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1. Introduction 

Visual perception involves a series of actions starting with the reception of light on the retina  

(Schwartz, 2009). Several structures in the ocular globes, their adnexa, and the nervous system are 

involved in the visual process (Figure 1.1). Anatomical integrity of all these structures is not enough 

for the visual cortex to create a satisfactory visual experience from the received information. Instead, 

the two ocular globes and their adnexa need to cooperate in a coordinated way. In this regard, the 

visual process can be divided into the sensory and motor stages (Von Noorden & Campos, 2002). 

The sensory aspect of the visual process entails the processes by which light goes through the 

refractive media of the eyes and reaches the retina, where it produces a series of physical and chemical 

reactions in the photoreceptors that, in turn, generate a neural signal that is transmitted along the rest 

of the visual pathway. This initial stage of the visual process represents the stimulus for the motor 

system, which triggers a series of responses in the inner and outer muscles of the eyes. Although for 

the purpose of this study the distinction between sensory and motor systems is made, it is also 

important to understand the visual system as a single sensorimotor unit as a whole. In particular, the 

oculomotor system cannot be seen as an independent entity as it is mostly governed by the feedback 

from the sensory system. 

 

Figure 1.1. Schematic representation of the visual sensory pathway. F: fixation point. f: foveae. LGN: lateral 

geniculate nucleus. Source: (Schwartz, 2009). 
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One of the main tasks of the motor system is to generate the optimal conditions that allow the 

maintenance of binocular vision (Von Noorden & Campos, 2002). Binocular vision is the ability of 

the visual system to coordinate and integrate the information received separately from the two eyes 

into a single binocular percept (Evans, 2007; Julesz, 1971). Proper functioning of binocular vision 

also depends on sensory and motor aspects, besides the anatomical integrity of the visual system. 

Sensory fusion is the unification of visual excitations from the stimulation of corresponding retinal 

elements in the two eyes into a single visual image (Von Noorden & Campos, 2002). The main goal 

of motor fusion is to align the two eyes properly so that sensory fusion can be maintained. While the 

stimulus to sensory fusion is the excitation of corresponding retinal elements, the stimulus for the 

fusional eye movements driven by the motor fusion mechanism is the excitation of non-corresponding 

elements in the retinal periphery. At the highest level, binocular vision leads to stereopsis, which is 

the ability to order visual objects in depth. 

Anomalies in either the sensorial or the motor aspect of binocular vision or in their interaction 

with other processes such as accommodation may lead to dysfunctions often associated with 

symptoms. Binocular dysfunctions are sometimes classified according to the type of ocular 

misalignment (Evans, 2007). Heterophoria, or phoria, is a deviation of the visual axes that only occurs 

in absence of a stimulus for sensory fusion. In contrast, strabismus is the condition by which one eye 

deviates manifestly even with a stimulus for sensory and motor fusion. Strabismus affects between 2 

and 5% of the population (Friedman et al., 2009). The presence of phoria per se is not considered an 

abnormal condition. However, when its magnitude is higher than normal and the effort of the 

binocular system is not sufficient to compensate the deviation, it leads to a non-strabismic binocular 

dysfunction. The most common non-strabismic binocular dysfunction is convergence insufficiency. 

Its prevalence is estimated at 3-5% of the population (Rouse et al., 1999; Rouse, Hyman, Hussein, 

Solan, & Group, 1998; Scheiman et al., 1996), and it is associated with symptoms such as asthenopia, 

intermittent blur or diplopia or burning and tearing (Scheiman & Wick, 2014). Other examples of less 

prevalent non-strabismic binocular dysfunctions are excess of convergence, divergence insufficiency 

or excess of divergence. Nowadays, there is an emerging concern over the increase in visual 

symptoms and discomfort even for subjects with normal binocular vision, which is thought to be 

related to near sustained visual activities with computer and other small, handheld devices such as 

smartphones and tablets (Bababekova, Rosenfield, Hue, & Huang, 2011; Rosenfield, 2011). 

Binocular vision is typically evaluated in optometric clinical practice after determining the 

patient’s refractive status (Scheiman & Wick, 2014). The first tests are intended to assess the motor 

aspects of binocular vision. The evaluation often starts with the assessment of ocular alignment and 
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the measurement of the deviation if present. Then, the amplitude of fusional vergence is assessed. 

The near point of convergence test evaluates the nearest point on which the eyes can maintain 

binocular single vision and is considered a valuable test for the diagnosis of convergence insufficiency 

(Rouse, Hyman, et al., 1997). Besides assessing the maximum range (amplitude) of vergence, the 

ability to make fast and abrupt changes of fixation between far and close targets is also important for 

healthy binocular vision. The vergence facility test evaluates this ability. These are some examples 

of the tests used to evaluate motor binocular vision. Evaluation of the sensory status, which includes 

the evaluation of suppression and stereopsis, is especially important in cases of strabismus. The 

alterations of sensory fusion are much less severe, or non-existent, in non-strabismic binocular 

dysfunctions.  

In essence, the tests to evaluate the motor aspects of binocular vision consist in eliciting eye 

movements and asking the patients to report when they perceive diplopia and/or single vision. In a 

conventional optometric clinical setting, all the above optometric tests evaluating binocular vision are 

run subjectively, as they depend on the answers of the patients or on the examiner’s own criteria. This 

subjectivity leads to a considerable variability of the results, differences between examiners, and it is 

a potential source of error in the diagnostic of binocular dysfunctions (Antona, Barrio, Barra, 

Gonzalez, & Sanchez, 2008; Antona et al., 2011; Rainey, Schroeder, Goss, & Grosvenor, 1998). 

However, there exist instruments to determine the gaze position and measure ocular movements 

objectively, i.e. eye-trackers. Among a wide range of applications, eye-trackers have become a useful 

research tool for a variety of different disciplines such as neuroscience, psychology, industrial 

engineering, marketing and advertising or computer science (Duchowski, 2002). The first eye 

tracking systems date from the late 1800s, and were complex and invasive (Duchowski, 2017; 

Holmqvist & Nyström, 2011).   Several techniques have been developed since then, but the method 

that probably leaded to the most significant grow in eye-trackers’ popularity is the non-invasive one 

relying on the corneal reflection of one or several external light source(s). 

Eye tracking systems have been widely used for research in the fields of ophthalmology, 

optometry and vision science. Initially, the first instruments of such have allowed to confirm the 

existence of most basic eye movements and document their characteristics (Yarbus, 1967). With the 

development of non-invasive techniques, other applications arose, such as the diagnostic of reading 

problems in children (Borsting, Rouse, Shin, Dold, & McClallen, 2007; Colby, Laukkanen, & Yolton, 

1998). Other examples of more demanding applications are the use of eye-trackers to guide the laser 

during refractive surgery (Y. C. Lee, 2007), or to identify potential ocular signs that provide valuable 

information about severity or progression of neurodegenerative diseases such as Parkinson disease, 
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dementia with Lewy bodies, Huntington disease or Alzheimer disease  (T. J. Anderson & MacAskill, 

2013). 

Currently, eye-trackers are seldom used in optometric clinical practice. However, it seems 

reasonable to think that the evaluation of motor fusion could better rely on eye tracking systems 

(Bedell & Stevenson, 2013; Martinez-Conde, 2006). Eye-trackers could bring a powerful advantage 

in the evaluation of binocular vision. They provide an objective measurement independent to the 

patients’ answers and the criteria and expertise of the examiner, which could lead to a higher 

repeatability. More accurate measurements than those based on naked eye observations can be 

obtained. Temporal and dynamic characteristics of ocular movements can be analyzed in order to 

identify new oculomotor signs that help to diagnose binocular vision dysfunctions and/or to justify 

visual symptoms of subjects with normal binocular vision but high visual demands. Moreover, the 

integration of eye-trackers in virtual reality systems lead to the possibility to perform the tests 

automatically, i.e. using automatic setups controlled by computers with repeated stimuli and without 

examiner’s intervention. Therefore, the variability of the results due to different testing conditions 

could be minimized, and the tests could be adapted to the patients’ age or other characteristics. 

Before the implementation of eye-trackers in general optometric clinical practice, both 

manufacturers and vision science researchers have to solve a long list of matters. On the one hand, 

manufacturers face the challenge to produce economical, user-friendly devices with suitable 

specifications for clinical applications. On the other hand, there is a wide field of research to make 

all the advantages listed above come true. The most part of this thesis will be essentially based on the 

analysis of particular characteristics of eye movements in clinically interesting situations, that is, 

during the performance of different tests to evaluate the oculomotor aspect of binocular vision. To do 

so, these tests have been performed in an automated setup and eye movements have been measured 

objectively with an eye-tracker. 

The goals of this thesis and its structure throughout this document are detailed in the 

following two sections. 
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2. Goals of the thesis 

The final objective of this thesis is to develop new methodologies for the clinical, objective and 

automated evaluation of visual function based on the analysis of ocular movements. This general goal 

is split into two main objectives: 

1. The development of new methods for an eye tracking system based on multiple corneal 

reflections for clinical applications. 

This initial goal is addressed in the first study of the thesis which, in turn, leads to two specific 

objectives: 

1.1. To analyze the advantages of using multiple corneal reflections and determine the 

optimum arrangement of the light sources. 

1.2. To propose methods to normalize the pupil-glint vectors in order to improve spatial 

accuracy. 

By accomplishing this goal, a deep understanding of how video-based eye-trackers function 

was achieved. This allowed us to use a commercial research-purpose eye-tracker for the 

subsequent objectives not as a mere black box, but with full knowledge of its limits and 

characteristics. A third objective related to eye tracking methods was subsequently fulfilled 

in the third study of the thesis: 

1.3. To propose methods to estimate the actual eye positions in the 3D world based on 

multiple calibrations and geometric extrapolation functions. 

2. The analysis of ocular movements in clinically interesting situations for the objective and 

automated evaluation of binocular vision. 

This goal is split into three specific objectives in order to cover three different binocular 

vision tests. Each specific objective is addressed in a different study. 

2.1. To measure heterophoria with an automated cover test using an eye-tracker and 

validate the results against other clinical methods. 

2.2. To analyze the characteristics of small saccades that occur during the near point of 

convergence test as a function of vergence demand, and to determine whether some 

saccadic features can be used as objective biomarkers to predict the results of this test. 

2.3. To analyze the effect of stimulus’ predictability on temporal characteristics of vergence 

movements in order to understand its impact on the results of the vergence facility test. 
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3. Structure of the thesis 

This thesis is structured in four studies. Each study is detailed in a different section after the State of 

the art chapter. They are written in a paper-like format, thus each of them include the following 

subsections: introduction, methods, results and discussion. In addition, the third study have two 

appendices which contain further details about the methodology and supplementary results. 

The first study is focused on the first objective of the thesis: developing new and accurate 

eye tracking methods relying on multiple corneal reflections. The images taken with the hardware of 

an existing eye-tracker are used to evaluate the advantages of using multiple corneal reflections from 

multiple light sources and determine their optimal arrangement. Other methods are also proposed in 

order to optimize eye tracking accuracy. 

The other three studies are more clinically focused and, instead of investigating methods to 

improve eye tracking accuracy, a commercial eye-tracker is the instrument used to measure ocular 

movements. Each study is focused on a different aspect of the assessment of binocular vision: the 

measurement of phoria, the assessment of the maximum convergence capability, and the evaluation 

of the dynamic abilities of convergence and divergence. Specifically, in the second study, an objective 

cover test in an automated setup is proposed and validated against two other clinical methods. The 

third study analyzes the characteristics of saccadic movements that occur during the near point of 

convergence testing. Without the registering of eye movements with an eye-tracker, it would not be 

possible to notice the existence of these small movements. This study explores the possibility of using 

some saccadic features as objective markers to predict the results of the near point of convergence 

test. As a particularly wide tracking range is required to track the eyes during the near point of 

convergence test, additional calibration methods to estimate accurately the 3D eye positions are 

proposed in the third study of the thesis. Finally, the fourth study inspects the effects of the stimulus’ 

predictability on the latency and response time of vergence movements, which in the end impact the 

results of the vergence facility test. 

After the four studies, global conclusions and related future works are suggested. Finally, a 

list of publications in which the results of this thesis have been disseminated and bibliographic 

references are provided. 
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4. State of the art 

This thesis is based on the assessment of binocular vision using eye tracking systems. The following 

subsections will review the most important concepts of these two fields that are relevant to this work. 

First, the general concepts of the human oculomotor system and binocular vision will be reviewed.  

Then, the characteristics of the different types of eye movements will be detailed. Finally, the last 

subsection of this chapter will include a review of the main eye tracking techniques, placing special 

emphasis on the corneal reflection method. 

4.1. General concepts and fundamental laws 

4.1.1. Positions of gaze 

The primary position of gaze is defined as the position of both eyes in binocular vision in which the 

head is erected and the eyes are fixating a point at infinity which lies at the intersection of the sagittal 

plane of the head and a horizontal plane passing through the center of the two globes (Myers, 1975). 

Secondary positions of gaze involve rotation of the eyes around only one of the primary axes, 

i.e. a horizontal or vertical axis. 

Tertiary positions of gaze are obtained by a simultaneous rotation around the horizontal and 

vertical axes. 

4.1.2. Listing’s law 

Listing’s law states that each movement of the eye from the primary position involves a rotation 

around a single axis lying in the Listing’s plane. The Listing’s plane is defined as a plane passing 

through the head and the center of rotation of the eyes that is perpendicular to the line of sight when 

the eyes are in primary position (Figure 4.1A). The axis is perpendicular to the plane that contains the 

initial and final positions of the line of sight. Listing’s law implies that all eye movements from the 

primary position occur without torsion or cyclorotation with respect to the primary position. However, 

each movement is associated with a definite degree of false torsion (Von Noorden & Campos, 2002). 

False torsion is the apparent cyclorotation of the eye associated with a change of direction of 

regard from the primary position to a tertiary position. It is present due to the fact that the vertical 

meridian of the eye remains vertical when the eye rotates to a secondary position but tilts with respect 

to vertical in any tertiary position (Figure 4.1B). 
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Figure 4.1. (A) Listing’s plane and the axes of rotation of the eye (X,Y,Z). (B) Orientations of the eye when 

they rotate to secondary and tertiary positions and obey Listing’s law. In tertiary positions, the eyes appear to 

rotate around the visual axis due to false torsion. Source: (Leigh & Zee, 2015). 

Listing’s law can also be expressed in terms of any initial eye position, not just primary 

position. If the eye starts to rotate from an eccentric position, the Listing’s plane is no longer 

perpendicular to the line of sight; instead it is tilted in the same direction as the line of sight but only 

half as much. This relationship is called Listing’s half-angle rule. 

Listing’s law allows to understand the organization of neural and mechanical factors in the 

control of 3D eye movements and it is also of importance to clinicians because it has implications for 

the optimal management of strabismus (A. M. F. Wong, 2004). 

4.1.3. Donders’ law 

Donders’ law suggests that the angle of tilt (or false torsion) for a given tertiary position of the eye is 

always the same irrespective of the path taken by the eye to reach that position. After returning to its 

initial primary position, the retinal meridian is oriented exactly as it was before the movement was 

initiated (Von Noorden & Campos, 2002). This law implies that the torsional orientation of the eye 

is fixed for a given horizontal and vertical position. The corollary is that one can retrieve a unique 

and single orientation of the eye for a targeted viewed object. 

4.1.4. Hering’s law of Equal Innervation 

Hering’s law of Equal Innervation states that whenever an impulse for the action of an eye movement 

is sent out to an extraocular muscle, the contralateral agonist muscle receives equal innervation. There 
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are separate neural controllers for conjugate and vergence movements and each eye receives an 

identical neural command from each controller. The agonist muscle is the one that produces the 

movement, while a movement in the opposite direction is caused by its antagonist muscle. 

Hering’s law applies only to extraocular muscles. There are no muscles in the human body 

that are functionally interrelated as are the pairs of muscles of the eye. However, the law applies to 

all normal eye movements, both voluntary and involuntary (Von Noorden & Campos, 2002). 

Alternatively to Hering’s law, Helmholtz stated that binocular coordination is a learned 

behavior based on independent neural control of each eye. A more detailed explanation about the 

controversy between Hering and Helmholtz hypotheses is given in section 4.4.2.6. 

4.1.5. Sherrington’s law of Reciprocal Innervation 

Sherrington’s law of Reciprocal Innervation states that whenever a muscle receives an impulse to 

contract, an equivalent inhibitory impulse is sent to its ipsilateral antagonist, which relaxes and 

lengthens. Reciprocal innervation is physiologically and clinically important since it explains why 

strabismus occurs following paralysis of an extraocular muscle and must be considered when surgery 

on the extraocular muscles is performed. 

This law applies to all striated muscles of the body; thus, it is not limited to the extraocular 

ones (Von Noorden & Campos, 2002). 

4.2. The oculomotor system 

This section reviews the final effector tissues that perform the actions dictated by the neural structures 

comprised in the oculomotor system. For the purpose of this thesis, this section focuses exclusively 

on the extraocular muscles, whose fundamental function is the maintenance of motor fusion. 

4.2.1. The extraocular muscles 

Humans have six extraocular muscles in each orbit: the medial rectus, the lateral rectus, the superior 

rectus, the inferior rectus, the superior oblique and the inferior oblique (Figure 4.2). All six muscles 

consist of striated muscle fibers with abundant elastic fibers (Jordan, Mawn, & Anderson, 2012). 

The four rectus muscles take origin from a tendinous structure named the annulus of Zinn. 

The superior oblique muscle arises from the lesser wing of the sphenoid bone via a short, narrow 

tendon in the angle between the annulus of Zinn and the periorbita of the medial wall. The inferior 

oblique takes its origin from a small, shallow fossa in the floor of the orbit (Jordan et al., 2012). 
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Figure 4.2. Anterior (A) and superior (B) views of the extraocular muscles. Source: Modified from (Levin et 

al., 2011). 

The extraocular muscles insert into the eyeball via their thin, flat tendons, which blend into 

episclera and superficial sclera. Only the horizontal and vertical recti insert in front of the equator of 

the eyeball. Both obliques have their insertions behind the equator of the globe (Figure 4.2). 

As far as innervation of the extraocular muscles is concerned, the abducens nerve (cranial 

nerve VI) supplies the lateral rectus. The inferior division of the oculomotor nerve (cranial nerve III) 

supplies the inferior rectus, the inferior oblique and usually the medial rectus. Meanwhile, the superior 

division of the oculomotor nerve (III) supplies the superior rectus, and occasionally the medial rectus 

besides the levator palpebrae superioris (the elevating muscle of the eyelid, which is not an 

extraocular muscle). Finally, the superior oblique is supplied by the trochlear nerve (cranial nerve 

IV). 

The lateral branch of the ophthalmic artery supplies the lateral and superior rectus muscles, 

and the superior oblique muscle. The medial branch of the ophthalmic artery supplies the inferior and 

medial rectus muscles and the inferior oblique muscle. The inferior rectus muscle and the inferior 

oblique muscle receive additional blood supply from the infraorbital artery, and the medial rectus 

muscle also receives a branch from the lacrimal artery. 

4.2.2. Action of individual muscles 

The eyeball has three degrees of freedom. It can rotate around each of these three axes, all going 

through the center of rotation. One is the anteroposterior or sagittal axis, coincident with the line of 

sight, while the other two are perpendicular to the line of sight and are assumed to lie in the Listing’s 

plane; one is vertical, and the other is horizontal. The center of rotation of the eye is not fixed, it 

actually moves in a systematic way along a curved line fixed in space (Park & Park, 1933). In primary 
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position the center of rotation is located about 13.5 mm behind the apex of the cornea on the line of 

sight (Von Noorden & Campos, 2002). 

The rotations of the single eye are termed duction movements. Rotations around the vertical 

axis are called adduction (nasalward rotation) and abduction (templeward rotation). Rotations around 

the horizontal axis are termed elevation (upward rotation) or depression (downward rotation). A 

combination of the horizontal and vertical rotations moves the globe into oblique positions (tertiary 

positions of gaze). Rotations around the anteroposterior axis are called excycloduction (rotate the 

upper pole of the cornea templeward) and incycloduction (rotate the upper pole of the cornea 

nasalward). 

Because of the configuration of the eyeballs and the way the extraocular muscles are oriented 

in the orbit, especially vertical recti and obliques (Figure 4.3), the muscles not only perform a single 

action, but also have secondary and tertiary actions. The actions of each extraocular muscle from the 

primary position are illustrated in Figure 4.4. 

 

Figure 4.3. Orientation of the vertical rectus muscles (A) and the oblique muscles (B) in the orbit. Source: (Von 

Noorden & Campos, 2002).  
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Figure 4.4. Primary, secondary and tertiary actions of extraocular muscles. Source: Modified from (Carpenter, 

1988). 

4.3. Binocular vision 

Binocular vision is the ability of the visual system to coordinate and integrate the information received 

separately from the two eyes into a single binocular percept (Evans, 2007). As pointed out in the 

introductory chapter, the visual system should be considered a whole sensorimotor unit. However, 

distinction between sensory and motor components is usually made for the purpose of study. Basic 

concepts to understand binocular vision and a brief review of the most common binocular anomalies 

and the tests typically used for their diagnostic are introduced in the following subsections. 

4.3.1. Fusion, diplopia and retinal correspondence 

When light reaches a retinal point, the stimulus is perceived not only with a certain color, brightness 

and shape, but it is also localized in a certain direction in visual space. Each retinal point has a 

directional value, which is an intrinsic and inherent property as are all the other properties that lead 

to sensations of color, brightness or shape (Von Noorden & Campos, 2002). The direction in which 

a retinal point localizes a stimulus is not absolute. Instead, it is relative to the principal visual 

direction, which corresponds to the fovea, the area of highest cone density and visual acuity of the 

retina (Figure 4.5). The stable relationship between the visual direction of the fovea and that of all 

other retinal areas allows the ordered perception of the visual field. 
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Figure 4.5. Relative lines of direction. F, principal visual direction. N, secondary visual direction. When the eye 

rotates, the principal visual direction shifts accordingly to the new position of the fovea. Source: Modified from 

(S. B. Steinman, Steinman, & Garzia, 2000). 

Every retinal point has an associated point in the retina of the other eye with which it shares 

a common visual direction. Retinal points of the two eyes sharing a common visual direction are 

called corresponding retinal points. The common visual directions are also relative to the principal 

common visual direction of the two foveae.  

Sensory fusion is the unification of visual excitations from corresponding retinal images into 

a single visual percept (Von Noorden & Campos, 2002). An object localized in the same visual 

direction by stimulation of the two retinas can only be perceived as one, single visual object. Thus, 

the stimulus to sensory fusion is the excitation of corresponding retinal points. When non-

corresponding or disparate retinal points are stimulated simultaneously, the object is localized in two 

different visual directions at the same time. Thus, it is perceived double or in diplopia.  

Motor fusion is the ability to align the eyes so that sensory fusion can be maintained. The 

stimulus to motor fusion is the stimulation of disparate retinal points, and the response is the 

movement of the two eyes in opposite directions, i.e. vergence movements. The characteristics of 

vergence movements are explained in detail in section 4.4.2. A motor response cannot exist when the 

images of an object stimulate the fovea of each eye. 

For sensory fusion to occur, the images must be located on corresponding retinal points and 

must be sufficiently similar in size, brightness, and sharpness (Von Noorden & Campos, 2002). 

Otherwise, they may lead to retinal rivalry, which is the alternation in perception that occurs when 
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different images are presented in the two eyes, as dissimilar stimuli do not permit fusion (Blake & 

Logothetis, 2002). 

4.3.2. Fixation disparity 

The horopter is defined as the locus of all object points that are imaged on corresponding retinal 

elements at a given fixation distance (Von Noorden & Campos, 2002) (Figure 4.6). By definition, all 

the points lying on the horopter curve are seen singly and all those points not lying on the curve are 

seen double. Physiologic diplopia is elicited by object points outside the horopter. Actually, there 

exists a certain tolerance and points slightly away from the horopter can be fused properly. The region 

in front and back of the horopter in which single vision is present is the Panum’s area of single 

binocular vision or Panum’s fusional area (Figure 4.6). The horizontal extent of these areas ranges 

between 2 and 20 min of arc (Duwaer & Van Den Brink, 1981; Fender & Julesz, 1967; Schor & 

Tyler, 1981). It depends on retinal eccentricity, being smaller near the fovea and increasing toward 

the periphery. The size is also modulated by stimulus characteristics such as size and complexity 

(Fender & Julesz, 1967; Kertesz, 1981) or spatial and temporal frequency (Schor & Tyler, 1981; Woo, 

1974). Moreover, adjacent retinal regions interact (Kertesz, 1981), and Panum’s fusional areas not 

only enlarge but also shift across the retina as a function of the stimulation (Diner & Fender, 1988). 

 

Figure 4.6. Schematic representation of the horopter and the Panum’s fusional area. Source: (S. B. Steinman et 

al., 2000). 

Fixation disparity is the condition by which an image displacement of the order of minutes 

of arc occurs within Panum’s fusional area while fusion is maintained. There is controversy regarding 



State of the art 

 

17 

 

its clinical relevance. While in most cases the assessment of fixation disparity is not necessary for the 

diagnosis and management plan of binocular dysfunctions (Scheiman & Wick, 2014), it is useful to 

determine those patients who are likely to have symptoms (Sheedy, 1980; Sheedy & Saladin, 1977), 

and to determine the amount of prism to prescribe for the treatment of certain binocular disorders 

(Sheedy & Saladin, 1978). 

4.3.3. Stereopsis 

Stereopsis is the ability to order the visual objects in depth. It represents the most robust binocular 

cue to depth perception. The physiologic basis for stereopsis relies on the simultaneous stimulation 

of disparate retinal points within the Panum’s fusional area (Figure 4.6). Due to the horizontal 

separation of the two eyes (the interpupillary distance), an object produces slightly different visual 

images in the two eyes. The two images can be fused because they lie within Panum’s fusional area, 

and result in a three-dimensional percept (Von Noorden & Campos, 2002). 

The direction of the perceived depth is determined by the direction of relative displacement 

of the images projecting in the two eyes (S. B. Steinman et al., 2000). If the two retinal images of a 

non-fixated object are in crossed or temporal disparity as in Figure 4.6, the object is perceived in front 

of the fixation point. Conversely, the object is perceived farther from the fixation point when the two 

retinal images are in uncrossed or nasal disparity. 

The stereoacuity is the smallest disparity beyond which no stereoscopic effect is produced, 

in other words, it is the smallest depth difference a person can see. Stereoacuity is highly dependent 

on the method used the measure it, but a threshold of 15 to 30 seconds of arc obtained in clinical tests 

is generally considered as optimum (Von Noorden & Campos, 2002). 

Although stereopsis can occur only in binocular vision, a sense of depth persists in monocular 

vision as a result of experience. Examples of monocular depth cues are relative size, linear 

perspective, interposition, distribution of lights and shadows or motion parallax (Schwartz, 2009). 

4.3.4. Binocular dysfunctions 

Sensory and motor systems must be adequate for normal binocular vision to be present, as well as 

physical integrity of all the structures of the visual system. An anomaly in any of these elements may 

cause a binocular dysfunction (Evans, 2007). 

Anomalies in the motor system may lead to strabismic or non-strabismic binocular 

dysfunctions, depending on the manifestation of an ocular deviation. The main non-strabismic 

binocular dysfunctions are convergence insufficiency, divergence insufficiency, convergence excess, 
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divergence excess, fusional vergence dysfunction, basic esophoria and basic exophoria. There is 

considerable disparity regarding the prevalence of non-strabismic binocular disorders published by 

different authors, although general consensus is that convergence insufficiency is the most prevalent 

one (Cacho-Martínez, García-Muñoz, & Ruiz-Cantero, 2010). 

All these dysfunctions except fusional vergence dysfunction are associated with a high latent 

ocular deviation (phoria), which only occurs in absence of a stimulus for sensory fusion. In this sense, 

convergence insufficiency is related to high exophoria at near; divergence insufficiency is related to 

high esophoria at distance; convergence excess is associated with high esophoria at near; divergence 

excess with high exophoria at distance; and basic esophoria and basic exophoria are related to high 

esophoria and exophoria, respectively, at both distances (Scheiman & Wick, 2014). Another sign of 

exophoric conditions is the difficulty with fusion through base-out (BO) prisms, which stimulate 

convergence movements. Conversely, esophoric conditions are associated with the difficulty with 

fusion through base-in (BI) prisms, which stimulate divergence movements. Convergence 

insufficiency is usually accompanied by receded near point of convergence (Rouse et al., 1997). 

Although fusional vergence dysfunction is not associated with high values of phoria, it is related to 

difficulty with fusion through both BI and BO prisms.  

Several tests are performed in clinical optometric practice to evaluate the motor aspect of 

binocular vision, which is the most impaired in non-strabismic binocular dysfunctions (Evans, 2007; 

Scheiman & Wick, 2014). Next, the most relevant tests for the scope of this thesis will be briefly 

reviewed. Notice that additional tests might be performed as a function of the patients’ symptoms to 

validate the diagnosis.  

The starting point is the assessment of size and direction of the phoria. The most common 

test to do so is the cover test. It consists in covering the patients’ eyes in turn while the examiner 

observes whether the eyes move. In this instance, the amount of the deviation, which is the magnitude 

of phoria, can be measured with a prism bar. Other methods to measure the phoria are the Maddox 

rod, the modified Thorington test, or the von Graefe technique (Rainey et al., 1998; Sanker, Prabhu, 

& Ray, 2012). Advantages and disadvantages of some of these methods are detailed in section 5.2.1. 

The fusional vergence amplitude can be assessed either with a prism bar or with the rotary 

prisms of the phoropter. In both methods, the test consists in increasing the vergence demand by 

increasing progressively the prism power until the patient reports diplopia. Then, the prism power is 

decreased progressively until the patient recovers single vision. BI prisms are used to assess negative 

fusional vergence (divergence), and BO prisms are used to measure positive fusional vergence 
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(convergence). The repeatability of the positive fusional vergence measurement is low, and both 

methods are not interchangeable (Antona et al., 2008). 

The near point of convergence test assesses the nearest point on which the eyes can converge. 

It is determined by asking the patient to maintain fixation on an object placed in the midline while it 

is moved toward the patient’s eyes. The object is generally an accommodative target or a penlight 

(Scheiman et al., 2003). The near point of convergence test is a very valuable test for the diagnosis 

of convergence insufficiency (Rouse et al., 1997). 

Finally, the vergence facility test assesses the ability to make rapid repetitive vergence 

changes over an extended period of time (Scheiman & Wick, 2014). It is generally performed by 

alternating flipper prisms of 3 prism diopters (PD) BI and 12 PD BO to elicit divergence and 

convergence movements, respectively (Gall, Wick, & Bedell, 1998). Patients are asked to look at a 

target and try to fuse it as fast as possible. The vergence facility is typically measured as the number 

of cycles per minute that can be fused. One cycle corresponds to an alternation of BI and BO prisms. 

Anomalies in the sensory system might be the result of a loss of quality of the optical image 

in one or both eyes, a difference in image size between the two eyes, or anomalies of the visual 

pathway or cortex (Evans, 2007). Anomalies in the motor system, especially those associated with 

strabismus, may lead to adaptations and anomalies in the sensory system in order to lessen the 

symptoms caused by the motor dysfunction. Examples of these sensory anomalies are suppression, 

abnormal retinal correspondence, eccentric fixation, or amblyopia (Evans, 2007; S. B. Steinman et 

al., 2000; Von Noorden & Campos, 2002). 

4.4. Eye movements 

There are six types of eye movements used for bringing the image of an object of interest onto the 

fovea or maintaining foveal fixation. They can be classified as saccades, vergence, smooth pursuit, 

fixational eye movements, vestibulo-ocular reflex and optokinetic nystagmus.  

In the following subsections, the characteristics of these different types of eye movements 

are detailed. A special emphasis is put on saccades and vergence movements since they are the most 

relevant types of eye movements concerning binocular vision.  

4.4.1. Saccades 

Saccades are fast movements of the eyes bringing the object of interest to the most sensitive region 

of the retina, i.e. the fovea. They are conjugate, accurate, high-velocity and ballistic eye movements 
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(Bahill & Stark, 1979). In general, they are considered voluntary movements. However, saccades 

include a range of behaviors that encompass also involuntary shifts of fixation, quick phases of 

vestibular and optokinetic nystagmus and the rapid eye movements that occur during rapid eye 

movement (REM) sleep (Leigh & Zee, 2015). A classification of saccades proposed by Leigh & Zee 

(2015) is presented in Table 4.1. 

Table 4.1. Classification of saccades proposed by Leigh & Zee (2015). 

Classification Definition 

Volitional saccades Voluntary saccades made as part of purposeful behavior. 

      Predictive, anticipatory Saccades generated in anticipation of or in search of the 

appearance of a target at a particular location.  

      Memory-guided Saccades generated to a location in which a target has been 

previously present.  

      Antisaccades Saccades generated in the opposite direction to the sudden 

appearance of a target after being instructed to do so.  

      To command Saccades generated on cue.  

Reflexive saccades Saccades generated to novel stimuli (not necessarily visual) that 

unexpectedly occur within the environment.  

Express saccades Very short latency saccades that can be elicited when the novel 

stimulus is presented after the fixation stimulus has disappeared. 

Spontaneous saccades Seemingly random saccades that occur when the subject is not 

required to perform any particular behavioral task. 

Scanning saccades Consecutive saccades used to extract a particular piece of 

information form a complex visual environment in which there are 

many potential targets. 

Quick phases Quick phases of nystagmus generated during vestibular of 

optokinetic stimulation or as automatic resetting movements in the 

presence of spontaneous drift of the eyes.  

 

Saccades have become a valuable research tool in a wide range of disciplines in neuroscience 

beyond control of eye movements, such as many aspects of cognition (memory, attention, motivation, 

reward, prediction, and decision making), and neurological and psychiatric diseases (Leigh & Zee, 

2015). Moreover, they can be used for the neurologic localization of motor disorders as a function of 

the types of saccades that are impaired.  
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4.4.1.1. Metrics and dynamics of saccades 

Typically, humans make approximately two to three saccades per second, and most common ones 

(more than 85%) are smaller than 15⁰ in amplitude (Carpenter, 1991). Bigger rotations are often 

divided into two to three smaller saccades or accompanied by head rotations (Carpenter, 1991). 

Saccades are notably stereotyped. The dynamic characteristics of a saccade of a given 

amplitude are largely independent of its purpose, which kind of stimulus elicits it or its willingness 

(Bahill & Stark, 1979). 

