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“What we know is a drop, what we don’t know is an ocean.” 
Isaac Newton 
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Abstract 

This research project focuses on the analysis and prediction of flow structures and sediment 
transport process in open channels by using three-dimensional numerical models.  

The numerical study was performed using the open source computational fluid dynamics 
(CFD) solver based on the finite volume method (FVM) – OpenFOAM. Turbulence is treated 
by means of the two main methodologies; i.e. Large Eddy Simulation (LES) and Reynolds-
Averaged Navier–Stokes (RANS). The free surface is tracked using the Volume of Fluid 
method (VOF). In addition, a new multi-dimensional model for sediment transport based on 
the Eulerian two-phase mathematical formulation is applied. 

The results obtained from the different numerical configurations are verified and 
validated against experimental data sets published in important research journals. The main 
characteristics of the flow structures are studied by using three set-up cases in steady and 
unsteady-state (transient) hydraulic flow conditions. On the other hand, the new multi-
dimensional model for sediment transport is applied to predict the local scour caused by 
submerged wall jet test-case.  

Non-uniform structured elements are used in the grid configuration of the computational 
domains. A mesh sensitivity analysis is performed in each test-case study in order to obtain 
independent grid results. This analysis provides a balance between accuracy and optimal 
computational time. 

The results demonstrate that the three-dimensional numerical configurations 
satisfactorily reproduce the temporal variation of the different variables under study with 
correct trends and high correlation with the experimental values. 

Regarding the analysis and prediction of the flow structures, the results show the 
importance of the turbulence approach in the numerical configuration. On the other hand, the 
results of the new multi-dimensional two-phase model allow to analyze the full dynamics for 
sediment transport (concentration profile).   

Although the numerical results are satisfactory, the application of three-dimensional 
numerical models in field-scale cases requires a high computational resource. 
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Resumen 

Este trabajo de investigación se enfoca en el análisis y predicción de las estructuras de flujo 
y el proceso de transporte de sedimentos en canales abiertos mediante el uso de modelos 
numéricos tridimensionales. 

El estudio numérico se realizó utilizando el software de dinámica de fluidos 
computacional o CFD (por sus siglas en inglés) basado en el método de volúmenes finitos 
(FVM) - OpenFOAM. La influencia de la turbulencia es analizada con las dos principales 
metodologías, LES (Large Eddy Simulation) y RANS (Reynolds-Averaged Navier–Stokes); 
mientras que el método VOF (Volume of Fluid) es usado para la captura de la superficie libre 
del agua. Además, se aplica un nuevo modelo multidimensional para el transporte de 
sedimentos basado en la formulación matemática Euleriana de dos fases. 

Los resultados obtenidos de las diferentes configuraciones numéricas son verificados y 
validados con datos experimentales publicados en importantes revistas de investigación. Las 
características principales de las diferentes estructuras de flujo se estudian en tres casos que 
incluyen condiciones de flujo estacionario y no estacionario (también conocido como flujo 
transitorio). Por otro lado, el nuevo modelo multidimensional para el estudio de transporte 
de sedimentos se aplica para predecir la socavación producida en un caso experimental de 
chorro de fondo sobre lecho erosionable. 

Los dominios computacionales son configurados con elementos estructurados no 
uniformes. Además, se realiza un análisis de sensibilidad en cada caso de estudio con el 
objetivo de obtener resultados independientes del tamaño de mallas utilizadas. Este análisis 
permite encontrar un equilibrio entre la precisión de los resultados y un tiempo de cálculo 
óptimo. 

Los resultados muestran que las configuraciones numéricas son capaces de reproducir 
satisfactoriamente las diferentes variables en estudio, con tendencias correctas y una alta 
correlación con los valores experimentales. 

Con respecto al análisis y predicción de las estructuras de flujo, los resultados revelan la 
importancia que tiene el uso del modelo de turbulencia en la configuración numérica. Por 
otro lado, los resultados obtenidos con el uso de un nuevo modelo multidimensional de dos 
fases permiten analizar la dinámica completa del transporte de sedimentos (perfil de 
concentración). 

Aunque los resultados numéricos son satisfactorios, la aplicación de modelos 
tridimensionales en casos a escala de campo exige un considerable recurso computacional 
en velocidad de cálculo y almacenamiento de datos. 
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𝑧𝑧𝑏𝑏  reference level near the bed 

Latin alphabet. Upper case 

𝐵𝐵  empirical coefficient (Multiphase Eulerian two-phase modeling of 
sediment transport) 

𝐶𝐶  constant that reflects the slope of the sediment flux 

𝐶𝐶𝑚𝑚𝑎𝑎𝑚𝑚  maximum Courant number 

𝐶𝐶𝑜𝑜  courant number 

𝐶𝐶𝑠𝑠  constant Smagorinsky coefficient 

𝐶𝐶𝛼𝛼  controls the intensity of the compression 

𝐶𝐶𝜀𝜀1  constant Standard 𝑘𝑘 − 𝜀𝜀 model 

𝐶𝐶𝜀𝜀2  constant Standard 𝑘𝑘 − 𝜀𝜀 model 

𝐶𝐶𝜀𝜀13  constant Renormalization Group (RNG) k-ε turbulence model 

𝐶𝐶𝜀𝜀23  constant Renormalization Group (RNG) k-ε turbulence model 
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𝐶𝐶𝜔𝜔12   constant 𝑘𝑘 − 𝜔𝜔 model 

𝐶𝐶𝜔𝜔22   constant 𝑘𝑘 − 𝜔𝜔 model 

𝐶𝐶𝜇𝜇  constant Standard 𝑘𝑘 − 𝜀𝜀 model 

𝐶𝐶𝜇𝜇RNG  constant Renormalization Group (RNG) k-ε turbulence model 

𝐶𝐶1𝜀𝜀, 𝐶𝐶2𝜀𝜀, 𝐶𝐶3𝜀𝜀, 𝐶𝐶4𝜀𝜀, 
𝐶𝐶𝜇𝜇  

constants Multiphase Eulerian two-phase modeling of sediment 
transport 

𝐷𝐷  

 

flow field domain (LES model)/ deposition rate (Single-phase 
sediment transport model) 

𝐷𝐷∗  dimensionless particle diameter 

𝐸𝐸  entrainment /erosion rate 

𝐺𝐺  function filter 

𝐻𝐻  water depth from bed 

𝐽𝐽𝑖𝑖𝑖𝑖𝑓𝑓  energy production / dissipation - interaction with the carrier fluid  

𝐿𝐿  characteristic length of the involve geometries 

ℒ𝑖𝑖𝑖𝑖  Germano identity 

𝑀𝑀𝑖𝑖
𝑓𝑓𝑠𝑠, 𝑀𝑀𝑖𝑖

𝑠𝑠𝑓𝑓  interphase momentum (Multiphase Eulerian two-phase modeling of 
sediment transport) 

N  number of  identical experiments at a certain time - Reynolds 
averaging analysis 

𝑃𝑃𝑘𝑘  turbulent production 

𝑅𝑅   relative submerged density 

𝑅𝑅𝑒𝑒  Reynolds number 

𝑅𝑅2   Coefficient of determination 

𝑅𝑅𝑖𝑖𝑖𝑖
𝑓𝑓𝑓𝑓   Reynolds stress (Multiphase Eulerian two-phase modeling of 

sediment transport)  

𝐑𝐑  Reynolds stress (RANS) or subgrid-scale Reynolds stress (LES) 

𝑆𝑆  surface in a control volume 

�̂�𝑆𝑖𝑖𝑖𝑖  strain rate of the large scale or resolved field strain rate tensor 

𝑆𝑆𝑖𝑖𝑖𝑖
𝑓𝑓   fluid-phase strain rate tensor (Multiphase Eulerian two-phase 

modeling of sediment transport) 

𝑆𝑆𝑖𝑖𝑖𝑖   strain-rate tensor 

𝑆𝑆𝑓𝑓   Stokes number 

𝑆𝑆𝑖𝑖𝑖𝑖𝑠𝑠  sediment-phase strain rate tensor 
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𝐒𝐒  strain rate – tensor notation 

𝑇𝑇  Time interval over which averaging is performed - Reynolds 
averaging analysis 

𝑈𝑈   characteristic velocity of the flow 

𝐔𝐔  magnitude absolute velocity  

𝑉𝑉  volume in a control volume 

𝑉𝑉𝑓𝑓  volumes occupied by the interstitial fluid 

𝑉𝑉𝑃𝑃  volumes occupied by the particles  

Greek alphabet. Lower case 

𝛼𝛼   volume fraction (VOF method)/ Turbulence drag parameter 
(Multiphase Eulerian two-phase modeling of sediment transport) 

𝛽𝛽  constant Renormalization Group (RNG) k-ε turbulence model/ bed 
slope angle (Single-phase sediment transport model) 

𝛾𝛾𝑠𝑠  energy dissipation rate 

𝛿𝛿𝑖𝑖𝑖𝑖  Kronecker delta 

𝛿𝛿𝜈𝜈   viscous length scale 

𝜀𝜀   turbulent kinetic energy dissipation rate 

𝜂𝜂   Kolmogorov length scales/ bed elevation (Single-phase sediment 
transport model) 

𝜃𝜃   dimensionless bed shear stress (Shield number) / granular 
temperature (Multiphase Eulerian two-phase modeling of sediment 
transport) 

𝜃𝜃𝑠𝑠   critical Shields number for initiation of motion 

𝜃𝜃𝑠𝑠𝑜𝑜   critical Shield number for initiation of motion at the horizontal bed 

𝜃𝜃𝑓𝑓  constant friction angle (repose angle) 

𝜅𝜅   Von Karman´s constant 

𝜅𝜅𝛼𝛼  curvature of the interface 

𝜆𝜆  bulk viscosity 

𝜇𝜇  viscosity 

𝜇𝜇𝑠𝑠  static friction coefficient 

𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠  subgrid eddy viscosity 

𝜇𝜇𝑓𝑓   eddy viscosity 

𝜇𝜇𝑠𝑠𝑠𝑠  particle shear viscosity 

𝜇𝜇𝑠𝑠𝑓𝑓  frictional viscosity 
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𝜌𝜌  fluid density 

𝜌𝜌𝑤𝑤  density of water 

𝜌𝜌𝑓𝑓  volume force term 

𝜎𝜎  surface tension coefficient 

𝜎𝜎𝑠𝑠  turbulent Schmidt number 

𝜎𝜎𝑘𝑘  constant Standard 𝑘𝑘 − 𝜀𝜀 model 

𝜎𝜎𝑘𝑘1  constant 𝑘𝑘 − 𝜔𝜔 model 

𝜎𝜎𝑘𝑘2  constant Renormalization Group (RNG) k-ε turbulence model 

𝜎𝜎𝜀𝜀 constant Standard 𝑘𝑘 − 𝜀𝜀 model 

𝜎𝜎𝜀𝜀2  constant Renormalization Group (RNG) k-ε turbulence model 

𝜎𝜎𝜔𝜔1  constant 𝑘𝑘 − 𝜔𝜔 model 

𝜈𝜈𝑓𝑓  diffusivity 

𝜙𝜙   scalar or vector quantity 

𝜙𝜙𝑎𝑎,𝑤𝑤,𝑠𝑠  volumetric concentration for air (𝑎𝑎), water (𝑤𝑤) and sediment (𝑠𝑠) 

𝜙𝜙𝑓𝑓  fluid phase 

𝜙𝜙(𝑥𝑥, 𝑡𝑡)  flow variables - Reynolds averaging analysis 

𝜙𝜙�(𝑥𝑥, 𝑡𝑡)   mean value component - Reynolds averaging analysis 

𝜙𝜙′(𝑥𝑥, 𝑡𝑡)  fluctuating component - Reynolds averaging analysis 

𝜙𝜙�(𝑥𝑥, 𝑡𝑡)���������   time average over a time-averaged quantity 

𝜙𝜙′(𝑥𝑥, 𝑡𝑡)����������  time average over a fluctuating quantity 

𝜙𝜙𝑓𝑓𝑠𝑠  random-loose-packing concentration for spheres 

𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚
𝑠𝑠   random-close-packing concentration for spheres 

𝜑𝜑  angle between the fluid velocity vector at the particle position and 
the steepest bed slope direction 

𝜂𝜂0  constant Renormalization Group (RNG) k-ε turbulence model 

𝜏𝜏𝑏𝑏   boundary shear stress/bed shear stress (Single-phase sediment 
transport model) 

𝜏𝜏𝑖𝑖𝑖𝑖   Reynolds stresses 

𝜏𝜏𝜂𝜂  Kolmogorov time scales 

𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠  particle stress collisional component 

𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑓𝑓  particle stress frictional component 

𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠  subgrid-scale Reynolds stress 



 

xx 

𝜏𝜏𝑖𝑖𝑖𝑖
𝑓𝑓   fluid stress (Multiphase Eulerian two-phase modeling of sediment 

transport) 

𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠   particle shear stress 

𝜐𝜐  dynamic viscosity 

𝜐𝜐𝑓𝑓𝑓𝑓  turbulent eddy viscosity 

𝜓𝜓  dimensionless shear stress parameter 

Greek alphabet. Upper case 

Γ  diffusion coefficient 

Δ  filter cutoff width –LES 

∆𝑙𝑙  characteristic length of grid size 

Δ�   additional test filter 

Τ𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠  test filtering 

Φ  variables- LES model 

Φ�    filtered (resolved) variable- LES 

Φ"  residual (subgrid-scale, SGS) variable-LES 
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1 INTRODUCTION 

1.1 Background and motivation 

The prediction of flow and sediment transport in open-channels and rivers presents a 
significant challenge for river engineering. Flows in natural and artificial channel systems 
commonly encounter the interaction between a variety of planimetries (i.e. curved and 
braided channels) and/or structures (i.e. bridge piers, weirs, dams, barrages, intakes, etc.) 
which usually produce a three-dimensional effect, free-surface variation and bed change that 
significantly affect the flow structure and the sediment transport process. 

Early numerical models based on a set of algebraic and differential equations in one- and 
two- dimensional approaches have been developed. These numerical models are applied 
where the vertical velocities and accelerations are negligible, resulting in a hydrostatic 
pressure distribution.  

Recently, the development in computer capabilities has provided the use of three-
dimensional numerical models which are based on the application of the Navier-Stokes 
equations. This numerical approach allows a better representation of the complex process 
involved, providing a new insight and understanding concerning in river engineering 
analysis.  

Computational Fluid Dynamics (CFD), its fundamental basis being the Navier–Stokes 
equations, allows the solving of river engineering problems using numerical methods. CFD 
codes are tools that permit to evaluate different combinations of boundary conditions, 
geometric changes and also reduce scale-up problems presented in the experimental models.  

This implies the analysis of the advantages and disadvantages obtained whenever three-
dimensional numerical models are applied in river engineering issues. There is a significant 
value in identifying the flow structure and sediment transport process in which this numeric 
approach becomes more important. 

1.2 Objectives 

1.2.1 Main objective 

The main goal of this study is TO USE THREE-DIMENSIONAL NUMERICAL MODELS 
TO ANALYZE AND PREDICT THE FLOW STRUCTURE AND SEDIMENT 
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TRANSPORT PROCESS IN OPEN-CHANNELS. Also, it is expected that the conclusions 
reached would provide an insight into the applications for which the hydrostatic pressure 
distribution assumption is no longer valid.  

1.2.2 Specific Objectives  

In order to reach the aforementioned main goals, the following specific targets are pursued: 

 Review of the mathematical governing equations that represent the variables 
involved in both the flow structure and the sediment transport process. 

 Understand the importance of the turbulence model and free-surface variation in 
order to identify the most important flow dynamics processes. 

 Select some representative experimental set-up cases for which the three-
dimensional effect is important. 

 Perform mesh sensitive analysis to obtain results no matter the grid configuration 
size. 

 Verify the accuracy and reliability of the three-dimensional numerical configuration 
models against experimental results.  

 Issue general conclusions regarding the relevance of using a new multi-dimensional 
numerical approach in the analysis of the sediment transport process.  

 Show the key processes and the main results concerning the river channel dynamics. 

1.3 Methodology 

The three-dimensional study in this research project is developed on the open-source 
computational fluid dynamics (CFD) code named OpenFOAM. The source code 
accessibility facilitates the addition/customization of features required in river engineering 
problems. 

The following items describe in detail the steps carried out in this investigation to 
achieve each of the above specific objectives. 

 Review of governing equations. The derivation of the governing equations 
provides the basic knowledge of the fundamentals involved in the three-dimensional 
numerical simulation. As well, it allows to understand the importance of the use of 
the turbulence models, the method to track/capture the free surface and the 
significance of the boundary conditions. 

 Validating the numerical results with experimental data. Different numerical 
configurations in steady and unsteady-state (transient) hydraulic flow conditions are 
analyzed in order to identify the main characteristics of the fluid dynamics 
processes. 

 Numerical models of sediment transport. A new multi-dimensional numerical 
model to analyze the sediment transport process is applied to predict the local scour 
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caused by a submerged wall jet. To the author’s knowledge, this test-case numerical 
analysis using the kinetic theory has not been reported in the literature. 

1.4 Outline of the thesis 

Subsequently, the thesis is organized as follows:  

The next section, Chapter 2, provides the theoretical background needed for the 
comprehensive use of a three-dimensional numerical model. The third chapter contains the 
three-dimensional numerical simulation of three cases in steady and unsteady-state flow 
conditions to identify the flow dynamics processes involved. Chapter 4 describes the 
mathematical formulation considered to simulate the sediment transport process. An 
application to a scouring process is presented. Finally, Chapter 5 presents a summary of the 
overall conclusions of this research project.  
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2 GOVERNING EQUATIONS 

2.1 Introduction 

This chapter provides an overview of the basic mathematical equations required to describe 
the three-dimensional free-surface flow simulations in river engineering applications. The 
Navier-Stokes equations for an incompressible viscous flow that represent the physics 
conservation law properties and the models used to simplify the resolution of turbulent flows 
based on LES and RANS approaches are described.  

The numerical model based on the Finite Volume Method (FVM), the free-surface 
model founded on the Volume of Fluid method (VOF) and the most common boundary 
conditions are discussed.  

2.2 The Navier-Stokes equations 

The governing equations for the fluid flow in hydraulic engineering applications are the 
incompressible Navier-Stokes equations for Newtonian fluids. These equations consist of the 
law of conservation of mass ( 2.1 ) and the law of conservation of momentum ( 2.2), which 
are presented in Eulerian form. The mass conservation equation is also called the continuity 
equation, which states that since the matter is neither created nor destroyed, it can only be 
transformed by physical, chemical or biological processes; whereas, the momentum 
conservation or equation of motion is a vector quantity defined as a product of mass and 
velocity. 

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= 0  ( 2.1 ) 

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑡𝑡 + 𝑢𝑢𝑖𝑖

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= −
1
𝜌𝜌
𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜐𝜐
𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑖𝑖

  ( 2.2 ) 

where 𝑖𝑖, 𝑗𝑗 = 1,2,3 is the tensor notation (Cartesian coordinates), 𝑢𝑢𝑖𝑖 are the fluid velocity 
components, 𝑝𝑝 is the pressure, 𝜌𝜌 is the fluid density and 𝜐𝜐 is the dynamic viscosity, defined 
as the viscosity 𝜇𝜇 divided by 𝜌𝜌. The pressure presents a particular situation, in which it does 
not appear under a time dependence form, and it is only determined up to a constant. This 
requires special treatment for numerical schemes in order to solve continuity [1,2]. 

The transition from laminar to turbulence flow is ruled by Reynolds number defined as, 
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𝑅𝑅𝑒𝑒 =
𝜌𝜌𝑈𝑈𝐿𝐿
𝜇𝜇   ( 2.3 ) 

here, 𝑈𝑈 is the characteristic velocity of the flow and 𝐿𝐿 is a characteristic length of the involve 
geometries. 

Laminar flows, at low Reynolds numbers, are stable due to viscous term are dominant 
and hence the momentum equation becomes more linear. On the other hand, turbulent flows, 
at high Reynolds numbers, are unsteady, chaotic, random, and involve three-dimensional 
fluctuations where, inertial term dominates, causing non-linearity in the momentum 
equation. 

2.3 Turbulent scales  

The modern theory of turbulence is based on the energy cascade concept first introduced by 
Richardson [3] and quantified by Kolmogorov [4].  In this theory, turbulence is composed 
of different scales of flow motion referred as eddies. Through the cascade process, Figure 
2.1, the kinetic energy is transferred from largest scales (production mechanism resulting 
from the flow shear) to smaller and smaller scales by inviscid process (inertia effect) until, 
at the smallest scales, the friction forces (viscous stresses) become large and the kinetic 
energy is dissipated as heat. The kinetic energy rate transferred from an eddy to a smaller 
eddy is the same for each eddy size [5], resulting in equal to the turbulent kinetic energy 
dissipation rate, 𝜀𝜀.  

Through dimensional analysis, the smallest scales of turbulent motion, where dissipation 
occurs, can be defined based on a set of two parameters, 𝜀𝜀 [𝐿𝐿2 𝑇𝑇3⁄ ] and 𝜐𝜐  [𝐿𝐿2 𝑇𝑇⁄ ], i.e. 
Kolmogorov length (𝜂𝜂), time �𝜏𝜏𝜂𝜂� and velocity �𝑢𝑢𝜂𝜂� scales.  

𝜂𝜂 = �
 𝜐𝜐3

𝜀𝜀 �
1 4⁄

  𝜏𝜏𝜂𝜂 = �
𝜐𝜐
𝜀𝜀�

1 2⁄
  𝑢𝑢𝜂𝜂 = (𝜀𝜀𝜐𝜐)1 4⁄   ( 2.4 ) 

The Reynolds number of the Kolmogorov scales is one, i.e. 𝜂𝜂𝑢𝑢𝜂𝜂 𝜐𝜐 = 1⁄  , which is small 
enough for  the dissipation of the kinetic energy to be effective (see Pope [6]). Additionally, 
the largest scales of turbulent motion (𝑙𝑙𝑜𝑜 - integral length scale) are determined by the 
characteristic size of the flow. 
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Figure 2.1. Energy cascade at high Reynolds number – schematic diagram                             
“Adapted from Pope [6]” 

Navier Stokes equations describe both laminar and turbulent flow, but the spatial 
resolution required to solve the whole range of the turbulent scales for practical hydraulic 
engineering problems makes Direct Numerical Simulation (DNS) approach out of reach 
based on the current computer capacities (the total computational effort for DNS simulations 
is proportional to Re3 for homogeneous turbulence [1]). 

In order to reduce computational cost, statistical analysis can be used to avoid the 
solution of all the scales of flow motion. There are basically two main methodologies. The 
first one, called Large Eddy Simulation (LES), which directly solves the largest scales of 
flow motion while modeling only the small scales. On the other hand, the second approach, 
called the Reynolds-Averaged Navier–Stokes (RANS), parameterizes all turbulent 
fluctuations presenting the calculation of the turbulent averaged flow. 

2.4 Reynolds-Averaged Navier–Stokes (RANS) 

2.4.1 Reynolds Averaging 

The Reynolds averaging concept introduced by Reynolds [7], is used to derive the equations 
of motion for time-averaged turbulent quantities. The main idea behind of Reynolds 
averaging is to decompose any of the flow variables involved, 𝜙𝜙(𝑥𝑥, 𝑡𝑡), which is a function 
of time and space, into a mean value component, 𝜙𝜙�(𝑥𝑥, 𝑡𝑡), and a fluctuating component, 
𝜙𝜙′(𝑥𝑥, 𝑡𝑡), which is of a stochastic nature. 

𝜙𝜙(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙�(𝑥𝑥, 𝑡𝑡) +𝜙𝜙′(𝑥𝑥, 𝑡𝑡)  ( 2.5 ) 

The mean value, 𝜙𝜙�(𝑥𝑥, 𝑡𝑡), can be computed by using any of the following perceptions: 
time averaging (average of a quantity over a time interval), space averaging (average of a 
quantity over a space interval) or ensemble averaging (average of numerous identical 
quantities at a certain time) [8]. 

The time averaging approach is appropriate when considering a steady turbulent flow 
(flow does not vary on the average in time) 

 

LlolEI
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𝜙𝜙�(𝑥𝑥) = lim
𝑇𝑇→∞

1
𝑇𝑇� 𝜙𝜙(𝑥𝑥, 𝑡𝑡) 𝑑𝑑𝑡𝑡

𝑓𝑓+𝑇𝑇

𝑓𝑓
  ( 2.6 ) 

here, 𝑇𝑇 is the time interval over which averaging is performed and for engineering 
applications, it is assumed that, it is much greater compared to the time scale of the turbulent 
fluctuations.   

