AD is used to implement an adjoint solver that
enables the robust, accurate and efficient computation of gradients for any of the available state
solver included in the open-source code CFD software SU2. A methodology for reducing the sonic
boom under a supersonic aircraft is presented in [27], which combines hand-coding with AD in the
reverse mode using the Tapenade tool.

2.2.4. Analytical differentiation

This method consists in hand-differentiating the main governing equations in order to compute the
required gradients. The gradient of the cost function J(U⃗ , X⃗, α⃗) with respect to the design vector
α⃗ can be computed as follows:

dJ

dα⃗
=
∂J

∂α⃗
+
∂J

∂U⃗

dU⃗

dα⃗
(2.5)

where U⃗ = U⃗(X⃗, α⃗) = (ρ, ρV⃗ , ρe)T is the flow variables vector in conservative form, X⃗ = X⃗(α⃗) are
the grid point coordinates and α⃗ are the design variables. The design variables can be geometrical
parameters (e.g., inlet and outlet metal angles, leading edge and trailing edge radius, etc.) and
boundary conditions (e.g., rotational speed of a turbine, the coolant inlet temperature of a blade
cooling channel, etc.). However, in this thesis only geometrical parameters will be included in
the design vector α⃗. The terms ∂J/∂α⃗ and ∂J/∂U⃗ appearing in Eq. 2.5 are relatively easy to
compute since they can be calculated directly by hand-differentiating the functions. However, the
total derivative dU⃗/dα⃗ is the most computationally expensive term to evaluate since it requires
solving the non linear or the linearised flow equations for each design variable. In order to better
understand how this term is computed, a brief description is described herein. We assume that the
steady-state of the Navier-Stokes governing equations are solved:

R⃗(X⃗, U⃗) = 0 (2.6)

Eq. 2.6 relates the flow solution to the design variables and how the flow solution is altered when
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the design variables are changed. This relation must also hold for an infinitesimal change to a design
variable:

dR⃗

dα⃗
=
∂R⃗

∂α⃗
+
∂R⃗

∂U⃗

dU⃗

dα⃗
= 0 (2.7)

The term dU⃗/dα⃗ can be isolated from Eq. 2.7 as follows

dU⃗

dα⃗
= −(

∂R⃗

∂U⃗
)

−1
∂R⃗

∂α⃗
(2.8)

where the term ∂R⃗/∂U⃗ is the Jacobian matrix and it is computed only once for each optimiza-
tion iteration since it is independent of the design variables. However, the term ∂R⃗/∂X⃗ ⋅ ∂X⃗/∂α⃗

is dependent on the design variables. Therefore, Eq. 2.8 has to be solved for each design variable
separately. Finally, the term dU⃗/dα⃗ is introduced in Eq. 2.5 in order to compute the gradient
for each design variable. The main disadvantage of this method is that the computational cost is
proportional to the number of design variables, similarly to the FD and CS methods.

Rabiega [28] used this method to optimize a centrifugal compressor blade in an Euler flow in
order to reduce the mixing losses associated to the non-uniform velocity distribution at the blade
outlet boundary. Pandya [29] differentiated analytically the Euler flow equations to compute the
necessary gradients to maximize the lift to drag ratio of a 3D supersonic arrow wing configuration
whilst mantaining aerodynamic and geometric constraints. Kim et al. [30] also used this method
to compute sensitivity derivatives for the Navier-Stokes equations in 2D flow. They differentiated
the k−ω turbulence model and therefore accounted for the variation of the turbulent viscosity with
respect to the small perturbations of the design variables.

2.2.5. Adjoint method

The use and development of adjoint methods has been gaining momentum over the last decades
in research and industrial design workflows [31–34], as an efficient way of computing gradients for
a large number of design variables. Using control theory for optimum shape design of systems
governed by elliptic equations was initiated by Pironneau [35]. Jameson pioneered the development
and use of the adjoint method in aerodynamic optimization [36][37]. Considering that our design
variables are the volumetric grid point coordinates (i.e., α⃗ = X⃗), the adjoint method provides the
gradients of any cost function J (e.g. entropy generation) with respect to X⃗ (i.e. dJ/dX⃗). This
gradient can be computed as follows.

dJ

dX⃗
=
∂J

∂X⃗
+
∂J

∂U⃗

dU⃗

dX⃗
(2.9)

The first term ∂J/∂X⃗ represents the change in the cost function due to changes in the grid. The
second term represents the change in the cost function due to aerodynamic changes. The underlying
theory of adjoint methods is well documented in the literature [38–43]. In order to better understand
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how this term is computed, a brief description of the adjoint technique is described herein. Assuming
that the CFD solver has fully converged to steady state, then R⃗(X⃗, U⃗) = 0. Hence:

dR⃗

dX⃗
=
∂R⃗

∂X⃗
+
∂R⃗

∂U⃗

dU⃗

dX⃗
= 0 (2.10)

The term dU⃗/dX⃗ can be isolated from Equation 2.10 as follows

dU⃗

dX⃗
= −(

∂R⃗

∂U⃗
)

−1
∂R⃗

∂X⃗
(2.11)

By introducing dU⃗/dX⃗ (Equation 2.11) in Equation 2.9, the dJ/dX⃗ gradient can be expressed as

dJ

dX⃗
=
∂J

∂X⃗
−
⎛

⎝

∂J

∂U⃗
(
∂R⃗

∂U⃗
)

−1
⎞

⎠

∂R⃗

∂X⃗
(2.12)

By introducing the adjoint variable v⃗ as

v⃗T =
∂J

∂U⃗
(
∂R⃗

∂U⃗
)

−1
(2.13)

Equation 2.12 can be reformulated as

dJ

dX⃗
=
∂J

∂X⃗
− v⃗T

∂R⃗

∂X⃗
(2.14)

As the adjoint variable v⃗ is still unknown, the adjoint solver needs to solve the following linear
system

(
∂R⃗

∂U⃗
)

T

v⃗ = (
∂J

∂U⃗
)

T

(2.15)

where ∂R⃗/∂U⃗ is the Jacobian matrix of the fluxes of the primal CFD solver. The term ∂J/∂U⃗

can be computed by hand-differentiation.
In the literature, Eq. 2.15 is usually referred to as the adjoint equation and the adjoint variable v⃗ is

also addressed as the Langrange multiplier. There are two different approaches in which the adjoint
system of equations can be derived: the continuous or the discrete approach. The difference between
the two approaches resides in the different treatment of the flow residual throughout the adjoint
derivation procedure. The continuous adjoint method would be that one in which one differentiates
the flow residual first and then discretizes the resultant expression. Conversevely, if one discretizes
spatially the flow residual first and then differentiates the resultant expression, the result is called
the discrete adjoint method. Thus, the discrete adjoint equation is obtained by differentiating a
set of discrete field equations. For this reason, the resulting equation inherits the type of scheme
used to solve the flow equations. The merits of the continuous and discrete adjoint approaches are
discussed and compared for different wing configuration shape optimization problems with inviscid
and viscous flows by Nadarajah [44]. The continuous and the discrete adjoint formulations are also
presented and compared in [45].
With the adjoint method the total cost of the gradient computation for each optimization iteration
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would be equal to only one flow solution plus one adjoint solution per cost function and aerodynamic
constraint. Since the total number of cost functions plus aerodynamic constraints is usually much
lower than the number of design variables, the adjoint method allows to reduce the optimization
computational cost over other gradient evaluation methods. Unfortunately, this superior advantage
comes at the cost of an increase in the complexity of implementation.
Montanelli et al. [46] used the adjoint method to perform a multipoint optimization of a turbine

cascade in which the total pressure loss was reduced under a mass flow rate constraint, by solv-
ing the Reynolds-averaged Navier-Stokes equations. Papadimitriou et al. [45] presents a method
to compute the Hessian matrix of a functional in both discrete and continous forms, which was
tested in an inverse design of a 2D duct. Papadimitriou et al. [47] used the continous form of
the adjoint method to minimize the total pressure loss of two turbine and compressor cascades.
He et al. [48, 49] used the adjoint method to optimize three different multi-stage compressors to
improve the isentropic efficiency whilst keeping the total pressure ratio and cascade mass flow range
as constraints.

2.3. Literature review on shape parameterization techniques

The ultimate aim of an optimization is to produce a geometry to achieve the design intent within a
suitable time frame. These are some of the desirable properties in a good geometry parameterization:

1. It can be easily implemented and automated to reduce the setup time.

2. It can provide a compact set of design variables which will allow the optimizer to navigate
faster through the design space.

3. It can maintain a smooth geometry that is practical to manufacture.

4. It allows to have local control on shape changes.

5. It provides a consistent geometry across multiple disciplines if the focus is to do MDO (Multi-
Disciplinary Optimization).

6. It integrates well with the product development and life cycle management.

7. It has a direct connection to the CAD systems used for design.

8. It allows to compute efficiently and accurately grid and geometry sensitivities.

A detailed survey of the different shape parameterization techniques are given in [6, 50]. In
general, the choice of shape parameterization greatly affects the performance (i.e. computational
cost) and the accuracy of the shape optimization [51]. Several studies show the effects of different
parameterization representations on shape optimization [51–53]. These techniques can be generally
summarized in the following categories:
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2.3.1. Node-based approach

The node-based parameterization is sometimes referred to as the "discrete approach" in the open
literature [6, 54] and it is based on using the grid point coordinates X, Y, Z as design variables
[3–5, 36, 55, 56]. Jameson et al. [36] used the grid points and a gradient smoothing algorithm
to successfully improve aircraft wing performance. The benefits of this approach are that 1) it is
relatively easy to implement, 2) there is a strong shape local control, 3) it offers a very rich design
space since there is no shape limitation, 4) analytical sensitivities are available from the adjoint
simulation at a relatively low cost. However, there are some drawbacks that need to be considered:
(1) since the geometry changes do not have a limited form it is difficult to maintain smooth geome-
tries and ensure that the geometry surface is C1 and C2 continuous; (2) the connection to the CAD
geometry is lost and, since CAD is the industry adopted standard for the design of components, an
additional step is required to transform the optimal shape defined by grid points back to smooth
CAD shape (illustrated in Fig. 2.1), which can take significant time and it is not guaranteed that
the final approximated CAD shape will meet the design requirements and constraints [6, 7]; (3)
although there are several successful methods that can be used to convert a cloud of grid points to
CAD [1, 57], the fitting error can impair the optimality of the shape; (4) there are too many design
variables which can slow down the navigation of the optimizer through the design space; (5) the
grids used amongst the different disciplines in MDO are inconsistent since they are parameterized
separately; (6) for large meshes, the large number of design variables can limit the use of second
order numerical optimization methods, such as Newton or quasi-Newton algorithms, due to the high
cost associated to matrix operations [51].

Figure 2.1.: Grid back to CAD conversion: NACA4415 wing surface grid (left) [1]; approximated
NURBS control points (middle) [1]; approximated NURBS surface (right) [1].

2.3.2. Free-form deformation

Another way to parameterize the geometry is via the free-from deformation (FFD), which is a pow-
erful tool originally used in the field of soft object animation (SOA) in computer graphics [58] for
morphing images and deforming models [59, 60] that has proofed to be very useful for aerodynamic
shape optimization applications [32, 61–63]. These algorithms treat the model as rubber or clay
that can be bent, twisted, compressed, expanded, tapered, while retaining its topology. The main
idea is to enclose the discrete geometry (i.e. defined within the grid) inside a box or any other shape
and to link the deformations of the cube to the deformations of the geometry. The geometry grid
points are related to the cube points via Bernstein polynomials. Therefore, the design variables are
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no longer the geometry grid points but the cube points instead. This type of parameterization is
widely used in shape optimization for aerodynamics, as it presents the following advantages: (1)
parameterization is consistent amongst different disciplines in MDO applications; (2) analytical grid
and geometry sensitivities can be computed analytically; (3) complex geometries defined within the
grid can be easily parameterized; (4) there is a strong local control; (5) it is possible to control the
geometry smoothness; (6) it allows to have a compact set of design variables. There are, however,
the following drawbacks to consider: (1) the shape changes are limited; (2) the link to the CAD
is lost and hence it inherits the drawbacks (2) and (3) of the node-based approach described in 2.3.1.

2.3.3. Hicks-Henne functions

This is an alternative type of parameterization technique that was initially proposed by Hicks and
Henne [64, 65], and has been widely used in aerodynamic shape optimization problems [15, 66–68]
in the last decades. Hicks and Henne proposed a compact formulation to parameterize airfoil sec-
tions [64, 65]. The main idea is to modify the baseline geometry via adding shape functions (i.e.
analytical functions) linearly to the baseline shape (see Eq. 2.16). The shape functions, which are
described by f(x) in Eq. 2.16, are often referred as Hicks and Henne sine "bump" functions [51].
These shape functions act as localized deformations and these are determined by the values of the
participating coefficients associated to the shape functions. The bumps can either be applied to
the discrete mesh or directly to the CAD geometry. In this approach, the coefficients of the shape
functions are the design variables. When the coefficients are set to zero in the first iteration, there
are no deformations to be applied and hence it gives the baseline geometry. The benefits of this
approach are: (1) it allows to have a compact set of design variables; (2) it provides smooth geome-
tries; (3) it supports local shape control; (4) the geometry and grid sensitivities can be computed
analytically. Unfortunately, this approach presents the following main drawbacks: (1) the design
variables do not have a physical sense for the designers; (2) parameterization is consistent amongst
different disciplines in MDO applications; (3) the method is very effective for wing parameterization
but it can be quite difficult to generalize for a complex geometry; (4) the connection to the CAD is
also lost and hence it inherits the drawbacks (2) and (3) of the node-based approach described in
2.3.1.

y = ybaseline +
N

∑
i=1
αif(x),

f(x) = [sin(πx
ln0.5
lna )]

b

,

∀x ∈ [0,1],∀a ∈ [0,1],∀b ∈ [2,10].

(2.16)

2.3.4. CAD-based

The geometry parameterization techniques discussed until now present at least one of the following
drawacks: they loose the connection to the CAD (i.e, node-based approach and FFD) or they use
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design variables that don’t have any physical sense for the designers (i.e., node-based approach,
FFD and Hicks-Henne). These issues can be addressed by using a CAD-based parameterization.
The main idea of the CAD-based approach is to use CAD representations, such as B-splines and
NURBS, for shape optimization. This can be done either using a commercial CAD system package
[13, 14] such as CATIA V5 or Siemens NX or using alternative developed libraries for the CAD
geometry representation [20, 69]. A CAD-based parameterization has the main advantage that:
(1) CAD-geometry can be defined by a set of engineering based design parameters that are rele-
vant to different areas, including aerodynamic, structure, and system design; (2) parameterization
is consistent between the different disciplines of MDO [70]; (3) smoothness can be controlled; (4)
the degree of the polynomial curve can be defined by the user ; (5) it allows for local control; (6)
the CAD models require a few design variables, which favours the use of Newton or quasi-Newton
optimization methods; (7) ease of manipulation of very complex geometries, which reduces the
efforts in research development for complex geometries. However, currently it is still a challenge
to include the CAD in an optimization loop. Some of the main difficulties are: (1) CAD might
be able to provide accurate and smooth geometries but it can also have unacceptable wiggles,free
edges and gaps for updating or regenerating a CFD mesh [6]; (2) in gradient-based optimization,
it is required to know the sensitivities of the mesh points with respect to the CAD-based design
variables (referred throughout this thesis as the grid sensitivities) and this additional sensitivity
computation step can be quite challenging (the different techniques to compute such gradients are
described in Sec. 2.2); (3) the CAD surface topology can be changed when a design variable is
updated and this can cause some problems when updating the CFD mesh or computing the grid
sensitivities when computed by finite-differences. An alternative and promising method to compute
surface sensitivities with respect to the design variables is by using the design velocity approach
[8]. This method can be easily integrated to most industrial optimization workflows (regardless of
CAD system) and is immune to the topology and labelling issues that were highlighted by other
CAD based optimization processes [71, 72]. A brief description of the velocity design approach is
presented in Sec. 2.9.

Despite the challenges of using a CAD system in a gradient-based optimization, researchers have
successfully used them and achieved promising results. Two dimensional single- and multi-element
airfoil configurations were optimized using a gradient-based Newton-Krylov algorithm and a CAD
system, by parametrizing the airfoils with B-spline curves [73] and by using finite differences to com-
pute the gradients. A CAD-based shape parameterization using CATIA V5 was used to perform a
gradient-based optimization of an automotive car mirror for noise reduction [74]. In this case, the
gradients were computed via the design velocity approach. A CAD-based parameterization using
NURBS-patches was used to optimize a one-stage high pressure turbine using a gradient-based opti-
mization algorithm [75]. The coordinates of the NURBS control points were used as design variables
and the gradients of the surface points w.r.t. the control points were computed by calculating the
shape derivatives of the NURBS surfaces.

In this thesis, the VKI in-house C++ based software CADO [69] is used for generating the geom-
etry. CADO contains CAD libraries and also allows to export the geometry as a STEP file format
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if necessary.

2.4. B-spline curves

In the present work, the core of the CAD-based geometry modeller employed in this thesis uses B-
spline curves to describe the geometry. A short overview regarding the definition of B-spline curves
is given herein. A more detailed description on B-spline curves can be found in [76]. A B-spline
curve is defined by:

• a 1-dimensional array of control points P⃗ = (P0, P1, .., Pn),

• a knot vector u⃗ = (u0, u1, ..., um), where each knot ui must be defined in the parameter space
of the curve, and u0 ≤ u1 ≤ ... ≤ um

Once we define these elements, the B-spline curve is defined by Eq. 2.17, which gives the position
along a curve as a function of the parametric length u. Typically, the parametric length u varies
from [0.0,1.0].

C(u) =
n

∑
i=1
Ni,p(u)Pi (2.17)

where n+ 1 is the total number of control points, m+ 1 is the total number of knots and Ni,p are
the B-spline basis functions of degree p (the so-called polynomials). The degree p of the curve must
satisfy the following relation:

m = n + p + 1 (2.18)

A B-spline curve is defined with a series of basis functions. The knot vector determines where
in the parameter space of the curve will these basis functions start and stop as the curve is drawn.
They are called knots because these are the values in the parameter space where the basis functions
are being tied together. For a non-decreasing set of knot vector the B-spline basis functions are
recursively defined as:

Ni,0(u) = {
1 if ui ≤ u < ui+1
0 otherwise

(2.19)

Ni,p(u) =
u − ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u) (2.20)

Often, the first and last knot are repeated p+1 times to assure a clamped B-spline, which
ensures that the begin and end points of the B-spline corresponds the begin and end control
points (i.e. P0 and Pn). For example, if we wanted to create a clamped B-spline curve of
order p = 4 with knots at u = 0.0,0.25,0.5,0.75,1.0, we would require the knot vector to be
u = [0.0,0.0,0.0,0.0,0.0,0.25,0.5,0.75,1.0,1.0,1.0,1.0,1.0], hence m = 12. Figure 2.2 shows the
B-spline basis functions for a B-spline of degree p = 4 and m = 12. The crosses indicate the position
of the knots (i.e., the position on which the basis functions start or stop).
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Figure 2.2.: B-spline basis functions for p = 4 and m = 12

Since the number of knots must satisfy the relation 2.18, in this example, the B-spline curve must
have n = 7 (i.e. 8 control points in total). Given the position of these 8 control points P⃗ = (P0, .., P7),
the B-spline curve can be established. This example B-spline curve is illustrated in Fig. 2.3. The
B-spline curve is bounded by a control polygon which is formed by all the control points. Since
this is a clamped B-spline, the first and last legs of the control polygon coincide with the tangential
direction of the B-spline curve at starting and end points.
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Figure 2.3.: B-spline curve with p = 7, m = 12 and n = 7

One of the main advantages of B-spline curves is that they are excellent for providing local shape
control, since a change in the position of a control point Pi does not affect the entire curve but only
the local zone of the curve where u ∈ [ui, ui+p+1]. For example, moving the position of the control
point P1 will only affect the curve where u ∈ [u1, u6] = [0.0,0.5]. This is illustrated by Fig. 2.4 where
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Figure 2.4.: B-spline curves before and after moving control point P1

the new curve differs from the baseline curve only in this region. However, a shortcoming of the
B-spline curve is that they cannot represent accurately implicit conic shapes, such as circles, ellipses
or hyperbolas. This issue can be overcome by extending the dimensionality by one by introducing
weights, yielding the so-called non-uniform rational B-spline (NURBS). A more detailed description
on NURBS can be found in [76]. NURBS are not used within this thesis because there was no need
to represent any implicit conic shape.

2.4.1. Knot insertion

Inserting a knot means to add a new knot into the existing knot vector of the B-spline curve
without changing its shape. Since the fundamental equality relation shown in 2.18 must be en-
sured, adding a new knot means that the value of m increases by one and, consequently, either
the number of control points or the degree of the curve must also be increased by one. Changing
the degree of the curve due to the increase of the number of knots would change the shape of
the curve globally and this is not desired. Therefore, inserting a knot means that an additional
control point needs to be added. In fact, the old control points are removed and they are replaced
by new ones which may be located at new positions. For example, Fig. 2.5 shows the results
of inserting a knot at u = 0.40 to the baseline B-spline of Fig. 2.3. The new B-spline shape is
identical to the baseline but has got 8 control points instead of 7 and the following knot vector:
u = [0.0,0.0,0.0,0.0,0.0,0.25,0.4,0.5,0.75,1.0,1.0,1.0,1.0,1.0].

Since the knot insertion algorithm [76] allows to add additional control points without changing
the shape of the curve, this can be used as many times as required during an optimization process to
increase the number of control points (i.e., design variables). Therefore, it is possible to start with a
small number of control points and end with a large number of them. This can result in a decrease
of the number of optimization iterations whilst obtaining a better value for the objective function
[77]. The knot insertion algorithm was used in [77, 78] to explore richer design spaces in a CAD-
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Figure 2.5.: B-spline curve before and after knot insertion at u = 0.4

based multilevel optimization framework. In this thesis, the knot insertion algorithm will be used
in Sec. 7.2.2 to refine the design spaces in an adaptive shape parameterization optimization context.

2.4.2. Continuity of the curve

The continuity of a curve describes how smooth the curve is. Typically, a curve can be:

• C0 continuous: when there is no break in the curve.

• C1 continuous: when there is no kink in the curve because there is no change in the tangent
along the curve.

• C2 continuous: when there is no curvature change along the curve.

Inserting knots maintains the same curve and hence the same continuity. However, it is possible
to get a Cn discontinuity in the B-spline curve if the knot vector contains a multiple knot that is
repeated p − n times and the control points are moved after knot insertion.
For aerodynamic applications, such as aircraft wing aerofoils or turbine profiles, special care needs

to be taken for the geometry discontinuities. Typically, C2 continuity in the geometry is often de-
sired on the suction side because a discontinuity on the curvature can cause strong velocity peaks.

2.5. Grid generation

Computational Fluid Dynamics (CFD) requires the spatial region of interest to be discretized. The
spatial discretization process is typically referred to as grid generation and it requires a significant
portion of the labour for each analysis. The rest of the labour is invested in the numerical solution
and the post-processing of the results. The grid generation methodologies can be divided into two
main categories: unstructured and structured. The unstructured grids consist of quadrilateral or
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triangular elements in 2D and hexahedral, tetrahedral, triangular prisms or pyramid elements in
3D. In contrast, the structured grids consist of quadrilateral and hexahedral elements in 2D and
3D respectively. The structured meshes are used in this thesis to provide fine control over the final
quality of the mesh. Nevertheless, the work presented in this thesis could be equally applied to
unstructured grids.

In the context of optimization, the grid generation process must be automatic (where the user
expertise is not required to manually repair the geometry model or the grid itself) and must ensure
high quality grids. Often the quality of the CFD solutions is dependent on the accuracy of the
numerical discretization and the quality of the computational grid. The quality of structured grids
is often described in terms of:

• smoothness: the gradient of grid cell size and shape should be minimized.

• orthogonality: grid lines should be as orthogonal to each other as possible.

• clustering: the grid points should be concentrated in those areas where high solution gradients
are expected.

2.5.1. Structured grids

The quadrilateral cells of a two dimensional structured grid are arranged in a I×J array, whereas the
hexahedral cells of a three dimensional structured grid are arranged in an I ×J ×K array. Typically,
for complex geometries the structured grids are implemented using a multi-block topology, in which
the domain is subdivided into smaller domains called blocks.
In this thesis, the generation of structured grids consists in using the following methods:

• transfinite interpolation (TFI): to generate an initial mesh.

• elliptic partial differential equations (PDEs): to smooth the initial mesh in an iterative manner
to produce a high quality grid.

These methods will be described in more detail below.

2.5.2. Transfinite interpolation

Imagine that the interior domain of the two dimensional square block shown in Fig. 2.6 is to be
meshed using TFI. The block has got four edges or boundaries: the bottom (η = 0), the top (η = 1),
the left (ξ = 0) and the right (ξ = 1). The first step is to create a distribution of points on these four
boundaries. After this, the internal grid of the block is initialized using Transfinite Interpolation
(TFI) equations 2.21 and 2.22 [79]. These equations allow to compute the internal grid given the
coordinates of the boundaries for η = 0,1 and ξ = 0,1 (see Fig. 2.6).

X(ξ, η) = (1 − u)x(0, η) + ux(1, η) + (1 − v)x(ξ,0) + vx(ξ,1)

− (1 − u)(1 − v)x(0,0) − u(1 − s)x(1,0) − (1 − u)vx(0,1) − uvx(1,1)
(2.21)
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Y (ξ, η) = (1 − u)y(0, η) + uy(1, η) + (1 − v)y(ξ,0) + vy(ξ,1)

− (1 − u)(1 − v)y(0,0) − u(1 − s)y(1,0) − (1 − u)vy(0,1) − uvy(1,1)
(2.22)

η
ξ

X

Y
(0,0)

(1,1)

(1,0)

(0,1)

ξ=0 ξ=1

η=1

η=0

Figure 2.6.: Two dimensional block.

The parameters u and v from Eqns. 2.23 and 2.24 are blending formulas proposed by Soni [80]
for the normalised arc-length control functions s1(ξ), s2(ξ), t1(η), t2(η) along the boundary edges.
The normalised arc-length control functions intuitively express the position of each grid point along
the edge as a percentage of the total length of the edge. In the present work, s1(ξ) and s2(ξ) are
defined along the boundary edges spanning between t1(η = 0) and t2(η = 1) respectively, whereas
t1(η) and t2(η) are defined along the boundary edges spanning between s1(ξ = 0) and s2(ξ = 1).

u(ξ, η) =
(1 − t1(η))s1(ξ) + t1(η)s2(ξ)

1 − (s2(ξ) − s1(ξ))(t2(η) − t1(η))
(2.23)

v(ξ, η) =
(1 − s1(ξ))t1(η) + s1(ξ)t2(η)

1 − (t2(η) − t1(η))(s2(ξ) − s1(ξ))
(2.24)

To create a single-block CFD mesh for a more complex geometry such as the highly staggered
blade shown in Fig. 2.7b using TFI, the profile needs to be split into suction and pressure side in
order to create the top and bottom boundaries of the single block (see Fig. 2.7a).

The speed and the ease of implementation are the two main strengths of the TFI methods. How-
ever, the TFI method does not guarantee that the grid lines will not intersect, fold or that the
corners of the sides of the geometry will not be propagated to the interior of the mesh. For exam-
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(a) One single block. (b) Two repeated single blocks.

Figure 2.7.: Single block mesh generated by TFI for a highly staggered blade.

Folding of the grid lines

Figure 2.8.: Folding of grid lines around the trailing edge region.

ple, Fig. 2.8 shows that the grid lines are intersecting around the trailing edge region. Therefore,
the quality of a mesh generated by TFI in terms of orthogonality, smoothness and clustering may
be less than optimal and must be improved by, for example, the use of elliptic PDEs.