The saccade duration is dependent on its amplitude (Figure 4.7). For example, the duration 

of saccades measuring few degrees ranges from 10 to 20 ms (milliseconds), while for saccades of 20⁰ 

it may exceed 70 ms. Specifically, Yarbus (1967) expressed the relationship between the duration of 

the saccade and the angle through which the eye turns (amplitude) by the empirical formula: 

 𝑇 = 0.021 𝛼0
2/5

  (4.1) 

where 𝑇 is the duration of the saccade in seconds, and 𝛼0 is the amplitude in degrees. Meanwhile, 

Carpenter (1988) defined the relationship between saccade duration and amplitude as  

 𝐷 = 2.2𝐴 + 21 (4.2) 

where 𝐷 is the duration of the saccade in milliseconds and 𝐴 is the amplitude in degrees. 

After the onset of a saccade, the velocity of the eye movement rises smoothly, reaches a 

maximum (the peak velocity, up to 900º/s), and falls smoothly to zero (Figure 4.7B) (Bahill, Clark, 

& Stark, 1975). For saccades smaller than 15-20⁰, the increase and decrease of velocity follow a 

pseudo-sinusoidal rule. However, for saccades bigger than 20⁰ the acceleration and deceleration 

periods are asymmetric (Figure 4.7B), i.e. the increase in velocity at the beginning of the saccade is 

faster than the deceleration at the end, which implies that the velocity profiles become skewed 

(Collewijn, Erkelens, & Steinman, 1988a; Collins, Semroud, Orriols, & Doré-Mazars, 2008; Yarbus, 

1967).  

The peak velocity is proportional to the amplitude of the saccade up to approximately 20 to 

30⁰, amplitude value for which peak velocity tends to saturate (Becker, 1991) (Figure 4.8). On 

average, a 1⁰ increase in amplitude results in a peak velocity increase of approximately 20⁰/s (Collins 

et al., 2008). These stereotyped relations between amplitude, duration and peak velocity over a wide 

range of human saccades are called the main sequence (Bahill et al., 1975). It can also be extended to 

include saccade peak acceleration and deceleration (Bahill, Brockenbrough, & Troost, 1981). 
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Figure 4.7. (A) Duration versus magnitude (amplitude) of human saccadic eye movements. Source: (Bahill et 

al., 1975). (B) Typical velocity profiles of horizontal saccades ranging from 5 to 80º. Vertical bars represent ± 

1 standard deviation (SD). The small SD indicates that saccades were very reproducible. Source: (Collewijn et 

al., 1988a). 

 

Figure 4.8. Saccadic main sequence. Peak velocity versus magnitude (amplitude) of human saccadic eye 

movements. Source: (Bahill et al., 1975). 
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The main sequence is a powerful tool to judge whether a particular saccade is normal or 

aberrant. The parameters of a normal saccade faithfully follow this relationship. Drugs that reduce 

alertness (alcohol, barbiturates and diazepam), systemic and neurologic diseases such as Grave’s 

disease, Alzheimer, AIDS or peripheral nerve palsy, or reduced attention and fatigue are factors that 

may reduce the saccadic peak velocity and, more generally, disturb the kinematics of saccades 

(Ciuffreda & Tannen, 1995). Moreover, the main sequence plots show that large saccades, 

microsaccades and the fast phase of optokinetic nystagmus are produced by a common physiological 

system and they can be used to study the normalcy of eye movements neurophysiological control 

(Bahill et al., 1975). 

Saccade velocity and duration depend to some extent on the direction of the movement and 

the initial and final orbital position. Temporal saccades are slightly shorter than nasal, with small 

(between 2 and 4 ms) but significant differences for saccades up to 60º (Collewijn et al., 1988a). 

Saccades directed toward the center tend to be faster than those directed toward eccentric positions 

(Collewijn et al., 1988a). Upward saccades made in the upper portion of the ocular motor range are 

slower than upward saccades made in the lower portion of the ocular motor range. Downward 

saccades are almost independent of eye position (Collewijn, Erkelens, & Steinman, 1988b). 

Oblique saccades are almost indistinguishable from the corresponding characteristics of 

horizontal or vertical saccades. Thus, any saccade not exceeding 15-20º of the same amplitude can 

usually be regarded as equal in all respects (Yarbus, 1967). 

4.4.1.2. Latency 

The latency, or reaction time, of a saccade has been defined as the period of time between the 

appearance of the stimulus and the onset of the movement. It is approximately 120 to 350 ms 

(Carpenter, 1988), although other authors state that it can be up to 1 s (Liversedge, Gilchrist, & 

Everling, 2011). The distribution of individual saccade latencies is skewed, with a long tail towards 

longer values (Figure 4.9). 

This saccade delay can be thought of as a composite of the time to process the visual stimulus, 

the accumulation of a decision process and the final motor execution. Over 30 years ago, Carpenter 

(1981) defined the LATER (Linear Approach to Threshold with Ergodic Rate) model of response 

times and it has remained popular because of its simplicity (it has only two free parameters) and the 

ease with which it can be used to model behavior in complex tasks (Noorani & Carpenter, 2016). 
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Figure 4.9. Frequency histogram of 486 saccadic latencies. Source: (Noorani & Carpenter, 2016). 

One of the key characteristics of saccade latencies is their wide variability, which is 

significantly larger in children than in adults probably due to poor control over visual fixation (D. P. 

Munoz, Broughton, Goldring, & Armstrong, 1998; Q. Yang, Bucci, & Kapoula, 2002). Saccade 

latency is considerably affected by both top-down and bottom-up  processes (Leigh & Zee, 2015). 

Some examples of stimulus characteristics that influence the latency of saccades are: luminance, size, 

contrast or complexity (Doma & Hallett, 1988; Gerardin, Gaveau, Pélisson, & Prablanc, 2011; 

Marino & Munoz, 2009); whether the target is visual or auditory (Zambarbieri, 2002); the size of the 

movement, its direction and the initial eyes position (Bonnet et al., 2013; Fuller, 1996); the 

predictability of the target (Marino & Munoz, 2009); or the stimulus paradigm (Takagi, Frohman, & 

Zee, 1995). Latency shortens progressively with age during childhood and increases during 

adulthood. This may reflect different stages of normal development in children and degeneration in 

the nervous system in the elderly (D. P. Munoz et al., 1998). 

4.4.1.3. Corrective saccades 

Frequently, the amplitude of saccades differs from the angular distance between the points intended 

for fixation. Then, they are followed by a secondary, or corrective, saccade to reduce the error 

between the position of the eyes at the end of the primary saccade and the position of the target (Figure 

4.10). For target amplitudes greater than 20⁰, the size of the corrective saccade is typically about 10% 

of that of the primary component. At target amplitudes of 5-10⁰ the primary saccade tends to be 

accurate, and below that amplitude overshoot rather than undershoot is generally observed 

(Carpenter, 1988). Thus, saccades tend to undershoot distant targets but overshoot close ones. 
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Figure 4.10. Human saccades of different sizes. The beginning of each movement is at time zero. Overshoot for 

lower amplitude saccades and undershoot for larger amplitude ones can be seen. Source: (Carpenter, 1988). 

Corrective saccades are not the result of sensing a visual error at the end of the first saccade. 

Becker & Fuchs (1969) showed that corrective saccades occurred in total darkness. In the absence of 

visual feedback, it has been shown that the accuracy of the correction is correlated with the latency 

of the primary saccades. The longer a subject takes to make the initial saccade, the more accurate the 

corrective saccade. This implies that the preparation of corrective saccades begins with the 

preparation of the primary saccades. If visual feedback is available, the prepared correction can be 

modified to increase the final accuracy (Tian, Ying, & Zee, 2013). 

4.4.1.4. Neural control 

In this subsection, a brief overview of the major neural structures involved in the generation and 

control of saccades is given. 

The neural control can be divided into two categories (Ciuffreda & Tannen, 1995). The first 

reflects higher-level control processes and includes the primary structures involved in target selection, 

localization, and initial calculation of the desired change in eye position. The second reflects lower-

level control processes and includes the primary structures involved in the generation of the pulse-

step controller signal to the oculomotor neurons. 

The structures of the higher-level control include the frontal eye fields, parietal lobes, 

superior colliculus, and cerebellum (Figure 4.11). The frontal eye fields are located in the frontal 

cortex (in Brodmann’s area 8) and are involved in the attention and selection of targets for future 

fixation. Moreover, since they contain a neural map of visual space, they provide the needed 

information about desired saccade amplitude and direction (Purves et al., 2004). The parietal lobes 



State of the art 

26 

 

are important for shifts of visual attention, which may be accompanied by saccades and are involved 

in programming saccades to visual targets (Leigh & Zee, 2015). These two structures transmit 

information to the superior colliculus. The superior colliculus might also contain a motor map, which 

implies that neurons in a particular region of the superior colliculus are activated by the presentation 

of visual stimuli in a specific region of visual space. In this region, the information from the frontal 

eye fields and the parietal lobes is processed, as well as that from other auditory and somatic stimuli, 

and transmitted to brainstem structures involved in generating the pulse-step signal. The cerebellum 

controls saccadic accuracy. 

 

Figure 4.11. (A) The cerebral areas involved in the control of saccades are shaded in red. The brainstem (shaded 

in gray) is enlarged in panel (B) with a sagittal view. The different brainstem areas that control saccadic 

movements are represented schematically. V1: primary visual cortex. PPRF: paramedian pontine reticular 

formation. MLF: medial longitudinal fasciculus. 

The direction of saccades is controlled by two different gaze centers in the reticular 

formation, which receive information from the superior colliculus and the frontal eye field. Horizontal 

eye movements are generated by a collection of local circuit neurons in the paramedian pontine 

reticular formation (PPRF) or horizontal gaze center. Meanwhile, vertical movements are generated 

in the medial longitudinal fasciculus (MLF) or vertical gaze center (Figure 4.11B). Activation of both 

centers simultaneously results in oblique movements, whose trajectories are determined by the 

relative contribution of each center. The pathways for the control and generation of horizontal 

saccades are illustrated in Figure 4.12. Neurons in the PPRF project to the ipsilateral abducens 
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nucleus, where there are motor neurons that innervate the ipsilateral lateral rectus, and internuclear 

neurons that send their axons to the contralateral oculomotor nucleus. The oculomotor nucleus 

contains motor neurons that innervate the medial rectus. As a result, activation of PPRF neurons on 

one side of the pons causes a horizontal movement of both eyes towards the same side. In parallel, 

there is an inhibitory circuit of neurons that project to the contralateral abducens nucleus, where they 

project on motor neurons to the lateral rectus and internuclear neurons to the contralateral oculomotor 

nucleus. As a consequence, there is a reduction of activity of the ipsilateral medial rectus and the 

contralateral lateral rectus (Purves et al., 2004). 

 

Figure 4.12. Schematic representation of the neural pathways involved in the control of a rightward horizontal 

saccade. Red: excitatory circuit. Green: Inhibitory circuit. PPRF: Paramedian pontine reticular formation. 

The lower-level process involves the generation of the pulse-step neural controller signal 

(Bahill & Stark, 1979), which is inferred to be the neural signal for the ocular motor neurons to 

generate saccades. It requires precise synchronization of two basic neural elements: burst and pause 

neurons (Figure 4.13). The burst neurons for horizontal and vertical saccades are located in the PPRF 

and the MLF, respectively. They receive information from the superior colliculus and the frontal eye 

fields and begin high-frequency firing just before and during a saccade. Their pulse of neural activity 

is correlated with the peak velocity and amplitude of the saccade. The pulse component of the 

controller signal is responsible for the rapid movement of the eyes. Then, the neural integrator 
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integrates the pulse, which becomes a step, and the combined pulse-step controller signal is 

transmitted to the appropriate motor neurons. The step is responsible for maintaining the eyes in the 

new position (tonic neurons). In contrast, omnipause neurons fire continuously at a constant rate in 

order to inhibit burst cells except just before and during a saccade. The pulse-step neural controller 

signal which produces excitation to the agonist muscle is mirrored by a similar inhibitor signal to the 

antagonist muscle. 

 

Figure 4.13. Example of the firing rate of different neurons that control saccadic movements. Source: (Kandel, 

Schwartz, Jessell, Siegelbaum, & Hudspeth, 2013). 

4.4.2. Vergence eye movements 

Vergence movements are disjunctive movements, which means that the two eyes move in opposite 

directions. They are used to align the fovea of each eye with targets located at different distances from 

the observer. For convergence movements the angle between both lines of gaze increases in order to 

have binocular single vision of a nearer object of interest. In contrast, for divergence movements this 

angle decreases as the lines of gaze intersect in a farther target. 

4.4.2.1. Stimuli to vergence movements 

In 1893, Maddox identified four stimuli that drive vergence movements, which led to classify 

vergence into four components: disparity vergence, accommodative vergence, proximal vergence, 

and tonic vergence (Ciuffreda, 1992). 

Disparity or fusional vergence is driven by binocular retinal disparity as its primary input. 

Retinal disparity is the angular positional difference at the eyes between an object in the field and the 

binocular fixation point. Fusional vergence is the response of the motor aspect of binocular vision. 

Hence, the role of this movement is to reduce the retinal disparity within the limits of Panum’s 
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fusional areas in order to obtain single binocular vision of the object of interest (Ciuffreda & Tannen, 

1995). The optimal response of the vergence system is shown with disparity values less than 2 to 4º 

(Erkelens, 1987; Schor, Robertson, & Wesson, 1986). Therefore, the motor responses are usually 

initiated by other high-level cues and disparity is mainly used as a feedback to refine the response 

once the stimulus’ disparity is reduced to this range of values. 

The disparity vergence system can be characterized according to several aspects. For 

example, according to its horizontal, vertical, and cyclodisparity retinal components; with respect to 

the direction of the movement (convergence versus divergence); or with respect to the target spatial 

location as symmetric or asymmetric disparity vergence. Symmetric disparity vergence is elicited 

when the targets are aligned along the midline. Then, retinal disparity is symmetrically distributed 

into the two eyes. Conversely, asymmetric disparity occurs when the target is placed in any other 

position. An asymmetric vergence response typically consists of a small initial vergence movement 

followed by a saccade to position the eyes to have fairly symmetric retinal disparity. The response is 

finished with an approximately symmetric vergence movement (Ciuffreda & Tannen, 1995). The 

interaction between saccadic and vergence systems is reviewed in section 4.4.2.6. 

Accommodative vergence is associated with a change in blur-driven accommodation. It is 

present in both monocular and binocular viewing conditions. While fusional vergence movements 

aim to reduce the stimulus that produces them (retinal disparity) using negative visual feedback, 

vergence movements driven by accommodation have no direct effect upon the retinal blur stimulus 

that evokes them. Thus, they are open-loop responses. 

Proximal vergence is caused solely by the apparent or perceived nearness of targets in the 

field. Although it has not been a popular subject of study, some authors concluded that proximal 

vergence might have a relevant contribution to the overall vergence response (North, Henson, & 

Smith, 1993; Wick & Bedell, 1989). In open-loop conditions, proximity begins to exert an influence 

on the vergence system for objects closer than 3 m (Rosenfield, Ciuffreda, & Hung, 1991). 

Finally, tonic vergence is driven by the baseline midbrain neural stimulation. For this reason, 

the eyes of a conscious adult subject in the absence of disparity, blur, and proximal stimuli are not in 

the position of anatomical rest but in a more convergent position at a distance of 120 to 200 cm 

(Fincham, 1962; Owens & Liebowitz, 1980). It can be regarded as a bias term into the vergence 

system and is not related with any other oculomotor parameter (Ciuffreda & Tannen, 1995). 
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4.4.2.2. Interactions between vergence and accommodation 

The near response, or near triad, is comprised of three motor responses that occur when humans shift 

their gaze from a distant to a near fixation target: convergence, accommodation, and pupil 

constriction. Under normal viewing conditions, these three actions usually occur in conjunction with 

saccades and other compensatory eye movements induced by head movements (Mays & Gamlin, 

1995b). The interaction between vergence and accommodation systems is of particular interest to 

understand the whole oculomotor behavior and evaluate binocular vision. 

The strength of the association between accommodation (A) and accommodative 

convergence (AC) is the AC/A ratio, which is typically measured in PD/sphere diopters (D). It can 

be assessed in the laboratory and clinically by removing the stimulus for disparity vergence. In fact, 

its assessment is important for the diagnosis of binocular dysfunctions and to determine the 

appropriate management plan. The expected AC/A ratio in normal subjects is 4 ± 2 PD/D (Scheiman 

& Wick, 2014). Not only is convergence (C) linked to accommodation but, likewise, accommodation 

is linked to vergence through convergence-driven accommodation (CA). The CA/C ratio, expressed 

in D/PD, measures the strength of this relationship and ranges between 0.08 and 0.15 D/PD (Kersten 

& Legge, 1983; Miles, Judge, & Optican, 1987). The CA/C ratio is not commonly assessed in clinics. 

Over the last decades, several authors have proposed different static and dynamic models of 

the vergence system. The most popular ones are probably those proposed by Clifton M. Schor and 

George K. Hung. A simplified example of the vergence model proposed by Schor is shown in Figure 

4.14. Although the detailed description of these models is out of the scope of this section, a brief 

overview is given. For a detailed explanation see (Schor, 1992) or (Hung, 1992). Both models are 

based on negative feedback control and agree in a general organization comprised of a phasic or 

transient and a tonic or sustained components. The phasic component is responsible for the initial fast 

response to a stimulus, while the tonic component holds the eyes into the new position. An important 

feature of the control models is the adaptation of the tonic component to remove progressively the 

stimulus from the phasic control element. One of the main difference between the models proposed 

by Schor and Hung is the origin of the cross-links between the accommodative and vergence systems. 

While Schor supports that cross-links origin before the adaptable tonic component, Hung places them 

after tonic adaptation. Both models are supported by several observations of the dynamic behavior of 

accommodation, vergence, and their interactions that fit well with model simulations (Hung, 1992; 

Schor, 1992). It is important to notice that besides disparity and blur, other cues such as stimulus’ 

proximity, size, or texture also contribute to the overall vergence response (Hung, Ciuffreda, & 

Rosenfield, 1996; Schor, Alexander, Cormack, & Stevenson, 1992). A parallel field of research 
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studies how different cues are combined and weighted to give an accurate response (Ernst & Banks, 

2002; Girshick & Banks, 2009; Hillis, Watt, Landy, & Banks, 2004). 

 

Figure 4.14. Simplified block diagram of a model of accommodation (upper branch) and vergence (lower 

branch) systems and their interactions proposed by Schor (1992). 

4.4.2.3. Dynamics of vergence 

Vergence responses to a step change in retinal disparity contain two components: an initial fast open-

loop component, which is directly related to the underlying motor neural controller signal and lasts 

for several hundred milliseconds, followed by a smaller and slower closed-loop component that 

reduces the residual disparity to within neurosensory tolerances (Panum’s fusional area). A phase 

plane plot (velocity versus position) is useful for analyzing the response dynamics and determining 

when changes in dynamics occur (Figure 4.15A) (Alvarez, Semmlow, Yuan, & Munoz, 1997). 

Typically, the difference in vergence amplitude between that found for the fast phase versus the fast-

plus-slow phases is less than 0.5⁰ (Hung, Ciuffreda, Semmlow, & Horng, 1994). 

As discussed for saccades in section 4.4.1.1, there is also a main sequence for vergence 

movements which relates their peak velocity with their amplitude (Figure 4.15B). Vergence response 

peak velocity increases in proportion to vergence response amplitude, with a ratio of 4:1 (Hung et al., 

1994). Hung et al. (1994) represented main sequences of vergence responses under free viewing 

condition and using an haploscope. Vergence responses under free viewing condition were elicited 

by disparity, blur and proximity stimuli, while in the haploscope only disparity vergence was 

stimulated. They concluded that both types of vergence responses followed the same main sequence 

(Hung et al., 1994). More recently, Maxwell et al. supported the finding that the main sequence of 

responses to disparity and blur stimuli was virtually identical to responses to disparity only stimuli 
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(Maxwell, Tong, & Schor, 2010). In contrast, they found that the velocities of responses to disparity 

(either only disparity or disparity with blur) were about twice as great as the responses in which blur 

alone was the cue (Aligned, Monoc Line and Binoc Line in Figure 4.15B). Hung et al. (1994) also 

tested different conditions that differed on the presence or absence of a target and its periodicity. The 

fact that the vergence responses in all conditions followed the same main sequence suggested the 

presence of a common neural controller relatively independent of the stimulus conditions. 

 

Figure 4.15. (A) Phase plane plot showing peak velocity versus amplitude for a single vergence movement. A: 

amplitude of the fast component; Vp: vergence peak velocity. Source: (Hung et al., 1994). (B) Main sequence 

of accommodative vergence elicited by three different stimuli (Aligned, Monoc Line and Binoc Line), disparity 

vergence (Disparity), and vergence responses to both disparity and blur cues (Blur + Disparity). The error bars 

show the SD of the means between subjects for Aligned and Disparity responses. SD for other conditions were 

similar but not shown for clarity. Source: (Maxwell et al., 2010). 

As shown in Figure 4.15, vergence velocities (typically <30º/s) are much slower than 

saccadic peak velocities. Accordingly, its duration is also much longer. In addition to these 

fundamental differences between saccades and vergence movements, there are also dissimilarities 

between convergence and divergence movements. In general, faster dynamics are reported for 

convergence than divergence movements (Alvarez, Semmlow, Yuan, & Munoz, 2002; Hung, Zhu, & 

Ciuffreda, 1997; Krishnan, Farazian, & Stark, 1973; Zee, Fitzgibbon, & Optican, 1992). In fact, 

divergence peak velocity is influenced by the initial position of the stimulus; if the eyes start very 

converged, then the divergence velocity is faster. However, convergence movements do not show this 

dependence on starting vergence angle (Alvarez, Semmlow, & Pedrono, 2005). The same research 

group also showed that divergence dynamics decreased as the visual stimulus moved away for 

smoothly moving ramp stimuli (Y. Y. Lee, Chen, & Alvarez, 2008). 
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Vergence dynamics are similar from about 8 years of age until the mid-forties (Qing & 

Kapoula, 2004). In response to a disparity step stimulus, older subjects generate vergence responses 

with longer latency and decreased peak velocity and acceleration compared to younger subjects 

(Rambold, Neumann, Sander, & Helmchen, 2005). However, responses to ramp disparity stimuli are 

similar in older and younger subjects. Conversely, in response to monocular, mainly accommodative 

stimuli, older subjects generate similar initial responses to younger subjects, but show a decreased 

response to ramp disparity stimuli (Rambold et al., 2005). The decrease in steady-state response to 

accommodative stimuli may be caused by presbyopia. This reduction in accommodative ability may 

lead to compensatory adaptation in the linkage between convergence and accommodation (Rosenfield 

& Ciuffreda, 1990; Rosenfield, Ciuffreda, & Chen, 1995). 

The occurrence of saccades concurrently with vergence is a common phenomenon and leads 

to a change in vergence dynamics. This aspect is addressed in the subsection 4.4.2.6. 

Another factor that has been found to alter vergence dynamics is the presence of convergence 

insufficiency. Several studies support that subjects with convergence insufficiency have reduced  

vergence peak velocities compared to binocularly normal controls (Alvarez et al., 2010; Thiagarajan, 

Ciuffreda, & Ludlam, 2011; van Leeuwen, Westen, van der Steen, de Faber, & Collewijn, 1999). 

Alvarez & Kim (2013) showed that the convergence peak velocity was more asymmetric between the 

two eyes in patients with convergence insufficiency compared to control subjects with normal 

binocular vision, whose convergence peak velocity was almost identical in the two eyes when they 

stared at symmetric convergence step stimuli. They also found that the responses of the convergence 

insufficiency patients became significantly more symmetrical after vergence training. However, in 

this study they did not take into account the relationship between phoria and phoria adaptation with 

the convergence and divergence peak velocity, which was previously found by the same group (Kim 

& Alvarez, 2012a; Kim, Granger-Donetti, Vicci, & Alvarez, 2010). Vergence training has been found 

to be an effective method to improve vergence temporal characteristics and accuracy also in subjects 

without binocular dysfunctions (Talasan, Scheiman, Li, & Alvarez, 2016).  

4.4.2.4. Latency 

Latency of vergence movements is rather similar to that of saccades, i.e. around 120 to 200 ms, 

especially in adults. In children, vergence latency tends to be shorter than that of saccades (Bucci, 

Kapoula, Yang, & Bremond-Gignac, 2006). Latency depends on the prediction degree of the stimulus 

(Figure 4.16). In response to regular, predictable target jumps of a visual target between far and near 

locations, most subjects make vergence drifts in anticipation of the target  (Kumar, Han, Garbutt, & 
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Leigh, 2002; Yuan, Semmlow, & Munoz, 2000). For smooth vergence responses to ramp stimuli, 

latency also decreases when the motion of the target is predictable (Erkelens, van der Steen, Steinman, 

& Collewijn, 1989). The section 5.4 focuses on the effect of stimulus predictability on vergence 

movements. 

 

Figure 4.16. (A) Response to a predictable stimulus. Vergence precedes the target jumps (arrows). (B) Response 

to an unpredictable stimulus. Vergence follows the target jumps. Source: Modified from (Kumar et al., 2002). 

Controversy exists regarding the differences in latency between convergence and divergence. 

Some authors found longer latencies for convergence than divergence (Krishnan et al., 1973; Q. Yang 

et al., 2002), while others reported the opposite behavior (Alvarez et al., 2002; Hung et al., 1997; 

Semmlow & Wetzel, 1979). Similarly than for vergence peak velocity, Alvarez et al. (2005) found 

that divergence latency depends on the starting vergence angle. In contrast, convergence latency 

seems to be fairly independent of the starting stimulus position. 

Considering the disparity and accommodative vergence components separately, latencies for 

disparity vergence are shorter than for accommodative vergence, both for convergence and 

divergence movements (Semmlow & Wetzel, 1979). For this reason, under normal binocular viewing 

conditions, disparity vergence typically precedes any accommodative vergence contribution by 

approximately 100 ms. This may be functionally beneficial, since it allows the retinal image to 

approach the fovea first, where the accommodative gain is highest. 

4.4.2.5. Neural control 

Many neural structures are involved in the control of vergence movements (Figure 4.17). Structures 

involved in the reception of sensory afferent signals (disparity and blur) and its transmission to motor 

areas include the primary visual cortex, the medial temporal visual area and the medial superior 
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temporal visual area, the parietal cortex, the frontal eye fields, the superior colliculus, the nucleus 

reticularis tegmenti pontis, and some areas of the cerebellum. The posterior interposed nucleus of the 

cerebellum projects to the supraoculomotor nucleus, which is the area responsible to generate the 

final controller signal to the oculomotor neurons (Levin et al., 2011). 

 

Figure 4.17. (A) The cerebral areas involved in the control of vergence movements are shaded in red. The 

brainstem (shaded in gray) is enlarged in panel (B) with a sagittal view. The different brainstem areas that 

control vergence are represented schematically. V1: primary visual cortex. MT: medial temporal visual area. 

MST: medial superior temporal visual area. NRTP: nucleus reticularis tegmenti pontis. 

The final controller signal consists of a small and broad pulse combined with a step having 

characteristics appropriate for the relatively slow vergence response (Ciuffreda & Tannen, 1995). 

Three types of midbrain neural cells lying in the mesencephalic reticular formation (Figure 4.17B), 

near the oculomotor nucleus in a region called the supraoculomotor nucleus, have been found to be 

responsible for the overall vergence control (Mays, Porter, Gamlin, & Tello, 1986; Zee & Levi, 1989): 

burst, tonic, and burst-tonic neurons. Vergence burst neurons only fire just before and during the 

vergence response and have a profile similar to the instantaneous vergence velocity. These cells seem 

to provide velocity and position signals to the medial rectus motor neurons. There are both 

convergence and divergence burst neurons, although convergence ones are more abundant (Leigh & 

Zee, 2015). Vergence tonic neurons change their firing rate 10 ms to 30 ms before the vergence 

movement, which is proportional to vergence angle. There are more convergence tonic cells than 

divergence tonic cells (Leigh & Zee, 2015). Vergence burst-tonic neurons combine both vergence 
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position and velocity information: the burst is related to vergence velocity and the tonic firing rate to 

vergence angle. Excitatory connections of the supraoculomotor nucleus project to the oculomotor 

nucleus, which innervates the medial recti muscles. Conversely, inhibitory connections project to the 

abducens nucleus to inhibit activity of the lateral recti muscles.  

Burst neurons in the mesencephalic reticular formation may be part of the substrate for 

interactions between vergence and accommodation systems as they also provide commands to the 

Edinger-Westphal nucleus to stimulate accommodation (Mays & Gamlin, 1995b). Stimulation of the 

Edinger-Westphal nucleus also results in pupillary constriction. 

4.4.2.6. Saccade-vergence interactions 

In normal viewing conditions, pure vergence movements rarely occur, as targets should be carefully 

aligned along the midline to elicit symmetrical movements. Thus, vergence movements typically 

occur in conjunction with other types of ocular movements. 

As shown in the following sections 5.3 and 5.4, even symmetrical vergence elicited by a 

stimulus carefully aligned along the midline is usually accompanied by involuntary saccades 

(Collewijn, Erkelens, & Steinman, 1995; Coubard & Kapoula, 2008; Erkelens, Steinman, & 

Collewijn, 1989; Kenyon, Ciuffreda, & Stark, 1980; Semmlow, Chen, Granger-Donetti, & Alvarez, 

2009; Semmlow, Chen, Pedrono, & Alvarez, 2008). Similarly, saccades between isovergent targets 

are usually accompanied by characteristic vergence movements (Collewijn et al., 1988a, 1988b; van 

Leeuwen, Collewijn, & Erkelens, 1998). Some authors reported a higher prevalence of saccades 

during symmetrical divergence than during symmetrical convergence (Collewijn et al., 1995; Kenyon 

et al., 1980; Zee et al., 1992). 

Saccade-vergence interaction is a valuable tool to investigate the modularity of saccade and 

vergence systems, which in essence is related to the still unresolved debate between Hering and 

Helmholtz theories (Coubard, 2013; King, 2011). Hering proposed that the two eyes should be 

considered as a whole organ, and advocated a binocular control of eye movements by which both 

eyes receive simultaneously two equal innervations (see section 4.1.4) (Hering, 1977). He defended 

that vergence and saccadic movements are controlled by two independent systems. Oppositely, 

Helmholtz supported the hypothesis that eye movements are controlled monocularly by two separate 

commands for the two eyes instead of for conjugate and vergence movements. 

Following Hering’s conception, Yarbus (1967) supported the additivity hypothesis by which  

a combined movement is the result of a linear sum of saccades and vergence movements. However, 
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Ono & Nakamizo (1978) and Ono et al. (1978) found that saccades were too disconjugate (unequal) 

in terms of amplitude and velocity between the two eyes to be only explained by the additivity 

hypothesis. Several authors supported this finding (Enright, 1984; Kenyon et al., 1980), and Enright 

(1984) concluded that saccades and vergence are not summed in combined movements but they 

interact. This interaction has been confirmed and formalized with models by other authors (Erkelens, 

Steinman, et al., 1989; Zee et al., 1992). 

As a result of the interaction, the dynamics of combined eye movements are different from 

those of pure saccade and pure vergence. On the one hand, vergence movements are speeded up by 

concurrent saccades (Enright, 1984; Erkelens, Steinman, et al., 1989; Kim & Alvarez, 2012b; 

Maxwell et al., 2010; Semmlow et al., 2008; Zee et al., 1992). Saccades are more likely to occur in 

vergence responses with reduced peak velocity. Hence, saccades may facilitate the response when the 

dynamic properties of vergence are modest. An evidence of this fact is the finding that the prevalence 

of saccades during convergence in patients with convergence insufficiency is significantly higher 

before vergence training than after it (Alvarez & Kim, 2013). On the other hand, saccades made in 

conjunction with vergence are slower than pure saccades of a similar amplitude (Collewijn et al., 

1995). Interestingly, accommodation is also speeded up when saccades occur concurrently (Schor, 

Lott, Pope, & Graham, 1999). 

The neural mechanisms for vergence-saccade interactions are not fully understood (Leigh & 

Zee, 2015). One hypothesis is that omnipause neurons not only inhibit saccadic burst neurons, but 

also provide a weak inhibition of vergence burst neurons (Mays & Gamlin, 1995b). Therefore, the 

release of omnipause neurons inhibition during a saccade would allow the vergence burst neurons to 

fire more vigorously, which would result in an increment of vergence velocity. Although 

electrophysiological results support this hypothesis (Mays & Gamlin, 1995a), there is also some 

evidence against it (Leigh & Zee, 2015). 

4.4.3. Smooth pursuit 

Smooth pursuit is the movement of the eyes executed in order to track a small moving target. It is 

typically accompanied by saccades. It is important to point out the fact that while saccades respond 

primarily to the position of the retinal image of an object, smooth pursuit responds basically to its 

motion.  
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4.4.3.1. Dynamics of smooth pursuit 

The usual stimulus for smooth pursuit is movement of an image upon the retina, and its main objective 

is to match eye velocity to target velocity. Therefore, it maintains retinal image velocity to essentially 

zero after its initiation. The image of the object does not need to lie on the fovea. Pursuit can occur 

in any meridian, but it is smoother and more precise in the horizontal direction (Ke, Lam, Pai, & 

Spering, 2013). The initial acceleration of the eye in response to horizontal target motion is greater 

for targets moving towards the fovea than for targets moving away from the fovea. For vertical target 

motions, eye accelerations are greater for stimulus motion in the lower visual field, irrespective of 

whether the target is moving towards or away from the fovea (Ke et al., 2013). 

There are two components to smooth pursuit responses (Carpenter, 1988). In the first 40 ms 

approximately, the acceleration of the eye is constant and the response is unrelated to any aspect of 

the stimulus, so it is open-loop. Typical values for this initial eye acceleration range from 40 to 

100º/s2, varying from subject to subject (Leigh & Zee, 2015).The later component is in close-loop; 

thus, influenced more obviously by the nature of the stimulus (its position, velocity and background).  

The maximal velocities achieved in humans depend on the kind of target used and ranged 

from 80 to 160⁰/s (Carpenter, 1988). 

During smooth pursuit of a sinusoidal target motion, performance is usually evaluated by 

measuring gain (peak eye velocity/peak target velocity) and phase, which is a measure of the temporal 

synchrony between the target and the eye. During ideal pursuit tracking, the gain is close to 1 and 

phase shift is small (the eye does not lag behind the target). With constant velocity targets (ramps), 

pursuit gain does not significantly deteriorate until target velocity exceeds about 100º/s. Up to this 

velocity saturation, gain is typically less than 1 but fairly constant (Figure 4.18). 

