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X.1
Introduction

The Monte Carlo (MC) method dates back to the 1940s. While recovering from a surgery, Stanislaw 

Ulam tried to compute the probability of successfully finishing the Canfield solitaire game. After initial 

attempts looking for the combinatorial solution, he conceived an easier method that consisted on 

repeatedly simulating different games and counting the number of successful draws [1]. In other words, 

the idea was using statistical sampling to obtain a numerical approximation for a problem with a 

difficult analytical solution. Soon after, in the context of the Manhattan project and the first electronic 

computers, MC techniques were quickly applied to different problems in physics and afterwards 

became increasingly popular in a multitude of scientific fields, from biology to engineering [2-4]. 

Nowadays, MC techniques cover a broad spectrum of computational methodologies that make 

use of random numbers to perform numerical calculations. In drug design, these techniques are 

typically used to sample the Boltzmann distribution, building a Markov Chain Monte Carlo (MCMC) 

[5] (mainly by using the Metropolis algorithm [6]), or to find bound structure conformations. Protein-

ligand complexes are modeled using an all-atom force field paradigm [7], which yields a highly

dimensional phase space that does not allow direct estimates. Luckily, the relative probabilities

between any pair of states are known, the ratio of Boltzmann weights, which permits the construction

of an MCMC [8]. From this point of view, MC represents an alternative to molecular dynamics

(MD)[9]. In the latter, Newton’s equations of motion are integrated in small time increments, in the

order of the femtosecond, to produce trajectories. One of the main drawbacks of this kind of simulation

is the heavy computational cost associated to model the long timescales that correspond to protein-

ligand binding and unbinding. On the contrary, MCMC does not produce time trajectories (i.e.

dynamics); the algorithm draws samples in the energy landscape according to the corresponding

statistical ensemble. This opens the door to design strategies that may yield, at least in theory, a more

efficient sampling, since subsequent snapshots can be more uncorrelated compared to the MD

counterpart, e.g. with side-chain rotations, backbone movements or ligand displacements. The main
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obstacle of MC simulations, however, is the difficulty of generating uncorrelated poses with a 

significant statistical weight, given the ruggedness of the energy landscape that is defined by the force 

field. Protein and ligand flexibility is one of the causes behind. Considering coordinated atom 

displacements help mitigate the problem, for example with the use of internal coordinates, which take 

into account coordinated displacements in torsions [10-12]. However, random proposals typically lead 

to clashes and are usually, but not exclusively, reduced to small variations of the starting structure. 

 

First applications. The precursors of MC sampling are condensed matter simulations, such as the study 

of water carried out by Barker and Watts in 1969 [13]. Several instances of studies involving statistical 

and thermodynamic properties of water solutions of methane can be found, some examples are the 

works of Dashevsky and Sarkisov in 1974[14], Owicki and Scheraga in 1977 [15] and by Swaminathan 

et. al. in 1978 [16]. In a similar fashion, in the late 1960s the first MC simulations of chain molecules 

were reported [17], including the work of Hagler et. al. studying the conformation of oligopeptides in 

1978 [18] or the study of bovine pancreatic trypsin by Wako and Scheraga in 1981 [19]. 

 

Free energy calculations. As computers started growing in power, the possibilities of molecular 

simulations expanded. Larger and more complex systems could be tackled, and new methods attempted 

to increase the efficiency of simulations. This permitted obtaining free energy estimations [20, 21], 

mainly using alchemical methods such as free energy perturbation. An example is the pioneering 

MCLiquids of Jorgensen’s lab, used to study liquid hydrogen fluoride, ammonia or ethanol, which later 

on evolved into BOSS (Biomolecular and Organic Simulation System) and MCPRO (MC for Proteins) 

[12]; both programs are still in active development, being used to perform molecular mechanics 

simulations and in the development of the OPLS force field[22]. Other free energy calculation 

methods, such as thermodynamic integration, have been used with MC. It can be seen in different 

works of Essex’ group [23], and is included in their software package, ProtoMS [24], which specializes 

in explicit solvent calculations, for example making use of Grand Canonical MC [25] or JAWS [26]. 