2.5.3. Elliptic PDEs

An elliptic PDE method is a boundary problem that involves solving the Poisson equations with
control functions (right hand side terms), as shown in Eqns. 2.25-2.26. It was pioneered by Thomp-
son et. al. [81] to generate structured grids. The control functions provide control over the grid’s
orthogonality, clustering and smoothness, since they have an influence on the grid points on the
interior of the domain or near its boundaries. The main strength of the elliptic PDE methods is
that it can generate high quality grids. An iterative procedure is required to solve the elliptic PDEs
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and it is repeated until certain convergence criteria is met.

ξxx + ξyy = P (ξ, η) (2.25)

ηxx + ηyy = Q(ξ, η) (2.26)

The Poisson equations shown in Eqns. 2.25-2.26 are formulated in the physical space XY. In the
physical space, the grid is case dependent, curvilinear and typically body-fitted. In order to solve
the Poisson equations, it is required to transform the grid point coordinates from the physical space
to the computational space ξη, where the grid is uniformly spaced and orthogonal. The inverse
transformed system of equations then becomes [79]:

αxξξ − 2βxξη + γxηη = −I2(Pxξ +Qxη) (2.27)

αyξξ − 2βyξη + γyηη = −I2(Pyξ +Qyη) (2.28)

In Eqns. 2.27-2.28, the greek symbols α, β, γ represent the scale metric factors of the coordinate
transformation and they are defined by α = x2η + y

2
η, β = xξxη + yξyη, γ = x2ξ + y

2
ξ . The inverse of

the determinant is given by I = 1
D = xξyη − xηyξ, which is often referred to as the Jacobian in grid

generation.

2.5.3.1. Solution procedure

Suppose we want to solve the elliptic equations shown in Eqns. 2.27-2.28 in the stencil of grid nodes
shown in Fig. 2.9. First, we set the distance between two adjacent grid points to be δξ = δη = 1 in
the computational space ξη and approximate the partial derivatives using Finite Differences (Eqns.
2.29-2.32). This allows us to convert the Eqns. 2.27-2.28 into the discretized system of Eqns. shown
in 2.33 - 2.34, from which we can isolate the xij and yij terms (Eqns. 2.35 - 2.36). Finally, the grid
coordinates are updated iteratively over the entire domain for i = 0, .., I − 1 and j = 0, .., J − 1 of
the bock by means of a standard GS-(S)SOR (Gauss-Seidel Symmetric Successive Over-relaxation)
approach (Eq. 2.37).

The approach to solve the elliptical equations in this work for a multiblock structured mesh is
based on the approach presented here to solve the elliptical equations for the stencil shown in Fig.
2.9. The grid nodes of the interior domain of each block are updated first and the grid nodes at
the interfaces of the blocks are updated next. The interface grid point coordinates are set to be the
average of its surrounding grid node coordinates.
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Figure 2.9.: Stencil of grid points.

xξ =
xi+1,j − xi−1,j

2

yξ =
yi+1,j − yi−1,j

2

(2.29)

xη =
xi,j+1 − xi,j−1

2

yη =
yi,j+1 − yi,j−1

2

(2.30)

xξξ = xi+1,j + xi−1,j − 2xi,j

yξξ = yi+1,j + yi−1,j − 2yi,j
(2.31)

xηη = xi,j+1 + xi,j−1 − 2xi,j

yηη = yi,j+1 + yi,j−1 − 2yi,j
(2.32)

α(xi+1,j + xi−1,j − 2xi,j) − β(
xi+1,j+1 − xi+1,j−1

2
−
xi−1,j+1 − xi−1,j−1

2
)

+γ(xi,j+1 + xi,j−1 − 2xi,j) + I
2
(P

xi+1,j − xi−1,j
2

+Q
xi,j+1 − xi,j−1

2
) = 0

(2.33)

α(yi+1,j + yi−1,j − 2yi,j) − β(
yi+1,j+1 − yi+1,j−1

2
−
yi−1,j+1 − yi−1,j−1

2
)

+γ(yi,j+1 + yi,j−1 − 2yi,j) + I
2
(P

yi+1,j − yi−1,j
2

+Q
yi,j+1 − yi,j−1

2
) = 0

(2.34)
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xi,j =
1

2(α + γ)
(α(xi+1,j + xi−1,j)

+γ(xi,j+1 + xi,j−1)

−
β

2
(xi+1,j+1 − xi+1,j−1 − xi−1,j+1 + xi−1,j−1)

+I2(P
xi+1,j − xi−1,j

2
+Q

xi,j+1 − xi,j−1
2

))

(2.35)

yi,j =
1

2(α + γ)
(α(yi+1,j + yi−1,j)

+γ(yi,j+1 + yi,j−1)

−
β

2
(yi+1,j+1 − yi+1,j−1 − yi−1,j+1 + yi−1,j−1)

+I2(P
yi+1,j − yi−1,j

2
+Q

yi,j+1 − yi,j−1
2

))

(2.36)

xnewi,j = (1 − r)xoldi,j + rxi,j

ynewi,j = (1 − r)yoldi,j + ryi,j
(2.37)

2.5.3.2. Control functions

Grid behaviour control is achieved through the introduction of the forcing function terms P and Q.
Two different methods have been used in this thesis to set the source terms: the Laplace and the
Steger and Sorenson [82]. The properties of each method are illustrated by showing their effect on
the grid when applied to the initial mesh that was generated by TFI shown in Fig. 2.10.

The Laplace method consists in setting the source terms to zero. This results in a grid with
smooth variation of cell size. This method is typically used in those regions of the domain where it
is not required to have orthogonality and clustering of the grid points near the boundary.

The Steger and Sorenson method is an iterative scheme that adjusts the boundary forcing func-
tions in order to meet a prescribed angle and spacing constraint at the boundary. The source terms
are then interpolated into the domain based on their values at the boundaries. This method is
typically used in the regions of the domain close to the profile, where a certain first cell thickness
and orthogonality have to be imposed.

2.6. Algorithmic differentiation techniques

Algorithmic differentiation (AD), also known as computational differentiation or automatic differ-
entiation, is a well known method that applies the chain rule to each operation in the computer
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TFI Laplace Steger and Sorenson

Figure 2.10.: Mesh before smoothing (left) and after smoothing with Laplace (middle) and Steger
and Sorenson (right) control functions.

program flow systematically and obtains accurate gradients to machine accuracy. An introduction
to the AD techniques is presented here, to show how the methodology works and how they are
typically implemented. For a more detailed description of the different techniques for evaluating
derivatives using AD the reader is referred to [24].

2.6.1. Forward and reverse modes

Consider a computer program that takes a given input x⃗ and does certain calculations to compute
intermediate variables and a vector of outputs J⃗ :

x⃗ = (x1, x2, ..., xn)

↓

t⃗ = (t1, t2, ..., tp), p >m + n

↓

J⃗ = (J1, J2, ..., Jm)

(2.38)

This is also represented in Fig. 2.11. Each square box can be seen as a variable, or even a line of
code or function in the program, depending on the scale considered but the principle remains the
same. The value of a square box depends on each of its inputs, hence the partial derivative of the
node with respect to its inputs is associated to the down-ward pointing edges of the graph. The
intermediate variables t⃗ are related through a series of elementary functions fk which can be either
unary (e.g., operations like pow(), -(), sin(), cos(), etc.),

tk = fk(ti) (2.39)

or binary (e.g., operations like +, -, ., /),

tk = fk(ti, tj) (2.40)

Now we want to make use of AD to compute these gradients. The derivatives given by the chain
rule can be propagated in two directions: in forward (forward mode) or backward (reverse mode),
as shown in Fig. 2.11.
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In the forward mode, the derivatives are propagated throughout the computation using the chain
rule. For each elementary operation the derivative ∂tk/∂xh can be computed as (e.g., for the binary
operation)

∂tk
∂xh

=
∂fk
∂ti

∂ti
∂xh

+
∂fk
∂tj

∂tj

∂xh
(2.41)

and this requires that at the start of the computation the initial values of the derivatives (ẋ1, ẋ2, ..., ẋn)
need to be set. For example, if we require computing the derivative of the output J of the sample
program in Fig. 2.11 with respect to the input X1, we have to set the derivative Ẋ1 = ∂X1/∂X1 to
1.0 and Ẋ2 = Ẋ3 = 0.0. In this example, to compute the derivative in the direction of each of the
three inputs we need to run the tangent linear code three times. Finally, at the end of the derivative
values

J̇s =
n

∑
s=1

∂Js
∂xh

ẋh (2.42)

are known.

Figure 2.11.: Computational graphs for primal (top left), forward (bottom row) and reverse mode
(top right).

A sample computer program is described below to show the practical implementation for the
forward mode. Consider a program that performs the following series of operations and evaluates
the function J = f(x1, x2, x3) at (x1, x2, x3) = (π

2 ,
−π
4 ,

3π
4
), as shown in Tab. 2.1.

In the case where it is only required to know the derivative of the output w.r.t the first input
(∂J/∂x1), then ẋ1 = 1.0, ẋ2 = 0.0, ẋ3 = 0.0 needs to be given as an additional input to the function.



30 Chapter 2. Optimization using CAD and adjoint based methods

Table 2.1.: Original computer program

function J = f(x1, x2, x3)
t1 = x1 = π

2
t2 = x2 = −π4
t3 = x3 = 3π

4
t4 = t1 + t2 = π

4
t5 = t4 + t3 = π
t6 = sin(t5) = 0.0
t7 = t1 ⋅ t6 = 0.0
J = t7 = 0.0
end

The notation ṫi = ∂ti
∂x1

is introduced for simplicity. At the start of the computation, ṫ1 = ∂t1
∂x1

= 1.0,
ṫ2 =

∂t2
∂x1

= 0.0 and ṫ3 = ∂t3
∂x1

= 0.0, which yields the results shown in Tab. 2.2.

Table 2.2.: Forward mode differentiation of the computer program

function (J, J̇) = f(x1, x2, x3, ẋ1, ẋ2, ẋ3)
t1 = x1 = π

2
ṫ1 = ẋ1 = 1.0
t2 = x2 = −π4
ṫ2 = ẋ2 = 0.0

t3 = x3 = 3π
4

ṫ3 = ẋ3 = 0.0
t4 = t1 + t2 = π

4
ṫ4 = ṫ1 + ṫ2 = 1.0
t5 = t4 + t3 = π
ṫ5 = ṫ4 + ṫ3 = 1.0
t6 = sin(t5) = 0.0
ṫ6 = cos(t5) = − 1.0
t7 = t1 ⋅ t6 = 0.0
ṫ7 = ṫ1t6 + t1ṫ6 = − π

2
J = t7 = 0.0

J̇ = ṫ7 = − π
2

end

The same code in Tab. 2.2 can be used to evaluate ∂J/∂x2 and ∂J/∂x3 if we set ẋ1 = 0.0, ẋ2 =

1.0, ẋ3 = 0.0 and ẋ1 = 0.0, ẋ2 = 0.0, ẋ3 = 1.0 respectively.

The second mode of operation of AD is the reverse mode. In reverse mode, the derivatives
∂Js/∂tk for all intermediate variables are computed backwards or in reverse order. For example, for
the elementary step in Eq. 2.40 the derivatives are propagated as:

∂J

∂ti
=
∂J

∂tk

∂tk
∂ti

(2.43)

and
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∂J

∂tj
=
∂J

∂tk

∂tk
∂tj

(2.44)

At the start of the computation in reverse mode, the derivative of the output J̇1, J̇2, ..., ˙Jm needs
to be given additionally to the regular input values ẋ1, ẋ2, ..., ẋn. Seeding the derivative of one of the
outputs to (1.0) and computing the chain rule for each elementary operation going backwards allows
us to compute the derivatives of the single output with respect to all the intermediate variables and
the inputs in a single reverse-mode computation. Finally, at the end of the computation the values
of

ẋk =
m

∑
s=1

∂Js
∂xk

J̇s (2.45)

are known.

In the case of one output only (m = 1) then the computation of ẋk is given by ∂J1
∂xk

ẏ1. The same
sample program (Tab. 2.1) is considered to show a practical implementation for the reverse mode.
A new variable called adjoint variable is introduced:

ṫi =
∂J

∂ti
(2.46)

By definition, J̇ = 1.0 at the start. The computation in reverse mode is shown in Tab. 2.3.

In the reverse mode, additional operations are needed for each line of code. For example, for
the operation t7 = t1 ⋅ t6, two adjoint variables (ṫ1, ṫ6) need to be computed (because it is a binary
operation):

ṫ1 =
∂J

∂t1
=
∂J

∂t7

∂t7
∂t1

=
∂J

∂t7

∂(t1 ⋅ t6)

∂t1
= J̇ ⋅ t6 (2.47)

ṫ6 =
∂J

∂t6
=
∂J

∂t7

∂t7
∂t6

=
∂J

∂t7

∂(t1 ⋅ t6)

∂t6
= J̇ ⋅ t1 (2.48)

whereas for the operation t6 = sin(t5) only one adjoint variable (ṫ5) needs to be computed, since
it is a unary operation:

ṫ5 =
∂J

∂t5
=
∂J

∂t6

∂t6
∂t5

=
∂J

∂t6

∂( sin(t5))

∂t5
= ṫ6 ⋅ cos(t5) (2.49)

For the evaluation of the derivatives in reverse mode, note that the temporary values of the
intermediate variables ti need to remain stored. This results in a large memory requirement for the
reverse mode.

The main advantage of using AD for derivative computation is that the gradient can be computed
to machine accuracy. Since the gradient computation speed is dependent on the number of design
variables for the forward mode of AD, the forward mode is preferred when there are less number
of inputs than outputs. If the number of inputs is greater than the number of outputs, the reverse
mode is preferred, however with the drawback of a larger memory requirement.
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Table 2.3.: Reverse mode differentiation of the computer program

function (J, ẋ1, ẋ2, ẋ3) = f(x1, x2, x3, J̇)
t1 = x1 = π

2
t2 = x2 = −π4
t3 = x3 = 3π

4
t4 = t1 + t2 = π

4
t5 = t4 + t3 = π
t6 = sin(t5) = 0.0
t7 = t1 ⋅ t6 = 0.0
J = t7 = 0.0

ṫ7 = J̇ = 1.0

ṫ1 =
∂J
t1

= ∂J
∂t7

∂t7
∂t1

= t6 = 0.0

ṫ6 =
∂J
t6

= ∂J
∂t7

∂t7
∂t6

= t1 = π
2

ṫ5 =
∂J
t5

= ∂J
∂t6

∂t6
∂t5

= ṫ6 ⋅ cos(t5) = − π
2

ṫ4 =
∂J
t4

= ∂J
∂t5

∂t5
∂t4

= ṫ5 = − π
2

ṫ3 =
∂J
t3

= ∂J
∂t5

∂t5
∂t3

= ṫ5 = − π
2

ṫ1 =
∂J
t1

= ∂J
∂t4

∂t4
∂t1

+ ṫ1 = ṫ4 + ṫ1 = − π
2

ṫ2 =
∂J
t2

= ∂J
∂t4

∂t4
∂t2

= ṫ4 = − π
2

ẋ3 =
∂J
x3

= ṫ3 = x1 ⋅ cos(x1 + x2 + x3) = − π
2

ẋ2 =
∂J
x2

= ṫ2 = x1 ⋅ cos(x1 + x2 + x3) = − π
2

ẋ1 =
∂J
x1

= ṫ1 = x1 ⋅ cos(x1 + x2 + x3) + sin(x1 + x2 + x3) = − π
2

end

2.6.2. AD implementation

The implementation of AD can be based on operator overloading (ADOL-C [83] for c/c++, ADF [84]
for fortran) or source code transformation (ADIFOR [85] for fortran, ADIC [86] for c, TAPENADE
[87] for c and fortran).

2.6.2.1. AD via operator overloading

Most modern programming languages like c++ offer operator overloading where it is possible to
define specific datatypes and redefine the meaning of intrinsic operators such as addition, substrac-
tion, multiplication, etc. This can be used to implement the forward-differentiation of AD in a very
simple way, following the steps below:

1. Creating a new data type called Real to represent floating point numbers, and overwriting it
with a new data type that contains both the value and its derivative.
#if defined (ADForwardMode)
typedef adouble Real;
# else
typedef double Real;
# endif
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When the code is to be executed using the forward-differentiation of AD, the user defined
data type Real represents an adouble array, which contains two floating points: the value and
its derivative (adouble = [value, derivative]).

2. Redefine the instrinsic operations using operator overloading. For example, the multiplication
operator should be overloaded with the following function:
multiplication(adouble a, adouble b){

return [ a.value()⋅b.value(), a.derivative()⋅b.value() + a.value()⋅b.derivative() ] }

Generally, the intrinsic operation functions are already redefined inside the AD classes.

3. Replace all the standard invocations of float or double by the new datatype Real.

4. Seed the input derivatives of the design variables.

5. Compile and run.

The use of AD in reverse mode via operator overloading is more complicated because, instead of
computing the derivative at the same time than the primal value, we need to store the values of the
primal and the history of operations on a tape. The overloaded multiplication function in reverse
mode will become e.g.
multiplication(adouble a, adouble b){

push2tape(mult, a, b);
return [ a.value()⋅b.value() ] }

The reverse-differentiation of AD is implemented following the steps below:

1. Start recording the tape.

2. Mark the independent variables or inputs.

3. Mark the outputs.

4. End the recoding of the tape.

5. Seed the derivative of the output to 1.0.

6. Evaluate the tape, in order to accumulate the derivatives going backwards.

One disadvantage of this approach is that the tape size can become prohibitive for large industrial
cases. However, the user can decide which part of the codes need to be recorded in the tape or
not. For example, one might decide to stop taping for specific routines like linear solvers and then
restart taping just afterwards. In such cases, deep code-insight and user manipulation is required
to make sure that the final derivatives also take into account the operations that were not taped.

In this thesis, both forward and reverse modes of AD will be used to compute gradient information
of a computer program. The forward and reverse mode of AD will be used mainly to differentiate
the CAD kernel and grid generator in chapter 3. The resultant derivatives will be used in order to:
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(1) compute the performance gradients required by the optimizer in chapters 4 - 7; (2) to compute
the novel parametric effectiveness indicator defined in chapter 6 and used for adaptive shape opti-
mization in chapter 7.

2.6.2.2. AD via Source Transformation

Although this technique is not used in this thesis, it will be briefly explained for completion. Source
code transformation consists in using a transformation tool to generate a differentiated code at
compilation time. This has the advantage that the code can be optimized by the compiler and
the memory requirement can be kept at a small multiple of the primal code [88], which allows the
application of AD to very large industrial codes. The disadvantage of source code transformation
is that the implementation of the transformation tool is extremely complex and there are no tools
available at the time for recent languages such as c++ with extensive pointer use. If at compile
time it is not clear what value a pointer is pointed to, then the transformation tool is not able to
know where to add the derivative to. Tools for Fortran and for c are available (such as TAPENADE
[87], by Inria).

2.7. CFD and Adjoint solvers

All the numerical simulations in this thesis were performed with a Computer Aided Design and
Optimization (CADO) [69] tool that contains both flow and adjoint solvers to manage the flow
analysis and flow sensitivity aspects. The flow solver solves compressible RANS equations using
a cell-centered finite-volume method on multiblock structured grids. The three dimensional com-
pressible RANS equations are solved with an implicit time integration scheme accelerated by local
time-stepping and multigrid. The fluid is considered as a calorically perfect gas and the eddy-
viscosity hypothesis is used to account for the effect of turbulence. Convective fluxes are computed
using Roe’s approximate Riemann solver [89] with a MUSCL-type reconstruction [90] of primitive
variables to attain second order accuracy. Oscillations near shocks are suppressed by a van-Albada
type limiter [91]. The numerical dissipation of the scheme is controlled by the entropy correction
by Harten and Hyman [92] for both linear and non-linear eigenvalues. Viscous fluxes are calculated
with a central discretization scheme, while the Spalart-Allmaras turbulence model [93] is used for
the turbulence closure problem. Boundary conditions are imposed weakly by utilizing the dummy
cell concept [94].

The adjoint problem is derived from the primal governing equations via the discrete formulation.
Only the mean-flow equations were adjoined and the turbulent quantities appearing therein were
treated as constant. For one-equation turbulence model, this means that the turbulent eddy vis-
cosity is assumed constant [12, 95].

The linear system of equations is solved by the Generalized Minimum Residual (GMRES) [96]
algorithm. The flow solver and its discrete adjoint counterpart use the stabilization scheme described
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by [97].

2.8. Optimizers

Two different types of gradient-based optimizers are used in this thesis:

• SciPy L-BFGS-B [98]. The L-BFGS-B is a Quasi-Newton optimization algorithm available
in the python SciPy software package [99]. It is a low memory consumption version of the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method that approximates the inverse of the Hes-
sian matrix based on the gradient changes with respect to the previous iteration. The appro-
priate step-size is determined by doing a line search. This algorithm is particularly well suited
for unconstrained optimization problems with a large number of variables (there is no limit
to the number of design variables). The use of the L-BFGS-B algorithm can also be extended
constrained optimization problems if they are handled with the penalty method.

• SNOPT (Sparse Nonlinear OPTimizer). This is a software package used for solving large-
scale optimization problems (constrained or unconstrained). It is based on a sparse Sequential
Quadratic Programming (SQP) algorithm with limited-memory quasi-Newton approximations
to the Hessian of Lagrangian. SNOPT is very effective to solve nonlinear optimization prob-
lems where functions or gradients are computationally expensive to evaluate. SNOPT ensures
convergence from an arbitrary point, provided the functions are smooth (but they do not
need to be convex). If necessary, SNOPT allows the nonlinear constraints to be violated but
minimizes the sum of such violations. The version used in this thesis is SNOPT 7.6 (i.e., the
trial version of SNOPT for research and academic purposes), hence problems are limited to
300 design variables and 300 constraints. A more detailed description of SNOPT is found in
[100, 101].

Both the SciPy L-BFGS-B and SNOPT software packages can handle box constraints on variables
of the type αl < α < αu where αl and αu are the lower and upper bounds of the design variable α.
This avoids the optimizer from exploring unfeasible designs.

2.9. Design velocity approach

Using the CAD to represent the geometry in a gradient-based optimization framework requires to
compute geometric sensitivities, which represent the surface grid point coordinates w.r.t. design
parameters. These sensitivities can be approximated by finite differences using the design velocity
approach [8]. The so-called design velocities are geometric sensitivities that represent the displace-
ment normal to the geometry boundary of a point on the boundary due to a perturbation of a
design parameter in the CAD model. Typically, a positive design velocity represents an outward
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movement of the boundary, whilst a negative is an inward movement [74]. The approach to compute
the design velocities is based on a finite difference between the CAD’s model shape before and after
a perturbation of a CAD design parameter. It can work with any existing commercial CAD package
and it is not affected by the changes in CAD model topology and face labelling. A brief description
of this method is presented here. For a more detailed description, the reader is referred to [8].

In order to compute the design velocities associated to a CAD design parameter, the baseline
and the perturbed CAD models are usually exported as STEP files. Then, the perturbed and un-
perturbed models are read in by Gmsh [102] or CADfix [103] and their grid generator is used to
represent the CAD geometries using a surface mesh of triangular elements. The following step is
to approximate the displacement of the model boundary due to a perturbation in the CAD design
parameter. This is done by projecting the centroid of each surface mesh element in the unperturbed
model onto the elements in the perturbed model. The question arises of which element in the
perturbed model should be used for this projection. A multidimensional binary search tree known
as KD-tree [104] and Barycentric coordinates [105] are used in this search to determine which per-
turbed element should be tested next for the projection and the process continues until a successful
projection is found. In order to avoid projections onto the wrong face of the model, a successful
projection is that one that ensures that the unperturbed boundary normal at the centroid to be
similar to the perturbed boundary normal at the identified projected point. More details about this
methodology are found in [8].

Since this approach is based on the computing shape differences between two surface meshes, it
can introduce issues of surface to surface projection when computing the distances between the two
surface meshes. Moreover, finite differences inaccuracies are inherited because of the truncation
error. Therefore, an alternative to the design velocity approach is proposed in this thesis to address
these shortcomings. The geometrical sensitivities will no longer be computed by finite differences
but by applying algorithmic differentiation to the CAD kernel and grid generator. In chapter 3, the
grid sensitivities obtained by Algorithmic Differentiation will be compared to the design velocities.

2.10. Parametric effectiveness

In an industrial optimization framework the geometry is initially created within the computer-aided
design (CAD) environment and it is essential that the optimal geometry is also available in CAD
format. One of the benefits of parameterizing the geometry in the CAD system is that higher level
constraints can be imposed on the shape, allowing the optimized part to be manufactured. The
disadvantage of using a CAD-based parameterization is that its success is mainly dependent on the
expertise and skill of the user, since it is not obvious which parameters are the most effective to
allow the optimizer to produce a shape change in the direction that the adjoint sensitivities dictate.
In fact, a poor choice of CAD parameters will lead to a poor exploration of geometries, preventing
the optimizer from exploring innovative geometries. For these reasons, it is vital to quantify how
suitable is a set of CAD-based parameters for use in optimization.
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In this context, Robinson et. al. [106] introduced the concept of parametric effectiveness (PE) of
a CAD model (Eq. 2.52), in order to rate the quality of the parameters of a CAD-based model for
use as optimization variables. The PE as defined by Robinson et. al. [106] is computed as the ratio
between the maximum change in performance that can be achieved using existing parameterization
(Eq. 2.50), to the maximum performance improvement that could be obtained if the model is
not constrained by any parameterization and follows the shape changes dictated by the adjoint
sensitivities (Eq.2.51).

∆JCAD,OBM = −

¿
Á
Á
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∫A (∑
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2
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)
2
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PE =
∆JCAD,OBM

∆Jideal,OBM
(2.52)

The terms dJ/dXS , dXS/dαi and dJ/dαi represent the adjoint surface sensitivities, the surface
grid sensitivities and the performance gradients respectively. The changes in performance that are
used to compute the parametric effectiveness are normalized with respect to an overall boundary
movement (OBM), which is defined as a unit root mean squared movement of the boundary. The
PE can be used to select the parameters to localize the boundary movement in the regions of high
surface adjoint sensitivity. The downside of the normalization with the overall boundary movement
is that the benefits obtained in large boundary movements are removed, and those parameters αi
with high performance sensitivity are penalised if they produce a design movement in the regions of
low surface adjoint sensitivity [106]. Moreover, the parametric effectiveness defined by Robinson et.
al. [106] is mainly defined for optimization problems where the constraints are purely geometrical.
Therefore, it is uncertain how to extend this methodology for constrained optimization problems
where the constraints are aerodynamic or structural.

In this thesis, a novel indicator for parametric effectiveness will be defined and presented in chap-
ter 6 in order to address the shortcomings mentioned before and to extend the use the parametric
effectiveness to constraint optimization problems where the constraints can be of any type. The
novel methodology will be used in chapter 7 for multilevel shape refinement to choose the best
CAD-based parameterization during the coarse of the optimization.

2.11. Adaptive shape parameterization

In an industrial design workflow, very often the CAD models use a very large number of design vari-
ables to construct the geometry. For example, in [107] the parametric CAD model of a car mirror
used 2925 feature parameters and the CPU time required to update the CAD geometry was nearly 3
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hours, making the optimization of such geometry to be computationally expensive. Another down-
side of exploring rich design spaces with large number of CAD design variables is the convergence of
the optimizer. A large number of design variables can lead to poor convergence rates for many opti-
mization schemes [108]. Moreover, the large number of design variables can translate into a high cost
associated to matrix operations, which can limit the use of Newton or quasi-Newton algorithms [51].

One solution to this problem would be to select a reduced set of CAD design parameters to use
in the optimization and to freeze the rest of the parameters. However, this can hinder the optimizer
from finding a superior design. This phenomena is illustrated by Fig. 2.12. Imagine that it is
desired to find the maximum of the bivariate Gaussian distribution J(α1, α2) shown at the left of
Fig. 2.12. If the designer freezes the design variable α2 by assuming that it has a constant value
and the optimizer is only allowed to change the other design variable α1, the objective space that
the optimizer would see would no longer be the bivariate Gaussian distribution but that one shown
at the right of Fig. 2.12. This example illustrates that the optimizer will find a worse optimum
when using a reduced number of design variables from the whole set.