 

Figure 4.18. Demonstration of pursuit velocity saturation, which becomes evident with target velocities above 

93º/s. Source: (Meyer, Lasker, & Robinson, 1985). 
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4.4.3.2. Latency 

The latency of smooth pursuit is very consistent, with a mean of 100 ± 5 ms to targets moving at 5º/s 

or faster. For lower velocities, latency increases to 125 ms. These values are not only similar among 

subjects, but they are also very repeatable from day to day for individuals (Carl & Gellman, 1987). 

The latency of smooth pursuit depends on several stimuli’s characteristics (Leigh & Zee, 

2015): bright targets elicit movements with shorter latency than do dim targets, and stationary 

distracters increase the pursuit latency (Knox & Bekkour, 2004). However, there is no change in the 

latency of smooth pursuit with age (Morrow & Sharpe, 1993; Straube, Scheuerer, & Eggert, 1997). 

4.4.3.3. Effect of prediction 

The study of predictive properties of smooth pursuit has been an active research area (Kowler, Aitkin, 

Ross, Santos, & Zhao, 2014).  

The human pursuit system is capable of learning to improve its response to repetitive stimuli 

with practice (Westheimer, 1954). In addition, prediction not only occurs when tracking repetitive 

predictable stimuli, but also when the motion is unpredictable. In this case, anticipatory responses 

depend on the properties of the motions tracked in the recent past (Santos, Gnang, & Kowler, 2012). 

Smooth pursuit does not stop when the tracked target is intermittently occluded. Instead, anticipation 

is involved in matching the motion expected at target reappearance. Anticipatory responses can also 

be evoked by cues that signal the direction (besides the speed) of future target motion (Kowler et al., 

2014). 

4.4.3.4. Neural control 

In this section, a brief overview of the neural control of smooth pursuit movements is given (Ciuffreda 

& Tannen, 1995). For a more detailed explanation, see Leigh & Zee (2015). The main brainstem areas 

involved in the control of smooth pursuit are represented schematically in Figure 4.19.  
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Figure 4.19. Sagittal view of the brainstem with the main areas involved in the control of smooth pursuit. The 

cerebral areas that project to these regions are represented in Figure 4.20. NRTP: nucleus reticularis tegmenti 

pontis. DLPN: dorsolateral pontine nucleus. 

A schematic summary of the neural pathways for smooth pursuit is shown in Figure 4.20. 

Cells in the primary striate visual cortex (V1) respond to the speed and direction of a moving target, 

and project to the middle temporal (MT) and medial superior temporal (MST) visual areas. The MT 

area encodes and processes the direction and velocity of stimulus motion, and the MST area is 

probably involved in encoding both visual signals related to pursuit and the efference copy of the eye 

movement command. Then, visual information takes two parallel descending pathways (Leigh & Zee, 

2015). In the first pathway (shown in red in Figure 4.20), the MT and MST areas project to the frontal 

eye fields, which in turn project to the nucleus reticularis tegmenti pontis (NRTP), the dorsal vermis 

in the cerebellum, and the fastigial nucleus. The circuit from the fastigial nucleus to ocular motor 

neurons has not been defined yet. This pathway is important for smooth pursuit initiation. The second 

pathway (shown in blue in Figure 4.20) origins from the MT and MST areas, which project to the 

dorsolateral pontine nucleus (DLPN), the paraflocculus in the cerebellum, and the vestibular nucleus. 

Neurons in the vestibular nucleus are responsible for integrating the eye velocity signals in eye 

position signals and project to motor neurons. This second pathway is important for sustaining smooth 

pursuit. There is an additional pathway (not shown in Figure 4.20) from the MT and MST areas to 

the nucleus of the optic tract which generates optokinetic nystagmus. 
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Figure 4.20. Schematic representation of the neural pathways involved in the control of smooth pursuit. Red: 

pathway involved in smooth pursuit initiation. Blue: pathway involved in sustaining smooth pursuit. DLPN: 

Dorsolateral pontine nuclei. NRTP: Nucleus reticularis tegmenti pontis. 

4.4.4. Fixational eye movements 

Our visual system is governed by neural adaptation, which means that steady illumination produces 

weak neural responses, whereas abrupt changes in illumination across space and time generate strong 

responses (Hartline, 1940). Thus, unchanging features of the scene fade from view. Eye movements 

during fixation are therefore necessary to overcome the loss of vision due to uniform stimulation of 

the retinal receptors, even at the potential cost of a decrease in visual acuity in the case of short 

exposure time to the stimulus (Riggs, Ratliff, Cornsweet, & Cornsweet, 1953). The role of oculomotor 

fixational mechanisms might not be much retinal stabilization than controlling image motion in an 

optimal fashion for visual processing (Rucci, Ahissar, & Burr, 2018; Skavenski, Hansen, Steinman, 

& Winterson, 1979): too much image motion degrades resolution, and too little motion leads to image 

fading. Even though perfect retinal correspondence is complicated due to the fact that the eyes are 

never still, we rarely experience diplopia since fixation disparity is maintained within the Panum’s 

fusional areas (Otero-Millan, Macknik, & Martinez-Conde, 2014). 
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Because of their small amplitude, extensive studies about fixational movements 

characteristics had to wait for the development of eye tracking techniques exquisitely sensitive to eye 

movement, but unresponsive to head movement. Moreover, the development of methods to counteract 

eye movements and thereby cause visual fading led to a large amount of research in the field, 

especially during the 1950s and 1960s (Ditchburn & Ginsborg, 1952; Riggs & Ratliff, 1952; Yarbus, 

1967). It is generally agreed that there are three main types of fixational movements: tremor, drift and 

microsaccades (Figure 4.21). 

 

Figure 4.21. (A) Horizontal eyes position of a normal person versus time. The small-amplitude, high-frequency 

component is tremor; the large and slow excursions are drift; microsaccades are numbered from 1 to 4. LE: left 

eye. RE: right eye. Source: Modified from (Schulz, 1984). (B) Schematic representation of how fixational eye 

movements carry the retinal image across the photoreceptors. Tremor is the high-frequency movement 

superimposed on slow drifts (curved lines). Microsaccades are represented with straight lines. The diameter of 

the patch of the fovea shown here is 0.05 mm. Source: (Pritchard, 1961).  

4.4.4.1. Tremor 

Tremor is an aperiodic, wave-like motion of the eyes (Martinez-Conde, Macknik, & Hubel, 2004; 

Rolfs, 2009). It is the smallest of all eye movements. Only the most accurate eye tracking systems 

can measure it without falling within the noise level. In fact, some specific devices based on a 

piezoelectric transduction method have been developed to measure tremor (Bengi & Thomas, 1968; 

Bolger, Bojanic, Sheahan, Coakley, & Malone, 1999; McCamy, Collins, et al., 2013).  

Its amplitude is of the order of the diameter of the smallest cones in the fovea, i.e. around 20 

sec arc (Carpenter, 1988; Yarbus, 1967). The frequency of tremor is around 90 Hz (Bolger et al., 

1999; Carpenter, 1988). However, reported amplitude and frequency values deviate across various 

studies depending on the monitoring system used and the performed data analysis. See Table 1 in 
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Bolger et al. (1999) for a summary of tremor frequency values according to different studies between 

1934 and 1999, or Table 1 in Martinez-Conde et al. (2004) for other tremor characteristics according 

to different authors. 

Early binocular examinations found that tremor is independent in the two eyes; there is no 

binocular correlation (Ditchburn & Ginsborg, 1953). However, Spauschus et al. examined frequency 

components of ocular tremor and drift and found coherence in the two eyes in both low (up to 25 Hz) 

and high (60-90 Hz) frequency ranges (Spauschus, Marsden, Halliday, Rosenberg, & Brown, 1999). 

This finding suggested some level of synchronization that could be due to motor neuron activity. 

In general, the main role of fixational eye movements is to preclude visual fading by 

preventing the eyes from being perfectly still. However, tremor amplitudes rarely exceed the diameter 

of one photoreceptor. Thus, the importance of this kind of fixational movement in this regard appears 

to be unclear. Temporal characteristics of tremor – the fact that its frequency is far above the flicker-

fusion frequency of the human visual system – have raised further doubts in the significance of this 

motion for visibility (Yarbus, 1967). Nevertheless, other studies stated that tremor frequencies can be 

below the flicker fusion limit (Spauschus et al., 1999), and that early visual neurons can follow high-

frequency flickering that is over the perceptual threshold for flicker fusion (Martinez-Conde, 

Macknik, & Hubel, 2002). Therefore, tremor is possibly adequate to maintain activity in the early 

visual system, which might then lead to visual perception (Martinez-Conde et al., 2004). 

Finally, there is no evidence that the amplitude of tremor can be influenced by visual 

conditions, or by efforts of the will (Carpenter, 1988). 

4.4.4.2. Drift 

Drift refers to the irregular, erratic, slow eye movements that occur in between microsaccades during 

attempted fixation. This motion is random in the sense that a movement is equally likely to be towards 

or away from the mean direction of the visual axis (Ditchburn & Ginsborg, 1953). Its amplitude is 

around 2 to 5 min arc and its velocity ranges from 1 to 8 min arc/s, although the mean velocity is 5 

min arc/s and the maximum one is 30 min arc/s (Rolfs, 2009; Yarbus, 1967). Therefore, the image of 

the object being fixated moves across around 15 cones of the central part of the fovea per second. Its 

frequency is very low, less than 0.5 Hz. 

Different studies have obtained discrepant results regarding the binocular coordination of 

drifts. Some authors concluded that there is no correlation between both eyes (Carpenter, 1991; 

Krauskopf, Cornsweet, & Riggs, 1960; Yarbus, 1967), while other studies found some level of 
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synchronization between the two eyes during drifts (Spauschus et al., 1999). Ditchburn & Ginsborg 

(1953) concluded that the vertical component of drift is conjugate, with the two eyes moving upwards 

or downwards together, while the horizontal component alternates conjugate movements with periods 

of convergence and divergence approximately symmetrical for the two eyes. 

Cornsweet (1956) concluded that drift is not under direct visual control, it is not error 

correcting, but it is a result of the instability of the oculomotor system. However, later studies found 

drifts to correct both fixation position errors (R. M. Steinman, Cunitz, Timberlake, & Herman, 1967) 

and fixation disparity (St Cyr & Fender, 1969), although only horizontally. More recently, Engbert 

& Kliegl (2004) showed that on a long timescale (more than 100 ms) both microsaccades and drifts 

correct fixation position, but only microsaccades correct fixation disparity. Both microsaccades and 

drift produce random changes in disparity on short timescales (< 20 ms). 

4.4.4.3. Microsaccades 

Microsaccades are involuntary small saccades that occur 1-3 times per second during attempted 

fixation (Otero-Millan, Macknik, et al., 2014). Their amplitude is usually less than 30 min arc, 

although they can go up to 1º or more (Martinez-Conde, Otero-Millan, & Macknik, 2013; Rolfs, 

2009). In fact, most contemporary researchers have adopted the convention of using a 1º upper 

magnitude threshold. However, microsaccades should not be defined only regarding to their 

amplitude (Martinez-Conde et al., 2004). Microsaccades duration ranges from 0.2 to 0.3 s, depending 

on their amplitude (Ditchburn & Ginsborg, 1953; Lord, 1951; Yarbus, 1967). 

Microsaccades and saccades share most physical and functional properties. For instance, both 

saccades and microsaccades are typically binocular and conjugate (Ditchburn & Ginsborg, 1953; 

Krauskopf et al., 1960; Lord, 1951; Yarbus, 1967). However, Van Horn & Cullen (2012) contradicted 

this assumption and stated that microsaccades are not strictly conjugate, and other studies reported 

the presence of monocular microsaccades (Engbert & Kliegl, 2003a; Gautier, Bedell, Siderov, & 

Waugh, 2016; Hermens & Walker, 2010). 

Another feature that shows the link between saccades and microsaccades is the fact that they 

both follow the main sequence (Otero-Millan, Troncoso, Macknik, Serrano-Pedraza, & Martinez-

Conde, 2008; Zuber, Stark, & Cook, 1965) (Figure 4.22). Thus, microsaccades and large saccades 

(both voluntary and involuntary) might be generated and controlled by the same physiological system 

(Zuber et al., 1965). Moreover, temporal interactions between saccades and microsaccades further 

suggest a common triggering mechanism. Rolfs, Laubrock, & Kliegl (2006) found increased latencies 

for saccades that occur shortly after microsaccades. Later, they showed that this temporal interaction 
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is strongly dependent on microsaccade amplitude. Microsaccades with larger amplitudes are followed 

by longer saccadic latencies (Rolfs, Laubrock, & Kliegl, 2008). 

 

Figure 4.22. Main sequence of saccades in free-viewing conditions (blue) and microsaccades during fixation 

conditions (red). Source: (Otero-Millan et al., 2008). 

The role of microsaccades during visual fixation has been the subject of debate for more than 

fifty years (see Rolfs (2009) for a review). The first author who tested the initial hypotheses was 

Cornsweet (1956), who concluded that the role of microsaccades consists in returning the eyes on a 

fixated target and correct the intersaccadic drift. However, this idea was subsequently challenged. In 

the early 2000s, Engbert & Kliegl (2004) stated that on a short time scale microsaccades help to 

counteract retinal adaptation by increasing the persistence of the eyes’ random walk (introducing 

fixation errors), while on a longer time scale they reduce fixation position errors of the eyes, as well 

as binocular disparity. Although several studies observed lower microsaccade rates during tasks 

requiring high visual acuity and concluded that microsaccades were detrimental (Bridgeman & Palca, 

1980; Winterson & Collewijn, 1976), Ko, Poletti, & Rucci (2010) found that microsaccades precisely 

relocate the line of sight according to the ongoing demands of the task until they get inhibited at the 

last moment requiring fine control. Then, their results resolved the apparent contradiction by stating 

that microsaccades relocate the line of sight until necessary.  

More recent studies have shown that microsaccades are the most important eye movement 

contributor to restoring faded vision during fixation, for both foveal and peripheral targets (McCamy 

et al., 2012). Moreover, this study showed that multiple microsaccades within a short interval restore 

faded vision more effectively than single saccades and that microsaccades of all directions are equally 

effective. One should not confuse the concepts of preventing and reversing visual fading (McCamy, 
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Macknik, & Martinez-Conde, 2014). In these terms, both drift and microsaccades synergistically 

prevent fading from occurring (McCamy et al., 2014). To sum up, microsaccades and drift prevent 

fading, although not perfectly. Then, when vision fades, microsaccades are the fixational movements 

which restore vision more effectively. 

As saccades, microsaccades are often immediately followed by a fast smaller movement in 

the opposite direction, called a dynamic overshoot. These overshoots are also saccadic in nature, 

which means that they follow the same main sequence. Dynamic overshoots can be monocular and 

tend to be more common in the abducting eye (Abadi, Scallan, & Clement, 2000). Due to the 

oscillation of the lens in the eye, dynamic overshoots may appear larger in recordings performed with 

video oculography or Dual Purkinje eye tracking systems than in recordings obtained with scleral 

search coils (Kimmel, Mammo, & Newsome, 2012; Nyström, Hooge, & Holmqvist, 2013). 

Regarding the effect of viewing conditions on microsaccades, Krauskopf et al. (1960) found 

no differences in microsaccades characteristics between far and near viewing. According to their 

study, microsaccades are larger and less frequent during monocular viewing than during binocular 

viewing. However, other studies found that microsaccade properties did not differ between monocular 

and binocular conditions (Schulz, 1984). Microsaccades tend to become larger and less frequent in 

the dark. This increment in amplitude might be due to the fact that the eyes cannot maintain accurate 

fixation in complete darkness, and that a visual target is crucial to normal fixation (Cornsweet, 1956). 

Finally, although microsaccades are generally considered to be involuntary, careful attempts to fixate 

markedly reduce the rate of microsaccades (R. M. Steinman et al., 1967).  

4.4.5. Vestibular-Optokinetic eye movements 

So far different types of eye movements have been described assuming that the head is still. However, 

this is not the common situation in most everyday activities like during locomotion. This section 

consists in an overview of the oculomotor systems involved in holding images steady on the retina 

during movement of the head, i.e. the vestibular system, and the optokinetic system. 

The vestibular system produces the vestibulo-ocular reflex (VOR) to compensate for 

relatively brief, transient head movements (Leigh & Zee, 2015). It contains two organs that respond, 

respectively, to angular or rotational components of movements of the head and to linear or 

translational movements, i.e. three semicircular canals and two otoliths on each side of the head. 

These two organs are located into the inner ear (Levin et al., 2011). A head rotation in one particular 

direction leads to the displacement of endolymphatic fluid in the semicircular canals in the opposite 

direction, which produces a mechanical stimulation of the sensory cells of the system. This signal is 
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integrated to obtain a head displacement signal and, at the end, results in eye rotations that are 

approximately equal and in opposite direction to the rotation of the head (Leigh & Zee, 2015). The 

latency of VOR is as short as 6-15 ms (Maas, Huebner, Seidman, & Leigh, 1989), which is much 

lower than that of the other types of eye movements mediated by visual stimuli. Only the VOR is fast 

enough to generate eye movements to compensate for head motions at frequencies from 0.5 to 5 Hz, 

the predominant frequencies occurring during locomotion (Grossman, Leigh, Abel, Lanska, & 

Thurston, 1988; Grossman, Leigh, Bruce, Huebner, & Lanska, 1989). 

The optokinetic system produces the optokinetic nystagmus (OKN), a pattern of eye 

movements that compensates for relatively prolonged, sustained rotational head movements when the 

response of the vestibular system begins to falter (Leigh & Zee, 2015). While smooth pursuit is 

concerned with the fixation (alignment of the fovea with the object) of small moving targets, the 

optokinetic response is evoked when a large part of the visual field moves over the retina (optic flow) 

(Carpenter, 1988). OKN is a visually guided response consisting in a slow phase in which the eyes 

follow the moving field interrupted by resetting saccades (fast phase) 1 to 3 times per second. It can 

be tested by having the patient sit inside a large drum with black and white stripes painted on its inner 

surface and rotating it at particular velocities (Ciuffreda & Tannen, 1995). The OKN latency is 140 

ms (Collewijn, 1989). 

When the eyes pursue an object that moves across a stationary background, a conflict between 

the smooth pursuit and optokinetic systems occurs. The stabilization of the moving target on the fovea 

by means of pursuit causes optic flow of the stationary background. The same situation may occur 

between pursuit and the vestibular systems if gaze is controlled with head tracking movements. 

Consequently, pursuit of a small moving target against a stationary background with eye or head 

movements requires that OKN and the VOR be ignored or suppressed (Levin et al., 2011). Howard 

& Marton (1992) found that this is accomplished most effectively when the background and the 

pursuit target lie at different distances. 

4.5. Eye tracking techniques 

An eye-tracker is a device primarily designed to measure eye movements. In general, there are two 

types of eye movement monitoring techniques: eye tracking itself is the measurement of eye 

movement, and gaze tracking is the analysis of eye tracking data with respect to the head or visual 

scene. However, researchers often use the terms eye tracking, gaze tracking or eye-gaze tracking 

interchangeably. 



State of the art 

48 

 

Nowadays there is a wide variety of eye tracking applications, which can broadly be 

differentiated as diagnostic or interactive (Duchowski, 2002). In diagnostic applications the eye-

tracker provides objective and quantitative evidence of subjects’ visual and attentional processes. The 

stimulus does not change or react to the viewer’s gaze. Usually, the data recorded by the eye-tracker 

is analyzed offline. In its interactive role, the eye-tracker is a powerful input device for visually-

mediated applications. Interactive systems respond or interact with the user based on their recorded 

eye movements. Eye-trackers have applications in several research fields, such as neuroscience, 

psychology, ophthalmology and optometry, industrial engineering, marketing and advertising or 

computer science (Duchowski, 2002). 

An ideal eye-tracker should be able to measure ocular rotations about all three axes, yet be 

insensitive to translational movements; linear over a range of more than 90º, yet sensitive enough to 

record movements of a few seconds of arc; and have a bandwidth extending from zero to up to 1000 

Hz. Moreover, the device should not interfere with vision; it should not require the attachment of 

anything to the eyeball; and should be unaffected by movements of the head (Carpenter, 1988). 

Although a wide variety of eye tracking techniques have been devised, no system to date meets all 

these conditions. The best method has to be chosen according to each specific application. 

A description of different eye tracking techniques is given in the following subsections. 

Special emphasis will be placed on video oculography, as it is the most widely used eye tracking 

technique nowadays. 

4.5.1. Electro-oculography 

Electro-oculography (EOG) was the most common technique during the mid-1970s (Young & 

Sheena, 1975). It is based on measuring the skin’s electric potential differences of electrodes placed 

around the eye. Thus, it is an invasive technique. These potentials are due to a permanent potential 

difference between the cornea and the fundus of the eye. The recorded values are in the range from 

15 to 200 µV (micro volts), with nominal sensitivities of the order of 20 µV/º (Shackel, 1967). 

This method can record eye movements in a range up to ±70º. Linearity becomes 

progressively worse at excursions greater than 30º, especially in the vertical direction. The typical 

reported accuracy is around 1.5 to 2º (Young & Sheena, 1975). It is possible to separate the horizontal 

and vertical components of eye movements by carefully placing the electrodes on the outer canthi, 

the bridge of the nose and the upper eyelid. However, EOG measures eye movements relative to head 

position; thus, it is not suitable for point of gaze measurements unless head position is also tracked. 
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The main advantages of EOG are its ability to detect eye movements even when the eye is 

closed and its low cost. However, it has several drawbacks. A fundamental difficulty is the noise 

produced by muscle artefacts, eyelid interferences, nonlinearities in the technique, and variation in 

the corneo-retinal potential attributable to light adaptation, diurnal variations and the state of alertness 

(Young & Sheena, 1975). This noise can lead to not detected eye movements with no corresponding 

EOG indication or artefacts in potential when the eye is stationary (Carpenter, 1988). 

4.5.2. Scleral search coils 

The scleral search coil method, first introduced by Robinson (1963), has been considered to be the 

gold standard technique to measure eye position for research applications for over 40 years. Eye 

position is determined by placing a silicon annulus on the eye, which contains a coil of thin copper 

wire. Then, when the subject is placed in an alternating current magnetic field, the position of the eye 

can be determined from the amplitude of the induction current in the coil. In non-human studies, the 

coil may be surgically implanted in the sclera of the eye. This eye tracking technique has high spatial 

(15 seconds of arc) and temporal (1 ms) resolution (Robinson, 1963). For angles up to 20º the 

deviations from linearity are very small (Collewijn, van der Mark, & Jansen, 1975). The scleral search 

coil technique is able to measure eye movements in all three degrees of freedom simultaneously, but 

relative to the head position. Moreover, it is unaffected by translation movements of the head or the 

eye, so the use of a chinrest or a bite board is not necessary (Meyer et al., 1985). 

The main disadvantage of this method is its high degree of intrusiveness. Since the contact 

lens with the coil has to be tightly attached to the eye, it has to be necessarily large (extending over 

the cornea and sclera) and fitted with negative pressure, which can result in corneal lesions such as 

edema and abrasion. Topical anesthesia is needed to lighten the discomfort caused by the contact lens. 

Ideally, the contact lens and its associated attached material should not be of a size or mass 

to interfere with normal eye movements (Young & Sheena, 1975). However, by introducing an object 

in the eye, the inertia and friction unavoidably change. As a consequence, the force that the eye 

muscles have to generate to perform a movement also changes. Robinson (1964) showed that a huge 

increase of the inertia of the eye (by almost a factor 100) resulted in relatively small changes in the 

shape of saccades, although he did not investigate the kinematic properties of saccades. However, it 

is known that not only purely mechanical factors may influence them. For instance, the discomfort of 

wearing scleral search coils itself may change the oculomotor command signals and the behavior of 

subjects (Frens & van der Geest, 2002). 
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4.5.3. Video oculography 

The most widely used commercial eye-trackers nowadays are based on video oculography. In general, 

most non-intrusive or remote techniques are based on cameras to capture images of the eye. However, 

they might be somewhat intrusive if they require to be head mounted or head stabilized. Although the 

accuracy of remote video-based eye-trackers is in general lower than that of intrusive techniques, they 

are more appropriate to be used during long periods, with children patients, and in a wide variety of 

environments, not only in specialized laboratory research.  

Although Schnipke & Todd (2000) were considerably sceptic about the usability of remote 

eye tracking techniques in laboratories, video based eye-trackers have increased their efficiency and 

accuracy, and have had a great impact on many domains of applications (Morimoto & Mimica, 2005). 

Video oculography groups different eye movement recording techniques involving the 

measurement of distinguishable features of the eyes that can be detected and tracked by a camera or 

other optical or photosensitive devices. The main ones are described in the following subsections. 

4.5.3.1. Pupil and limbus detection 

The limbus (the boundary between the sclera and the iris) is a feature sometimes used for tracking. 

Due to the high contrast of the sclera and iris regions, the limbus can be easily tracked horizontally. 

However, since eyelids cover part of the iris, limbus tracking techniques have lower vertical accuracy.  

The pupil is harder to detect and track because of the lower contrast between the pupil and 

the iris. However, pupil tracking techniques have better accuracy in all directions since most of the 

time they are not covered by the eyelids. To enhance the contrast between the pupil and the iris, many 

eye-trackers use an infrared (IR) light source. Since IR is not visible by the users, the light does not 

influence their eye movements. When the IR light source is placed near the optical axis of the camera, 

the light reflected from the back of the eye is detected and the pupil is seen bright (Figure 4.23A). 

However, if it is displaced relative to the optical axis, the pupil is seen dark (Figure 4.23B) (Morimoto 

& Mimica, 2005). The IR light source also generates a glint on the cornea, which is used as a reference 

point in the pupil-corneal reflection technique described in section 4.5.3.2.  

A variation of the limbus tracking technique with IR lighting was developed by Reulen et al. 

(1988). It consists in placing IR light emitting diodes and IR light sensitive photo-transistors above 

and below the eye, which can be mounted on goggles or helmets. Then, the photo-transistors 

transform the reflected IR light into a voltage. The voltage of the nasally located photo-transistors is 

compared to the voltage of the temporal located photo-transistors, and the resulting voltage difference 
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is proportional to the angular deviation of the eye. The main application of this system is in the 

assessment of horizontal saccades. 

 

Figure 4.23. Bright (A) and dark (B) pupil images. Source: (Morimoto, Koons, Amir, & Flickner, 2000). 

4.5.3.2. Pupil-corneal reflection technique 

The pupil-corneal reflection technique, or Purkinje image eye tracking, is a method based on the 

estimation of the centers of the pupil and one or more corneal reflections. Corneal reflections were 

first used for eye tracking purposes by Dodge & Cline (1901). It is the most commonly used technique 

nowadays due to its simplicity and reasonably good accuracy. The corneal reflections, or glints, 

correspond to the first Purkinje images of light sources created by the first surface of the cornea, 

which acts as a convex mirror. Thus, the minimum hardware requirements are a light source, which 

usually is in the IR domain, and a camera.  

The basic principle of most of the current video-based eye-trackers was developed by 

Merchan, Morrissette, & Porterfield (1974). It uses a camera and a single point light source, and relies 

on the distance between the corneal reflex of the light source and the center of the pupil (Figure 

4.24A). By tracking two elements of the eye that move differently with eye position and head position 

it is possible to measure net eye movements. As illustrated in Figure 4.24A, assume that the optical 

axis of the objective of the camera that captures the pupil is coaxial with the illumination system. The 

corneal reflection appears always in line with the center of curvature of the cornea. Thus, the apparent 

displacement of the corneal reflection from the center of the pupil is equivalent to the apparent 

displacement of the center of the corneal curvature from the center of the pupil, which is a function 

of eye rotation only (Young & Sheena, 1975). Although the separation between the two tracked 

features is a sine function of the angle of rotation of the eye, the relationship can be regarded as linear 

within a range of rotation angles of around ±20º (Figure 4.24B). 
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Figure 4.24. (A) Schematic representation of the basic principle of the pupil-corneal reflection technique. K: 

Linear distance between the center of curvature of the cornea and the center of the pupil. θ: angle of rotation of 

the eye. Source: (Merchan et al., 1974). (B) Estimated separation between the corneal reflection and the center 

of the pupil as a function of the angle of rotation. Parameters used: radius of curvature of the cornea of 7.7 mm 

and anterior chamber depth of 3.5 mm. 

The eye tracking process can be divided into two stages: the image processing and the gaze 

estimation parts. The first stage consists in processing the captured images of the eye to locate the 

pupil’s center and the corneal reflection. There are several algorithms to do so, from relatively simple 

methods such as the Starburst algorithm (D. Li, Winfield, & Parkhurst, 2005), to more complex 

methods using deformable templates or other edges detectors (Jarjes, Wang, & Mohammed, 2010; 

Mehrabian & Hashemi-Tari, 2007; Soltany, Zadeh, & Pourreza, 2011; Yuille, Hallinan, & Cohen, 

1992). 

Once the image has been processed, gaze is deduced as a function of the extracted 

information. Several methods have been defined to translate the image positions of the pupil and 

glints into gaze position. In general, they can be divided into two main groups: interpolation and 

geometrical based methods. 

Interpolation based methods describe gaze position as a generic function of the image 

features. Simple polynomial equations are generally used, whose unknown coefficients are deduced 

for each user during a calibration procedure. Although Morimoto & Mimica (2005) proposed to 

increase the order of the polynomial equation in order to improve accuracy in stationary head 

conditions, other studies using different hardware configurations have shown that increasing the order 

of the interpolation equation does not reduce significantly the tracking error (Cerrolaza, Villanueva, 

& Cabeza, 2008; White, Hutchinson, & Carley, 1993). A second order equation is accepted to provide 
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good accuracy results. One of the main drawbacks of interpolation based methods is the need for head 

stabilization. Higher robustness against head movements can be achieved by using at least two light 

sources to produce at least two corneal reflections (Sesma-Sanchez, Villanueva, & Cabeza, 2012) or 

by tracking the head movements separately. The eye tracking methods proposed in the first study of 

the thesis rely on interpolation. See section 5.1 for a detailed explanation of its functioning. 

Geometrical based methods consider the underlying geometry of the framework as a basis 

for gaze estimation. They include 3D models of all the elements of the setup, i.e. camera(s), screen, 

light source(s) and eye, and also their geometrical relationships. Most of these methods require the 

calibration of all hardware elements, such as the relative position of the screen, camera and light 

sources, or some intrinsic camera parameters. A wide variety of systems and models with different 

number of cameras and light sources can be found in the literature (Hansen, Agustin, & Villanueva, 

2010; Hansen & Ji, 2010; Kang, Eizenman, Guestrin, & Eizenman, 2008). In general, geometrical 

based methods require a 1-point calibration procedure to know some subject specific parameters of 

the model such as the radius of curvature of the cornea, the distance between the center of the pupil 

and the center of corneal curvature, and the angle between the visual and optical axes (Guestrin & 

Eizenman, 2006). Other eye-trackers incorporate a population-average value of the conversion factor 

to convert the separation between the center of the pupil and the corneal reflection into angular units 

of gaze position, i.e. the Hirschberg ratio (Jagini, Vaidyanath, & Bharadwaj, 2014; Model & 

Eizenman, 2011; Schaeffel, 2002). An example of a commercial instrument that uses this principle is 

the PowerRefractor (Plusoptix GmbH, Nuremberg, Germany) (Choi et al., 2000; Schaeffel, 2002).   

In general, the complexity of geometrical methods is greater than that of interpolation 

methods. However, the tolerance to head movements is increased compared to interpolation methods 

(Cerrolaza, Villanueva, & Cabeza, 2012). 

4.5.3.3. Dual Purkinje image eye-tracker 

Dual Purkinje image eye-trackers use not only the first Purkinje image, but also the fourth one 

(Cornsweet & Crane, 1973). The fourth Purkinje image corresponds to the reflection from the second 

surface of the lens. The principle of these eye-trackers is based on the fact that if the eye undergoes 

translation both Purkinje images move through the same distance and direction as the eye; while when 

the eye rotates the two images move through different distances, so their separation changes. 

Therefore, the physical separation of these two images is a measure of the angular orientation of the 

eye independent of translational movements. 
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The main advantage of this technique is its accuracy of about 1 min of arc, which is much 

higher than the accuracy of pupil-corneal reflection methods. However, its main drawbacks are the 

complexity to set up and calibrate the system, its cost, and the post-saccadic oscillations, which are 

partially due to the wobbling of the lens after saccades and are particularly large (up to five degrees) 

in data recorded with Dual Purkinje image eye-trackers (Nyström, Andersson, Magnusson, Pansell, 

& Hooge, 2015; Tabernero & Artal, 2014). 

4.5.4. Scanning Laser Ophthalmoscopy 

Scanning Laser Ophthalmoscopy (SLO) is not per se an eye tracking technique, but a promising 

retinal tracking method (Webb & Hughes, 1981). SLO utilizes horizontal and vertical scanning 

mirrors to scan a specific region of the retina and create raster images. A collimated laser beam passes 

through a set of optical elements including lenses, beam splitters, concave mirrors and scanning 

mirrors before entering the eye. The optics of the eye focus the scanned beam on a specific point on 

the retina. The light reflected back travels along the same optical path and, as in all confocal imaging 

techniques, it is focused on a pinhole to reject scattered light from outside of the plane of focus. The 

light that passes through the pinhole reaches the detector and, as a result, an image of the scanned 

area of the retina by the point of light is obtained (Sheehy et al., 2012).  

Tracking Scanning Laser Ophthalmoscopes (TSLO) have been originally used to image the 

retina of patients with retinal defects and degeneration. Recent TSLO-based instruments allow to 

image but also track the retina accurately to perform microperimetry and evaluate retinal contrast 

sensitivity. Their tracking accuracy is in the range of few minutes of arc (Sheehy et al., 2012). 

Adaptive Optics Scanning Laser Ophthalmoscopes (AOSLO) have increased lateral 

resolution by correcting eye’s high-order aberrations at the cost of a smaller field of view (Roorda et 

al., 2002). They have served to determine the spatial distribution of cone cells around the fovea (Chui, 

Song, & Burns, 2008a) but also their abnormalities with refractive errors (Chui, Song, & Burns, 

2008b) or degenerative diseases (Bessho et al., 2008; Duncan et al., 2007).  
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5. Methodology and results 

The four studies carried out in order to achieve the objectives of the thesis are explained in this section. 

The introduction, methodology, results and discussion of each particular study are described in a 

different subsection. 

5.1. Study 1. Robust eye tracking based on multiple corneal 

reflections for clinical applications 

NOTE: The following text in this section corresponds to the published article: Mestre, C., Gautier, 

J., & Pujol, J. (2018). Robust eye tracking based on multiple corneal reflections for clinical 

applications. Journal of Biomedical Optics, 23(3), 035001. 