If unsteady flow occurs, with time scales of the same order of the turbulent fluctuations, 
the ensemble averaging must be used. Ensemble average should be understood as an average 
of N identical experiments at a certain time, which is both time and space-dependent. 

𝜙𝜙�(𝑥𝑥, 𝑡𝑡) = lim
𝑇𝑇→∞

1
𝑁𝑁�𝜙𝜙(𝑥𝑥, 𝑡𝑡)

𝑁𝑁

𝑖𝑖=1

  ( 2.7 ) 

2.4.2 Averaging Rules 

Some of the averaging rules are needed in deriving RANS equations, which include, 

 The time average over a time-averaged quantity gives the same time average 

𝜙𝜙�(𝑥𝑥, 𝑡𝑡)��������� = 𝜙𝜙�(𝑥𝑥, 𝑡𝑡)  ( 2.8 ) 

 The time average over a fluctuating quantity is zero. 

𝜙𝜙′(𝑥𝑥, 𝑡𝑡)���������� = 0  ( 2.9 ) 

In the ensemble average as the averaging operation, i.e. 

𝜕𝜕𝜙𝜙𝚤𝚤
𝜕𝜕𝑥𝑥𝚤𝚤

�����
=
𝜕𝜕𝜙𝜙�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

  ( 2.10 ) 𝜕𝜕𝜙𝜙𝚤𝚤
𝜕𝜕𝑡𝑡
�����

=
𝜕𝜕𝜙𝜙�𝑖𝑖
𝜕𝜕𝑡𝑡   ( 2.11 ) 

2.4.3 Incompressible RANS equations  

The RANS equations are derived from applying the rules ( 2.8 )-( 2.11 ) in the Navier-Stokes 
equations ( 2.1 ) and ( 2.2 ) 

𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= 0  ( 2.12 ) 

𝜕𝜕𝜌𝜌𝑢𝑢�𝑖𝑖
𝜕𝜕𝑡𝑡 +

𝜕𝜕𝜌𝜌𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= −
𝜕𝜕�̅�𝑝
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�𝜇𝜇 �
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

�� +
𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

  ( 2.13 ) 

where 𝑢𝑢�𝑖𝑖 and 𝑢𝑢�𝑖𝑖 are Reynolds-averaged velocities and �̅�𝑝 is the Reynolds-averaged pressure.  

The difference between RANS equations and Navier-Stokes equations is that, an 
additional term, 𝜏𝜏𝑖𝑖𝑖𝑖 , called Reynolds stresses, is introduced. 

𝜏𝜏𝑖𝑖𝑖𝑖 = −𝜌𝜌𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥������� = −𝜌𝜌 �𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥����� − 𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖�  ( 2.14 ) 
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Reynolds stress is a symmetric second-order tensor, where the diagonal components are 
the normal stresses and the off-diagonal components are shear stresses.  

𝜏𝜏𝑖𝑖𝑖𝑖 = −𝜌𝜌�
𝑢𝑢𝚤𝚤′2����� 𝑢𝑢𝚤𝚤′𝑢𝑢𝚥𝚥′������� 𝑢𝑢𝚤𝚤′𝑢𝑢𝑘𝑘′��������

𝑢𝑢𝚥𝚥′𝑢𝑢𝚤𝚤′������� 𝑢𝑢𝚥𝚥′2����� 𝑢𝑢𝚥𝚥′𝑢𝑢𝑘𝑘′��������

𝑢𝑢𝑘𝑘′𝑢𝑢𝚤𝚤′�������� 𝑢𝑢𝑘𝑘′𝑢𝑢𝚥𝚥′�������� 𝑢𝑢𝑘𝑘′2������
� 

Note that new unknown terms are introduced; consequently, the system is not closed and an 
additional model denominated turbulence model is required.  

The turbulent kinetic energy is the half of the trace of the Reynolds stress 

𝑘𝑘 =
1
2𝜌𝜌𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥

������� =
1
2𝜌𝜌�𝑢𝑢𝚤𝚤′

2����� + 𝑢𝑢𝚥𝚥′2����� + 𝑢𝑢𝑘𝑘′2�������  ( 2.15 ) 

Thus, the isotropic stress is defined as 2
3
𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 and deviatoric (anisotropic) part is 

𝑎𝑎𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥������� −
2
3𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 

 ( 2.16 ) 

By substituting Equation ( 2.16 ) into Equation ( 2.13 ), the isotropic term is usually 

combined with the Reynolds-averaged pressure term, �̅�𝑝 ← �̅�𝑝 + 2
3
𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 , and a turbulent 

closure model is necessary specifically for the deviatoric part (with a negative sign), −𝑎𝑎𝑖𝑖𝑖𝑖 ‡. 

2.4.4 The turbulent-viscosity hypothesis  

The turbulent-viscosity hypothesis was introduced by Boussinesq. Reynolds stresses are 
linked to the velocity gradients via the positive scalar coefficient denominated eddy 
viscosity, 𝜇𝜇𝑓𝑓; following a relation similar to Newtonian fluids. 

𝜏𝜏𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥������� = 𝜇𝜇𝑓𝑓 �
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

� −
2
3𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 

 ( 2.17 ) 

from where 

−𝑎𝑎𝑖𝑖𝑖𝑖 = −𝜌𝜌𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥������� +
2
3𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑓𝑓 �

𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

�  ( 2.18 ) 

2.4.5 Turbulence Models 

There are numerous turbulence models based on the Boussinesq hypothesis in the literature. 
In these models, the eddy viscosity, 𝜇𝜇𝑓𝑓, can be expressed as a turbulent velocity scale, 𝑢𝑢∗, 
multiplied with a turbulent length scale, 𝑙𝑙∗. 

𝜇𝜇𝑓𝑓 ∝ 𝑢𝑢∗𝑙𝑙∗  ( 2.19 ) 

                                                             
‡ Lecture notes - Professor Tian-Jian Hsu (University of Delaware - Center for Applied Coastal Research) 
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The turbulence models range from simple algebraic models to highly sophisticated 
models and can be grouped into four main categories: Algebraic (Zero-Equations), One-
Equations, Two- Equations and Second-Order Closure models [8]. Despite the variety of 
models developed, none is applicable to all flow conditions.  

2.4.6 Two-equation turbulence models  

In this study, two-equation turbulence models are used because are the most popular models 
to simulate a large number of engineering flows [9]. These models require the solution of 
two transport equation, for both the turbulent kinetic energy and the turbulence length scale. 
Thus, two-equation models are considered complete because no additional information about 
turbulence is required. The turbulent kinetic energy is generally chosen as one of the 
transport equations due to its extensive use and easy interpretation. 

The transport equation of turbulent kinetic energy (TKE), 𝑘𝑘, describes how mean flow 
feeds kinetic energy into turbulence. 𝑘𝑘 energy is derived analytically from the Navier-Stokes 
equations using the Reynolds average kinetic energy of a turbulent flow concept. Further, 
with some mathematical manipulation, the 𝑘𝑘 equation is obtained.  The full derivation of the 
equation is given in Celik [9].  Three different turbulence closures are employed in this study. 

Standard 𝒌𝒌 − 𝜺𝜺 model 

In the 𝑘𝑘 − 𝜀𝜀 model of Launder and Spalding [10], the eddy viscosity is modeled as 

𝜇𝜇𝑓𝑓 = 𝜌𝜌𝐶𝐶𝜇𝜇
𝑘𝑘2

𝜀𝜀   ( 2.20 ) 

The 𝑘𝑘 equation is computed by 

𝜕𝜕(𝜌𝜌𝑘𝑘)
𝜕𝜕𝑡𝑡 +

𝜕𝜕(𝜌𝜌𝑢𝑢𝚤𝚤�𝑘𝑘)
𝜕𝜕𝑥𝑥𝑖𝑖

=
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

��𝜇𝜇 +
𝜇𝜇𝑓𝑓
𝜎𝜎𝑘𝑘
�
𝜕𝜕𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖

�+ 𝑃𝑃𝑘𝑘 − 𝜌𝜌𝜀𝜀  ( 2.21 ) 

here 𝑃𝑃𝑘𝑘 is the turbulent production due to the gradient of the mean flow velocity 

𝑃𝑃𝑘𝑘 = −𝜌𝜌𝑢𝑢′𝚤𝚤𝑢𝑢′𝚥𝚥�������  
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

  ( 2.22 ) 

𝜎𝜎𝑘𝑘 is an empirical coefficient controlling the magnitude of the diffusion of 𝑘𝑘. 

The turbulent dissipation rate, 𝜀𝜀 , is modeled based on the energy transfer rate in the 
energy cascade concept and it is determined by the large-scale motion [6]. The 𝜀𝜀  transport 
equation is derived in a similar way to 𝑘𝑘. 

𝜕𝜕(𝜌𝜌𝜀𝜀)
𝜕𝜕𝑡𝑡 +

𝜕𝜕(𝜌𝜌𝑢𝑢𝚤𝚤� 𝜀𝜀)
𝜕𝜕𝑥𝑥𝑖𝑖

=
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

��𝜇𝜇 +
𝜇𝜇𝑓𝑓
𝜎𝜎𝜀𝜀
�
𝜕𝜕𝜀𝜀
𝜕𝜕𝑥𝑥𝑖𝑖

� + 𝐶𝐶𝜀𝜀1
𝜀𝜀
𝑘𝑘 𝑃𝑃𝑘𝑘 − 𝐶𝐶𝜀𝜀2𝜌𝜌

𝜀𝜀2

𝑘𝑘   ( 2.23 ) 



Chapter 2 Governing Equations 

11 

The second and third terms on the right-hand side of Equation ( 2.23 ) are referred to the 
production and the destruction of  𝜀𝜀, respectively.  

The model constants are obtained from simple flow experiments.  

𝐶𝐶𝜇𝜇 = 0.09, 𝜎𝜎𝑘𝑘 = 1, 𝜎𝜎𝜀𝜀 = 1.3, 𝐶𝐶𝜀𝜀1 = 1.44 and  𝐶𝐶𝜀𝜀2 = 1.92. 

𝒌𝒌 −𝝎𝝎 model 

The k-ω model of Wilcox [11] differs from 𝑘𝑘 − 𝜀𝜀 model, in the fact that 𝜀𝜀 is not modeled. A 
transport equation is implemented for the specific turbulent dissipation rate, 𝜔𝜔. 

The eddy viscosity is 

𝜇𝜇𝑓𝑓 = 𝜌𝜌
𝑘𝑘
𝜔𝜔  ( 2.24 ) with 𝜔𝜔 =

𝜀𝜀
𝐶𝐶𝜇𝜇𝑘𝑘

  ( 2.25 ) 

The 𝑘𝑘 and 𝜔𝜔 transport equations are depicted in the Equations ( 2.26 ) and ( 2.27 ) 

𝜕𝜕(𝜌𝜌𝑘𝑘)
𝜕𝜕𝑡𝑡 +

𝜕𝜕(𝜌𝜌𝑢𝑢𝚤𝚤�𝑘𝑘)
𝜕𝜕𝑥𝑥𝑖𝑖

=
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

��𝜇𝜇 +
𝜇𝜇𝑓𝑓
𝜎𝜎𝑘𝑘1

�
𝜕𝜕𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖

� + 𝑃𝑃𝑘𝑘 − 𝐶𝐶𝜇𝜇𝜌𝜌𝑘𝑘𝜔𝜔  ( 2.26 ) 

𝜕𝜕(𝜌𝜌𝜔𝜔)
𝜕𝜕𝑡𝑡 +

𝜕𝜕(𝜌𝜌𝑢𝑢𝚤𝚤�𝜔𝜔)
𝜕𝜕𝑥𝑥𝑖𝑖

=
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

��𝜇𝜇 +
𝜇𝜇𝑓𝑓
𝜎𝜎𝜔𝜔1

�
𝜕𝜕𝜔𝜔
𝜕𝜕𝑥𝑥𝑖𝑖

� + 𝐶𝐶𝜔𝜔12
𝜔𝜔
𝑘𝑘 𝑃𝑃𝑘𝑘 − 𝐶𝐶𝜔𝜔22𝜌𝜌𝜔𝜔2  ( 2.27 ) 

with the model constants 𝜎𝜎𝑘𝑘1 = 2 , 𝜎𝜎𝜔𝜔1 = 2 while the coefficients 𝐶𝐶𝜇𝜇, 𝐶𝐶𝜔𝜔12 and  𝐶𝐶𝜔𝜔22 
employ standard values 0.09, 0.55 and 0.075, respectively. 

Renormalization Group (RNG) k-ε turbulence model 

In the 𝑘𝑘 − 𝜀𝜀 (RNG) model introduced by Yakhot and Orszag [12], the eddy viscosity is 
computed as  

𝜇𝜇𝑓𝑓 = 𝜌𝜌𝐶𝐶𝜇𝜇RNG
𝑘𝑘2

𝜀𝜀   ( 2.28 ) 

The turbulent kinetic energy and dissipation rate, respectively are  

𝜕𝜕(𝜌𝜌𝑘𝑘)
𝜕𝜕𝑡𝑡 +

𝜕𝜕(𝜌𝜌𝑢𝑢𝚤𝚤�𝑘𝑘)
𝜕𝜕𝑥𝑥𝑖𝑖

=
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

��𝜇𝜇 +
𝜇𝜇𝑓𝑓
𝜎𝜎𝑘𝑘
�
𝜕𝜕𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖

� + 𝑃𝑃𝑘𝑘 − 𝜌𝜌𝜀𝜀  ( 2.29 ) 

𝜕𝜕(𝜌𝜌𝜀𝜀)
𝜕𝜕𝑡𝑡 +

𝜕𝜕(𝜌𝜌𝑢𝑢𝚤𝚤� 𝜀𝜀)
𝜕𝜕𝑥𝑥𝑖𝑖

=
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

��𝜇𝜇 +
𝜇𝜇𝑓𝑓
𝜎𝜎𝜀𝜀
�
𝜕𝜕𝜀𝜀
𝜕𝜕𝑥𝑥𝑖𝑖

� + (𝐶𝐶𝜀𝜀13 − 𝑅𝑅)
𝜀𝜀
𝑘𝑘 𝑃𝑃𝑘𝑘 − 𝐶𝐶𝜀𝜀23𝜌𝜌

𝜀𝜀2

𝑘𝑘   ( 2.30 ) 

The main difference with the Standard 𝑘𝑘 − 𝜀𝜀 model formulation lies in the extra term, 𝑅𝑅 
, in the second term, on the right hand side in the Equation ( 2.30 ). 

𝑅𝑅 =
𝜂𝜂(1 − 𝜂𝜂 𝜂𝜂0⁄ )

1 + 𝛽𝛽𝜂𝜂3   ( 2.31 ) 



Three-dimensional numerical analysis of flow structure and sediment transport process in open channels 

12 

with 

𝜂𝜂 =
𝑆𝑆𝑘𝑘
𝜀𝜀  𝑆𝑆 = �2�̅�𝑆𝑖𝑖𝑖𝑖�̅�𝑆𝑖𝑖𝑖𝑖 �̅�𝑆𝑖𝑖𝑖𝑖 =

1
2�

𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

�  ( 2.32 ) 

𝑆𝑆𝑖𝑖𝑖𝑖 represents the strain-rate tensor. The model constants are derived from RNG analytic 
theory, 

𝜎𝜎𝑘𝑘2 = 0.7194 , 𝜎𝜎𝜀𝜀2 = 0.7194, 𝐶𝐶𝜀𝜀13 = 1.42, 𝐶𝐶𝜀𝜀23 =1.68, 𝐶𝐶𝜇𝜇RNG = 0.0845, 𝜂𝜂0 = 4.38 and 
𝛽𝛽 = 0.012. 

2.5 Large Eddy Simulation (LES) 

In Large eddy simulation (LES), the large, energy-containing scale structures, anisotropic 
turbulence, are directly resolved whereas the effects of the small-scale structures, more 
isotropic, are modeled.  

The scale-separation is achieved by applying a filter operation to the Navier-Stokes 
equations to decompose the variables, Φ, into filtered (resolved) and residual (modeled using 
a subgrid-scale, SGS) components; denotes as  . ̂ and ", respectively.  

Φ = Φ� + Φ"  ( 2.33 ) 

Mathematically, the filter operation is expressed as a convolution of the relevant flow 
field in the domain, 𝐷𝐷, with a selected filter kernel.  

Φ�(𝑥𝑥, 𝑡𝑡) = �Φ(𝑥𝑥, 𝑡𝑡)𝐺𝐺(𝑥𝑥 − 𝜆𝜆,Δ)𝑑𝑑3𝜆𝜆
𝐷𝐷

  ( 2.34 ) 

The function filter 𝐺𝐺 retains the Φ values of a size larger than the filter cutoff width, Δ. Filters 
Kernels include, top-hat or box filter (a simple local average), Gaussian filter and Spectral 
cut-off filter (both are preferred in the research literature), [13].  

The finite volume discretization provides an implicit filtering technique operation, which 
is usually used together with a top-hat filter.  

Φ�(𝑥𝑥, 𝑡𝑡) =
1
Δ3�Φ(𝑥𝑥, 𝑡𝑡)𝑑𝑑3𝜆𝜆

Δ

  ( 2.35 ) 

where the box filter 𝐺𝐺 is a Heaviside function expressed as 

𝐺𝐺(𝑥𝑥 − 𝜆𝜆,Δ) = �1 Δ3⁄ |𝑥𝑥 − 𝜆𝜆| ≤ ∆ 2⁄
0 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

  ( 2.36 ) 
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here, the filtering provides a value which is an average over a rectangular volume Δ3. The 

filter width is related to local grid size Δ = �Δ𝑚𝑚𝑖𝑖Δ𝑚𝑚𝑗𝑗Δ𝑚𝑚𝑘𝑘�
1 3⁄

, which makes Φ�  equal to the 

average value Φ in the computational cell [14].  

The mass and momentum filtered equations LES from the incompressible Navier-Stokes 
equations, i.e.  

𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= 0  ( 2.37 ) 

𝜕𝜕𝜌𝜌𝑢𝑢�𝑖𝑖
𝜕𝜕𝑡𝑡 +

𝜕𝜕𝜌𝜌𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= −
𝜕𝜕�̂�𝑝
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�𝜇𝜇 �
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

�� +
𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝑥𝑥𝑖𝑖
  ( 2.38 ) 

where 𝑢𝑢�𝑖𝑖 and 𝑢𝑢�𝑖𝑖 are the filtered velocities while �̂�𝑝 is the filtered pressure. 𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 describes 
the unresolved scales and is called the subgrid-scale Reynolds stress. 

𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = −𝜌𝜌 �𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥�   − 𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖�  ( 2.39 ) 

The residual stress tensor is presented in Equation ( 2.40 ) for the dynamic Smagorinsky 
model. 

𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = −𝜌𝜌 �𝑢𝑢𝚤𝚤"𝑢𝑢𝚥𝚥"� + 𝑢𝑢𝚤𝚤"�𝑢𝑢𝚥𝚥"�  + 𝑢𝑢𝚤𝚤"𝑢𝑢𝚥𝚥"�� + 𝑢𝑢�𝚤𝚤𝑢𝑢�𝚥𝚥� − 𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖   �  ( 2.40 ) 

2.5.1 Static Smagorinsky model 

The earliest model is the one proposed by Smagorinsky [15]. It is an eddy viscosity model 
which assumes that the principal effects of the residual stress tensor are increased transport 
and dissipation [16].  

𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 −
1
3 𝜏𝜏𝑖𝑖𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

� = 2𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠�̂�𝑆𝑖𝑖𝑖𝑖  ( 2.41 ) 

where, 𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠 is the subgrid eddy viscosity and �̂�𝑆𝑖𝑖𝑖𝑖 is the strain rate of the large scale or resolved 
field strain rate tensor, defined by Equation ( 2.42).  

�̂�𝑆𝑖𝑖𝑖𝑖 =
1
2�

𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕𝑢𝑢�𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

�  ( 2.42 ) 

The eddy viscosity is obtained through a dimensional analysis – as in RANS.  

𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐶𝐶𝑠𝑠2𝜌𝜌Δ2��̂�𝑆�  ( 2.43 ) 

here ��̂�𝑆� = ��̂�𝑆𝑖𝑖𝑖𝑖�̂�𝑆𝑖𝑖𝑖𝑖�
1 2⁄  and Δ is the filter with. 𝐶𝐶𝑠𝑠 is a constant Smagorinsky coefficient which 

varies depending on flow characteristics from 0.065 to 0.25, [17].  
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2.5.2 Dynamic Smagorinsky model 

Germano et al. [18] proposed a dynamical model later improved by Lilly [19], in which the  
parameter 𝐶𝐶𝑠𝑠 is calculated dynamically.  

The dynamic Smagorinsky model uses the resolved flow field information and 
introduces an additional test filter, Δ� , which is typically Δ� = 2Δ, to obtain subgrid 
information assuming that the residual stress of these two filtering processes are similar. 
Hence, the Smagorinsky coefficient is determined to minimize the difference [20].  

The residual stress tensor and the test filtering are expressed in Equations ( 2.44 ) and ( 
2.45 )  

𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = −𝜌𝜌 � 𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥�   − 𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖�  ( 2.44 ) 

Τ𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = −𝜌𝜌 �𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥�  �−𝑢𝑢�𝚤𝚤�  𝑢𝑢�𝚥𝚥��  ( 2.45 ) 

The Germano identity is defined as  

ℒ𝑖𝑖𝑖𝑖 = Τ𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 − 𝜏𝜏𝚤𝚤𝚥𝚥𝑠𝑠𝑠𝑠𝑠𝑠� = −𝜌𝜌 �𝑢𝑢�𝑖𝑖𝑢𝑢�𝑖𝑖 − 𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥� �  ( 2.46 ) 

By applying the Smagorinsky model, the Smagorinsky coefficient is determined as 

𝐶𝐶𝑠𝑠2 =
ℒ𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖

𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖
  ( 2.47 ) 

where 𝑀𝑀𝑖𝑖𝑖𝑖 = 2Δ2� ��̂�𝑆��  �̂�𝑆𝚤𝚤𝚥𝚥� − 2Δ2��̂�𝑆��̂�𝑆𝚤𝚤𝚥𝚥�  

Note that RANS and LES equations are similar in their mathematical representation. It 
is important to mention that, the magnitude of modeled Reynolds stresses are much larger in 
RANS than in LES [5]. 

2.6 Flow Near the wall  

In viscous flows, the flow velocity at a wall or solid boundary, is zero, no-slip boundary 
condition, 𝑢𝑢𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑡𝑡) = 0 ; which implies that all the Reynolds Stresses are zero. 
Consequently, Pope [6] states that due to the total shear stress is the sum of viscous stress 
and the Reynolds stress, the wall shear stress is entirely due to viscous contribution, while in 
the free shear flows the viscous stresses are negligible. 

Clearly, in the near wall region, the boundary shear stress, 𝜏𝜏𝑏𝑏 , and the viscosity are 
important parameters. The shear velocity, 𝑢𝑢∗, is define according to Henderson [21]. 

𝑢𝑢∗ = �𝜏𝜏𝑏𝑏 𝜌𝜌⁄  ( 2.48 ) 

The shear velocity, provides a direct measure of flow intensity and its ability to entrain and 
transport sediment particles [22]. 
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The viscous length scale, 𝛿𝛿𝜈𝜈, is use to quantify the extent of importance of the viscous 
effect.  

𝛿𝛿𝜈𝜈 =
𝜈𝜈
𝑢𝑢∗

  ( 2.49 ) 

The normalized distance to the wall, 𝑦𝑦+, is measured in viscous length or wall units, 
where 𝑑𝑑⊥is the normal distance to the wall, Equation ( 2.50 ). Indeed, 𝑦𝑦+  is considered as a 
local Reynolds number and its magnitude determines the relative importance of viscous and 
turbulence effect [6].  

𝑦𝑦+ =
𝑑𝑑⊥
𝛿𝛿𝜈𝜈

=
𝑢𝑢∗𝑑𝑑⊥
𝜈𝜈   ( 2.50 ) 

The near-wall region is divided into different regions or sub-layers according to 𝑦𝑦+,  
[23]. In the viscous sub-layer, 𝑦𝑦+ ≤ 5,  the turbulence is negligible and it is characterized by 
a linear correlation. In the buffer sub-layer, 5 < 𝑦𝑦+ < 30, both turbulence and viscous effect 
are of importance; whilst, in the logarithmic or inertial sub-layer, 𝑦𝑦+ ≥ 30, the viscous effect 
are small and a complete development of turbulence occurs, Figure 2.2. 