The Sire software (http://siremol.org), a collection of C++/Python building blocks allowing to build 

custom molecular simulation applications, also emerged from ProtoMS. 

 

Optimization. MC methods have been largely used in protein optimization problems, often in 

combination with enhanced sampling methods such as simulated annealing [27] or replica exchange 

ideas, where several replicas are kept at slightly different conditions and exchanges between such 



 

 

copies are attempted periodically. Two examples of the latter are replica exchange with solute 

tempering (REST) [28] and replica Exchange thermodynamic integration (RETI) [29]. Optimization 

problems have also been tackled using more sophisticated random schemes, such as the biased 

probability MC of Abagyan [30], based on generating the random step with an optimal distribution of 

proposals; the force-biased MC [31], where the acceptance probability becomes one (or nearly one) by 

using first energy derivatives; or with collective variables motions [32].  

A different family of methodologies originated from the MC-minimization technique by Li and 

Scheraga [33]. This method combined a typical MC random displacement, in this case randomly 

moving one dihedral angle, followed by an energy minimization. The method identifies at each step a 

local minimum, and thus the exploration is constrained to different local minima. An important 

contribution was then developed in 1989 by Still and coworkers: the MacroModel software [34], a 

simple MC method combining random moves, minimizations and an implicit solvation GB/SA model. 

This technique is currently included in the Schrödinger suite of programs, being one of the most used 

molecular MC programs of all times. More recently, these techniques have lead to the development of 

several MC with minimization schemes to perform conformational sampling of proteins, for example 

the basin-hopping method of Wales [35], which can be used in combination with Wang-Landau 

sampling [36] to obtain the complete energy landscape, the activation-relaxation technique of 

Mousseau and coworkers [37] or our Protein Energy Landscape Exploration (PELE), which combines 

random movements with protein structure prediction algorithms to enhance the exploration [38]. 

 

MC and MD combinations. Efforts have also been made to combine MC with MD. In Hamiltonian MC 

(also known as hybrid MC) [39], velocities are added in order to guide proposals and improve the 

acceptance. Recently, Chodera and coworkers presented Nonequilibrium candidate Monte Carlo 

(NCMC)[40], where proposal moves are constructed via nonequilibrium dynamics to generate new 

configurations. These are built in a series of perturbation mixed with propagation moves, enhancing 

two orders of magnitude the performance in finding binding modes of toluene in a mutated T4 

lysozyme [41]. 

 

In table 1 we summarize the most representative software packages that readily allow running 

MC simulations in relevant scenarios for drug design. Some application examples include several 

studies using the MCPRO or BOSS tools from the Jorgensen lab. Besides their own applications 

studies, for example the computationally aided discovery of anti-HIV agents [42], we find additional 



 

 

studies such as the inhibitor design on tyrosine kinase [43]. In addition, MCPRO+, a version under 

Schrödinger commercial use, has been also used in the drug design studies for the actylcholine receptor 

[44] and the Bcr-Abl kinase [45]. We also find several studies using ProtoMS, more focused in 

obtaining the calculation of free energies [23] and the role of waters in drug recognition and binding 

[25, 26]. Commercial software, such as ICM and Macromodel, include several reference and 

benchmark studies [46-49].  

 
 
Table X.1. Main MC software used in drug development modeling.  
 

Software Developers Short description 

ProtoMS 
http://www.essexgroup.soton.a
c.uk/ProtoMS/ 

Essex lab. Relative and absolute free energy calculations 
and water placement with GCMC and JAWS 
methodology. GNU General Public License. 

BOSS 
http://zarbi.chem.yale.edu/soft
ware.html 

Jorgensen lab. General purpose molecular modeling system 
that performs molecular mechanics calculations, 
Metropolis MC statistical simulations, and 
semiempirical quantum mechanics calculations. 
Free for non-profit/commercial for profit. 

MCPRO 
http://zarbi.chem.yale.edu/soft
ware.html 

Jorgensen lab. MC statistical mechanics simulations of 
peptides, proteins, and nucleic acids; it was 
derived from BOSS. Free for non-
profit/commercial for profit. 