5.1.1. Introduction 

Video oculography (VOG) has become the most popular eye tracking technique in the last few 

decades due to its performance, versatility, and low intrusiveness. Actually, some video-based 

systems represent an interesting alternative to the scleral search coil technique (van der Geest & Frens, 

2002), which is considered to be the gold standard in oculomotor research (Collewijn, 1998). 

Nowadays, most video-based commercial eye-trackers use the pupil-corneal reflection 

technique. It is based on the assessment of gaze position from the pupil-glint vectors, that is, the 

relative distance between the centers of the pupil and one or more corneal reflections. In the image, 

these reflections are called glints. The number of glints depends on the number of infrared (IR) light 

sources. The eye tracking process can be divided into two stages: the first one consists of processing 

the eye images in order to locate the center of the pupil and the glint, and the second estimates gaze 

position from the detected features in the images. 

There are several methods for image processing and eye detection (Hansen & Ji, 2010). Some 

methods rely on the detection of eye features on the images. The pupil is more commonly used as an 

image feature than the limbus since it has a higher contrast and is less likely to be occluded by the 

eyelid. Most approaches address pupil detection by thresholding (Goñi, Echeto, Villanueva, & 

Cabeza, 2004; Javadi, Hakimi, Barati, Walsh, & Tcheang, 2015) or by gradient-based methods, e.g., 

the Canny edge detector (Fuhl, Santini, Kübler, & Kasneci, 2016; Świrski, Bulling, & Dodgson, 

2012). Other approaches consider both methods and decide the one to use depending on the intensity 

histogram of the images (Fuhl, Kübler, Sippel, Rosenstiel, & Kasneci, 2015). 
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Once the pupil has been detected, most existing methods refine its position with ellipse fitting. 

While simple methods such as the direct least squares fitting of ellipses are highly affected by outliers 

(points which do not correspond to the pupil edge), there exist other approaches that are more robust 

to points not lying exactly on the pupil edge. On the one hand, voting-based methods, such as the 

Hough transform, are effective and exhaustive, although computationally expensive and limited to 

circular shapes, hence, near-frontal images. On the other hand, searching-based methods, such as the 

random sample consensus (RANSAC) paradigm (Fischler & Bolles, 1981), are based on selecting the 

best of a set of possible candidate ellipses. The RANSAC method is effective in the presence of a 

relatively large and unknown amount of outliers. It consists in fitting iteratively an ellipse to a small 

data subset and finding the one with the most agreement within the complete set of candidate pupil 

edge points. 

The application of RANSAC in eye tracking was first described by Li et al. (2005) when they 

proposed the well-known Starburst algorithm. First, the corneal reflection is located through an 

adaptive threshold and removed by radial interpolation. Then, the pupil edge points are detected at 

the position along a limited number of rays where the gradient is above a fixed threshold. An ellipse 

is fitted to the edge points using the RANSAC paradigm. Finally, the result of the ellipse fitting is 

further optimized using a model-based approach. Despite being computationally costly, the pupil 

tracking based on Starburst algorithm is highly parallelizable and able to achieve up to 530 frames/s 

with high-resolution images using a general purpose graphics processing unit (Mompean, Aragón, 

Prieto, & Artal, 2015). 

Yuille et al. (1992) proposed a more complex model based on deformable templates, which 

represents the eyelids with two parabolas and the iris with a circle. This method was extended by Lam 

& Yan (1996). The combination of both elliptical and complex eye models may quicken the 

localization and improve the tracking accuracy (Chow & Li, 1993; Deng & Lai, 1997). Other 

methods, classified as appearance-based (Hansen & Ji, 2010), detect the eyes directly from their 

appearance in the images, either in the intensity or in a transformed domain. These methods require 

a large amount of eyes’ data of different subjects under different face orientations and illuminations 

to be trained. 

Gaze estimation is the following process, which infers gaze position from the information 

that has been previously extracted from the images. Gaze estimation methods are typically divided 

into two main groups: geometry-based and interpolation-based methods. The former methods 

estimate gaze position based on 3-D models of the eye. The parameters typically used for geometric 

modeling of the eye include cornea radii, angles between visual and optical axes, index of refraction 
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of the different ocular media, iris radius, and the distance between the pupil and cornea centers. Most 

geometrical approaches require camera calibration and a geometric model external to the eye 

composed of light sources, camera and monitor position, and orientation (Hansen & Ji, 2010). There 

is a wide variety of possible setups, from one camera and a single light source (Guestrin & Eizenman, 

2006; Villanueva & Cabeza, 2007) to multiple cameras and light sources (Beymer & Flickner, 2003; 

Ohno & Mukawa, 2004), including several other combinations (Hennessey, Noureddin, & Lawrence, 

2006; Kang et al., 2008; Villanueva & Cabeza, 2007). 

Interpolation-based methods describe the point of gaze as a generic polynomial function of 

image features (mapping function). As mentioned previously, the pupil and glint centers are 

commonly used as image features. Subject calibration is required to retrieve the unknown coefficients 

of the expression. Although the polynomial equation determines not only the accuracy of the system 

but also the required user calibration process, there are no standards regarding the best mapping 

function. Several studies analyzed the influence of the order and the number of terms of the 

polynomial equation on the performance of eye tracking systems (Brolly & Mulligan, 2004; Cerrolaza 

et al., 2008, 2012; Morimoto & Mimica, 2005; White et al., 1993). Although extensive research has 

been done to determine the best mapping function, it is not clear whether the conclusions can be 

generalized to other VOG systems due to the distinct hardware and methodology used in the different 

studies. 

One of the biggest concerns about remote VOG systems is the tolerance to head movements. 

Although complete head pose invariance is difficult to achieve, the geometry-based methods seem to 

be more robust to head movements (Cerrolaza et al., 2012). On the other hand, the accuracy of 

interpolation-based methods decreases as the user moves away from the calibration position, 

especially with movements in depth (Morimoto & Mimica, 2005). The normalization of the pupil-

glint vectors with respect to the distance between two glints in the eye image seems to reduce the 

effect of head movements (Cerrolaza et al., 2008; Sesma-Sanchez et al., 2012). Other scaling factors 

of the pupil-glint vectors have also been proposed for systems consisting of four IR light-emitting 

diodes (LEDs) (Hennessey & Lawrence, 2009). They obtained comparable results to Cerrolaza et al. 

(2008) and matched the performance of more complex geometrical-based methods that require 

system calibration (Hennessey & Lawrence, 2009). 

A surge toward developing multiple IR light sources eye tracking systems appeared during 

the last decades. Several approaches used two IR light sources, one placed near the camera optical 

axis (on-axis) and the other slightly off-axis in order to generate bright and dark pupil images, 

respectively (Ebisawa & Satoh, 1993; Morimoto et al., 2000; Tomono, Iida, & Kobayashi, 1990). 
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This strategy allows to detect the pupil on the images relatively easily by differencing the bright and 

dark pupil images and thresholding. Yoo & Chung (2005) proposed a technique using five IR LEDs 

and two cameras to estimate gaze position under large head motion. The wide field-of-view camera 

tracks the face continuously to properly position the other camera, which has a zoom lens to capture 

magnified images of the eye. One LED is placed on axis to produce bright pupil images and a glint 

on the cornea. The other four are placed on the corners of the monitor and produce four glints. Gaze 

position is estimated by computing the cross-ratio of a projective space. Coutinho & Morimoto (2006) 

extended this method by considering the deviation between the visual and optical axes. Similarly, a 

method relying on homography normalization and using four IR LEDs was proposed by Hansen et 

al. (2010). The offset between the optical and visual axes is modeled to a much higher degree than 

the cross-ratio based methods, hence achieving better accuracy. Although none of the methods are 

invariant to depth or in-plane head movements, this homography normalization-based method 

showed better performance (Hansen et al., 2010). These methods represent an alternative to the fully 

calibrated systems since only the light source’s position information is needed. 

Hennessey & Lawrence (2009) described the drawbacks of using a single corneal reflection 

to compute the pupil-glint vector (e.g., distortion or deletion in large eye rotations). They proposed a 

technique to track a pattern of four corneal reflections and applied a second order interpolation 

equation to map the pupil-glint vector onto gaze position. In this method, an algorithm that 

compensates for translation, distortion, addition, and deletion of corneal reflections is applied and the 

pupil-glint vector is formed from the pupil center to the centroid of the corneal reflections pattern. 

Thus, the resulting vector is robust to loss, translation, and distortion of the glints. The proposed 

technique managed to estimate the point of regard in all head positions and eye rotations tested while 

up to 27% of the time the point of regard would have been lost if only one corneal reflection was used 

(Hennessey & Lawrence, 2009). 

The use of multiple IR light sources has also become common in recent portable commercial 

eye-trackers. For example, Tobii Pro Glasses 2 (Tobii, Falls Church, Virginia) is a wearable eye 

tracking system that embeds eight IR LEDs per eye. The Oculus Rift DK2 system (SensoMotoric 

Instruments, Berlin, Germany) is an eye-tracker embedded in a virtual reality head mounted display, 

which contains six IR LEDs per eye. 

The eye-tracker used in this study consists of a multiple-corneal reflections dark-pupil 

system, which offers an unprecedented high resolution imaging of the pupil and the cornea (640 × 

480 pixels images with a field-of-view of 16 mm at the pupil plane). It is embedded in the Eye and 

Vision Analyzer (EVA) system (Davalor Salud, Spain), which is a stereoscopic virtual reality 
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instrument to perform the optometric tests related to objective and subjective refraction, binocular 

vision, and accommodation while patients are watching a 3D video game. The vergence- 

accommodation conflict is avoided by adjusting the accommodative plane with the vergence plane 

through an electro-optical lens. The EVA system allows to perform both visual diagnosis and visual 

therapy. The eye-tracker synchronously records both right and left eye movements during all the 

optometric tests. The intrusiveness of the whole system needs to be restricted to the least possible 

degree due to its wide clinical application requirements. Hence, the head movements are only 

restricted with a forehead rest. 

This study presents new methods for accurate eye tracking with multiple corneal reflections 

using interpolation-based techniques. The advantages of a higher number of glints and their optimum 

arrangement are analyzed to provide new insights for the community. Moreover, a normalization of 

the pupil-glint vectors method is proposed to increase the eye tracking spatial accuracy. 

5.1.2. Methods 

5.1.2.1. Experimental methodology 

The study was approved by the Ethics Committee of Hospital Mutua de Terrassa (Terrassa, Spain). 

It followed the tenets of the Declaration of Helsinki and all subjects gave informed written consent 

after receiving a written and verbal explanation of the nature of the study. 

Eye images of 20 subjects (mean age ± standard deviation (SD) of 31.9 ± 9.5 years) with 

normal or corrected-to-normal visual acuity were taken with the two cameras embedded in each of 

the two optical modules comprised in the EVA system (Figure 5.1A and B). Each optical module 

consists of three subsystems: the autorefractometer, the vision, and the eye-tracker (Figure 5.1C). The 

refractive error of participants was measured with the autorefractometer subsystem based on a 

Hartmann–Shack wavefront sensor. The vision subsystem allows the patients to see the liquid crystal 

on a silicon 2048 × 1536 pixels resolution microdisplay with a field-of-view of 26º horizontally and 

19.8º vertically. The spherical and cylindrical refractive errors are corrected with an electro-optical 

lens and the rotation of two cylindrical lenses, respectively, which are adjusted in order to avoid the 

need to wear glasses. Spherical refractive errors ranging from −18 diopters (D) to +13 D and 

cylindrical errors up to 5 D can be compensated. Finally, the eye-tracker subsystem consists of a 

complementary metal-oxide-semiconductor sensor recording 640 × 480 pixels images with a spatial 

resolution of 0.0045º and a frame rate of 30 Hz. The illumination system consists of a ring of 12 IR 

LEDs (950 nm). Participants’ heads are partially immobilized with a forehead rest (Figure 5.1D). 
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Figure 5.1. Setup. (A) EVA system. Once the patient sits, the head of the machine goes down and adjusts its 

position according to the patient's height. (B) Frontal view of the optical modules. (C) Schematic representation 

of the optical module; the eye-tracker is shaded in dark gray while the vision and autorefractometer subsystems 

are represented in light gray. (D) Lateral view of the system. (E) Right (top) and left (bottom) eye images 

captured with the system. 

Participants were asked to sit down, put their head on a forehead rest, and fixate monocularly 

a black cross, which subtended an angle of 0.2º, on a mid-gray background. This cross was displayed 

in a sequence of nine positions of a 3 × 3 grid during both the calibration and validation procedures 

in the same order. The stimulus was displayed for 1.3 s at each position and eye images were acquired 

starting 0.3 s after the onset of the stimulus (Figure 5.1E). 

5.1.2.2. Image processing 

Eye images acquired during the experimental procedure were processed offline with an 

implementation of the algorithm in Matlab R2015b (MathWorks, Natick, MA, USA). For simplicity, 

only data from the right eye were analyzed. The Starburst algorithm was extended in order to fit the 

characteristics of illumination sources, resolution of our eye images, and improve the accuracy of the 

original algorithm. 

The location of the corneal reflections process was adapted to the content of the images used 

in this study, which have up to 12 glints. Then, an ellipse was fitted to the centroid of each glint using 

a direct least squares fitting method (Fitzgibbon, Pilu, & Fisher, 1999). Instead of removing the glints 

by radial interpolation as in original Starburst, they were simply masked in order to avoid their 

interference in the pupil contour detection. Although the iterative process to detect the edge pupil 

points was essentially maintained from the original Starburst, the feature points were redefined as the 

positions along each ray where the gradient is maximum. That way, the feature points are located 

more precisely on the pupil edge, which otherwise would tend to underestimate the pupil border and 

its size. 
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One of the main challenges of pupil tracking is the detection of the pupil when it is partially 

occluded by dropped eyelids or downward eyelashes. In order to overcome this issue, our second 

proposal is an eyelid detector based on the visibility of the upper glints. When the complete ring of 

12 glints was visible, the rays were traced from the estimated center along 360º, as was done 

originally. However, when some glint was missing, no rays were traced in that direction. Thus, pupil 

edge points were not located erroneously on the eyelid or eyelashes. 

Once the edge pupil points were detected, the RANSAC method was applied to find the best 

fitted ellipse. A subset of six points instead of five, as originally suggested (Fischler & Bolles, 1981), 

was chosen randomly but ensuring that they were equally distributed around all the regions of the 

pupil. Although these contributions produce a low improvement on accuracy, its main benefit is in 

terms of computing efficiency (Figure 5.2). In addition, geometrical constraints on the maximum and 

minimum radius and eccentricity of the fitted ellipse were added based on anatomical parameters of 

the pupil (Atchison & Smith, 2000). 

 

Figure 5.2. Histogram of the number of RANSAC iterations with the original algorithm (5 points, solid), 

choosing 5 points and distributing them spatially (5 points - distributed, dotted), considering a subset of 6 points 

without constraints about distribution (6 points, dashed) and considering 6 points and distributing them spatially 

(6 points – distributed, dotted-dashed). 

Since images were processed offline, computation time was not critical. The prototype 

version of this implementation written in Matlab and run by a processor Intel i5-4200M CPU at 2.50 

Hz with 8 GB of RAM operates at ∼1.11 frames/s. Around 70% of the algorithm’s runtime is needed 

for the localization and masking of the 12 corneal reflections while the other 30% is needed for the 

pupil edge detection and ellipse fitting on the pupil. The results presented in this paper were obtained 

with this implementation. However, we have worked on a faster implementation of the algorithm 

using Nvidia compute unified device architecture (CUDA) parallelism in order to reduce the 

computation time and run the algorithm in real time. The hardware used to test this implementation 
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consisted of a GPU Nvidia Quadro K5200 with 2304 CUDA cores and 8 GB of memory. The 

computation time could be reduced to around 2 ms/image. 

The first objective of this study was to analyze the performance of the eye-tracker with 

different configurations of light sources. The tested configurations (Figure 5.3) were chosen to study 

the optimal number of glints, the putative benefits of higher number of glints, and their optimum 

arrangement considering the possible interference of the eyelids. In a preliminary study, the different 

configurations were tested switching off the corresponding LEDs. After confirming by visual 

inspection that similar levels of image luminance could be obtained by retaining only two light 

sources and increasing their illumination power, we decided to acquire all eye images with the 12 

LEDs switched on in order to simplify the experimental procedure. Then, the corresponding glints 

were removed from the eye images using radial interpolation assuming that their intensity profile 

follows a symmetric bivariate Gaussian distribution. 

 

Figure 5.3. Eye images with the tested light sources configurations. 

5.1.2.3. Gaze estimation 

Before estimating the gaze position with an interpolation-based method, the data obtained from the 

eye images were filtered using a trimmed mean to select the 50% of the 30 images available at each 

point. The trimmed or truncated mean reduces the effects of outliers on the calculated average by 

removing a certain percentage of the largest and smallest values before computing it.  

A second order polynomial Eq. (5.1) was used to map the tracked image features onto gaze 

position: 



Methodology and results 

 

63 

 

 (
𝑃𝑜𝑅𝑥
𝑃𝑜𝑅𝑦

) = 𝐶 ·

(

 
 
 
 

1
𝜗𝑥
𝜗𝑦

𝜗𝑥
2

𝜗𝑦
2

𝜗𝑥𝜗𝑦)

 
 
 
 

  (5.1) 

where 𝑃𝑜𝑅𝑥 and 𝑃𝑜𝑅𝑦 are the horizontal and vertical coordinates, respectively, of the point of regard; 

𝐶 is the coefficient matrix determined during calibration; and 𝜗𝑥 and 𝜗𝑦 are the horizontal and vertical 

components, respectively, of the pupil-glint vector.  

During the calibration procedure, Eq. (5.1) was used to calculate the polynomial coefficients 

in the matrix 𝐶 assuming that 𝑃𝑜𝑅𝑥 and 𝑃𝑜𝑅𝑦 are the horizontal and vertical coordinates, 

respectively, of the stimulus, and computing the pupil-glint vector of the images captured during this 

procedure. During the validation procedure, the coordinates of the point of regard could be computed 

from the pupil-glint vector of the validation images and the known 𝐶 matrix. 

As mentioned previously, robustness against head movements is one of the main challenges 

of current video-based eye-trackers. The system used in this study exceeded the minimum hardware 

required (i.e., two light sources) to normalize the pupil-glint vectors, which was shown to improve 

overall spatial accuracy in interpolation-based eye tracking methods (Cerrolaza et al., 2008; 

Hennessey & Lawrence, 2009). The normalization proposed by Sesma-Sanchez et al. (2012) based 

on the interglint distance was adapted to the content of the images of each tested configuration. 

When normalization was not applied, the components of the pupil-glint vector of the eye 

images captured during both calibration and validation procedures were computed as follows: 

 𝜗𝑥 = 𝑝𝑥 − 𝑔𝑥,  𝜗𝑦 = 𝑝𝑦 − 𝑔𝑦 (5.2) 

where 𝑝𝑥 and 𝑝𝑦 are the image coordinates of the pupil center. In the configurations with 12 and 8 

glints, 𝑔𝑥  and 𝑔𝑦  are the image coordinates of the center of the ellipse fitted on the glints centroids, 

whereas in the configurations with 6, 4, and 2 glints, 𝑔𝑥  and 𝑔𝑦  are the image coordinates of the mean 

glints position. This difference among configurations is due to the fact that at least five points are 

required to fit an ellipse. 

In the configurations with 12 and 8 glints, when normalization was applied, the horizontal 

and vertical components of the pupil-glint vector of the eye images captured during both calibration 

and validation procedures were defined as follows: 
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 𝜗𝑥 =
𝑝𝑥−𝑔𝑥

𝑟
,  𝜗𝑦 =

(1−𝑘)−𝑔𝑦

𝑟
 (5.3) 

where 𝑟 is the major radius of the glints ellipse and 𝑘 is a vertical weighting factor to attribute a higher 

weight to the glints in order to compensate for the higher uncertainty in the pupil detection, especially 

vertically. The same value of 𝑘 was used for both calibration and validation procedures. Its optimum 

value for each configuration of light sources was determined empirically as the one that optimizes the 

accuracy of the eye-tracker averaged for all participants. 

In the configurations with 6 or less glints, the normalized pupil-glint vectors of the eye images 

captured during both calibration and validation procedures were computed as follows: 

 𝜗𝑥 =
𝑝𝑥−𝑔𝑥

𝐷
,  𝜗𝑦 =

(1−𝑘)−𝑔𝑦

𝐷
 (5.4)  

where 𝑔𝑥  and 𝑔𝑦  become the image coordinates of the mean glints position and 𝐷 is the mean 

Euclidean distance between opposite glints. 

Two normalization methods were proposed for the different configurations due to the 

limitation of the minimum number of points required to fit an ellipse. Although an ellipse could be 

fitted on 6 glints, preliminary results showed no robust results even when the normalization was not 

applied in those configurations. Therefore, in the configurations 6 glints and 6 lowest glints, the pupil-

glint vectors were computed as in the configurations 4 glints, 4 lowest glints, and 2 glints, considering 

the mean glints position and the Euclidean distance between them. As a result, a unique normalization 

method was applied on each light source configuration. 

The gaze estimation algorithm was also written in Matlab. Approximately 30 ms were needed 

to compute the coefficients of the second order polynomial equation using the pupil-glint vectors 

extracted from the eye images captured during the calibration procedure, and 10 ms were needed to 

interpolate and compute the point of regard during the validation procedure. 

5.1.2.4. Evaluation 

The eye-tracker performance was evaluated by analyzing the horizontal and vertical 

accuracies. They were defined as the horizontal and vertical angular distances between the 

interpolated points of regard on the image plane using the eye images registered during the validation 

procedure and the real target positions that subjects were fixating on. The data reported in this paper 

correspond to the average horizontal and vertical accuracies obtained by averaging all the horizontal 

and vertical distances, respectively, over the 3 × 3 grid.  
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The determination of the optimum value of the factor 𝑘 of Eqs. (5.3) and (5.4) requires to 

evaluate the eye-tracker’s accuracy. Hence, it was determined from images obtained during the 

validation procedure. 

5.1.2.5. Statistical analysis 

Statistical analysis was performed using SPSS Statistics 23 (IBM Corp., Armonk, NY, USA). 

Nonparametric statistics were used after checking that most variables did not follow a normal 

distribution by applying the Shapiro–Wilk test and comparing the skewness and kurtosis statistics to 

the standard error. 

Friedman tests were performed along both horizontal and vertical directions to compare the 

accuracy of the eight configurations. Significance was set at p < 0.05. When significance was 

obtained, post-hoc comparisons of configurations were made by Wilcoxon signed-rank tests with a 

Bonferroni adjustment given by the number of possible pairwise configuration comparisons, with 

significance p < 0.05∕28. The same tests were also used to compare the accuracy of the eight 

configurations when the pupil-glint vectors were normalized. Spearman’s correlations were applied 

to identify associations between the differences in accuracy for certain pairs of configurations and 

other features of each configuration, such as the percentage of images in which the eye was detected 

or the percentage of images in which some glints were occluded. Finally, the Wilcoxon signed-rank 

test was performed to compare the horizontal and vertical accuracies for each configuration without 

applying the normalization of the pupil-glint vectors and normalizing them. 

5.1.3. Results 

Before analyzing the differences in terms of accuracy for the different tested configurations, the 

intrinsic repeatability of the algorithm is described. It is defined as the within-subject standard 

deviation of the accuracy in both horizontal and vertical directions. It might be thought as a descriptor 

of the random component of measurement error and is due to randomness in the selection of the initial 

subset of points for the RANSAC ellipse fitting. For the original 12 glints configuration, the within-

subject standard deviation horizontally was 0.027º (95% confidence interval (CI), 0.026º to 0.027º), 

whereas vertically, it was 0.034º (95% CI, 0.033º to 0.035º). 

Table 5.1 gives the descriptive statistics of horizontal and vertical accuracies for each 

configuration. 
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Table 5.1. Median (interquartile range; IQR) of the horizontal and vertical accuracies in degrees for different 

configurations. 

Configuration Horizontal accuracy (º) Vertical accuracy (º) 

12 glints 0.41 (0.19 to 0.49) 0.47 (0.40 to 0.70) 

8 glints 0.42 (0.23 to 0.53) 0.53 (0.40 to 0.70) 

8 lowest glints 0.38 (0.17 to 0.52) 0.54 (0.31 to 0.70) 

6 glints 0.48 (0.24 to 0.55) 0.74 (0.47 to 0.84) 

6 lowest glints 0.43 (0.18 to 0.55) 0.60 (0.48 to 0.87) 

4 glints 0.51 (0.26 to 0.58) 0.69 (0.46 to 0.87) 

4 lowest glints 0.39 (0.21 to 0.61) 0.57 (0.48 to 0.81) 

2 glints 0.44 (0.21 to 0.57) 0.65 (0.45 to 0.87) 

 

The Friedman test showed significant differences in both horizontal (χ2(7)=18.27, p=0.011) 

and vertical (χ2(7)=20.50, p=0.005) accuracies for the different configurations. The post-hoc test 

performed along each direction showed statistically significant differences horizontally between the 

configurations 8 lowest glints and 4 glints (p=0.001). Any pairwise comparison vertically showed 

significant differences.  

Although they were not statistically significant, the differences in accuracy between the 

configurations with the same number of light sources (i.e., 8 glints and 8 lowest glints, 6 glints and 6 

lowest glints, and 4 glints and 4 lowest glints) are especially remarkable and might be justified by the 

fact that in some cases, the upper glints were occluded by the eyelid (Figure 5.4). There was a 

moderate, positive, and significant correlation between the difference in vertical accuracy between 

the configurations 8 glints and 8 lowest glints and the percentage of images in which the glints 8, 9, 

and 11, and only these, were occluded (rs=0.46, p=0.042). There was no significant correlation 

horizontally. 

In the four configurations with 6 and 4 glints, all the considered glints had to be visible, 

otherwise the eye could not be detected on that frame. Hence, the improvement in accuracy when the 

lowest glints were considered cannot be justified directly by the occlusion of some upper glints. 

Alternatively, it can be explained by the improvement in robustness defined as the percentage of 

images in which the eye is detected. There was a moderate, positive, and significant correlation 

between the difference in vertical accuracy between the configurations 6 glints and 6 lowest glints 

and the difference in robustness between both configurations (rs=0.65, p=0.003). For the 

configurations 4 glints and 4 lowest glints, there was also a moderate, positive, and significant 
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correlation (rs=0.50, p=0.029). There was no correlation horizontally for the configurations 6 glints 

and 6 lowest glints nor for 4 glints and 4 lowest glints. 

 

Figure 5.4. Percentage of images averaged for all participants in which each glint is occluded. The 

corresponding occluded glints are represented in black in the schemes below the bars. Error bars show ±1 SD. 

Table 5.2 shows the descriptive statistics of horizontal and vertical accuracies for each 

configuration when the normalization of the pupil-glint vectors was applied according to Eqs. (5.3) 

and (5.4). 

Table 5.2. Median (IQR) of the horizontal and vertical accuracies in degrees for different configurations when 

the pupil-glint vectors were normalized. 

Configuration Horizontal accuracy (º) Vertical accuracy (º) 

12 glints 0.44 (0.19 to 0.51) 0.39 (0.22 to 0.66) 

8 glints 0.41 (0.20 to 0.52) 0.38 (0.29 to 0.73) 

8 lowest glints 0.39 (0.16 to 0.54) 0.46 (0.32 to 0.64) 

6 glints 0.46 (0.24 to 0.55) 0.42 (0.25 to 0.89) 

6 lowest glints 0.45 (0.18 to 0.54) 0.39 (0.24 to 0.69) 

4 glints 0.47 (0.24 to 0.60) 0.41 (0.28 to 0.93) 

4 lowest glints 0.45 (0.22 to 0.63) 0.44 (0.27 to 0.72) 

2 glints 0.43 (0.22 to 0.57) 0.37 (0.26 to 0.74) 

 

The Friedman test showed significant differences in horizontal accuracy for the different 

configurations (χ2(7)=16.75, p=0.019). The post-hoc test showed statistically significant differences 
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between the configurations 8 lowest glints and 4 glints (p=0.001). There were no significant 

differences in vertical accuracy for the different configurations (χ2(7)=6.04, p=0.535). 

There were no statistically significant differences (Wilcoxon signed-rank test) in any 

configuration between the horizontal accuracy when the pupil-glint vectors were not normalized and 

when the normalization was applied. Moreover, in most configurations, the differences were lower 

than the horizontal within-subject standard deviation. However, the normalization significantly 

improved the vertical accuracy and the differences were above the vertical within-subject standard 

deviation in all configurations. The relative improvement of the median vertical accuracy due to the 

normalization of the pupil-glint vectors ranged from 43.2% for 6 glints to 14.8% for 8 lowest glints 

(Figure 5.5). 

 

Figure 5.5. Median vertical accuracy in degrees without normalizing the pupil-glint vectors (empty circles) and 

applying the normalization (solid circles). Each configuration of light sources is represented in the schemes 

below the bars, where active and inactive LEDs are represented in white and black, respectively. Error bars 

show the IQR. Bars correspond to the relative improvement of vertical accuracy due to the normalization. 

5.1.4. Discussion 

5.1.4.1. Light sources configurations 

The median horizontal accuracy of the eye-tracker used in this study is systematically better than the 

median vertical accuracy in all configurations. A similar tendency was found by Cerrolaza et al. 

(2012) in their study of polynomial mapping functions to optimize the calibration process of 

interpolation-based systems. Since there is no clearly preferred direction in the dispersion of gaze in 

tasks of sustained fixation (Cherici, Kuang, Poletti, & Rucci, 2012), it is hypothesized that this 

difference is due to the interference of the eyelid and eyelashes in the detection of the upper pupil 
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region. The higher uncertainty in this region also implies a poorer repeatability of the algorithm 

vertically than horizontally. 

Although there are no statistically significant differences of vertical accuracy with the distinct 

tested configurations, there is a tendency for increasing accuracy with the number of glints, especially 

in the vertical direction. There is a significant negative correlation between the number of glints and 

the median vertical accuracy (Table 5.1) of the best configurations (i.e., 12 glints, 8 lowest glints, 6 

lowest glints, 4 lowest glints, 2 glints; rs=-0.90, p=0.037). The correlation is weaker and not 

significant in the horizontal direction (rs=-0.50, p=0. 391). The between-subjects variability of the 

accuracies is rather similar in all configurations and along both directions. 

The arrangement of the light sources seems to have a stronger effect than the number of glints 

itself. To our knowledge, this is the first study that addresses the question of the best positioning of 

the IR LEDs to optimize the accuracy of a VOG system. Figure 5.4 confirms the intuitive thought 

that the upper glints are the most likely to be occluded by the eyelid. The fact that the lower eyelid 

hardly ever interferes with the glints justifies our choice of considering the lowest corneal reflections 

in the configurations 8 lowest glints, 6 lowest glints, and 4 lowest glints. However, one should bear 

in mind the specific eye-tracker setup used in this study with the cameras placed in front of the eyes. 

The results regarding the optimum arrangement of light sources might not be applicable to other 

systems in which the cameras are located in other positions. 

In the configurations in which an ellipse is fitted on the glints (12 glints, 8 glints, and 8 lowest 

glints), the total number of active glints was not always visible. As can be seen in Figure 5.6, there 

was a considerable percentage of images in which some glints were occluded, especially in the 12 

glints configuration (Figure 5.6A). However, since a dataset of at least five points is required to fit an 

ellipse, at least five corneal reflections needed to be visible so as to track the eye in each frame. The 

main difference between the configurations 8 glints and 8 lowest glints was the number of glints 

available to fit the ellipse, which was not always 8 due to eyelid occlusion. The mean ± SD percentage 

of images in which all eight corneal reflections were visible with the 8 glints configuration was 76.9% 

± 19.7% (Figure 5.6B), whereas with the 8 lowest glints configuration, they were all visible in 95.6% 

± 5.5% of the images (p=0.001) (Figure 5.6C). Therefore, the improvement in accuracy when the 

lowest glints were considered might be explained by a more robust ellipse fitting with a larger dataset 

of points. 
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Figure 5.6. Percentage of images averaged for all participants in which there were five or more visible glints 

for the configurations (A) 12 glints, (B) 8 glints, and (C) 8 lowest glints. Error bars show ±1 SD. 

In the configurations with six or less corneal reflections, the average glints position was used 

to compute the pupil-glint vectors. In these configurations, the number of glints must be the same in 

all frames. Otherwise, the components of the pupil-glint vectors would be modified regardless of eye 

movements, which in turn would lead to an incorrect measurement of eye position. Hence, the 

advantage of the configuration 6 lowest glints over the 6 glints is reflected in the robustness of the 

system (i.e., the percentage of frames in which the eye is detected). The mean ± SD robustness of 6 

glints configuration was 89.9% ± 11.4%, whereas with the 6 lowest glints configuration, it was 96.6% 

± 3.4% (p=0.001). Similarly, the mean ± SD robustness of 4 glints configuration was 89.9% ± 11.5%, 

whereas with the 4 lowest glints configuration, it was 96.9% ± 2.6% (p=0.001). 

The improvement of accuracy in the configurations in which more data is available (higher 

robustness) suggests that an increase in sampling frequency might lead to a better performance of the 

eye-tracker not only regarding temporal measurements but also in terms of spatial accuracy. 
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5.1.4.2. Normalization of the pupil-glint vectors 

Our results suggest that the normalization of the pupil-glint vectors is an effective method to improve 

the accuracy of VOG systems. 

Previous studies working with eye-trackers with two or more IR light sources tested the 

tolerance to head movements in depth applying different types of normalization (Cerrolaza et al., 

2012; Hennessey & Lawrence, 2009; Sesma-Sanchez et al., 2012). The head movements in other 

directions (parallel to the display) were not tested since they were shown to be considerably less 

problematic in VOG systems (Morimoto & Mimica, 2005). To do so, they acquired eye images 

locating the subjects’ head in three different positions separated by 5 cm. The experimental procedure 

of our study did not include testing in different locations of the head due to the shallow depth of field 

of the eye-tracker’s cameras. Nevertheless, the head of the patients was not fully immobilized. 

On the one hand, it is hypothesized that the improvement in accuracy shown in all 

configurations when the pupil-glint vectors were normalized might be partially due to the 

compensation of small, although not quantified, head movements allowed by the forehead rest, since 

previous works obtained satisfactory results applying similar normalization methods with this 

purpose (Cerrolaza et al., 2012; Sesma-Sanchez et al., 2012). On the other hand, as seen in Figure 5.5, 

the relative improvement in accuracy due to normalization was different for each configuration. This 

implies that the normalization of pupil-glint vectors might have further effects besides the 

compensation of head movements and might be due to the 𝑘 factor, whose optimum value varies 

among configurations. 