 

Figure 2.2. Velocity distribution near the wall “Adapted from Davidson [24]” 

The near-wall variation of the flow variables is characterized by large gradients. 
Therefore, in order to resolve the near-wall region, a large number of cells are required. In 
engineering problems, this becomes almost impossible, due to the computational resource 
required, and a function is utilized as a bridge between the wall and the mesh point closest 
to the wall. In practice, the first mesh point is placed in the inertial sub-layer.  This latter 
approach is denoted as a wall-function method. 

 Viscous sublayer
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y+

Buffer
layer Log-law region

Inner layer Outer
layer

u+



Three-dimensional numerical analysis of flow structure and sediment transport process in open channels 

16 

The standard law of the wall first introduced by von Karman [25], is used to describe 
the flow velocity profiles for hydraulically smooth solid walls. This is achieved by defining 
the dimensionless velocity, 𝑢𝑢+, as 𝑢𝑢+ = 𝑢𝑢 𝑢𝑢∗⁄ ,  and  𝑦𝑦+.  

𝑢𝑢+ = 𝑦𝑦+ 𝑦𝑦+ ≤ 5 

 ( 2.51 ) 𝑢𝑢+ = 5.0 ln𝑦𝑦+ − 3.05 5 < 𝑦𝑦+ < 30 

𝑢𝑢+ =
1
𝜅𝜅 ln𝑦𝑦+ + 5.5 𝑦𝑦+ ≥ 30 

The last relationship is known as the log-law, where 𝜅𝜅 = 0.41 is Von Karman´s constant. 

In the case of hydraulically rough solid walls, most boundaries in river flow, according 
to García [22], no viscous sub-layer exist, and a modified form of the law of the wall is 
applied. 

𝑢𝑢+ =
1
𝜅𝜅 ln �

𝑑𝑑⊥
𝑘𝑘𝑠𝑠
�+ 8.5 =

1
𝜅𝜅 ln �30

𝑑𝑑⊥
𝑘𝑘𝑠𝑠
�  ( 2.52 ) 

where 𝑘𝑘𝑠𝑠 represents the effective roughness height.  

2.7 Numerical Model 

In this work, the mathematical formulation is solved numerically using the open-source 
computational fluid dynamics (CFD) code, OpenFOAM (Open Field Operation and 
Manipulation). It is based on the finite volume method (FVM) and supports many numerical 
schemes, both for time and space integration. The code also provides pre- and post-
processing utilities, dynamic mesh handling and parallel computation with domain 
decomposition.  

OpenFOAM uses a C++ object-oriented programming language to implement scalar-
vector-tensor operations. The accessibility to the source code provides a fundamental 
platform to customize new solvers and utilities. The former are used to solve the partial 
differential equation, while the latter are designed to perform tasks that involve data 
manipulation. In addition, the solvers are written in tensorial partial differential equation 
form, providing natural language representation in the software. An example for the 
conservation of momentum equation and its representation provided by Jasak [26] is shown 
hereafter.  

(𝜕𝜕𝜌𝜌𝐮𝐮)
𝜕𝜕𝑡𝑡 + ∇ ∙ (𝜙𝜙𝐮𝐮) = −∇𝑝𝑝 + ∇ ∙ (𝜇𝜇∇𝐮𝐮)  ( 2.53 ) 

the path to its encoded version in OpenFOAM 
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// Momentum equation  

fvVectorMatrix UEqn 

    ( 

         fvm::ddt(rho, U)  

        + fvm::div(phi, U) 

        -  fvm::laplacian (mu, U) 

    );       

     Solve (UEqn == -fvc::grad (p)); 

where, fvc denotes Explicit discretization, differential operator and fvm denotes Implicit 
discretization, differential operator.  

OpenFOAM does not provide enough details in the Programmer's guide, resulting in a 
lack of documentation to address the different questions and difficulties presented in the 
research development.  Consequently, the program's learning process demands a 
considerable amount of time to write new applications and/or add functionality. In addition, 
the program does not have an integrated graphical user interface, which makes the code uses 
the Unix command line to execute a specific case. 

In the configuration of each case under study, no previous definitions of boundary 
conditions and/or numerical schemes are provided. This forces the program’s user to know 
the mathematical formulation involved in each of the numerical options that need to be 
defined in each case study. 

Detailed information of the algorithm implementation can be found in Weller et al. [27], 
Jasak [28] and Rusche [29]. 

2.7.1 File structure 

The file structure for a simulation case in OpenFOAM is composed of three major folders, 
i.e.   0, constant and system. A scheme of the file structure in OpenFOAM is shown in Figure 
2.3 

 

Figure 2.3. General file structure in a simulation case - OpenFOAM 

 

0 constant system
Boundary
and
Initial Conditions

Geometry
Turbulence
Material Properties

Control parameters
Discretization schemes
Linear algebra solvers for discretized,
Linear systems
Parallelization properties

CASE
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2.7.2 The Finite Volume Method (FVM) 

The Finite Volume Method (FVM) first introduced by MacDonald [30] and MacCormack 
and Paullay [31], is a numerical discretization technique to transform partial differential 
equations into algebraic equations.  

The solution domain is subdivided into a non-overlapping finite set of volumes or 
elements, also called control volumes, and evaluates the conservation equations in integral 
form on each element. The integral form of the conservation law for the quantity 𝜙𝜙, scalar 
or vector, is expressed in the Equation ( 2.54 ). 

𝜕𝜕
𝜕𝜕𝑡𝑡 � 𝜌𝜌𝜙𝜙𝑑𝑑𝑉𝑉

𝑉𝑉�������
 

transient term
time

+ � 𝜌𝜌𝜙𝜙𝐮𝐮 ∙ 𝐧𝐧
𝑆𝑆

𝑑𝑑𝑆𝑆
���������

convection term
divergence

= � Γ(∇𝜙𝜙) ∙ 𝐧𝐧𝑑𝑑𝑆𝑆
𝑆𝑆���������

diffusion term
Laplacian

+ � 𝑞𝑞𝑑𝑑𝑉𝑉
𝑉𝑉���

source term

 
 ( 2.54 ) 

where 𝑉𝑉 and 𝑆𝑆 are the volume and surface in a control volume, respectively. 𝐧𝐧 is the normal 
unit, Γ is the diffusion coefficient and 𝑞𝑞 are the contribution from the source of the quantity 
𝜙𝜙. The transient term is the accumulation of 𝜙𝜙 in the considered control volume, the 
convection term represents the amount of 𝜙𝜙 that is transported by the flow and the diffusion 
term is defined as the contribution due to molecular agitation, where the transport of 𝜙𝜙  is as 
a result of its gradients [1]. Note that the Navier-Stokes equations obey the form of this 
equation.  

In OpenFOAM, the variable values are assigned at the centroid of each control volume, 
cell-centered variable arrangement method, and the Gauss theorem is applied to transform 
the volume integrals into the surface integrals. Consequently, the integral conservation law 
is satisfied for each control volume and for the entire domain (by summing over all control 
volumes). 

 In order to obtain an algebraic equation for each control volume, the volume integrals 
and surface integrals are approximated using quadrature formulae. Therefore, spatial 
interpolation schemes are used to approximate the variation of the variable values at the 
control volume surface in terms of the centroid value.  

Note that in OpenFOAM the numerical schemes are defined separately. This provides 
facilities for evaluating different numerical schemes. In this research project, the numerical 
schemes are applied according to the requirements of each test-case under study (Refer to 
each case of analysis).  
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2.7.3 Fluid Flow Model 

The filtered or Reynolds-averaged equations for an incompressible flow are presented using 
a tensor notation. The mass and moment are exposed in the Equations ( 2.55 ) and ( 2.56 ), 
respectively. 

∇ ∙ 𝐮𝐮 = 0  ( 2.55 ) 

𝜕𝜕𝜌𝜌𝐮𝐮
𝜕𝜕𝑡𝑡 + ∇ ∙ (𝜌𝜌𝐮𝐮 𝐮𝐮) = −∇𝑝𝑝 + ∇ ∙ (2𝜇𝜇𝐒𝐒) + ∇ ∙ (𝐑𝐑) + 𝜌𝜌𝑓𝑓  ( 2.56 ) 

where 𝐮𝐮 and 𝑝𝑝 are filtered or Reynolds-averaged velocity vector and pressure, respectively. 
𝜌𝜌  is the density and 𝜇𝜇 is the viscosity in the domain. 𝐒𝐒 is the strain rate tensor defined by 
𝐒𝐒 = 1 2⁄  (∇𝐮𝐮+ ∇𝐮𝐮𝑇𝑇). The external volume force or body force, 𝜌𝜌𝑓𝑓, is introduced (gravity 
and surface tension). 𝐑𝐑 represents the Reynolds stress (RANS) or subgrid-scale Reynolds 
stress (LES), which is solve with the different turbulence model or sub-grid approaches. 

2.7.4 Free Surface model 

The Volume of Fluid (VOF) method proposed by Hirt and Nichols [32], based on a Eulerian 
approach, is used to capture the water-air interface. An indicator to represent the volume 
fraction,  𝛼𝛼 , is implemented to determine the water phase contained at each mesh element. 
To calculate 𝛼𝛼 a new transport equation is introduced. 

𝜕𝜕𝛼𝛼
𝜕𝜕𝑡𝑡 + 𝑢𝑢𝑖𝑖

𝜕𝜕𝛼𝛼
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 in tensor form 𝜕𝜕𝛼𝛼
𝜕𝜕𝑡𝑡 + ∇ ∙ (𝐮𝐮𝛼𝛼) = 0  ( 2.57 ) 

The volume fractions in each mesh element sum up the unity. Therefore, the results of 
𝛼𝛼 are between 0 and 1. If 𝛼𝛼 = 0 the mesh element is full with air; in contrast, if 𝛼𝛼 = 1 the 
mesh element is full with water. On the other hand, if 0 < 𝛼𝛼 < 1 the element contains the 
interface between the two fluids, Figure 2.4. As a result, the two fluids are considered as one 
effective fluid on the domain and the volume fraction of the each phase is used as the 
weighting factor to get the mixture properties. The fluid velocity 𝐮𝐮, density 𝜌𝜌 and the 
viscosity 𝜇𝜇 of the two phased flow are assumed with a linear variation according to Equations 
( 2.58 )-( 2.60 ).  

𝐮𝐮 = 𝛼𝛼𝐮𝐮1 + (1 −𝛼𝛼)𝐮𝐮2 ( 2.58 ) 

𝜌𝜌 = 𝛼𝛼𝜌𝜌1 + (1 − 𝛼𝛼)𝜌𝜌2 ( 2.59 ) 

𝜇𝜇 = 𝛼𝛼𝜇𝜇1 + (1 − 𝛼𝛼)𝜇𝜇2 ( 2.60 ) 

where subscripts 1 and 2 denotes water and air phases, respectively.  

In this method, no neat interface between water and air is explicitly defined, due to the 
numerical diffusion of the volume fraction variable. The numerical solution procedure 
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developed by Rusche [29] is used to preserve the sharp interface. An additional artificial 
compression term is introduced in the left-hand side of Equation ( 2.57 ). 

𝜕𝜕𝛼𝛼
𝜕𝜕𝑡𝑡 + ∇ ∙ (𝐮𝐮𝛼𝛼) + ∇ ∙ �𝐮𝐮𝐫𝐫𝛼𝛼(1− 𝛼𝛼)� = 0  ( 2.61 ) 

This term works only in the thin interface region and is based on the magnitude of velocity 
in the transition region. 𝐮𝐮𝐫𝐫 is the compression velocity which acts perpendicular to the 
interface and it is calculated according to Weller [33]. 

𝐮𝐮𝐫𝐫 = 𝑚𝑚𝑖𝑖𝑛𝑛[𝐶𝐶𝛼𝛼|𝐮𝐮|,𝑚𝑚𝑎𝑎𝑥𝑥|𝐮𝐮|]
∇𝛼𝛼

|∇𝛼𝛼| 
 ( 2.62 ) 

where 𝐶𝐶𝛼𝛼 controls the intensity of the compression. Thereby, 𝐶𝐶𝛼𝛼 yields no-compression, high 
compression and conservative compression if  𝐶𝐶𝛼𝛼 is 0, 1, and > 1; respectively. Some 
numerical studies presented accurate precision in the interface position, on moderate to 
accurate resolution meshes [34]. 

 

Figure 2.4. Water-air interface with a volume fraction indicator “Adapted from Rusche [29]” 

In the VOF method, the volume force term is composed of gravitational and surface 
tension effects terms.  

𝜌𝜌𝑓𝑓 = 𝜌𝜌𝑔𝑔 + 𝑓𝑓𝜎𝜎  ( 2.63 ) 

The surface tension is evaluated per unit volume according to 

𝑓𝑓𝜎𝜎 = 𝜎𝜎𝜅𝜅𝛼𝛼𝛻𝛻𝛼𝛼  ( 2.64 ) 

where 𝜎𝜎 is the surface tension coefficient, 0.074 kg ∙ s−2 , and  𝜅𝜅𝛼𝛼 is the curvature of the 
interface. 

𝜅𝜅𝛼𝛼 = −∇ ∙ �
∇𝛼𝛼

|∇𝛼𝛼|�  ( 2.65 ) 
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2.7.5 Numerical Simulation Procedure for flow field  

In the numerical solution of the incompressible Navier-Stokes equations, the non-linearity 
of the momentum equation and the pressure-velocity coupling require special attention [26]. 
The convention term in the momentum equation is linearized using a simple strategy in 
which the fluid velocity in the previous time-step is used. The pressure-velocity coupling 
procedure is achieved by using the standard PIMPLE approach, which is a merged between 
PISO (Pressure implicit with split operator) and SIMPLE (semi-implicit method for pressure 
linked equations) algorithms.   

In the PIMPLE algorithm, an equation-corrector and outer-correction loops are allowed 
for stability. The former parameter, nCorrectors, sets the number of times that in every time 
step, the algorithm solves the pressure equation and the momentum corrector. The second 
parameter, nOuterCorrectors, enables the total number of times in which the total system is 
solved. If no nOuterCorrectors are used, the algorithm is equivalent to the PISO method [35].  

The algorithm is described briefly, 

 The momentum equation is solved to calculate the velocity field using the initial 
condition or previous time-step pressure field values, where the solution does not 
satisfy the continuity condition. 

 The velocity field calculated in the previous step is used to solve the pressure 
equation, which provides a new pressure field. The mass conservation is 
incorporated into the pressure Poisson equation.  

 The new velocity field is calculated using the new pressure field. This interactive 
algorithm continues until the pressure-velocity system reaches a pre-defined 
tolerance.     

The turbulence closures equations for RANS and sub-grid model for LES are solved by 
a segregated approach, which means that solves one at a time [36,37]. Regarding the free 
surface, the modified scheme based on CICSAM is used.  

2.7.6 Time Integrator  

PIMPLE solver includes an automatic time-step adjustment, ∆𝑡𝑡, to satisfy the Courant-
Fiedrichs-Lewy (CFL) condition. 

𝐶𝐶𝑜𝑜 =
𝐔𝐔∆𝑡𝑡
∆𝑙𝑙 ≤ 𝐶𝐶𝑚𝑚𝑎𝑎𝑚𝑚  ( 2.66 ) 

where 𝐶𝐶𝑜𝑜 is the Courant number, 𝐔𝐔 is the magnitude absolute velocity and ∆𝑙𝑙 is the 
characteristic length of grid size. 𝐶𝐶𝑚𝑚𝑎𝑎𝑚𝑚 maintains the balance between numerical stability 
and optimal computational time [38].  
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2.7.7 Boundary and Initial Conditions 

A numerical model is complete when boundary and initial conditions are defined. Boundary 
Conditions (BC) are specified on all boundary faces of the computational domain. Note that 
defining BC have a significant impact on the numerical results obtained in a simulation. 
Mathematically, the BC can be defined using two main approaches. 

 Dirichlet condition, where the value of the variable, 𝜙𝜙, is fixed, 𝜙𝜙 = 𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡. This 
condition is implemented by specifying the proper value at the boundary node. 

 Neuman condition, where the normal gradient of the variable, 𝜙𝜙, is prescribed, 
𝜕𝜕𝑖𝑖𝜙𝜙 = 𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡. This condition specifies the values in which the derivative of a 
solution is applied at the boundary node. 

On the other hand, the initial conditions determine the state of flow variables at time t=0. 

The specification of the different boundary conditions in this study are based on 
engineering interpretation for each test-case study. In OpenFOAM, this is achieved thanks 
to the use of the swak4FOAM library as well as the customization of some utilities present 
in the program. Thereby, the author was able to specify the different mathematical 
expressions required.   
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3 ANALYSIS OF FREE SURFACE FLOWS IN OPEN 
CHANNELS  

3.1 Introduction 

The prediction of free-surface flows is of significant importance in the field of river 
engineering practice. The free-surface represents the water-air interface, i.e. it is the 
boundary between the water body and the air, Figure 3.1. Several numerical models have 
been developed in order to evaluate the hydraulic variables involved in the motion of water 
in different hydrodynamic configurations in open channels and rivers. Realistically 
numerical model prediction is not a simple task due to the flow interaction with the 
geometrical characteristics of the channel and near in-stream structures, which usually can 
produce secondary currents and vertical accelerations. Therefore, 3D numerical models 
provide a reliable estimate of flow hydraulic variables.   

In this chapter, three-dimensional numerical simulations of free-surface flow based on 
the solution of the complete set of Large Eddy Simulations (LES) and Reynolds-Averaged 
Navier-Stokes (RANS) equations are performed. The free water surface is tracked using the 
Volume of Fluid (VOF) method.  

In order to verify and validate comprehensively the 3D numerical configurations, three 
set-up cases are studied in steady and unsteady-state (transient) hydraulic flow conditions. 
The results obtained from the different numerical configurations are assessed against 
published experimental data. In the former two set-up cases, the experimental set-up 
dimensions, smaller in scale, have hydraulic variables measurements at a finer resolution. 
On the other hand, the latter set-up case, the experimental set-up dimensions, are on a real 
scale, since it was built to study the application of the models on field-scale Irrigation 
Channels. 
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a) b) 

  
c) d) 

  
Figure 3.1. Free surface flows, a) Dam water release (www.poyry.at), b) River Bend,                        

c) Meandering stream (www.nps.gov) and d) Irrigation Channel (www.nivus.com) 

3.2 Free surface flow modeling –An overview  

In the early development of three-dimensional numerical models, the free-surface simulation 
in open channel flow ignored the free water surface variations and replaced it with a rigid lid 
approximation [1,2]. On the rigid lid, the normal velocity is zero, and the pressure is no 
longer atmospheric [3]. However, this assumption is valid only if the curvature of the 
interface is smooth, i.e. free-surface presents gentle variations along channel [4].   

There are other two main approaches to simulate the free-surface, i.e. surface tracking 
method and volume tracking method. In the first approach, surface tracking method, the 
interface is explicitly defined following its movement. The surface is tracked or captured 
based on; either a Lagrangian approach, where a set of market particles is used [5,6] or a 
Eulerian approach, where a height function is defined [7,8]. Nevertheless, this approach 
presents a significant drawback in capturing complex surface topologies (large deformations) 
as additional operations are required, which adds extra complexity [9,10]. 

In the second approach, volume tracking method, no net interface is explicitly defined. 
The fluids are marked either massless particles or by an indicator function [9]. The Volume 
of Fluid (VOF) method, based on a Eulerian approach, uses a continuous function, the 
volume of fraction (indicator), to define the localization of the free surface [11,12].  

A number of studies based on LES and RANS approaches have demonstrated the 
applicability of the VOF method within a river engineering context. In river engineering flow 

http://www.poyry.at/
http://www.nps.gov/
http://www.nivus.com/
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applications, a detailed prediction of the turbulence features in the free-surface boundary is 
not the main interest and coarse meshes can be applied [13,14].   

Most 3D numerical models discretize and solve the LES or RANS equations, using a 
finite difference, finite element, or finite volume method suitable for structured or 
unstructured grids. 

Ramamurthy et al. [15] and Gholami et al. [16] simulated the flow pattern in an open 
channel bend flow while a steady hydraulic jump simulation was performed by Bayon et al. 
[17]; the numerical models used were based on a RANS approach. These authors found an 
adequate representation of the flow hydraulic characteristics assessed against experimental 
data.  

In recent years, some studies based on LES approach have been reported [18–20]. Kim 
et al.[18] performed a numerical study of a swash flow driven by a dam-break; the results 
demonstrate the main characteristics of turbulence in the swash zone. Larocque et al. [14] 
presented a numerical simulation of dam-break flow using the LES and RANS approaches. 
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3.3 Three-dimensional numerical analysis of dam-break wave with the presence of 
an obstacle.‡ 

3.3.1 Introduction 

Dam-break waves result from the sudden failure of a dam, river embankments or dikes. 
Another type of accident is the overtopping of these water control structures. Consequently, 
a dam-break wave will invade areas that are normally dry, not prepared to support such an 
event and that faces a series of obstacles (building, bridges, industrial structures, etc.). The 
presence of obstacles can induce sudden changes in the dam-break wave propagation.  
Therefore, a reliable simulation is essential for assessing the flood flows pattern and analysis 
for possible structural failure. 

Dam-break is simulated by the sudden removal of a gate in a dry bottom channel. 
Analytical solutions are available only for idealized situations.  Dressler [21] and Whitham 
[22] presented studies for a horizontal channel, while the researchers [23–25] solved for a 
sloping channel. More recently, Chanson [26] developed an analytical solution for horizontal 
and slopping channels using the method of characteristics. However, dam-break waves are 
commonly computed using 1D and 2D Saint-Venant shallow-water equations (SWE). 
Mathematically, these equations stating depth-averaged mass and momentum conservation 
meaning hydrostatic assumption.  As a result, several numerical models have been reported 
by different investigators [27–32]. Quantitative verifications were stated using numerical 
models against experimental data [33–38]; whilst, diverse authors have investigated the 
applicability of SWE in the presence of obstacles [39–41].  

Despite the usefulness in predicting the main aspects of the dam-break flow pattern by 
using SWE models, the initial dam-break stages at the immediate vicinity of the dam are 
mainly influenced by vertical acceleration due to gravity [42]. Likewise, the impact of a flood 
wave against an obstacle is a local 3D phenomenon and presents strong curvatures of the free 
surface [43]. Therefore, both cases have a non-hydrostatic pressure distribution.  

Due to advances in computational power and the associated reduction in computational 
time, modern analysis of flow wave pattern can be performed by using 3D numerical models 
based on Navier-Stokes equations. Direct Numerical Simulation (DNS) is unfeasible as the 
associated grid resolution causes a substantial amount of computing resource. In 
consequence, the simulation is restricted to turbulence modeling approaches based on Large 
Eddy Simulation (LES) and Reynolds-averaged Navier-Stokes (RANS).      

 Shigematsu et al. [44] presented a three-dimensional numerical analysis of the water 
depth in front of the dam during the initial stages. They found a good agreement against 
experimental data. Abdolmaleki et al. [45] assessed the accuracy of the free-surface elevation 

                                                             
‡ Preliminary numerical results of this test-case study have been published 
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and pressure peak due to wave impact on the vertical wall. Both studies were based on RANS 
equations with k-ε turbulence model. Ozmen-Cagatay and Kocaman [46,47] presented an 
experimental and numerical investigation of dam-break flow without and with a bottom 
obstacle using models based on RANS and the SWE equations. These authors found that in 
the first case both models predict the dam-break flow with a reasonable accuracy although 
the agreement using the RANS model is better. On the other hand, in the second case, the 
RANS model reproduces the flow under investigation with reasonable accuracy while SWE 
model indicates some discrepancies due to the presence of the obstacle. Three-dimensional 
numerical simulations of dam-break flow using the RANS and LES approaches were 
performed by Larocque et al. [14]. These authors found that both modeling configuration 
satisfactorily reproduces the measured bottom pressure although the LES captures better the 
free-surface and velocity variation with time. 

The present study aims to assess the performance of LES and RANS turbulence 
approaches by using a 3D numerical model in a rapidly varying free-surface flow induced 
by a dam-break problem. In addition, the influence of the non-use of a turbulence model 
(LAMINAR) in the 3D approach is analyzed. The numerical results are compared against 
existing experimental data performed by Kleefsman et al. [48].  Therefore, the numerical 
configurations are used to analyze the ability to capture the temporal variation of flow depth 
and pressure variables within different locations of the problem domain. 

Preliminary three-dimensional numerical results of this test-case study were published 
in manuscripts performed by Sánchez-Cordero et al. [49,50].  

3.3.2 Experimental set-up model 

The experimental studies were conducted at the Marine Research Institute Netherlands by 
Kleefsman et al. [48]. In this dam-break test case, no special in- or outflow boundary 
conditions are needed. The test set-up was performed in a rectangular horizontal bottom tank 
of 3.22 x 1 x 1 m (long, wide, high, respectively) with an open roof. At the beginning of the 
test, the right part of the tank, which is considered as an upstream reservoir, is closed by a 
door with an initial water depth H4o=0.55 m. Then, the gate is opened almost instantaneously 
and the flood wave reaches the dry downstream flood plain.   