PELE  
https:pele.bsc.es, 
www.nostrumbodiscvery.com 

Guallar lab. MC specialized in mapping protein-ligand 
interactions. Free for non profit/ commercial for 
profit. 

Sire  
http://siremol.org 

Christopher 
Woods, et al. 

C++/Python rewrite of ProtoMS. It now includes 
many more modeling modules. GNU General 
Public License. 

ICM 
http://www.molsoft.com/icm_pr
o.html 

Molsoft, LLC Biased probability MC. Prediction of the three-
dimensional structure of peptides and proteins. 
Commercial. 

Tinker 
https://dasher.wustl.edu/tinker 

Ponder lab. General molecular modeling program including a 
MC minimization technique. Free of charge, 
registered under U.S. Copyright  law. 

Macromodel 
https://www.schrodinger.com/
macromodel 

Schrödinger, 
LLC 

Mixed MC algorithms and other molecular 
modeling methods. Commercial. 
Schrodinger also distributes a (commercial) 
MCPRO+ version. 

 
 



 

 

The remaining sections of this chapter explore in detail the PELE program, providing first the 

main characteristics of the technique, followed by an analysis of the different application studies in 

mapping protein-ligand interactions. 

 

 
X.2 

The PELE Method 

 
PELE, originally described by Borrelli et al. in 2005 [38] and whose latest version is implemented in 

C++, follows a heuristic MC approach, generating new conformational proposals using vibration 

modes of the macromolecule (protein or nucleic acid) with translations and rotations of the ligand, and 

relaxing the system with structure prediction methods, so that the probability of acceptance in the 

Metropolis test remains high.   

 

MC sampling procedure. The overall MC procedure, shown in Figure 1, involves a ligand plus a 

receptor perturbation, followed by a relaxation step comprising a side chain sampling and a 

minimization step. Typical simulations involve from tens to hundreds of processors for thousand MC 

steps. We describe now briefly each of these steps.  



 

 

 
Figure X.1 Process flow in a PELE simulation: Each simulation step builds a new conformation 

proposal by perturbing the ligand and the macromolecule, then relaxing it to an energetically favorable 

conformation by sampling side chain rotamers and by minimizing the whole system; finally, the 

proposal is either accepted or rejected following the Metropolis test. The top image shows the initial 

conformation (yellow), all the candidate ligand perturbations obtained in a given step by translating and 

rotating the ligand (transparent red) and relieving existing clashes by moving side chains (solid red), 

and the selected perturbation (green). The middle image shows the first ANM mode as magenta vectors 

placed at the atoms of the α-carbons trace for the starting protein conformation (brown), and the trace 

obtained after applying the ANM mode (cyan). The bottom image shows the representative rotamers of 

the generated clusters for several side chains. 



 

 

 

Ligand Perturbation. The ligand, formed by a rigid core (at least one atom) and a set of rotatable side 

chains, is perturbed by translating and rotating it. PELE creates a list of perturbation poses (typically 

between 1 and 20), and then chooses the one with the lowest system energy. Each pose is generated 

through a random procedure, where a number of translations and rotations are tried, until a combination 

is found that doesn't show steric clashes after a clash relieving process; clashes of up to 30% of the van 

der Waals interatomic distance between atoms are allowed, since the relaxation phase will probably 

relieve them. When searching for the binding site, large translations are usually selected (around 6 Å), 

while once in the binding site, small adjustments of  ~1Å (or less) are used; different translation ranges 

are often applied depending on the ligand solvent accessible surface area (SASA) at each iteration. In 

addition, to enhance the sampling of rare events, the translational vector may be kept constant in a 

random direction for a given number of MC simulation steps. Also, for those simulations that require 

exploring a restricted volume of the search space (as it is done in binding pose refinement), 

perturbations that place the ligand center of mass outside a predefined box are rejected. 

 

Receptor Perturbation. After perturbing the ligand, the macromolecule backbone is perturbed 

following normal modes calculated using the Anisotropic Network Model (ANM, see [50]) or a 

Principal Component Analysis (PCA) from different structures (derived from X-ray structures,  

molecular dynamics, etc.). This phase is typically executed every 4 MC steps [51]. 