In this example, an alternative approach to the downselection of the design variables would be
to start the optimization using one design variable (e.g., α1) and then, at some point, to continue
the optimization with two design variables (α1 and α2). This is the basic idea of an adaptive shape
parameterization. The use adaptive shape parameterization or multilevel optimization, where the
optimization starts with a small number of design variables (coarse parameterization) and ends with
a large number (fine parameterization), can be an effective strategy to explore rich design spaces
and to improve convergence rate, robustness and final solution of the optimization [77, 78, 108].

Figure 2.12.: Objective space when using: fine parameterization with two design variables (left),
coarse parameterization with only one design variable (right)

In this thesis, the concept of adaptive shape parameterization will be used in chapter 7 in com-
bination with the novel indicator for parametric effectiveness defined in chapter 6.



Chapter 3.

Differentiation of the CAD kernel and grid generator

In the previous chapter, the shortcomings of using finite differences or the design velocity approach for the
computation of gradients in a CAD and adjoint based optimization framework are introduced. An alterna-
tive approach is presented in this chapter, which consists in using algorithmic differentiation techniques for
the computation of accurate gradients. The main contents of this chapter have been published in [109].

Abstract. Although adjoint-based optimization methods have numerous advantages, e.g. the
efficient computation of the gradient virtually independent of the number of design variables, the
methods are not yet picked up largely by industry. One major bottleneck herein is that adjoint
methods mainly work on deforming the CFD grid and as such loose the connection to CAD, the
industry adopted standard for the design of components. After the optimization, a step is required
which transforms the optimal shape, defined by grid points, back to a smooth CAD shape. This
step is complicated, not easily automated and invariably impairs optimality of the shape, as CAD
systems will only approximate the optimal shape. This chapter alleviates the problem by expressing
the optimization problem through CAD parameters, rather than working directly on the CFD grid.
This allows the optimal shape to remain defined within the CAD tool. The volume and surface grid
sensitivities propagated to the CAD-based parameters are obtained through the differentiation of
the CAD kernel and grid generation tools with algorithmic differentiation (AD). The in-house CAD
kernel and grid generator have been differentiated in forward and reverse modes. The VKI LS89
axial turbine cascade is selected to demonstrate the methodology. The mid-span profile is param-
eterized by CAD based design parameters that have an important role in turbomachinery design
practice. The geometrical as well as the volume grid sensitivities are obtained for each parameter,
showing the influence of the design parameters on the profile and on the CFD grid coordinates.
The geometrical and volume grid sensitivities obtained by AD are compared against second-order
accurate central finite difference approximations through changing the perturbation step. The AD
surface grid sensitivities are also compared to the sensitivities obtained by using the design velocity
approach, which is a form of finite differences also. Finally, the performance of the AD differentiated
sources is measured and compared to the original sources for the geometry and the mesh generation
in terms of run time ratio, memory ratio and peak memory consumption.
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3.1. Introduction

Aerodynamic shape optimization using low-cost, efficient and accurate computational methods is
key for the aerospace industry, as it provides the opportunity to make significant design improve-
ments at the early stage of the design chain.

For gradient-based optimization strategies, it is essential to compute the total gradient of the de-
sign chain, which is the derivative or gradient of the cost function with respect to a vector of design
variables. This is usually done by calculating the derivatives separately for the various disciplines
used in the design chain (e.g. grid generation, Computational Fluid Dynamics, Computational
Solid Mechanics, etc.) and then combining them to obtain the total gradient. The derivatives
can be obtained analytically, by finite differences or by differentiating the code(s). Adjoint-based
optimization methods [36, 39, 110] have been introduced for more than two decades and have wit-
nessed a tremendous improvement over time. They have become increasingly popular amongst the
gradient-based optimization methods for its efficiency to compute the gradients at a cost that is
independent of the number of design variables [12]. However, one major bottleneck herein is that
adjoint methods mainly work on altering the shape by deforming the CFD grid [3–5, 36, 55, 56]
and as such loose the connection to computer aided design (CAD), the industry adopted standard
for the design of components. If the parameterization is done at the grid level, an additional step is
required which transforms the optimal shape back to a smooth CAD shape. Many different proce-
dures have been developed to approximate a given set of grid points with NURBS curves or surfaces
[1, 57]. Despite the fact that these methods can be successfully employed to obtain a smooth CAD
shape, the fitting error may invariably impair optimality of the shape as CAD systems will only
approximate the optimal shape and it is not guaranteed that the final CAD shape will meet all the
manufacturing design requirements and constraints.

Integrating the CAD in a gradient-based optimization framework introduces an additional bottle-
neck: the computation of the volume or the surface grid sensitivities. The volume and the surface
grid sensitivities are defined as the derivative of the volume and the surface grid point coordinates
w.r.t. the CAD design parameters respectively. In general, the volume grid points are referred in
this thesis as the cell vertices. Any grid point in the interior domain of the mesh or in the boundaries
are called volume grid points. In contrast, the surface grid points are considered to be only those
vertices of the mesh that lay on the solid wall (i.e. the shape of the profile in discrete form). These
sensitivities are often called shape sensitivities or mesh sensitivities in the literature. A number of
approaches have been proposed in the literature for the computation of the surface grid sensitivities
[8]. In general, most of the approaches use some form of finite differences and/or require the topol-
ogy of the geometric model to remain constant (i.e., the same number and arrangement of surfaces,
edges and vertices over the model boundary) after the model is perturbed [71, 111, 112]. But this
constraint is difficult to enforce in practice. Kripac [113] computed these sensitivities by assigning
tags or identities (IDs) to the topological entities of the unperturbed model. The entities with the
same tag in the perturbed model were then used to compute these sensitivities. Techniques are
described to deal with the situation where the IDs change after the CAD model is regenerated due
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to a parameter perturbation. An alternative approach to the naming problem is described in [114].
However, these techniques may not be robust enough where the CAD model changes significantly
or where the order of constructions or the features change. Hence, Chen et. al. [115] concluded that
the above mentioned problem remains unsolved. Agarwal et. al. [8] describe the design velocity
method that allows to compute the shape sensitivities and to tackle possible changes in topology
and the label renaming issues. However, since this approach computes the sensitivities by shape
differences between two surface meshes, it can introduce surface to surface projection errors. More-
over, the accuracy of the gradients is dependent on the chosen step size for finite differences. A too
large or too small step size will introduce inaccuracies due to the truncation error or limited arith-
metic precision respectively. So far, the inaccuracies introduced by the design velocity approach
have never been quantified by comparing to algorithmic differentiation (AD).

An alternative approach is presented in this chapter to compute the surface or volume grid sen-
sitivities, which consists in differentiating the CAD kernel and grid generator using AD techniques.
The use of AD allows to obtain accurate derivatives of the grid coordinates w.r.t. the CAD design
variables. Therefore, the emphasis of this chapter is to:

1. Keep the shape defined within the CAD tool. The CAD parameters are directly used in
defining the CAD geometry by means of Bézier and B-spline curves.

2. Apply AD to the in-house CAD and grid generation tools in both tapeless forward vector
and in reverse modes. This allows to accurately predict the derivatives and circumvent the
topology or renaming issues, the finite difference inaccuracies and also the projection errors
of the design velocity approach.

3. Show the differences between the volume grid sensitivities computed by AD and by finite
differences second-order central derivatives by tuning the step size.

4. Compare the approximated shape sensitivities by the design velocity approach with the accu-
rate surface grid sensitivities computed by AD.

5. Compare the run time ratio, memory consumption ratio and peak memory consumption re-
quired to compute gradients w.r.t. CAD design variables when we use the differentiated
sources by AD.

The work is carried out using a computer aided design and optimization tool for turbomachinery
applications (CADO) [69], which has been used so far mainly in gradient free optimization methods,
and hence the work presented herein represents the first steps to differentiate the entire CADO code
to be used in gradient based optimization.
The LS89 [116–118] axial turbine cascade is selected as a demonstrator to test the methodology.

It is a relatively modern high pressure turbine nozzle guide vane specifically designed for subsonic
flows downstream of an aero-engine combustion chamber. The profile of the LS89 was designed and
optimized in the two-dimensional space at the VKI for a 0.9 downstream isentropic Mach number
by an inverse method described in [116]. It was tested at the VKI laboratories with the aim to use
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the experimental data as a benchmark to validate the VKI CFD prediction capabilities in the late
80’s. The complete experimental results were published during the 1990 International Gas Turbine
Conference held in Brussels [117]. The final report is the VKI Technical Note TN174 [118]. The
LS89 has been tested for different Reynolds and Mach numbers in the VKI-CT2 test facility.

The remainder of the chapter is organised as follows. Section 3.2 presents the methodology to
construct the geometry, the fluid computational grid and to compute the different derivatives. The
results are shown in Sec. 3.3. Finally, the chapter terminates with the main conclusions.

3.2. Methodology

The design chain process shown in Fig. 3.1 starts typically from a set of input design parameters
which allow the designer to build a CAD model, from which it is necessary to generate a computa-
tional fluid grid to perform CFD analysis. After obtaining a converged flow solution by the primal
solver, the cost function is evaluated as a post-processing step. The differentiation of the design
chain allows to compute the performance sensitivities w.r.t. the CAD parameters which are neces-
sary for gradient based optimization algorithms. The following subsections present a description of
the methods employed in this work for the geometry and grid generation steps and the calculation
of the different derivatives.

Primary problem:

Design space

CAD 'Master 

geometry'
Fluid grid

Performance parameter 

evaluation(cost function)

x,y surface

coordinates
X,Y  grid

coordinates

design 

parameters

Performance sensitivity

forward di erentiation

Geometrical 

sensitivity
Grid 

sensitivity

Solution 

sensitivity

reverse di erentiation

Figure 3.1.: Chain to compute the performance sensitivity.

3.2.1. Constructing the LS89 profile with Bézier and B-spline curves

The construction of the turbine profile is based on the parameterization described in [119]. The
turbine profile, which is shown in Fig. 3.2, is defined herein with three independent curves, two
B-spline curves for the suction side (SS) and pressure side (PS), and a circular arc at the trailing
edge (TE) to close the profile. In order to construct the profile, first a camber line is constructed,
which is used to define the position of the control points of the SS and PS B-spline curves relative
to the camber line. The camber line is defined by an inlet blade metal angle βin, an exit blade metal
angle βout, an axial chord length cax and a stagger angle γ. The position of the leading edge (LE)
and TE is defined by the axial chord length and the stagger angle. By defining an inlet and outlet
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lines respecting the inlet and outlet blade metal angles, one can intersect the lines and define the
point Pmid shown in Fig. 3.2.

cax-RTE

in

out

PTE

Pmid

PLE
f(RLE)

t1SS

t2SS t3SS

t4SS
t5SS

t6SS
t7SS

t8SS

t9SS

Figure 3.2.: Construction of the suction side by a B-spline curve.

The points PLE , Pmid, PTE define the control points of the 2nd order Bézier curve describing
the camber line. By specifying a stretch factor and a number of points, the camber line is divided
into a number of intervals. For each point obtained on the camber line (except the first and last
two points) a normal distance is specified by the designer to obtain the corresponding control point
of the SS and PS B-spline curves. The normal distance of the first control point relative to the
camber line is a function of the LE radius, in order to guarantee G2 geometric continuity (i.e.
equal curvature) between the SS and PS B-splines at the stagnation point of the leading edge. The
normal distance of the last control point relative to the camber line is equal to the TE radius. For
the second last point, the normal distance is computed by specifying a wedge angle. Usually more
control points are placed on the SS than on the PS because the highly curved shape of the SS is
deemed to play a bigger role than the PS during the aerodynamic shape optimization. Finally, the
shape of the cascade is fixed after specifying the pitch, which can be computed for a given solidity.
The solidity plays an important role in turbomachinery design practice, and this justifies the use of
this parameter as an independent variable.
The LS89 profile geometry comes first from point data [118] that has been fitted with the pa-

rameterization method described before. The cascade geometry is shown in Fig. 3.3 and uses 24
parameters (see Table 3.1 and 3.2). The position of the B-spline control points of the suction side
and pressure side is shown in Fig. 3.3.

3.2.2. Generation of block-structured smooth grids

The generation of a boundary conformal curvilinear grid for the turbomachinery flow geometry of
this study was achieved by subdividing the domain into multiple structured grid blocks which are
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Figure 3.3.: LS89 parameterization.

independent from each other but share a common interface. A single block approach for a relatively
highly staggered profile, such as the LS89 turbine profile, would result in a poor quality grid due to
the high skewness of the cells. Therefore, a multi-block approach was preferred because it allows to
have more detailed control of the element size and shape. Figure 3.4a shows the selected multi-block
structured topology for the LS89 CFD domain. One O-grid block is placed around the profile and
there are six additional H-grid blocks, four of them distributed around the profile and the remaining
two being used as the inlet and outlet blocks. The fluid mesh has 300,000 grid points approximately.

(a) LS89 multi-block structured grid topology.

(b) LS89 mesh topology and final smoothed grid.

Figure 3.4.: LS89 mesh topology and final smoothed grid

The first step in the grid generation process consist of generating an initial grid on the edges of the
different blocks. The internal grid is subsequently initialized using Transfinite Interpolation (TFI)
equations from the boundary mesh points, which are described by the Eqns. 2.21 and 2.22 [79].
The generation of an algebraic grid for each block is efficient and easy to implement but there is no
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Design parameters Acronyms Value
Solidity σ 1.118

Axial Chord Length cax 36.955 mm
Stagger Angle γ 54.9○

LE Radius RLE 4.126 mm
TE Radius RTE 0.710 mm

TE Wedge Angle SS ϕSS 4.0○

TE Wedge Angle PS ϕPS 2.5○

Inlet Angle βin 0.0○

Outlet Angle βout 74.0○

Stretching Factors PS kPS 1.175
PS Thickness (x4) t1PS , ..., t

4
PS see Table 3.2

Stretching Factors SS kSS 1.1
SS Thickness (x9) t1SS , ..., t

9
SS see Table 3.2

Table 3.1.: Design parameters used to define the LS89 blade profile

B-spline Control Point Index j tjSS [mm] tjPS [mm]
1 16.750 2.250
2 15.900 6.650
3 19.690 2.300
4 6.750 0.040
5 10.750
6 4.750
7 6.850
8 2.565
9 2.295

Table 3.2.: B-spline control point normal distances relative to the camber line

guarantee that the grid lines will not intersect, fold (see Fig. 2.8), or that the corners from the side
will not be propagated inside the domain. Given the difficulty to generate successful smooth grids
using TFI equations, it is convenient to smooth them afterwards by solving a partial differential
equation (PDE) of some type (elliptic, hyperbolic, parabolic). The elliptic PDE is commonly used
for grid generation for ducted flows. The elliptic grid generation equations shown in Eqns. 2.25-2.26
were pioneered by Thompson et. al. [81] and are employed in this work. Grid behaviour control is
achieved through the introduction of forcing function terms in the manner of Steger and Sorenson
[82] in the O-grid block. The Steger and Sorenson method is an iterative forcing function approach
that adjusts the boundary forcing functions to meet a prescribed angle and spacing constraint at
the boundary. The forcing function is then interpolated into the domain based on the boundary
values of the source terms. In all the H-grid blocks, the source terms have been set to zero and
hence the elliptical equations being solved are the so called Laplace equations. A more detailed
description about the grid generation procedure is presented in Sec. 2.5.1.
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3.2.3. Geometrical and grid sensitivities using algorithmic differentiation

In this work, the geometrical sensitivites are the derivatives of the geometry boundary coordinates
x-y w.r.t. the CAD parameters. The grid sensitivities are the derivatives of the CFD grid coordi-
nates X-Y w.r.t. the CAD parameters. A distinction is made between the volume and the surface
grid sensitivities, because the volume grid is referred to the full grid and the surface grid is referred
to the grid points on the shape surface.

The geometrical and grid sensitivities have been computed by applying algorithmic differentiation
(AD) to the CAD kernel and grid generator. AD is a technique for computing analytic derivatives
of programs [24]. The idea of AD is to differentiate analytically each elementary mathematical
operation performed by the code and accumulating the derivatives by applying the chain rule in
an automatic fashion. In this way, it is possible to build up the cost function or derivative of the
output w.r.t. the input variable, which can then be used for an optimization algorithm.

One distinguishes between the forward and reverse mode of AD. In forward mode one is interested
to know the derivative of the outputs depending on the setting of the input sensitivities, whereas
in reverse mode one is interested in the derivative of all inputs for the number of outputs. Both
modes allows to accurately compute the sensitivities with the best possible machine accuracy. Also,
it is possible to use either the scalar or the vector mode. In the forward scalar mode, it is required
to execute the code as many times as the number of input variables. Alternatively the forward
vector mode allows to compute the derivatives in one run of the differentiated code. In this run,
the primal (undifferentiated) part is only computed once and the derivative (differentiated) part is
computed within a loop such that compiler can optimize by using vectorization. On the other hand,
in the reverse scalar mode you need as many runs as the number of output variables and in reverse
vector mode you only require running the differentiated code once at the expenses of using more
resources. The reverse mode always requires storing the intermediate operations and the variable
values throughout the evaluation of the code in a trace or tape, which can result in a large memory
requirement. An introduction to the AD techniques is presented in Sec. 2.6. For a more detailed de-
scription of the different techniques for evaluating derivatives using AD the reader is referred to [24].

The AD tool used for the differentiation of the CAD kernel and grid generator is called ADOL-C
[9] and is developed at the Department of Mathematics at the University of Paderborn. ADOL-C is
written in C++ and uses overloaded operators and functions. The ADOL-C derivative evaluation
routines can be called from C, C++, Fortran and any other language that can be linked with C
[9]. First, the geometrical and grid sensitivities are calculated in tapeless forward vector mode and
linked with the volumetric adjoint sensitivities to give the performance sensitivities. Also, the trace
reverse mode of ADOL-C is exploited to compute the performance sensitivities.
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3.2.4. Performance tests

To measure the performance of using AD to compute the derivatives of the cost function w.r.t. the
CAD design parameters, the following cost functions are defined:

• The throat distance Jt is computed after the creation of the CAD geometry. This is computed
as the minimum distance between the suction side and the trailing edge of the adjacent blade
(this is referred as t in Fig. 3.3).

• The average X coordinate JX of the fluid grid is computed after the creation of the CFD grid.
This objective function does not have any physical meaning but it is useful for computational
performance test purposes.

Three different derivative computation methods are presented to measure the performance of
computing the derivatives of the cost functions J w.r.t the CAD parameters dJ/dα⃗:

• Using finite differences. The derivatives dJt/dα⃗, dJX/dα⃗ are computed by the first order back-
ward scheme by perturbing each CAD design variable by a negative step size and computing
the gradient as the change in the cost function divided by the perturbation step.

• Using the AD forward scalar and vector modes. The derivatives dJt/dα⃗ and dJX/dα⃗ are the
outputs of running the differentiated code for the geometry and mesh creation respectively.

• using the reverse scalar mode of AD. The derivatives dJt/dα⃗ and dJX/dα⃗ are the outputs of
running the differentiated code fo the geometry and mesh creation respectively, seeding the
output with 1.0 and evaluating the trace in reverse fashion.

The parameterization used for the performance tests is similar to that one shown in Fig. 3.3,
but it allows to introduce more control points in the suction side and pressure side B-spline curves
by using the knot insertion algorithm [76] (see Sec. 2.4.1). This allows introducing more design
variables in the parameterization and testing the performance of the differentiated sources when we
use a large number of design variables.

3.3. Results

The geometrical and the grid sensitivities are obtained for all the design parameters, showing the
influence that each design parameter has on the aerofoil surface (x,y) coordinates and the CFD
grid (X,Y) coordinates respectively. The discussion herein is limited to the parameters t1SS , RLE ,
cax (see Table 3.1) for the sake of simplicity. In the following subsections, the AD geometrical
sensitivities dx⃗/dα⃗, which are defined as the change in the (x,y) turbine profile coordinates with
respect to a design parameter change, will be discussed first. The volume grid sensitivities dX⃗/dα⃗,
which are defined as the change in the (X,Y) grid coordinates with respect to a design parameter
change will be discussed next. Third, the geometrical and volume grid sensitivities obtained by
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AD will be compared against FD. Also, the AD surface grid sensitivities will be compared to the
approximated sensitivities by the design velocity approach. Finally, a summary of the run time,
run time ratio, peak memory consumption requirements will be given for the different approaches
presented to compute the gradients of each cost function J (i.e., Jt and JX) w.r.t. the CAD design
variables.

3.3.1. AD geometrical sensitivities

Figures 3.5, 3.6 and 3.7 show the magnitude and direction of the geometrical sensitivities obtained
for the t1SS , RLE , cax design parameters, respectively. Different scale factors are used to display the
length of the vectors.

X[m]
0 0.02 0.04 0.0

0.02

t1
SS

dM/dt1
SS = (dX/dt1

SS, dY/dt1
SS) [m/m]

dM/dt1
SS

0.01

Y[m]

0

-0.01

0 0.02 X[m] 0.04 0.06

dx/dt1
SS

dx/dt1
SS dx/dt1

SS dy/dt1
SS,

x

y

Figure 3.5.: Geometrical sensitivity for t1SS , Vector Scale Factor = 0.01.
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Figure 3.6.: Geometrical sensitivity for RLE , Vector Scale Factor = 0.0016.

Figure 3.5 clearly shows that an infinitesimally small perturbation of t1SS causes the movement
of the points along the suction side shoulder in the normal direction in which the suction side first
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Figure 3.7.: Geometrical sensitivity for cax, Vector Scale Factor = 0.0025.

B-spline control point position is specified relative to the camber line. A similar perturbation in the
RLE forces the first control point of the suction and pressure side to move away from the camber
line because their position is a function of the LE radius, making the points along the LE region to
move in the y direction accordingly as displayed in Fig. 3.6. Figure 3.7 shows that a perturbation
in the cax causes the points along the camber line, SS and PS curves to move away from the
stagnation point at the LE. Although the scale factor does not allow to show the magnitude of all
the sensitivities, all the control points (except the first of the SS and PS curves) sensitivity vectors
point away from the stagnation point because the TE point (PTE from Fig. 3.2) also moves away in
both x and y directions. The TE point movement is not in the x direction only because an increase
of axial chord by virtue of a constant stagger angle requires the TE point (and the camber line) to
move in the (x,y) space.

3.3.2. AD volume grid sensitivities

Figure 3.8 shows the magnitude of the volume grid sensitivities dM/dαi (Eq. 3.1) obtained for the
t1SS , RLE , cax design parameters, respectively. In general, a perturbation in the design parameter can
cause two type of perturbations in the CFD grid point coordinates. First, the grid point distribution
along the edge of the curve itself can change due to the fact that the normalised arc-length functions
used to distribute points in the edge undergo some changes. This type of perturbation that moves
the surface grid points tangentially to the surface can also propagate into the interior domain of
the grid but it has a tendency to decay rapidly. Secondly, the grid points coordinates in the fluid
domain change as well according to the overall grid point field movement sensed by them. The
source of this perturbation is stronger than for the first type and originates in the region where the
geometrical sensitivities are not zero.
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Figure 3.8.: Magnitude of the t1SS ,RLE and cax AD volume grid sensitivities.

Figure 3.8a clearly shows that a small perturbation in the t1SS causes the grid points in the fluid
domain above the SS shoulder to move and this movement also propagates into the PS fluid domain
through the periodic interface. The rear suction side grid points are also affected due to the fact
that the arc-length distribution changes. The geometrical throat is used herein to split the SS
curve into two edges to have more control of the grid point distribution along the SS curve. This
means that the geometrical throat on the SS (see Fig. 3.8a) is the end of the SS pre-throat and the
beginning of the SS post-throat edges, which are using different arc-length distributions. Therefore,
it is expected that a perturbation in t1SS causes a grid point position variation along the SS pre-
throat and post-throat edges because the length of these edges changes. However, as the geometrical
throat (X,Y) coordinates remain fixed, the grid points in the vicinity of the SS geometrical throat
do not sense any perturbation.
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Figure 3.8b shows that the biggest influence of RLE is in the vicinity of the largest geometrical
sensitivities. The perturbation on the SS also propagates into the PS interior domain through the
periodic interface. Also, the changes in the normalised arc-length functions for the PS and SS edges
result into grid point movements in both PS and SS curves. As the SS is more curved than the PS,
it is expected that a perturbation in the RLE changes the total length of the SS curve more than
for the PS. This is the reason why the RLE volume grid sensitivities at the rear SS are bigger than
the rear PS. The grid point displacements along the SS and PS also propagate into the interior of
the fluid domain but decay more rapidly than in those that propagate from the LE region. The
minimum sensitivity areas around the profile correspond to those grid points that are fixed, like the
stagnation point, the geometrical throat position, and the SS and PS end points towards the TE.
In these points, the arc-length functions do not change because they take the values zero or one,
depending on the orientation in which the grid point distribution has been applied to the edges.
Figure 3.8c shows a non-periodic character. As can be seen, the volume grid sensitivity field

is not repeated passage after passage. This is because the solidity, as an independent parameter,
remains constant under a change of the axial chord length, resulting in a proportional change in
pitch. Identical points on the opposite side from the periodic boundary will experience a jump in
the y-component of the grid sensitivity, proportional to the change in pitch. In the figure, the jump
value has been added to the top CFD domain such that a continuous field is visualized. The choice
to use solidity as an independent parameter is inspired by its importance in classical turbomachinery
design practice.

3.3.3. Comparison to finite differences

The geometrical and volume grid sensitivities obtained by AD are compared against FD second-
order central derivatives by tuning the step size. Figures 3.9a and 3.9b show the maximum error
in magnitude between the FD approximated and the exact AD sensitivities for the t1SS , RLE and
cax design parameters. The error is very sensitive to the chosen step size and the step size needs
to be relatively small to have a small error. Figures 3.9a and 3.9b show that the error in both
cases reduces with order two as the step size is reduced up to a critical step size, as to be expected
for a central second-order FD scheme. If the step size is chosen too small below this critical step
size, the numerical representation of the FD approximation becomes unstable and more error-prone
due to the limited machine accuracy. The error increases with order one approximately if the step
size is reduced below the critical step size. Figures 3.9c, 3.9d and 3.9e show the grid sensitivity
error for the t1SS , RLE and cax design parameters if the step size is 1mm. It has to be noted that
the maximum grid sensitivity error shown in Fig. 3.9d is relatively large, as it is only two orders
of magnitude lower than the maximum volume grid sensitivities shown in Fig. 3.9d, and this can
eventually result in wrong gradient information.

3.3.4. Comparison to design velocities

A comparison between the surface grid sensitivities obtained by AD and the design velocities com-
puted using the method described in [8] follows. Figures 3.10, 3.11 and 3.12 show the surface
grid sensitivities computed by AD evaluated at the solid wall boundary on the left and the design
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velocities Vn on the right. The AD surface grid sensitivities capture both the tangential and the
normal components of the design movement produced by an infinitesimal perturbation of the design
variable (e.g., Fig. 3.10 left), whereas the design velocities only capture the normal component to
the boundary (e.g., Fig. 3.10 right). Table 3.3 shows that the AD surface grid sensitivities and
the design velocities are significantly different, the largest root mean square average error between
the design velocities and the surface grid sensitivities is of the order of 49.5% for the cax parame-
ter. However, if we project the AD surface grid sensitivities to the normals of the boundary (i.e.,
ADn), the design velocities can match reasonably well the normal component of the surface grid
sensitivities, provided that an appropriate step size is chosen for the computation of the design
velocities.

Design parameter err(Vn −AD) err(Vn −ADn)

t1SS 14.24% 0.16%
RLE 19.20 % 0.68%
cax 49.47% 2.94%

Table 3.3.: Error between design velocities and AD surface grid sensitivities

3.3.5. Performance tests

The performance of the differentiated sources are analysed and compared to the original sources.
The time required for creating the CAD geometry and evaluating the throat distance Jt and the
corresponding derivatives dJt/dα⃗ is measured and summarised in Table 3.4 and 3.5 for p = 1 and
p = 205 directions respectively. The number of directions p represent the number of design variables
α⃗ for which we want to compute the corresponding derivatives. Also, the time required to generate
the fluid mesh and evaluate the average X coordinate JX and the corresponding derivatives dJX/dα⃗

is measured and summarised in Table 3.6 and 3.7 for p = 1 and p = 205 directions respectively. The
averaged timings and run time ratios are based on 15 measurements.