A box with a rectangular section and vertical walls, that represents an isolated obstacle, 
was placed in the flood plain. This obstacle is 0.161 m long, 0.493 m wide and 0.161 m high. 
During the experiment, water heights and pressures measurements were obtained. As shown 
in Figure 3.2, four probes were used for the water height, one in the reservoir and the other 
three in the flood plain; whilst, eight pressure sensors were placed in the box, four on the 
front and four on the top. 
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Figure 3.2. Schematic view of the experimental set-up “Adapted from Kleefsman et al.[48]” 

3.3.3 Numerical model 

In this numerical study, both LES and RANS approaches are used. In the former approach,  
the Static Smagorinsky model is used while in the latter one the 𝑘𝑘 − 𝜀𝜀 RNG model is applied. 
In addition, no-turbulence model is used which is denominated LAMINAR model. The free 
surface is tracking by the VOF method.    

The static Smagorinsky model implemented in OpenFOAM does not define explicitly 
the constant 𝐶𝐶𝑠𝑠.  Instead, 𝐶𝐶𝑘𝑘 and 𝐶𝐶𝑒𝑒 constants are used by the Equation ( 3.1 ). 

𝐶𝐶𝑠𝑠 = �
𝐶𝐶𝑘𝑘
𝐶𝐶𝑒𝑒
�
1
4
 ( 3.1 ) 

The default values are 𝐶𝐶𝑘𝑘 = 0.094 and 𝐶𝐶𝑒𝑒 = 1.048 which provide 𝐶𝐶𝑠𝑠 = 0.168. The 
accessibility to the source code allows to modify the 𝐶𝐶𝑠𝑠 value which is highly problem-
dependent. 

3.3.4 Boundary and Initial conditions 

In this numerical test-case, no special inlet/outlet flow boundary conditions are needed, 
which provides numerical stability in the analysis. A schematic sketch of the boundary 
conditions is shown in the Figure 3.3-a and Figure 3.3-b (refers Figure 3.2).  Therefore, two 
types of BC are imposed. In the left-wall, right-wall, bottom, and obstacle, a wall-function 
boundary condition for smooth solid walls is imposed; while at the top of the test-case 
atmospheric BC is applied. 

A water-depth initial condition is imposed, H =0.55 m, Lx= 1.228 m and Ly= 1 m.  It 
represents the initial water volume in the experiment. 
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a) b) 

  
Figure 3.3. Schematic view of the Boundary conditions, a) profile view A-A b) profile view B-B 

(refers Figure 3.2) 

3.3.5 Grid domain configuration 

The computational domain was divided into non-overlapping structured hexahedral grid 
elements with a grid refinement near the bed, walls, and obstacle due to large gradients of 
flow variables expected in these parts. Therefore, the grid configuration presents non-
uniform elements. Starting from the finer grid size, the grid sizes in each direction were 
progressively increased to obtain the coarse grid size (max.value) with a maximum aspect 
ratio of 4. 

Different lines parallel to the axes are created in order to establish the maximum grid 
value while the minimum grid value (2.5 mm) is imposed near the walls, bed, and obstacle. 
Figure 3.4-a shows the A-A cross section (refers to Figure 3.2). In the spanwise direction (y), 
three lines are established while one in the vertical direction (z). In the same way, Figure 3.4-
b shows the B-B cross section where three lines are established in the streamwise direction 
(x) whereas one in the vertical direction (z). 

To obtain grid independent results, a series of grids with different max.value (20, 15 and 
10 mm) were tested. Therefore, the final grid configuration was the one such that the 
resulting deviations were less than 2.5% between the final and the penultimate grids at time 
t=1s, [51]. This was an empirical criterion used by the author due to the computational time 
required in the simulation process. The same grid configuration domain is used for all 3D 
numerical configurations analyzed 
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a) 

 
b) 

 
c) 

 
Figure 3.4. Grid domain configuration, a) profile view A-A b) profile view B-B c) Grid domain 

detail - plan view 

3.3.6 Numerical Simulation Schemes  

The PIMPLE algorithm is used to solve the pressure-velocity coupling in Navier-Stokes 
equations. Three loops were applied for the pressure correction.  Time derivative terms are 
discretized using a first-order accurate bounded implicit Euler scheme. The gradient terms 
are treated using a second-order central difference scheme and a linear interpolation scheme. 
The convection terms in the Navier-Stokes equations; i.e. mass and momentum, are 
discretized using a second-order unbounded linear upwind scheme. A second-order Total 
Variation Diminish (TVD)-scheme with van Leer limiter is used for the volume fraction 
variable, 𝛼𝛼.  Maximum Courant number of 0.5 is applied, this value maintains numerical 
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stability. The computational time for this analysis simulation is about 420 hours on an Intel 
core i7 6700k with 32 GB of RAM computer.   

3.3.7 Results and discussion  

In order to evaluate the capabilities of the 3D numerical models to reproduce the dam-break 
flow pattern, the numerical results are assessed against published experimental data 
described in the section denominated Experimental set-up model. Water depth and pressure 
measurements are used.  The experimental data are in a time step resolution of 0.001s, 
whereas, due to the considerable memory space required, the numerical results were obtained 
in a time step of 0.01 s. The Coefficient of determination, 𝑅𝑅2, is used to quantify the 
agreement of simulated against experimental data at different locations inside the domain.  

Water depth 

The water-depth variation with time at different locations in the experimental set-up are 
shown in Figure 3.6. Note that the 3D models satisfactorily capture the temporal variation at 
all points of analysis. The variation of the flood wave toe position in the experimental set-up 
is shown in Figure 3.5. 

 

Figure 3.5. Flood wave toe position- a variation on time (profile view A-A) 

The flood wave reaches again the probe H2 at t=1.78s, once it first hits the front-wall 
(t=0.63s). Simulations obtained with the LES model shows a good agreement with the 
experimental data at this time-period, precisely capturing the peak value; while RANS model 
displays a time-lag in peak value and LAMINAR model significantly overpredicts the 
observed water height peak value. The water wave touches the probe H3 at t=2.21 s, LES 
model shows somewhat closer match than RANS and LAMINAR models, although the three 
models overpredict the peak value. The probe H4 is reached at t=2.91s, the three models 
show deficiencies in capture the peak value.  

After that, the water flows turn over again to probe H4 (t=3.86) once it hits the back-
wall. The moment of the peak value is almost exactly the same in simulations and experiment 
although the models underpredict the measured data. The second wave meets the probe H3 
and H2 at t= 4.49 s and t= 4.74 s, respectively. All three models show a time-lag and 
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overpredict the peak observed water depth value with the LAMINAR model results deviating 
farther from the experimental data. A similar analysis can be performed for the rest of the 
time, although the overall behavior remains the same.  

In the probe H1, Figure 3.6-a, which is located between the box and the front-wall, LES 
model shows close matches with the data even at peak values during the first 1.78 s. Instead, 
both RANS and LAMINAR models show several spikes in the same period of time with the 
laminar model results deviating farther from the experimental data. 

a) 

 
b) 

 
c) 
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d) 

 
Figure 3.6. Measured and simulated water depths – time variation, a) H1, b) H2, c) H3 and d) H4. 

In order to obtain a quantitative measure of the models’ performance, scatter plots of 
simulated against experimental data at different locations and the coefficient of 
determination, 𝑅𝑅2, are presented in Figure 3.7. In addition, a summary of the 𝑅𝑅2 values is 
presented in the Table 3.1.  

The results show that the three modeling approaches provide a high coefficient of 
determination values. Note that in all cases, the LAMINAR model shows lower performance 
values. Furthermore, the LES model displays lower values of 𝑅𝑅2 compared to the RANS 
model at the positions H2 and H4, but without a significant difference. Similarly, the 
numerical performance at positions H1 and H2, where the RANS model is better. 

The best performance shows the probe H4 (Figure 3.7-d) located inside the tank. Here, 
the water depth has a slow decline over time during a period following the dam failure (about 
2.5s). On the other hand, the lowest agreement is in the probe H3 (Figure 3.7-c). Described 
so far is consistent as stated in the qualitative description. 
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c) d) 

  
Figure 3.7. Comparison of experimental and simulated water depth values– scatter plots, a) H1,      

b) H2, c) H3 and d) H4. 

Table 3.1. R2 value- water depth 
R2 

 H1 H2 H3 H4 
LES 0.928 0.914 0.886 0.977 
RANS 0.912 0.923 0.822 0.962 
LAMINAR 0.902 0.908 0.812 0.960 

Figure 3.8 shows the snapshots of a dam-break simulation with the three configuration 
numerical models at time t=0.56 s. The three models differ in both flood wave toe position 
and water depth.The LAMINAR model presents a major advance than the other two models 
in the flood plain, Figure 3.8 –c. In addition, the LAMINAR model shows a greater diffusion 
of the water sheet after the collision with the obstacle. 
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b) 

 

c) 

 

d) 

 
Figure 3.8. Snapshots of a dam-break simulation t=0.56 s. a) LES, b) RANS, c) LAMINAR and     

d) Experimental photo ( taken from Kleefsman et al. [48]) 

A plan view of the dam-break simulation at time t=0.56 s is shown in Figure 3.9. It can be 
observed that LAMINAR model shows greater discrepancies against LES and RANS 
models. 
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a) 

 

b) 

 

c) 

 
Figure 3.9. A plan view - dam-break simulation t=0.56 s. a) LES, b) RANS, c) LAMINAR 

Pressure 

A similar analysis to the previous section is presented for this variable. Figure 3.10 shows 
the time variation of pressure at different points in the box experimental set-up. In order to 
optimize space in this section, only the pressure analysis at points P1, P3, P5, and P7 are 
presented. Note that a better agreement between experimental and simulation data is 
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observed at points at the front of the box (P1 and P3) than the points on top of the box (P5 
and P7).  

The flood wave hits the box at t=0.42s, showing an almost instantaneous rise of pressure 
from zero to the peak value. The three models overpredict the magnitude of the pressure 
value at point P1 (the lowest on the box, Figure 3.10-a), while they underpredict at point P3 
(Figure 3.10-b).  

The second wave reaches the obstacle at t= 4.78s, a time-lag and difference in peak 
pressure magnitude are presented at points P1 and P3 by the three models. At points P5 and 
P7, the results obtained with the LAMINAR model shows a wiggle with several spikes 
during the first 3s in the simulation, which is not present in the other two models. 
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c) 

 
d) 

 
Figure 3.10. Measured and simulated pressure – time variation, a) P1, b) P3, c) P5 and d) P7. 

The model performances are quantified using scatter plots of comparison between 
experimental data and simulation results obtained with LES, RANS and LAMINAR models. 
In addition the coefficient of determination, 𝑅𝑅2, is presented. The LAMINAR model shows 
lower values of 𝑅𝑅2 at the four positions in the analysis, Table 3.2.  

Described qualitatively is confirmed using the statistical analysis. Simulations values 
obtained at positions P1 and P3 (Figure 3.11-a and Figure 3.118-b), located at the front of 
the box, show a better match with the experimental data than the numerical values obtained 
at points P5 and P7 (Figure 3.11-c and Figure 3.11-d), located the top of the box, Table 3.2. 

Table 3.2.  R2 value -pressure 

R2 
 P1 P3 P5 P7 
LES 0.756 0.829 0.754 0.733 
RANS 0.781 0.843 0.781 0.725 
LAMINAR 0.750 0.789 0.633 0.652 
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a) b) 

  
c) d) 

  
Figure 3.11. Comparison of experimental and simulated pressure values– scatter plots, a) P1, b) P3, 

c) P5 and d) P7. 

3.3.8 Conclusions 

In this test-case study, the capabilities of the 3D numerical configuration models to reproduce 
the dam-break flow pattern, unsteady-state (transient) hydraulic flow condition, are 
analyzed. The 3D numerical model configurations are based on LES and RANS approaches, 
and also using a no-turbulence (LAMINAR) configuration. A mesh sensitive analysis is 
performed in order to ensure the independence of mesh size results. The most relevant 
observations are listed below 

 The 3D numerical configurations show good performance when the results are 
compared against laboratory experimental data in two hydraulic variables; i.e. water 
depth and pressure. 

 The use of specific 3D numerical approaches; LES, RANS, and no-turbulence 
(LAMINAR), affects both qualitative and quantitative comparisons. 
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 The non-use of a turbulence model (LAMINAR) presents lower 𝑅𝑅2 performance. 
Therefore, the results demonstrate that turbulence approach is important in the 
analysis. 

 The 𝑅𝑅2 values, show better performances in a water-depth variable than in pressure 
variable. Note that the water-depth variable presents reliability in laboratory 
measurement values. 

 There is no clear trend to support which turbulence model approach (LES or RANS) 
produces better adjustments.  

In conclusion, the three-dimensional numerical configurations are able to reproduce the 
dynamics involved in the unsteady-state (transient) hydraulic flow studied. The adjustment 
of the hydraulic variables; i.e. water-depth and pressure, against experimental values is quite 
accurate. This allows carrying out a deeper analysis of the hydraulic phenomenon under 
study. 
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3.4 Three-dimensional comparative numerical analysis in an open-channel bend. 

3.4.1 Introduction 

Sharp open channel bend flow is characterized by the presence of a circulatory flow pattern 
generated in planes perpendicular to the main direction of the motion called secondary flow. 
Secondary flows are formed due to the disequilibrium in transverse pressure gradient and the 
driving centrifugal force [52]. The interaction between the main flow and the secondary flow 
forms a spiral motion, termed helical flow, in the bend, see Figure 3.12. This flow induces 
important changes in the velocity distribution components, streamlines at different water 
levels, transport of momentum, and could produce flow separation from boundaries 
downstream of the bend [53].  Consequently, a detailed and accurate description of the flow 
structure in an open channel bend is not a simple task and it is of great interest in river 
engineering. 

Although numerical models based on 2D depth-averaged equations are useful to analyze 
the flow pattern due to their straightforward implementation and application, the flow 
structures in an open channel bend are highly three-dimensional (3D). Therefore, due to 
advances in computational power, several studies have been carried out by different 
investigators [16,51,53–59] to evaluate the flow field in open channel bends by using three- 
dimensional numerical models based on RANS equations. Likewise, different authors [60–
64] performed three-dimensional numerical simulations using the LES approach. 

van Balen et al.[65] and Ramamurthy et al. [15] presented a three-dimensional numerical 
comparative investigation of an open-channel bend flow using different turbulence models 
based on RANS and LES approaches. These authors identified the importance of the 
turbulence model, establishing that only those models that can solve all the Reynolds Stress 
components are appropriates for an adequate representation of the flow structures in an open 
channel bend. 

The objective of the present study is to obtain a comparative assessment of the 
predictions of the open-channel bend flow characteristic in a stationary regime, using 
different turbulence models based on LES and RANS approaches. In order to validate the 
numerical models, the results are compared with laboratory measurements of velocity and 
water surface elevation obtained by Gholami et al. [16]. Therefore, the numerical models are 
used to analyze the flow structure along the bend by studying variations of streamlines, 
components of velocity, and secondary flows. 
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Figure 3.12. Definition variables in an open channel bend – schematic diagram “Adapted from 
(Blanckaert and De Vried [66])” 

3.4.2 Experimental set-up model 

The experiment used in this study was carried out in the hydraulic laboratory at the Ferdowsi 
University of Iran by Gholami et al. [16]. The test set-up, Figure 3.13; consisted of 3.60 m 
upstream straight channel, a 90o sharp open channel bend, followed by 1.80 m downstream 
straight channel. The channel was of rectangular cross-section 0.403 x 0.403 m (width x 
height) made of Plexiglas.  Measurements of discharge were done by a calibrated triangle-
shaped weir. On the other hand, water depth was measured by a micrometer while the one-
dimensional velocity meter PROPLER was used to measure the axial velocity. The accuracy 
of the micrometer was ± 0.1mm whilst the velocity meter was ± 2 cm/s. The experiment 
was conducted for discharge and downstream water depth fixed values of 25.3 l/s and 15 cm, 
respectively. Thereby, the flow was subcritical (Froude number= 0.34) and fully turbulent 
(Reynolds number=44 705). 

 

Figure 3.13. A sketch of experimental set-up 
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   The axial velocities were measured in 4 different levels of water depth located at 3, 6, 9 
and 12 cm from the bed; and at 13 points along the channel width located at 3 cm apart from 
the Inner Wall. The measurements were done at a section before the bend (40 cm), two 
sections after the bend (40 and 80 cm) and three sections in the bend (22.5o, 45o, and 67.5o), 
Figure 3.14. 

 

Figure 3.14. Cross-sections positions 

3.4.3 Numerical model 

In this test-case study, both numerical approaches are used; i.e., LES and RANS. Therefore, 
the subgrid-scale Reynolds stress (LES) and Reynolds Stress (RANS) are solved by using, 
Static and Dynamic Smarinsky (LES) and 𝑘𝑘 − 𝜀𝜀 (RNG) (RANS). The later model was used 
as a RANS model as it provides an improved performance for swirling flows around curved 
geometries [15,67,68]. The volume of fluid (VOF) method is used to simulate the air-water 
interface.  

3.4.4 Boundary and Initial conditions 

The experimental set-up was conducted in a steady-state hydraulic condition. In Figure 3.15, 
the boundary conditions used in the numerical model are summarized. In the inlet BC, a 
ramping function, which varies in time, is imposed for the velocity profile. The velocity 
presents a linear variation during 𝑡𝑡 = 10𝑠𝑠, until the experimental discharge, 𝑄𝑄𝑜𝑜 , is reached. 
This strategy provides numerical stability in the simulation process. In the inner-wall, outer-
wall, and bottom, a wall-function boundary condition for a smooth solid wall is established. 
At the top boundary, an atmospheric BC is imposed, which allows the flow to go down and 
into the channel. As regard the outlet, the subcritical water-depth value, ℎsub, and a 
hydrostatic profile is imposed as proposed by [69]. Table 3.3, presents a summary of the 
boundary conditions, where fV represents fixed value and zG denotes zero Gradient.  
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Table 3.3. Boundary conditions implemented in the test-case numerical simulation 

Boundary 𝛼𝛼 𝐮𝐮 𝑝𝑝 𝑘𝑘 𝜀𝜀 

inlet ZG 
fV, 

𝐮𝐮 = 𝑓𝑓(𝑄𝑄) 
zG 

fV*,  
𝑘𝑘 = 1x10−12 

zG 

Inner-wall ZG 
fV, 
𝐮𝐮 = 0 

zG zG zG 

Outer-wall ZG 
fV, 
𝐮𝐮 = 0 

zG zG zG 

bottom ZG 
fV, 
𝐮𝐮 = 0 

zG zG zG 

atmosphere ZG 
fV, 
𝐮𝐮 = 0 

fV, 
𝑝𝑝total = 0 

zG zG 

outlet 
𝛼𝛼 = 1 if 𝑧𝑧 ≤ ℎsub 
𝛼𝛼 = 0 if 𝑧𝑧 > ℎsub 

zG 
fV, 

𝑝𝑝total = 𝑓𝑓(ℎ) 
zG zG 

In regard to initial conditions, water depth and velocity values are imposed in the 
computational domain; i.e. 0.15 m and 0.40 m/s, respectively. The latter value is based on 
the average velocity (discharge/ section area) which provides a better numerical 
convergence. 

 

Figure 3.15. Description of the boundary conditions- A schematic view 
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In this test-case study, the experimental set-up domain size is reduced in order to optimize 
the computational time required. Therefore, in the numerical domain, the upstream straight 
reach is 2m while the channel depth is 0.30 m. The former measure was adopted because it 
is adequate for the complete development of the variables under study, while the latter one 
is the large enough in order to avoid the top BC influence.   

The computational domain was divided into non-overlapping structured hexahedral grid 
elements. A grid refinement near the bed, walls, and the water surface is needed because 
large gradients of flow variables are expected. Consequently, the grid configuration presents 
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non-uniform elements. Starting from the finer grid size, the grid sizes in each direction were 
progressively increased to obtain the coarse grid size (𝑚𝑚𝑎𝑎𝑥𝑥.𝑣𝑣𝑎𝑎𝑙𝑙𝑢𝑢𝑒𝑒). The grid sizes increase 
with a maximum aspect ratio of 4.  

Figure 3.16 shows the grid alignment with the flow direction. The grid size in the 
streamwise direction varies according to the proximity of the straight reaches to the bend, 
with the smallest value close to it [5− 10] mm. 

a)  

 
  

  
Figure 3.16. a) Grid domain configuration detail - plan view b)  Grid domain configuration - plan 

view c) Bend configuration - detail 

Figure 3.17 illustrates the grid size in the spanwise direction from inner-wall and outer-
wall to channel axis  [2.5−𝑚𝑚𝑎𝑎𝑥𝑥. 𝑣𝑣𝑎𝑎𝑙𝑙𝑢𝑢𝑒𝑒] mm. On the other hand, the grid is refined vertically 
close to the bed and near the water interface [2.5−𝑚𝑚𝑎𝑎𝑥𝑥. 𝑣𝑣𝑎𝑎𝑙𝑙𝑢𝑢𝑒𝑒]mm. 
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Figure 3.17. Grid domain configuration - cross section 

In order to ensure grid independence on the results, three different grid configurations 
based on a maximum grid size value (20, 15 and 10) mm were tested. 

Therefore, the values of velocity, pressure, and water-depth into the domain were 
analyzed at t = 15 𝑠𝑠, once the flow reaches the outlet BC. However, this was an empirical 
criteria assumed by the author due to the computational time required. The deviations of the 
variables between the final and penultimate grid were less than 2.5% [70].  

   Consequently, the grid resolution used in the analysis of the results, for the three 
numerical models, has a maximum grid size value of 10 mm. 

3.4.6 Numerical Simulation Schemes  

In this study, the PIMPLE algorithm is used to solve the velocity-pressure coupling. A 
second-order implicit backward discretization scheme is applied for the temporal term. The 
use of implicit approach provides numerical stability but it implies longer computational 
simulation time [71]. The gradient terms are treated with a second-order central differencing 
scheme and a linear interpolation scheme. The convection terms in governing equations; i.e. 
momentum and mass, are discretized using the second-order central difference scheme based 
on a Sweby limiter. The flow fraction convective term, 𝛼𝛼, is discretized with a second-order 
Total Variation Diminish (TVD)-scheme with van Leer limiter. The time step is 
automatically updated with a Maximum Courant number 0.5. The computational time for 
this analysis simulation is about 390 hours on an Intel core i7 6700k with 32 GB of RAM 
computer.   

3.4.7 Convergence criteria 

The simulation was assumed to have reached a steady-state hydraulic characteristic, using 
empirical criteria, when the residuals of the variables; i.e. velocity, pressure, and water-
depth, were less than 1x10−3 and the difference between the inlet and outlet discharge values 
was less than 2.5 %.  
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3.4.8 Model Verification 

Water Depth 

Transversal water profiles comparison between numerical simulation data against 
experimental measurement values using three model configurations approaches in the 
different sections are presented in Figure 3.18. The model configurations, i.e. 𝑘𝑘 − 𝜀𝜀 RNG, 
LES Static Smagorinsky and LES Dynamic Smagorinsky, show an adequate agreement with 
the experimental data measurements.   

While the flow remains in the straight channel parts, upstream and downstream, Figure 
3.18, the water surface is linear and the match between the numerical models results and the 
experimental data is quite accurate. This occurs at the beginning and ending sections of the 
channel (section a and section h).  

Major discrepancies happen in section b to section f, which are in the bend part of the 
experiment.  Here, the centrifugal force generates a transverse slope at the water surface 
where the water level increases near the outer wall and decreases at the inner wall.  The 
experimental data provided by Galomhi, show that the transversal slope is non-linear and it 
has greater gradients near the inner wall than near the outer wall.  

It can be seen that the 3D model based on RANS approach presents the transversal slope 
gradient values with a slight variation for all the sections. On the other hand, both models 
based on LES approach, show greater transversal slope gradient values near Inner-wall.   