In ANM, if a protein, the macromolecule is modeled as an elastic network of α-carbons (CAs) 

nodes using the power contact model of [52]. For nucleic acids, atoms P, C2 and C4' are used as nodes 

of the network, using the exponential contact model of Setny et al. [53]. A combination of modes is 

selected to represent the given vibration from which to select the perturbation to try. By default the 6 

lowest frequency modes are used, since they are the ones more closely related to conformational 

movements [50]. It is possible to use a single mode, or to mix several ones randomly, with a preferred 

mode being given more weight, or weighting each mode according to its frequency. Besides, a given 

combination of modes can be kept during several simulation steps, changing sense periodically, to 

allow a more thorough sampling of a given vibrational movement. To apply the movement for all 

atoms, and not only CAs, harmonic constraints are placed on the latter to their target coordinates, and 

an all-atom energy minimization is performed, using the multi-scale Truncated Newton algorithm. To 

avoid reverting the ligand perturbation, a constraint on the center of mass of the ligand's core atoms is 

typically applied; in this way the ligand perturbation can be coupled to backbone reorganization. 

 



 

 

 

Side Chain Adjustment. The side chain readjustment is done for all the side chains in the 

macromolecule that surround the ligand, and for the ligand itself. In addition one might include those 

side chains that increased their energy the most during the perturbation phase (regardless of their 

location in the receptor). The sampling follows the algorithm of Jacobson et al. [54], where the problem 

becomes manageable by considering only rotamers as possible conformations for the residue side 

chains and, above all, by placing the best rotamer for each side chain (after clustering) in a residue by 

residue way, keeping all the other residues fixed at their current rotamers. This is iterated until a new 

round of placement for all residues does not significantly change the conformation (or a maximum 

number of iterations is exceeded). If (even with the allowed overlap) there is no rotamer without 

clashes for some side chain, then this phase fails and the MC step is rejected. Once the side chains have 

been readjusted, a partial minimization affecting only the side chain atoms is performed.  

 

Minimization. The last relaxation step continues through a multi-scale Truncated Newton minimization 

[55], the same algorithm as used in the minimizations done in previous phases. Along the 

minimization, the atoms representing the nodes in the ANM phase are (typically) weakly constrained, 

so that this minimization does not undo the perturbation phase. Convergence criteria is significantly 

relaxed, ~0.1 kcal/(mol·Å)2, allowing to approximate recover the detailed balance condition (lost when 

introducing the relaxation step) [56]. 

 

Coordinate Exploration. PELE introduces two further techniques to enhance conformational sampling.  

In the original one, the spawning approach introduced in Borrelli et al. [57], a reaction coordinate  

(RMSD, distances, etc.) is defined along with a range criteria and a sense (increase or decrease). For a 

given processor and MC step, if the current reaction coordinate value falls outside of the range from the 

best achieved value (along all processors and steps), then this processor will abandon its current 

conformation and receive the one corresponding to the best value, which is constantly updated. This 

kind of strategy is particularly useful when studying binding or escape trajectories.  

More recently, an enhanced strategy has been introduced, adaptive-PELE [58], aiming at 

eliminating the bias introduced in the spawning approach. In this approach, standard PELE is run for a 

small number of MC steps (~4-20), in what constitutes an epoch. All generated conformations in the 

epoch (from all processors) are then clustered by using the ligand root mean square distance, where we 

also consider clusters from previous epochs. Each cluster is assigned a reward value that favors (by 

default) clusters less explored, that is inversely proportional to the cluster population. Additional 



 

 

rewards might be defined from physical/structural properties such as reaction coordinates, ligand 

exposure to solvent, etc. Then, a new epoch is started using a set of selected conformations, based on 

the reward function, as new seeds. Thus, the overall procedure is designed to enhance the sampling of 

poorly sampled regions. In addition, for an even faster biased exploration, the spawning and the 

adaptive techniques can be combined. 