The main improvement when the pupil-glint vectors were normalized was in terms of vertical 

accuracy. Actually, the differences in horizontal direction were neither statistically significant nor 

relevant, since in most configurations they were below the within-subject standard deviation, which 

means that they might be simply due to the intrinsic variability of the algorithm. The stronger effect 

of normalization vertically than horizontally might be justified by the fact that most of the coefficients 

of the mapping function have a higher value in the polynomial equation for determining the 𝑃𝑜𝑅𝑦 

than in the equation for the 𝑃𝑜𝑅𝑥. Thus, when the normalization of the pupil-glint vectors was 

applied, the change in the computed gaze positions was more prominent in the vertical direction than 

horizontally. 

As discussed previously, horizontal accuracy was below 0.5º and already better horizontally 

than vertically when the pupil-glint vectors were not normalized. This suggests that the weaker effect 

of normalization horizontally might be also explained by the fact that horizontal accuracy might be 
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limited by lack of exactitude in stages prior to gaze estimation, such as the image acquisition and 

processing or the dispersion of gaze itself due to fixational eye movements. The pronounced 

improvement vertically contributed to reduce the difference in performance between both directions 

and equalize the horizontal and vertical accuracies. 

Since normalization had a small effect in the horizontal direction, the between-subjects 

variability of horizontal accuracy was similar than when the normalization was not applied. However, 

the interquartile range of vertical accuracy was considerably wider with normalization, except for the 

configurations 8 lowest glints, 6 lowest glints, and 2 glints in which it was rather similar. As shown 

by the error bars in Figure 5.5, the distribution of vertical accuracy tends to become more asymmetric 

when normalization was applied. This means that in most participants, normalization improved 

vertical accuracy although in some subjects with poorer accuracy, the effect was weaker. 

Several eye tracking methods published previously were evaluated using the Euclidean 

distance between the estimated point of gaze and the true eye position instead of considering 

separately the horizontal and vertical directions. The accuracy of the eye-tracker used in this study 

was also computed as the Euclidean distance for the purpose of comparing it with existing methods. 

Its median value was 0.6º for the 12 glints configuration and normalizing the pupil-glint vectors, 

which is better than the average accuracy of 1º of visual angle shown by the original Starburst 

algorithm (D. Li et al., 2005). Other interpolation-based methods using one glint obtained an accuracy 

around 0.8º (Blignaut, 2014; Brolly & Mulligan, 2004). Cerrolaza et al. (2012) obtained a 

considerably better accuracy with two IR LEDs, a second order interpolation equation, the interglint 

distance to normalize the pupil-glint vectors, and with the patients’ head stabilized using a chin rest 

(0.2º horizontally and 0.3º vertically). 

Comparable values of accuracy were obtained with geometry-based and head pose invariant 

models (Beymer & Flickner, 2003). Several systems consisting of more than two IR LEDs rely on 

the cross ratio (Coutinho & Morimoto, 2006; Huang, Cai, Liu, Ahuja, & Zhang, 2014; Zhang & Cai, 

2014) of a projective space or homography normalization (Hansen et al., 2010). Although these 

methods allow head movement, their optimum accuracy values, which are below 0.5º, were shown 

with the head stabilized with a chin rest (Hansen et al., 2010; Huang et al., 2014). 

To conclude, different lighting configurations for on-axis eye tracking have been proposed 

and studied. In particular, the interference of the corneal reflections with the upper eyelid has been 

emphasized. One should take into account that the high variability in the anatomical shape of eyelids 

leads to high variability of the results. Then, the configuration with the best performance might be 
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different depending on factors such as the ethnicity or the age of the eye-tracker’s users. The proposed 

normalization of the pupil-glint vectors seems to be an effective method to improve the accuracy of 

VOG systems. It also counteracts the tendency for increasing accuracy with the number of glints. 

Therefore, if they are properly positioned, our normalization proposal allows to be independent from 

the need for higher number of light sources.
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5.2. Study 2. An automated and objective cover test to measure 

heterophoria 

NOTE: The following text in this section corresponds to the published article: Mestre, C., Otero, C., 

Díaz-Doutón, F., Gautier, J., & Pujol, J. (2018). An automated and objective cover test to measure 

heterophoria. PLoS ONE, 13(11), e0206674. 

5.2.1. Introduction 

A normal functioning of binocular vision, including both sensory and motor components, guarantees 

proper alignment of the eyes. While the sensory fusion component unifies the perception of the 

images of the two eyes, the motor fusion component is responsible to align the eyes in such a manner 

that sensory fusion can be maintained. If one eye is artificially excluded from participating in vision 

(i.e., the sensory and motor fusion components of binocular vision are suspended), a relative deviation 

of the visual axes may appear in most subjects, which is called heterophoria, or phoria (Von Noorden 

& Campos, 2002). When the fusion mechanism does not function properly, a manifest deviation of 

one eye is present. This deviation is called heterotropia, tropia or strabismus. While tropia is a 

manifest deviation, phoria is latent and becomes evident only when the normal fusion mechanisms 

are disrupted. This deviation may be horizontal, if the visual axis of one eye converges or diverges 

more than the other; vertical, if one visual axis is higher than the other; or cyclorotary, if there is a 

misalignment of the eyes due to a clockwise or counterclockwise rotation of one eye. 

Since an abnormal value of phoria may lead to symptoms like visual fatigue, headache or 

double vision (Scheiman & Wick, 2014), it is routinely assessed in clinical optometric practice. There 

are several methods to measure phoria such as the cover test or the modified Thorington test. 

There are different variants of the cover test. The unilateral cover test consists in covering 

one eye and observing the movements of the other eye. If the non-occluded eye moves to take up 

fixation, the patient exhibits tropia. If contrarily there is no movement of the fellow eye, that eye is 

then covered and the other eye is observed. Once it has been established that the fellow eye does not 

move when either eye is covered, a cover-uncover test is typically performed to determine whether 

the patient has a phoria. The cover-uncover test is equivalent to the unilateral cover test but now the 

examiner observes the movements of the occluded eye when the cover is removed. If phoria is present, 

the covered eye moves to its heterophoric position and when uncovered, the eye makes a movement 

in the opposite direction to recover fixation. The alternate cover test brings out the maximal ocular 

deviation regardless of whether it is a phoria or tropia. In this case, the occluder is quickly switched 
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from one eye to the other avoiding any period of binocular fixation between occlusions. In the three 

variants of the cover test, the deviation can be measured with a prism bar as the amount of prism 

diopters (PD) needed to cancel out the recovery (or re-fixation) movement (prism cover test). A prism 

is defined as having 1 PD when it causes a deflection of a light ray of 1 cm measured at a distance of 

1 m. Thus, the degrees of eye rotation can be transformed into PD as 100 times the tangent of the 

rotation angle. The cover test is considered an objective method since the result does not depend on 

the answers of the patients, although it depends on the criteria and ability of the examiner (H. A. 

Anderson, Manny, Cotter, Mitchell, & Irani, 2010; Hrynchak, Herriot, & Irving, 2010; Johns, Manny, 

Fern, & Hu, 2004). 

The modified Thorington test is a subjective method that uses the Bernell Muscle Imbalance 

Measure (MIM) card (Bernell Corp., Mishawaka, IN, USA) to measure phoria. It has a row and a 

column of numbers that are separated by 1 PD at 40 cm. A penlight is shown to the patients through 

a hole in the center of the card while they hold a Maddox rod before the right eye. Patients are asked 

through which number the line created by the Maddox rod passes and on which side of the penlight’s 

light. 

Several studies concluded that the different tests to measure phoria are not interchangeable 

due to their low level of agreement (Antona et al., 2011; Sanker et al., 2012). There is controversy 

about the most repeatable test, but it is typically agreed that the cover test and the modified Thorington 

test offer the best results in terms of repeatability (Antona et al., 2011; Cebrian et al., 2014; Rainey 

et al., 1998). 

The use of the cover test to measure phoria in clinical practice is extremely common. 

However, it suffers from several limitations such as its non-objectivity. Although the result does not 

depend on the answer of the patients, it depends on the examiner. Several authors have found no 

clinically relevant mean differences between experienced and novice examiners, although the 95% 

limits of agreement were rather wide (H. A. Anderson et al., 2010; Hrynchak et al., 2010). Another 

source of interexaminer variability might be the use of a different criterion for the neutralization point 

(Johns et al., 2004). The endpoint of the movement that should be recorded as the result of the test is 

still unclear. One possible endpoint is the first amount of prism with which no movement is seen (first 

neutral). Other possibilities are any point in the range of prism after the first neutral in which no 

additional movement of the eye is seen, or the prism that causes an opposite movement of the eye 

(reversal point) (Johns et al., 2004). It is generally accepted that some execution aspects such as the 

time of occlusion have a direct influence on the measured phoria (H. A. Anderson et al., 2010; 

Barnard & Thomson, 1995). The poor resolution is also a limitation of the cover test. Several authors 
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showed that under ideal conditions, the smallest eye movement that a person (the examiner) can detect 

with unaided eye is 2 PD (Fogt, Baughman, & Good, 2000; Ludvigh, 1949). As a consequence, the 

threshold commonly used to decide whether differences are clinically significant is 2 PD. This value 

has not been established on the grounds of diagnostic significance but based on a limitation of the 

measurement test. Finally, the fact that basically the covered eye cannot be observed represents an 

impediment to analyze how the eye reaches its heterophoric position (Pickwell, 1989). 

It is generally accepted that the modified Thorington test is simple and easy for patients to 

understand. However, its principal drawback is its subjectivity, as the results solely rely on the answer 

of the patients. A specific emphasis needs to be placed on asking the patients to keep the grid and 

numbers of the MIM card focused. The dissociation system used, which creates rivalry between the 

eyes and unusual viewing conditions, does not favor a proper control of accommodation. 

These limitations could be overcome by using eye tracking systems. The calculation of phoria 

from the eye-tracker’s recordings relies solely on patient actual eye deviation, and not his subjectivity 

nor the one of the examiner. Moreover, if the proper occluder is used, it becomes possible to register 

the movements of the covered eye and automate the whole process in order that the test is always 

executed equally. The first studies using objective eye tracking systems during the cover test 

described the dynamics of eye movements during both the cover and recovery phases (Barnard & 

Thomson, 1995; Peli & McCormack, 1983). More recently, several works used different eye tracking 

techniques to measure phoria and compared the results with clinical methods. Han, Guo, Granger-

Donetti, Vicci, & Alvarez (2010) used a limbus eye tracking system and an haploscope to quantify 

objectively phoria. They obtained a precision from 0.7 PD to 1.1 PD, similar to the Maddox rod 

method and the alternate cover test, but a resolution of 0.17 PD, which is noticeably better. Moreover, 

a strong and significant correlation between the phoria measured with the limbus eye tracking system 

and the Maddox rod method (r = 0.85, p = 0.008) was observed. In the version of the Maddox rod 

method that Han et al. performed, subjects viewed a penlight in primary position. Their right eye was 

occluded for 15 s and then it was uncovered and covered rapidly to assess the position of the red line 

on a calibrated grid. This was repeated until the subjects could report on which number the red line 

appeared. Babinsky, Sreenivasan, & Candy (2015) used the MCS PowerRefractor (Multi Channel 

Systems, Reutlingen, Germany) to assess simultaneously accommodation and ocular alignment data 

in children. 

Other studies used eye tracking systems to obtain objective measurements of other binocular 

vision parameters, such as fixation disparity (Jaschinski, 2016, 2017; Jaschinski, Jainta, & Kloke, 

2010; Schroth, Joos, & Jaschinski, 2015; Švede, Treija, Jaschinski, & Krūmiņa, 2015). Fixation 
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disparity is a small vergence error common even among subjects with normal binocular vision. It can 

be measured subjectively with psychophysical methods or objectively using eye-trackers. These 

studies found significant correlation between the objective fixation disparity and phoria. Additionally, 

Švede et al. (2015) showed that objective fixation disparity is different depending on whether the 

calibration is performed in monocular or binocular vision and found no correlation between fixation 

disparity and phoria when the eye-tracker is calibrated binocularly. 

In the current study, the eye-tracker EyeLink 1000 Plus (SR Research Ltd., Ontario, Canada) 

was used to record eye movements during the performance of the cover test at near distance. Two 

different methods, detailed in subsequent sections, were used to measure phoria from the eye-

tracker’s recordings. In the first method, the deviation of only the occluded eye from its previous 

binocular position was considered in order to measure phoria, as it is done when the conventional 

cover test is performed in clinics. However, there is evidence that the fixating eye might occasionally 

move in the same direction as the covered eye instead of remaining still as it is generally assumed 

(Griffin, 1982). Since by definition phoria is a relative deviation between the two eyes, the deviation 

measured with the prism bar might be in fact greater than the true phoria. Thus, in the second proposed 

method the deviations of both the occluded and fixating eyes from their previous binocular positions 

were considered to compute it. The main objective of this study was to determine the differences 

between these two methods of phoria computation and validate them with the cover-uncover test and 

the modified Thorington test. 

Pickwell (1973) stated that the fixating eye often moves, particularly during the recovery 

phase (i.e. when the occluder is removed) and observed that the amplitude of this movement is greater 

when the dominant eye is covered. Peli & McCormack (1983) also noted similar movements of the 

fixating eye during the recovery phase and obtained significantly different responses between the two 

eyes, especially for those subjects with clear ocular dominance. The symmetry of phoria between the 

two eyes and the effect of motor ocular dominance was analyzed in the current study. It is 

hypothesized that the greater amplitude of the fixating eye’s movement when the dominant one is 

occluded might be justified by a greater deviation of the dominant eye (greater magnitude of phoria). 

5.2.2. Methods 

5.2.2.1. Subjects 

Thirty non-presbyopic adults (15 females and 15 males) participated in the study. Their mean age ± 

standard deviation (SD) was 27.9 ± 4.6 years and ranged from 21 to 38 years. All had 20/25 or better 

visual acuity in each eye at far and near distance with their habitual correction and no manifest 
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deviation (strabismus) as measured with the unilateral cover test. The horizontal phoria at near 

assessed with the cover-uncover test and measured with a prism bar ranged from +14 PD (esophoria) 

to -14 PD (exophoria). 

All subjects were informed about the nature of the study before starting the experimental 

procedure and signed informed consent. The study followed the tenets of the Declaration of Helsinki 

and was approved by the Ethics Committee of Hospital Mutua de Terrassa (Terrassa, Spain). 

5.2.2.2. Materials and instrumentation 

Phoria was measured with three different methods: the cover-uncover test with a prism bar, the 

modified Thorington test and the automated and objective cover test using an eye-tracker. 

During the cover-uncover test patients were asked to hold a visual acuity card at 40 cm and 

fixate a 20/30 visual acuity letter. The examiner covered the patients’ eyes with an opaque occluder 

and a prism bar with powers of 1, 2, 4 to 20 PD in 2 PD steps and powers of 25 to 45 PD in 5 PD 

steps (Gulden Ophthalmics, Elkin Park, PA, USA) was used to measure horizontal phoria. 

The horizontal phoria was also measured with the modified Thorington test using a Maddox 

rod and the MIM card. It has a measurement range from 28 PD esophoria to 28 PD exophoria with a 

resolution of 1 PD. 

Finally, phoria was assessed objectively with an infrared video-based eye-tracker. Binocular 

eye data were registered with an EyeLink 1000 Plus at a sampling rate of 250 Hz (Figure 5.7A). The 

visual stimulus was printed on a white card which covered a visual field of 40.5º × 42.9º and placed 

at 40 cm of the patient. The fixation stimulus consisted of an empty black circle of 1.6º. The inner 

white region subtended an angle of 0.9º with a 20/50 (0.21º) Snellen E letter at the center to favor 

fine fixation and proper stimulation of accommodation (Figure 5.7B). The fixation stimulus was 

placed 16º downwards from primary position in order to optimize eye-tracker’s data quality. Primary 

position refers to the position assumed by the eye when one is looking straight ahead with body and 

head erect. All eye movements were within the gaze tracking range reported by the manufacturer of 

32º horizontally and 25º vertically. While patients fixated the Snellen E they also viewed peripherally 

the other eight identical stimuli at an eccentricity of 16º horizontally and 9º vertically used to calibrate 

the eye-tracker. The subjects’ head was restrained using a chin rest. 
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Figure 5.7. (A) Schematic representation of the experimental setup. (B) Visual stimulus. The central target has 

been enlarged for the sake of visibility. The other eight stimuli were identical and used to calibrate the eye-

tracker. 

In order to disrupt fusional vergence, each eye was occluded in turn similarly to the cover-

uncover test. The occluders consisted of two crossed polarizers which blocked visible light but 

transmitted infrared wavelengths, hence allowing to register eye movements continuously even when 

the eyes were occluded. In order to check that the two pairs of crossed polarizers completely occlude 

the fixation target, their transmittance was measured with the spectrometer SPECTRO 320 

(Instrument Systems, GmbH, Germany). Their mean transmittance in the visible range (from 380 nm 

to 780 nm) was 0.63%. It was also verified by visual inspection that observers could not have a 

residual view of the target through the occluders. They were driven by two stepper motors and 

controlled with a custom software coded in Matlab R2017a (MathWorks, Natick, MA, USA). It took 

approximately 0.27 seconds to occlude completely the visual field. 

5.2.2.3. Experimental procedure 

The experimental procedure was divided into two different sessions separated by a rest of 40 minutes 

approximately. The first session lasted 30 minutes approximately while the second was 15 minutes 

long. Participants wore their habitual refractive correction (either glasses or soft contact lenses) 

during all measurements. 

The first session started by checking that the patient met the inclusion criteria of normal visual 

acuity and absence of strabismus. Then, the cover-uncover test was performed at 40 cm and the phoria 

was measured with a prism bar. While the patient fixated the stimulus, special emphasis was put on 

the importance of maintaining sharp vision in order to stimulate properly accommodation (Schroeder, 
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Rainey, Goss, & Grosvenor, 1996). The examiner covered each patients’ eye in turn for 

approximately 5 seconds and increased the prism power to neutralize the recovery movement until 

its direction was reversed. Then, the considered value of phoria was the midpoint of all the range of 

prism powers with which no movement was perceived. A single measurement of phoria was obtained 

by placing the prism bar in front of either the right or the left eye. 

After the cover-uncover test, the modified Thorington test was performed at 40 cm. As the 

MIM card is calibrated for the right eye, the Maddox rod was held before the right eye. The patient 

was asked to fixate the penlight that the examiner held in the center of the card and report through 

which number the vertical red line seen by the right eye crossed the horizontal axis. The measured 

phoria corresponded to the number reported by the patient. 

Finally, the patient was positioned on a chin rest to perform the automated and objective 

cover test with the eye-tracker. Before starting the test, the eye-tracker was calibrated in binocular 

vision. Following the built-in calibration procedure of EyeLink, the patient was asked to fixate 

sequentially each E of the 3 × 3 grid (Figure 5.7B) in a non-random order. Then, the patient was asked 

to fixate again the same targets in order to validate the fitted model and ensure acceptable spatial 

accuracy. The test began immediately after the eye-tracker’s calibration. The test consisted in 3 cycles 

each composed of binocular fixation, left eye occlusion, binocular fixation and right eye occlusion. 

Each binocular or monocular fixation period lasted 5 seconds (Figure 5.8). Thus, the complete cover 

test lasted 60 seconds. The oculomotor responses during this procedure were saved for offline 

analysis. 

 

Figure 5.8. Test sequence. 

This order of the tests was kept constant across all patients in order to prevent the examiner 

from being influenced by the response of the patient during the modified Thorington test or the 
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movement of the eyes seen on the display of the eye-tracker’s computer during the automated and 

objective cover test. 

The second session consisted in repeating the measurement of this automated and objective 

cover test for test-retest repeatability analysis. Patients were positioned in the setup and the eye-

tracker was calibrated again before starting the test. 

Motor ocular dominance was assessed with the Hole-in-the-Card test (J. Li et al., 2010). The 

test was repeated three times throughout both sessions: at the beginning and at the end of the first 

session and at the end of the second one. It is common to repeat the Hole-in-the-Card test several 

times in order to confirm motor ocular dominance (Johansson, Seimyr, & Pansell, 2015; J. Li et al., 

2010; Rice, Leske, Smestad, & Holmes, 2008; Zhou et al., 2017). The three answers were collapsed 

to two categories: “right” if the right eye was dominant the majority of times and “left” if it was the 

left eye. 

Hereafter, we will use the initials CT, TH and ET to refer to the cover-uncover test, the 

modified Thorington test and the automated and objective cover test with an eye-tracker, respectively. 

5.2.2.4. Eye-tracker data processing 

Binocular eye data registered with the eye-tracker were processed offline using Matlab. Periods of 

100 ms before and after each blink identified by the EyeLink software were removed in order to avoid 

artifacts associated with the onset and offset of blinks. These empty periods were replaced by linear 

interpolation after confirming by visual inspection that this did not bias the traces. Additional tests 

were performed in preliminary analyses with a time window of 200 ms and without interpolating 

blink periods and results did not differ remarkably. 

The eye position at each monocular or binocular period was defined as the median of the last 

0.5 seconds. The displacement of the occluded eye from its previous binocular position needed to be 

larger than the displacement of the fixating eye in the same period in order to measure a phoria during 

that occlusion. When this condition was not fulfilled, no phoria was measured. 

Phoria was computed using two different methods. Firstly, the phoria computed with the 1-

eye method in left eye (LE) and right eye (RE) occlusion periods, respectively, was defined as 

 𝐻𝑒𝑡 𝐿𝐸1−𝑒𝑦𝑒 = (𝐿𝑜𝑐𝑐 − 𝐿𝑏𝑖𝑛)  (5.5) 

 𝐻𝑒𝑡 𝑅𝐸1−𝑒𝑦𝑒 = −(𝑅𝑜𝑐𝑐 − 𝑅𝑏𝑖𝑛)  (5.6)  
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where 𝐿𝑜𝑐𝑐 is the position of the LE during the LE occlusion period, 𝐿𝑏𝑖𝑛  is the LE position during 

the binocular fixation period prior the occlusion, 𝑅𝑜𝑐𝑐 is the position of the RE during the RE 

occlusion period, and 𝑅𝑏𝑖𝑛  is the RE position during the binocular fixation period prior the occlusion. 

This method mimics the measurement conditions of the cover test, in which only the movement of 

the occluded eye is considered. Secondly, the phoria computed with the 2-eyes method in a LE and 

RE occlusion periods, respectively, was defined as 

 𝐻𝑒𝑡 𝐿𝐸2−𝑒𝑦𝑒𝑠 = (𝐿𝑜𝑐𝑐 − 𝐿𝑏𝑖𝑛) + (𝑅𝑚𝑜𝑛 − 𝑅𝑏𝑖𝑛) (5.7)  

 𝐻𝑒𝑡 𝑅𝐸2−𝑒𝑦𝑒𝑠 = −(𝑅𝑜𝑐𝑐 − 𝑅𝑏𝑖𝑛) − (𝐿𝑚𝑜𝑛 − 𝐿𝑏𝑖𝑛)  (5.8)  

where 𝑅𝑚𝑜𝑛  is the position of the RE during the LE occlusion period, and 𝐿𝑚𝑜𝑛  is the position of the 

LE during the RE occlusion period. The deviation between the occluded and fixating eyes from their 

respective positions in the previous binocular fixation period are considered in this method. Thus, it 

strictly adheres to the definition which refers to phoria as a relative deviation between the eyes. 

In Eqs. (5.5)–(5.8), theoretically, 𝑅𝑏𝑖𝑛  and 𝐿𝑏𝑖𝑛 are expected to be 0, as the eye-tracker’s 

calibration was performed binocularly. The terms (𝑅𝑚𝑜𝑛 − 𝑅𝑏𝑖𝑛) and −(𝐿𝑚𝑜𝑛 − 𝐿𝑏𝑖𝑛) in Eqs. (5.7) 

and (5.8) correspond to the RE and LE components of fixation disparity, respectively, and are added 

to the measured phoria if they are in the same direction, whereas they are subtracted from the phoria 

if the uncovered eye moves in the opposite direction of the occluded eye. Following the sign 

convention typically used, exophorias are negative and esophorias are positive. In both methods the 

final phoria was computed as the median of the measurements obtained across the six occlusions. 

Figure 5.9 shows examples of the movements of the occluded and fixating eyes during the cover test 

in subjects with and without fixation disparity. 
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Figure 5.9. Examples of the movements of both eyes during the performance of the cover test. (A) Example of 

a subject with no fixation disparity. During the binocular calibration and the binocular period of the cover test 

both visual axes cross exactly at the target. As the subject has an esophoria, the LE turns right when it is 

occluded. Note that this scheme might not represent the most typical condition in which zero fixation disparity 

generally is accompanied by a small phoria. (B) Example of a subject with eso fixation disparity. In binocular 

viewing conditions the visual axes cross in front of the target. When the LE is occluded, it turns right to its 

heterophoric position and the RE refixates the target. This scheme illustrates the most physiologically plausible 

condition, in which esophoria occurs with eso fixation disparity. (C) Example of a subject with exo fixation 

disparity. In binocular viewing conditions the visual axes cross behind the target. When the LE is occluded, it 

turns right to its heterophoric position and the RE makes a leftward movement to refixate the target. Like (A), 

this scheme does not represent the most typical condition, as an exo fixation disparity generally is associated 

with an exophoria. 
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5.2.2.5. Statistical analysis 

Statistical analyses were performed using SPSS Statistics 24 (IBM Corp., Armonk, NY, USA). The 

significance level was set at 0.05. The Shapiro-Wilk test was used to verify that each variable was 

normally distributed. 

According to the sign convention typically used, exophorias were represented with a negative 

sign and esophorias with a positive sign. Comparing the signed phoria values we can know whether 

one condition is biased towards more esophoric or exophoric values compared to another. However, 

differences towards eso- and exo- direction cancel out. In order to know whether there is an over- or 

under-estimation of the magnitude of phoria in one condition compared to another regardless of its 

direction, the absolute values of phoria were also compared. 

Paired t-tests were performed to determine whether the phoria measured with the 1-eye and 

2-eyes methods differed significantly, to assess the intersession repeatability of the ET, and to analyze 

the differences in phoria between the eyes. A repeated measures ANOVA was used to determine the 

agreement between the signed phoria results obtained with the different methods. As our data violated 

the assumption of sphericity according to the Mauchly test, a Greenhouse-Geisser correction was 

applied. The agreement between the absolute phoria results of the different tests was determined with 

the non-parametric Friedman test since the data was not normally distributed. Post-hoc analysis with 

Wilcoxon signed-rank tests with Bonferroni correction was conducted. In this case, the Bonferroni 

correction set the significance level at p < 0.017 (0.05/3 = 0.017). The repeatability and agreement 

between CT, TH and ET were also assessed with Bland and Altman analysis (Bland & Altman, 1986). 

Pearson’s correlation coefficients were obtained to determine the strength of association between: (1) 

the mean magnitude of phoria computed with the 1-eye and 2-eyes methods and the difference 

between them, (2) the results of phoria measured in the first and second sessions and (3) the difference 

between the phoria measured with the three different tests and its mean magnitude (three pairs). The 

Chi-square test of association (or Pearson’s Chi-square test) was used to analyze the relationship 

between the direction of phoria measured with the different methods. Finally, the Welch test was 

performed to determine a potential effect of motor ocular dominance on the symmetry of phoria 

between the eyes after verifying that homogeneity of variances could not be assumed according to 

the Levene’s test. 
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5.2.3. Results 

5.2.3.1. Differences between 1-eye and 2-eyes methods 

Eye movements were registered with the EyeLink 1000 Plus during the performance of the ET. Figure 

5.10 shows an example of the ocular traces from a representative participant. It can be clearly seen 

how both eyes point to the fixation target during the binocular periods (their horizontal position is 

around 0º) and how one eye deviates to reach its heterophoric position when it is occluded. The 

accuracy of the eye-tracker reported by the calibration step performed immediately before the test 

was 0.27º ± 0.11º for both RE and LE averaged across patients and sessions. 

 

Figure 5.10. Ocular traces from a representative observer during the performance of the cover test. Horizontal 

RE and LE positions are represented with blue and orange lines, respectively. Periods of LE occlusion are 

shaded in orange and periods of RE occlusion are shaded in blue. The non-shaded areas correspond to binocular 

fixation periods. The inset panel zooms in on the eye traces during a RE occlusion period and shows how the 

RE stabilizes on its heterophoric position. 

The mean ± SD phoria averaged across participants and sessions was -1.24 ± 3.53 PD 

measured with the 1-eye method, and -1.10 ± 3.47 PD measured with the 2-eyes method (Figure 

5.11A).  The 1-eye method results were significantly biased towards more negative, exophoric values 

than those produced by the 2-eyes method [t(29)=-2.79, p=0.009]. 

The mean ± SD phoria in absolute value (i.e. the magnitude of the deviation independent of 

whether subjects exhibited exo- or esophorias) was 2.90 ± 2.32 PD measured with the 1-eye method, 

and 2.80 ± 2.28 PD measured with the 2-eyes method (Figure 5.11B). There were no significant 
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differences between the magnitude of phoria measured with the 1-eye and 2-eyes methods 

[t(29)=1.88, p=0.071]. 

 

Figure 5.11. Agreement between ET phoria measurements obtained with the 1-eye and 2-eyes methods. (A) 

Phoria measurements obtained with the 1-eye and 2-eyes methods, averaged across sessions and participants. 

** p<0.01. (B) Magnitude (absolute value) of phoria measurements obtained with the 1-eye and 2-eyes methods, 

averaged across sessions and participants. In (A,B) circles are means and error bars represent 95% within-

subject bootstrapped confidence intervals of the mean. (C) Bland and Altman plot showing the differences 

between 1-eye and 2-eyes ET phoria measurements as a function of the mean of both methods. The solid line 

represents the mean difference between methods. The dashed lines show the 95% limits of agreement. The inset 

in (C) shows the same plot, rescaled along the y-axis. 

In spite of the statistically significant differences between ET phoria measurements computed 

with the 1-eye and 2-eyes methods, we nevertheless observed a good level of agreement between the 

two methods. The Bland-Altman plot in Figure 5.11C shows how the range of observed differences 

between 1-eye and 2-eyes ET phoria measurements is a small fraction of the range of observed 

measurements averaged across the two methods. The inset in Figure 5.11C shows that there was not 

a significant correlation between the mean of the two measures and the difference between them 

(r=0.21, p=0.258). 

Hereafter, the reported results of ET will correspond to the phoria values computed with the 

2-eyes method since it keeps strictly to the theoretical definition of this latent deviation of the visual 

axes. 

5.2.3.2. Repeatability of ET method 

The repeatability of the ET phoria was determined within and between sessions. Intrasession 

repeatability was assessed considering the six measurements done consecutively at each occlusion. 

In the first session, the direction of the deviation was consistent across all occlusions except for four 
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subjects whose magnitude of phoria did not exceed 1 PD. The within-subjects standard deviation of 

the six phoria measurements was 1.11 PD. Considering the ET data obtained in the second session, 

the within-subjects standard deviation of the six partial measurements was 0.95 PD. In this case the 

direction of the deviation also agreed across all occlusions except for four subjects. 

Intersession repeatability compares the results of the ET phoria of the two different sessions. 

The direction of the deviation was the same between sessions in all subjects. On average, the level of 

phoria measured with the ET method in the first session was -0.98 ± 3.75 PD. It did not differ 

significantly from the mean ± SD phoria measured in the second session, that was -1.22 ± 3.25 PD 

[t(29)=-1.32, p=0.197] (Figure 5.12A). This implies that there was no bias towards more exo- or 

esophoric values between the two sessions. The two measurements were highly correlated (r=0.97, 

p<0.001). The within-subjects standard deviation of the two sessions was 0.71 PD. 

 

Figure 5.12. Repeatability of the ET method. (A) Phoria measurements obtained with the ET 2-eyes method in 

the first and second sessions, averaged across participants. (B) Magnitude (absolute value) of ET 2-eyes phoria 

measurements obtained in the first and second sessions, averaged across participants. In (A,B) circles are means 

and error bars represent 95% within-subject bootstrapped confidence intervals of the mean. (C) Bland and 

Altman plot showing the differences between the two sessions as a function of the mean of them. The solid line 

represents the mean difference between methods. The dashed lines show the 95% limits of agreement. The inset 

in (C) shows the same plot rescaled along the y-axis. 

Considering the absolute values, the mean ± SD phoria measured with the ET method was 

2.86 ± 2.57 PD in the first session and 2.74 ± 2.08 PD (Figure 5.12B). There was no tendency towards 

an increment or a decrease of the magnitude of phoria measured with the ET method between the two 

sessions [t(29)=0.67, p=0.508]. 

The Bland-Altman plot in Figure 5.12C shows the high intersession repeatability results, with 

a small mean difference and 95% limits of agreement of ±1.95 PD. In most participants the difference 
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of phoria between the two sessions was smaller than what it is typically considered as clinically 

different. 

5.2.3.3. Agreement between CT, TH and ET methods 

The agreement between the three tests used to measure horizontal phoria was also assessed. 

Individually, the mean ± SD signed phoria was -1.00 ± 6.35 PD with CT, -0.72 ± 5.12 PD with TH 

and -1.10 ± 3.47 PD with ET (Figure 5.13A). The phoria results of the ET method reported here were 

first averaged across sessions. A repeated measures ANOVA with a Greenhouse-Geisser correction 

showed no statistically significant differences between the mean phoria measured with the three 

different methods [F(1.582,45.874)=0.31, p=0.683]. This implies that none of the methods were 

significantly biased towards more exo- or esophoric values. 

 

Figure 5.13. Agreement between CT, TH, and ET methods. (A) Phoria measurements obtained with the CT, 

TH and ET methods. CT and TH results are averaged across participants and ET results are averaged across 

sessions and participants. (B) Magnitude (absolute value) of phoria measurements obtained with the CT, TH 

and ET methods, averaged across participants for the CT and TH, and across sessions and participants for the 

ET. Circles are means and error bars represent 95% within-subject bootstrapped confidence intervals of the 

mean. * p<0.05; *** p<0.001. 

Non-parametric statistical tests were used to analyze the agreement of the absolute magnitude 

of phoria measured with the three different methods. The median (interquartile range) phoria in 

absolute value was 4 PD (1.75 to 6 PD) with CT, 3.5 PD (1 to 5 PD) with TH and 2.05 PD (0.99 to 

3.73 PD) with ET (Figure 5.13B). The Friedman test showed statistically significant differences 

between the magnitude of phoria measured with the three methods [χ2(2)=14.81, p=0.001]. Post-hoc 

analysis with Wilcoxon signed-rank test was conducted with a Bonferroni correction, resulting in a 

significance level set at p<0.017. There were no significant differences between the magnitude of 

phoria measured with the two conventional clinical methods [Z=2.217, p=0.027]. However, the 

results of the ET method were significantly smaller than those obtained with the CT [Z=3.569, 
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p<0.001] and with the TH [Z=2.499, p=0.012] independently of whether subjects exhibited exo- or 

esophoria. 