The section f shows the greatest differences in shape and values between the 
experimental measurements and simulated data. Thus, the maximum under-estimated values 
differ in 2.2 mm, 4.9 mm and 5.8 mm for 𝑘𝑘 − 𝜀𝜀 RNG, LES Static Smagorinsky and LES 
Dynamic Smagorinsky models, respectively. In addition, in all the sections analyzed, the 
Smagorinsky dynamic model underestimates the measured values. 
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b) 
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f) 

 
g) 

 
Figure 3.18. Measured and simulated water surface 

Figure 3.19 shows the snapshots of a water surface in the channel bend. The three models 
differ in shape. In addition, LES dynamic model shows greater variation. 
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c) 

 
Figure 3.19. Water surface – snapshots a) RANS, b) LES static, and c) LES dynamic 

Measured and simulated water surface 

Table 3.4 shows the Root Mean Square Error (RMSE) and Mean Absolute Error values 
in order to measure the performance of the of the three models against laboratory data. Note 
that the k-e (RNG) model shows a better performance in RMSE and MAE average value; 
however, in the bend channel sections, LES_static model presents a better performance. 

Table 3.4. Water-depth statistic values 

Cross 
section  

water-depth 

RMSE (cm) MAE (cm) 
k-e (RNG) LES_static LES_dynamic k-e (RNG) LES_static LES_dynamic 

a 0.096 0.108 0.403 0.097 0.109 0.403 
b 0.225 0.042 0.279 0.231 0.054 0.291 
c 0.218 0.049 0.221 0.225 0.075 0.241 
d 0.188 0.071 0.295 0.19 0.08 0.317 
e 0.302 0.055 0.272 0.309 0.073 0.293 
f 0.126 0.303 0.556 0.138 0.349 0.588 
g 0.03 0.395 0.638 0.038 0.397 0.639 
h 0.086 0.523 0.729 0.089 0.523 0.729 

average 0.159 0.193 0.424 0.165 0.208 0.438 
 

Longitudinal velocity profiles 

In order to obtain more qualitative results of the flow field, the longitudinal velocity profiles 
are analyzed in some cross sections. Figure 3.20 shows the comparison profiles at the 
beginning of the bend channel, section b; at the middle of the bend, section d; and at the end 
of the bend channel, section f. The velocity profiles from the numerical results and the 
experiment shown in general a reasonable agreement.  

The presence of the secondary flow in the bend is responsible for local variations of 
velocity components [53]. At the beginning of the bend, the influence of the secondary flow 
is not significant and the maximum velocity occurs near the water surface and near the inner 
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wall. In the mid sections of the bend, the influence of the secondary flow is evidenced, where 
the maximum longitudinal velocity moves towards the outer wall and near the channel bed. 
At the end of the bend, major changes in the longitudinal velocity are exposed, which causes 
that the maximum velocity occurs near the outer wall. These flow characteristics have been 
reported by [16,53]. Note that LES static Smagorinsky results present better match than 
dynamic Smagorinsky data.  

a) 

 
b) 

 
c) 

 
Figure 3.20. Measured and simulated profiles- longitudinal velocity component a) section b,            

b) section d and c) section f. 

Streamlines 

The secondary flow in the bend is the result of the local imbalance between the centrifugal 
force and the water surface gradient. According to Blanckaert and De Vried [66], turbulence 
is important in the generation of the outer-bank cell (minor secondary flow). 
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The numerical results presented herein show the presence of the double-cell pattern; i.e. 
main secondary flow and minor secondary flow. In order to optimize space in this item, only 
two cross sections are presented. Figure 3.21 shows the cross section c and section f.   

The main secondary flow moves downstream of the bend. The center of the main 
secondary flow moves along the bed moving from the outer wall toward the inner wall. In 
contrast, a minor secondary flow with opposite direction is formed near the outer wall and 
near the water surface. Therefore, the three numerical configurations show the described 
characteristics. These characteristics were exposed in the studies performed by [16,53].  

 However, according to the numerical model used, the size of the secondary flows is 
different. Major discrepancies in the form of secondary flows occur at the end of bend where 
the LES models presents a steeper gradient near outer wall. 

a-1) b-1) 

  
a-2) b-2) 

  
a-3) b-3) 

  
Figure 3.21. Streamlines at the established sections,  a) section c b) section f.                                     

𝑘𝑘 − 𝜀𝜀 (𝑅𝑅𝑁𝑁𝐺𝐺)1, LES_static2 and LES_dynamic3. 
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3.4.9 Conclusions 

In this test-case study, a comparative assessment of the flow characteristic using three 
numerical configurations based on LES and RANS approaches is performed. In the former 
approach Static and Dynamic Smarinsky models are used while in the last approach k-ε 
(RNG) is implemented. A mesh sensitive analysis was conducted in order to determinate an 
adequate grid size. The numerical results are assessed against experimental observations; i.e. 
water-depth and longitudinal velocity component. The main conclusions of this study are 
listed below 

 Three numerical model results present an acceptable level of agreement in the 
variables analyzed; i.e. water level and longitudinal velocity component. 

 Water depth values are better predicted in sections at the beginning and the end of 
the bend, where the influence of the secondary flow is lower. 

 Local variations of velocity components are presented in the channel due to the 
secondary flow influence. The pattern of these variations coincides with previous 
studies.  

  The major discrepancies of the simulated values occur in the mid sections of the 
channel bend, where the influence of the secondary flow is significant. 

 The three-numerical models reproduce the two secondary flows along the bend 
channel; i.e. main and minor. The center of the main secondary flow moves along 
the bed moving from the outer wall toward the inner wall. In contrast, a minor 
secondary flow with opposite direction is formed near the outer wall and near the 
water surface. 

In conclusion, a three-dimensional numerical model can predict the various trends of the 
water-depth and velocity profiles based on both the geometry of the channel and the 
magnitude of the discharge. Therefore, the numerical models can assist in the design and 
evaluation of hydraulic channels. 
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3.5 Three-dimensional numerical analysis of free-surface flow in a sharp open-
channel bend influenced by a weir and a sluice gate‡ 

3.5.1 Introduction 

Flow in open channel bends is characterized by secondary flows, flow separation, energy 
losses, and water surface variations. Secondary flows result from the imbalance between 
centrifugal force and pressure gradient leading to the water particles near the surface are 
driven outwards [72]. The interaction between the main flow and secondary flow forms the 
so-called helical flow in the bend, which has important consequences in the velocity 
distributions, transport of momentum, and streamlines at different water levels [53]. 
Therefore, the study of flow patterns in a channel bend is not a simple task and has a great 
interest within the hydraulic design practice. Due to advances in computational power and 
the associated reduction in computational time, three-dimensional (3D) models based on 
Navier-Stokes equations have become a feasible tool to analyze the flow pattern of various 
geometries and boundary conditions. 

Early open-channel bend studies [52,73,74] provided considerable attention to 
secondary flow characteristics without emphasis on the flow separation. de Vriend [75] 
presented a theory of secondary flows profiles for non-asymmetric steady flow in shallow 
and curved channels with a fixed bed. Kalkwijk and de Vriend [76] presented a mathematical 
2D model to describe the flow in rivers taking into account bottom friction, flow curvature, 
and transverse convection of momentum by the secondary flow. de Vriend [77] analyzed the 
velocity redistribution in curved rectangular channels. This author presented a shallow water 
mathematical model for steady incompressible laminar flow. Shimizu et al. [78] developed 
a 3D numerical model whose results were compared with experimental data and 2D 
numerical results obtained from the model proposed by Shimizu and Itakura [79]. They 
concluded that the flow field is predicted more accurately by the 3D model than the 2D 
model. Therefore, the applicability of 3D models is presented when the understanding of the 
flow field is required. Several studies have been carried out by different investigators 
[54,57,80,81] to evaluate the flow field in open-channel bends by using three-dimensional 
numerical models. More recently, Naji Abhari et al. [53] studied flow pattern in a channel 
bend, experimentally and numerically by applying a three-dimensional numerical model, 
SSIIM. The results showed that the flow pattern in a channel bend is influenced widely by 
the secondary flow and the centrifugal force. Han et al. [51] using two commercial three-
dimensional numerical codes, PHOENICS and FLUENT, computed the flow in sharp open-
channel bends with vanes validating against laboratory measurements. They found that vanes 
are effective to reduce the secondary flow intensity and flow separation along the inner wall. 
Ramamurthy et al. [15] simulated flow pattern in a sharp bend by using two commercial 

                                                             
‡ The data in this test-case study, have been prepared as a manuscript for a possible publication 
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three-dimensional numerical codes (PHOENICS and FLUENT) along with different 
turbulent models, and by comparing the numerical and experimental results. These authors 
identified that an adequate representation of secondary flow in the channel downstream of 
the bend requires both the appropriate treatment of the channel free surface and a proper 
turbulence model. Gholami et al. [16] presented an experimental and a three-dimensional 
numerical study of the flow patterns in a sharped open channel bend. The numerical 
modeling was carried out using the commercial code FLUENT. In that study, they analyzed 
the patterns of secondary flow, longitudinal velocity contours, and shear stress. The authors 
found that along a sharped channel bend, the maximum flow velocity always occurs near the 
inner wall and in such bends, the effect of the secondary flows is not limited to the sections 
within the bend. 

The objective of this test-case study is to analyze the flow fluid characteristics obtained 
from the 3D numerical results in a real scale sharp open-channel bend influenced by a weir 
and a sluice. To the author’s knowledge, 3D numerical modeling of this channel geometric 
configuration has not been reported in the literature. The sensitivity of the numerical code to 
three RANS turbulence models; 𝑘𝑘 − 𝜀𝜀, 𝑘𝑘 − 𝜔𝜔 , and 𝑘𝑘 − 𝜀𝜀 (𝑅𝑅𝑁𝑁𝐺𝐺), and mesh element size is 
assessed. The numerical model was assessed according to water depth experimental data 
performed by Gómez and Martínez-Gomariz [82]. In addition, a roughness parameter has 
been calibrated to set a reliable model. Therefore, the numerical model was used to analyze 
the flow pattern along the sharp bend by studying variations of streamlines, components of 
velocity, and secondary flows. 

3.5.2 Experimental set-up model 

Experiments were carried out at the hydraulic laboratory of the Technical University of 
Catalonia. The PAC-UPC channel “Canal de Pruebas de Algoritmos de Control (Test Canal 
Algorithms Control) - Universitat Politècnica de Catalunya (Technical University of 
Catalonia)” is specially designed to develop basic and applied research in the irrigation 
channel control area. The channel has a snake shape in its 220 m long construction with a 
rectangular cross-section of 0.44 m wide and 1 m deep. The channel has zero slope in order 
to achieve the largest possible time delay. The bed and side walls of the channel are made of 
concrete while the vertical sluice gates and rectangular weirs are made of methacrylate and 
PVC respectively. The bend where W1 weir and G3 sluice gate are located was chosen for 
this study because the discharge value is known with appropriate accuracy (Figure 3.22-a). 
Discharge measurements were carried out through a calibrated V-notch weir and water 
depths were measured in 10 locations. Two water level sensors (Figure 3.23), which have an 
accuracy of 0.1mm, were used for measurements at locations 3 and 10 whilst the rest of the 
depths were measured by a limnimeter with 1 mm of accuracy (Figure 3.22-b). 

Gómez and Martínez-Gomariz [82] obtained the data from experiments in steady flow 
condition. Table 3.5, shows the data of discharge (Q), sluice gate opening (a), and weir height 
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(w) stabilized according to Figure 3.22-c. The flow was subcritical (Froude number≈0.1) and 
fully turbulent (Reynolds number≈ 1.95x105). The discharge through the weir W1 was 
measured (0.017 m3/s) [83]. 

Table 3.5. Hydraulic and geometric characteristics – experimental set-up  

Flow 
Rate 

Q 
w a water depth  (m)  

m3/s m m 1 2 3 4 5 6 7 8 9 10 
0.094 0.643 0.170 0.740 0.737 0.727 0.729 0.735 0.740 0.742 0.730 0.735 0.600 

 

a) b) 

  
c) 

 
Figure 3.22. a) Schematic layout of UPC laboratory channel “adapted from Gómez and Martínez-

Gomariz [82]”, b) Schematic view of the channel bend - points for measurements,                            
c) Detail of Section A-A 
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a) b) 

  
Figure 3.23. UPC laboratory channel photos: a) Level sensor, b) sluice gate (taken by Gómez and 

Martínez- Gomariz [82]) 

3.5.3 Numerical model 

The governing equations for the fluid flow in this test-case, are the incompressible Reynolds-
averaged Navier Stokes (RANS) equations. Turbulence is treated using three models; i.e. 
𝑘𝑘 − 𝜀𝜀, 𝑘𝑘 − 𝜔𝜔 , and 𝑘𝑘 − 𝜀𝜀 (𝑅𝑅𝑁𝑁𝐺𝐺). The free-surface is tracked by mean the Volume of Fluid 
(VOF) method.  

3.5.4 Boundary and Initial conditions 

The boundary conditions of the computational domain are one inlet, two types of outlets 
(which depend on flow conditions), atmosphere, walls, and bottom (Figure 3.24).  

  

 

Figure 3.24. Schematic view of boundary conditions 
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walls 
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bottom 
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Inlet 

In the analyzed test-case, the steady-state flow condition is reached for a given discharge 
rate, 𝑄𝑄𝑜𝑜. In order to provide a numerical stability, a ramping function is imposed to the 
velocity boundary condition. The time-variation velocity is gradually incremented until the 
maximum velocity value matches to the one calculated with 𝑄𝑄𝑜𝑜. 

Therefore, a velocity profile based on flow rate is specified, Dirichlet boundary 
condition. Pressure is defined by a Neumann boundary condition with a zero normal gradient, 
𝜕𝜕𝑝𝑝 𝜕𝜕𝐮𝐮⁄ , to be consistent with the velocity condition [69]. Turbulence quantities are set as a 
constant values calculated according to the flow conditions. 

Outlets 

Two types of outlet boundary conditions are placed in this research. In the first condition, 
outlet 1 (weir), zero gradient conditions 𝜕𝜕 𝜕𝜕𝑛𝑛⁄ = 0, Neuman conditions, are applied for all 
quantities.  

At the second condition (outlet 2), the hydrostatic pressure changes with the free surface. 
Therefore, in order to specify the pressure BC, the dynamic component  𝜌𝜌u2 2⁄  is specified 
as a zero normal gradient, and the hydrostatic pressure is subtracted from the total pressure. 
Velocity and turbulence values are defined by a Neumann boundary condition with a zero 
normal gradient. Details of this outlet free surface condition can be found in [4,69]. 

Atmosphere 

At the top boundary of the channel, an atmospheric boundary condition is imposed to allow 
the flow to enter and leave the domain. The total pressure is set to zero, Dirichlet condition. 
The other variables are calculated according to the flow direction by means a zero gradient, 
Neumann condition. 

Walls and bottom 

At the surface of the walls and bottom of the channel, a wall-function boundary condition 
for the rough wall is established. No-slip condition, 𝑢𝑢 = 0, Dirichlet condition, is set for the 
velocity with zero pressure gradient, Neuman condition.  

A water-depth initial condition is imposed into the channel, H =0.60 m. 

3.5.5 Grid domain configuration 

A grid independent solution implies that the results do not change significantly when 
increasing the number of grid cells. The grid-independent results are obtained through a 
sensitivity analysis. The domain is discretized by using non-uniform structured Cartesian 
hexahedral elements. The large gradients of flow expected; near walls and bottom, impose 
mesh densification in their vicinity, minimum grid value (2.5 mm).  
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Different lines parallel to the axes are created in order to establish the maximum grid 
value, (max.value); i.e.  40, 20, 10 mm. Starting from the finer grid size, the grid sizes in 
each direction were progressively increased to obtain the coarse grid size (max.value) with 
a maximum aspect ratio of 2. The grid-configuration is shown in Figure 3.25. 

a) b) 

  
c)  

 
Figure 3.25. Grid domain configuration, a) plan view - detail b) cross-section profile and c) Grid 

configuration - plan view 

The results of three turbulence models; i.e. 𝑘𝑘 − 𝜀𝜀, 𝑘𝑘 − 𝜔𝜔 , and 𝑘𝑘 − 𝜀𝜀 (𝑅𝑅𝑁𝑁𝐺𝐺), in relation 
to water depth at the locations 3 and 10 (Figure 3.22-b) are compared against experimental 
data using the Relative Error criteria. These locations were chosen for the analysis because 
water level sensors (LS5 and LS6) where placed there. Based on the graphic representation, 
Figure 3.26 show a decreasing trend in Relative Error values of the turbulence models in 
relation to the decrease in max.value mesh sizes grid spacing. The analysis shows that the 
most accurate results are the 𝑘𝑘 − 𝜀𝜀 (𝑅𝑅𝑁𝑁𝐺𝐺) model. This turbulence model provides an 
improved performance for flows with separation zones and around curved geometries [67]. 
Moreover, it is important to mention that, the numerical results underestimate the results in 
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relation to water-depth measurements. The subsequent analysis will be conducted with a 
maximum mesh size grid spacing of 1cm. 

a) b) 

  
Figure 3.26. Mesh sensitivity analysis- Relative Error estimation - water depth,                                 

a) point 3 and b) point 10 

Once the turbulence model and max mesh size grid spacing have been chosen, the 
effective roughness height (𝑘𝑘𝑠𝑠) for the concrete surface is calibrated. Note that a wall-
function boundary condition for the rough wall was established. Three 𝑘𝑘𝑠𝑠  ; i.e., 0.002, 0.003, 
and 0.004, are analysed based on experimental values. The numerical results show better 
performance with 𝑘𝑘𝑠𝑠 = 0.003 when the numerical values are compared against the 
experimental ones using the Relative Error criteria, Figure 3.27. It can be observed that the 
variation of the values of the roughness parameter does not have a significant discrepancy in 
relation to the experimental values. 

a) b) 

  
Figure 3.27. Effective roughness height analysis, a) Point 3, b) Point 10 
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To assess the accuracy of the numerical configuration, Relative Error criteria is used 
again to compare water-depth results against experimental data at the 10 locations within the 
domain. The distribution of the locations is shown in Figure 3.22-b and their values are in 
Table 3.5. Figure 3.28 shows that the maximum Relative Error produced is 4.01%.  

 

Figure 3.28. Water depth values - comparison 

3.5.6 Numerical Simulation Schemes 

The PIMPLE algorithm is used to solve the pressure-velocity coupling Navier-Stokes 
equations. A first-order Euler scheme is applied for the time derivative terms. The gradient 
terms are discretized with a second order central differential scheme and a linear 
interpolation scheme. The convection terms; i.e. mass and momentum equations are 
discretized using the second order upwind schemes, while in the volume of fraction term, 𝛼𝛼, 
a TVD-scheme with a van Leer limiter is used. The time step is updated to satisfice a 
Maximum Courant number condition of 0.5. This value provides numerical stability in the 
simulation process. The computational time for this analysis simulation is about 468 hours 
on an Intel core i7 6700k with 32 GB of RAM computer.    

3.5.7 Convergence criteria 

Residuals are used to monitor the convergence of simulations. The stability of the solution 
is assumed when the residual variables are less than 1x10-3 except for the pressure where the 
residual is less than 1x10-5. The simulation was assumed to have reached a steady-state when 
the difference in discharges at the inlet and two outlets is less than 2.5%. 

3.5.8 Results and discussion  

For a proper analysis of the results, the channel bend has been divided into two parts, namely 
first sharp bend and second sharp bend. Vertical cross sections in the first sharp bend have 
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been established at 0o, 30o, 45o, 60o, and 90o; while in the second sharp bend have been 
established at 0o, 45o, and 90º (Figure 3.25) 

 

Figure 3.29.Cross section locations 

Figure 3.30 shows the numerical results against the experimental case. Note that the free 
surface irregularities produce for the bend are captured for the numerical configuration 
(Figure 3.30-c). 
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c) 

 
Figure 3.30. Open channel bend a) Numerical results b) PAC-UPC laboratory photo (taken by 

Gómez and Martínez-Gomariz [82]) and c) Free-surface numerical results 

Streamlines 

The secondary flow is an important feature of the flow pattern in open channel bends. In a 
channel bend, the water surface is slightly higher near the outer wall than near the inner wall 
causing a transverse pressure gradient, which provides the centripetal force for the fluid to 
change direction. This local imbalance between forces forms the secondary flow [66]. Figure 
3.31 shows the secondary flows in two sections inside the first and second sharp bend. In 
order to clarify the numerical results presented by the CFD code, results in every cross 
section were digitalized.  

 
Figure 3.31. Sketch of secondary flows a) first sharp bend –section 60º, b) second sharp bend –

section 90º 

In Figure 3.32-a, the streamlines in the section located before the bend show a one-way radial 
flow towards the inner wall of the channel. From Figure 3.32-b to Figure 3.32-e, it is shown 
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the secondary flow moving along the bed. The rotation of the major secondary flow moves 
closer to the middle of the channel width and within 40 cm high. Figure 3.32-b shows how 
a minor secondary flow is formed near the outer wall and near the water surface. Therefore, 
the main secondary flow moves toward the inner wall while the minor secondary flow moves 
toward the outer wall. The rotation of this minor secondary flow is opposite to the major 
secondary flow. This feature has already been described by Gholami et al. [16]. Nevertheless, 
due to the influence of the first sharp bend this flow behavior vanishes, predominating thus 
flow towards the channel bottom in the outer wall (Figure 3.32-c). At the end of the first 
sharp bend (Figure 3.32-e) the flow points towards the outer wall of the channel. 

a) b) 

  

c) d) 
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e) 

 
Figure 3.32. Streamlines at the established sections - first sharp bend a) 0º, b) 30º, c) 45º,                 

d) 60º, and e) 90º 

Figure 3.33 shows the streamlines at the different established sections along the second 
sharp bend, which is influenced by a weir and a gate. From Figure 3.33-a to Figure 3.33 -c, 
it is shown the formation of a minor secondary flow near the inner wall and within the 20-
50 cm high of the channel. It is important to mention that, the rotation of the major secondary 
flow moves closer to the middle of the channel width and within 45 cm high (Figure 3.33-a 
to Figure 3.33-c). However, at the end of the second sharp bend, major secondary flow moves 
closer to the outer wall (Fig. 26-c).  
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c) 

 
Figure 3.33. Streamlines at the established sections - second sharp bend a) 0º, b) 45º, and c) 90º 

The comparison of streamlines along the bend at different horizontal plans is treated 
hereafter. Figure 3.34-a shows the pattern of the streamlines near the bed. Some of these 
streamlines deflect towards the inner wall following the pattern from upstream, but many of 
them coming from upper layers. At the mid-depth of flow, Figure 3.34-b, streamlines follow 
mostly the curvature of the bend; however, an area of a weaker counterrotating flow is 
identified (dead zone). The presence of the gate causes that streamlines collision with it and 
deflect towards the inner wall. Again, an area of flow moving slowly and distinct from the 
main flow structure is identified. In Figure 3.34-c, water surface can be observed, due to the 
presence of the weir (outlet 1) part of the streamlines following this direction while the rest 
of them deflect towards the outer wall of the channel until they hit the gate and deflect 
towards the inner wall. In the sharp corner, streamlines deflect towards the outer wall of the 
channel producing a dead zone larger than in mid-depth.  
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c) 

 
Figure 3.34. Streamlines at different distances from the bed, a) Near the bed, b) Mid-depth of flow 

and c) Water surface 

After the gate, a submerged or drowned hydraulic jump is produced carrying a diffusive 
behavior of the streamlines. In Figure 3.35, show the streamlines in a section parallel to the 
wall in which the gate and the two outlets have influence (Figure 3.22-b, A-A section). 
Before the gate, the streamlines get close to each other and then after the gate the streamlines 
show a disturbed or oscillatory behavior of the flow. Figure 3.35-a shows the streamlines 
including both the water phase and the air phase, while Figure 3.35-b presents a digitalized 
streamlines of the water phase.  

a) 

 
b) 

 
Figure 3.35. Streamlines in a section parallel to the wall - gate and the two outlets influence,           

a) water phase and the air phase b) water phase 

Contours of longitudinal component of velocity 

The distribution of the longitudinal component of velocity at established cross sections is 
presented in Figure 3.36. The high velocity zone tends to the inner wall through the first bend 
of the channel. From Figure 3.36-b to Figure 3.36-c, a zone with very low velocities (≈
0 𝑚𝑚/𝑠𝑠) is formed near the Outer Wall. An integration of the profiles show that about 15% 
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of the area through the investigated sections remains nearly static. At the end of the first 
sharp bend, the velocity distribution is almost symmetric Figure 3.36-e. 

a) b) 

  

c) d) 
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e) 

 

Figure 3.36. Contours of longitudinal component velocity (m/s) - first sharp bend, a) 0º, b) 30º,        
c) 45º, d) 60º, and e) 90º. 