 

Energy Function. By default, PELE uses the OPLS 2005 energy function and parameters[59, 60], but 

also implements the AMBER99sbBSC0 force field[61], more suitable for nucleic acids. For the 

implicit solvent model, PELE has three options: the OBC model [62] with a non-polar term following 

the ACE model [63]; the Surface Generalized Born (SGB) model [64], modeling the non-polar term as 

in [65]; and the Variable Dielectric Generalized Born model [66], using the same non-polar model as 

SGB. PELE allows placing specific discrete water molecules that are deemed important, which will be 

moved during the different energy minimizations in a simulation step (the next release will include a 

water perturbation/relaxation step). As in most molecular mechanics codes, to gain speed negligible 

contributions to the energy, such as those caused by non-bonded interactions between far apart atoms, 

are discarded by using a set of distance cutoffs. 

 
X.3 

Examples of PELE’s applications 

 
We present here examples of application studies using PELE. 

 

Mapping protein ligand and biomedical studies. PELE was originally designed to map ligand 

migration pathways: its first applications aimed at finding exit pathways starting from ligand-bound 

crystallographic structures. In few hours of a small computational cluster (4 cores), for example, it 

could map how a palmitate fatty acid molecule escaped the fatty acid binding protein active site, 

without any additional knowledge nor bias [57].  Many additional initial studies centered on “simple” 

ligand migration studies involving globin enzymes, following a trend (at that time) using different 

biased MD studies, such as the random expulsion molecular dynamics or steered MD. Studied systems 

included truncated hemoglobins TrHbN [67] and TrHBO [68], where the involvement of multiple 

internal cavities was addressed. In addition, the fast performance of PELE allowed the first migration 

study on a (tetramer) human hemoglobin, identifying differences in ligand migration between the α and 



 

 

β subunits and between their tense and relaxed states [69]. 

By expanding the exploration to few more cores (tens to hundreds) we realized that we could 

perform a complete non-biased exploration, mapping the entire surface active site search (from the 

solvent) and binding; similar studies, at that time, could only be performed by the special purpose (and 

10M $ cost) Anton computer (see, for example, the pioneer study by the Shaw lab. [70]). Figure 2 

shows an example of such an exhaustive search using PELE’s web server on the aspirin-phospholipase 

A2 complex. Additional studies involved quite complex systems such as prolyl oligopeptidase [71] and 

the binding of porphyrin into Gun4 [72]. Analogous simulations have been also produced for a DNA 

receptor, where the non-covalent binding of cisplatin was modeled with PELE’s MC techniques [73]. 

 

 
Figure X.2. Example of active site search and binding on the aspirin-phospholipase A2 complex 

performed by the PELE web server (using 16 processors and 4 hours). The left panel shows a screen 



 

 

capture of the server with the evolution of the ligand RMSD (all heavy atoms) to the crystal bound-

complex (PDB ID: 1OXR) along the MC simulation. Crystal-like models, with RMSD <2 Å, are found 

in ~90 MC steps, requiring approximately 1 hour of wall clock simulation.  The top right panel, also 

extracted from the server, shows the molecular mechanics protein-ligand interaction energy with 

respect to the same RMSD, indicating that the modeled bound complexes (<2.0 Å) can clearly be 

identified as the best affinity models; we should emphasize that no crystallographic information is used 

along the simulation but only to analyze the results. The bottom right panel shows the initial molecular 

model, with the ligand on the bulk solvent (~ 21 Å RMSD); notice that we have also superposed in 

green the ligand active site bound structure (underlying the presence of a calcium ion). For more 

information, please visit https://pele.bsc.es/pele.wt/examples. 

 

Such modeling capabilities shifted our attention to biomedical/pharmaceutical studies, attracting, in 

addition, the interest from some pharmaceutical companies. Studies included research on cancer targets 

such as mTOR [74] and BCL-2 [75], on the glycosylation disorder through the study of the human 

phosphomannomutase2 receptor [76], and on diverse nuclear hormone receptors (NHRs), in 

collaboration with AstraZeneca [77, 78]. To enhance ligand screening, we have recently coupled PELE 

with advanced analysis techniques such as Markov State Models (MSM), approximating absolute 

binding free energies in a fast manner [78, 79]. 