The Bland-Altman plots in Figure 5.14 show a mean difference between methods close to 0 

PD in the three pairs although wide 95% limits of agreement. The ET method showed narrower 95% 

limits of agreement with the TH than with the CT. Additionally, the plots in Figure 5.14 show a 

tendency towards poorer agreement for larger magnitudes of phoria, either exophoria or esophoria. 

The Pearson’s correlation coefficient between the differences of the two measures and the average of 

them was 0.51 (p=0.004) for the CT–TH pair, 0.87 (p<0.001) for the CT–ET pair and 0.74 (p<0.001) 

for the TH–ET pair. 

 

Figure 5.14. Agreement between the three pairs of methods. Bland and Altman plots comparing the CT with 

the TH (A), the CT with the ET (B), and the TH with the ET (C). The solid lines represent the mean difference 

between methods. The dashed lines show the 95% limits of agreement. The best fitting regression line through 

each pair of data is shown in red. 

In order to analyze the agreement in the direction of the deviation assessed with the three 

different methods, all deviations smaller than 1 PD have been classified as orthophoria. This 

consideration is especially relevant for the ET method, in which very small deviations could be 

measured. There was agreement in terms of the direction of the phoria in 66.7% of the cases between 

the CT and the TH methods, in 70% of the cases between the CT and the ET methods and in 70% of 

the cases between the TH and the ET methods. The association between the percentage of exophoric 

(≥1 PD of exophoria), esophoric (≥1 PD of esophoria) and orthophoric (less than 1 PD of horizontal 

deviation) patients measured across the different methods was tested with the Chi-square test of 

association. It showed a statistically significant association between all pairwise comparisons: 

χ2(4)=18.23, p=0.001 for the CT–TH pair; χ2(4)=19.77, p=0.001 for the CT–ET pair; and χ2(4)=17.55, 

p=0.002 for the TH–ET pair. 



Methodology and results 

 

91 

 

5.2.3.4. Effect of motor ocular dominance on phoria 

ET phoria was also computed separately for each eye. Then, RE and LE phorias were calculated as 

the median of the three values of phoria obtained when the RE and LE were occluded, respectively. 

The direction of the deviation agreed between the eyes in 27 (90%) subjects. The three 

subjects who showed esophoria in the RE and exophoria in the LE or vice versa were excluded from 

this analysis. From the other 27 subjects, 23 gave consistent answers across the three repetitions of 

the Hole-in-the-Card test. As a result, 63% were RE dominant and 37% were LE dominant. 

On average, the magnitude of RE phoria was 2.66 ± 2.35 PD (mean ± SD). The mean ± SD 

LE phoria was 3.47 ± 2.43 PD (Figure 5.15A). The magnitude of phoria in the RE was significantly 

smaller than in the LE [t(26)=-2.97, p=0.006]. There was no significant effect of motor ocular 

dominance on the differences of the magnitude of phoria between the eyes as shown by the Welch 

test [t(23.901)=-0.10, p=0.922] after checking that homogeneity of variances could not be assumed 

according to the Levene’s test (p=0.03). On average, the inter-eye difference was -0.83 ± 1.71 PD for 

the 17 subjects with RE dominance and -0.78 ± 0.77 PD for the 10 subjects with LE dominance 

(Figure 5.15B). 

 

Figure 5.15. Difference between the phoria measured in the right and left eyes as a function of motor ocular 

dominance. (A) Magnitude (absolute value) of phoria measured separately in the right and left eyes with the 

ET 2-eyes method, averaged across sessions and participants. Circles are means and error bars represent 95% 

within-subject bootstrapped confidence intervals of the mean. ** p<0.01. (B) Difference between the 

magnitudes of phoria measured in the RE and in the LE as a function of motor ocular dominance. Circles are 

means and error bars represent 95% confidence intervals of the mean. 
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5.2.4. Discussion 

5.2.4.1. Differences between 1-eye and 2-eyes methods 

According to the static position of the eyes before and after occlusion, the movements during the 

cover test are considered to be asymmetric vergence movements in which the fixating eye does not 

move when the other eye is covered. Considering the actual trajectory of the eyes, the movements are 

a combination of vergence and saccades in both the occluded and fixating eyes (Peli & McCormack, 

1983). Thus, Griffin (1982) reported an occasional flick of the fixating eye in the same direction as 

the movement of the covered eye. This movement might imply an overestimation of the magnitude 

of phoria measured with the prism cover test. 

Our eye tracking recordings revealed that the fixating eye drifted slowly during the cover 

phase instead of maintaining steady fixation, especially in cases with large phoria. This drift is 

hypothesized to be an expression of the Hering’s law of equal innervation, which states that 

corresponding muscles of each eye receive equal innervations to contract or relax and perform an eye 

movement. For example, when a neural impulse for the performance of a rightward movement is sent 

out, the right lateral rectus and left medial rectus muscles receive equal innervation to contract. 

Another source of movement of the uncovered eye is fixation disparity. During the binocular fixation 

periods, the right and left lines of sight may cross behind or in front of the fixation target depending 

on the fixation disparity of the observer. However, when one eye is covered, the fixating eye moves 

to achieve precise foveal fixation and eliminate a monocular component of fixation disparity. The 

present discussion will be confined to phoria since it is generally agreed that the best practice in 

fixation disparity studies is to apply monocular calibrations with targets that optimize the eye tracking 

accuracy (Švede et al., 2015). 

The impact of the movement of the fixating eye on the measurement of phoria might not be 

clinically relevant. The mean difference between the magnitudes of phoria measured with the 1-eye 

and 2-eyes methods, which is not artificially minimized by the positive and negative values according 

to the direction of the deviation, did not exceed 1.0 PD. 

Objective and automated measurement systems as the one used in this study need to be robust 

to non-desirable situations in which patients do not cooperate properly. The measurement of the 

relative deviation between both eyes, i.e. the 2-eyes method, is useful to distinguish a heterophoric 

deviation from a conjugate movement of both eyes, e.g. a saccade. Otherwise, a saccadic movement 

could be measured as a tropia (Figure 5.16). In relation to that, a limitation of the method is its 

inability to detect and/or measure properly paralytic tropias, since in these conditions the secondary 
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deviation (the deviation when the paretic eye is fixating) is always greater than the primary deviation 

(when the non-paretic eye is fixating) (Von Noorden & Campos, 2002). 

 

Figure 5.16. Ocular traces of a non-cooperative patient during two occlusions periods. Horizontal RE and LE 

positions are represented with blue and orange lines, respectively. The LE occlusion period is shaded in orange 

and the RE occlusion period is shaded in blue. The non-shaded areas correspond to binocular fixation periods. 

In the LE occlusion, a 1.80 PD esotropia of the RE would have been measured with the 1-eye method although 

the displacement of the RE is due to a leftward saccadic movement of both eyes.  

5.2.4.2. Repeatability of ET method 

The obtained intersession repeatability for the ET method is considerably better than the ones 

previously reported for the cover test and the modified Thorington test in terms of both signed and 

absolute mean difference (Figure 5.17). The articles reviewed in Figure 5.17 analyzed the intersession 

repeatability of either the cover test, the modified Thorington test, or a method to quantify phoria 

from eye tracking traces at near distance, and reported the signed and/or absolute mean difference ± 

SD between sessions. There are some methodological differences between studies, e.g. the sample 

size, the age of participants, the range of measured phorias or the experimental procedure, which 

might explain certain variability of the results. 

Neither the signed nor the absolute mean difference between sessions is greater than 2 PD 

except for the modified Thorington test in the study from Antona et al. (2011). This is why in general 

the cover test and the modified Thorington test are considered repeatable methods to measure phoria 

(Antona et al., 2011; Hirsch & Bing, 1948; Johns et al., 2004; Morris, 1960) according to the threshold 

of differences greater than 2 PD for clinical significance (Fogt et al., 2000; Ludvigh, 1949). 

Nevertheless, the ET method proposed in the current study has the lowest mean difference between 

sessions and is one of the only two methods whose 95% limits of agreement (1.96 times the SD of 

the differences) did not exceed ±2 PD. 
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Figure 5.17. Comparison of published intersession repeatability results of different methods. Repeatability 

results of cover test, modified Thorington test, and eye tracking methods are represented with blue circles, red 

squares, and orange stars, respectively. Mean differences are plotted against the SD of the differences. Filled 

symbols correspond to signed mean and SD of the differences and empty symbols correspond to absolute mean 

and SD of the differences. Data extracted from (Antona et al., 2011; Babinsky et al., 2015; Hirsch & Bing, 

1948; Johns et al., 2004; Morris, 1960). 

Intrasession repeatability computed as the within-subjects standard deviation of the six 

individual measures is an estimate of the precision of the final value of ET phoria. It is not commonly 

assessed for the other clinical methods since none of them is objective. Thus, consecutive 

measurements would be influenced by the previous responses of the patients or biased due to non-

masked examiners. Alternatively, interexaminer repeatability is typically assessed. The signed mean 

differences between examiners ranged between 0.05 PD and 0.74 PD with SD between 1.6 PD and 

2.24 PD for the cover test (Johns et al., 2004; Rainey et al., 1998) and depends on the experience of 

the examiner (H. A. Anderson et al., 2010; Hrynchak et al., 2010). Similar interexaminer repeatability 

results were obtained for the modified Thorington test (Rainey et al., 1998; E. P. F. Wong, Fricke, & 

Dinardo, 2002). 

The high intrasession and intersession repeatability results obtained with the ET method 

might be justified by the fact that the sources of variability are minimized. The results were not biased 

by the patient nor the examiner, the test was always executed equally and the experimental conditions 

were maintained. Thus, the found variability is likely due to physiologic variations of vergence system 

only. 
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5.2.4.3. Agreement between CT, TH, and ET methods 

The signed mean differences between the phoria measured with the three tested methods were 

considerably close to 0 PD, which means that on average none of the methods were clearly biased 

towards more esophoric or exophoric values. To our knowledge, this is the first study that analyzes 

the agreement of the modified Thorington test with an eye tracking method to measure near phoria. 

The agreement obtained in the current study between the cover test and the modified 

Thorington test (-0.28 ± 2.46 PD) is comparable to previous reports. Antona et al. (2011) found a bias 

of the modified Thorington test towards more exophoric values with respect to the cover test with a 

mean difference of -0.59 PD, and 95% limits of agreement of ±5.82 PD. Sanker et al. (2012) obtained 

a mean difference between both tests of -0.88 PD and 95% limits of agreement of ±3.64 PD. 

Tests with similar dissociation methods and accommodative control are expected to show 

better agreement. Therefore, the ET method should show better agreement with the CT than with the 

TH. Although the mean difference between the CT–ET pair was slightly lower than between the TH–

ET pair (0.10 PD and 0.38 PD, respectively), the former showed wider 95% limits of agreement 

(±6.62 PD and ±4.46 PD, respectively). Three methodological differences between both cover tests 

could justify the lack of agreement. First, it has been shown that the magnitude of phoria increases 

with the dissociation time (H. A. Anderson et al., 2010; Barnard & Thomson, 1995) since it takes at 

least 5 seconds (and sometimes longer) for the occluded eye to reach its heterophoric position. 

Although the examiner attempted to cover each eye for approximately 5 seconds and left some periods 

of binocular fixation between occlusions in order to mimic the occlusion sequence of the ET, the 

number of occlusions and hence the total dissociation time was not controlled in the CT. 

Besides fusional vergence, the vergence system has three more components (Ciuffreda, 

1992). Accommodative vergence is driven by blur, and is the consequence of the relationship between 

the accommodative and vergence systems (Von Noorden & Campos, 2002). Proximal vergence is 

driven by the perception of apparent nearness of an object. The perception of a near object stimulates 

both the accommodative and the vergence systems (Ciuffreda, 1992). Finally, the tonic vergence is 

driven by the baseline neural innervation. Phoria depends on tonic, accommodative and proximal 

vergence response (Schroeder et al., 1996). In particular, North et al. (1993) showed that proximal 

cues have a significant effect on phoria. The second methodological difference that could justify the 

lack of agreement between the CT and the ET is related to proximal vergence. While tonic and 

accommodative vergence were stimulated similarly in the CT and the ET, the stimulation of the 

proximal component differed due to some particularities of the experimental setup. In both methods 
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the test was placed at 40 cm from the patient, but in the ET a structure to support the occluders and 

the two motors were positioned around the patients’ face during the test. As a result, we could expect 

an increment in proximal vergence stimulation. One would expect in turn an increase in esophoria 

and/or a decrease in exophoria due to proximal effects. However, our results showed a decrease in 

the magnitude of phoria (either esophoria or exophoria) with the ET method. 

Third, different criteria about the endpoint of the cover test might result in different values of 

phoria (Johns et al., 2004). The endpoint criteria used in the prism cover test was the midpoint from 

reversal, while the heterophoric position registered with the eye-tracker possibly corresponds to the 

first neutral endpoint. Johns et al. (2004) concluded that the differences between the first neutral and 

the midpoint from reversal endpoints were not clinically significant. However, it is relevant to note 

that there was a tendency of increased differences between the two endpoints with the magnitude of 

phoria according to the reported Bland and Altman plots. Therefore, the poorer agreement showed in 

the cases of large phoria might be partially due to the different endpoints used in each method together 

with the greater movement of the fixating eye not considered in the CT as reported above. 

Another aspect that might partially justify the poor agreement between methods relies on 

whether a single phoria measurement was obtained for one eye (as in the CT and TH methods) or if 

it was computed as the median of the measures obtained for left and right eyes (as in the ET method). 

This might play a significant role in this study due to the asymmetry of phoria between the eyes found 

with the ET method. Nevertheless, the effect of the different dissociation methods between the TH 

and the ET might be more prominent since a similar level of agreement was obtained between the TH 

results and the ET phoria computed separately for the RE (mean difference ± SD of 0.10 ± 2.50 PD). 

The same analysis cannot be done with the CT-ET pair since in the CT the phoria was measured either 

on the right or the left eye without distinction. 

Hrynchak et al. (2010) analyzed the agreement of the phoria measured with a prism bar during 

the alternate cover test and with a head mounted eye-tracker. They obtained considerably better 

results, especially at the 95% limits of agreement. They considered only the deviation of the occluded 

eye to measure phoria from the eye tracking traces and did not find an effect of the deviation 

magnitude on the cover tests agreement. The 95% limits of agreement obtained in the current study 

were comparable with the ones obtained by Babinsky et al. (2015) on a sample of young children. 

Recently, Troyer, Sreenivasan, Peper, & Candy (2017) obtained slightly better agreement than 

Babinsky yet still comparable values between cover test and objective measurements in both children 

and adults. 
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5.2.4.4. Effect of motor ocular dominance on phoria 

Regarding the symmetry between the eyes, on average phoria was significantly greater in the LE than 

in the RE. Previously, these asymmetries were attributed to the occlusion sequence and explained by 

the different time courses of relaxation of the fast and slow components of fusional vergence (Barnard 

& Thomson, 1995). However, the results of the current study showed greater phoria in the first 

occluded eye. Similar results were obtained by Van Rijn, Ten Tusscher, De Jong, & Hendrikse (1998), 

who could not show an effect of the occlusion order on the asymmetry of phoria. 

There was no significant effect of motor ocular dominance on the asymmetry of phoria 

between the eyes. The mean difference in phoria between the eyes is essentially the same in RE and 

LE dominant subjects. Although there is evidence for an effect of ocular dominance on the dynamics 

of the recovery movements (Peli & McCormack, 1983), the amplitude of the movement during the 

cover phase might be independent of motor ocular dominance. 

The reason for the horizontal phoria asymmetries found in the current study is not known. 

Further analyses are needed to evaluate possible causes for these differences. Particular attention was 

paid to center the optical axis of the camera relatively to patients’ heads and obtain symmetrically 

positioned elements. Asymmetries could be partially explained by differences in the accommodative 

state between both eyes (Van Rijn et al., 1998). All patients wore their habitual refractive correction 

during the measurements, but a monocular uncorrected refractive error might lead to a different 

contribution of the accommodative vergence on the magnitude of phoria between the eyes. 

To conclude, the use of eye-trackers to measure phoria overcomes several limitations of the 

conventional clinical methods and offers various advantages: movements of the occluded eye can be 

recorded; better resolution, accuracy, and intrasession and intersession repeatability are obtained; the 

measure is objective; and it provides new insights into the movements of both the fixating and 

occluded eyes during the cover test. The possibility to have binocular and monocular recordings of 

the viewing and covered eye offers the opportunity to do a more complete analysis. Further studies 

could be done to include the measurement of objective fixation disparity and analyze its relationship 

with phoria if the eye-tracker is calibrated monocularly and with high accuracy. 

None of the existing methods to measure phoria are interchangeable. However, as eye-

trackers become common tools in clinical settings, their use should be the new gold standard for the 

automated and objective measurement of phoria. 
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5.3. Study 3. Characteristics of saccades during the near point of 

convergence test 

NOTE: The following text in this section corresponds to the submitted article: Mestre, C., Gautier, 

J., Bedell, H. E., Díaz-Doutón, F., & Pujol, J. Characteristics of saccades during the near point of 

convergence test. [in review] 

5.3.1. Introduction 

The near point of convergence (NPC) is the nearest point on which the eyes can converge (Scheiman 

& Wick, 2014). Its assessment is widely used in clinical practice, as a remote NPC value is the sign 

most frequently used by optometrists for the diagnosis of convergence insufficiency (Rouse, Hyman, 

et al., 1997). The NPC is determined by asking the patient to maintain fixation on an object placed in 

the midline while it is moved toward the patient’s eyes. In the objective version of the test, the 

examiner observes the eyes of the patient to detect when one of them loses fixation. Alternatively, in 

the subjective version the patient is asked to report diplopia. The distance at which one eye turns out 

or the patient perceives double vision is the break point of convergence. The recovery point is the 

distance at which the eyes realign to the target or where the patient reports single vision again. The 

result of the NPC test typically is reported as the values of both the break and recovery points. The 

expected values in a young adult population are less than 5 cm for the break and less than 7 cm for 

the recovery (Scheiman et al., 2003). 

Different fixation targets have been suggested for the assessment of the NPC including an 

accommodative target, a penlight, or a penlight with a red filter in front of one eye. Scheiman et al. 

(2003) found statistically significant differences between the results obtained with these three 

different targets in adult subjects with normal binocular vision, although the differences were 

clinically irrelevant (< 0.5 cm). However, Scheiman et al. (2003) found statistically significant and 

clinically meaningful differences between the break and recovery points obtained with an 

accommodative target and a penlight with red/green glasses in subjects diagnosed with convergence 

insufficiency. Nearer break and recovery values were obtained with the accommodative target. It is 

generally accepted that an accommodative target is preferable because it maximizes the 

accommodative demand and stimulates accommodative convergence (Adler, Cregg, Viollier, & 

Woodhouse, 2007; Scheiman et al., 2003). However, if convergence insufficiency is suspected, the 

NPC test should be repeated with a penlight and a red filter (Capobianco, 1952; Pang, Gabriel, Frantz, 

& Saeed, 2010; Scheiman et al., 2003). 
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Provided the fixation target is precisely positioned along the subjects’ midline sagittal plane, 

the assessment of the NPC is a pure symmetrical vergence task. However, even when the target 

requires pure vergence movements and there is no demand for version, involuntary saccades occur 

(Collewijn et al., 1995; Coubard & Kapoula, 2008; Erkelens, Collewijn, & Steinman, 1989; Erkelens, 

Steinman, et al., 1989; Kenyon et al., 1980; Zee et al., 1992). Similarly, transient vergence movements 

have been found during saccades between isovergence targets (Collewijn et al., 1988a, 1988b). The 

presence of concurrent saccades and vergence eye movements led to the possibility to study the 

interaction between these two eye-movement systems (Coubard, 2013; Coubard & Kapoula, 2008; 

Kenyon et al., 1980; Ono et al., 1978; Zee et al., 1992). 

Although some authors found a higher prevalence of saccades during symmetrical divergence 

than during symmetrical convergence (Collewijn et al., 1995; Kenyon et al., 1980; Zee et al., 1992), 

it is generally agreed that the frequency and dynamic characteristics of these versional movements is 

idiosyncratic (Coubard & Kapoula, 2008; Erkelens, Steinman, et al., 1989; Zee et al., 1992). Saccades 

during vergence have been found to be of unequal amplitude in the two eyes (i.e., not perfectly 

conjugate). Erkelens et al. (1989b) concluded that the disjunctive component of the saccades 

contributed to the “effectiveness” of the vergence movement, suggesting that saccades are not a mere 

“intrusion” into the vergence response but have a functional purpose. As concurrent saccades have 

been shown to speed up vergence movements (Erkelens, Steinman, et al., 1989), they might contribute 

to a strategy to bring one eye, perhaps the dominant eye, closer to the target in a shorter amount of 

time. As a result, the other eye would be moved transiently away from the target (Collewijn et al., 

1995; Zee et al., 1992). Kenyon et al. (1980) concluded that despite the disconjugacy in amplitude, 

the saccades during vergence have normal dynamics, as they follow the saccadic main sequence. 

Few studies have analyzed the characteristics of involuntary saccades during symmetrical 

vergence movements or during binocular fixation at different viewing distances, and none of them 

used ramp vergence stimuli. Krauskopf et al. (1960) found no consistent differences between 

saccades’ features during binocular fixation at far (infinity) and near (55 cm) distances. However, the 

tested distances are not within the operational range of the NPC test and are far from the normal limits 

of convergence (Scheiman et al., 2003). Two pieces of evidence lead to the plausible expectation that 

the characteristics of concurrent saccades during vergence may change as a function of the vergence 

demand at different viewing distances (Otero-Millan, Macknik, et al., 2014): (1) greater saccadic 

frequency has been found during slower vergence movements compared to faster vergence 

movements in response to symmetrical vergence stimuli velocity (Kim & Alvarez, 2012b); and (2) 
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convergence peak velocity has been found to be reduced in subjects with convergence insufficiency 

(Alvarez et al., 2010; Thiagarajan et al., 2011; Yuan & Semmlow, 2000). 

The main purpose of this study was to analyze the characteristics of small saccades that occur 

during NPC testing as a function of vergence demand. Specifically, we wondered whether some 

saccadic features can be used as objective markers to predict NPC break and/or recovery points. 

5.3.2. Methods 

5.3.2.1. Subjects 

Eleven non-presbyopic adults participated in the study (mean age ± standard deviation (SD) of 25.4 

± 2.2 years). All subjects had 20/20 visual acuity or better in both eyes at distance and near with their 

habitual refractive correction. Spherical refractive errors ranged from -6.50 D to +0.50 D with 

astigmatism up to -0.75 D. During the experiment, four subjects wore spectacles and 2 subjects wore 

contact lenses. All but 2 of the participants had a NPC break point (assessed with a pen tip and 

averaged across 3 replications) equal to or closer than 5 cm and a recovery point closer than 7 cm. 

All except 1 of the participants had stereoacuity of 20 arc sec or better measured with the graded 

circle test of the Random Dot 2 Stereo Acuity Test with Lea SYMBOLS (Vision Assessment Corp., 

Elk Grove Village, IL, USA). One subject had a break point of 5.3 cm and two had a recovery point 

of 8.3 cm. One participant had a stereoacuity of 23 arc sec. The two subjects with slightly receded 

NPCs had normal stereopsis. 

The study was approved by the Ethics Committee of Hospital Mutua de Terrassa (Terrassa, Spain) 

and followed the tenets of the Declaration of Helsinki. All subjects gave informed written consent 

prior to participation in the study. 

5.3.2.2. Instrument and visual stimulus 

The fixation target was a crosshair consisting of a 2 x 2 mm cross surrounded by a 7 mm diameter 

circle. On the upper and bottom part of the circle there were two vertical lines with a length of 28 mm 

vertically aligned with the central cross. As a result, the cross subtended an angle of 0.29º and the 

whole stimulus subtended angles of 1.00º (width) and 5.01º (height) at 40 cm. The fixation target was 

black printed on white paper. 

The visual stimulus was mounted on a track along which it could be moved forward and 

backward by a stepper motor. The motor was controlled by custom software coded in Matlab R2017a 

(MathWorks, Natick, MA, USA). Binocular eye movements were registered with an EyeLink 1000 
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Plus (SR Research Ltd., Ontario, Canada) at a sampling rate of 500 Hz. The EyeLink was positioned 

at its normal operating distance (around 50 cm) under the track and the target. 

5.3.2.3. Experimental procedure 

Participants were positioned on a chinrest and aligned so that the central fixation cross and subjects’ 

eyes lay on the same horizontal plane and the target moved along the midline to elicit symmetrical 

convergence and divergence movements. 

First, the built-in 9-point EyeLink calibration was performed for each eye separately by 

asking the subjects to fixate on each of the 9 circles that subtended an angle of 0.86º. Instead of using 

a monitor to display the calibration targets, they were printed on white paper and mounted on the 

track at a viewing distance of 40 cm. The eye-tracker was able to locate the pupil and detect the first 

Purkinje image for the whole range of convergence angles required during the NPC test. However, 

this span of angles is considerably wider than the linear tracking range of the eye-tracker according 

to manufacturer’s specifications (32º horizontally). For that reason, a further custom dynamic 

calibration procedure was carried out. 

During the dynamic calibration, participants fixated separately with each eye on the same 

stimulus used later for the NPC testing while it moved from 40 cm to 2.8 cm along the midline at a 

constant velocity of 2 cm/s and back to 40 cm again. Participants were advised beforehand that they 

would perceive the target blurred at the closest distances. They were asked to maintain fixation on 

the center of the cross as precisely as possible. The complete calibration sequence was as follows: 9-

point EyeLink calibration of the right eye and left eye, dynamic calibration of the right eye, and 

dynamic calibration of the left eye. 

The NPC test started immediately after the calibration procedures were completed. Subjects 

were asked to fixate binocularly on the central part of the cross of the crosshair, which was placed 

initially at 40 cm. After a random time between 1 and 3 seconds, it started moving toward the subject 

at a constant velocity of 2 cm/s until it reached a viewing distance of 2.8 cm. Participants were asked 

to press a key on the keyboard when they perceived double vision. Regardless of the moment they 

reported diplopia, the target always reached the shortest distance. It remained at that position and 

after 1 second it moved backward to 40 cm at the same velocity. Participants were asked to press 

again a key when they recovered single binocular vision. The total vergence demand during the test 

varied from about 8.6º at 40 cm to 93.9º at 2.8 cm. The exact angles were slightly different across 

subjects depending on their interpupillary distance. This procedure was repeated three times 
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consecutively, during which the EyeLink recorded the positions of both eyes at a sampling rate of 

500 Hz. 

5.3.2.4. Eye movement data analysis 

Eye position data were processed offline using Matlab R2018a. Periods of 200 ms of the signal before 

and after each blink identified by the EyeLink software were removed to avoid artifacts associated 

with the onset and offset of blinks. 

The EyeLink’s HREF coordinate system was used to register eye position data following the 

recommendation of the manufacturer’s support team (personal communication, September 18, 2017). 

Then, horizontal and vertical data were converted from HREF coordinates to degrees as 

 𝑒𝑦𝑒𝑋 = (
𝐻𝑅𝐸𝐹𝑥

𝑓
+ tan−1

𝐼𝑃𝐷

2·𝑐𝑎𝑙𝐷𝑖𝑠𝑡
) ·

180

𝜋
 (5.9) 

 𝑒𝑦𝑒𝑌 = −
𝐻𝑅𝐸𝐹𝑦

𝑓
·
180

𝜋
 (5.10)  

where 𝑒𝑦𝑒𝑋 and 𝑒𝑦𝑒𝑌 are the horizontal and vertical eye positions in degrees, respectively; 𝐻𝑅𝐸𝐹𝑥 

and 𝐻𝑅𝐸𝐹𝑦 are the raw horizontal and vertical HREF coordinates, respectively; 𝐼𝑃𝐷 is the 

interpupillary distance; 𝑐𝑎𝑙𝐷𝑖𝑠𝑡 is the calibration distance (40 cm); and 𝑓 is a constant with a value 

of 15000. The EyeLink’s intrinsic heuristic filter was switched off during the registration of eye 

position. Then, the data were filtered offline with a third order Savitzky-Golay filter of length 11 

samples (22 ms) (Savitzky & Golay, 1964). 

A fourth order polynomial equation was adjusted by least-squares fitting to the curve defined 

by the actual target position and the horizontal eye position during the convergence and divergence 

periods of the dynamic calibration computed with Eq. (5.9). The coefficients of the fitted polynomial 

were then applied to the horizontal data registered during NPC testing to compensate for the potential 

non-linearity of the eye-tracker at large convergence angles. The signals from each eye were 

calibrated separately with the dynamic calibration coefficients of the corresponding eye. 

Although the target did not move vertically, some subjects exhibited variations in their 

vertical eye position with the target distance. In some cases, this resulted in changes in vertical 

vergence which were thought to be due to system noise (Bedell & Stevenson, 2013) or a vertical 

misalignment between the two eyes and the fixation target. Even a small linear difference in vertical 

position resulted in a considerable angular error, which increased at shorter fixation distances. The 

vertical eye-position traces computed with Eq. (5.10) were corrected to overcome this error (see 

section 5.3.5.1 in Appendix A for details). 
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Saccades were detected with an unsupervised clustering method (Otero-Millan, Castro, 

Macknik, & Martinez-Conde, 2014). A few changes were incorporated to adapt the online version of 

the algorithm to our data. This included removing the constraint of ignoring a 1-second period at the 

beginning of each trial, and correcting an apparent error in the implementation of the algorithm in 

which the direction of the right eye during binocular saccades was computed using the horizontal 

position of the left eye. The velocity-threshold-based algorithm proposed by Engbert & Kliegl 

(2003b) and modified subsequently by Engbert & Mergenthaler (2006) with λ = 6 and a minimum 

duration of 6 ms also was used to identify saccades. The Engbert-Kliegl algorithm relies on the fact 

that the mean horizontal and vertical velocities during fixation are zero (Engbert & Kliegl, 2003b). 

Thus, the algorithm was modified to fit our data, in which the mean eye velocity is not zero due to 

the movement of the fixation target (see section 5.3.5.2 in Appendix A). Two detected saccades 

separated by less than 20 ms were fused into a single movement. A minimum intersaccadic interval 

of 20 ms also was imposed by the Otero-Millan algorithm. The performance of both the Otero-Millan 

and Engbert-Kliegl algorithms was checked by visual inspection of the traces. The Results section, 

below, reports the results from the unsupervised clustering method while the results obtained with the 

velocity-threshold-based algorithm are shown in Appendix B (section 5.3.6). 

5.3.2.5. Statistical analysis 

Statistical analysis was performed using SPSS Statistics 24 (IBM Corp., Armonk, NY, USA). The 

significance level was set at 0.05. Parametric tests were used with normally distributed variables 

while non-parametric tests were used when the variables were not distributed normally according to 

the Shapiro-Wilk test. 

Saccades detected during the periods when the target was fixed at 40 cm or 2.8 cm were not 

included in the analysis, except to compute the evolution of saccade rate over time. Spearman’s rank-

order correlation was used to determine the strength of the associations between the saccade 

amplitude and peak velocity (main sequence) and vergence demand. The Mann-Whitney test was 

used to analyze whether the distributions of saccade amplitude and directional differences between 

the two eyes differed as a function of the direction of the concurrent vergence movement 

(convergence vs divergence). The Kruskal-Wallis test was used to assess the effect of the saccades’ 

direction (horizontal vs vertical vs oblique) on the differences in the direction of the two eyes. The 

paired t-test was used to assess the differences in mean saccade rate as a function of the direction of 

the vergence movement, and between the number of corrective and uncorrective saccades. 
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RStudio (Boston, MA, USA) and R’s Circular Package (Agostinelli & Lund, 2017) were used 

to apply circular statistical tests in order to analyze the saccade direction data. Watson’s test was used 

to determine whether the directions of saccades were uniformly distributed. Fisher’s nonparametric 

test was used to analyze the differences in saccade direction as a function of the direction of the 

vergence movement. 

5.3.3. Results 

Participants’ break and recovery points based on their reports of diplopia and fusion are shown in 

Table 5.3. Two subjects did not report diplopia during the test. All subjects exhibited saccades during 

the vergence movements. 

Table 5.3. Subjective break and recovery points averaged across the three repetitions of the NPC test ± SD for 

all subjects, and total number of saccades exhibited during the three convergence and divergence periods. 

Subject Break point (cm) Recovery point (cm) Number of saccades 

1  3.9 ± 0.4 5.2 ± 0.2 29 

2  5.9 ± 0.9 7.2 ± 0.2 160 

3  3.4 ± 0.5 5.0 ± 0.4 135 

4  3.9 ± 0.3 4.9 ± 0.3 126 

5  3.5 ± 0.7 5.6 ± 0.2 165 

6  4.8 ± 0.1 7.3 ± 0.8 146 

7  3.0 ± 0 6.9 ± 1.1 102 

8  - - 186 

9  3.0 ± 0 4.3 ± 0.7 113 

10  3.0 ± 0 6.7 ± 2.1 308 

11 - - 84 

 

A total of 1554 saccades with a median amplitude of 0.48º (range from 0.12 to 12.26º) were 

detected in the periods when the fixation target moved forward and backward. Most of the saccades 

(83.6%) had an amplitude smaller than 1º. Saccades during convergence and divergence followed the 

main sequence (rs=0.95, p<0.001) as shown in Figure 5.18A. 

Saccade amplitude increased significantly with vergence demand (rs=0.60, p<0.001) (Figure 

5.18B). All individual subjects showed a significant positive correlation with coefficients ranging 

from 0.55 to 0.85 (all values of p≤0.001). There was no significant effect of the direction of the 
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vergence movement on the amplitude of saccades according to the Mann-Whitney test (p=0.224) 

(Figure 5.18C). 

 

Figure 5.18. (A) Main sequence on a log-log scale as a function of the viewing distance. The color code exposes 

the tendency for greater saccade amplitudes and peak velocities at shorter viewing distances. (B) Saccade 

amplitude as a function of vergence demand. The black line corresponds to the least-squares regression fit, 

which is shown only for illustrative purposes (R2=0.48). (C) Amplitude distribution of saccades detected during 

convergence (top) and divergence (bottom) periods. The black vertical lines at amplitude = 100º show that most 

saccades had an amplitude smaller than 1º and can therefore be presumably considered to be equivalent to 

fixational microsaccades in terms of size, even though the fixation target in our experiment was not stationary. 