Original CAD sources Traceless forward Trace-based reverse
Avg. time [ms] 0.398 1.570 10.916
Run time ratio - 3.94 27.37

Table 3.4.: Timings with original and differentiated geometry creation sources with number of
directions p = 1 (scalar mode). The results are based on 15 measurements.

Original CAD sources Traceless forward Trace-based reverse
Avg. time [ms] 0.398 26.98 10.895
Run time ratio - 67.64 27.32

Table 3.5.: Timings with original and differentiated geometry creation sources with number of
directions p = 205. The results are based on 15 measurements.

According to the theory [24], the run time ratio between the derivative computation using AD
and the function (primal) evaluation should be between [1 + p,1 + 1.5p] and [1 + 2q,1.5 + 2.5q] for
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Original mesh sources Traceless forward Trace-based reverse
Avg. time [s] 1.77 88.36 256.00
Run time ratio - 49.92 144.64

Table 3.6.: Timings with original and differentiated fluid mesh creation sources with number of
directions p = 1 (scalar mode). The results are based on 15 measurements.

Original mesh sources Traceless forward Trace-based reverse
Avg. time [s] 1.77 393.39 255.60
Run time ratio - 222.26 144.41

Table 3.7.: Timings with original and differentiated fluid mesh creation sources with number of
directions p = 205. The results are based on 15 measurements.

the forward and reverse modes of AD respectively, where p and q is the number of directions and
of adjoints respectively. In this work, q = 1 and hence the expected run time ratio range in reverse
mode is [3,4].

The results shown in Table 3.4 and 3.5 show that the run time ratios for the geometry creation
using traceless forward mode of AD either agree with the theoretical bounds (e.g., p = 1) or are
below the theoretical bounds (e.g., p = 205). The compiler optimization could be a reason for this
good run time ratio. Tables 3.6 and 3.7 show that the run time ratio using the traceless forward
mode of AD is higher than for the geometry creation sources. This slow-down could be due to
the fact that the mesh creation involves initializing and destroying many objects during the large
smoothing iterative procedure and the compiler is not able to optimize so well this part of the code.

The results shown in Tables 3.4, 3.5, 3.6 and 3.7 show that the run time ratios when using the trace
reverse mode of AD are well above the theoretical values for both the geometry and mesh creation
sources. The iterative procedures present in the geometry and mesh creation could be the reason for
this. In the geometry creation code, there are certain point inversion iterative procedures, whereas
in the mesh creation sources there is a large iterative procedure to smooth the grid. Large iterative
procedures slow down the performance of differentiated sources with trace mode of AD, because
more intermediate variables and operations need to be traced. When the memory required to trace
this operations exceeds the memory available in the RAM, the trace is then written into the hard-
disk, which further slows down the taping process. Figure 3.13 shows the run time ratio required to
run the mesh sources with traceless mode and trace reverse mode of AD for p = 1 as the number of
mesh smoothing iterations is increased. The larger number of iterations, the higher is the slow down.

An overview of all the run time ratios and memory ratios evaluated in the range of p = 1 to
p = 205 directions is shown in Fig. 3.14a and 3.14b respectively for the geometry creation sources.
The memory ratio is defined as the ratio between the peak memory consumption of the differenti-
ated sources and the primal sources. The finite difference approach requires using the same memory
usage than the primal. The computation of the gradients for the geometry creation (i.e., dJt/dα⃗) is
faster using AD than the finite differences approach especially for large number of directions, but
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requires more memory.

The run time ratios and memory ratios evaluated in the range of p = 1 to p = 205 directions for
the mesh creation sources is shown in Fig. 3.15a and 3.15b respectively. In this case, the com-
putation of the gradients for the mesh creation (i.e., dJX/dα⃗) is faster using trace reverse mode
of AD than the finite differences approach for p ≥ 145 directions, but it requires using more memory.

3.4. Conclusions

This chapter presents a methodology to integrate the CAD kernel and grid generation tools within a
CFD adjoint-based optimization framework by expressing the optimization problem through CAD
parameters, rather than working directly on the CFD grid. The advantage of including the CAD
model in the design system is that higher level constraints can be imposed on the shape, allowing
the optimized model or component to be manufactured. This requires the computation of the
grid sensitivities, which can be done by differentiating the CAD kernel and grid generator with
algorithmic differentiation (AD). The use of AD allows computing the grid sensitivities to machine
accuracy and avoid the limited arithmetic precision and the truncation error of finite differences.
The differentiation is done in traceless forward and trace reverse modes of AD and is tested in
the construction of the LS89 turbine cascade geometry and fluid mesh construction. The two
dimensional profile, constructed by means of Bézier and B-spline curves, is parametrized by 24 design
parameters. The geometrical as well as grid sensitivities are obtained for each parameter, showing
the influence that some design parameters have on the profile and on the CFD grid coordinates. The
geometrical and volume grid sensitivities obtained by AD are compared against finite differences
second order central derivatives by tuning the step size. The error introduced by FD is very sensitive
to the chosen step size and its magnitude can be relatively close to the sensitivity value itself if the
step size is not chosen appropriately. Therefore, applying AD to the CAD kernel and grid generator
allows to obtain accurate sensitivities with the best machine accuracy. The design velocities are
compared to the AD surface grid sensitivities. There is a relatively large error introduced by
the design velocities. Nevertheless, the sources of error of the design velocities (i.e., truncation
error, limited arithmetic precision and mesh surface to surface projection errors) can be reduced by
choosing an appropriate step size for the computation of the design velocities. The design velocities
can match reasonably well the normal component of the AD surface grid sensitivities if the step
size is appropriately chosen. The computation of gradients for the geometry creation or the fluid
mesh creation is generally faster using the trace reverse mode of AD than finite differences, specially
when using a large number of directions, but it requires more memory. The cost of computing the
performance sensitivities using the AD reverse mode is almost independent of the number of design
variables, whereas for the AD traceless forward mode the cost is proportional to the number of
design variables. Optimization studies would be beneficial to demonstrate the integration of the
CAD in the optimization framework.
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Figure 3.13.: Run time ratio for the creation of the LS89 fluid mesh and evaluation of dJX/dα⃗
gradients with number of directions p = 1 vs. the number of smoothing iterations involved during
the fluid mesh creation. The results are based on 15 measurements.
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(a) Run time ratio (geometry sources) (b) Memory ratio (geometry sources)

Number of directions p [-]

R
un
ti
m
e
ra
ti
o
[-
]

0 50 100 150 200

50

100

150

200

250

300 Finite differences
AD traceless forward
AD trace reverse
1 + p
1 + 1.5p

Number of directions p [-]

M
em
or
y
ra
ti
o
[-
]

0 50 100 150 200
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

AD traceless forward
AD trace reverse
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LS89 geometry and evaluation of the dJt/dα⃗ gradients. The results are based on 15 measurements.
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fluid mesh and evaluation of dJX/dα⃗ gradients. The results are based on 15 measurements.



3.4. Conclusions 59

(a) Geometry sources memory consumption (b) Mesh sources memory consumption
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(a) and the mesh sources (b). The results are based on 15 measurements.





Chapter 4.

Optimization of the LS89 turbine cascade at design

point

In the previous chapter, a methodology is presented to integrate the CAD kernel and grid generator within

a CFD adjoint-based optimization framework by expressing the optimization problem through CAD pa-

rameters, rather than working directly on the CFD grid. In this chapter, the integration of the CAD in

the optimization framework is demonstrated by performing a single point optimization of the LS89 turbine

cascade. The main contents of this chapter have been published in [120] and they have also been accepted

for publication in the International Journal of Turbomachinery, Propulsion and Power [121].

Abstract. The LS89 high pressure axial turbine vane was originally designed and optimized for
a downstream isentropic Mach number of 0.9. This profile has been widely used for CFD validation
in the open literature. This chapter presents a sound methodology to design and optimize the LS89
using Computer Aided Design (CAD) at design conditions. The novelty of the study resides in
the parameterization of design space, which is done at the CAD level, and the detailed analysis
of the aerodynamic performance of the optimized design. Higher level constraints are imposed on
the shape, such as the trailing edge thickness, the axial chord length, and G2 geometric continuity
between the suction side and pressure side at the leading edge. The gradients used for the opti-
mization are obtained by applying Algorithmic Differentiation to both the CAD kernel and grid
generator and the discrete adjoint method to the CFD solver. A reduction of almost 12% entropy
generation is achieved, which is equivalent to a 16% total pressure loss reduction. The entropy
generation is reduced whilst keeping the exit flow angle as constraint, which is enforced via the
penalty formulation. The resulting unconstrained optimization problem is solved by the L-BFGS-B
algorithm. The flow is governed by the Reynolds-averaged Navier-Stokes equations and the one-
equation Spalart-Allmaras turbulence model. The optimal profile is compared and benchmarked
against the baseline case.
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4.1. Introduction

Designing and optimizing a turbine vane is a complex iterative design process that can take sig-
nificant time and effort. The use of relatively low-cost numerical shape optimization methods has
become more popular and has been widely used in turbomachinery applications. In particular,
the adjoint method enables the efficient computation of the sensitivities required by gradient-based
optimizers, at a cost independent of the number of design variables [12].

In this chapter, it is proposed to use a CAD-based adjoint-based optimization method for the
LS89 [116, 118] high pressure axial turbine nozzle guide vane profile. The LS89 was originally
designed and optimized at the Von Karman Institute for Fluid Dynamics for a subsonic isentropic
outlet Mach number of 0.9 by the inverse method [116], which is an iterative design method based
on both potential and Euler type solvers that uses the difference between the calculated velocity
distribution and the required one to modify the profile geometry. Montanelli et. al. [46] performed
both single-point and multi-point optimizations on the LS89 to reduce the total pressure losses by
constraining the outlet mass flow, whilst keeping the leading and trailing edge geometries and the
profile thicknesses fixed. The L-BFGS-B algorithm was used to explore different geometries with a
wing parameterization model. They solved the Reynolds-Averaged Navier-Stokes (RANS) equations
and the one-equation Spalart-Allmaras turbulence model. The gradients were computed assuming
that the eddy viscosity and thermal conductivity are constant. A total pressure loss reduction below
1% was achieved for the nominal case (outlet Mise = 0.927). The question arises whether the LS89
is indeed optimal, and cannot be optimized any further. This chapter addresses this and presents
an adjoint optimization of the turbine profile by using a novel CAD-based approach in which:

1. The optimal shape remains defined within the CAD tool. The optimization problem herein is
expressed by CAD parameters that are directly used in defining the CAD geometry by means
of Bézier and B-spline curves.

2. The in-house CAD and grid generation tools are automatically differentiated in forward mode
to obtain the exact derivatives of the grid coordinates with respect to the CAD-based design
parameters. This allows to accurately predict the sensitivities and circumvent the errors
introduced by finite differences.

3. Higher level constraints are imposed on the shape, such as the trailing edge thickness, the
axial chord length and the C2 geometric continuity between the suction side and pressure side
at the leading edge.

4. The exit flow angle is considered as an aerodynamic constraint and needs to be kept above a
reference value.

A computer aided design and optimization tool for turbomachinery applications (CADO) [69] is
used throughout this chapter.
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4.2. Methodology

The following subsections present a brief description of the methods employed in this chapter for
the geometry parameterization within the CAD, the grid generation, the flow solution, the flow
sensitivity aspects and the gradient computation.

4.2.1. CAD based parameterization

The construction of the turbine profile shown in Fig. 3.3 and 3.2, is based on the parameterization
described by [119]. The profile is defined by a set of CAD-based or engineering based design pa-
rameters that are relevant to the aerodynamic performance (e.g. solidity, stagger angle, etc.) and
the manufacturing requirements (e.g. axial chord length, trailing edge radius). First, a camber line
is constructed. The points PLE , Pmid, PTE define the control points of the 2nd order Bézier curve
describing the camber line. The camber line is used to define the position of the control points of the
suction side (SS) and pressure side (PS) B-spline curves relative to it. The profile is constructed by
two B-spline curves for the SS and PS and a circular arc at the TE to close the profile. The normal
distance of the first control point relative to the camber line is calculated in such a way that G2

geometric continuity (i.e. equal curvature) is maintained between the SS and PS B-splines at the
leading edge. Finally, the distance between adjacent blades in the cascade is fixed after specifying
the pitch, which can be computed for a given solidity.

4.2.2. Optimization

The purpose of the optimization algorithm (Figure 4.1) is to reduce the entropy generation J1 (Eq.
4.1) below the baseline value of J1,ref = 826.73 Pa⋅kg−1 ⋅m3 whilst maintaining the exit flow angle J2
(Eq. 4.2) above or equal to the baseline value of J2,ref = 74.83○, by modifying the design vector α⃗.
The flow state U⃗ and the design vector α⃗ are coupled via the primal flow governing equations. The
constrained optimization problem is handled with the penalty method. The penalty term becomes
active only when the exit flow angle is below the target value. The J2,f lag parameter is either set
to 1.0 or 0.0 in order to activate or deactivate the penalty term respectively. The weighed cost
function of the single point JSP optimization problem is given by Eq. 4.3. The limited memory
version of the Broyden-Fletcher-Goldfarb-Shanno algorithm with bounds (L-BFGS-B) [98] available
in the python SciPy package [99] is used to find the new design vector.

J1(α⃗, U⃗) =
∫out pρ

1−γVxdy
ṁout

(4.1)

J2(α⃗, U⃗) = atan(
Vy

Vx
)
out

(4.2)

JSP (α⃗, U⃗) =
J1

J1,ref
+ J2,f lagJ2,coef (

J2
J2,ref

− 1)

2

(4.3)
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Figure 4.1.: Optimization flow chart

4.2.3. Grid generation

A multi-block structured grid is generated for every optimization iteration. A mesh-independence
study was carried out in order to select an appropriate mesh for the optimization. The chosen fluid
mesh has 300,000 grid points approximately. One O-grid block is placed around the profile and
there are six additional H-grid blocks, four of them distributed around the profile and the remaining
two being used as the inlet and outlet blocks. The grid generation method used is described in more
detail in Sec. 2.5.

4.2.4. Flow and Adjoint solvers

The flow solver employs a cell-centered finite volume discretization on multiblock structured grids.
The three dimensional compressible RANS equations are solved with an implicit time integra-
tion scheme accelerated by local time-stepping and multigrid. The Spalart-Allmaras turbulence
model [93] is used for the turbulence closure problem assuming fully turbulent flow from the inlet
(Reinlet ≈ 2 ⋅ 105). The boundary conditions are summarized in Table 4.1 and are imposed weakly
by utilizing the dummy cell concept [94]. A constant total pressure, total temperature and inlet
flow angle are imposed at the inlet and a constant static pressure is imposed at the outlet. The
hand derived discrete adjoint solver uses constant eddy viscosity assumption. Further details about
the flow and adjoint solvers are described in Sec. 2.7.

Inlet Outlet Units
P01 = 147500.0 p2 = 87000.0 [Pa]
T01 = 420.0 [K]

atan(
Vy

Vx
) = 0.0 [deg]

Table 4.1.: Boundary conditions

4.2.5. Gradient computation

The results of differentiating the CAD kernel and grid generation tools using the AD tool ADOL-C
[9] are shown in chapter 3. In the work herein, the optimization algorithm computes the volume
grid sensitivities dX⃗/dα⃗ for every optimization step, using the forward vector mode as opposed to
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the forward scalar or reverse modes as it allows to compute dX⃗/dα⃗ in one single evaluation of the
primal at a relatively low cost.
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(b) Exit flow angle (J2).

Figure 4.2.: Adjoint vs finite difference gradients.

The performance sensitivities w.r.t the CAD design variables dJ/dα⃗ for each cost function J1

or J2 are computed by doing a scalar product of the performance sensitivities w.r.t. the volume
grid dJ/dX⃗ (ie. the derivative of the cost function with respect to the grid coordinates X⃗) with
the volume grid sensitivities dX⃗/dα⃗. A suitable step-size for each design variable was selected to
compute the gradients with finite differences and compare them against the gradients obtained by
the discrete adjoint. Figure 4.2a and 4.2b show a good agreement with finite differences for both the
entropy generation and exit flow angle. The largest performance sensitivities w.r.t. the CAD design
variables shown in these figures correspond to the design variables αj = 1 (cax) and 4 (RTE), which
do not change during the optimization because they are considered as manufacturing constraints.

4.3. Results

Figure 4.3a shows significant shape differences between the baseline and the optimal shape, the later
being a more aft-loaded profile than the baseline design. The main geometry differences between the
optimal and baseline profiles are summarised in Table 4.2. The isentropic Mach number distributions
are shown in Figure 4.3b, which shows a fairly good agreement between the Mise predicted by CFD
and the experimental data (MUR45 test condition, with downstream Mise = 0.875, see [118]) for
the baseline geometry. The density, static pressure, temperature, Mach and entropy generation
contours for the baseline and optimal shapes are shown in Sec. B.1 and B.2.1 respectively.
The L-BFGS-B algorithm converges within 20 optimization iterations. More cycles were per-

formed but no further decrease in the objective function was obtained. Despite the fact that the
mass flow for the optimal geometry has increased slightly by 1.2%, the entropy generation is re-
duced by 11.6%, whilst maintaining the exit flow angle within ±0.1% of the baseline value. As the
aft-loaded profile has significant rear suction side curvature, the flow is rapidly accelerated towards
a higher peak Mach number than the baseline design. This is followed by a deceleration from X/cax
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Figure 4.3.: Baseline and optimal profiles and isentropic Mach number comparison.

Acronyms Units Baseline Optimal (Variation)
Rear suction side turning εSS [deg] 11.6 18.37 (6.76 ○)
Pressure side trailing edge wedge angle ϕPS [deg] 2.500 2.506 (0.006 ○)
Suction side trailing edge wedge angle ϕSS [deg] 4.000 4.001 (0.001 ○)
Chord c [mm] 64.310 64.293 (0.03%)
Stagger angle γ [deg] 54.925 54.914 (−0.011 ○)
Inlet metal angle βin [deg] 0.0 0.001 (0.0010 ○)
Outlet metal angle βout [deg] 74.000 74.006 (0.006 ○)
Leading edge radius RLE [mm] 4.126 3.959 (-4.06%)
Solidity σ [-] 1.118 1.108 (-0.93%)
Pitch g [mm] 57.500 58.021 (0.91%)
Pitch/chord g/c [-] 0.894 0.902 (0.93%)
Trailing edge thickness/throat height 2RTE/t [-] 0.09133 0.08644 (-5.35%)

Table 4.2.: Geometry parameters

= 0.8 to 0.88 and a small acceleration from X/cax = 0.88 to 0.91. At X/cax = 0.91 the flow is
rapidly decelerated again and leaves the trailing edge at a significantly lower exit isentropic Mach
number. The strong deceleration towards the end of the suction side suggests that the boundary
layer will be thicker and one would expect higher profile losses.

The total pressure loss reduction between the inlet and the fully mixed-out flow at the outlet plane,
expressed via P01−P02 or by the ζ2 coefficient (see Eq. 4.4), is of the order of 16.3%. The downstream
total pressure loss profile, at the plane X/cax = 1.433, is shown in Fig. 4.4. In the vertical axis the
total pressure loss P01−P0X between the inlet and a downstream plane at x/cax = 1.433 is expressed
as a a percentage of the downstream dynamic head qX at the X/cax = 1.433 plane. This figure
shows that the total pressure loss generated in the wake is reduced significantly.
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ζ2 = 1 −
1 − (

p2
P02

)
γ−1
γ

1 − (
p2
P01

)
γ−1
γ

(4.4)

0.0 0.5 1.0 1.5 2.0
Number of pitches[-]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
01
−
P

0X

q X
[−

]

Baseline at X/cax = 1.433

Optimal at X/cax = 1.433

Figure 4.4.: Total pressure loss downstream at X/cax = 1.433

In order to understand why the optimal shape is more efficient than the baseline, the following
subsections will look into the loading, boundary layer parameters, base pressure and profile losses
for each profile.

4.3.1. Zweifel loading coefficient

The total loading, which can be expressed as the integral of the pPS−pSS over the axial chord length,
has increased by 1% for the optimal shape as a result of the 1% increase in the pitch and having
the same exit flow angle. The Zweifel loading coefficient Zw [122] is a measure of how efficiently
the profile is loaded. An efficient loaded profile would be one in which the pressure is equal to the
stagnation pressure over the pressure side and the velocity on the suction side is constant and equal
to the downstream velocity. The Zweifel’s design rule says that loss is minimized for 0.8 < Zw < 1.
Equation 4.5 was used to calculate the Zweifel loading coefficient, which increased from 0.636 for
the baseline to 0.646 for the optimal.

Zw =
∫
1
0 (pPS − pSS)

dx
cax

(P01 − p2)cax
(4.5)
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4.3.2. Boundary layer parameters

The state of the boundary layer close to the trailing edge is deemed to have an impact on the profile
losses (see Equation 4.6). Table 4.3 compares the boundary layer parameters between the baseline
and optimal shapes for two locations on the suction side: at the peak Mise location and very close
to the TE (approximately at x = 0.03m and x = 0.037m respectively, see Figure 4.3b). The latter
location is defined herein as the point of the suction side slightly upstream of the TE circle. Some
of the boundary layer parameters shown in Table 4.3 are non-dimensionalized with the trailing edge
thickness DTE = 2RTE . The boundary layer velocity profiles are shown in Figures 4.5a and 4.5b for
both locations, showing that there is no boundary layer separation.
At the peak Mise location, the boundary layer thickness δ for the optimal design is smaller than for
the baseline, as expected due to the higher acceleration. When the flow decelerates from the peak
Mise location to the point just upstream of the trailing edge circle, the boundary layer thickness
almost doubles for the baseline and triples for the optimal profile. The resulting δ of the optimal
shape is 18% thicker than the baseline. The shape factor H is higher for the optimal than for the
baseline design in both locations, which means that the optimal profile has stronger adverse pressure
gradient. The shape factor for both designs are between the typical laminar Blasius boundary layer
value (H = 2.59) and the turbulent values (H = 1.3 − 1.5).
From a boundary layer perspective, the optimal design would have higher profile losses due to the
higher thickness displacement and momentum thickness. However, there is at least one more factor
to be considered when determining the profile losses: the base pressure.
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Figure 4.5.: Boundary layer profiles on the suction side.

Units Baseline at Mise,max Optimal at Mise,max Baseline at XSS,TE Optimal at XSS,TE

δ/DTE [-] 0.501 0.390 0.939 1.11
δ∗/DTE [-] 0.104 0.079 0.206 0.346
θ/DTE [-] 0.0557 0.0405 0.1186 0.1780
H [-] 1.86 1.96 1.74 1.95

Table 4.3.: Boundary layer parameters
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Base pressure

The base pressure, which is the static pressure at the mid point of the trailing edge is known to
play an important role in the profile losses. Higher base pressures contribute to the reduction of the
profile losses. The trailing edge pressure distribution shown in Figure 4.6a shows that the optimal
shape has got 10% higher base pressure. It is generally thought that higher values of boundary layer
thickness result in higher values of base pressure [123]. Also, higher base pressures are expected
of an aft-loaded profile with significant rear suction side curvature and higher values of unguided
or uncovered turning [124]. The angle between tangents to blade suction side in the throat and at
the TE increased by 6.76 degrees when going from the baseline to the aft-loaded optimal profile.
According to the base pressure correlation given by [124], the optimal profile is expected to have
3% higher base pressure than the baseline. The percentage increase predicted by the correlation is
mainly due to the higher suction side rear curvature because the trailing edge wedge angle difference
between the baseline and optimal profiles is negligible. However, [124] showed that, for 80% of the
tested blades, there was a discrepancy between the predicted base pressures (using the correlation)
and the measured ones of the order of +/-5% of the downstream pressure. Although there are no
measurements available for the optimal profile yet, by taking this error into account, the minimum
and maximum values for the base pressure of the optimal profile can be estimated to be 5% lower
and 16.7% higher than the baseline respectively. Despite the 10% higher base pressure predicted
by RANS falls inside this range, and is in line with what would be expected of an aft-loaded profile
with significantly higher rear suction side curvature [124], only unsteady analysis and experimental
tests will be able to provide enough evidence to support these results.
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Figure 4.6.: Trailing edge (TE) pressure distributions over the pressure side (PS) and suction side
(SS). S is the arc-length distance from the TE mid-point and DTE is the trailing edge thickness
(DTE = 2RTE).

Predicting the absolute values of the base pressure correctly can be very difficult due to the highly
complex nature of the flow in the trailing edge. Vagnoli et. al. [126] showed that steady-state simu-
lations usually predict the wrong shape or distribution of pressure around the trailing edge, whereas
LES or URANS capture much better the shape and the pressure values when compared to experi-
mental data. The pressure distribution shown in Figure 4.6a is a nearly-uniform pressure around the
trailing edge, which is suspected to be different to the real pressure distribution profile. However,
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it is believed that the base pressure delta difference between two steady-state simulations, one for
the optimal and the other for the baseline profiles, is a fairly good estimate of the real difference.
The validity of this assumption has been investigated by performing two RANS simulations for the
turbine profile that was tested by [125] at Mise = 0.79 and 0.97, and comparing the base pressure
delta between these two operating conditions against the experimental data and the LES results
performed by [126] (Figure 4.6b). The base pressure delta, which is taken at S/DTE = 0 from Figure
4.6b, is 0.18 for both the experiments and RANS and 0.20 for LES. This confirms that, despite the
limitations of CFD in predicting the base pressure averaged values, RANS is able to capture very
well the relative differences in base pressure between two operating conditions.

4.3.3. Profile losses

The profile losses for incompressible flow can be related to the base pressure coefficient and the
boundary layer parameters [127], as shown in Equation 4.6. The relative effect of the base pressure
coefficient, which is computed with Eq. 4.7, is increased in compressible flow [128]. For blades
operating in the transonic range from 0.8 to 1.2, the major source of loss is the trailing edge loss at
these speeds, and the base pressure plays a dominant role in determining the loss [123]. The profile
loss split is shown in Table 4.4. The higher δ∗ and θ values of the optimal shape contribute to
increasing the profile loss. However, the reduction in profile losses due to the 302.2% increase in the
trailing edge loss term dominates and explains the overall 30% reduction in profile losses. However,
if the base pressure increase was equal or below 6.54%, the optimal shape would have similar or
higher profile losses than the baseline, respectively. The question arises whether using RANS for
the optimization of an axial turbine operating at transonic speeds is a valid approach, since the
base pressure plays such a dominant effect on the profile losses for such speeds, and the flow field
around the TE of a transonic turbine blade is too complex to be captured by RANS. Future LES
simulations and or experimental test are going to be necessary to support or reject the aerodynamic
improvements reported herein for the optimal shape.