In most cases, however, modeling the receptor-drug interactions does not require such extensive 

study; rearrangements of the ligand at the already known binding site suffice. Thus, we placed 

particular emphasis on protocols mapping the active site induced fit. Our initial benchmark study 

showed significant improvement from that of state of the art commercial software, providing accurate 

cross docking and apo docking [80]. Applied biomedical studies in this line, for example, included the 

prediction of drug resistance in the HIV-1 protease receptor, where we were able to blindly identify 

high resistance patients using only their viruses’ sequence data [81]. We should underline that this 

effort involved modeling 15-30 mutations in each receptor of 42 different patients. 

PELE’s position at the forefront of the induced fit modeling techniques is clear if we look at the 

results of the latest Community Structure-Activity Resource (CSAR) competition 

(http://www.csardock.org/). The CSAR competition is a community-wide blind evaluation of docking 

and scoring methods performed by the University of Michigan (and participated by GlaxoSmithKline). 

In the summary article from the organizers [82], we find that PELE is the software most highlighted: 

“…In particular, submission J (Glide-XP2/PELE7) deserves special recognition for docking well to all 

targets. This group cross-docked all the ligands against all the given crystal structures. To see robust 



 

 

performance across an ensemble of protein structures for multiple targets is an impressive 

accomplishment…” 

As stated, a recent enhanced conformational sampling has been introduced by means of an 

adaptive sampling [58]. This procedure improves about one order of magnitude the exploration 

performed by PELE. Such enhancement, for example, allowed to map complex ligand binding 

mechanisms, such as in G protein–coupled receptors (GPCRs) or in NHRs in only three hours using a 

commodity computing cluster (~32 computing cores), achieving interactive rates (~5 minutes) in 

difficult induced fit cases. 

These advances motivated PELE’s transfer of the technology to Nostrum Biodiscovery 

(www.nostrumbiodiscovery.com) a recent SME dedicated to drug development by means of 

supercomputation, which currently performs the commercial applications of the technique; academic 

(non-profit) usage, however, is still possible through the public web site https://pele.bsc.es, where 

hardware and software resources are available [83]. 

 

Enzyme Characterization. Additional applied studies have centered on modeling enzymatic 

mechanisms and engineering; the same techniques applied in mapping protein-drug interactions can be 

used in the study of substrate recognition by enzymes. While these studies often require combining 

PELE with mixed quantum mechanics and molecular mechanics (QM/MM) techniques, biochemical 

activity can be (largely) addressed by predicting the enzyme-substrate complex with simpler molecular 

mechanics techniques. A substrate-bound model for the aryl alcohol oxidase with p-anisyl alcohol, for 

example, was developed in 2011 by mapping the substrate entrance in the apo crystallographic 

structure, which, due to the small size cavity, did not allow direct docking studies [84]. This model, 

which has recently been confirmed by crystallographic studies [85], allowed to select mutations for 

mapping the enzymatic mechanism and, more importantly, to improve the oxidation of secondary 

alcohols [86]. Similar simulations on toluene 4-Monooxygenase allowed designing an improved (2.1x) 

variant for 2-phenyethanol oxidation [87].  

A complete substrate migration study exploring the entire enzyme surface was used to compare 

two manganese peroxidases: one active towards ABTS and another one with no activity. Simulations 

identified the oxidation active site and allowed to introduce two solvent exposed mutations activating 

the ABTS-inactive manganese peroxidase achieving high turnovers rates [88].  

In another set of enzymatic studies on laccases, PELE’s induced fit procedure was coupled with 

QM/MM spin density single point calculations, achieving excellent prediction of oxidation rates on 

different substrates[89]. This protocol was later expanded using an in silico directed evolution protocol, 



 

 

allowing to improve activity and to modify the specificity on laccases [90]. 

 

In summary, in this book chapter we aimed at providing first a quick overview of the 

development and applications of MC techniques in drug design. Then, we centered on delivering a 

deeper analysis of the techniques and capabilities in PELE, our own MC code that provides a quick and 

accurate manner to map protein ligand interactions.  
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