In the second sharp bend, weir and sluice gate influence leads to the formation of an 
unstructured component velocity distribution as can be seen in Figure 3.37. At the beginning, 
the weir (outlet 1) makes the velocity distribution asymmetric. At the end, the higher 
velocities are concentrated over the deeper Outer Wall of the section while velocities in the 
opposite direction appear on the top and bottom of the deeper Inner Wall. Unlike the first 
sharp bend, the high velocity zone tends to the outer wall.  
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c) 

 
Figure 3.37. Contours of longitudinal component velocity (m/s) -second sharp bend a) 0º,                

b) 45º, and c) 90º 

3.5.9 Conclusions 

In this test-case study, a numerical analysis of fluid field patterns in a sharp open channel 
bend is presented. A significant uniqueness of this study is influenced by a weir and a sluice 
gate. A mesh sensitivity analysis using RANS approach was conducted in order to determine 
an adequate mesh size which provides a balance between accuracy and computational time. 
In addition, the roughness parameter has been calibrated to set a reliable model. Once the 
turbulence model and the roughness parameter were established, the fluid field 
characteristics were analyzed. The main conclusions of this study are presented hereafter. 

 Three-dimensional outcomes are in good agreement against experimental 
observations; i.e. water depths. 

 𝑘𝑘 − 𝜀𝜀 (𝑅𝑅𝑁𝑁𝐺𝐺) turbulence model offers more accurate performances in front of the 
experimental measurements. 

 In the first sharp bend, a main secondary flow forms along the bed moving toward 
the inner wall closer to the middle of the channel width and within 40 cm high. On 
the other hand, a minor secondary flow with opposite direction is formed near the 
outer wall and near the water surface.  

 In the second sharp bend, which is influenced by a weir and a gate, a major 
secondary flow forms along the bed moving toward the outer wall closer to the 
middle of the channel width and within 45 cm high. In contrast, a minor secondary 
flow forms near the inner wall and within the 20-50 cm high of the channel along 
the bend.  

 The pattern of the streamlines along the channel bend zone at different water levels 
differ from each other because the influence of the bend, the weir, and the gate. The 
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streamlines near the bed deflect towards the inner wall following the pattern from 
upstream, but many of them coming from upper layers. At the mid-depth of flow, 
the presence of the gate causes that streamlines collision with it and deflect towards 
the inner wall. On the water surface, due to the presence of the weir, part of the 
streamlines following this direction while the rest of them deflect towards the outer 
wall of the channel until they hit the gate and deflect towards the inner wall. 

 In the first sharp bend, the high velocity zone tends to move towards the inner wall 
while in the second sharp bend the high velocity zone tends to move towards the 
outer wall. 

The analysis shows a zone of low velocities in the Outer Wall of the first sharp bend 
causing a stagnation zone. It is suggested, to evaluate geometric modifications of the channel 
in the sharp bends parts. 
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4 SEDIMENT TRANSPORT  

4.1 Introduction 

Sediment transport process is used to determine the morphological evolution, erosion or 
deposition, in open channels and rivers. The understanding of this process is essential in the 
context of river engineering practice to planning, analysis, protection, and remediation of 
river crossing structures (Figure 4.1). Accurate numerical model prediction is not a simple 
task because the flow field is often highly three-dimensional and turbulent. In addition, the 
sediment phenomena includes a wide range of grain sizes and different sediment material 
properties. Due to advances in computational power in recent years, the use of 3D numerical 
models has become a valuable tool for understanding and predicting morphodynamic 
developments.  

This chapter begins with an overview of the sediment transport mechanisms in order to 
understand the erosion/deposition process. It continues with a review of the main studies 
conducted, which are based on the two main three-dimensional approaches, i.e. single-phase 
and two-phase. Then, the mathematical description of the governing differential equations 
for both model approaches are exposed. The chapter ends with an application of the two-
phase modeling approach. The numerical results are compared with an experimental case 
used to simulate the scour caused by a submerged jet.  

a) b) 
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c) 

 
Figure 4.1. Scour hole around bridge piers: a) cylindrical (www.usgs.gov) and b) rectangular 
cylinder (www.fondriest.com); c) Bridge failure due to pier scour (www.iahrmedialibrary.net) 

4.2 Sediment Transport Mechanism 

Sediments can be classified into two main categories according to the size of the particles 
that are composed, i.e. cohesive and non-cohesive. This study focuses on non-cohesive 
sediments, specifically sand. Mathematically it is useful to describe sand particles as a sphere 
with an equivalent grain diameter in order to specify the mechanical properties of the 
material. 

In Sediment Transport, the concentration is an important parameter that controls the 
transport mechanism; thus, the sediment volume concentration can be defined as: 

𝜙𝜙 =
𝑉𝑉𝑃𝑃

𝑉𝑉𝑃𝑃 + 𝑉𝑉𝑓𝑓
  ( 4.1 ) 

where 𝑉𝑉𝑃𝑃 and 𝑉𝑉𝑓𝑓 are the volumes occupied by the particles and interstitial fluid, respectively. 
Similarly, the sediment mass concentration, 𝑐𝑐, can be obtained multiplying by the sediment 
density, 𝜌𝜌𝑠𝑠, so 𝑐𝑐 = 𝜙𝜙𝜌𝜌𝑠𝑠 . 

There is an important parameter in sediment concentration for uniform spheres that 
needs to be defined, i.e. random-packing. This parameter establishes the random arrangement 
of the spheres (volume is taken by a number of particles) poured in a given space of volume. 
Experiments show that there is a range of random-packing densities; i.e. the upper limit 
referred as random-close-packing and the lower limit denominated random- loose-packing 
[1].   

In the classical sediment transport theory, single-phase, the transport modes are divided 
into bed-load and suspended-load. In the bed-load the particles roll, slide or saltate, with 
permanent or intermittent contact on the sediment bed; while, in the suspended-load, the flow 
turbulence transports the sediment particles into the water column [2].  

http://www.usgs.gov/
http://www.fondriest.com/
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On the other hand, a modern description of the non-cohesive sediment transport 
considers four transport layers according to the dominant transport mechanisms‡, Figure 4.2. 
Therefore, Highly concentrated region of transport occurs immediately above the bed, 
enduring contact regime. The transport in this region is dominated by intergranular 
interactions due to enduring contact forces and it is a critical mechanism for sediment 
transport suspension since the flow turbulence is very small (viscous sublayer). In the region 
denominated rapid sediment flow, due to smaller concentration, the transport is dominated 
by particle-particle interactions (either due to enduring contact or energetic collision) and 
turbulence suspension (flow turbulence is important in this region). In the dilute region, 
particles are far from each other and the collisions are negligible. Then, the flow turbulence 
becomes the only dominant suspension mechanism. 

 

Figure 4.2. Schematic plot of different mechanisms in sediment transport                               
“Adapted from Cheng and Hsu  [3]” 

4.3 Models of sediment transport and bed elevation – An overview 

The sediment transport models are divided into two main categories, single-phase and two-
phase model approaches. In the single-phase model, the total sediment transport is separated 
into bed load and suspended load components. The bed load is parameterized with empirical 
or semi-empirical formulations, which are obtained from different laboratories, usually for a 
limited range of conditions in a steady flow experiment condition (i.e. Meyer-Peter and 
Muller [4]; Einstein [5]; Bagnold [6]; Yalin [7]; Wilson [8]; Ashida and Michiue [9]; 
Engelund and Fredsoe [10];Fernandez Luque and Van Beek [11]; Parker [12]; Smart [13]). 
On the other hand, the suspended load is resolved to treat the sediment as a passive scalar 
with a falling velocity difference with the flow phase. In practice, this approach can be 
applied to dilute sediment concentration so ignoring the effects of fluid-particle and particle-
particle iterations. Changes in bed levels are calculated from sediment mass conservation 
equation, which provides a dynamic link between the two components using empirical or 

                                                             
‡ Lecture notes - Professor Tian-Jian Hsu (University of Delaware - Center for Applied Coastal Research) 
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semi-empirical parameterization again to represent deposition and erosion fluxes (i.e. Smith 
and McLean [14]; van Rijn [15]; Garcia and Parker [16]; Zyserman and Fredsøe [17]).  

Most single-phase models discretize and solve the Reynolds-Averaged Navier-Stokes 
equations (RANS), along with the sediment mass balance equation using a finite difference, 
finite element, or finite volume method suitable for structured or unstructured grids.  

Numerical models to predict morphodynamic changes in the bed of open channels using 
𝑘𝑘 − 𝜀𝜀 or 𝑘𝑘 − 𝜔𝜔 turbulence closure have been reported [18–20]; while one others use the 
hydrostatic-pressure distribution over water depth assumption [21,22]. Also, several models 
to simulate local scour around structures have been developed [23–28]. Liu and García [29] 
proposed a numerical model in which the free surface flow is simulated with the volume of 
fluid scheme (VOF) and the bed change is captured with a moving mesh method based on a 
Lagrangian approach. More recently, Sattar et al.[30] presented a 3D numerical model using 
a novel volume of flow and a novel finite area methods in order to capture the water-air and 
water-sediment interface, respectively.    

Despite the ability to predict long-term bed morphological evolution in rivers with this 
modeling approach; it is necessary to study a numerical alternative that can resolve the full 
profile of sediment transport. Depending on the flow condition, Chauchat et al. [31] state 
that the sediment concentration near bed-region can reach values ~60%, where the single-
phase model relies on empirical or semi-empirical parameterization ignoring particle-particle 
and particle-fluid interactions [31,32]. 

The second alternative is the two-phase model approach, where the governing equations 
for both the particle motion and flow phase are formulated separately. The interaction 
between two phases is accounted by using the stress tensor due to phase interactions and the 
interfacial momentum transfer.  

In the past decades, several models have been developed in the two-phase framework. 
Numerical models using Eulerian-Lagrangian scheme were proposed by [33,34]. 
Alternatively, some models are solved using Euralian-Euralian approach. Early models use 
the mixing length closure turbulence model [35–39], while more sophisticated models 
include two equations closure turbulence models, 𝑘𝑘 − 𝜀𝜀 or 𝑘𝑘 − 𝜔𝜔 [40–46]. Recently, Lee et 
al.[47] and Cheng et al. [48] developed a multi-dimensional two-phase flow models using 
the kinetic theory and granular rheology theory for particle stress, respectively. Chauchat et 
al. [31] based on the Cheng et al.[48]  model, added a dense granular flow rheology for the 
particle phase-stress.  
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4.4 Sediment transport models  

4.4.1 Single-phase sediment transport model 

The mathematical description presented in this section is based on the single-phase approach, 
classical model. As already mentioned, in this model, the total sediment transport is separated 
into suspended load and bed load components and a set of equations are defined to describe 
the bed evolution, i.e. erosion and deposition. A complete description of the model can be 
found in the publication presented by Liu and García [29]. 

Flow governing equations 

The governing equations for the flow are the Reynolds-averaged Navier-Stokes (RANS) 
equations with 𝑘𝑘 − 𝜀𝜀 turbulence closure model and the free surface is tracked using the 
Volume of Fluid method (VOF). 

Bed load transport 

The displacement of the particles with permanent or intermittent contact on the sediment bed 
occurs when the threshold of sediment motion is exceeded [2]. The initiation of the sediment 
motion can be quantified by the non-dimensionalized bed shear stress called Shield number. 

The bed load transport rates in different directions (fluxes), 𝑞𝑞𝑏𝑏𝑖𝑖, are giving by [24] 

𝑞𝑞𝑏𝑏𝑖𝑖 = 𝑞𝑞𝑜𝑜
𝜏𝜏𝑏𝑏𝑖𝑖
|𝜏𝜏𝑏𝑏| − 𝐶𝐶|𝑞𝑞𝑜𝑜|

𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥𝑖𝑖

, 𝑖𝑖 = 1,2  ( 4.2 ) 

in tensor form 

𝑞𝑞𝑏𝑏𝑖𝑖 = 𝑞𝑞𝑜𝑜
𝜏𝜏𝑏𝑏𝑖𝑖
|𝜏𝜏𝑏𝑏| − 𝐶𝐶|𝑞𝑞𝑜𝑜| ∙ ∇𝑠𝑠𝜂𝜂  ( 4.3 ) 

where 𝑞𝑞𝑜𝑜 is the bed load sediment transport rate per unit width for a flat bed, 𝜏𝜏𝑏𝑏 is the bed 
shear stress calculated from the flow model, 𝐶𝐶 is a constant that reflects the slope of the 
sediment flux gradient (1.5 − 2.3), and 𝜂𝜂 is the bed elevation.   

The bed load sediment transport rate formula, Equation ( 4.4 ), proposed by Fredsoe [49] 
is considered in this model 

𝑞𝑞𝑜𝑜 = �18.74�𝑅𝑅𝑔𝑔𝑑𝑑𝑑𝑑(𝜃𝜃 − 𝜃𝜃𝑠𝑠)�𝜃𝜃1 2⁄ − 0.7𝜃𝜃𝑠𝑠
1 2⁄ � if  𝜃𝜃 > 𝜃𝜃𝑠𝑠

0 otherwise
  ( 4.4 ) 

where  𝑅𝑅  is the relative submerged density given by 

𝑅𝑅 =
𝜌𝜌𝑠𝑠
𝜌𝜌𝑤𝑤

− 1  ( 4.5 ) 

here 𝜌𝜌𝑠𝑠 is the density of sediment and 𝜌𝜌𝑤𝑤 is the density of water  

The dimensionless bed shear stress or Shield number, 𝜃𝜃, is defined as:  
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𝜃𝜃 =
𝜏𝜏𝑏𝑏

𝜌𝜌𝑤𝑤g𝑅𝑅𝑑𝑑  ( 4.6 ) 

𝑑𝑑 denotes a characteristic grand size of the bed material (i.e. 𝑑𝑑50), and g is gravitational 
acceleration.  

The critical Shield number for initiation of motion at the horizontal bed, 𝜃𝜃𝑠𝑠𝑜𝑜 , which is 
obtained from the Shields diagram, is adjusted to account the local slope effect according to 
the Equation ( 4.7 ), proposed by Roulund [26]. Thus, the critical Shields number is related 
to the bed slope angle,  𝛽𝛽; and the angle between the fluid velocity vector at the particle 
position and the steepest bed slope direction, 𝜑𝜑, Figure 4.3; while 𝜇𝜇𝑠𝑠 is the static friction 
coefficient which value is 0.63 in this study. 

𝜃𝜃𝑠𝑠 = 𝜃𝜃𝑠𝑠𝑜𝑜 �cos𝛽𝛽�1−
sin2 𝜑𝜑 tan2 𝛽𝛽 

𝜇𝜇𝑠𝑠2
−

cos𝜑𝜑  sin𝛽𝛽
𝜇𝜇𝑠𝑠

�  ( 4.7 ) 

In Equation ( 4.7 ), the critical Shields number increases or decreases when the wall shear 
stress tries to move sediment upslope or downslope, respectively [29].  

 

Figure 4.3. Slope effect on sediment transport - a single moving particle.                               
“Adapted from Roulund [26]” 

Suspended Load 

The suspended material process is modeled by solving a passive scalar convection-diffusion 
transport equation with an additional fall-velocity convection term. In this approach, the 
sediment concentration is diluted and the inertial effect of the particle is ignored (particle 
size is fine enough) [29]. 

𝜕𝜕𝑐𝑐
𝜕𝜕𝑡𝑡 + ∇ ∙ �𝐮𝐮 − 𝑤𝑤𝑠𝑠𝛿𝛿𝑖𝑖3�𝑐𝑐 = ∇ ∙ �

𝜈𝜈𝑓𝑓
𝜎𝜎𝑠𝑠
∇𝑐𝑐�  ( 4.8 ) 

here 𝑐𝑐 is the local volumetric suspended sediment concentration; 𝐮𝐮 is the fluid velocity 
vector; 𝑤𝑤𝑠𝑠 is the sediment fall velocity and 𝛿𝛿 is the Kronecker delta with 𝑗𝑗 = 3 indicating the 
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vertical direction (g |g|⁄ ); 𝜎𝜎𝑠𝑠 is the turbulent Schmidt number and  𝜈𝜈𝑓𝑓 is the diffusivity which 
is taken as the same value as turbulence eddy viscosity. 

Bed Change 

The bed elevation changes in vertical direction can be calculated by solving the Exner 
equation for sediment continuity. 

𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡 =

1
1− 𝑛𝑛 �−

𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝐷𝐷 −𝐸𝐸� , 𝑖𝑖 = 1,2  ( 4.9 ) 

In tensor form 

𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡 =

1
1 − 𝑛𝑛

[−∇ ∙ 𝑞𝑞𝑏𝑏𝑖𝑖 + 𝐷𝐷 − 𝐸𝐸]  ( 4.10 ) 

the bed porosity 𝑛𝑛 is on the first right-hand side factor of the equation. 𝐷𝐷 is the rate at which 
sediment volume is deposited from suspended sediment at the bed, and 𝐸𝐸 is the rate of 
entrainment or erosion of bed material into suspension. 

The deposition rate, 𝐷𝐷, in the downward direction is the sediment concentration very 
near the bed, 𝑐𝑐𝑏𝑏, times the local sediment velocity, 𝑤𝑤𝑠𝑠. 𝑐𝑐𝑏𝑏 is computed from the concentration 
at the nearest cell center above the bed. 

𝐷𝐷 = 𝑐𝑐𝑏𝑏𝑤𝑤𝑠𝑠  ( 4.11 ) 

Oppositely, the entrainment rate, 𝐸𝐸, in the upward direction is considered as: 

𝐸𝐸 = 𝑐𝑐𝑏𝑏∗𝑤𝑤𝑠𝑠  ( 4.12 ) 

here, it is necessary to introduce an empirical model to obtain 𝑐𝑐𝑏𝑏∗, which is the equilibrium 
concentration at a reference level very near the bed, 𝑧𝑧𝑏𝑏. In this model, 𝑐𝑐𝑏𝑏∗ is calculated using 
the formulation proposed by van Rijn [15]. 

𝑐𝑐𝑏𝑏∗ = 0.015
𝑑𝑑50𝜓𝜓1.5

𝑧𝑧𝑏𝑏𝐷𝐷∗0.3   ( 4.13 ) 

where 𝜓𝜓 is a dimensionless shear stress parameter; 𝐷𝐷∗ is the dimensionless particle diameter; 
and 𝐻𝐻 is the water depth from the bed. 

𝜓𝜓 =
𝜃𝜃 − 𝜃𝜃𝑠𝑠
𝜃𝜃𝑠𝑠

  ( 4.14 ) 𝐷𝐷∗ = 𝑑𝑑50 �
𝑅𝑅 − 1
𝑔𝑔𝜇𝜇2 �

1 3⁄

  ( 4.15 ) 𝑧𝑧𝑏𝑏 = 0.05𝐻𝐻  ( 4.16 ) 

The Exner equation is solved on the 2D bottom boundary grid and the bed level change 
is calculated. Therefore, the results are mapped back onto the 3D flow mesh, and the 3D 
finite volume mesh is deformed to follow the new bed profile.  
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4.4.2 Multiphase Eulerian two-phase modeling of sediment transport 

The mathematical description in this section is based on the numerical model developed at 
the University of Delaware, College of Engineering, Civil and Environmental Engineering, 
Center for Applied Coastal Research; under the research group lead by the Professor Tian-
Jian Hsu. As part of the doctoral training, the author's thesis worked a period of time as 
Visiting Scholar in this Research Department. A complete description of the model and its 
implementation can be found in the different publications [31,48,50,51].  

Cheng et al. [48] developed a multi-dimensional model for sediment transport based on 
the Eulerian two-phase mathematical formulation proposed by Hsu et al. [50]. The 
mathematical equations are derived by ensemble averaging over carried fluid and dispersed 
particles following the formulation proposed by Drew [52]. To avoid resolving all scales of 
turbulence (larger than grain scale), additional turbulence averaging (or filtering) is 
necessary. The resulting 3D governing equations for Eulerian turbulence-averaged two-
phase flow can be considered as the counterpart of Reynolds-Averaged Navier-Stokes 
(RANS) for single-phase flow. Therefore, in this two-phase flow approach, it is necessary to 
use appropriate closure models for turbulence modulation, fluid-particle interactions, and 
particle-particle interactions. According to Cheng [48], the resulting model can resolve the 
full dynamics for sediment transport (concentration profile) from immobile bed to dilute 
region of transport away from the bed, see Figure 4.2.   

Kim et al. [51] modified the former model introduced by Cheng et al. [48] in order to 
consider the effect of the free water surface. The details considered most relevant to the 
mathematical formulation are detailed hereafter.  

Flow governing equations 

The numerical model is able to solve the problem when three phases are involved (air, water 
, and sediment). The governing equations are based on Reynolds-averaged approach. 
Mathematical expressions of the continuity and momentum equations for the flow variables 
involved, 𝜙𝜙, are presented without the over bar on the mean values for simplicity.  

It is assumed that there is no mass transfer between the three phases. The mass 
conservation equations for the phases can be written as: 

𝜕𝜕𝜙𝜙𝑎𝑎

𝜕𝜕𝑡𝑡 +
𝜕𝜕𝜙𝜙𝑎𝑎𝑢𝑢𝑖𝑖𝑎𝑎

𝜕𝜕𝑥𝑥𝑖𝑖
= 0  ( 4.17 ) 

𝜕𝜕𝜙𝜙𝑤𝑤

𝜕𝜕𝑡𝑡 +
𝜕𝜕𝜙𝜙𝑤𝑤𝑢𝑢𝑖𝑖𝑤𝑤

𝜕𝜕𝑥𝑥𝑖𝑖
= 0  ( 4.18 ) 

𝜕𝜕𝜙𝜙𝑠𝑠

𝜕𝜕𝑡𝑡 +
𝜕𝜕𝜙𝜙𝑠𝑠𝑢𝑢𝑖𝑖𝑠𝑠

𝜕𝜕𝑥𝑥𝑖𝑖
= 0  ( 4.19 ) 
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where 𝜙𝜙 is the volumetric concentration and 𝑢𝑢 is the velocity for air (𝑎𝑎), water (𝑤𝑤) and 
sediment (𝑠𝑠), respectively; while 𝑖𝑖 = 1,2,3 represents the spanwise, streamwise and vertical 
components. 

Mass conservation establishes that: 

𝜙𝜙𝑎𝑎 + 𝜙𝜙𝑤𝑤 + 𝜙𝜙𝑠𝑠 = 1  ( 4.20 ) 

The free surface is tracked using the Volume of Fluid method (VOF). In the VOF 
method, the air and water are considered as immiscible fluids and can be combined as a fluid 
phase, 𝜙𝜙𝑓𝑓 = 𝜙𝜙𝑎𝑎 +𝜙𝜙𝑤𝑤. The sediment phase under the free water surface can be modeled as 
a miscible phase of fluids using the two-phases model approach [31,48]. The momentum 
equations for fluid and particle phases are presented according to Kim et al. [51] 

𝜕𝜕𝜌𝜌𝑓𝑓𝜙𝜙𝑓𝑓𝑢𝑢𝑖𝑖
𝑓𝑓

𝜕𝜕𝑡𝑡 +
𝜕𝜕𝜌𝜌𝑓𝑓𝜙𝜙𝑓𝑓𝑢𝑢𝑖𝑖

𝑓𝑓𝑢𝑢𝑖𝑖
𝑓𝑓

𝜕𝜕𝑥𝑥𝑖𝑖

= −𝜙𝜙𝑓𝑓 𝜕𝜕𝑝𝑝
𝑓𝑓

𝜕𝜕𝑥𝑥𝑖𝑖
+ 𝜌𝜌𝑓𝑓𝜙𝜙𝑓𝑓g𝛿𝛿𝑖𝑖3 − 𝜎𝜎𝑓𝑓𝛾𝛾

𝜕𝜕𝜙𝜙𝑎𝑎

𝜕𝜕𝑥𝑥𝑖𝑖
+
𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖

𝑓𝑓

𝜕𝜕𝑥𝑥𝑖𝑖
+ 𝑀𝑀𝑖𝑖

𝑓𝑓𝑠𝑠 

 ( 4.21 ) 

𝜕𝜕𝜌𝜌𝑠𝑠𝜙𝜙𝑠𝑠𝑢𝑢𝑖𝑖𝑠𝑠

𝜕𝜕𝑡𝑡 +
𝜕𝜕𝜌𝜌𝑠𝑠𝜙𝜙𝑠𝑠𝑢𝑢𝑖𝑖𝑠𝑠𝑢𝑢𝑖𝑖𝑠𝑠

𝜕𝜕𝑥𝑥𝑖𝑖
= −𝜙𝜙𝑠𝑠 𝜕𝜕𝑝𝑝

𝑓𝑓

𝜕𝜕𝑥𝑥𝑖𝑖
−
𝜕𝜕𝑝𝑝𝑠𝑠

𝜕𝜕𝑥𝑥𝑖𝑖
+ 𝜌𝜌𝑠𝑠𝜙𝜙𝑠𝑠g𝛿𝛿𝑖𝑖3 +

𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠

𝜕𝜕𝑥𝑥𝑖𝑖
+ 𝑀𝑀𝑖𝑖

𝑠𝑠𝑓𝑓  ( 4.22 ) 

where 𝑓𝑓 and 𝑠𝑠 are superscripts for fluid and sediment phases, respectively. 𝜌𝜌  is the density, 
𝑢𝑢 is the velocity , g is the gravitational acceleration, 𝛿𝛿 is the Kronecker delta with 𝑖𝑖 = 3 
indicating the vertical direction (g |g|⁄ ),  𝑝𝑝 is the pressure, 𝜎𝜎𝑓𝑓 is the surface tension, and  𝛾𝛾 is 

the surface curvature. The fluid stress, 𝜏𝜏𝑖𝑖𝑖𝑖
𝑓𝑓 , includes fluid grain-scale (viscous) stress and 

fluid Reynolds stress, which are calculated with a turbulence model based on two-equation 
turbulence approach.  𝑝𝑝𝑠𝑠, 𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠 , are particle pressure and particle shear stress. The latter terms 
are modeled on the basis of intergranular interactions; therefore, the kinetic theory of 
granular flow for particle collisions is applied at low to moderate sediment concentration, 
while a phenomenological closure of frictional contact stresses is used in concentrated 

regions. 𝑀𝑀𝑖𝑖
𝑓𝑓𝑠𝑠 and 𝑀𝑀𝑖𝑖

𝑠𝑠𝑓𝑓 represent the interphase momentum transfer between fluid and particle 

phases, and 𝑀𝑀𝑖𝑖
𝑓𝑓𝑠𝑠 = −𝑀𝑀𝑖𝑖

𝑠𝑠𝑓𝑓. 