ζp =
−CbDTE

t
+ 2

θSS + θPS
t

+ (
δ∗SS + δ

∗
PS +DTE

t
)

2

(4.6)

Cb =
pb − p2
1
2ρV

2
2

(4.7)

4.3.4. Off-Design Performance

The 16% reduction in total pressure loss shown in Table 4.5 was achieved for an outlet isentropic
Mach number of 0.9 while keeping the axial chord length and trailing edge radius fixed and exit flow
angle above 74.83○. However, the performance of the optimal profile is deemed to deteriorate signifi-
cantly for higher outlet isentropic Mach numbers. Figure 4.7 shows the total pressure loss coefficient
for different outlet isentropic Mach numbers for the baseline and optimal profiles. The total pressure
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Units Baseline Optimal Variation
−CbDTE

t [-] -0.0016 -0.0065 302.2%
2 θSS+θPSt [-] 0.0066 0.0095 43.5%

(
δ∗SS+δ∗PS+DTE

t )
2

[-] 0.0010 0.0012 21%
ζp [-] 0.0060 0.0042 -30%

Table 4.4.: Profile loss contribution for the baseline and optimal

Acronyms Units Baseline Optimal Variation
Entropy generation J1 [Pa/(kg/m3)] 826.7 731.0 -11.6%
Exit flow angle J2 [deg] 74.89 74.89 -0.01%
Mass flow ṁ [kg/s] 0.008 0.009 +1.2%
Total pressure losses P01 − P02 [kPa] 2.47 2.07 -16.3%
Downstream loss coeff ζ2 [-] 0.02986 0.02500 -16.3%
Profile losses ζp [-] 0.0060 0.0042 -30%
Zweifel coefficient Zw [-] 0.67 0.81 +21.2%
Solidity σ [-] 1.118 1.108 -0.9%
Pitch g [m] 0.0575 0.0580 +0.9%

Table 4.5.: Comparison between the baseline and optimal

loss in Fig. 4.7 is defined as the total pressure difference between the inlet and outlet divided by
the dynamic head at the outlet plane. At off-design conditions, the aerodynamic improvements of
the optimal design are reduced as the downstream isentropic Mach number is increased. Beyond
Mise,2 = 0.94, the baseline would have lower total pressure losses than the optimal profile. A detailed
aerodynamic performance study of the baseline and optimal geometries at off-design conditions is
outside the scope of this chapter but can be found in the chapter 5, where the performance of the
LS89 is significantly improved at off-design conditions.

4.3.5. Comparison with previous studies

Previous optimization studies use different approaches, settings, boundary conditions, etc., which
makes it very hard to compare this work with others. For example, the main differences with the
study performed by Montanelli et al. [46] are the following:

1. Flow conditions. The single point optimization performed by Montanelli et al. [46] was
performed at the MUR235 conditions reported in [118], which has slightly different flow con-
ditions than those used in this study (donwnstream Mise = 0.927 and 0.90, for MUR235 and
this study respectively). They also performed five single point optimizations at higher and
lower pressure ratios but the total pressure loss reduction was below 3% in the best scenario.
However, it is suspected that the difference in flow conditions might not be the main reason to
justify the differences in performance improvements observed between the optimization study
in [46] and the current study.
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Figure 4.7.: Total pressure loss coefficient for different downstream Mise,2.

2. Optimization problem definition. Some differences are expected due to the different statement
of the optimization problem. Montanelli et al. [46] reduced the total pressure losses whilst
keeping the outlet mass flow as an aerodynamic constraint (to avoid reducing the entropy
due to a mass flow reduction). Also, it was assumed that the exit flow angle would remain
unchanged by freezing the trailing edge geometry. In the present study the entropy generation
is reduced whilst keeping the exit flow angle as a flow constraint. Therefore, the objective
space is different between the two studies.

3. CAD-parameterization and design space. The design space is mainly defined by all the possible
shapes that can be created by the chosen CAD-parameterization. Both [46] and the current
study use different parameterizations of the LS89 but they use a similar number of active
design variables during the optimization. However, in the current study the trailing edge
thickness and the axial chord length are kept fixed as manufacturing constraints, whereas
[46] kept also frozen the profile thicknesses and the leading edge geometry, in order to satisfy
possible structural constraints and avoid G2 discontinuities at the LE, respectively. This
means that the CAD-parameterization used herein should have a richer design space than the
one used by [46].

4. Grid update. The mesh deformation approach to update the grid for a new set of design
variables was used in [46]. This approach computes a surface deformation field by subtracting
the initial surface to the updated surface and propagates it inside the volume grid. Typically,
the weakness of the mesh deformation approach is that it can fail to produce a good mesh for
large changes in the CAD-geometry. In contrast, re-meshing is the approach employed herein
to update the grid for every new set of design variables. The L-BFGS-B algorithm requires
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the user to provide certain bounds for the design variables. This stops the algorithm from
exploring non-possible designs which could make the mesh generation/deformation step fail
inside the optimization procedure. Although the bounds have not been reported by neither [46]
nor this study, it is suspected that the mesh deformation approach might be more sensitive to
fail for large geometry variations than the mesh generation approach. There is the possibility
that the bounds given to the L-BFGS-B algorithm by [46] might have been more restrictive
than those used herein and the optimizer might have explored a smaller design space.

4.4. Conclusions

This chapter presents a single point optimization of the LS89 axial turbine cascade vane profile for
the design downstream isentropic Mach number of 0.9. The parameterization is done at the CAD
level, which allows to impose higher level constraints on the shape, such as the axial chord length,
the trailing edge radius, and the C2 geometric continuity between the suction side and pressure side
at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes
are produced. The use of algorithmic differentiation for the CAD kernel and grid generator allows
computing the grid sensitivities to machine accuracy, avoiding the limited arithmetic precision and
the truncation error of finite differences. The optimization results show that the total pressure losses
and entropy generation can be reduced by 16% and nearly 12% respectively by going from a front
to a rear loaded profile and by keeping the exit flow angle fixed. Despite the negative effect of the
increase in boundary layer thickness displacement and momentum thickness on the profile losses,
the base pressure coefficient plays a dominant role herein and reduces the profile losses by 30%.
The substantial aerodynamic improvements reported herein have not been observed previously,
probably due to the fact that the current CAD-based parameterization allowed the exploration
of a richer design space. The relative delta in base pressure predicted by the steady simulation
between the optimal and baseline profiles is deemed to be representative of the real value, as RANS
tends to capture well the relative differences between two designs. However, unsteady studies or
experimental investigations would be beneficial in order to confirm these findings. Finally, multi-
point optimization studies would also be beneficial to improve performance of the turbine cascade
at off-design conditions.





Chapter 5.

Multipoint optimization of the LS89 turbine cascade

5.1. Abstract

In the previous chapter, the integration of the CAD in a CFD adjoint optimization framework is demonstrated
by performing a single point optimization of the LS89 turbine cascade. Large aerodynamic improvements
were reported at design point, but the performance of the turbine cascade deteriorates significantly for higher
outlet isentropic Mach numbers. This chapter builds up on the results presented by the previous chapter
by extending the study to a multi-point optimization, in order to improve the off-design performance of the
turbine cascade. The main contents of this chapter have been published in [129] and in the Springer book
[130].

Abstract. A computer-aided design (CAD) and adjoint based multipoint optimization of the
LS89 high pressure axial turbine vane is presented in this chapter. The aim is to reduce the entropy
generation at both subsonic and transonic flow conditions by means of employing CAD and adjoint
based methods during the optimization process. The performance metrics at design and off-design
conditions are grouped into a single objective function using equal weights. A steady-state Reynolds-
Averaged density based Navier-Stokes solver and the one-equation Spalart-Allmaras turbulence
model are used to predict the losses. The entropy generation is reduced whilst keeping the trailing
edge thickness and the axial chord length as manufacturing constraints and the exit flow angle
as a flow constraint, which is enforced via the penalty formulation. The resulting unconstrained
optimization problem is solved by a L-BFGS-B algorithm. At every optimization iteration a new
profile is constructed using B-splines and the grid is rebuilt by elliptic grid generation. The gradients
used for the optimization are obtained via a novel approach in which both the CAD kernel and grid
generation are differentiated using Algorithmic Differentiation techniques. The sensitivities of the
objective function with respect to the grid coordinates are computed by a hand-derived adjoint
solver. The off-design performance of the LS89 is significantly improved and the optimal geometry
is analyzed in more detail.
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5.2. Introduction

A CAD and adjoint based approach was used in [46] to perform a single and multi-point optimization
of the LS89 to reduce the total pressure losses by constraining the outlet mass flow. However, the
shape changes were constrained by keeping the leading and trailing edge geometries and the profile
thicknesses fixed. Too many geometry constraints can reduce the ability of the optimizer to find
superior designs. In chapter 4, substantial aerodynamic improvements were achieved at design point
by means of using a different parameterization and possibly richer design space because the profile
thicknesses and the leading edge geometry were free to change. A 16 % reduction in total pressure
loss was achieved whilst keeping the axial chord length, trailing edge radius and exit flow angle fixed.
However, the performance of the optimal profile deteriorates significantly at higher outlet isentropic
Mach numbers. Given that a turbomachine typically operates over a range of different aerodynamic
conditions, this chapter aims at optimizing the performance of the LS89 axial turbine profile at
off-design conditions. The design optimization is carried out by using a CAD and adjoint based
approach. In this chapter, a combination of forward AD and hand-derived reverse differentiation is
used for the grid generation and the flow solver respectively.

5.3. Methodology

The same optimization process used in chapter 4 (see Fig. 4.1) is used in this chapter to optimize
the turbine cascade at off-design conditions. The difference lies in the computation of the cost
function and the gradients. Some of the individual components of the optimization flow chart will
be discussed in more detail in this section.

The CAD-based parameterization and the geometry construction is explained in Sec. 4.2.1. The
grid generation process and the details of the flow and adjoint solvers can be found in Sec. 4.2.3
and 4.2.4 respectively. The boundary conditions are summarized in Table 5.1, which shows two
additional operating points than in Table 4.1 because, in this chapter, it is desired to optimize the
performance of the LS89 at a wider range of operating conditions. A constant total pressure, total
temperature and inlet flow angle are imposed at the inlet and a constant static pressure is imposed
at the outlet.

Inlet Outlet op = 1 Outlet op = 2 Outlet op = 3 Units
P01 = 147500.0 p2 = 87000.0 p2 = 82050.0 p2 = 77000.0 [Pa]
T01 = 420.0 [K]

atan(
Vy

Vx
) = 0.0 [deg]

Table 5.1.: Boundary conditions for the different operating points (op)

After solving the primal solver, a performance metric that is proportional to the entropy genera-
tion J1 and the exit flow angle J2 at the outlet of the domain can be computed for each operating
condition with expressions 5.1 and 5.2 respectively.
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J1 =
∫out pρ

1−γVxdy
ṁout

(5.1)

J2 = atan(
Vy

Vx
)
out

(5.2)

After non-dimensionalizing them with J1,ref = 826.73 Pa ⋅ kg−1 ⋅ m3 and J2,ref = 74.83○ they
are combined into a pseudo cost function via the penalty term method (expression 5.3), which
transforms the constrained problem in an unconstrained optimization formulation.

JMP =
3

∑
op=1

1

3
(
J1op
J1,ref

) + ω (
J2op3
J2,ref

− 1)

2

(5.3)

The left term of the pseudo cost function is a weighted average of the non-dimensional entropy gen-
eration, which is computed with equal weights for the following operating points (op): Mise,2 = 0.9

(op=1), Mise,2 = 0.955 (op=2) and Mise,2 = 1.01 (op=3). By grouping the performance metrics at
design and off-design conditions into one single objective function, the multipoint objective opti-
mization can be treated as a single objective one. The right term of expression 5.3 is the penalty
term, which becomes larger the more the exit flow angle deviates from the target value. In order
to reduce the computational effort, the penalty term is computed only for the 1.01 Mach transonic
operating point, which is the most challenging operating point when it comes to satisfy the aero-
dynamic constraint. It is assumed that the flow turning at Mise,2 = 1.01 is always smaller than at
Mise,2 = 0.9, which is later validated on the baseline and optimized profiles. The ω is the penalty
coefficient and was selected by trial and error.

After evaluating the cost function, it is necessary to compute the gradients. The adjoint solver
computes the gradients of the cost function J (e.g., entropy generation or exit flow angle) with re-
spect to the volume grid point coordinates X⃗ (i.e., dJ/dX⃗). Similarly to the flow solver, the adjoint
solver uses the same stabilization JT-KIRK scheme of [97]. The hand derived discrete adjoint solver
assumes that the eddy viscosity does not change with geometry variations (frozen turbulence). The
computation of dJ/dX⃗ is explained in more detail in Sec. 2.2.5.

Next, the performance sensitivities w.r.t the CAD parameters (dJ/dα⃗) for each cost function J
are computed by a scalar product of the performance sensitivities w.r.t the volume grid (dJ/dX⃗)
with the volume grid sensitivities (dX⃗/dα⃗) as follows:

dJ

dα⃗
=
dJ

dX⃗

dX⃗

dα⃗
. (5.4)

In this work, the AD tool ADOL-C is used to compute the volume grid sensitivities dX⃗/dα⃗
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in one single evaluation of the primal at a relatively low cost by using the forward vector mode
approach. The dJ/dα⃗ gradients were also computed by finite differences and compared against
the ones obtained with the method described in this study, showing a reasonably good agreement
(Figures 4.2a and 4.2b).
Finally, the gradients are given to the Quasi-Newton L-BFGS-B algorithm [98], which is available

in the python SciPy package [99], and it is used to find the new design vector.

5.4. Results

The optimizer performed a total number of 30 iterations, from which 12 of them were line search
iterations in order to find an appropriate step size. Figure 5.1 shows the evolution of the non-
dimensional cost functions during the optimization process after excluding the line search iterations.
The green line represents the evolution of the first term of the pseudo cost function (expression 5.3),
which has been reduced by 6.4% whilst satisfying the exit flow angle aerodynamic constraint (i.e.
J2op3/J2,ref ⩾ 1.0), which is indicated by the line with discrete points. The evolution of the non-
dimensional entropy generation for each operating point is also shown on Fig. 5.1. The optimizer
was able to improve the aerodynamic performance of the profile for each operating point, but the
largest improvements were made for the operating point with a downstream isentropic Mach num-
ber of 1.01.

Iteration

J/
Jr
ef

0 5 10 15

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4
Av - Entropy generation
M0.9 - Entropy generation
M1.01 - Entropy generation
M0.955 - Entropy generation
M1.01 - Exit flow angle

Figure 5.1.: Cost functions evolution

Figure 5.2 compares the baseline and the multipoint optimal profiles and Table 5.2 summarizes
the main geometrical changes. The multipoint optimization results show that the differences be-
tween the baseline and the optimal shapes are much smaller than those observed for the single
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point optimization in the previous chapter (see Fig. 4.3a and Tab. 4.2). For instance, the pitch of
the single point optimal profile was increased by 0.91 % but only 0.32% for the multipoint optimal
profile. The leading edge radius was reduced by 4.06% for the single point optimal shape but only
0.71% for the multipoint optimal shape. Also, the rear suction side turning, which is defined here
as the angle between a line tangent to the geometric throat and a line tangent to the start of the
trailing edge circle at the suction side, increased by 6.76% for the single point optimal shape but as
little as 0.35% for the multipoint optimal shape. However, the relatively small geometry changes
have quite a substantial effect on the aerodynamic performance as it will be shown in the following
sections.
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Figure 5.2.: Geometry comparison of the baseline and multipoint optimal profiles

Acronyms Units Baseline Multipoint optimal Variation
Rear suction side turning εSS [deg] 11.6 13.0 1.4○

Pressure side trailing edge wedge angle ϕPS [deg] 2.500 2.498 −0.0022 ○

Suction side trailing edge wedge angle ϕSS [deg] 4.000 4.002 0.002 ○

Chord c [mm] 64.310 64.254 -0.09 %
Stagger angle γ [deg] 54.925 54.890 −0.035 ○

Inlet metal angle βin [deg] 0.0 0.0032 0.0032 ○

Outlet metal angle βout [deg] 74.000 73.981 −0.0190 ○

Leading edge radius RLE [mm] 4.126 4.097 -0.71 %
Solidity σ [-] 1.118 1.114 -0.40 %
Pitch g [mm] 57.500 57.683 0.32 %
Pitch/chord g/c [-] 0.894 0.898 0.41 %
Trailing edge thickness/throat height DTE/t [-] 0.09133 0.09131 -0.02%

Table 5.2.: Comparison of the main geometrical changes between the baseline and multipoint opti-
mal profiles
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5.4.1. Isentropic blade Mach number comparison

Figure 5.3a shows a reasonably good agreement between the CFD prediction of the baseline isen-
tropic blade Mach number and the experimental data at MUR45 test conditions [118]. Figures 5.3b,
5.3c and 5.3d compare the isentropic Mach number distribution of the baseline and the multipoint
optimal profiles for a downstream isentropic Mach number of 0.9, 0.955 and 1.01 respectively. Figure
5.3d shows that a shock is located approximately at X/cax = 0.95 for the baseline. The optimizer
was able to reduce slightly the suction side peak Mach number from 1.145 to 1.129 and moved
the peak Mach number location from X/cax = 0.9 to X/cax = 0.95. The density, static pressure,
temperature, Mach and entropy generation contours for the baseline and optimal shapes are shown
in Sec. B.1 and B.2.2 respectively.
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Figure 5.3.: CFD validation (a) and isentropic Mach number plots for downstream Mise,2 = 0.9
(b), Mise,2 = 0.955 (c), Mise,2 = 1.01 (d)
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5.4.2. Boundary layers

The boundary layer velocity profiles are shown in Figs. 5.4a and 5.4b for the baseline and multipoint
profiles at different downstream isentropic Mach numbers at a location very close to the TE for the
suction side (x = 0.037m) and the pressure side (x = 0.036m) respectively. The latter locations are
defined as the points slightly upstream of the TE circle at the suction side and pressure side, as
indicated by the arrows in Figs. 5.4a and 5.4b. The boundary layer profiles show that there is no
boundary layer separation.

The boundary layer displacement thickness, momentum thickness and shape factor for different
Mach numbers are shown in Figs. 5.5a -5.5d at the same locations for the suction side and pres-
sure side. The multipoint optimal profile has smaller boundary layer displacement thickness and
momentum thickness than the baseline at the pressure side location for the entire Mach range (see
Figs. 5.5b and 5.5d), which is good for low profile losses. At the suction side these parameters are
above or below the baseline parameters depending on the Mach number. In general, the boundary
layer displacement thickness and momentum thickness of the multipoint optimal design are lower
than the baseline for Mach numbers above 0.96 approximately.

Figures 5.5e and 5.5f show the shape factors at the start of the trailing edge on the suction
side and pressure side respectively. A higher shape factor means that there is a stronger adverse
pressure gradient. The shape factor for the baseline design at both the suction side and pressure
side locations is in between the typical laminar Blasius boundary layer value (H = 2.59) and the
turbulent values (H = 1.3 − 1.5). The multipoint optimal design has also a shape factor in between
the laminar and the turbulent values, except for the pressure side where the shape factor is above
the typical Blasius boundary layer value.
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Figure 5.4.: Boundary layer profiles close to the trailing edge
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5.4.3. Losses

The main mechanisms of entropy creation in the LS89 turbine cascade are the viscous friction in
the boundary layers and shear layers. The profile losses are usually taken to be the losses generated
at the blade boundary layers and the loss arising at the trailing edge. Figures 5.7a - 5.7d show the
entropy generated close to the trailing edge w.r.t the entropy at the inlet boundary for the baseline
and multipoint optimal designs at different Mach numbers. A comparison between Fig. 5.7a and
Fig. 5.7b or between Fig. 5.7c and Fig. 5.7d shows that the multipoint optimal design generates
lower losses than the baseline design, specially in the region where the suction side and the pressure
side boundary layers mix downstream of the trailing edge.

For incompressible flow, Denton [127] expressed the profile losses by Eq. 5.5, which relates the
base pressure coefficient, the boundary layer parameters, the throat distance and the trailing edge
thickness. The base pressure coefficient is computed with Eq. 5.6, and its effect is increased in
compressible flow [128].

ζp =
−CbDTE

t
+ 2

θSS + θPS
t

+ (
δ∗SS + δ

∗
PS +DTE

t
)

2

(5.5)

Cb =
pb − p2
1
2ρV

2
2

(5.6)

The first term of Eq. 5.5 accounts for the downstream mixing losses due to the differences be-
tween the average pressure across the channel exit p2 and the pressure at the base of the trailing
edge pb. The second term of Eq. 5.5 represents the mixed out loss of the boundary layers on the
blade surface just before the trailing edge for a zero trailing edge thickness. The third term of Eq.
5.5 represents the losses arising from a sudden expansion at the trailing edge due to the combined
blockage of the trailing edge and the boundary layers. Figures 5.6a-c show the magnitude of each
term as a function of the downstream isentropic Mach number. The mixed out loss of the boundary
layers plays a dominant role in the profile losses (Fig. 5.6b), followed by the downstream mixing loss
(Fig. 5.6a) and the trailing edge blockage loss (Fig. 5.5c). Figure 5.6d shows that the profile losses
of the multipoint optimal design are lower than the baseline for the entire range of Mach numbers
analysed in this chapter. The base pressure of the baseline and optimal designs is higher than the
outlet static pressure (i.e., pb > p2), which is good for low profile losses. However, the greatest re-
duction in profile losses does not come from the downstream mixing losses. The multipoint optimal
design has lower profile losses than the baseline for the entire Mach range mainly due to the lower
mixed out loss of the boundary layers (Fig. 5.6b) and the lower trailing edge blockage loss (Fig.
5.6c).

Table 5.3 shows a summary of the main changes in entropy generation, exit flow angle, mass flow,
and total pressure losses (P01 − P02), for the three selected operating points. The largest aerody-
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namic improvements were achieved for the transonic operating point where the total pressure loss
reduction was of the order of 14.06 %. The mass flow changes are kept within a reasonable limit
and the exit flow angle is in all the three operating points above the baseline value.

Figure 5.8 shows the total pressure loss coefficient at off-design conditions for the baseline, sin-
gle point (from chapter 4) and multipoint optimal profiles, which is defined as the total pressure
difference between the inlet and outlet divided with the dynamic head at the outlet plane (i.e.
q2 = P02 − p2). The total pressure loss coefficient shown in Fig. 5.8 includes the irreversibilities in
a compressible flow, such as the appearance of shock waves at high downstream isentropic Mach
numbers. The single point optimal profile targets only low losses at theMise,2 = 0.9 operating point.
At off-design conditions, the aerodynamic performance of the single point optimal profile is reduced
as the downstream isentropic Mach number is increased. Below Mise,2 = 0.94, the single point
optimal profile would yield the lowest total pressure losses. However, beyond Mise,2 = 0.94 the per-
formance deteriorates rapidly, and the baseline would have lower total pressure losses than the single
point optimal profile. In contrast, the multipoint optimal profile has lower total pressure losses than
the baseline at off-design conditions for the whole Mach number range analysed in the present study.

Operating point Mise,2 = 0.9 Mise,2 = 0.955 Mise,2 = 1.01

Entropy generation variation -1.92 % -0.96% -13.79%
Exit flow angle variation 0.05 % 0.16 % 0.17 %
Mass flow variation 0.12 % -0.36 % -0.05 %
Total pressure losses variation -1.98 % -5.94 % -14.06 %

Table 5.3.: Changes in performance at the different operating points

5.5. Conclusions

This chapter presents a multipoint optimization of the LS89 axial turbine vane profile for a down-
stream isentropic Mach number of 0.9 (design point), 0.955 and 1.01. By keeping the CAD repre-
sentation in the optimization loop, it is not necessary to convert the optimal grid back to a smooth
CAD shape and it is possible to impose higher level constraints on the shape, such as axial chord
length, trailing edge radius and second order derivative continuity at the leading edge. The off-
design performance of the LS89 was significantly improved. The largest aerodynamic improvements
were achieved at the transonic operating point where the total pressure losses were reduced by 14%
whilst keeping the exit flow angle fixed. A comparison between the multipoint and the single point
optimal designs shows that the blade with a lower rear suction side turning (i.e. the multipoint op-
timal shape) can generate lower losses at transonic operating conditions than the blade with higher
rear suction side curvature (i.e. single point optimal profile). However, the single point optimal
design can generate lower losses if it operates at subsonic downstream isentropic Mach below to
0.935.
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Figure 5.7.: Entropy generation contour at the trailing edge for the baseline and multipoint optimal
design for Mise,2 = 0.90 and Mise,2 = 1.01
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Chapter 6.

A novel definition of parametric effectiveness for

CAD-based optimization

In chapters 4 and 5 the CAD is integrated in a CFD and adjoint based optimization framework to improve
the LS89 turbine cascade aerodynamic performance at design and off-design conditions respectively. How-
ever, the question arises whether the parameterization defined at the CAD level is fit for the optimization,
or larger aerodynamic gains could be achieved by changing the parameterization. In this chapter, a novel
parametric effectiveness indicator is defined, which aims to rate the quality of the CAD-based parameteri-
zation for optimization purposes.

Abstract. This chapter presents a new methodology to rate a CAD-based parameterization for
optimization. CAD-based approaches have the advantage to represent the optimal shape in the
industry accepted format for manufacturing. However, the success of a CAD-based optimization
framework highly depends on the expertise and skill of the designer, and often it is not obvious
which parameters should be chosen for the optimization to move the model boundary in the di-
rection indicated by the adjoint sensitivities. Furthermore, the choice of the CAD parameters
constraints how the model boundary can change, and a poor choice may prevent the exploration of
innovative geometries. For this purpose, the parametric effectiveness is defined to rate the CAD-
based parameterization in terms of its ability to produce a shape change that is aligned with the
adjoint sensitivities. The parametric effectiveness takes into account the non-orthogonality of the
design variables and uses accurate geometric sensitivities provided by algorithmic differentiation.
The methodology is extended to constrained optimization problems where the constraints can be
of any type: geometrical, aerodynamic, structural, etc. The method will be tested to rate dif-
ferent CAD-based parameterizations of the LS89 turbine cascade and to select four of them for
optimization at design point. Large aerodynamic improvements are achieved whilst keeping the
aerodynamic constraints satisfied (e.g. exit flow angle and/or mass flow). The trailing edge and
axial chord length are kept as manufacturing constraints. The flow is governed by the Reynolds-
averaged Navier-Stokes equations and the one-equation Spalart-Allmaras turbulence model.
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6.1. Introduction

A product design in an industrial framework typically starts by creating a computer-aided design
(CAD) geometry and by iteratively changing it until the optimal geometry is found and delivered
to manufacturing. Two categories of optimization algorithms can be used in order to find the
best performing geometry: gradient-free or gradient based. Gradient-free approaches require the
standard output of the computer aided engineering (CAE) packages used in the design chain, such
as the total pressure losses or the von misses maximum stresses. Despite these methods can find
the global optimum in the design space, gradient-free approaches lack speed of convergence to the
optimum. Since the CFD analysis can take very long run times and often very rich design spaces
are needed, the gradient-free approach can become extremely expensive for industrial applications.
In this regard, the use of gradient-based approaches is desirable, since they are computationally
efficient specially for large number of design variables. However, this requires computing the gradi-
ents of the objective function with respect to each design variable. Typically, these gradients can
be computed using finite-differences by computing the objective function change due to the change
of a parameter. However, the cost of computing these derivatives is proportional to the number of
design variables and this can become impractical for test cases with very large number of design
variables. This issue can be resolved by using CFD adjoint methods [31–34] as they can compute
gradients with respect to a large number of design variables at near-constant computational cost
and very similar to the primal flow computation.

Choosing a suitable parameterization is important for at least two reasons. First, it can reduce
the post-processing efforts to deliver an optimal shape feasible for manufacturing. Also, since the
choice of the CAD parameters constraints how the model boundary can change, a poor choice may
prevent the exploration of innovative geometries. In general, the parameterization of the geometry
can be done at either the grid level or within the computer-aided design (CAD) environment. In
the former case, a common approach is to use the grid point coordinates as design variables [3–5],
which offers a very rich design space but the connection to the CAD geometry is lost and it can
be very complex and time consuming to transform the optimal shape defined by grid points back
to smooth CAD shape [6, 7]. Also, using the grid coordinates as design variables can be quite
challenging in a multi-disciplinary design optimization where different meshes might be required by
each CAE package. Alternatively, the advantage of parameterizing the CAD model in the CAD
system is that higher level constraints can be imposed on the shape, allowing the optimized part to
be manufactured. The downside of using CAD model parameters is that its success highly depends
on the expertise and skill of the user, and often it is not obvious from the parameterization which
parameters should be chosen for the optimization that would allow to achieve the desired shape
change that the adjoint sensitivities dictate. It is therefore of vital importance to quantify how
suitable is a set of CAD-based design parameters for use in optimization.