The distribution of saccade directions is shown in Figure 5.19. The directions of saccades 

differed significantly from a uniform distribution as shown by Watson’s test for circular uniformity 

(p<0.01). A higher prevalence of horizontal than vertical saccades was found, with more upwards 

than downwards vertical components. According to Fisher’s nonparametric test for common median 

directions, the median direction of saccades during convergence (70.80º) and divergence (63.28º) did 

not differ significantly (p=0.542). 
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Figure 5.19. Polar histogram of the saccade directions (gray sectors). The directions of saccades during 

convergence and divergence periods are shown with green and orange lines, respectively. Zero and 90 degrees 

indicate rightward and upward saccades, respectively. 

Both horizontal (directions of ±22.5º from horizontal) and vertical (directions of ±22.5º from 

vertical) saccades exhibited the same trend as all saccades to increase in amplitude with vergence 

demand (horizontal: rs=0.62, p<0.001; vertical: rs=0.56, p<0.001). All individual subjects except one 

showed a significant positive correlation between the amplitude of horizontal saccades and vergence 

demand with correlation coefficients ranging from 0.54 to 0.86 (all values of p≤0.008). Higher inter-

subject variability was found for vertical saccades. Only the three participants who made more than 

a total of 25 vertical saccades showed a significant correlation. 

The difference in saccade direction between the two eyes is shown in Figure 5.20A. In 193 

saccades (12.4%) the direction of the two eyes was found to differ more than ±45º, and in 109 (7.0%) 

the difference was greater than ±90º. Overall, the occurrence of directionally non-conjugate saccades 

was similar during the periods of convergence and divergence. However, the distribution of the 

directional differences was significantly different as a function of the direction of vergence according 

to the Mann-Whitney test (p<0.001) (Figure 5.20B). The long tails towards positive angular 

differences during convergence and toward negative differences during divergence indicate that the 

right-eye direction tended to be more leftward than the direction of the left eye during convergence 

and more rightward during divergence. This behavior is illustrated further in Figure 5.21, in which 

the directions of the right and left eyes during the directionally non-conjugate saccades are 

represented as a function of the direction of the concurrent vergence movement. 
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Figure 5.20. (A) Histogram of the difference in saccade direction between the two eyes (direction of the right 

eye minus direction of the left eye) in degrees. An angular difference of 0º means that the two eyes moved in 

the same direction, whereas ±180º means that the saccade had opposite directions in the two eyes. (B) 

Histograms of the between-eye differences in saccade direction during convergence (top) and divergence 

(bottom). Note that the vertical axes are scaled logarithmically in panel (B) to emphasize the numbers of 

saccades that differed in direction in the two eyes. 

The medians (IQR) of the directional differences were similar for horizontal, vertical and 

oblique saccades: 0.28º (12.74º) for horizontal saccades, -6.72º (31.24º) for vertical saccades, and -

2.07º (24.67º) for oblique saccades. Nevertheless, the distributions of the directional differences 

between the eyes differed significantly as a function of the direction of the saccades as shown by the 

Kruskal-Wallis test (p<0.001). Specifically, the distribution of the directional differences between the 

eyes of horizontal saccades differed significantly from that of vertical and oblique saccades 

(p<0.001). No significant differences were found between vertical and oblique saccades (p=0.316). 

The saccade rate averaged across subjects and the three repetitions was 1.34 ± 0.66 Hz. 

Overall, the mean saccade rate during convergence (1.39 ± 0.68 Hz) and divergence (1.28 ± 0.67 Hz) 

did not differ significantly [t(10)=1.53, p=0.158] (Figure 5.22). The evolution of saccade rate over 

time was computed by using a moving time window of 1 s. On average, saccade rate decreased to 

around 0.5 Hz at the closest target distance (Figure 5.23A). However, the prevalence of saccades 

during vergence movements was idiosyncratic. While five participants showed a decreased saccade 

rate with higher vergence demand (Figure 5.23B), two subjects showed the opposite behavior and 

made more saccades at the closest target distance (Figure 5.23C). The other four subjects showed no 

clear trend to change saccade rate with vergence demand. 
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Figure 5.21. Distribution of the right (panels (B) and (D)) and left (panels (A) and (C)) eyes directions for the 

directionally non-conjugate saccades as a function of the direction of the concurrent vergence movement 

(convergence: panels (A) and (B); divergence: panels (C) and (D)). The unfilled distributions limited by the 

solid lines are the directions of saccades which differed in the two eyes by more than ±45º, while the areas 

shaded in color represent the directions of saccades which differed in the two eyes by more than ±90º. 

 

Figure 5.22. Saccade rate of each subject averaged across the three repetitions as a function of the direction of 

the concurrent vergence movement. The bars in the right subplot represent the mean saccade rate of all subjects. 

Error bars correspond to +1 SD. 
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Figure 5.23. (A) Saccade rate over time averaged across subjects and the three repetitions (black line). The 

shaded area corresponds to ± 1 standard error of the mean (SEM). The right axis and the red line represent the 

target distance. (B) Saccade rate over time averaged across the three repetitions for a representative subject 

(Subject 8) who showed a decreased saccade rate at the closest target distance (black line). The right axis and 

the red line represent the target distance. This participant did not report diplopia during any of the three 

repetitions of the test. (C) Saccade rate over time averaged across the three repetitions for a representative 

subject (Subject 2) who showed an increased saccade rate at the closest target distance (black line). The right 

axis and the red line represent the target distance. 

Overall, the number of saccades that corrected a horizontal vergence error (disparity) 

exceeded significantly the number of error-producing saccades [t(10)=2.81, p=0.018]. The 

convergent and divergent components of saccades are illustrated in Figure 5.20 and emphasized in 

Figure 5.21 for directionally non-conjugate saccades. All subjects except two (Subjects 4 and 11) 

made more disparity-correcting saccades than disparity-inducing saccades (Table 5.4). Considering 

the horizontal fixation position error of each eye separately, for most subjects saccades tended either 

to move one eye closer to the target and the other eye either farther from the target or produced no 

change. The number of saccades of each subject in which the right and left eyes moved closer to the 

target is shown in Table 5.4. For all subjects except Subject 1, the eye with more corrective saccades 

corresponded to the dominant eye (see the numbers in bold in Table 5.4). The eye dominance was 
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determined by visually inspecting the ocular traces as the eye that either maintained fixation or 

deviated less after fusion loss, or the eye that made the initial recovery movement in the correct 

direction. The dominant eye of subjects 8 and 11 could not be determined as these participants did 

not lose fusion during the NPC test. 

Table 5.4. Number of saccades that corrected or produced a horizontal disparity error; number of saccades that 

brought the right eye (RE) or the left eye (LE) closer to the target; and the dominant eye of each subject. 

Subject Disparity 

correcting 

saccades 

Disparity 

inducing 

saccades 

Saccades 

correcting RE 

fixation 

position 

Saccades 

correcting LE 

fixation 

position 

Dominant eye 

1 16 13 13 17 RE 

2 86 74 81 94 LE (1st and 2nd 

rep); RE (3rd 

rep) 

3 100 35 46 103 LE 

4 57 69 70 35 RE 

5 107 58 59 65 LE 

6 106 40 89 58 RE 

7 55 47 58 48 RE 

8 129 57 80 107 - 

9 57 56 43 54 LE 

10  176 132 170 135 RE 

11  38 46 28 52 - 

Rep: repetition. 

5.3.4. Discussion 

All participants made a considerable number of saccades while they fixated on a target moving in 

depth to test the NPC. Their saccades followed the main sequence with a similar slope to that reported 

for visually-guided saccades (Coubard & Kapoula, 2008) and slightly lower but still comparable to 

that for fixational microsaccades (Galfano, Betta, & Turatto, 2004). 

Saccade amplitude increased and, on average, rate decreased with vergence demand. One 

might hypothesize that these effects could be explained by the increased effort of the vergence system 

to maintain fusion at short viewing distances. If that would be the case, saccade amplitude and 
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frequency could be used as objective markers to predict the break point of the NPC test. However, 

the evolution of saccade rate over time was idiosyncratic. The observations that one of the subjects 

who did not lose fusion during the test clearly exhibited fewer saccades at shorter viewing distances 

(Figure 5.23B), and that a minority of subjects showed the opposite trend (Figure 5.23C) lead to the 

conclusion that these parameters cannot be used as an accurate indicator of fusion loss. A higher 

number of saccades around the break point of the NPC was not expected because binocular disparity 

is not a stimulus for microsaccades (Krauskopf et al., 1960; St Cyr & Fender, 1969). 

Alternatively, the changes in amplitude and saccadic rate might be explained by the more 

rapid change of vergence demand and the greater angular size of the fixation target at near than at far 

(McCamy, Najafian Jazi, Otero-Millan, Macknik, & Martinez-Conde, 2013; R. M. Steinman, 1965). 

While the central fixation cross subtended an angle of 0.29º at 40 cm, its angular size increased 

nonlinearly up to 4.1º at 2.8 cm. The accommodation limit and the blurred perception of the fixation 

target at close distance might also lead to greater saccade amplitudes (Ghasia & Shaikh, 2015). 

Further research with subjects with a receded NPC and/or using targets with constant angular size 

might be useful to disentangle the effect of target characteristics such as blur and size from the effect 

strictly related to the effort of the vergence system. 

In agreement with the reported distributions of fixational microsaccades, saccades detected 

during vergence movements show a preference for horizontal directions (Abadi & Gowen, 2004; 

Engbert, 2006; Nyström, Andersson, Niehorster, & Hooge, 2017). However, vertical and oblique 

saccades were not observed as exceptionally as previously reported. When saccades exhibited a 

vertical component, it was generally upwards (Figure 5.19). Downwards saccades were rarely 

observed. This bias in the vertical direction cannot be explained by a potential movement of the target 

in the vertical plane because the saccade direction did not reverse between convergence and 

divergence periods (Figure 5.19). Instead, the high prevalence of upward saccades might reflect the 

tendency of some normal subjects to exhibit an upbeating vertical nystagmus (Figure 5.24). Six 

participants showed this behavior during the experiment. Stevenson, Sheehy, & Roorda (2016) 

previously reported this pattern of eye movement in the fixation of some normal observers, as 

registered using a binocular Scanning Laser Ophthalmoscope. The amplitude of vertical nystagmus 

also increased significantly with vergence demand as shown by the significant positive correlation 

between the amplitude of vertical saccades and vergence demand. 
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Figure 5.24. Vertical traces of a representative observer (Subject 5) who exhibited an upbeating vertical 

nystagmus (slow downward drift interrupted by upward saccades). Positive and negative values mean upward 

and downward movements, respectively. The right axis and the red line represent the target distance. 

Saccades performed during vergence movements are not perfectly conjugated (Erkelens, 

Steinman, et al., 1989; Kenyon et al., 1980). In the current study special emphasis was placed on 

directional disconjugacy. The percentage of saccades in which the direction of both eyes differed 

more than 45 degrees agreed with other studies of fixational microsaccades (Møller, Laursen, 

Tygesen, & Sjølie, 2002; Nyström et al., 2017). Previously, Krauskopf et al. (1960) found a higher 

degree of conjugacy between the directions of the saccades made by the two eyes. The occurrence of 

directionally non-conjugate saccades and its prevalence in convergence or divergence periods were 

idiosyncratic among subjects, in agreement with Erkelens, Steinman, et al. (1989). In general, 

horizontal saccades (directions ±22.5º from horizontal) were more conjugated than vertical and 

oblique saccades. The directionally non-conjugate saccades were mostly oblique or vertical to a lesser 

extent. According to the polar plots in Figure 5.21, the direction of the vertical saccadic component 

of these non-conjugate saccades appeared to be similar in the two eyes and the main source of 

disconjugacy was horizontal, as convergent and divergent components were found. This association 

of vertical version and horizontal vergence movements was also found in the version-vergence 

nystagmus exhibited in response to optical flow on the ground plane (D. Yang, Zhu, Kim, & Hertle, 

2007; Zhu, Hertle, & Yang, 2008). The occurrence of directionally non-conjugate saccades with 

convergent and divergent components supports other observations that vergence eye movements are 

not always slow (Leigh & Zee, 2015). The disjunctive component of directionally non-conjugate 

saccades was mostly in the correct direction to reduce vergence error as shown in Figure 5.20 and 

Figure 5.21. 

The potential role of fixational eye movements in maintaining accurate binocular fixation has 

been a matter of study for several decades (Otero-Millan, Macknik, et al., 2014). Our results suggest 

that 59.7% of all the saccades performed during the NPC test reduced horizontal vergence errors 

(Table 5.4). However, two observers made more error-inducing than correcting saccades. Overall, the 
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median horizontal vergence error compensated by saccades during the convergence and divergence 

periods was 0.78 min arc and 3.12 min arc, respectively. Involuntary microsaccades during fixation 

of a stationary target have been also found to correct similar amounts of binocular disparity (Engbert 

& Kliegl, 2004). However, these authors also found a considerable percentage of error producing 

microsaccades.  

Our results reveal a preference of subjects to reduce the fixation position error of one eye at 

the expense of inducing (or at least not correcting) the fixation error of the other eye. Most subjects 

chose the dominant eye to reduce its fixation position error, as previously suggested by Zee et al. 

(1992). In 4 participants, the median error induced in the non-dominant eye was smaller than the 

median error corrected by the dominant one. Two participants showed the opposite behavior. In 2 

other subjects, saccades induced a small fixation error in both eyes, although it was smaller in the 

dominant eye. The dominant eye of the 3 other subjects either could not be assessed or did not 

coincide with the eye in which saccades were more corrective. 

In summary, all observers made involuntary small saccades during the NPC test. Both the 

average saccade amplitude and rate changed with vergence demand. However, the increment in 

amplitude and decrease in rate might be explained by the greater angular size of the fixation target at 

near than at far, rather than by the interactions between the saccadic and vergence systems. In general, 

the direction of the vergence movement had no significant effect on saccade characteristics. A small 

percentage of saccades was not conjugated as they contained convergent or divergent components. 

Most non-conjugate saccades tended to correct binocular disparity errors. Finally, in most participants 

the majority of saccades tended to correct the fixation position error of the dominant eye. 

5.3.5. Appendix A 

5.3.5.1. Correction of vertical eye-position traces 

If the two eyes of the observer were not exactly at the same height in the head, vertical vergence 

would be required to maintain binocular fixation at close fixation distances. The change in vertical 

eye position would be expected to be explained by the inverse tangent of the vertical misalignment 

between the eye and target heights divided by the viewing distance. 

Figure 5.25A shows an example of the change in vertical eye position during the dynamic 

calibration with viewing distance. The vertical traces of 8 participants showed a similar behavior 

during the NPC test. The function 

 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = tan−1 (
𝑎

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
) + 𝑏 (5.11) 
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was fitted to the dynamic calibration data, where 𝑎 is the parameter indicative of the vertical 

misalignment, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the distance of the fixation target from the observer, and 𝑏 is a constant 

vertical position error. The estimated vertical misalignment (𝑎) ranged between 0.01 mm to 0.44 cm. 

 

Figure 5.25. (A) Vertical right eye position of Subject 10 during convergence (gray line) and divergence (black 

line) periods of dynamic calibration as a function of the viewing distance. The red line corresponds to the fitted 

function according to Eq. (5.11) (a=-0.44 cm, b=-4.4º, R2=0.96). (B) Vertical vergence exhibited by the same 

subject during the first repetition of the NPC test before (gray line) and after (black line) correction of the 

vertical traces. The shaded area corresponds to the period when the subject reported diplopia. The large spike 

in the two vertical vergence traces before time = 20 s might be an artifact associated with the loss of fusion. 

The vertical position of each eye during the NPC test was corrected separately by subtracting 

the model fitted to the dynamic calibration data in Eq. (5.11) from the raw measured position. As a 

result, the abnormal increase in vertical vergence shown at close distance due to relative misalignment 

in the height of the two eyes and the target was reduced substantially (Figure 5.25B). 

5.3.5.2. Modification of the Engbert-Kliegl (E-K) algorithm 

Engbert & Kliegl (2003b) proposed a saccade detection algorithm based on a velocity threshold 

adapted to the level of noise in the data. Specifically, the algorithm uses a multiple of the standard 

deviation of the velocity distribution as the saccade-detection threshold. This threshold is computed 

separately for horizontal and vertical eye-movement components. Saccades are identified as 

“outliers” in velocity space, i.e., samples with a velocity that lies outside an ellipse whose horizontal 

and vertical radii are the velocity thresholds. Because the mean eye velocity during fixation is 

assumed to be effectively zero, the ellipse is centered at zero horizontal and vertical velocity. 
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However, the mean horizontal velocity during the NPC test cannot be assumed to be zero, as 

the fixation target moved forward and backward at a constant linear velocity. The horizontal angular 

velocity of the eyes actually increased at close target distances. Therefore, two sliding time windows 

of 5 s and 48 ms were used to divide the time series and apply the detection algorithm. The velocity 

threshold was computed during each 5-second period similarly than in the original E-K algorithm. 

The center of the ellipses used to identify the saccades in velocity space was computed as the median 

eye velocity over the shorter (48-ms) time window (Figure 5.26). The lengths of the sliding time 

windows were determined as the ones which detected saccades that clustered optimally around the 

main sequence. 

 

Figure 5.26. (A) Horizontal (black) and vertical (gray) eye position of Subject 5 during a 5-second period of 

the NPC test. During this period the observer exhibited six saccades, which are identified with numbers. (B) 

Horizontal (black) and vertical (gray) components of eye velocity during the same period of the NPC test. (C) 

Plot of the trajectory in velocity space. The ellipse used as the criterion to identify saccades is represented in 

gray. Its horizontal and vertical center is at 6.60 and 0 º/s, respectively. The six saccades showed considerably 

higher velocities than the median velocity during the 5-second period. 

5.3.6. Appendix B 

In this section, the results with the modified E-K algorithm are shown. 

A total of 1639 saccades were detected by the modified version of the velocity-threshold-

based algorithm. The number of saccades exhibited by each subject is shown in Table 5.5. For all 
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observers except two, more saccades were detected with the E-K algorithm than with the clustering 

method (see Table 5.3). 

Table 5.5. Number of saccades exhibited during convergence and divergence movements by each subject. 

Subject Number of saccades 

1  34 

2  172 

3  141 

4  120 

5  176 

6  151 

7  118 

8 196 

9  128 

10  320 

11 83 

 

The median saccade amplitude was 0.42º (range from 0.04º to 8.90º). Saccades during 

convergence and divergence followed the main sequence (rs=0.97, p<0.001) as shown in Figure 

5.27A. Most of the saccades (86%) had an amplitude smaller than 1º. The amplitude distribution of 

saccades differed significantly between the two detection algorithms according to the Mann-Whitney 

test (p<0.001) (Figure 5.27C). 

A significant positive correlation between saccade amplitude and vergence demand was 

found (rs=0.55, p<0.001) (Figure 5.27B). This association was showed by all individual subjects, with 

correlation coefficients ranging from 0.32 to 0.86 (all values of p≤0.001). Similarly as with the 

clustering method, there was no significant influence of the direction of the vergence movement on 

the amplitude of saccades, according to the Mann-Whitney test (p=0. 212). 

The distribution of saccade directions is shown in Figure 5.28. The directions of saccades 

differed significantly from a uniform distribution as shown by Watson’s test for circular uniformity 

(p<0.01). Similar to the saccades detected by the clustering algorithm, a higher prevalence of 

horizontal than vertical saccades was found, with more upwards than downwards vertical 

components. The median direction of saccades during convergence (78.50º) and divergence (72.54º) 

did not differ significantly (p=0.387). 
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Figure 5.27. (A) Main sequence on log-log scale as a function of the viewing distance. The color code exposes 

the tendency for greater saccade amplitude and peak velocity at shorter viewing distances. (B) Saccade 

amplitude as a function of vergence demand. The black line corresponds to the least-squares regression fit, 

which is shown only for illustrative purposes (R2=0.40). (C) Amplitude distribution of saccades detected with 

the clustering method (top) and with the modified version of the E-K algorithm (bottom). 

 

Figure 5.28. Polar histogram of the saccade directions (gray sectors). The direction of saccades during 

convergence and divergence periods is shown with green and orange lines, respectively. Zero and 90 degrees 

indicate rightward and upward saccades, respectively. 
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Both horizontal (directions of ±22.5º from horizontal) and vertical (directions of ±22.5º from 

vertical) saccades exhibited the same trend to increase in amplitude with vergence demand 

(horizontal: rs=0.59, p<0.001; vertical: rs=0.49, p<0.001). All individual subjects except one showed 

a significant positive correlation between the amplitude of horizontal saccades and vergence demand 

with correlation coefficients ranging from 0.42 to 0.86 (all values of p≤0.04). Higher inter-subject 

variability was found for vertical saccades. All participants except four showed a significant 

correlation between vertical saccade amplitude and vergence demand, with correlation coefficients 

ranging from 0.53 to 0.91 (p≤0.03). 

The difference in saccade direction between the two eyes is shown in Figure 5.29A. In 

general, the number of directionally non-conjugate saccades is similar to that detected by the 

clustering algorithm. In 230 saccades (14.0%), the direction of the two eyes was found to differ more 

than ±45º, and in 124 (7.6%) the difference was higher than ±90º. Overall, the occurrence of 

directionally non-conjugate saccades was similar during the periods of convergence and divergence. 

However, the distribution of the directional differences was significantly different as a function of the 

direction of vergence according to the Mann-Whitney test (p<0.001) (Figure 5.29B). The directions 

of the right and left eyes during the directionally non-conjugate saccades are represented as a function 

of the direction of the concurrent vergence movement in Figure 5.30. 

 

Figure 5.29. (A) Histogram of the difference in saccade direction between the two eyes (direction of the right 

eye minus direction of the left eye) in degrees. An angular difference of 0º means that the two eyes moved in 

the same direction, whereas ±180º means that the saccade had opposite directions in the two eyes. (B) 

Histograms of the between-eye differences in saccade direction during convergence (top) and divergence 

(bottom). Note that the vertical axes are scaled logarithmically in panel (B) to emphasize the numbers of 

saccades that differed in direction in the two eyes. 
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Figure 5.30. Distribution of the right (panels (B) and (D)) and left (panels (A) and (C)) eyes directions for the 

directionally non-conjugate saccades as a function of the direction of the concurrent vergence movement 

(convergence: panels (A) and (B); divergence: panels (C) and (D)). The unfilled distributions limited by the 

solid lines are the directions of saccades which differed in the two eyes by more than ±45º, while the areas 

shaded in color represent the directions of saccades which differed in the two eyes by more than ±90º. 

The median (IQR) of the directional differences between saccades was similar for horizontal, 

vertical and oblique saccades: 0.82º (13.07º) for horizontal saccades, -3.96º (92.48º) for vertical 

saccades, and –1.07º (23.34º) for oblique saccades. However, the distribution of the directional 

differences between the eyes differed significantly as a function of the direction of the saccades as 

shown by the Kruskal-Wallis test (p=0.006). Specifically, the distribution of the directional 

differences between the eyes of horizontal saccades differed significantly from that of oblique 

saccades (p=0.015). The difference between the distributions of horizontal and vertical saccades also 

approached significance (p=0.056). No significant differences were found between vertical and 

oblique saccades (p=1.000). 
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The saccade rate averaged across subjects and the three repetitions was 1.41 ± 0.69 Hz. 

Overall, the mean saccade rate during convergence (1.45 ± 0.66 Hz) and divergence (1.37 ± 0.74 Hz) 

did not differ significantly [t(10)=1.13 p=0.287] (Figure 5.31). The evolution of saccade rate over 

time was computed by using a moving time window of 1 s. As stated in section 5.3.3, variations in 

the saccade rate as a function of the vergence demand were rather idiosyncratic. On average, the 

variation of saccade rate followed a similar behavior to the saccades detected with the clustering 

algorithm. Averaged across all subjects, the saccade rate decreased to around 0.5 Hz at the closest 

target distance (Figure 5.32). 

 

Figure 5.31. Saccade rate of each subject averaged across the three repetitions as a function of the direction of 

the concurrent vergence movement. The bars in the right subplot represent the mean saccade rate of all subjects. 

Error bars correspond to +1 SD. 

 

Figure 5.32. Saccade rate over time averaged across subjects and the three repetitions (black line). The shaded 

area corresponds to ± 1 standard error of the mean (SEM). The right axis and the red line represent the target 

distance. 
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Overall, the number of saccades that corrected a horizontal vergence error (disparity) 

exceeded the number of error-producing saccades. However, this difference was at the limit of 

significance [t(10)=2.19, p=0.053]. All subjects except three made more disparity-correcting saccades 

than disparity-inducing saccades (Table 5.6). Considering the horizontal fixation position error of 

each eye separately, for most subjects saccades either tended to move one eye closer to the target and 

the other eye either farther from the target, or produced no vergence change. The number of saccades 

for each subject in which the right and left eyes moved closer to the target is shown in Table 5.6. For 

all subjects except Subject 1 and the two subjects for whom eye dominance could not be established 

(Subjects 8 and 11), the eye with more corrective saccades corresponded to the dominant eye (see the 

numbers in bold in Table 5.6). 

Table 5.6. Number of saccades that corrected or produced a horizontal disparity error; number of saccades that 

brought the right eye (RE) or the left eye (LE) closer to the target; and the dominant eye of each subject. 

Subject Disparity 

correcting 

saccades 

Disparity 

inducing 

saccades 

Saccades 

correcting RE 

fixation 

position 

Saccades 

correcting LE 

fixation 

position 

Dominant eye 

1  19 15 14 19 RE 

2  86 86 83 87 LE (1st and 2nd 

rep); RE (3rd 

rep) 

3  85 56 47 103 LE 

4  53 67 58 31 RE 

5  116 60 60 68 LE 

6  108 43 97 60 RE 

7  68 50 65 55 RE 

8  85 111 79 107 - 

9  80 48 59 62 LE 

10 185 135 180 134 RE 

11 42 41 32 52 - 

Rep: repetition. 



Methodology and results 

 

123 

 

5.4. Study 4. Effects of stimulus’ predictability on the vergence 

facility test: a preliminary study 

NOTE: The following text in this section corresponds to the article in preparation for submission to 

Investigative Ophthalmology & Visual Science: Mestre, C., Gautier, J., & Pujol, J. Effects of stimulus’ 

predictability on the vergence facility test: a preliminary study. [to be submitted] 

5.4.1. Introduction 

The assessment of fusional, or disparity, vergence is fundamental to evaluate binocular vision. 

Besides the amplitude of convergence and divergence movements, it is also important to measure 

vergence facility, especially in symptomatic subjects with compensated phoria and normal fusional 

vergence amplitude (Gall & Wick, 2003). The vergence facility test assesses the ability to make rapid 

repetitive vergence changes over an extended period of time (Scheiman & Wick, 2014). The test is 

generally performed by alternating flipper or loose prisms with powers of 3 prism diopters (PD) base-

in (BI) and 12 PD base-out (BO) (Gall et al., 1998). BI prisms elicit divergence movements while BO 

prisms stimulate convergence movements. Subjects are asked to look at a close or distant fixation 

target and try to fuse it as fast as possible. They are required to report when they perceive single 

vision, and only then the prism is flipped from BI to BO state or vice versa. The vergence facility is 

typically measured as the number of cycles per minute (cpm) that the target can be fused while 

alternating BI and BO prisms (Scheiman & Wick, 2014). The expected value at near vision is 15 cpm 

(Gall et al., 1998). 

Hence, the vergence facility test consists in a predictable vergence step task, as the same 

convergence and divergence demands are alternated over a relatively extended period of time, 

generally 1 minute. After few cycles, subjects can predict when the examiner will flip the prisms. To 

perform the task, subjects need to rapidly alternate their vergence state from 1.7º of divergence 

(1𝑃𝐷 = 100 tan 𝑎𝑛𝑔𝑙𝑒) to 6.8º of convergence from a baseline convergence of 8.6º if the test is 

performed at 40 cm (for 3 PD BI and 12 PD BO prisms, and an interpupillary distance of 6 cm). The 

baseline convergence is 0.6º if it is performed at 6 m. The required vergence movements are 

asymmetric. 

Prediction is a property of the oculomotor system not only demonstrated for vergence 

movements (Rashbass & Westheimer, 1961), but also for saccades and smooth pursuit (Kowler et al., 

2014; Kowler & Steinman, 1979). Rashbass & Westheimer (1961) were the first to demonstrate 

anticipated vergence movements, but only in response to predictable sinusoidal stimulus. Later, 
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Krishnan et al. (1973) found a reduced vergence latency in response to predictable vergence step 

stimulus. Several authors have analyzed the effects of predictable symmetrical vergence steps on the 

vergence system and concluded that: (1) most subjects showed anticipatory slow vergence drifts 

before the fast transient in response to predictable vergence steps (Alvarez et al., 2002; Kumar et al., 

2002; Yuan et al., 2000); (2) vergence latency was shorter for stimulus predictable either in time, 

direction or magnitude (Alvarez et al., 2002; Krishnan et al., 1973; Kumar et al., 2002; Yuan et al., 

2000); and (3) vergence movements in response to predictable stimulus had faster dynamics (Alvarez 

et al., 2002). In contrast, Yuan et al. (2000), in a model-based analysis, found that predictable 

vergence movements had lower peak velocity than movements in response to unpredictable vergence 

steps, and concluded that high-level processes might be involved in the vergence prediction. 

Most of the previous studies analyzing the effect of stimulus’ prediction on the properties of 

vergence movements elicited small magnitude vergence steps, e.g. 4º is a common step magnitude 

(Alvarez et al., 2002; Yuan et al., 2000); and did not analyze separately the effects of timing, step 

magnitude and direction randomizations on the same participants. Relatively small sample sizes are 

typically used in these studies, where subjects are composed of both expert and naïve observers. 

The main goal of the present study is to analyze the effects of stimulus’ predictability in 

magnitude, time, and those combined factors on the temporal characteristics of the vergence system. 

In the proposed setup, the magnitude of the elicited steps is comparable to the vergence demands used 

in the clinical vergence facility test. The subjects’ previous experience with the test and their direction 

of phoria have been added to the analysis in order to understand the potential effects of these factors 

on the result of the clinical vergence facility test. 

5.4.2. Methods 

5.4.2.1. Subjects 

A total of 37 non-presbyopic subjects participated in the study (mean age ± standard deviation (SD) 

of 26.9 ± 5.8 years). All participants had 20/25 visual acuity or better in both eyes with their habitual 

refractive correction. During the experiment, 16 subjects wore spectacles and 5 subjects wore soft 

contact lenses. Spherical refractive errors ranged from –6.50 D to +2.25 D with astigmatism up to      

–2.75 D. Participants’ horizontal phoria ranged from 6 PD of esophoria to 11 PD of exophoria 

measured with a Maddox rod and the Bernell Muscle Imbalance Measure (MIM) card (Bernell Corp., 

Mishawaka, IN, USA). Eleven subjects were esophores and 26 were exophores. All participants had 

stereoacuity of 50 arc sec or better measured with the graded circle test of the Random Dot 2 Stereo 

Acuity Test with Lea SYMBOLS (Vision Assessment Corp., Elk Grove Village, IL, USA). 
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Participants were able to complete at least 13 cpm with 3 PD BI and 12 PD BO when testing the 

vergence facility at 40 cm. 

The sample was divided into two separate groups according to the subjects’ expertise in the 

vergence facility test. Seventeen subjects were naïve to this test and had never performed it before, 

while another group of 20 participants were familiar with the vergence facility test. The latter group 

consisted of optometrists and optometry students. All subjects of both groups were unaware of the 

purpose of the study. A summary of each subject’s characteristics is shown in Table 5.7. 

The study was approved by the Ethics Committee of Hospital Mutua de Terrassa (Terrassa, 

Spain) and followed the tenets of the Declaration of Helsinki. All subjects gave informed written 

consent prior to participation in the study. 

Table 5.7. Age, expertise, refractive error of right eye (RE) and left eye (LE), phoria at 40 cm, vergence facility 

(VF) performed clinically at 40 cm, and stereopsis of the 37 participants. N: naïve; E: expert; negative values 

of phoria correspond to exophoria and positive values correspond to esophoria. 

Subject Age 

(years) 

Expertise Refraction RE 

(D) 

Refraction LE 

(D) 

Phoria 

(PD) 

VF 

(cpm) 

Stereopsis 

(arc sec) 

1 25 N -2.75 -0.75 5º -2.50 -0.25 159º -10  20 12.5 

2 32 E -3.00 -0.50 180º -2.75 -0.75 180º -7  17 16 

3 33 N -4.25 -0.25 144º -4.25 -0.25 66º -8  23 23 

4 38 E +0.50 +0.50 +1  18 50 

5 24 N -2.50  -3.25 -1  18 12.5 

6 22 E +1.00 -0.50 5º +0.75 -0.50 157º -1  13 23 

7 25 E +1.25 -0.75 109º +1.75 -1  18 16 

8 21 E -1.75 -2.75 12º +0.25 -2.25 169º +3  16 20 

9 26 N +1.75 -1.25 3º +2.25 -0.75 13º -4  16 20 

10 21 E -2.00 -1.25 176º -0.75 -2.75 180º -7  21 12.5 

11 22 E -0.50 0 -1  14 20 

12 37 N +0.75 -0.50 20º +0.50 -0.50 171º -9  25 12.5 

13 22 N +0.75 -0.50 78º +1.25 -0.75 60º +2  22 23 

14 28 N -0.50 -1.00 103º -0.75 -0.25 120º +3  22 16 

15 38 N +1.25 -1.25 1º +0.50 -1.00 138º -4  25 12.5 

16 28 E -0.75 -0.50 -1  18 20 

17 28 E -0.50 0 +6  19 16 

18 26 N -4.25 -2.25 5º -3.25 -2.25 6º -4  19 16 
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Table 5.7. (continued). 

Subject Age 

(years) 

Expertise Refraction RE 

(D) 

Refraction LE 

(D) 

Phoria 

(PD) 

VF 

(cpm) 

Stereopsis 

(arc sec) 

19 28 N -0.75 -1.00 65º -1.00 -0.50 64º -2  14 40 

20 28 N -1.50 -0.50 75º -1.75 -0.50 77º -2  23 12.5 

21 39 N -4.75 -0.75 20º -3.75 -0.50 100º -7  19 32 

22 28 E 0 -0.75 180º +0.25 -0.75 6º -2  18 40 

23 26 E +0.50 -0.75 100º +0.50 -0.25 85º +2  24 12.5 

24 25 E -2.00 -1.25 110º -2.50 +2  30 12.5 

25 21 E -3.50 -0.75 83º -2.75 +4  20 20 

26 22 E -1.25 -2.25 22º -2.50 -1.50 169º -1  20 20 

27 21 E +0.25 -0.25 116º +0.50 -0.25 72º +1  18 23 

28 20 E -1.25 -0.50 140º -1.75 -0.25 35º -4  14 20 

29 27 N -6.00 -6.00 -1  19 12.5 

30 21 N +0.50 -0.25 112º +0.50 -0.25 62º +1  19 12.5 

31 36 N 0 +0.25 -0.25 56º -1  18 23 

32 20 E -6.50  -6.50 -11  25 20 

33 27 E -3.00 -2.75 -6  20 16 

34 38 N +1.50 -1.50 7º +1.25 -1.75 169º -3  19 12.5 

35 22 E -2.5 -1.50 100º -1.75 -1.25 71º -4  17 16 

36 30 N -1.25 -0.50 +4  23 12.5 

37 21 E -0.25 -0.25 -0.25 1º -2  20 12.5 

 

5.4.2.2.Instrumentation and visual stimulus 

The experimental setup consisted in an haploscope composed of two identical computer screens and 

two cold mirrors. These elements were arranged so that the optical distance between the screens and 

the patients’ eyes was 40 cm. The accommodation plane was held constant at 2.50 D while 

symmetrical disparity vergence stimuli could be generated. 