Closure models 

Turbulence closures 

The fluid stress term, 𝜏𝜏𝑖𝑖𝑖𝑖
𝑓𝑓 , is modeled based on 𝑘𝑘 − 𝜀𝜀 two-phases turbulence model proposed 

by Cheng et al. [48]. An adjustment to the former model is introduced by Kim et al. [51] in 
the turbulence kinetic energy, 𝑘𝑘𝑓𝑓, to consider the excessive diffusion in the water-air 
interface by means of the sharp density gradient.  
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The fluid stress term involves the effect of turbulent fluctuations larger than grain-scale 

into 𝑅𝑅𝑖𝑖𝑖𝑖
𝑓𝑓𝑓𝑓 (Reynolds stress), and a grain-scale components into  𝑟𝑟𝑖𝑖𝑖𝑖

𝑓𝑓𝑓𝑓. Although  𝑟𝑟𝑖𝑖𝑖𝑖
𝑓𝑓𝑓𝑓  includes 

viscous stress and the effect due to fluid-particle interaction, this later effect is not considered 
in this model approach. 

𝜏𝜏𝑖𝑖𝑖𝑖
𝑓𝑓 = 𝑅𝑅𝑖𝑖𝑖𝑖

𝑓𝑓𝑓𝑓 + 𝑟𝑟𝑖𝑖𝑖𝑖
𝑓𝑓𝑓𝑓 = 𝜌𝜌𝑓𝑓𝜙𝜙𝑓𝑓 �2�𝜐𝜐𝑓𝑓𝑓𝑓 + 𝜐𝜐𝑓𝑓�𝑆𝑆𝑖𝑖𝑖𝑖

𝑓𝑓 −
2
3𝑘𝑘

𝑓𝑓𝛿𝛿𝑖𝑖𝑖𝑖�  ( 4.23 ) 

with  𝜐𝜐𝑓𝑓𝑓𝑓 being the turbulent eddy viscosity and 𝜐𝜐𝑓𝑓 is the kinetic viscosity of the fluid. The 

deviatoric part of the fluid-phase strain rate tensor,𝑆𝑆𝑖𝑖𝑖𝑖
𝑓𝑓 , is defined as: 

𝑆𝑆𝑖𝑖𝑖𝑖
𝑓𝑓 =

1
2�

𝜕𝜕𝑢𝑢𝑖𝑖
𝑓𝑓

𝜕𝜕𝑥𝑥𝑖𝑖
+
𝜕𝜕𝑢𝑢𝑖𝑖

𝑓𝑓

𝜕𝜕𝑥𝑥𝑖𝑖
� −

1
3 
𝜕𝜕𝑢𝑢𝑘𝑘

𝑓𝑓

𝜕𝜕𝑥𝑥𝑘𝑘
𝛿𝛿𝑖𝑖𝑖𝑖  ( 4.24 ) 

The modified turbulence kinetic energy, 𝑘𝑘𝑓𝑓, is calculated by its balance equation 
appropriate for sands particles in water. 

𝜕𝜕𝜌𝜌𝑓𝑓𝑘𝑘𝑓𝑓

𝜕𝜕𝑡𝑡 +
𝜕𝜕𝜌𝜌𝑓𝑓𝑢𝑢𝑖𝑖

𝑓𝑓𝑘𝑘𝑓𝑓

𝜕𝜕𝑥𝑥𝑖𝑖

= 𝑅𝑅𝑖𝑖𝑖𝑖
𝑓𝑓𝑓𝑓 𝜕𝜕𝑢𝑢𝑖𝑖

𝑓𝑓

𝜕𝜕𝑥𝑥𝑖𝑖
+

𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�𝜌𝜌𝑓𝑓 �𝜐𝜐𝑓𝑓 +
𝜐𝜐𝑓𝑓𝑓𝑓

𝜎𝜎𝑘𝑘
�
𝜕𝜕𝑘𝑘𝑓𝑓

𝜕𝜕𝑥𝑥𝑖𝑖
� − 𝜌𝜌𝑓𝑓𝜀𝜀𝑓𝑓

−
2𝛽𝛽(1 − 𝛼𝛼)𝜙𝜙𝑠𝑠𝑘𝑘𝑓𝑓

𝜙𝜙𝑓𝑓 −
𝜌𝜌𝑓𝑓𝜐𝜐𝑓𝑓𝑓𝑓

𝜙𝜙𝑓𝑓𝜎𝜎𝑠𝑠
 
𝜕𝜕𝜙𝜙𝑠𝑠

𝜕𝜕𝑥𝑥𝑖𝑖
(𝑠𝑠 − 1)g𝛿𝛿𝑖𝑖3 

 ( 4.25 ) 

where  𝜎𝜎𝑠𝑠  and 𝑠𝑠 = 𝜌𝜌𝑓𝑓 𝜌𝜌𝑠𝑠⁄  are the Schmith number and the specific density of the sediment, 
respectively. 𝛼𝛼 = 𝑒𝑒−𝐵𝐵∙𝑆𝑆𝑡𝑡 characterizes the level of correlation between the fluid and sediment 
velocity fluctuations by using the Stokes number 𝑆𝑆𝑓𝑓 = 𝑡𝑡𝑝𝑝 𝑡𝑡𝑙𝑙⁄  [51], where 𝑡𝑡𝑝𝑝 = 𝜌𝜌𝑠𝑠 𝜙𝜙𝑓𝑓⁄  is the 
particle response time and 𝑡𝑡𝑙𝑙 = 𝑘𝑘 (6𝜀𝜀)⁄  is the characteristic timescale of energetic eddies, 
and 𝐵𝐵 is an empirical coefficient.  

The dissipation rate 𝜀𝜀 is exposed in the Equation ( 4.26 ) 

𝜕𝜕𝜌𝜌𝑓𝑓𝜀𝜀𝑓𝑓

𝜕𝜕𝑡𝑡 +
𝜕𝜕𝜌𝜌𝑓𝑓𝑢𝑢𝑖𝑖

𝑓𝑓𝜀𝜀𝑓𝑓

𝜕𝜕𝑥𝑥𝑖𝑖

= 𝐶𝐶1𝜀𝜀𝑅𝑅𝑖𝑖𝑖𝑖
𝑓𝑓𝑓𝑓 𝜀𝜀𝑓𝑓

𝑘𝑘𝑓𝑓
𝜕𝜕𝑢𝑢𝑖𝑖

𝑓𝑓

𝜕𝜕𝑥𝑥𝑖𝑖
+

𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�𝜌𝜌𝑓𝑓 �𝜐𝜐𝑓𝑓 +
𝜐𝜐𝑓𝑓𝑓𝑓

𝜎𝜎𝜀𝜀
�
𝜕𝜕𝜀𝜀𝑓𝑓

𝜕𝜕𝑥𝑥𝑖𝑖
�

− 𝐶𝐶2𝜀𝜀𝜌𝜌𝑓𝑓
𝜀𝜀𝑓𝑓

𝑘𝑘𝑓𝑓 𝜀𝜀
𝑓𝑓 − 𝐶𝐶3𝜀𝜀

𝜀𝜀𝑓𝑓

𝑘𝑘𝑓𝑓  
2𝛽𝛽(1 − 𝛼𝛼)𝜙𝜙𝑠𝑠𝑘𝑘𝑓𝑓

𝜙𝜙𝑓𝑓

− 𝐶𝐶4𝜀𝜀
𝜀𝜀𝑓𝑓

𝑘𝑘𝑓𝑓  
𝜌𝜌𝑓𝑓𝜐𝜐𝑓𝑓𝑓𝑓

𝜙𝜙𝑓𝑓𝜎𝜎𝑠𝑠
 
𝜕𝜕𝜙𝜙𝑠𝑠

𝜕𝜕𝑥𝑥𝑖𝑖
(𝑠𝑠 − 1)𝑔𝑔𝛿𝛿𝑖𝑖3 

 

 ( 4.26 ) 
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Finally, the turbulence eddy viscosity is calculated as 

𝜐𝜐𝑓𝑓𝑓𝑓 = 𝐶𝐶𝜇𝜇
�𝑘𝑘𝑓𝑓�2

𝜀𝜀𝑓𝑓   ( 4.27 ) 

The model constants 𝐶𝐶1𝜀𝜀, 𝐶𝐶2𝜀𝜀, 𝐶𝐶3𝜀𝜀, 𝐶𝐶4𝜀𝜀, 𝐶𝐶𝜇𝜇 , and 𝐵𝐵 are summarized in the Table 4.1. It is 
important to mention that, 𝐵𝐵 is a parameter that needs to be calibrated. 

Table 4.1. Constant coefficient values 

𝐶𝐶𝜇𝜇 𝐶𝐶1𝜀𝜀 𝐶𝐶2𝜀𝜀 𝐶𝐶3𝜀𝜀 𝐶𝐶4𝜀𝜀 𝜎𝜎𝑠𝑠 𝜎𝜎𝑘𝑘 𝜎𝜎𝜀𝜀 𝐵𝐵 
0.09 1.44 1.92 1.2 1 1 1 1.3 0.25 

Particle stresses closures 

Particle stresses are caused by intergranular iterations due to particle collisions and/or 
enduring contact/frictional forces among particles [51].  In this numerical model, particle 
pressure and particle stress are composed of a collisional component (super-script sc) and a 
frictional component (super-script sf). 

𝑝𝑝𝑠𝑠 = 𝑝𝑝𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑠𝑠𝑓𝑓  ( 4.28 ) 

𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠 = 𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 + 𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑓𝑓  ( 4.29 ) 

The collisional components (𝑝𝑝𝑠𝑠𝑠𝑠 and 𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠) are modeled based on the kinetic theory of 
granular flow for low to moderate sediment concentration. In the kinetic theory, intergranular 
interactions are dominated by particle-velocity fluctuations due to binary collisions and the 
strength is quantified using the concept of granular temperature, 𝜃𝜃. The balance equation for 
granular temperature proposed by Ding and Gidaspow [53] is used 

3
2 �
𝜕𝜕 𝜙𝜙𝑠𝑠𝜌𝜌𝑠𝑠𝜃𝜃

𝜕𝜕𝑡𝑡 +
𝜕𝜕 𝜙𝜙𝑠𝑠𝜌𝜌𝑠𝑠𝑢𝑢𝑖𝑖𝑠𝑠𝜃𝜃

𝜕𝜕𝑥𝑥𝑖𝑖
� = �−𝑝𝑝𝑠𝑠𝑠𝑠𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠�

𝜕𝜕𝑢𝑢𝑖𝑖𝑠𝑠

𝜕𝜕𝑥𝑥𝑖𝑖
−
𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝛾𝛾𝑠𝑠 + 𝐽𝐽𝑖𝑖𝑖𝑖𝑓𝑓  ( 4.30 ) 

where 𝑞𝑞𝑖𝑖 is the flux of granular temperature,  𝛾𝛾𝑠𝑠 is the energy dissipation rate due to inelastic 
collision, and 𝐽𝐽𝑖𝑖𝑖𝑖𝑓𝑓 is the production (or dissipation) due to the interaction with the carrier 
fluid phase. The closure of particle pressure is used according to Ding and Gidaspow [53]:  

𝑝𝑝𝑠𝑠𝑠𝑠 = 𝜌𝜌𝑠𝑠𝜙𝜙𝑠𝑠[1 + 2(1 + 𝑒𝑒)𝜙𝜙𝑠𝑠𝑔𝑔𝑠𝑠0]𝛩𝛩  ( 4.31 ) 

where 𝑒𝑒 is the coefficient of restitution during collision. 𝑔𝑔𝑠𝑠0 is the radial distribution function 
which describe the probability of the binary collisions as a function of particle concentration, 
which can be calculated as [54]: 

𝑔𝑔𝑠𝑠0 =
2 − 𝜙𝜙𝑠𝑠

2(1 −𝜙𝜙𝑠𝑠)3  ( 4.32 ) 

The particle collision stress is considered as [55] 
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𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 = 2𝜇𝜇𝑠𝑠𝑠𝑠𝑆𝑆𝑖𝑖𝑖𝑖𝑠𝑠 + 𝜆𝜆
𝜕𝜕𝑢𝑢𝑘𝑘𝑠𝑠

𝜕𝜕𝑥𝑥𝑘𝑘
𝛿𝛿𝑖𝑖𝑖𝑖  ( 4.33 ) 

where 𝑆𝑆𝑖𝑖𝑖𝑖𝑠𝑠 is the deviatoric part of sediment-phase strain rate tensor: 

𝑆𝑆𝑖𝑖𝑖𝑖𝑠𝑠 =
1
2�

𝜕𝜕𝑢𝑢𝑖𝑖𝑠𝑠

𝜕𝜕𝑥𝑥𝑖𝑖
+
𝜕𝜕𝑢𝑢𝑖𝑖𝑠𝑠

𝜕𝜕𝑥𝑥𝑖𝑖
� −

1
3
𝜕𝜕𝑢𝑢𝑘𝑘𝑠𝑠

𝜕𝜕𝑥𝑥𝑘𝑘
𝛿𝛿𝑖𝑖𝑖𝑖  ( 4.34 ) 

The particle shear viscosity, 𝜇𝜇𝑠𝑠𝑠𝑠, and the bulk viscosity, 𝜆𝜆, are calculated as a function 
of granular temperature and radial distribution function by means of the kinetic theory. 

𝜇𝜇𝑠𝑠𝑠𝑠 = 𝜌𝜌𝑠𝑠𝑑𝑑√𝜃𝜃 �
4
5
𝜙𝜙𝑠𝑠2𝑔𝑔𝑠𝑠0(1 + 𝑒𝑒)

√𝜋𝜋
+ √𝜋𝜋 𝑔𝑔𝑠𝑠0(1 + 𝑒𝑒)(3𝑒𝑒 − 1)𝜙𝜙𝑠𝑠2

15(3− 𝑒𝑒)

+ √𝜋𝜋 𝜙𝜙𝑠𝑠

6(3 − 𝑒𝑒)� 
 ( 4.35 ) 

𝜆𝜆 =
4
3𝜙𝜙

𝑠𝑠2𝜌𝜌𝑠𝑠𝑑𝑑𝑔𝑔𝑠𝑠0(1 + 𝑒𝑒)�
𝜃𝜃
𝜋𝜋  ( 4.36 ) 

A mathematical model analogous to the Fourier's law of conduction is assumed to the 
closure of granular temperature flux 

𝑞𝑞𝑖𝑖 = −𝜅𝜅𝑠𝑠𝑠𝑠
𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥𝑖𝑖

  ( 4.37 ) 

where 𝑘𝑘𝑠𝑠𝑠𝑠 is the conductivity of granular temperature 

𝜅𝜅𝑠𝑠𝑠𝑠 = 𝜌𝜌𝑠𝑠𝑑𝑑√𝜃𝜃 �
2𝜙𝜙𝑠𝑠2𝑔𝑔𝑠𝑠0(1 + 𝑒𝑒)

√𝜋𝜋
+

9√𝜋𝜋 𝑔𝑔𝑠𝑠0(1 + 𝑒𝑒)2(2𝑒𝑒 − 1)𝜙𝜙𝑠𝑠2 + 5𝜋𝜋𝜙𝜙𝑠𝑠

2(49− 33𝑒𝑒) �  ( 4.38 ) 

The dissipation rate is calculated as: 

𝛾𝛾𝑠𝑠 = 3(1 + 𝑒𝑒2)𝜙𝜙𝑠𝑠2𝜌𝜌𝑠𝑠𝑔𝑔𝑠𝑠0𝜃𝜃 �
4
𝑑𝑑 �

𝜃𝜃
𝜋𝜋�

1 2⁄

−
𝜕𝜕𝑢𝑢𝑖𝑖𝑠𝑠

𝜕𝜕𝑥𝑥𝑖𝑖
�  ( 4.39 ) 

The carrier-flow turbulence can also induce particle fluctuations. The fluid-particle 
interaction can be expressed according to Hsu et al. [50] 

𝐽𝐽𝑖𝑖𝑖𝑖𝑓𝑓 = 𝜙𝜙𝑠𝑠𝛽𝛽�2𝛼𝛼𝑘𝑘𝑓𝑓 − 3𝜃𝜃�  ( 4.40 ) 

When the sediment concentration increases and reaches a certain value, 𝜙𝜙𝑓𝑓𝑠𝑠, intermittent 
collisions decrease and the particles come into contact with each other. In this condition; the 
term of the particle pressure, 𝑝𝑝𝑠𝑠𝑓𝑓, due to enduring contact and the term of the shear stress, 
𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑓𝑓, caused by the frictional contact, are modeled by Cheng et al. [48] with a 
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phenomenological closure. Both terms are important to model the full transport profile to 
ensure the quasi-static bed without the need to track the location of the immobile bed.   

The particle pressure because of enduring contact in the concentrated regions are 
modeled using the expression proposed by Johnson and Jackson [56] 

𝑝𝑝𝑠𝑠𝑓𝑓 =

⎩
⎨

⎧
0 𝜙𝜙𝑠𝑠 < 𝜙𝜙𝑓𝑓𝑠𝑠

𝐹𝐹
�𝜙𝜙𝑠𝑠 − 𝜙𝜙𝑓𝑓𝑠𝑠�

𝑎𝑎

�𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚𝑠𝑠 − 𝜙𝜙𝑓𝑓𝑠𝑠�
𝑏𝑏 𝜙𝜙𝑠𝑠 ≥ 𝜙𝜙𝑓𝑓𝑠𝑠

  ( 4.41 ) 

where 𝜙𝜙𝑓𝑓𝑠𝑠 = 0.57 is the random-loose-packing concentration and 𝜙𝜙𝑚𝑚𝑎𝑎𝑚𝑚
𝑠𝑠 = 0.635 is the 

random-close-packing for spheres used within the immobile porous bed. 𝐹𝐹 = 0.05, 𝑎𝑎 = 3, 
𝑏𝑏 = 5 are empirical coefficients which were calibrated by Cheng et al. [48]. 

The particle shear stress due to frictional contact is calculated: 

𝜏𝜏𝑖𝑖𝑖𝑖𝑠𝑠𝑓𝑓 = −2𝜇𝜇𝑠𝑠𝑓𝑓𝑆𝑆𝑖𝑖𝑖𝑖𝑠𝑠  ( 4.42 ) 

Srivastava and Sundaresan [57] calculated 𝜇𝜇𝑠𝑠𝑓𝑓 by combining 𝑝𝑝𝑠𝑠𝑓𝑓  and frictional viscosity 
from the model proposed by Schaefer [58] 

𝜇𝜇𝑠𝑠𝑓𝑓 =
√2 𝑝𝑝𝑠𝑠𝑓𝑓  sin𝜃𝜃𝑓𝑓

2�𝑆𝑆𝑖𝑖𝑖𝑖𝑠𝑠𝑆𝑆𝑖𝑖𝑖𝑖𝑠𝑠
  ( 4.43 ) 

where 𝜃𝜃𝑓𝑓 is a constant friction angle (repose angle).  

Inter-phase momentum exchange  

Due to in this mathematical formulation approach, the fluid (i.e. mixture of air and water) 
and sediment phases are considered as a continuum, the momentum exchange of these two 

phases are coupled by using Newton's third law, 𝑀𝑀𝑖𝑖
𝑓𝑓𝑠𝑠 = −𝑀𝑀𝑖𝑖

𝑠𝑠𝑓𝑓. In this interaction, only the 
dominant terms as drag force and turbulence suspension are considered (lift force, added 
mass force and Basset force are neglected) [48] 

𝑀𝑀𝑖𝑖
𝑓𝑓𝑠𝑠 = −𝑀𝑀𝑖𝑖

𝑠𝑠𝑓𝑓 = 𝜙𝜙𝑠𝑠𝛽𝛽�𝑢𝑢𝑖𝑖
𝑓𝑓 − 𝑢𝑢𝑖𝑖𝑠𝑠� + 𝛽𝛽

𝜐𝜐𝑓𝑓𝑓𝑓

𝜎𝜎𝑠𝑠
𝜕𝜕𝜙𝜙𝑠𝑠

𝜕𝜕𝑥𝑥𝑖𝑖
  ( 4.44 ) 
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4.5 Three-dimensional numerical modeling of local sediment scour – A multi-
dimensional two-phase flow approach    

4.5.1 Introduction 

Local scour of sediments can cause instability and failures in hydraulic structures (e.g. 
bridges piers, abutments, etc.). An estimated prediction of the location and maximum depth 
of scour is necessary for a safe engineering design. However, the scour process around 
hydraulic structures is complex due to three-dimensionality of the flow and sediment 
transport issue [59]. The development in computer capabilities in recent years provides an 
increasing possibility for solving sediment transport phenomena through the use of 3D 
numerical models. 

Three-dimensional numerical models for local scour usually use the simplified concept 
that separates the total sediment transport into suspended and bed load components and a set 
of equations is used to describe the bed evolution process. Thus, several models have been 
developed by different investigators [28,60,61] to simulate the scour process.  

Olsen and Melaaen [23] and Olsen and Kjellesvig [62] carried out the first three- 
dimensional numerical study of local scour around piles using RANS equations and 𝑘𝑘 − 𝜀𝜀  
turbulence model. Brørs [24] and Roulund et al. [26] proposed a numerical models by using 
RANS equations with 𝑘𝑘 − 𝜀𝜀 and  𝑘𝑘 − 𝜔𝜔 closure approaches, respectively. Those models 
assume a rigid lid for the free surface, so this assumption is likely to be valid when the 
curvature of the interface is smooth. As a result, the models are applicable only for small 
Froude numbers. Liu and García [29] developed a numerical model based on RANS 
equations with 𝑘𝑘 − 𝜀𝜀  closure model. They used the VOF method to track the free surface 
and a moving mesh deformation method for local sediment scour based on Laplacian 
smoothing operator. The numerical results for flow field and scour profile showed good 
agreement with experimental observations.   

In order to improve some weaknesses in the previous model, Zhou [63] incorporated in 
the computational mesh motion, a sliding mechanism concept to restrict the bed slope angle 
to be smaller than the angle of repose. On the other hand, numerical improvements were 
implemented by Sattar et al. [30]. Wherein, the free surface is tracked with a steady- 
resistance VOF formulation, which alleviates instabilities and allows more efficient 
calculations; whereas, a finite element dynamic mesh method is used to simulate the 
deformation mesh.  

In contrast, recently some studies have applied the two-phase flow approach to capturing 
the scour process. In two-phase models, the governing equations for both phases (flow and 
sediment) are formulated separately. The interaction between two phases is considered by 
including terms that define the interaction between phases, such as interphase momentum 
transfer and intergranular stresses.  



Chapter 4 Sediment transport 

93 

Cheng et al.[48] and Chauchat et al.[31] presented a three-dimensional two-phase flow 
model for sediment transport applications where the free surface interface is not considered. 
These authors, validated the model using several tests; among them, the scour development 
downstream of an apron following the numerical studies of Amoudry and Liu [64]. They 
concluded that the numerical model shows a good capability to deal that type of test case.  