Robinson et. al. [106] introduced the concept of parametric effectiveness of a CAD model, in order
to rate the quality of the parameters of a CAD-based model for use as optimization variables. The
parametric effectiveness as defined by Robinson et. al. [106] is computed as the ratio between the
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maximum change in performance that can be achieved using existing parameterization ∆JCAD,OBM

(Eq. 6.6), to the maximum performance improvement that could be obtained if the model is not
constrained by any parameterization and follows the shape changes dictated by the adjoint sensi-
tivities ∆Jideal,OBM (Eq. 6.5). The authors in [106] normalize the changes in performance that
are used to compute the parametric effectiveness with respect to an overall boundary movement
(OBM), which is defined as a unit root mean squared movement of the boundary. This ensures that
the parameters moving an area of low sensitivity by a large amount will not be favoured compared
to the parameters causing a small localised movement in the areas of high sensitivity, even if they
have a high performance sensitivity dJ/dα.

In this chapter, a novel methodology is presented to compute the parametric effectiveness with-
out any constraint on the boundary movement and the direction of gradient as used in [106]. The
exact grid sensitivities are calculated by differentiating the CAD kernel and grid generator using
Algorithmic Differentiation (AD), and is developed to deal with constrained optimization problems.
Different CAD parameterizations of the LS89 turbine cascade [117, 118] will be rated using the
parametric effectiveness defined in this work and in [106]. Finally, the LS89 will be optimized using
different parameterizations and the chosen parameterization will remain fixed during the optimiza-
tion.

6.2. Methodology

6.2.1. Adjoint methods

The adjoint method has been extensively developed in the last two decades and has been used as
an efficient tool for computing performance gradients for a large number of design variables [31–34].
The underlying theory of adjoint methods is presented in Sec. 2.2.5.

6.2.2. Algorithmic differentiation of CAD kernel and grid generator

The application of the adjoint method to the CFD solver allows an efficient computation of dJ/dX⃗,
the sensitivity of the objective function with respect to grid point movement. In a CAD based
approach, however, the grid movement is controlled by a limited set of design variables α⃗; this is
more restrictive than if the grid points on the shape surface are allowed to be changed independently.
In the following we denote X⃗S as the grid points on the shape surface, which are a subset of the
full grid X⃗. We distinguish two parameterization approaches:

• a node based approach, where each surface grid point X⃗S is a design variable

• a CAD based approach, where for less CAD parameters α⃗ control the grid point movement
X⃗S

The full grid X⃗ is constructed based on the grid boundary X⃗S through, in this work, applying
an elliptic smoothing algorithm [79]. This defines the relation X⃗(X⃗S) and can be differentiated to
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obtain dX⃗/dX⃗S , or in other words the sensitivity of internal mesh points to a boundary grid point
movement. These sensitivities allow computing dJ/dX⃗S by

dJ

dX⃗S

=
dJ

dX⃗

dX⃗

dX⃗S

(6.1)

The projection step from the performance sensitivities w.r.t. the volume grid dJ/dX⃗ to the sur-
face grid dJ/dX⃗S is done by applying Algorithmic Differentiation (AD) to the grid generation in
reverse mode. In this work, the reverse mode of AD is used to record the grid generation operations
from the surface mesh coordinates X⃗S to the volume mesh coordinates X⃗ in a tape. Therefore, the
term dJ/dX⃗S is obtained by evaluating the tape in reverse mode whilst seeding the outputs X⃗ with
the term dJ/dX⃗.

For the node based approach, dJ/dX⃗S is the end station. For a CAD based approach, however,
the performance sensitivities w.r.t. the surface grid dJ/dX⃗S need one step of further projection to
obtain dJ/dα⃗ (Eq. 6.2). For this the relation X⃗S(α⃗), or the definition of the surface grid nodes
based on the CAD parameters α⃗, needs to be differentiated leading to dX⃗S/dα⃗. This is typically
done by using finite differences [15, 16]. However, the accuracy of the gradients is dependent upon
the chosen step-size for each design variable. Moreover, it is not guaranteed that the topology of
the CAD and the grid will remain the same after perturbing the design variable.

dJ

dα⃗
=
dJ

dX⃗S

dX⃗S

dα⃗
(6.2)

6.2.3. Constrained optimization problem

A simple optimization problem with constraints can be represented as

min J(α⃗),

w.r.t α⃗,

s.t. g1(α⃗, U⃗) > 0,

g2(α⃗, U⃗) = 0.

(6.3)

In a constrained optimization problem, the motive is not only to increase the performance but
also to meet the constraints imposed by the system. When the constraints are not satisfied, an
efficient way to compute the constrained performance sensitivities w.r.t the surface grid (dJ/dX⃗S)c

is required. These are the sensitivities that allow a reduction of the objective function without
violating the constraints. The solution proposed here is based on the principle of the projected
gradient method, which is illustrated in Fig. 6.1. The grey area of Fig. 6.1 represents the design
space in which the constraint is satisfied and the border of the grey area represents the constraint
hyperplane surface.
Suppose that the vectors ∇⃗J = dJ/dX⃗S and ∇⃗g1 = dg1/dX⃗S contain the performance sensitivities

for the objective function and the constraint respectively w.r.t. the surface grid. The sensitivity
vector ∇⃗J can be expressed as a sum of two vectors ⃗∇Jc1 and ⃗∇Ju1, where ⃗∇Ju1 is the component
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Figure 6.1.: Principle of the projected gradient method.

of ∇⃗J in the direction of the constraint ∇⃗g1 and ⃗∇Jc1 the component orthogonal to the constraint
∇⃗g1. ⃗∇Jc1 is thus the portion of the gradient which satisfies the constraints and can be computed
as follows

⃗∇Jc1 = ∇⃗J − ⃗∇Ju1 = ∇⃗J −
∇⃗J ⋅ ∇⃗g1

∣∣∇⃗g1∣∣2
∇⃗g1 (6.4)

⃗∇Jc1 thus contains the sensitivities which improve the objective function without violating the
constraints. For a constrained optimization problem with multiple constraints, we need to project
the sensitivities to the hyperplane orthogonal to all the constraint gradients, as shown by the algo-
rithm 1.

Algorithm 1: Projected gradient method to compute the constrained performance sensitivities
w.r.t. the surface grid
Data: Performance sensitivities for the objective function ∇⃗J and the constraints ∇⃗gi for

i = 1, ..., nc w.r.t. the surface grid, where nc is the total number of constraints
Result: Constrained performance sensitivities w.r.t the surface grid ∇⃗Jc

1 Initialize performance sensitivities w.r.t the surface grid ∇⃗Jc = ∇⃗J ;
2 for i = 1; i ≤ nc; i + + do
3 Update constrained performance sensitivities w.r.t the surface grid ∇⃗Jc = ∇⃗Jc −

∇⃗Jc⋅∇⃗gi
∣∣∇⃗gi∣∣2 ∇⃗gi

4 end
5 Return ∇⃗Jc ;

6.2.4. Parametric effectiveness

In a grid-based parameterization every grid coordinate is allowed to move during the course of the
optimization. However, in a CAD-based parameterization there is an additional constraint that
imposes the surface grid nodes to lie on the bounding surfaces of the CAD model. Imagine that we
have a set of CAD design variables α1, α2, ..., αn. The design movements or shape modes that can be
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achieved for each design variable are dictated by dX⃗/dα1, dX⃗/dα2, ..., dX⃗/dαn as shown in Fig. 6.2.

dX
dα1

dX
dα2

dX
dαn

... dX
dα

ideal

Figure 6.2.: Individual shape modes and ideal design movement.

In order to achieve the maximum gain/reduction in the objective function J , the surface grid
points are required to be moved in the ideal direction given by the performance sensitivities w.r.t.
the surface grid (dJ/dX⃗S). However, when moving from a grid-based to a CAD-based parame-
terization it may not be possible to move every single grid point in the exact desired direction as
dictated by (dJ/dX⃗S). The need to rate the CAD-based parameterization, in terms of its ability
to produce a shape change governed by what the adjoint sensitivities dictate, gave birth to the
definition of parametric effectiveness by Robinson et. al. [106]. The parametric effectiveness was
proposed by Robinson et. al. [106] as the ratio of the change in performance achieved by perturbing
all the parameters in the steepest descent direction (i.e. ∆JCAD,OBM ), subject to the constraint of
an overall unit root-mean-squared boundary movement, to the maximum performance improvement
that could be obtained if the model is free to follow the shape changes dictated by the adjoint sen-
sitivities subject to the OBM constraint (i.e. ∆Jideal,OBM ). The parametric effectiveness ranged
from 0 to 1, where a higher value (∼ 1) indicated that the model parameters are capable to change
the shape close to that predicted by the performance sensitivities w.r.t. the surface grid and vice-
versa. The detailed mathematical derivation about the methodology can be found in [106], and
only a summary of the important equation is presented here.

The optimum performance change (∆Jideal,OBM ) per unit of root-mean-square design velocity,
for a model which is not constrained by any parameterization can be computed as

∆Jideal,OBM = −

√

A∫
A
φ2dA (6.5)

where A is the total surface area of the model over the discretized facets and φ are the performance
sensitivities w.r.t. the surface grid per unit of area for an objective function J .

The assumption that the optimum performance using the CAD parameterization can be achieved
by perturbing the parameters in the steepest descent direction [106] allows to compute the optimum
performance change as

∆JCAD,OBM = −

¿
Á
Á
ÁÀ

A

∫A (∑
n
i=1 SiVni)

2
dA

n

∑
i=1

(Si)
2

(6.6)
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where Si are the performance sensitivities w.r.t. the CAD parameters and Vni are the design
velocities. The parametric effectiveness (PE) defined by Robinson et. al. [106] was then calculated
as

PE =
∆JCAD,OBM

∆Jideal,OBM
(6.7)

Using the constraint on boundary movement, authors in [106] were able to penalise the parameters
which moved a larger part of boundary in the low sensitivity regions. Later in [107], authors showed
that using this measure of PE it was possible to localize the boundary movement in the areas of
high sensitivities.
An alternative definition of parametric effectiveness is proposed in this thesis, which removes

the OBM constraint. Also, the parametric effectiveness is extended to constrained optimization
problems where the constraints can be of any type: geometrical, aerodynamic, structural, etc.
The new definition of parametric effectiveness is illustrated in Fig. 6.3, which shows the shape
modes (dX⃗/dα1, dX⃗/dα2) of a two-design variable CAD-based parameterization. Ideally, the de-
sign movement would be the direction dictated by the constrained performance sensitivities w.r.t.
the surface grid (dJ/dX⃗S)c. However, all the possible design movements that can be achieved due
to the constraints imposed by the CAD-based parameterization on the boundary are contained in
a hyperplane (grey area of Fig. 6.3). From all the possible design movements contained within the
hyperplane defined by the basis (dX⃗/dα1, dX⃗/dα2, ..., dX⃗/dαn), the best possible design movement
(dX⃗/dα)best that a CAD-based parameterization can produce due its constraints is the projection of
the constrained performance sensitivities w.r.t. the surface grid on the hyperplane. (dX⃗/dα)best can
be expressed as a linear combination of grid sensitivities which are multiplied by individual scalars
λi (see Eq. 6.8). Therefore, we need to solve Eq. 6.9 for the λi that yield a design movement as close
as possible to the ideal one, which is dictated by (dJ/dX⃗S)c. In this regard, the new parametric
effectiveness can be defined as an indicator that rates the ability of a set of CAD parameters to
produce the shape change in the direction that (dJ/dX⃗S)c dictate. The parametric effectiveness
ranges between zero and one. If the value of parametric effectiveness is one, this means that the
CAD parameterization is capable to move every grid point on the boundary in the ideal direction
and thus (dJ/dX⃗S)c is contained in the hyperplane spanned by dX⃗/dα1, dX⃗/dα2, ..., dX⃗/dαn.

⎛

⎝

dX⃗

dα

⎞

⎠
best

=
n

∑
i=1
λi
dX⃗

dαi
(6.8)

n

∑
i=1
λi
dX⃗

dαi
=
⎛

⎝

dJ

dX⃗S

⎞

⎠
c

(6.9)

Eq. 6.9 can be re-written as Eq. 6.10, where A is a matrix that contains the grid sensitivities
dX⃗/dαi, λ⃗ is a vector containing the λi’s and b⃗ is a vector containing the constrained performance
sensitivities w.r.t. the surface grid (dJ/dX⃗S)c.

Aλ⃗ = b⃗ (6.10)

Since the size of A is m × n with m > n, the system of equations expressed in Eq. 6.10 is over-
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Figure 6.3.: Best possible design movement due to the constraints imposed by a CAD-based
parameterization that uses two design variables (α1, α2)

determined, and can be solved using least-square approximation with the smallest norm of the
residual r⃗ = Aλ⃗ − b⃗. The required solution λ⃗ can be computed as

ATAλ⃗ = AT b⃗ (6.11)

λ⃗ = (ATA)
−1AT b⃗ (6.12)

Fig. 6.2 shows that perturbing each design variable αi produces a particular design movement
on the surface. Two variables that produce similar design movements on the surface cannot be con-
sidered independent from each other, since the shape modes they produce are not orthogonal. In
the method presented above the cross-dependency terms dX⃗S/dαi ⋅ dX⃗S/dαj appear inside the off-
diagonal terms of the matrix ATA. If dX⃗S/dαi ⋅ dX⃗S/dαj ≠ 0, the two basis dX⃗S/dαi and dX⃗S/dαj

are not orthogonal to each other.

The square matrix N = ATA, which is often called the Gram matrix (or Grammian) [131], has
size n × n and its inverse can be computed using Single Value Decomposition (SVD). In this work,
a two-sided Jacobi R-SVD decomposition [132] is used to compute the inverse of the matrix ATA
and solve Eq. 6.12.

After computing the least-square solution λ⃗, the parametric effectiveness can be computed as the
scalar product of the best possible movement and the adjoint vectors, divided by each of its norms
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(Eq. 6.13). If the best possible movement Aλ⃗ is equal to b⃗, the parametric effectiveness would be
unity, in which case the CAD parameterization would provide performance improvement which will
be similar to grid-based parameterization.

ηglobal =
abs((Aλ⃗) ⋅ b⃗)

∣∣Aλ⃗∣∣ ⋅ ∣∣⃗b∣∣
(6.13)

Equation 6.13 can be used to compute the parametric effectiveness of a group of n CAD de-
sign variables, in terms of their ability to move the shape boundary according to what the adjoint
sensitivities dictate. However, this equation can also be used to find out which parameters are
individually the most effective ones. The only difference in the procedure described above (Equa-
tions 6.8 - 6.13) is that, in the particular case where n = 1, the matrix A has size m × 1 and the
vector λ⃗ becomes a scalar. Therefore, the individual parametric effectiveness of a CAD parameter
is computed with Eq. 6.13 but with only one active design variable (n = 1).

6.2.5. CAD-based parameterization

The LS89 baseline geometry shown in Fig. 6.4 has a constant cross-section in the spanwise direction
of the vane. The parameterization of LS89 used in this chapter (Fig. 6.5) is similar to that one used
in Sec. 3.2.1 but with additional degrees of freedom (the position of the individual control points).
The control points distribution in the streamwise direction (i.e., uiSS and uiPS) defines the position
of the control point in the tangent direction to the camber line and the control point thickness
distribution (i.e., tiSS and tiPS) defines it in the normal direction.

Figure 6.4.: LS89 vane geometry.

6.2.6. Sets, subsets and most effective susbsets

A set is the group of design variables (DV) contained by the CAD-based parameterization. In con-
trast, a subset is defined as a part of a set of design variables. In this chapter, three different sets are
created: a set of 35DV and two sets of 43DV (named SS9PS9 and SS14PS4). Also, many different
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subsets of DV are created from the before mentioned sets. The different groups of design variables
will be rated by the parametric effectiveness later in order to show which set or subsets are more fit
for optimization purposes, and this will be later demonstrated by performing an optimization using
the different sets and subsets.

Five different subsets of the full set of 35DV are created by selecting which design variables are
considered to be active during the optimization. Table 6.1 shows which parameters are active in
each subset. Subset 5 contains the lowest number of DV (i.e., 7DV).Subset 4 contains all the active
DV of subset 5 plus the pressure side thicknesses (i.e. 11DV). Subset 3 contains all the active DV
of subset 5 plus the suction side thicknesses (i.e. 16DV). Subset 2 contains the DV of subset 5 plus
both the pressure and suction side thicknesses (i.e. 20DV). In subset 1, all the DV of the full set
are active except the axial chord length and the trailing edge radius (i.e. 33DV). The relationship
between the different subsets is illustrated in Fig. 6.8, as it shows which subsets include the design
variables of other subsets. The subset that includes all the other subsets is subset 1, as illustrated
in Fig. 6.8. The full set of 35DV contains all the design variables of subset 1 plus the axial chord
length and the trailing edge radius.

The two sets of 43DV (SS14PS4 and SS9PS9) are shown in Figs. 6.6 and 6.7. The SS14PS4 and
SS9PS9 CAD-based parameterizations were created after inserting 5 knots equally spaced on the
suction side and the pressure side B-spline curves respectively, by using the knot insertion algorithm
described in [76]. In this way, the set SS14PS4 has 14 suction side thicknesses and 4 on the pressure
side, whereas the set SS9PS9 contains 9 thicknesses on both the suction and pressure sides. Fig.



6.2. Methodology 99

6.9 shows that the only active parameters that are shared between the set of 35DV and the sets of
43DV are those parameters contained in subset 5.

Assuming that the objective space is convex, a final shape with worse performance is expected to
be found by the optimizer if we use a subset of CAD parameters instead of the full set (as shown
in [107] for the S-bend duct optimization). This is because the optimizer explores a richer design
space when using the full parametric CAD model during the optimization. However, using a subset
of CAD design variables for the optimization has at least the following advantages: (1) the update
of the CAD model during the course of the optimization can be faster [107]; (2) the optimizer
converges faster to the optimum shape when using a coarse design space than when using a very
fine design space [108]. For these reasons, sometimes it is desired to reduce the number of design
variables to be used in the optimization. However, the designer does not always know a priori which
design variables should be excluded from the optimization. In this context, the parametric effec-
tiveness can also be used to indicate which are the most effective CAD parameters for optimization,
in terms of their ability to move the boundary in the direction that the adjoint solution dictates.
Finding the most effective subset of a set of parameters involves following two steps: (1) compute
the individual parametric effectiveness of each CAD parameter αi inside the set using Eq. 6.13
(with n = 1); (2) group all the CAD parameters with an individual parametric effectiveness above
1% as the most effective subset. Therefore, the most effective subset is defined as the group of CAD
based parameters from a set that have an individual parametric effectiveness above 1%. The most
effective subsets of the set SS14PS4 is illustrated in Fig 6.10.

Design parameter Full set of 35DV Subset 1 (33DV) Subset 2 (20DV) Subset 3 (16DV) Subset 4 (11DV) Subset 5 (7DV)
Solidity (σ) 1 1 1 1 1 1
Stagger angle (γ) 1 1 1 1 1 1
Leading edge radius (RLE) 1 1 1 1 1 1
Trailing edge wedge angle SS (ϕSS) 1 1 1 1 1 1
Trailing edge wedge angle PS (ϕPS) 1 1 1 1 1 1
Inlet metal angle (βin) 1 1 1 1 1 1
Outlet metal angle (βout) 1 1 1 1 1 1
PS thicknesses (t1PS , ..., t

4
PS) 1 1 1 0 1 0

SS thicknesses (t1SS , ..., t
9
SS) 1 1 1 1 0 0

PS streamwise position (u1PS , ..., u
4
PS) 1 1 0 0 0 0

SS streamwise position (u1SS , ..., u
9
SS) 1 1 0 0 0 0

Trailing edge radius (RTE) 1 0 0 0 0 0
Axial chord length (cax) 1 0 0 0 0 0

Table 6.1.: Active CAD parameters in each set and subset. The active ones are represented by 1’s
and the non-active by 0’s.
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Figure 6.8.: Circles showing which subsets include the design variables of other subsets.
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Figure 6.9.: Circles showing which subset of design variables is shared between the sets of 35DV
and 43DV.

6.2.7. Optimization

In this chapter, some of the different sets and subsets of design parameters shown in Sec. 6.2.6
are used for optimization. The Sparse Nonlinear OPTimizer (SNOPT) version 7.6 is used, which
is a software package specially useful for solving large-scale optimization problems (constrained or
unconstrained) that is based on a sparse Sequential Quadratic Programming (SQP) algorithm with
limited-memory quasi-Newton approximations to the Hessian of the Lagrangian. A non-derivative
line search technique is chosen. A more detailed description of SNOPT is found in [100, 101].

A mesh-independence study was carried out at the beginning to find the most appropriate mesh
settings to build a high quality multi-block structured grid. A new grid is built using elliptical
equations during the coarse of optimization using the initial mesh settings. The grid generation
methodology is described in more detail in Sec. 2.5.1.
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Subset 5
Set SS14PS4 (43DV)

Most effective subset (DV < 43DV)
from the set SS14PS4

Figure 6.10.: Circles showing the set SS14PS4, subset 5 and the most effective subset of the set
SS14PS4.

The compressible RANS equations were used to solve the flow field. The Spalart-Allmaras tur-
bulence model [93] is used for the turbulence closure problem assuming fully turbulent flow with
Reynolds number at the inlet as Reinlet ≈ 2 ⋅ 105. More details of the flow solver are found in Sec.
2.7. The total pressure and the static pressure are specified at the inlet and outlet of the domain
for the operating condition considered (i.e. an outlet isentropic Mach number ofMise,2 = 0.90). The
boundary conditions are summarized in Table 6.2. After solving the primal solver, the three objec-
tive functions are evaluated at the outlet of the domain: a performance metric that is proportional
to the entropy generation J1 (Eq. 6.14), the exit flow angle J2 (Eq. 6.15) and the outlet mass flow
J3 (Eq. 6.16). Two types of constrained optimization are considered in this chapter. In the first
one, the objective is to reduce the J1 whilst keeping J2 above 74.83○. In the second one, the same
criteria are considered but in addition the exit mass flow J3 variation should not be greater than
(±0.12%) of the baseline mass flow 8.4595 ⋅ 10−3kg/s.

J1 =
∫out pρ

1−γVxdy
ṁout

(6.14)

J2 = atan(
Vy

Vx
)
out

(6.15)

J3 = ṁout (6.16)
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Inlet Outlet Units
P01 = 147500.0 p2 = 87000.0 [Pa]
T01 = 420.0 [K]

atan(
Vy

Vx
) = 0.0 [deg]

Table 6.2.: CFD Boundary conditions of the LS89 at an outlet isentropic Mach number of Mise,2 =

0.90
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Figure 6.11.: Optimization flow chart

In the optimization process shown in Fig. 6.11, the performance sensitivities w.r.t CAD param-
eters dJ/dα⃗ are computed using Eq. 6.2. The performance sensitivities for the cost function and
constraint w.r.t. the volume grid dJ/dX⃗ are provided by the hand-derived discrete adjoint solver,
whereas the grid sensitivities dX⃗/dα⃗ are provided by the AD tool ADOL-C [9], which is applied to
the CAD kernel and grid generator. The computation of dX⃗/dα⃗ for every optimization step is done
using the forward vector mode of AD, which allows to obtain the derivatives w.r.t. to the design
variables in one single evaluation of the differentiated code at a relatively low cost.

The convergence of SNOPT is achieved when one of the following criteria is satisfied: (1) the
Karush-Kuhn-Tucker (KKT) first-order optimality condition [100], satisfying a minor feasibility tol-
erance of 10−6; (2) the optimizer being unable to improve the objective function; (3) when we have
reached the maximum number of major iterations.

6.3. Results

In this section a comparison is made between the parametric effectiveness (PE) defined in this the-
sis and that one defined by [106]. After, the PE defined in this chapter is computed for different
sets and subsets of design variables for different types of constrained optimizations. Finally, some
optimizations are performed using parameterizations with different initial PE and the results are
compared and benchmarked.
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6.3.1. Parametric effectiveness methodology comparison

The idea behind the computation of parametric effectiveness is to rate the ability of a set of pa-
rameters to produce a design movement that is aligned with the one dictated by the performance
sensitivities w.r.t. the surface grid. In the methodology described in this chapter, the parametric
effectiveness is unity if the best possible design movement that can be achieved with the set of
CAD based parameters matches the performance sensitivities w.r.t. the surface grid. The method
described by [106] is different to the method described in this chapter, mainly because in [106] the
authors assume that the design parameters are perturbed in the steepest descent direction and the
constraint of overall boundary movement (OBM) is imposed.

In this section, the exact surface sensitivities provided by AD were used for both methodologies,
in order to exclude any possible differences originating from design velocities. The right hand side
picture of Fig. 6.12 shows the displacement dX that every grid node would move if we allow every
grid node to move in the direction dictated by the performance sensitivities w.r.t. the surface grid
by an arbitrary step size γ. The step size was chosen such that it normalizes the shape movement
to unity (i.e., γ = 1/∥dJ/dX⃗S∥). This displacement field or shape change is also represented by
the graph on the left of Fig. 6.12 by the black line. If the CAD parameterization allows every
grid node to displace by the amount indicated by the black line, the parametric efficiency would
be unity. The red and green lines represent the assumed best possible shape change that can be
achieved with the existing set of CAD parameters, with the methodology defined by [106] and in
this chapter respectively to compute parametric effectiveness. The green line matches better the
black line because the approach defined by [106] unfairly penalises some CAD parameters when
computing the parametric effectiveness due to the OBM constraint and the choice of the steepest
descent direction in parameter space.
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Figure 6.12.: Shape change comparison (left) and adjoint surface sensitivities (right).

Suppose the objective of the unconstrained problem is to reduce the entropy generation and
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the designer would like to know which CAD-based parameterization from Table 6.1 is the best
one to use for the optimization. The parametric effectiveness can be used to rate the different
parameterizations and to aid the designer to choose the parameterization that would be most
effective for the optimization. Table 6.3 compares the parametric effectiveness between the different
parameterizations.

ηglobal PE(Vn) PE(AD)

Set SS9PS9 (43DV) 73.58 % 9.87 % 9.84%
Set SS14PS4 (43DV) 68.53 % 10.60 % 15.93%
Subset 1 (33DV) 64.18 % 3.07 % 9.77%
Subset 2 (20DV) 52.07 % 9.21 % 9.76%
Subset 3 (16DV) 49.96 % 9.48 % 9.77%
Subset 4 (11DV) 44.78 % 0.46 % 0.52%
Subset 5 (7DV) 40.06 % 0.80 % 0.75%

Table 6.3.: Parametric effectiveness comparison between different CAD-based parameterizations
for an unconstrained problem where the objective is to reduce the entropy generation

The first column of Table 6.3 shows the parametric effectiveness ηglobal defined in this chapter (Eq.
6.13). The second column of Table 6.3 shows the parametric effectiveness using the methodology
described in [106] in combination with the design velocity approach. Finally, the third column of
Table 6.3 shows the parametric effectiveness using the methodology described in [106] with the AD
grid sensitivities instead of the design velocities. The PE(AD) should give more accurate results
than the PE(Vn) because the AD grid sensitivities are accurate to machine accuracy, whereas the
design velocities include finite difference inaccuracies and surface to surface mesh projection errors.
According to the results shown in the first column of Table 6.3, set SS9PS9 is the best performing
set to produce a design movement aligned with the adjoint sensitivities. However, the PE shown in
the second and third columns suggests that set SS14PS4 would be the most performing one. If we
compare the ηglobal of subsets 1 to 5, subset 1 is predicted to be the best performing subset, because
it contains all the design parameters of all the other subsets. In contrast, the PE(Vn) suggests that
subset 3 would be the most performing one instead. However, if PE is computed using the AD grid
sensitivities instead of the design velocities, subset 1 and 3 would be equally performing, followed
by subset 2. The differences between the third and the second column for subsets 1 and 3 show
that the sources of inaccuracies present in PE(Vn) can have a large impact on the final value of the
PE. These inaccuracies can bias the designer to choose a subset that seems to have high PE but
in reality has a lower PE when the inaccuracies are removed.