Eye movements were registered with an EyeLink 1000 Plus (SR Research Ltd., Ontario, 

Canada) at a sampling rate of 500 Hz. The EyeLink was positioned at a distance of 60 cm 

approximately from the chinrest. Eye movements could be registered through the cold mirrors thanks 

to their high transmittance at IR wavelengths. 
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A custom Matlab R2015a (MathWorks, Natick, MA, USA) program using the Psychophysics 

Toolbox extensions (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) controlled the stimuli 

presentation and data collection from the eye-tracker. The letter-column stimulus of the rotating near-

point card NC-1 (Topcon Corp., Japan) was reproduced digitally and presented at each screen. The 

digitized stimulus consisted in a column of black letters with 20/50 visual acuity, approximately, on 

a white background of 18 × 17 cm. The rest of the screen was set at plain mid-gray. The disparity 

vergence demand was stimulated by eliciting a change in the object rendered disparity along the 

horizontal axis. The program changed the stimuli position at each screen in a synchronous step-like 

fashion. The total vergence demand was divided symmetrically into the two eyes, e.g. a vergence 

demand of 6 PD was stimulated in each eye for a total demand of 12 PD. The experiment was 

performed in a dark room so that participants could only fixate and fuse on the stimuli presented on 

each screen. 

5.4.2.3. Experimental procedure 

Subjects were instructed to fuse the stimuli presented on each screen as fast as possible and press a 

key on the keyboard when they perceive them singly. They were informed that to achieve single 

vision they might need to cross their eyes. After positioning the participants on the chinrest, the 

position of the stimulus at each screen was adjusted with a real target located along the subjects’ 

midline at a distance of 40 cm. After that, the built-in 9-point EyeLink calibration was performed for 

each eye separately. Subjects were asked to fixate on each of the 9 circles of 1.86º that appeared at 

different positions. The experimental procedure started immediately after the calibration process was 

completed. 

Four experimental conditions were presented to each subject in strictly random order (Table 

5.8). In condition 1, the stimulus sequence was completely predictable as the disparity vergence 

demand alternated with steps from 3 PD BI to 12 PD BO and vice versa every 2 seconds. In condition 

2, the disparity vergence demand was identical as in condition 1 but the stimuli remained at the same 

position for a random duration of 2, 3 or 4 s. In condition 3, the vergence demand was randomly 

selected among seven possible disparities: 8 PD BI, 5 PD BI, 3 PD BI, 3 PD BO, 6 PD BO, 12 PD 

BO, 20 PD BO. The exposure time at each demand was fixed to 2 seconds. In condition 4, the 

sequence of both vergence demand and exposure time was random among the possibilities detailed 

in Table 5.8. The sequence of vergence demand in conditions 3 and 4 was actually pseudo-random, 

as a minimum of 3 transitions between 3 PD BI and 12 PD BO and vice versa were forced in order to 

have sufficient data in each condition for the analysis. Participants pressed a key on the keyboard to 

initiate each condition when they felt ready. Participants were instructed that they could stop the 
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experiment at any time if they felt uncomfortable or tired. Each experimental condition lasted 1 

minute. 

Table 5.8. Summary of the characteristics of the four experimental conditions. 

Condition Randomness character Vergence 

demands (PD) 

Exposure 

times (s) 

1 Not random 3 BI, 12 BO 2 

2 Random exposure time; non-random vergence 

demand 

3 BI, 12 BO 2, 3, 4 

3 Random vergence demand; non-random 

exposure time 

8 BI, 5 BI, 3 BI,    

3 BO, 6 BO,    

12 BO, 20 BO 

2 

4 Random exposure time; random vergence 

demand 

8 BI, 5 BI, 3 BI,    

3 BO, 6 BO,    

12 BO, 20 BO 

2, 3, 4 

 

After each condition, participants were asked to give a score on a 5-point scale based on their 

own subjective perception of predictability. A level of 1 meant that the sequence of the stimuli was 

completely predictable, while a level of 5 meant that it was totally unpredictable or random. These 

subjective responses were recorded by the examiner. 

The same procedure was repeated in a second session after a short break. 

5.4.2.4. Data analysis 

Data were processed and analyzed offline using a custom Matlab R2018a program.  

Periods of 200 ms before and after each blink were removed from the signal to avoid artifacts 

associated with the onset and offset of blinks. Since the EyeLink’s intrinsic heuristic filter was 

switched off during the registration of eye position, the data were filtered offline with a third order 

Savitzky-Golay filter of length 11 samples (22 ms) (Savitzky & Golay, 1964) as in Nyström et al. 

(2017). 

The vergence response was computed by subtracting the left and right eyes data, while 

version consisted of the average of both eyes. The vergence signal was filtered with a fourth order 

Butterworth low-pass filter with a cutoff frequency of 50 Hz as in Talasan et al. (2016). The vergence 

velocity was then calculated over a time window of 20 ms (10 samples). 
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At each vergence transition (change of stimulus’ position), three variables were computed: 

latency, time to peak velocity, and response time (Figure 5.33). Latency was defined as the time 

between the onset of the stimulus at a specific vergence demand and the start of the vergence 

movement. This was determined as the time when the vergence velocity exceeded 5 º/s. This criterion 

is standard and commonly used by other authors (Coubard & Kapoula, 2008; Kapoula et al., 2016; 

Q. Yang et al., 2002). The time to peak velocity was defined as the time between the onset of the 

stimulus at a specific vergence demand and the vergence peak velocity. This timing metric was also 

used in previous studies as it is an easily identifiable point in time less ambiguous than the onset of 

the vergence movement (Alvarez et al., 2002; Yuan et al., 2000). The response time was calculated 

as the time between the onset of the stimulus at a specific vergence demand and the moment when 

the participants pressed a key on the keyboard to report single vision. 

 

Figure 5.33. Example of the data analysis in a convergent and a divergent transition. The black square wave 

function in the upper plot represents the vergence demand. The two vertical green lines represent the moments 

when the patient pressed the key to report single vision. The two horizontal dashed lines in the lower plot 

represent the velocity thresholds used to determine the onset of convergence and divergence movements, 

respectively. Positive vergence positions and velocity correspond to convergence and negative vergence 

positions and velocity correspond to divergence. 
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All data and the placement of the time markers by the algorithm were verified visually. 

Responses in which a blink occurred during the transient portion of the movement were omitted from 

the analysis. In agreement with previous studies, almost all vergence responses were accompanied by 

saccades (Collewijn et al., 1995; Kumar et al., 2002). During visual inspection, the versional 

component of the responses was also analyzed. The transitions were manually classified based on the 

presence or absence of saccadic movements and the moment when they occurred: before the onset of 

the vergence movement, between the onset of vergence and the vergence peak velocity, at the same 

moment as vergence peak velocity (±2 ms), or after vergence peak velocity. The most prevalent 

condition found in our data consisted in saccades occurring when vergence velocity was maximum. 

Vergence transitions accompanied by “intrusive” saccadic movements at the initial portion of the 

response before the vergence peak velocity were omitted from the analysis. 

Since the dynamics and temporal characteristics of vergence movements are affected by the 

magnitude and the initial vergence demand (Alvarez, Semmlow, et al., 2005; Maxwell et al., 2010), 

only transitions from 3 PD BI to 12 PD BO and from 12 PD BO to 3 PD BI were included in the 

analysis. These particular transitions were chosen because they are typically used in the vergence 

facility test performed in clinics (Gall et al., 1998). Data from the two sessions were pooled together 

and used to compute the mean latency, time to peak velocity, and response time in each experimental 

condition. 

Statistical analysis was performed using SPSS Statistics 24 (IBM Corp., Armonk, NY, USA). 

The significance level was set at 0.05. 

The three outcome variables were analyzed using a mixed ANOVA with two within-subjects’ 

factors and two between-subjects’ factors. The two within-subjects’ factors were: randomness 

condition {1, 2, 3 or 4} (see Table 5.8), and vergence direction {convergence or divergence}. The 

two between-subjects’ factors were: expertise {naïve or expert}, and phoria direction measured 

clinically beforehand {esophoria or exophoria}. 

The scores of the perceived predictability attributed by participants to each condition were 

first averaged across sessions. Then, they were analyzed using the Friedman test. The Wilcoxon 

signed-rank test was used to determine which pairwise comparisons were statistically significant. The 

significance level for the post-hoc test was set at 0.008 (0.05/6=0.008) according to the Bonferroni 

correction. 
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5.4.3. Results 

The naïve and expert groups did not differ in refractive error (spherical equivalent), magnitude of 

phoria, stereopsis, nor clinically measured vergence facility, as shown by the independent t test 

(p>0.05). However, expert subjects (24.5 ± 4.7 years) were significantly younger than naïve 

participants (29.8 ± 5.9 years) (p=0.005). 

The results of the mixed ANOVA for the vergence latency, the time to peak velocity and the 

response time are summarized in Table 5.9. 

Table 5.9. p-values obtained with the mixed ANOVA with two within-subjects' factors (Randomness condition 

and Vergence direction) and two between-subjects' factors (Expertise and Phoria direction). *Statistically 

significant. 

Factor Latency 
Time to peak 

velocity 

Response 

time 

Randomness condition 0.003* 0.010* 0.011* 

Vergence direction 0.973 0.837 <0.001* 

Expertise 0.487 0.020* 0.117 

Phoria direction 0.672 0.013* 0.929 

Randomness condition*Vergence direction 0.391 0.243 0.127 

Randomness condition*Expertise 0.364 0.732 0.832 

Randomness condition*Phoria direction 0.961 0.731 0.105 

Randomness condition*Expertise*Phoria direction 0.535 0.537 0.654 

Vergence direction*Expertise 0.549 0.459 0.717 

Vergence direction*Phoria direction 0.003* 0.398 0.098 

Vergence direction*Expertise*Phoria direction 0.515 0.656 0.409 

Randomness condition*Vergence direction*Expertise 0.560 0.684 0.283 

Randomness condition*Vergence direction*Phoria 

direction 
0.815 0.920 0.709 

Randomness condition*Vergence direction*Expert* 

Phoria direction 
0.343 0.357 0.785 

 

Vergence latency was affected by the stimulus predictability (Figure 5.34A). The Bonferroni 

post-hoc test showed significant differences in vergence latency between fixed or time-randomized 

stimuli presentation alternating 3 PD BI and 12 PD BO vergence demands (conditions 1 and 2) 

(p=0.002), with a mean difference ± SD of -9 ± 15 ms. Moreover, the interaction term Vergence 
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direction*Phoria direction also showed statistically significant differences (Figure 5.34E). The 

Bonferroni post-hoc test showed that in exophores, the latency of convergent transitions (151 ± 11 

ms) was significantly longer than in divergent transitions (142 ± 17 ms) (p=0.004). Oppositely, in 

esophores, the latency of divergent transitions (150 ± 9 ms) was longer than in convergent transitions 

(138 ± 12 ms). However, the differences were at the limit of statistical significance (p=0.067). In 

convergent transitions, the latency exhibited by exophores was significantly longer than that exhibited 

by esophores (p=0.003). In divergent transitions, esophores exhibited longer latencies than exophores, 

although the differences were not statistically significant (p=0.187). The main effects of the other 

factors shown in Figure 5.34 (panels from B to D) nor their interactions were not significant. 

 

Figure 5.34. (A) Mean vergence latency at each experimental condition. (B) Mean vergence latency as a 

function of the vergence direction. (C) Mean vergence latency as a function of the direction of phoria. (D) Mean 

vergence latency as a function of the subjects’ expertise. (E) Mean latency exhibited by esophoric and exophoric 

participants as a function of the direction of the vergence transitions. Error bars in panels (A) and (B) show ± 1 

within-subjects’ SD. Error bars in panels (C), (D) and (E) show ± 1 SD. ** Statistically significant (p<0.01). 



Methodology and results 

 

133 

 

The time to peak velocity was also significantly different between the four experimental 

conditions (Figure 5.35A). The Bonferroni post-hoc test showed statistically significant differences 

in time to peak velocity between the non-random and time-randomized conditions (conditions 1 and 

2) (p=0.045), but also between the non-random and random in vergence demand conditions 

(conditions 1 and 3) (p=0.027). The mean difference in time to peak velocity ± SD between conditions 

1 and 2 was -15 ± 23 ms, and -13 ± 21 ms between conditions 1 and 3. The time to peak velocity was 

also affected by the two between-subjects’ factors of the model. Esophoric participants showed a 

significantly shorter time to peak velocity (274 ± 21 ms) than exophoric participants (295 ± 27 ms) 

(p=0.013) (Figure 5.35C). The mean time to peak velocity exhibited by naïve subjects regardless of 

their phoria (279 ± 27 ms) was significantly shorter than that exhibited by experienced subjects (298 

± 25 ms) (p=0.020) (Figure 5.35D). So far, while the latency was influenced by randomness and 

Vergence direction*Phoria direction interaction, the time to peak velocity appeared to be more 

sensitive to be affected by phoria direction and subjects’ expertise. 

Response time differed significantly across the four experimental randomness conditions 

(Figure 5.36A). Similarly than for the time to peak velocity, the Bonferroni post-hoc test showed that 

the response time in the non-random condition (condition 1) was significantly shorter than in the 

random in time condition (condition 2) (p=0.014) and in the random in vergence demand condition 

(condition 3) (p=0.029). The mean difference ± SD between conditions 1 and 2 was -44 ± 109 ms, 

and -47 ± 105 ms between conditions 1 and 3. Unlike latency and time to peak velocity, response 

time is the unique variable affected by vergence direction. The mean response time of convergent 

transitions (887 ± 158 ms) was significantly shorter than that of divergent transitions (1017 ± 173 ms) 

(p<0.001) (Figure 5.36B). The mean response time of naïve subjects (916 ± 134 ms) followed the 

same trend as the time to peak velocity, and was shorter than that of expert subjects (981 ± 135 ms). 

However, the difference in response time was not significant (Figure 5.36D). Finally, the interaction 

Vergence direction*Phoria direction for response time was near statistical significance. The response 

time in convergent transitions was significantly shorter than in divergent transitions both in esophores 

(p=0.002) and exophores (p=0.039) (Figure 5.36E). The differences were higher among esophores 

(854 ± 190 ms for convergence and 1054 ± 171 ms for divergence) than among exophores (901 ± 145 

ms for convergence and 1001 ± 175 ms for divergence). In both convergent and divergent transitions, 

the response time exhibited by esophoric and exophoric participants did not differ significantly 

(p=0.372 for convergence and p=0.314 for divergence). 
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Figure 5.35. (A) Mean time to peak velocity at each experimental condition. (B) Mean time to peak velocity as 

a function of the vergence direction. (C) Mean time to peak velocity as a function of the direction of phoria. 

(D) Mean time to peak velocity as a function of the subjects’ expertise. (E) Mean time to peak velocity exhibited 

by esophoric and exophoric participants as a function of the direction of the vergence transitions. Error bars in 

panels (A) and (B) show ± 1 within-subjects’ SD. Error bars in panels (C), (D) and (E) show ± 1 SD. * 

Statistically significant (p<0.05). 
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Figure 5.36. (A) Mean response time at each experimental condition. (B) Mean response time as a function of 

the vergence direction. (C) Mean response time as a function of the direction of phoria. (D) Mean response time 

as a function of the subjects’ expertise. (E) Mean response time exhibited by esophoric and exophoric 

participants as a function of the direction of the vergence transitions. Error bars in panels (A) and (B) show ± 1 

within-subjects’ SD. Error bars in panels (C), (D) and (E) show ± 1 SD. * Statistically significant (p<0.05). ** 

(p<0.01). *** (p<0.001). 

Regarding the subjective reports of predictability, the differences in the predictability scores 

given to each condition were statistically significant (χ2=60.12, p<0.001). The Wilcoxon post-hoc test 

with Bonferroni correction showed statistically significant differences between the scores of all pairs 

of conditions (all p-values≤0.006) except between conditions 3 and 4 (p=0.824). Descriptive statistics 

of the predictability scores attributed to each randomness condition are shown in Figure 5.37. 
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Figure 5.37. Median perceptual predictability scores given to each experimental condition. A score of 1 means 

a totally predictable condition while 5 means totally random. Error bars show± 1 interquartile range. ** 

Statistically significant (p<0.01). *** (p<0.001). 

Although in general participants were able to correctly report whether the stimulus was 

predictable, the mean latency, time to peak velocity and response time in each condition were not 

associated to the scores given by subjects (Figure 5.38). The time to peak velocity in condition 3 

(random in vergence demand) showed the highest Pearson’s correlation coefficient with the 

perceptual predictability score (r=-0.362, p=0.028). In fact, this variable and condition was the only 

one to show a significant correlation, which was unexpectedly negative. 

5.4.4. Discussion 

Our results showed that the randomness of the vergence stimulus affects the vergence latency, time 

to peak velocity and the response time. As expected, the shorter latency, time to peak velocity and 

response time were observed for the totally predictable stimulus (condition 1) (Alvarez, Bhavsar, 

Semmlow, Bergen, & Pedrono, 2005; Kumar et al., 2002; Semmlow & Yuan, 2002). Some of these 

studies used other non-temporal metrics such as the increment in vergence peak velocity or magnitude 

of peak acceleration to highlight the effect of a predictable vergence step stimulus on the dynamics 

of vergence movements (Alvarez et al., 2002; Kumar et al., 2002). Two other effects associated with 

a change in vergence peak velocity due to repetitive step stimulus are fatigue and training. Vergence 

peak velocity has been found to decrease with visual fatigue (Yuan & Semmlow, 2000), and increase 

after vergence training (P. Munoz, Semmlow, Yuan, & Alvarez, 1999). 
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Figure 5.38. Latency (A), time to peak velocity (B), and response time (C) as a function of the perceptual 

predictability score attributed to each randomness condition. The only significant correlation was shown by the 

time to peak velocity in condition 3. 

In general, subjects were able to distinguish the predictability of all conditions, except 

between conditions 3 and 4, which were perceived as the most random ones by most participants. 

However, the highest and significant differences were found between the non-random and time 

randomized conditions (conditions 1 and 2), and the non-random and random in vergence demand 

conditions (conditions 1 and 3) for the time to peak velocity and response time. Two possible 

explanations not mutually exclusive may justify this result. The first possibility is that randomizing 

the stimulus sequence in terms of time or magnitude of the vergence step may have the same impact 

on the vergence latency, time to peak velocity and response time. The second possibility is related to 

a methodological aspect. All transitions in conditions 1 and 2 were included in the analysis as all of 
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them were from 3 PD BI to 12 PD BO or vice versa. In contrast, vergence demand was randomized 

in conditions 3 and 4, and only those standard transitions between the same vergence demands as in 

conditions 1 and 2 were included in the analysis. The effect of randomizing the vergence sequence 

might not be reflected in the analyzed responses if the forced transitions between 3 PD BI and 12 PD 

BO appeared at the beginning of the condition. 

In relation to the perceived predictability score, it is interesting to notice that no significant 

correlation was found between the observers’ subjective report and the objective temporal metrics 

that described vergence responses in almost any condition (Figure 5.38). 

Our initial hypothesis was that experienced participants would perform better (shorter 

latency, time to peak velocity and response time) than naïve subjects. However, naïve participants 

showed shorter latency, time to peak velocity and response time than expert participants. The 

differences between the two groups were significant only for the time to peak velocity variable. 

Besides the disparity, accommodation, and other sensory cues that drive vergence, non-sensory 

factors such as voluntary effort (Erkelens, Steinman, et al., 1989) or attention (Francis, Jiang, Owens, 

& Tyrrell, 2003) also control vergence responses. Horwood & Riddell (2010) concluded that these 

latter factors may enhance the vergence responses of experienced or expert subjects to a greater extent 

than in naïve subjects. However, our results on 37 subjects suggested the opposite behavior. 

On the one hand, the instructions given to the participants before starting the experiment were 

the same for all subjects and equal emphasis was put on the fact that they needed to fuse the stimuli 

“as fast as possible” and on the “necessity to cross their eyes” to perform the task. However, it is not 

possible to assess to what extent observers made an effort to comply strictly with the instructions. In 

this regard, there is the possibility that naïve participants felt more pressure or urgency to follow 

exactly the instructions and do their utmost to perform the task. 

On the other hand, recall that some of the analyzed vergence responses were accompanied 

by saccades that occurred at the same moment as the vergence peak velocity. It has been shown that 

saccades enhance vergence movements by increasing the vergence peak velocity and shortening the 

movement (Alvarez & Kim, 2013; Collewijn et al., 1995; Kim & Alvarez, 2012b; Ono et al., 1978; 

Saida & Ono, 1984). Our results showed a significant association between the prevalence of saccades 

during the vergence peak velocity and the subjects’ experience according to the Chi-square test of 

association (χ2(1)=6.141, p=0.013). A total of 73.6% of the transitions performed by naïve observers 

were accompanied by saccades, while saccades occurred in 69.8% of the transitions made by experts. 

The highest prevalence of saccades during the vergence peak velocity among naïve participants might 
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have contributed to the reduction of the time to peak velocity in this group of observers. The median 

(IQR) time to peak velocity of all vergence responses accompanied by a saccade during the vergence 

peak velocity (278 (56) ms) was significantly shorter than that from transitions free of saccades (284 

(59) ms) (p=0.001). The differences in the median response time of transitions with and without 

saccades during the vergence peak velocity were also significant (p<0.001) but in opposite direction. 

The median (IQR) response time of vergence responses accompanied by saccades during the vergence 

peak velocity was 932 (318) ms, while that of responses without concurrent saccades was 858 (319) 

ms. The occurrence of saccades during the vergence peak velocity did not affect the latency of the 

response (p=0.956). 

Although best practice would be to have two age-matched groups, the significant difference 

in time to peak velocity between expert and naïve observers is probably better attributable to their 

usage of saccades during these large vergence movements rather than to their age. 

An especially relevant result is the statistically significant interaction term of Vergence 

direction*Phoria direction for vergence latency (Figure 5.34E). Several authors have analyzed the 

controversial differences in latency between convergence and divergence movements (Alvarez, 

Semmlow, et al., 2005; Alvarez et al., 2002; Hung et al., 1997; Krishnan et al., 1973; Q. Yang et al., 

2002). However, to our best knowledge, there is no study identifying phoria direction as a potential 

factor influencing vergence latency. The longer latency in divergent transitions than in convergent 

transitions among esophoric subjects and the opposite behavior among exophoric subjects might be 

explained by the tendency towards poorer negative fusional vergence of esophores and poorer 

positive fusional vergence of exophores (Scheiman & Wick, 2014). Actually, examples of clinical 

signs used to diagnose binocular dysfunctions associated with abnormally high values of exophoria 

or esophoria include the reduced vergence facility with BO prism and the reduced vergence facility 

with BI prism, respectively (Scheiman & Wick, 2014). Our results suggest that these trends are 

manifested in the latency of vergence movements even among subjects with normal binocular 

function. Interestingly, Kim et al. (2010) did analyze the relationship between phoria and the ratio of 

convergence peak velocity to divergence peak velocity and found that esophores tend to have higher 

convergence peak velocity than divergence peak velocity. The opposite tendency was shown by 

exophores. Therefore, our results broaden their conclusion that phoria is a factor in the asymmetry 

between peak velocity of convergence and divergence (Kim et al., 2010), as phoria is also a factor in 

the asymmetry between convergence and divergence latency. 

For the time to peak velocity, this effect may be hidden by the prevalence of saccades during 

the vergence peak velocity. The mean time to peak velocity of convergent and divergent transitions 
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are very similar (Figure 5.35B). However, the prevalence of saccades is significantly higher when 

diverging than converging (χ2(1)=713.07, p<0.001). A 92.3% of the divergent transitions were 

accompanied by saccades during the vergence peak velocity, while saccades occurred in 51.3% of 

the convergent transitions. These percentages are similar if esophoric and exophoric subjects are 

considered separately. Previous studies also reported a higher prevalence of saccades during 

divergence than during convergence (Collewijn et al., 1995; Kenyon et al., 1980; Zee et al., 1992), 

although others found an idiosyncratic behavior (Erkelens, Steinman, et al., 1989; Zee et al., 1992). 

Response time was significantly longer in divergent transitions than in convergent transitions 

(Figure 5.36B). This might be explained by the fact that divergence movements have been found to 

have slower dynamics than convergence (Alvarez, Semmlow, et al., 2005; Alvarez et al., 2002; Hung 

et al., 1997; Krishnan et al., 1973). Then, subjects may perform more saccades in an attempt to 

enhance the concurrent divergence movements, especially those who are naïve. A 97.1% of the 

divergent transitions performed by naïve participants were accompanied by saccades during the 

vergence peak velocity, while the prevalence of saccades in divergent transitions of expert 

participants was 88.4%. The prevalence of saccades in convergent transitions was 50.8% and 51.7% 

for naïve and expert observers, respectively. 

To sum up, vergence movements to predictable stimulus have shorter latency, time to peak 

velocity and response time than when the stimulus is random either in time or vergence demand. The 

subjects’ previous experience with this task seems to be a relevant factor modifying the vergence 

temporal characteristics. However, other aspects not strictly related with subjects’ experience, such 

as the degree of attention or voluntary effort, may also play a role and mask some expected tendencies. 

The convergence and divergence latencies are influenced by the direction of the phoria. Finally, 

saccades that occurred frequently during the vergence step responses modify the time to peak velocity 

and response time. 

The results of this study might have several implications for the clinical vergence facility test. 

The fact that the stimulus sequence of this test is absolutely predictable for the patient might 

overestimate the real ability to make fast vergence changes between targets placed at different 

distances in a real world. Moreover, the results of the clinical vergence facility test might be 

influenced by other factors such as the subjects’ previous experience with the test, the degree of effort 

and attention, or their willingness to perform the required task. Finally, subjects could counteract a 

deficiency in the vergence system with intrusive saccades and pass apparently satisfactorily the 

vergence facility test. Further research is needed to quantify the impact of all these factors on the 

results of the clinical test. 



 

 

141 

 

6. Conclusions and future work 

By carrying out the four studies reported in the last four chapters the goals of the thesis have been 

achieved. The first study led to the development of methods to improve the spatial accuracy of an eye 

tracking system based on multiple corneal reflections. In the other three studies, new methodologies 

to evaluate objectively and automatically binocular vision have been proposed, and relevant features 

of eye movements in clinically interesting situations have been described. Specifically, the main 

conclusions of each study are outlined next. 

Study 1. Robust eye tracking based on multiple corneal reflections for clinical 

applications: 

1. Eye tracking accuracy with multiple corneal reflections was poorer vertically than 

horizontally. This might be explained by the difficulty in detecting the upper pupil region due 

to the interference of the eyelid and eyelashes. 

2. Vertical accuracy was slightly better with a higher number of corneal reflections. However, 

the arrangement of the light sources appeared to be more relevant. Those configurations with 

the reflections in the lower region of the cornea showed higher accuracy in an on-axis camera 

system. 

3. The normalization of the pupil-glint vectors led to the improvement of vertical accuracy. It 

also counteracted the tendency for increasing accuracy with the number of glints. Therefore, 

the proposed normalization method allowed to be independent from the need for more than 

two light sources provided that they are properly positioned. 

Study 2. An automated and objective cover test to measure heterophoria: 

1. The proposed automated and objective method to measure phoria was significantly more 

repeatable than the conventional clinical methods probably due to the minimization of the 

sources of variability. The remained variability might be explained by individual variations 

of subjects’ vergence system.  

2. The results of the prism cover test, the modified Thorington test, and the objective cover test 

with an eye-tracker are not interchangeable. The objective cover test showed significantly 

smaller phoria values than the two clinical methods. There was a tendency towards poorer 

agreement for larger phoria values in all three pairwise comparisons. 

3. There was no significant effect of motor ocular dominance on the asymmetry of phoria 

between the two eyes. The found asymmetries might be partially explained by differences in 
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the accommodative state between the eyes due to potential monocular uncorrected refractive 

errors. 

4. When eye-trackers become common tools in clinical settings, their use should be the new 

gold standard for the measurement of phoria, as it has been shown to overcome several 

limitations of the conventional clinical methods. Moreover, the possibility to register 

movements of the occluded eye provides new insights into the oculomotor dynamics during 

the cover test. 

Study 3. Characteristics of saccades during the near point of convergence test: 

1. A dynamic calibration procedure based on monocular fixation of an in-depth moving target 

was proposed to estimate eye position in 3D over a horizontal tracking range from 4.3º to 

47.0º. An additional method to correct the vertical eye position error due to differences in the 

vertical position of the eyes in the head was proposed based on a geometric extrapolation 

function.  

2. The characteristics of saccades occurring during the near point of convergence test changed 

as a function of vergence demand. The greater amplitude and lower saccadic rate at close 

distances might be explained by the more rapid change of vergence demand and the greater 

angular size of the fixation target at near than at far. 

3. The high prevalence of upward saccades might reflect the tendency of some normal subjects 

to exhibit an upbeating vertical nystagmus whose amplitude also increased significantly with 

vergence demand. 

4. A small percentage of saccades was not conjugated as they contained convergent or divergent 

components. In most cases, the disjunctive horizontal component was in the correct direction 

to reduce vergence errors. In most subjects, saccades also reduced the fixation position error 

of the dominant eye. 

Study 4. Effects of stimulus’ predictability on the vergence facility test: a preliminary 

study: 

1. Vergence movements to predictable stimulus exhibited shorter latency, time to peak velocity 

and response time than when the stimulus was random either in time or vergence demand. 
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2. Convergence and divergence latencies have been found to be influenced by the direction of 

the phoria. Esophoric subjects exhibited longer vergence latencies in divergent transitions 

than in convergent movements. Exophoric subjects exhibited the opposite behavior. 

3. Vergence responses that occurred concurrently with saccades exhibited shorter time to peak 

velocity but longer response time. 

4. Other high-level factors such as attention or voluntary effort might affect the temporal 

characteristics of vergence responses. 

 

While each of the four studies led to the achievement of their associated objectives, they also 

raised other questions to be addressed in future works.  

A future work could be done as a continuation of the first study in the implementation of the 

corneal reflection and pupil tracking algorithms to measure eye position in real time and at higher 

frame rates up to 500 Hz. The current frequency of 30 Hz does not allow to measure rapid eye 

movements such as saccades. A prototype algorithm to track the pupil at 500 Hz implemented in 

CUDA (Nvidia) has demonstrated its potential for pupil tracking. Other algorithms could be also 

explored to further increase spatial tracking accuracy.  

The second study could be replicated but by calibrating the eye-tracker monocularly for each 

observer. This way, objective fixation disparity could be probably assessed simultaneously with the 

measurement of phoria. The repeatability of the automated and objective cover test to measure 

vertical deviations and its agreement with clinical methods need also to be addressed in the future. 

Regarding the third study, it would be interesting to include in the analysis subjects with a 

receded near point of convergence and compare the characteristics of their saccades with the ones 

obtained in this thesis for normal observers. Could some saccadic characteristics be a sign for the 

diagnosis of convergence insufficiency? It would be useful to repeat the measurements using targets 

with constant angular size to disentangle the effect of target’s increasing size from the effect related 

to the effort of the vergence system. This could be done using an haploscopic setup combined with 

varifocal lenses to avoid the vergence-accommodation conflict. Finally, if a large dataset of ocular 

traces during the near point of convergence test is collected, machine learning techniques could 

potentially be applied to identify patterns of eye movements to predict the break and recovery points. 

Future works will analyze the implications of the results of the fourth study for the clinical 

vergence facility test. This analysis should lead us to answer whether the vergence facility test 
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provides a valid assessment of the real ability to make fast vergence changes between targets placed 

at different distances in a real world.  

More globally, other research lines related to this thesis are the analysis of ocular movements 

to diagnose or grade the severity of other visual dysfunctions such as amblyopia, or monitor 

objectively the effectiveness of visual training to treat binocular dysfunctions.  
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7. Dissemination of results 

A list of publications in which the results of this thesis have been disseminated is included in this 

section. 

7.1. Journal publications 

Mestre, C., Gautier, J., & Pujol, J. (2018). Robust eye tracking based on multiple corneal reflections 

for clinical applications. Journal of Biomedical Optics, 23(3), 035001. 

Mestre, C., Otero, C., Díaz-Doutón, F., Gautier, J., & Pujol, J. (2018). An automated and objective 

cover test to measure heterophoria. PLoS ONE, 13(11), e0206674. 

7.2. Papers in submission 

Mestre, C., Gautier, J., Bedell, H. E., Díaz-Doutón, F., & Pujol, J. Characteristics of saccades during 

the near point of convergence test. [submitted]  

7.3. Oral presentations in conferences 

Mestre, C., Otero, C., Gautier, J., Salvador, M., Pujol, J. Cover test might overestimate the phoria 

values. EAOO 2017. Barcelona, Spain. 

Mestre, C., Otero, C., Díaz-Doutón, F., Gautier, J., Pujol, J. Repeatability and agreement of an 

automated and objective cover test. ARVO 2018. Honolulu, USA. 

Mestre, C., Otero, C., Díaz-Doutón, F., Gautier, J., Pujol, J. An automated and objective cover test 

to measure phoria. EAOO 2018. Pula, Croatia.  

Mestre, C., Otero, C., Díaz-Doutón, F., Gautier, J., Pujol, J. Phoria measurement with an automated 

and objective cover test. RNO 2018. Castellón, Spain. 

7.4. Poster presentations in conferences 

Mestre, C., Gautier, J., Pujol, J. New methods for an eye-tracker based on multiple corneal 

reflections. ECVP 2016. Barcelona, Spain.  

Mestre, C., Otero, C., Gautier, J., Pujol, J. Does cover test overestimate systematically the phoria 

values? ARVO 2017. Baltimore, USA.  
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testing the near point of convergence. Accepted to be presented in ARVO 2019. Vancouver, Canada. 
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