In this study, the predictive ability of local scour process is analyzed using the new multi-
dimensional two-phase flow approach in which three-phases, i.e. water, air, and sediment, 
are considered. To do so, the results of the new model are evaluated against the experimental 
data set of turbulent wall jet scour measured by Chatterjee et al. [65]. Although Lee et al. 
[66] presented an analysis using a three-phase approach; to the author’s knowledge, it is the 
first time that this experiment configuration set-up using a multi-dimensional two-phase 
model based on kinetic theory is reported. In addition, a comparative analysis is performed 
between the results obtained with models based on, the classical sediment transport concept 
and the new approach.  

4.5.2 Experimental set-up model 

The verification test compares the solution of the numerical models with experimental data 
of turbulent submerged jet scour measured by Chatterjee et al. [65]. The experimental layout 
is shown schematically in Figure 4.4.  

 

Figure 4.4. Schematic view of the turbulent wall jet scour experiment 

The sluice gate opening allows the inflow discharge from the reservoir formed at the 
beginning of the experiment. This produces a horizontal water velocity, which forms a 
submerged jet due to the initial conditions downstream of the reservoir. The downstream 
initial condition has a constant water depth controlled by an outlet weir. Then, the water 
interacts with the apron until it reaches the erodible part of the experiment (sand), thus 
forming the local scour. 

The relevant parameters of the test set-up are summarized in Table 4.2. 
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Table 4.2. Physical parameters for the numerical simulation 

Ls La b0 H hw hT u 
m m cm m m m m/s 

2.10 0.66 2.00 0.291 0.239 0.250 1.56 

The bed material is quartz sand with 𝜌𝜌𝑠𝑠 = 2650 kg m3⁄  , 𝑑𝑑50 = 0.76 mm, angle of 
repose 29º and porosity 0.43.  

4.5.3 Boundary and Initial conditions 

In the computational domain, an equivalent boundary condition to simulate the reservoir is 
impose in the jet inlet BC in order to optimize the computational time. Additionally, a 2D 
consideration is used due to the flow streamwise direction is prevalent. 

Figure 4.5 shows the sketch of the boundary conditions imposed in the experimental 
case set-up. In the wall-inlet, apron, sed-left, bottom and sed-right; a wall-function boundary 
condition for a rough wall is established. At the top of the test-case, an atmospheric boundary 
condition is imposed, 𝑝𝑝total = 0. For the jet-inlet, a variation-time velocity function according 
to the given discharge-rate is applied; while in the outlet condition, a dynamic pressure, 
𝑝𝑝dynamic = 1 2⁄ 𝜌𝜌𝐮𝐮2, with zero normal gradient, is used at the end of the channel where the 
hydrostatic pressure is subtracted from the total pressure. Details of this BC can be found in 
[29,30]. Note that the axis origin is at the end of the apron.  

 

Figure 4.5. Description of the boundary conditions- An schematic view 

In order to summarize the boundary conditions information, the following nomenclature 
is adopted. zG is zeroGradient for Neumann condition and fV is fixed value for Dirichlet 
condition. Furthermore; 𝜙𝜙𝑓𝑓 is the combined fluid phase (air and water), 𝜙𝜙𝑠𝑠 is the sediment 
phase, 𝑘𝑘 and 𝜀𝜀  are the turbulence parameters, 𝐮𝐮𝑎𝑎  and 𝐮𝐮𝑏𝑏 are the fluid and sediment vector 
velocities, respectively; while 𝜃𝜃 is the granular temperature for the kinetic theory.  So, 
mathematical boundary condition descriptions imposed in the domain are presented in the 
Table 4.3.  
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Table 4.3. Boundary conditions implemented in the test-case numerical simulation 

Boundary 𝜙𝜙𝑓𝑓 𝜙𝜙𝑠𝑠 𝑘𝑘 𝜀𝜀 𝐮𝐮𝑎𝑎 𝐮𝐮𝑏𝑏 𝑝𝑝 𝜃𝜃 

Wall-inlet zG zG zG zG 
fV, 

𝐮𝐮𝑎𝑎 = 0 
fV, 

 𝑢𝑢𝑏𝑏 = 0 
zG zG 

Apron zG zG zG zG 
fV, 

𝐮𝐮𝑎𝑎 = 0 
fV, 

 𝑢𝑢𝑏𝑏 = 0 
zG zG 

sed-left zG zG zG zG 
fV, 

𝐮𝐮𝑎𝑎 = 0 
fV, 

 𝑢𝑢𝑏𝑏 = 0 
zG zG 

Bottom zG zG zG zG 
fV,  

𝐮𝐮𝑎𝑎 = 0 
fV, 

 𝑢𝑢𝑏𝑏 = 0 
zG zG 

sed-right zG zG zG zG 
fV, 

𝐮𝐮𝑎𝑎 = 0 
fV, 

 𝑢𝑢𝑏𝑏 = 0 
zG zG 

atmosphere zG zG zG zG zG zG 
fV, 

𝑝𝑝total = 0 
zG 

jet-inlet 
fV,  

𝜙𝜙𝑓𝑓 = 1 
fV,  

𝜙𝜙𝑠𝑠 = 0 

fV*,  
𝑘𝑘
= 1x10−12 

zG 
fV, 

𝐮𝐮𝑎𝑎 = 𝑓𝑓(𝑄𝑄) 
fV, 

 𝑢𝑢𝑏𝑏 = 0 
zG 

fV,  
𝜃𝜃
= 0 

outlet 

fV, 
𝜙𝜙𝑓𝑓 = 1 if 
𝑦𝑦 ≤ 0.291 
𝜙𝜙𝑓𝑓 = 0 if 
𝑦𝑦 > 0.291 

zG zG zG zG zG 

zG 
𝑝𝑝dynamic 

fV, 
𝑝𝑝total

= 𝑓𝑓(𝑦𝑦) 

zG 

* A value close to 0 is imposed, to provide numerical stability to the code.  

The initial condition for the water depth is imposed to 0.291 m. Note that until now the 
height sediment-bed has not been defined. For this, the initial sediment concentration is 
specified using the mathematical formulation, Equation ( 4.45 ), proposed by Cheng et al. 
[67]  

𝜙𝜙(𝑧𝑧) = 0.54
1 + tanh[150(𝑧𝑧𝑏𝑏0 − 𝑧𝑧)]

2   ( 4.45 ) 

where 𝑧𝑧𝑏𝑏0 is the height sediment-bed and 𝑧𝑧 is the vertical direction in the domain. This 
formulation provides a smooth vertical sediment concentration profile which avoid 
numerical instability. 

4.5.4 Grid domain configuration 

Non-uniform structured elements are used in the grid configuration of the computational 
domain. The large gradients of flow expected; near walls, fluid-air, and fluid-sediment 
interface; impose mesh densification in their vicinity. Furthermore, in order to capture the 
jet effect and scour process with adequate detail, blocks with higher grid density are 
established. Due to the jet effect, horizontal velocity is larger than the vertical velocity, the 
grid size in the downstream water inlet direction is coarser than the vertical direction.  
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The domain is divided into nineteen grid blocks, see Figure 4.6; here maximum grid 
cells size are imposed in the bottom of the sediment bed, atmosphere and in the middle-
height of the blocks VIII to XI.  On the other hand, a minimum grid size are assigned in the 
top of the sediment bed, I to III blocks, and in the blocks XII to XV. These latter ones are 
configured to capture the free surface effect. 

a)  

 
b)  

 
c)  

 
Figure 4.6. a) A sketch of the numerical domain configuration, b) Grid configuration detail inlet-

apron, c) Grid configuration detail apron-sediment 
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In order to obtain grid independent results, sensitive analysis was performed following 
the methodology proposed by Han [68]. Similar layouts with two maximum grid cell size 
values were tested. The values differ by 20% between them.  

The final grid was chosen once the deviations, at t= 60 s, of velocities, pressure, depth 
scour and height sand dune were less than 5% compared with the penultimate grid.     

In the streamwise direction, Δx, starting from the coarser grid at the jet-inlet and wall 
inlet boundary conditions, the cells size increase with a maximum aspect ratio of 1.5, Δx ∈
[2 x 10−3 − 3 x 10−3] m.  

On the other hand, in the vertical direction, Δy, a maximum aspect ratio of 4 is imposed. 
A summary of the values are presented in Table 4.4. 

Table 4.4. Summary of the grid size implemented – vertical direction 

Blocks Grid size Δy 
range values (min-max) 

 m 
I to III [5 x 10−4 − 3 x 10−3] 
IV to VII [5 x 10−4 − 5 x 10−4] 
VIII to XI [5 x 10−4 − 2 x 10−3] 
XII to XV [4 x 10−4 − 2 x 10−3] 
XVI to XIX [2 x 10−3 − 2 x 10−3] 

4.5.5 Numerical Simulation Schemes  

The pimple algorithm is used to solve the Navier-Stokes equations, velocity-pressure 
coupling procedure. The numerical discretization schemes for the differential operators are 
described in this section. As regards of temporal derivative, the implicit second-order 
backward scheme is applied.  The convection terms in the momentum conservation equation, 
mass conservation equation and granular temperature equation are solved using the second-
order central difference scheme bounded with a variation of the Sweby limiter [69], 
limitedLinear.  On the other hand, for the volume fraction variable, 𝛼𝛼, a second-order Total 
Variation Diminish (TVD)-scheme with van Leer limiter is used. Due to the mesh-
orthogonality, a second-order linear corrector scheme is used for the diffusion terms.  

In addition, maximum Courant number was set to 0.2, which ensures convergence and 
numerical stability. Note that the Courant number is low, which causes an increase in the 
computational time required. The simulation with this numerical approach is extremely time- 
consuming. Therefore, the computational time is about 140 hours for 10 s of simulation on 
an Intel core i7 6700k with 32 GB of RAM computer. 
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4.5.6 Results and discussion  

Scour profile 

Scour profiles comparison between the numerical simulation data using two model 
approaches, i.e. single-phase and multi-dimensional two-phase flow, against experimental 
measurements are presented in Figure 4.7. The single-phase numerical data are obtained 
from the results presented by Liu and García [29]. Although the analysis of results are offered 
for 8 different instants of time, i.e. t= 1, 3, 5, 8, 12, 20, 30 and 60 min; the computational 
power and computational time required to perform the complete experiment, make that, only 
the first four instants are analyzed in this study. 

The high velocity of the jet causes that, the shear stress on the erodible part of the 
experiment (sand), placed downstream of the rigid apron, exceed the critical shear stress 
value causing the development of the scour and a sediment deposition dune. According to 
the study conducted by Chatterjee, the scour development is highly dependent on time; which 
presents a rapid scour in the initial period of the experiment, gradually reduced until an 
equilibrium stage is reached.  

The qualitative analysis shows an adequate agreement between both simulated values 
and experimental observations in the scour process for the four instants in mention. However, 
there are discrepancies in the shape and height value of the sediment deposition dune in the 
multiphase-model approach. 

a) b) 
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c) d) 

  

Figure 4.7. Scour profile development at time: a) 1 min, b) 3 min, c) 5 min and d) 8min. 

The multiphase-model model over-predict the values during the first minute of the 
simulation while under-predict the values of the sediment deposition dune for the rest of the 
analysis when are compared with the experimental measurements. The under-prediction of 
values increase while the simulation progresses over time. In fact, the downstream measured 
slope is steeper than the computed slope, the above leads to the toe of the sediment sand dune 
varies from the experimental measurements.  

It is worth mentioning that the experimental set-up reported by Chatterjee [65] does not 
detail the initial conditions. This can lead to discrepancies obtained during the first minute 
of analysis due to initial conditions imposed in the numerical configuration. 

 On the other hand, in the numerical configuration of this case, the 𝐵𝐵 coefficient value 
recommended in Chauchat et al. [31] was imposed. Once in that study, the effect of the free 
surface is not considered and due to the modification in the 𝑘𝑘 − 𝜀𝜀 turbulence model, the 𝐵𝐵 
parameter should be calibrated again. In addition, it is important to emphasize that a 2D 
simplification has been considered, minimizing three dimensional effects produced in the 
laboratory experiment.  

The results of the simulations for both approaches are listed in Table 4.5, where the 
coefficient of determination 𝑅𝑅2 is used for their quantification. Both models agree well with 
experimental measurements. Note that the single-phase approach presents higher correlation 
values of 𝑅𝑅2. 
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Table 4.5. Coefficient of determination 𝑅𝑅2 

t R2 
min single-phase multi-dimensional 

1 0.987 0.949 
3 0.994 0.985 
5 0.998 0.984 
8 0.997 0.967 

Figure 4.8 shows the snapshots of sediment concentration profiles during the scour 
process at t=1, 3, 5 and 8 min. 

a) 

 

b) 
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c) 

 

d) 

 

 

 
Figure 4.8. Sediment concentration profiles – scour process: a) 1 min, b) 3 min, c) 5 min                

and d) 8min (volume fraction indicator field). 

In Figure 4.9, the simulated maximum depth of the scour hole, ℎ𝑠𝑠, and the experimental 
data are presented (Refer to Figure 4.4).  During the first minute of the experiment, the multi-
phase model presents a higher scour depth, then the model matches with the simulated values 
of the single phase approach. It is important to mention that, except for the first minute, both 
models under-predict the experimental values for the period of analysis. The maximum 
discrepancy of the multi-phase model is in t=1 min, where the model under-predict the value, 
5.3 mm. On the other hand, the single-phase over-predict the value, 5.2 mm t= 8min.  
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Figure 4.9. Maximum Scour depth - evolution with time 

Figure 4.10-a and Figure 4.10-b show the results of the simulation in terms of height, 
ℎ𝑑𝑑, and horizontal location, x𝑑𝑑, of the sediment deposition dune peak, respectively (Refer to 
Figure 4.4). The maximum discrepancy values are summarized in Table 4.6. 

Table 4.6. Max. Discrepancy 

Model Max. discrepancy 
 time ℎ𝑑𝑑 time x𝑑𝑑 
 min (mm) min (cm) 

Multi-phase 8 12.79 8 2.84 
Single-phase 5 5.7 3 0.21 

 

a) b) 

  
Figure 4.10. Sediment deposition dune peak - evolution with time,                                                     

a) height and b) horizontal location 
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Fluid flow and sediment phase velocities 

In Figure 4.12, the sediment-phase velocity fields are plotted. The interaction between the 
jet flow and the water-depth downstream initial condition produces a recirculation zone, over 
the apron, towards the water jet inlet, Figure 4.11-a, as well as an alteration in the water free 
surface is shown, Figure 4.11-b.  

a) 

 

b) 

 

Figure 4.11. Apron zone before the jet reached the erodible part: a) velocity (m/s), b) water-surface 
profile (volume fraction indicator field) 

In the scour hole, the sediment is transported along to the bed profile until it reaches the 
peak of the sediment deposition dune. It can be seen, the ability of the model to simulate both 
the bed-load and suspended-load transport. In the first instant of analysis, greater sediment 
dispersion occurs downstream. As the scour process takes place, the interaction is closest to 
sediment profile. 
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a) 

 

b) 

 

c) 
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d) 

 

Figure 4.12. Sediment velocity profiles at time a) 1 min, b) 3 min, c) 5 min and d) 8min. 

Note that the water velocity produces the drag of the sand particles at the peak of the 
sediment deposition dune. Then, the particles are deposited downstream due to the gravity 
force. This might explain the reduction in the peak value with respect to the measured value, 
as well as the downstream slope in the sediment deposition dune. It is important to mention 
that the 𝐵𝐵 parameter allows characterizes the level of correlation between the particles and 
fluid fluctuating motions.  

4.5.7 Conclusions 

The predictive ability of the local scour process of sediments is analyzed by using the multi-
dimensional two-phase flow modeling approach. The results obtained are compared with 
both, experimental laboratory values and single-phase modeled data. In order to obtain 
numerical results values which do not depend on the mesh size, a sensitivity analysis is 
performed. The main conclusions are described hereafter, 

 The multi-dimensional two-phase numerical results match adequately against the 
experimental depth scour measurements. 

 Differences between the multi-dimensional two-phase numerical results and 
experimental values are exposed when, both the peak-height and horizontal location 
of the sand deposition dune are considered. 

 High correlation values are presented despite the above in the previous two items. 

 A complete analysis of the sediment profile can be performed, due to the 
mathematical formulation involved in this mathematical approach. 

Although the multi-phase sediment approach requires finer spatial resolution and smaller 
time steps than classical sediment transport models, the non-consideration of the mesh 
movement for the bed profile update provides numerical stability. It is important to mention 
that, due to the calibration parameter 𝐵𝐵 was obtained without taking into account neither the 
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𝑘𝑘 − 𝜀𝜀 turbulence model modification nor the free surface effect, a calibration process have 
to be performed in order to set a value that matches better with this test-case. 

In addition, the completed test-case simulation have to be performed in order to analyze 
the scour-hole pattern when the equilibrium state is achieved.  
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5 CONCLUSIONS 

The main focus of this research project lies in the analysis and prediction of the flow pattern 
and sediment transport process in open channels by using three-dimensional numerical 
models. In order to achieve this goal, a review of the mathematical formulation involved is 
presented to understand, the need to use a turbulence model, the method applied to track or 
capture the free-surface variations and physical-based mathematical formulation used to 
study the sediment transport process.  

Turbulence models are required to represent the scales which are not resolved. The study 
of the two main approaches are used in this research; i.e. LES and RANS. The Volume of 
Fluid (VOF) method is used to capture the free-surface interface, due to several studies have 
demonstrated its applicability in river engineering problems where complex water surface 
deformations are presented. Note that in river engineering applications, a detailed prediction 
of the turbulence features in the free-surface boundary is not the main interest. 

The numerical simulation is performed using representative experimental cases which 
were selected due to the fact that they provide interpretations that can bring knowledge on 
the complex process involved in river engineering problems which usually include: free-
surface flows around hydraulic structures, secondary flows in bend channels and besides the 
sediment transport effects. 

In addition, a mesh sensitive analysis was conducted in all the numerical configurations 
in order to determine an adequate grid size which provides a balance between accuracy and 
computational time.  

Regarding the analysis and prediction of the flow structure in open-channels, the 
following conclusions and recommendations are presented. 

Unsteady-state (transient) hydraulic flow conditions, Three-dimensional numerical analysis 
of dam-break flow waves with the presence of an obstacle. 

 Three-dimensional numerical configurations; i.e. LES, RANS and LAMINAR show 
good performance when the results are compared against laboratory experimental 
data in two hydraulic variables; i.e. water depth and pressure. 

 The use of a specific 3D numerical approach affects both qualitative and quantitative 
comparisons. 
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 The non-use of a turbulence model (LAMINAR) presents lower 𝑅𝑅2 performance. 
Therefore, the results demonstrate that turbulence approach is important in the 
analysis. 

 There is no clear trend to support that turbulence model approach (LES or RANS) 
produces better adjustments. 

Steady-state hydraulic flow conditions, Three-dimensional comparative numerical analysis 
in an open-channel bend. 

 Three-dimensional numerical model results; i.e. Static Smarinsky, Dynamic 
Smarinsky and k-ε (RNG), present an acceptable level of agreement in the variables 
analyzed; i.e. water level and longitudinal velocity component. 

 The major discrepancies of the simulated values occur in the middle sections of the 
channel bend, where the influence of the secondary flow is significant. 

Field-scale, Three-dimensional numerical analysis of free-surface flows in a sharp open-
channel bend influenced by a weir and a sluice gate 

 Three-dimensional outcomes are in good agreement against experimental 
observations; i.e. water depths. 

 In the first sharp bend, a main secondary flow forms along the bed moving toward 
the inner wall closer to the middle of the channel width and a minor secondary flow 
with opposite direction is formed near the outer wall and near the water surface.  

 In the second sharp bend, which is influenced by a weir and a gate, a major 
secondary flow forms along the bed moving toward the outer wall closer to the 
middle of the channel width and a minor secondary flow forms near the inner wall 
of the channel along the bend. 

 The three-dimensional numerical analysis suggests to evaluate geometric 
modifications of the channel in the sharp bends parts due to a zone of low velocities 
is produced causing a stagnation zone.  

The accuracy of the results of the new multi-dimensional two-phase flow approach for 
sediment transport is analyzed using the experimental data of turbulent wall jet scour. The 
examination of the results provides the following conclusions: 

 The numerical results adequately match against the experimental depth scour 
measurements. 

 A complete analysis of the sediment profile can be performed. 
 The non-consideration of the mesh movement in this numerical approach for the bed 

profile update provides numerical stability. 
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 Despite the satisfactory results obtained with this numerical model, a calibration 
process of the parameter B has to be performed in order to set a value that better 
matches with this test-case. 

In conclusion, three-dimensional numerical configurations provide satisfactory results 
in the different engineering problems analyzed. The results clearly demonstrate that the use 
of the turbulence approach is important in the three-dimensional numerical analysis.  

The use of 3D numerical models increases the density of spatial information in 
comparison with experimental cases. Therefore, the results allow to analyze components of 
velocity, pressure values, streamlines and secondary flows. In regard to sediment transport, 
the new 3D model approach can resolve the full concentration profile from immobile bed to 
dilute region of transport away from the bed.   

It is worth mentioning that, although the numerical results are satisfactory, the 
application of three-dimensional numerical models in field-scale requires high 
computational resources. 

 


	Abstract
	Resumen
	List of Figures
	List of Tables
	List of symbols
	1 Introduction
	1.1 Background and motivation
	1.2 Objectives
	1.2.1 Main objective
	1.2.2 Specific Objectives

	1.3 Methodology
	1.4 Outline of the thesis

	2 Governing equations
	2.1 Introduction
	2.2 The Navier-Stokes equations
	2.3 Turbulent scales
	2.4 Reynolds-Averaged Navier–Stokes (RANS)
	2.4.1 Reynolds Averaging
	2.4.2 Averaging Rules
	2.4.3 Incompressible RANS equations
	2.4.4 The turbulent-viscosity hypothesis
	2.4.5 Turbulence Models
	2.4.6 Two-equation turbulence models

	2.5 Large Eddy Simulation (LES)
	2.5.1 Static Smagorinsky model
	2.5.2 Dynamic Smagorinsky model

	2.6 Flow Near the wall
	2.7 Numerical Model
	2.7.1 File structure
	2.7.2 The Finite Volume Method (FVM)
	2.7.3 Fluid Flow Model
	2.7.4 Free Surface model
	2.7.5 Numerical Simulation Procedure for flow field
	2.7.6 Time Integrator
	2.7.7 Boundary and Initial Conditions

	2.8 References

	3 Analysis of free surface flows in open channels
	3.1 Introduction
	3.2 Free surface flow modeling –An overview
	3.3 Three-dimensional numerical analysis of dam-break wave with the presence of an obstacle.1F‡
	3.3.1 Introduction
	3.3.2 Experimental set-up model
	3.3.3 Numerical model
	3.3.4 Boundary and Initial conditions
	3.3.5 Grid domain configuration
	3.3.6 Numerical Simulation Schemes
	3.3.7 Results and discussion
	3.3.8 Conclusions

	3.4 Three-dimensional comparative numerical analysis in an open-channel bend.
	3.4.1 Introduction
	3.4.2 Experimental set-up model
	3.4.3 Numerical model
	3.4.4 Boundary and Initial conditions
	3.4.5 Grid domain configuration
	3.4.6 Numerical Simulation Schemes
	3.4.7 Convergence criteria
	3.4.8 Model Verification
	3.4.9 Conclusions

	3.5 Three-dimensional numerical analysis of free-surface flow in a sharp open-channel bend influenced by a weir and a sluice gate2F‡2F
	3.5.1 Introduction
	3.5.2 Experimental set-up model
	3.5.3 Numerical model
	3.5.4 Boundary and Initial conditions
	3.5.5 Grid domain configuration
	3.5.6 Numerical Simulation Schemes
	3.5.7 Convergence criteria
	3.5.8 Results and discussion
	3.5.9 Conclusions

	3.6 References

	4 Sediment transport
	4.1 Introduction
	4.2 Sediment Transport Mechanism
	4.3 Models of sediment transport and bed elevation – An overview
	4.4 Sediment transport models
	4.4.1 Single-phase sediment transport model
	4.4.2 Multiphase Eulerian two-phase modeling of sediment transport

	4.5 Three-dimensional numerical modeling of local sediment scour – A multi-dimensional two-phase flow approach
	4.5.1 Introduction
	4.5.2 Experimental set-up model
	4.5.3 Boundary and Initial conditions
	4.5.4 Grid domain configuration
	4.5.5 Numerical Simulation Schemes
	4.5.6 Results and discussion
	4.5.7 Conclusions

	4.6 References

	5 Conclusions