6.3.2. Parametric effectiveness in an aerodynamically constrained problem

The parametric effectiveness shown in Table 6.3 is computed for an unconstrained problem where
we want to reduce the entropy generation. However, if we launch an unconstrained optimization
we would find out that the optimizer tries to reduce the turning of the vane until there is no flow
turning and hence the flow is axial at the outlet. The design practice in a high pressure turbine
is to design the vanes and blades with non-zero flow turning. Therefore, in order to optimize the
LS89 it is desired to include, at least, one aerodynamic constraint: the exit flow angle. Also, if we
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allow the pitch (or the solidity) of the LS89 linear cascade to change during the optimization, we
would see that the optimizer reduces the losses and increases the pitch to increase the mass flow
in order to maintain the same total to static pressure ratio. However, in a real scenario, the pitch
or the number of blades is typically fixed and if we kept this design variable constant during the
optimization the mass flow variation would be negligible. Alternatively, keeping the outlet mass
flow constant can also be achieved if we allow the pitch to be changed during the optimization
but we impose the outlet mass flow as an aerodynamic constraint, as well as the exit flow angle.
The question arises whether the rating of the different CAD-based parameterizations, in terms of
parametric effectiveness, for an aerodynamically constrained problem will be the same or similar to
the rating obtained for an unconstrained problem (Table 6.3).

ηglobal,J1 ηglobal,J1J2 ηglobal,J1J2J3
Set SS9PS9 (43DV) 73.58 % 80.03 % 73.64 %
Set SS14PS4 (43DV) 68.53 % 80.51 % 62.83 %
Subset 1 (33DV) 64.18 % 76.26 % 61.33 %
Subset 2 (20DV) 52.07 % 65.49 % 60.24 %
Subset 3 (16DV) 49.96 % 62.38 % 53.23 %
Subset 4 (11DV) 44.78 % 56.86 % 45.09 %
Subset 5 (7DV) 40.06 % 54.82 % 40.98 %

Table 6.4.: Parametric effectiveness comparison between the unconstrained and constrained op-
timization problems. The effect of the entropy generation J1 is captured in ηglobal,J1 . ηglobal,J1J2
captures the effects of both J1 and the exit flow angle J2. ηglobal,J1J2J3 captures the effects of J1, J2
and the outlet mass flow J3.

Table 6.4 shows the parametric effectiveness for the unconstrained problem (ηglobal,J1), the con-
strained problem with the exit flow angle (J2) only constraint (ηglobal,J1J2) and the constrained
problem with both the exit flow angle and outlet mass flow (J3) constraints (ηglobal,J1J2J3). The
second column shows that, when we include the exit flow angle as an aerodynamic constraint, set
SS14PS4 is the most performing set instead of set SS9PS9. The black and blue lines in Fig. 6.13a
show the ideal shape change for the unconstrained and constrained problems respectively, with the
exit flow angle only constraint in the constrained problem. The addition of the exit flow angle
constraint changes the performance sensitivities w.r.t. the surface grid by: (1) increasing their
magnitude on the suction side close to the trailing edge (node index 5 - 50 in Fig. 6.13a); (2)
reducing their magnitude on the pressure side close to the trailing edge (node index 220 - 250 in
Fig. 6.13a). The green and pink lines in Fig. 6.13a show the best shape change using subset 1 for
the unconstrained and constrained problems respectively. The mismatch between the ideal and the
best shape change using subset 1 is represented in Fig. 6.13b. The mismatch is reduced at the node
index 220 - 250 for the constrained problem with the exit flow angle only constraint, which explains
why the parametric effectiveness shown in the second column of Table 6.4 is, on average, 11.9%
higher than in the first column. The maximum increase in parametric effectiveness is for subset
5, where ηglobal,J1J2 is 14.8% higher than ηglobal,J1 . The shape modes responsible for this increase
in parametric effectiveness are those produced by the following CAD parameters: the trailing edge
wedge angle at the pressure side, the outlet metal angle and the stagger angle. Finally, the para-
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metric effectiveness shown in the third column of Table 6.4 considers both the exit flow angle and
the outlet mass flow as aerodynamic constraints. The values of ηglobal,J1J2J3 are relatively similar to
those predicted for the unconstrained problem. This is because the constrained ideal shape change
with the two aerodynamic constraints is very similar to the unconstrained shape change for the
analysed baseline geometry.
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6.3.3. Optimization with one aerodynamic constraint

The two sets of 43DV (SS14PS4 and SS9PS9), subset 1 (33DV) and subset 3 (16DV) were selected
for optimization with the exit flow angle as an aerodynamic constraint. Figure 6.14 shows the
evolution of the non-dimensional cost functions for each set/subset and excludes the non-derivative
line searches. The convergence of the optimizer was achieved in all four cases. The optimization
using subset 3 was the fastest to converge, probably due to the fact that it uses lower number of
DV than subset 1 and sets SS14PS4 and SS9PS9.
Table 6.5 shows that the optimizer was able to reduce the entropy generation term J1 by more

than 20% in all cases whilst keeping the exit flow angle within reasonable limits.

Set SS14PS4 optimal Set SS9PS9 optimal Subset 1 optimal Subset 3 optimal
Entropy generation variation -23.46 % -22.19% -20.59 % -20.43%
Exit flow angle variation -0.02% -0.03% -0.01 % -0.03 %
Mass flow variation 50.58% 44.0% 30.69 % 31.19 %
Total pressure losses variation -23.2% -23.00% -20.71 % -20.71 %

Table 6.5.: Changes in performance relative to the baseline, for set SS14PS4 and SS9PS9 and
subsets 1 and 3 optimal profiles. Results are taken from the optimizations where the exit flow angle
is treated as an aerodynamic constraint.

Figure 6.15 shows the isentropic blade Mach number distribution for the baseline and optimal
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Figure 6.14.: Cost function evolution during the optimization of the LS89 with the exit flow angle
treated as an aerodynamic constraint for Sets SS14PS4 and SS9PS9 and Subsets 1 and 3.

designs on the left and the cascade geometries on the right. The optimal geometry for subset 1 and
3 are very similar to each other. However, Table 6.6 shows that there are slight geometrical differ-
ences between these two optimal geometries. The density, static pressure, temperature, Mach and
entropy generation contours for the baseline and optimal shapes (using set SS9PS9, set SS14PS4,
subsets 1 and 3) are shown in Sec. B.1, B.2.3, B.2.4, B.2.5 and B.2.6 respectively.

Units Baseline values Set SS14PS4 change Set SS9PS9 change Subset 1 change Subset 3 change
Rear suction side turning (ε) [deg] 11.6 +14.00○ +11.96○ +10.19○ +9.81○

Pressure side trailing edge wedge angle (ϕPS) [deg] 2.500 +0.372 ○ +0.355 ○ +0.375 ○ +0.368 ○

Suction side trailing edge wedge angle (ϕSS) [deg] 4.000 −0.585 ○ +0.422 ○ +0.051 ○ +0.041 ○

Chord (c) [mm] 64.310 +27.29% 21.60% +10.56% +10.89%
Stagger angle (γ) [deg] 54.925 +8.24 ○ +6.87 ○ +3.76 ○ +3.86 ○

Inlet metal angle (βin) [deg] 0.0 +0.41 ○ +0.331 ○ +0.028 ○ +0.025 ○

Outlet metal angle (βout) [deg] 74.000 +4.50 ○ +4.13 ○ +1.79 ○ +1.60 ○

Leading edge radius (RLE) [mm] 4.126 +15.0% -5.89% +0.33% +0.39%
Solidity (σ) [-] 1.118 -15.0% -15.0% -15.0% -15.0%
Pitch (g) [mm] 57.500 +49.75% 43.06% +30.07% +30.46%
Pitch/chord (g/c) [-] 0.894 +17.65% +17.65% +17.65% +17.65%
Trailing edge thickness/throat height [-] 0.09133 -34.94% -32.42% -24.56% -24.67%

Table 6.6.: Main geometry characteristics changes of the optimal designs w.r.t the baseline design.
Results are taken from the optimizations where the exit flow angle is treated as an aerodynamic
constraint.

Table 6.7 shows that larger entropy reductions were achieved with those CAD-based parameter-
izations that had a higher initial parametric effectiveness.

6.3.4. Optimization with two aerodynamic constraints

In the previous section, the set SS14PS4 was the most effective CAD-based parameterization to
use amongst the other groups shown in Table 6.7, as it allowed to find a final shape with better
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Figure 6.15.: Isentropic Mach number (left) and cascade geometry (right) between the baseline
and the optimal shapes for the sets SS14PS4 and SS9PS9 and the subsets 1 and 3. Results are
taken from the optimizations where the exit flow angle is treated as an aerodynamic constraint.

ηglobal,J1J2 Entropy generation variation
Set SS14PS4 (43DV) 80.51 % -23.46 %
Set SS9PS9 (43DV) 80.03 % -22.19 %
Subset 1 (33DV) 76.26 % -20.59 %
Subset 3 (16DV) 62.38 % -20.43 %

Table 6.7.: Parametric effectiveness and entropy generation variation of the optimal design w.r.t.
the baseline. Results are taken from the optimizations that have the exit flow angle as an aerodynamic
constraint.

performance than those obtained with the other sets and subsets. However, the ηglobal,J1J2J3 in
Table 6.4 shows that the set SS14PS4 is no longer the most effective CAD-based parameterization
when we consider both the exit flow angle and the outlet mass flow as aerodynamic constraints.
When both constraints are considered, the set SS9PS9 becomes the most effective one instead. In
this section, two optimizations were launched using the sets SS14PS4 and SS9PS9, to confirm which
of the two sets is more fit for the optimization of the LS89 where the two aerodynamic constraints
are considered.

The evolution of the non-dimensional cost functions during the optimization, excluding the non-
derivative line searches, is shown in Fig. 6.16 for each set. The convergence of the optimizer was
achieved for both sets.

Table 6.8 shows that the optimizer was able to reduce the entropy generation term J1 by 15.13%

and 14.34% for sets SS9PS9 and SS14PS4 respectively, whilst keeping the exit flow angle and mass
flow within reasonable limits.

Figure 6.17 shows the isentropic blade Mach number distribution for the baseline and optimal
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Figure 6.16.: Cost function evolution during the optimization of the LS89 using different sets
SS9PS9 and SS14PS4 of design variables. The exit flow angle and the exit mass flow as treated as
aerodynamic constraints.

Set SS9PS9 optimal Set SS14PS4 optimal
Entropy generation variation -15.13 % -14.34%
Exit flow angle variation 0.002 % -0.006 %
Mass flow variation 0.081 % 0.118 %
Total pressure losses variation -14.49 % -14.09 %

Table 6.8.: Changes in performance relative to the baseline, for sets SS9PS9 and SS14PS4 optimal
profiles. Results are taken from the optimizations where the exit flow angle and the exit mass flow
are treated as aerodynamic constraints.

designs on the left and the cascade geometries on the right. Table 6.9 shows the main geometrical
differences between the optimal and baseline geometries. The density, static pressure, temperature,
Mach and entropy generation contours for the baseline and optimal shapes (using sets SS9PS9 and
SS14PS4) are shown in Sec. B.1, B.3.1 and B.3.2 respectively.

Table 6.10 shows that largest entropy reduction was achieved with the set SS9PS9, the CAD-
based parameterizations with the highest parametric effectiveness ηglobal,J1J2J3 at the beginning of
the optimization. This confirms that the set SS14PS4 was indeed less effective for the optimization
with the two aerodynamic constraints than the set SS9PS9. Therefore, a set of CAD parameters
can be more effective for one type of constrained optimization and be less effective for another type
where other aerodynamic constraints are considered. The results shown in Table 6.10 demonstrate
again that the CAD-based parameterization with the highest parametric effectiveness should be
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Figure 6.17.: Isentropic Mach number (left) and cascade geometry (right) between the baseline
and the optimal shapes for sets SS9PS9 and SS14PS4. Results are taken from the optimizations
where the exit flow angle and the outlet mass flow are treated as aerodynamic constraints.

chosen to be used for optimization. This is because a CAD-based parameterization with a high
parametric effectiveness is more able to produce the boundary changes that the adjoint solution
dictates and hence larger performance improvements are expected to be found by the optimizer.

6.3.5. Optimization with two aerodynamic constraints using the most effective
subset

Figure 6.16 shows a very slow design improvement after 20 iterations when the optimizer uses the
set SS14PS4 (43DV). From iteration 20 to 51, the optimizer is only able to further reduce the en-
tropy generation by 0.33%. In order to speed the optimization process it is suggested in this section

Units Baseline Set SS9PS9 optimal Set SS14PS4 optimal Variation
Rear suction side turning (εSS) [deg] 11.6 25.486 24.227 13.87 ○/12.61 ○

Pressure side trailing edge wedge angle (ϕPS) [deg] 2.500 2.875 2.772 0.375 ○/0.272 ○

Suction side trailing edge wedge angle (ϕSS) [deg] 4.000 4.600 4.047 0.600 ○/0.047 ○

Chord (c) [mm] 64.310 58.993 58.768 −8.27%/ − 8.62%
Stagger angle (γ) [deg] 54.925 51.212 51.036 −3.71 ○/ − 3.89 ○

Inlet metal angle (βin) [deg] 0.0 -0.477 -0.124 −0.477 ○/ − 0.124 ○

Outlet metal angle (βout) [deg] 74.000 77.479 76.753 3.479○/2.753○

Leading edge radius (RLE) [mm] 4.126 3.507 4.207 −15.0%/1.94%
Solidity (σ) [-] 1.118 1.028 1.024 −8.04%/ − 8.41%
Pitch (g) [mm] 57.500 57.360 57.372 −0.24%/ − 0.22%
Pitch/chord (g/c) [-] 0.894 0.972 0.976 8.75%/9.19%
Trailing edge thickness/throat height [-] 0.09133 0.08775 0.08709 −3.92%/ − 4.65%

Table 6.9.: Comparison of the main geometry characteristics between the baseline and optimal
profiles for sets SS9PS9 and SS14PS4. Results are taken from the optimizations where the exit flow
angle and the exit mass flow are treated as aerodynamic constraints.
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ηglobal,J1J2J3 Entropy generation variation
Set SS9PS9 (43DV) 73.64 % -15.13 %
Set SS14PS4 (43DV) 62.83 % -14.34 %

Table 6.10.: Parametric effectiveness and entropy generation variation of the optimal design w.r.t.
the baseline. Results are taken from the optimizations that have the exit flow angle and the exit mass
flow as aerodynamic constraints.
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Figure 6.18.: Cost function evolution during the optimization of the LS89 with the exit flow angle
and exit mass flow treated as aerodynamic constraints, using set SS14PS4 and its most effective
subset.

to use the most effective subset of the set SS14PS4, which contains smaller number of design vari-
ables (i.e. 28DV). Table 6.11 shows the individual parametric effectiveness of each parameter in set
SS14PS4, for a contrained optimization where the exit flow angle and exit mass flow are treated as
aerodynamic constraints. The last column of Table 6.11 highlights that only those parameters with
an individual parametric effectiveness above 1% were included in the most effective subset. The
parametric effectiveness of the set SS14PS4 and of the most effective subset is 62.83% and 56.15%
respectively (see Table 6.12) at the beginning of the optimization. The most effective subset has
6.68% lower parametric effectiveness than set SS14PS4, due to the fact that it contains 15 param-
eters less.

Figure 6.18 shows the evolution of the non-dimensional cost functions during the optimization,
excluding the non-derivative line searches, for the set SS14PS4 and its most effective subset. Using
the most effective subset, with a reasonable smaller number of design parameters, resulted in a time
saving of approximately 8.3 days (26 iterations less) to complete the optimization on a XeonE5-
2690 2.60GHz workstation with 264GB RAM. However, the reduction in the gain in performance
is 1.31% (see Table 6.12).
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Figure 6.19.: Isentropic Mach number (left) and cascade geometry (right) between the baseline
and the optimal shapes for the set SS14PS4 and its most effective subset. Results are taken from the
optimizations where the exit flow angle and exit mass flow are treated as aerodynamic constraints.

The isentropic blade Mach number distribution and the cascade geometry are shown in Fig. 6.19
for the baseline and the optimal designs found with set SS14PS4 and its most effective subset.
The main geometrical differences between the baseline and the optimal design found with the most
effective subset of the set SS14PS4 are shown in Table 6.13. The density, static pressure, tempera-
ture, Mach and entropy generation contours for the baseline and optimal shapes (using set SS14PS4
and the most effective subset of the set SS14PS4) are shown in Sec. B.1, B.3.2 and B.3.3 respectively.

6.4. Conclusions

In this chapter, a new definition of parametric effectiveness is proposed to rate the ability of a set
of CAD-based design variables to produce a shape change dictated by the adjoint sensitivities. The
parametric effectiveness takes into account the fact that the design variables can be non-orthogonal
to each other. The developed method is demonstrated for constrained optimization problems, by
using the projected gradient method. The AD tool is used to obtain exact surface sensitivities by
differentiating the CAD kernel and grid generator. Two types of constrained optimizations were
carried out. In the first one, the objective was to reduce the entropy generation whilst keeping the
exit flow angle above a target value. The second optimization problem consisted in reducing the
entropy generation whilst keeping the exit flow angle above a certain value and the exit mass flow
in between a lower and upper limit. The parametric effectiveness was used to rate different groups
of CAD-based design variables and some were selected for optimization. Seven optimizations were
performed in total, showing that the largest reductions in entropy were achieved when using those
groups of CAD-based design variables that exhibited the highest parametric effectiveness at the
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start of the optimization. Therefore, the parametric effectiveness can be used to assist the designer
to decide which is the best CAD-based parameterization to use for optimization. Additionally,
the parametric effectiveness can also be used to rate the individual effectiveness of each CAD
parameter, in order to exclude the least performing ones from the optimization. Considerable time
savings can be achieved by using the most effective subset of parameters for optimization, with a
reasonable smaller number of design parameters, at the expenses of a smaller reduction in the gain
in performance. In this chapter, the parametric effectiveness was only evaluated at the start of
the optimization process to decide which group of CAD parameters was more fit for optimization.
However, it is possible that another group of design variables becomes more effective than the chosen
one in later stages of the optimization. For this reason, using parametric effectiveness in adaptive
shape parameterization is deemed to be a promising area of future research.
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ηglobal,J1J2J3 include in most effective subset
SS thickness t7SS 39.28% Yes
Outlet metal angle βout 32.74% Yes
SS streamwise position u6SS 32.74% Yes
SS streamwise position u7SS 24.55% Yes
Stagger angle γ 22.73% Yes
SS thickness t8SS 22.66 % Yes
SS thickness t6SS 22.20 % Yes
SS thickness t14SS 18.74 % Yes
SS thickness t9SS 18.12 % Yes
SS thickness t10SS 16.70 % Yes
SS thickness t13SS 14.79 % Yes
SS streamwise position u13SS 14.64 % Yes
SS streamwise position u8SS 14.59% Yes
SS streamwise position u9SS 14.46% Yes
TE wege angle SS ψSS 14.15% Yes
SS streamwise position u10SS 13.57 % Yes
SS thickness t11SS 12.79 % Yes
SS thickness t12SS 11.88 % Yes
SS thickness t5SS 11.59 % Yes
SS streamwise position u12SS 11.47% Yes
SS streamwise position u5SS 11.17% Yes
SS streamwise position u11SS 10.86% Yes
SS streamwise position u14SS 8.07% Yes
TE wege angle PS ψPS 6.56% Yes
SS streamwise position u4SS 4.70% Yes
SS thickness t4SS 3.55% Yes
Inlet metal angle βin 1.94% Yes
PS thickness t4PS 1.61% Yes
PS streamwise position u4PS 0.58% No
SS streamwise position u3SS 0.53% No
PS streamwise position u3PS 0.35% No
SS streamwise position u1SS 0.35% No
SS thickness t3SS 0.34 % No
SS thickness t1SS 0.25 % No
SS streamwise position u2SS 0.15% No
PS streamwise position u1PS 0.14% No
PS thickness t2PS 0.11% No
PS thickness t1PS 0.06% No
SS thickness t2SS 0.06 % No
PS thickness t3PS 0.03% No
PS streamwise position u2PS 0.03% No
LE radius RLE 0.02% No
Solidity σ 0.01% No

Table 6.11.: Individual parametric effectiveness of each parameter in the set SS14PS4. The results
shown are obtained by considering that the CAD-based parameterization only contains only one
parameter at the time. The exit flow angle and exit mass flow are considered as aerodynamic
constraints.

ηglobal,J1J2J3 Entropy generation variation Optimization iterations
Set SS14PS4 (43DV) 62.83 % -14.34 % 51
Most effective subset of SS14PS4 (28DV) 56.15% -13.03% 25

Table 6.12.: Parametric effectiveness, entropy generation variation and iterations to complete the
optimization using set SS14PS4 and its most effective subset. Results are taken from the optimiza-
tions where the exit flow angle and the exit mass flow are treated as aerodynamic constraints.
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Units Baseline Most effective subset of SS14PS4 optimal Variation
Rear suction side turning (εSS) [deg] 11.6 21.29 9.67 ○

Pressure side trailing edge wedge angle (ϕPS) [deg] 2.500 2.875 0.375 ○

Suction side trailing edge wedge angle (ϕSS) [deg] 4.000 3.586 −0.413 ○

Chord (c) [mm] 64.310 64.183 -0.20%
Stagger angle (γ) [deg] 54.925 54.845 −0.15 ○

Inlet metal angle (βin) [deg] 0.0 0.470 0.470 ○

Outlet metal angle (βout) [deg] 74.000 74.105 0.105 ○

Leading edge radius (RLE) [mm] 4.126 4.126 0.0%
Solidity (σ) [-] 1.118 1.118 0.0%
Pitch (g) [mm] 57.500 57.386 -0.20%
Pitch/chord (g/c) [-] 0.894 0.894 0.0%
Trailing edge thickness/throat height [-] 0.09133 0.08805 −3.59%

Table 6.13.: Comparison of the main geometry characteristics between the baseline and optimal
profiles for the most effective subset of the set SS14PS4. Results are taken from the optimizations
where the exit flow angle and the exit mass flow are treated as aerodynamic constraints.



Chapter 7.

Efficient CAD-based adjoint optimization using

parametric effectiveness for multilevel shape refinement

In chapter 6, a novel methodology is presented to compute the parametric effectiveness without any con-

straint on the boundary movement and the direction of gradient, and is developed to deal with constrained

optimization problems. In general, a high parametric effectiveness at the beginning of the optimization

allowed the optimizer to converge to a better solution. However, using a static or fixed parameterization

during the course of the optimization may not be the most efficient strategy, specially when it is desired

to explore rich design spaces whilst maintaining a good convergence rate of the optimizer. This chapter

addresses this and presents a novel multilevel optimization strategy.

Abstract. This chapter presents an efficient optimization strategy, in which the design variables
are defined within a CAD system and the optimizer explores higher-dimensional design spaces by
using a multi-level shape refinement approach. CAD based approaches have the advantage to rep-
resent the optimal shape in the industry accepted format for manufacturing, however they restrict
the design space compared to node based approaches where each single mesh point is free to move.
In order to preserve the rich design space of the node based approach, we develop an automatic
framework which refines the CAD model and creates the best parameterization to be used during
the optimization. For this purpose, parametric effectiveness is computed to rate the CAD-based
parameterization in terms of its ability to produce the design movement dictated by the adjoint
sensitivities. The novelty lies in the definition of the parametric effectiveness and using it to refine
the CAD model parameterization in a multilevel optimization process. The parametric effective-
ness takes into account the non-orthogonality of the design variables and uses accurate geometric
sensitivities provided by algorithmic differentiation. The method is tested on the LS89 turbine
cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping
the exit flow angle fixed. The trailing edge and axial chord length are kept fixed as manufactur-
ing constraints. The flow is governed by the Reynolds-averaged Navier-Stokes equations and the
one-equation Spalart-Allmaras turbulence model.
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refinement

7.1. Introduction

The success of a CAD-based optimization framework highly depends on the expertise and skill of
the designer, and often it is not obvious which parameters should be chosen for the optimization
to achieve the desired shape change dictated by the adjoint sensitivities. Furthermore, the choice
of the CAD parameters constrains how the model boundary can change, and a poor choice may
prevent the exploration of innovative geometries. It is therefore of vital importance to quantify how
suitable is a set of CAD-based design parameters for use in optimization.
In this context, adaptive shape parameterization or multilevel optimization [77, 78, 108], where

the optimization starts with a small number of design variables (coarse parameterization) and ends
with a large number (fine parameterization), can be an effective strategy to improve the convergence
rate, robustness and final solution of an optimization. The exploration of richer design spaces in
a CAD-based multilevel optimization framework which uses B-splines can be done using the knot
insertion algorithm [77, 78], since it allows to introduce new control points (i.e. design variables)
while maintaining the shape. In practice, it is unclear how many new design variables should be
introduced at every new design space or how good is every new parameterization to produce the
shape changes that are required by the adjoint sensitivities. In this context, the parametric effec-
tiveness can be used to find the appropiate parameterization to use in each new dimensional design
space and make the optimization a more autonomous, robust and efficient design strategy. In this
chapter, the methodology presented in chapter 6 to compute the parametric effectiveness is used in
a multilevel optimization of LS89 turbine cascade [117, 118], where the CAD parameterization is
refined during the course of the optimization.

The remainder of the chapter is organised as follows. Section 7.2 describes the proposed adaptive
shape parameterization which is assisted by the parametric effectiveness. The optimization results
are presented in Sec. 7.3. Finally, the chapter terminates with the main conclusions.

7.2. Methodology

Throughout this chapter, the parametric effectiveness is used in the context of adaptive shape pa-
rameterization or multilevel optimization. The idea is that we start the optimization with a coarse
design space with a low number of CAD design variables and automatically transition to finer pa-
rameterization design spaces at strategic moments in order to find better optima. When refinement
of the design space is needed, we insert new CAD features in the CAD model in a systematic manner
and use the global parametric effectiveness to choose the best CAD-based parameterization in order
to continue with the optimization.

7.2.1. Optimization

The same parameterization of the LS89 from Sec. 6.2.5 is used in this chapter. The same methods
and CFD boundary conditions described in Sec. 6.2.7 for the optimization of the LS89 at design
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point using one aerodynamic constraint are used in this chapter.
The convergence of SNOPT is achieved when one of the following criteria is satisfied: (1) the

Karush-Kuhn-Tucker (KKT) first-order optimality condition [100], satisfying a minor feasibility
tolerance of 10−6; (2) the optimizer being unable to improve further the objective function; (3)
when we have reached the maximum number of major iterations (Nmax = 50).
In this chapter, a multi-level optimization process is developed (Fig. 7.1). Here, once the first

level of SNOPT is converged, an additional level of optimization is performed by refining the design
space and increasing the number of design variables. At this stage, SNOPT is restarted with the new
set of parameters. The multilevel optimization algorithm stops when one of the following criteria
is satisfied:

1. Convergence condition 1: when the number of design variables is equal to the maximum
number allowed by the user.

2. Convergence condition 2: when both the number of control points on the pressure side and
suction side B-Splines reaches the maximum number allowed by the user.

3. Convergence condition 3: when the number of refinement cycles that we have explored is equal
to the maximum number specified by the user.

For the convergence condition 1 the maximum number of design variables can be used for instances
where the optimization algorithm has a limit on the number of design variables used. The conver-
gence condition 2 is used to limit the maximum number of B-Spline control points to the number of
mesh points used to discretize the PS (PSCntrlPntsmax = 85) and SS (SSCntrlPntsmax = 171) of
LS89 geometry for the CFD analysis. This is essential to have sufficiently fine mesh to capture the
shape changes introduced by the parametric perturbations. The convergence condition 3 is simply
added to specify the maximum number of refinement cycles that we want to perform during the
multilevel optimization, it was set to 30.

7.2.2. Refinement strategy

The initial LS89 geometry has B-spline curves with multiple knots at the start and end of the
parametric space. The pressure and suction side has curves of the order of 12 and 7 for the PS and
SS respectively. The knot insertion algorithm [76] is used to refine the design space since it allows
to add additional control points (i.e. design variables) without changing the shape of the curve.
The refinement procedure, which is illustrated in Fig. 7.2, adds one additional control point

at the pressure and suction sides (if the number of control points does not exceed the maximum
allowed for each side) and computes the gain in parametric effectiveness due to the introduction of
the new control points. The procedure keeps on inserting knots on the pressure and suction side
B-spline curves in an iterative fashion until one of the following criteria is met:

• the gain in effectiveness between the last two refinements is smaller than a certain threshold.

• the number of control points on the pressure and suction side B-spline curves has reached the
maximum limit.
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Figure 7.1.: Multilevel optimization flow chart

This method allows to increase the parametric effectiveness iteratively until very little gains are
observed by the addition of control points. This guarantees that we do not introduce an excessive
number of design variables while refining the design space.
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Figure 7.2.: Refinement cycle of the CAD-based parameterization.

The strategy to insert knots in a B-spline curve during the refinement cycle consists in inserting
the new knots in between the last two already existing knots, by placing the new knot in the middle.
This strategy is illustrated in Fig. 7.3. Suppose that we have the B-spline curve shown in Fig. 7.3a,
which has four knots equally spaced, as indicated by the black crosses. If we want to insert a new
knot to the B-spline curve of Fig. 7.3a, the new knot should be placed in between the knot at
0.75 and 1.0, as indicated by the red cross in Fig. 7.3b. Figure 7.3c shows the insertion of 4 knots
(i.e. red crosses), which are inserted in between the already existing ones. Therefore, the strategy
consists in inserting knots progressively from the end (u = 1.0) to the beginning (u = 0.0) of the knot
vector. However, if the knots have already been inserted through the full span of the knot vector
and it is required to insert additional ones, then the additional knots are inserted into the knot
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Figure 7.3.: Strategy to insert knots in the B-spline curves during the refinement cycle.

vector by starting from the end of the knot vector again. This is illustrated in Fig. 7.3d, where the
position of the 5th new knot (i.e. the pink cross) is in between the last two knots (i.e. u = 0.875

and u = 1.0).

7.3. Results

Figure 7.4 shows the evolution of the non-dimensional cost functions during the single level and
multilevel optimizations. Note that the functional evaluations during the line search are not shown.
The solid and dashed lines represent the evolution of the entropy generation and the exit flow angle
respectively. The multilevel optimization started from the coarsest level with 33 design variables
(DV) and the design space was progressively refined to contain 97, 137, 193 and 273 DV. The
arrows and the numbers on top of the green line indicate the moments at which the design space
refinement occurred and the number of design variables for the refined design spaces. The single
level optimization was performed after the multi-level optimization had converged using the same
273 DV that were used in the multi-level optimization finest level from the start.

For both single level and multilevel approaches, the optimizer was able to improve significantly
the entropy generation of the turbine cascade whilst keeping the exit flow angle within a reasonable
limit of ±0.5% (see Table 7.1).

After SNOPT finds the optimal shape on the coarsest level (33 DV), it is necessary to proceed
to refine the design space. Figure 7.5 shows the results of performing the design space refinement
from the coarsest design space (33 DV) to the next design space (97 DV). The left figure monitors
the evolution of the parametric effectiveness as the knots are inserted on the pressure and suction
side B-spline curves simultaneously. The parametric effectiveness before the refinement was 0.49
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Figure 7.4.: Cost function evolution during the optimization. Numbers represent the number of
design variables at each optimization phase.

Single level optimal Multilevel optimal
Entropy generation variation -21.14 % -25.43%
Exit flow angle variation -0.0 % -0.48 %
Mass flow variation 31.89 % 63.29 %
Total pressure losses variation -22.34 % -26.55 %

Table 7.1.: Changes in performance relative to the baseline

and after inserting 16 knots on each side, the effectiveness increases to 0.94. The right figure of
Fig. 7.5 shows the boundary movement for the parameters before and after the shape refinement,
and can be seen that refining the design space enabled the shape change to match more closely the
performance sensitivities w.r.t. the surface grid (green line).

Figure 7.6 shows the comparison between the baseline geometry and the single and multi-level
optimization results. The left figure shows the isentropic Mach number distribution for the baseline
and optimal profiles for the downstream isentropic Mach number of 0.9. For both single level and
multilevel optimal profiles, the flow is rapidly accelerated towards a higher Mach number than the
baseline design. This is followed by deceleration until the flow exits the trailing edge at a lower Mach
number (X/cax = 1). The figure on the right shows the baseline and optimal cascades profiles and
Table 7.2 shows a summary of the cascade geometry parameter changes. The largest improvements
were made for the multilevel strategy, which also showed a much higher convergence rate than the
single level case. The use of a large number of design variables in the single level case led to poor
convergence and a lower optimum than the multilevel case. This has also been observed in [108] for
the inverse design optimizations of NACA4410 and ONERA M6.

Typically, for blades operating in the transonic regime fromM = 0.8 to 1.2 the major source of loss
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simultaneously to refine the design space (left), and shape change comparison before and after
refinement (right).

Units Baseline Single level optimal Multilevel optimal Variation
Rear suction side turning (εSS) [deg] 11.6 20.5 25.2 8.9 ○/13.6 ○

Pressure side trailing edge wedge angle (ϕPS) [deg] 2.500 2.508 2.884 0.008 ○/0.384 ○

Suction side trailing edge wedge angle (ϕSS) [deg] 4.000 4.043 4.088 0.043 ○/0.088 ○

Chord (c) [mm] 64.310 71.761 81.688 11.59% / 27%
Stagger angle (γ) [deg] 54.925 59.004 63.102 4.079 ○/8.177 ○

Inlet metal angle (βin) [deg] 0.0 0.063 0.037 0.063 ○/0.037 ○

Outlet metal angle (βout) [deg] 74.000 75.270 75.544 1.27 ○/1.544 ○

Leading edge radius (RLE) [mm] 4.126 4.127 4.141 0.01% / 0.4%
Solidity (σ) [-] 1.118 0.951 0.894 -15.0% / -20.0%
Pitch (g) [mm] 57.500 75.484 91.324 31.28% / 58.8%
Pitch/chord (g/c) [-] 0.894 1.052 1.118 17.65% / 25.0%

Table 7.2.: Comparison of the main geometry characteristics between the baseline and optimal
profiles

is the trailing edge loss [120, 123]. The lower Mach number at the trailing edge region contributes
to a lower entropy generation, as shown by Fig. 7.7. The optimal geometry obtained as the result of
multi-level optimization has the lowest entropy generation at the trailing edge, owing to the lowest
Mach number at the trailing edge (see Fig. 7.6). The density, static pressure, temperature, Mach
and entropy generation contours for the baseline and optimal shapes (using the single level and the
multilevel approaches) are shown in Sec. B.1, B.2.7 and B.2.8 respectively.

7.3.1. Alternative refinement strategy

The refinement procedure presented in Sec. 7.2.2 consists in adding new control points by insert-
ing knots to the B-spline curve at chosen positions. Although inserting new knots at the chosen
positions tends to increase the parametric effectiveness, the parametric effectiveness could be fur-
ther increased if the location of the control points (or the knots introduced) is optimized. For
this purpose, Châtel et. al. [2] proposed an improved refinement procedure in which the control
point position is optimized using the parametric effectiveness defined in Sec. 6.2.4. In this section,
a summary of the methodology and the results presented in [2] are presented in order to further
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baseline, single level optimal and multilevel optimal.

demonstrate the advantages of using parametric effectiveness in a multilevel optimization.

The refinement procedure proposed in [2] is an improved refinement strategy that makes use of a
classical evolutionary algorithm, called Differential Evolution [133, 134], in order to maximise the
parametric effectiveness. Therefore, the increase in parametric effectiveness does not only come
from the introduction of new control points but also from the optimization of the location of the
control points.

The multilevel optimizations performed in [2] used the simplest steepest descent algorithm [135]
combined with: (1) a line search to determine the appropriate step size [136]; (2) the projected
gradient method [137] to handle the aerodynamic constraints . The latter allows to walk in the
direction perpendicular to the constraints whilst reducing the objective.

Figure 7.8 shows the evolution of the objective (i.e. entropy generation) and constraint (i.e.
exit flow angle) during the multilevel optimization. Before starting the optimization, the coarse
CAD-based parameterization has a parametric effectiveness (PE) of 70%. By performing the first
level optimization using this parameterization the optimizer is able to reduce the objective by ap-
proximately 10%. At the end of the first level optimization, the PE of the new design is equal to
9%, which means that the CAD-based parameterization does no longer allow to efficiently move the
boundary in the direction dictated by the adjoint solution. Therefore, the CAD-based parameteriza-
tion needs to be refined in order to start the optimization from a second level. Three control points
are inserted in order to increase the PE. Using the Differential Evolution algorithm to optimize the
position of the control points, the PE is increased from 9% to 45%. The optimized CAD-based
parameterization is shown in the left part of Figure 7.9. Alternatively, the PE is increased from 9%
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(a) Baseline (b) Single level optimal (c) Multilevel optimal

Figure 7.7.: Entropy generation contour at the trailing edge for the baseline, single level optimal
and multilevel optimal.

to 20% if the knot positions are chosen randomly. The right part of Figure 7.9 shows the refined
parameterization where the position of the knots has been arbritarily chosen. Figure 7.10 compares
the boundary movement dictated by the adjoint solution with the boundary movement that can be
achieved by the refined CAD-based parameterizations. The graph shows that the parameterization
with PE = 45% is able to match better the boundary change dictated by the adjoint solution than
the parameterization with PE = 20%. In order to demonstrate that a higher PE allows to find
a better final shape at the end of the optimization, a second level optimization is performed; the
first one using the optimal CAD-based parameterization (PE = 45%), and the second one using
the same number of parameters but characterizaed by a lower PE (PE = 20%). The results shown
in 7.8 for the second level of the multilevel optimization show that using the parameterization
characterized by a higher PE gives rise to a larger reduction in the entropy generation than the
parameterization characterized by the lower PE. This demonstrates once more the benefits of us-
ing the parametric effectiveness in shape refinement for efficient multilevel CAD-based optimization.

7.4. Conclusions

In this chapter, an efficient CAD based optimization strategy is presented in which the optimizer
explores richer design spaces by autonomously creating the best parameterization to use at each
time. For this purpose, the parametric effectiveness is computed to rate the ability of a set of
CAD design parameters to produce the design shape change dictated by the adjoint sensitivities.
Exact surface sensitivities are obtained by applying algorithmic differentiation to the CAD kernel
and grid generator. The parametric effectiveness was then used for the progressive exploration
of higher-dimensional design spaces in order to make autonomous decisions and creates the best
parameterization to be used during the refinement of the design space. It was shown that the
multilevel optimization was more efficient and was able to reach a better optimum than the single
level optimization, even though they used the same 273 design variables at the end of the multilevel
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CAD-based parameterizations respectively [2].

optimization. Also, two alternative approaches are presented to refine the CAD-based parameter-
ization. In the first one, the parametric effectiveness is increased by inserting control points to
the pressure and suction side B-spline curves. In the second one, the parametric effectiveness is
increased by the insertion of the control points and the optimization of its position by using the
Differential Evolution algorithm. The second refinement strategy allows to increase the parametric
effectiveness to higher values than the first refinement strategy. The optimizer is able to further
reduce the objective when using both refinement strategies, but larger reductions are obtained with
the second refinement strategy. Though the method presented in this chapter was applied mainly
to gradient-based optimization strategies, the benefits of using the parametric effectiveness in com-
bination with the hybrid methods, which combine gradient-based and gradient-free techniques, will
be an area of future research.
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Chapter 8.

Conclusions

Although adjoint-based optimization methods have numerous advantages, specially the efficient
computation of the gradient virtually independent of the number of design variables, the methods
are not yet picked up largely by industry. One major bottleneck herein is that adjoint methods
mainly work on deforming the CFD grid and as such loose the connection to CAD, the industry
adopted standard for the design of components. In this thesis, a methodology is presented to inte-
grate the CAD kernel and grid generation tools within a CFD adjoint-based optimization framework
by expressing the optimization problem through CAD parameters, rather than working directly on
the CFD grid. The advantage of including the CAD model in the design system is that higher
level constraints can be imposed on the shape, allowing the optimized model or component to be
manufactured. However, this requires an additional sensitivity computation step: the computation
of the grid sensitivities. An alternative approach to finite differences (FD) or the design velocity
approach is proposed in chapter 3, which consists in differentiating the CAD kernel and grid gener-
ator with algorithmic differentiation (AD). The computation of gradients for the geometry creation
or the fluid mesh creation of turbine cascades is generally faster using the trace reverse mode of
AD than FD, specially when using a large number of directions, but it requires more memory. The
comparison between the sensitivities obtained by AD and FD shows for the LS89 turbine cascade
that the error introduced by FD is very sensitive to the chosen step size and its magnitude can be
relatively close to the sensitivity value itself if the step size is not chosen appropriately. The use of
AD allows computing the grid sensitivities to machine accuracy and avoids the limited arithmetic
precision, the truncation, and some robustness issues that can arise with FD. Also, the AD surface
grid sensitivities were compared to the design velocities, showing that there are large differences
between them. The largest root mean square average error between the design velocities and the AD
surface grid sensitivities is of the order of 49.5%. However, the design velocities can match reason-
ably well the normal component of the AD surface grid sensitivities if the step size is appropriately
chosen (2.9% of error). Therefore, the differentiation of these CAD kernel and grid generation using
algorithmic differentiation is preferred to finite differences or the design velocity approach when the
CAD kernel and the grid generator primal source code is available to the designer. If the geometry
and mesh creation is performed by external software and the designer has no access to the primal
sources, the design velocity approach is still more robust than finite differences and it can approxi-
mate relatively well the shape sensitivities in the normal direction to the model boundary.

The integration of the CAD kernel and grid generator within a CFD-adjoint-based optimization
framework is demonstrated in chapters 4 and 5, where the aerodynamic performance of the LS89
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turbine cascade is significantly improved at design and off-design conditions. A single point opti-
mization of the LS89 axial turbine cascade vane profile for the design downstream isentropic Mach
number of 0.9 is shown in chapter 4. By keeping the CAD representation in the optimization loop,
it is not necessary to convert the optimal grid back to a smooth CAD shape, and it is possible to
impose manufacturing constraints on the shape, such as axial chord length, trailing edge radius and
second order derivative continuity at the leading edge. Additionally, the adjoint sensitivities are
filtered out and only smooth shapes are produced. The optimization results show that the total
pressure losses and entropy generation can be reduced by 16% and nearly 12% respectively by going
from a front to a rear loaded profile and by keeping the exit flow angle fixed. Despite the increase
in mass flow, loading, boundary layer thickness displacement and momentum thickness, the base
pressure coefficient plays a dominant role and reduces the profile losses by 30%. In chapter 5, a
multipoint optimization of the LS89 axial turbine vane profile for a downstream isentropic Mach
number of 0.9 (design point), 0.955 and 1.01 is presented. The largest aerodynamic improvements
were achieved at the transonic operating point where the total pressure losses were reduced by 14%
whilst keeping the exit flow angle fixed. A comparison between the single point and multipoint
optimal designs show that the blade with lower rear suction side turning (i.e. multipoint optimal
profile) can generate lower losses at transonic operating conditions than a blade with higher rear
suction side turning (i.e. single point optimal profile). However, the latter can generate lower losses
if it operates at subsonic downstream isentropic Mach below to 0.935 approximately.

CAD based approaches have the advantage to represent the optimal shape in the industry ac-
cepted format for manufacturing. However, the success of a CAD-based optimization framework
highly depends on the expertise and skill of the designer, and often it is not obvious which parame-
ters should be chosen for the optimization to move the model boundary in the direction indicated by
the adjoint sensitivities. Furthermore, the choice of the CAD parameters constraints how the model
boundary can change, and a poor choice may prevent the exploration of innovative geometries. For
this purpose, a new methodology is presented in chapter 6 to rate the quality of the CAD-based
parameterization for optimization. The parametric effectiveness rates a group of CAD-based design
variables in terms of its ability to produce a shape change that is aligned with the adjoint sensi-
tivities. This measure takes into account the non-orthogonality of the design variables and uses
accurate geometric sensitivities provided by algorithmic differentiation. The methodology is ex-
tended to constrained optimization problems where the constraints can be of any type: geometrical,
aerodynamic, structural, etc. The method is tested to rate different CAD-based parameterizations
of the LS89 turbine cascade and to select four of them for optimization at design point. Two
types of constrained optimizations were considered and seven aerodynamically constrained opti-
mizations were performed. The optimization results showed that the largest reductions in entropy
were achieved when using those groups of CAD-based design variables that exhibited the highest
parametric effectiveness at the start of the optimization. Therefore, the parametric effectiveness is
a good metric to be used to choose the best CAD-based parameterization for optimization. Addi-
tionally, the parametric effectiveness can also be used to rate the individual effectiveness of each
CAD parameter, in order to exclude the least performing ones from the optimization. Considerable
time savings can be achieved by using the most effective subset of parameters for optimization, with
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a reasonable smaller number of design parameters, at the expenses of a smaller reduction in the
gain in performance. In chapter 6 the parametric effectiveness was only evaluated at the start of
the optimization process to decide which group of CAD parameters was more fit for optimization.
However, it is possible that another group of design variables becomes more effective than the cho-
sen one in later stages of the optimization.

Another downside of CAD-based approaches is that they restrict the design space compared to
node based approaches where each single mesh point is free to move. In order to preserve the rich
design space of the node based approach, an efficient CAD based optimization strategy is presented
in chapter 7 in which the optimizer explores richer design spaces by autonomously creating the
best parameterization to use at each time. The novelty of this strategy lies in the definition of the
parametric effectiveness and using it to refine the CAD model parameterization in a multilevel opti-
mization process. In a multilevel optimization where the optimization starts with a small number of
design variables and ends with a large number, it is unclear how many new design variables should
be introduced at every new design space, or how good is every new parameterization to produce
the shape changes that are required by the adjoint sensitivities. In this context, the parametric
effectiveness can be used to create the appropiate parameterization to use in each new dimensional
design space and make the optimization a more autonomous, robust and efficient design strategy.
It was shown that the multilevel optimization was more efficient and was able to reach a better
optimum than the single level optimization, even though they used the same 273 design variables at
the end of the multilevel optimization. Also, two alternative approaches were presented to refine the
CAD-based parameterization. In the first one, the parametric effectiveness is increased by inserting
control points to the pressure and suction side B-spline curves. In the second one, the parametric
effectiveness is increased by the insertion of the control points and the optimization of its position
by using the Differential Evolution algorithm. The second refinement strategy allows to increase
the parametric effectiveness to higher values than the first refinement strategy. The optimizer is
able to further reduce the objective when using both refinement strategies, but larger reductions are
obtained with the second refinement strategy. Though the method presented was applied mainly
to gradient-based optimization strategies, the benefits of using the parametric effectiveness in com-
bination with the hybrid methods, which combine gradient-based and gradient-free techniques, will
be an area of future research.





Chapter 9.

Future work

In this thesis, it is shown that the use of the reverse mode of algorithmic differentiation for the
computation of gradients is more accurate and more efficient than using finite differences, specially
for a large number of directions. However, using the reverse mode requires much more memory than
the primal and this requirement could become a bottleneck for larger test cases. When the size of
the tape cannot fit in the RAM of the working station, the tape needs to be written into the hard
disk and this can slow down significantly the computation of the gradients. To avoid these prob-
lems, future efforts should focus in differentiating the mesh sources using an AD technique called
check pointing, which allows to reduce the memory requirements at the expenses of an increase
of the computational time. By using check pointing, it would also be possible to make sure that
the tape data fits in the RAM and hence avoid writing out the tape into the hard disk, making
the computation of the gradients more efficient. The structured meshes are used in this thesis to
provide fine control over the final quality of the mesh. Nevertheless, the work presented in this
thesis could be equally applied to unstructured grids. This would require the differentiation of the
unstructured grid generation.

The optimization results presented in chapters 4 and 5 show that large aerodynamic improve-
ments can be achieved for the LS89 turbine cascade at design point and off-design respectively by
reducing the downstream mixing losses and the mixed out loss of the boundary layers. However,
the question arises whether using RANS to predict the flow field around the trailing edge of a
transonic turbine is a valid approach, since the base pressure has a relatively big influence on the
profile losses. Future unsteady simulations and/or experimental test are going to be necessary to
support or reject the aerodynamic improvements for the single point and multipoint optimal designs.

The parametric effectiveness was used in chapter 6 to rate the ability of groups of CAD parameters
to move the shape boundary according to what the adjoint solution dictates. This allows to find the
most effective parameters and also to select the best CAD-based parameterization for optimization.
A high parametric effectiveness at the beginning of the optimization resulted in larger reductions
in the objective. Also, it was shown that using the most effective subset of parameters instead of
the full set allowed the optimizer to converge faster. Future research should explore the benefits of
using the most effective subset of parameters instead of the full set in gradient-free techniques or
hybrid methods, where the cost savings are expected to be quite substantial.

In chapter 7, the parametric effectiveness was used to refine the CAD model parameterization
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in a multilevel optimization process. The benefits of using the parametric effectiveness in combi-
nation with the hybrid methods, which combine gradient-based and gradient-free techniques, in a
multilevel shape refinement will be an area of future research. Also, two alternative procedures
were presented to refine the CAD-based parameterization. The first one consists in introducing
new control points by assuming the positions of the knots to insert. The second strategy consists
in introducing control points and then optimizing its positions by finding the optimal positions of
the knots to insert. The second refinement strategy gave rise to a higher parametric effectiveness
and larger reductions in the objective. However, the use of Differential Evolution is limited to the
use of a small number of design variables, as the computational effort to optimize the position of
the control points can become prohibitive if a large number of variables are considered. For this
reason, future efforts should investigate the replacement of the Differential Evolution algorithm by
an efficient gradient-based algorithm, specially if the objective space does not present multiple min-
ima. However, if the parametric effectiveness objective space presents multiple minima, an efficient
hybrid method should be used instead. In both cases, this would require computing the gradients of
the parametric effectiveness w.r.t. the position of the inserted knots, which can be done by making
use of algorithmic differentiation. In addition, the use of parametric effectiveness in a multilevel
optimization was exploited at design point. Future research should investigate the use of parametric
effectiveness to create the best CAD model parameterization in a multipoint optimization.

This thesis includes many ideas and pieces of works that should be evaluated in a wide range of
problems, extending this work to geometries other than the LS89. Though the thesis exclusively
focused in turbomachinery, it is a matter of a different implementation of the main ideas presented
in order to generalize the proposed methods in other domains of applications, such as external
aerodynamics.

Finally, the proposed methods-tools could be plugged into any other adjoint based optimization
method, in order to make better AD tools and more efficient adjoint methods.
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B.1. Baseline shape
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(a) Density [kg m-3] (b) Static pressure [Pa]

(c) Static temperature [K] (d) Mach [-]

(e) Entropy delta [Pa m3 kg-1]

Figure B.1.: Flow results of the LS89 baseline shape for an outlet isentropic Mach numberMise,2 =

0.90 (SI units)
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(a) Density [kg m-3] (b) Static pressure [Pa]

(c) Static temperature [K] (d) Mach [-]

(e) Entropy delta [Pa m3 kg-1]

Figure B.2.: Flow results of the LS89 baseline shape for an outlet isentropic Mach numberMise,2 =

1.01 (SI units)
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B.2. Optimal shapes with the same exit flow angle as the baseline

B.2.1. Single point optimal shape from chapter 4
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(a) Density [kg m-3] (b) Static pressure [Pa]

(c) Static temperature [K] (d) Mach [-]

(e) Entropy delta [Pa m3 kg-1]

Figure B.3.: Flow results of the single point optimal shape at an outlet isentropic Mach number
Mise,2 = 0.90
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B.2.2. Multipoint optimal shape from chapter 5
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(a) Density [kg m-3] (b) Static pressure [Pa]

(c) Static temperature [K] (d) Mach [-]

(e) Entropy delta [Pa m3 kg-1]

Figure B.4.: Flow results of the multipoint optimal shape for an outlet isentropic Mach number
Mise,2 = 0.90 (SI units)
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(a) Density [kg m-3] (b) Static pressure [Pa]

(c) Static temperature [K] (d) Mach [-]

(e) Entropy delta [Pa m3 kg-1]

Figure B.5.: Flow results of the multipoint optimal shape for an outlet isentropic Mach number
Mise,2 = 1.01 (SI units)
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B.2.3. Single point optimal shape from chapter 6 using set SS9PS9
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(a) Density [kg m-3] (b) Static pressure [Pa]

(c) Static temperature [K] (d) Mach [-]

(e) Entropy delta [Pa m3 kg-1]

Figure B.6.: Flow results of the single point optimal shape using set SS9PS9 for an outlet isentropic
Mach number Mise,2 = 0.90 (SI units)
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B.2.4. Single point optimal shape from chapter 6 using set SS14PS4
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(a) Density [kg m-3] (b) Static pressure [Pa]

(c) Static temperature [K] (d) Mach [-]

(e) Entropy delta [Pa m3 kg-1]

Figure B.7.: Flow results of the single point optimal shape using set SS14PS4 for an outlet
isentropic Mach number Mise,2 = 0.90 (SI units)
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B.2.5. Single point optimal shape from chapter 6 using subset 1
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(a) Density [kg m-3] (b) Static pressure [Pa]

(c) Static temperature [K] (d) Mach [-]

(e) Entropy delta [Pa m3 kg-1]

Figure B.8.: Flow results of the single point optimal shape using subset 1 for an outlet isentropic
Mach number Mise,2 = 0.90 (SI units)
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B.2.6. Single point optimal shape from chapter 6 using subset 3
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(a) Density [kg m-3] (b) Static pressure [Pa]

(c) Static temperature [K] (d) Mach [-]

(e) Entropy delta [Pa m3 kg-1]

Figure B.9.: Flow results of the single point optimal shape using subset 3 for an outlet isentropic
Mach number Mise,2 = 0.90 (SI units)
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B.2.7. Single level and single point optimal shape from chapter 7
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(a) Density [kg m-3] (b) Static pressure [Pa]

(c) Static temperature [K] (d) Mach [-]

(e) Entropy delta [Pa m3 kg-1]

Figure B.10.: Flow results of the single level and single point optimal shape for an outlet isentropic
Mach number Mise,2 = 0.90 (SI units)
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B.2.8. Multilevel and single point optimal shape from chapter 7
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(a) Density [kg m-3] (b) Static pressure [Pa]

(c) Static temperature [K] (d) Mach [-]

(e) Entropy delta [Pa m3 kg-1]

Figure B.11.: Flow results of the multilevel and single point optimal shape for an outlet isentropic
Mach number Mise,2 = 0.90 (SI units)
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B.3. Optimal shapes with the same exit flow angle and mass flow
as the baseline

B.3.1. Single point optimal shape from chapter 6 using set SS9PS9
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(a) Density [kg m-3] (b) Static pressure [Pa]

(c) Static temperature [K] (d) Mach [-]

(e) Entropy delta [Pa m3 kg-1]

Figure B.12.: Flow results of the single point optimal shape using set SS9PS9 for an outlet isen-
tropic Mach number Mise,2 = 0.90 (SI units). The exit flow angle and mass flow are approximately
the same than the baseline.



B.3. Optimal shapes with the same exit flow angle and mass flow as the baseline 159

B.3.2. Single point optimal shape from chapter 6 using set SS14PS4
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(a) Density [kg m-3] (b) Static pressure [Pa]

(c) Static temperature [K] (d) Mach [-]

(e) Entropy delta [Pa m3 kg-1]

Figure B.13.: Flow results of the single point optimal shape using set SS14PS4 for an outlet isen-
tropic Mach number Mise,2 = 0.90 (SI units). The exit flow angle and mass flow are approximately
the same than the baseline.
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B.3.3. Single point optimal shape from chapter 6 using the most effective subset
of the set SS14PS4
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(a) Density [kg m-3] (b) Static pressure [Pa]

(c) Static temperature [K] (d) Mach [-]

(e) Entropy delta [Pa m3 kg-1]

Figure B.14.: Flow results of the single point optimal shape using the most effective subset of the
set SS14PS4 for an outlet isentropic Mach number Mise,2 = 0.90 (SI units). The exit flow angle and
mass flow are approximately the same than the baseline.
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