

IMPLEMENTATION AND EXPERIMENTAL EVALUATION
OF COOPERATIVE AWARENESS BASIC SERVICE FOR

V2X COMMUNICATIONS

A Master's Thesis
Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de
Barcelona

Universitat Politècnica de Catalunya
by

Charmae Franchesca Ugnaya Mendoza

In partial fulfilment
of the requirements for the degree of

MASTER IN TELECOMMUNICATIONS ENGINEERING

Advisors: Jordi Casademont-Serra, PhD
Daniel Camps-Mur, PhD

Barcelona, May 2019

aspMore

Title of the thesis: ​Implementation and Experimental Evaluation of Cooperative
Awareness Basic Service for V2X Communications

Author:​ ​Charmae Franchesca Ugnaya Mendoza

Advisor:​ ​Jordi Casademont-Serra, PhD and Daniel Camps-Mur, PhD

Abstract

A key aspect of Vehicle-to-Everything (V2X) communication is the concept of ​cooperative
awareness​, wherein the periodic exchange of status information allows vehicles to
become aware of their surroundings for increased traffic safety and efficiency. This
project aimed to implement the Cooperative Awareness (CA) basic service through the
development of a low-cost, open-source On-board Unit (OBU)/Roadside Unit (RSU) that
periodically broadcasts Cooperative Awareness Messages (CAM) using the 5.9 GHz
band. Its proper operation and interoperability were verified by testing it with a
commercial V2X device. This project also aimed to evaluate the effectiveness of the CA
basic service through the development of an IEEE 802.11p-based V2X system simulator.
The simulations were executed with varying vehicle traffic load (by changing the vehicle
speed and the number of lanes) and CAM transmit frequency. The performance was then
assessed by analyzing the Packet Reception Ratio (PRR), position error and
Neighborhood Awareness Ratio (NAR) metrics. The presence of more vehicles in the
slow speed and high lane count scenarios caused higher packet losses due to increased
interference and collision probability, leading to low PRR and NAR values. Despite losing
more CAMs, the slow speed scenarios had lower position errors since the displacement
of vehicles was small. When the CAM transmit frequency was increased, the PRR
decreased due to packet collisions. However, the position error was kept low as it
benefited from the more frequent CAM transmissions and local database updates.
Increasing the transmit frequency also increased the NAR, at least until a certain
frequency threshold, beyond which the NAR started to worsen due to the dominant effect
of interference in high message traffic situations.

1

aspMore

Acknowledgements

I would like to express my sincere gratitude to my advisors, Prof. Jordi Casademont-Serra
and Dr. Daniel Camps-Mur, for their guidance and for giving me the opportunity to learn a
lot through this project. I would also like to thank Joaquim Oller, Joan Josep Aleixendri
Cruelles, Miguel Catalan Cid and Julio Carlos Barrera Juez for all the help they provided.
Special thanks to my colleague, Leandro Miguel Lopez, for his patience and cooperation.
Finally, thank you to my family and friends back home for their continuous support and
encouragement.

2

aspMore

Revision History and Approval Record

Revision Date Purpose

0 30/03/2019 Document creation

1 14/05/2019 Document revision

Written by: Reviewed and approved by:

Date 15/05/2019 Date 15/05/2019

Name Charmae Franchesca
Ugnaya Mendoza

Name Jordi Casademont-Serra, PhD

Position Project Author Position Project Supervisor

3

aspMore

Table of Contents

List of Figures 8

List of Tables 11

1. Introduction 12
1.1. Objectives and Scope 12
1.2. Work Plan 13
1.3. Outline 14

2. State of the Art 15
2.1. Cooperative Intelligent Transport Systems 15
2.2. Network Architecture 15
2.3. ITS Station Reference Architecture 16

2.3.1. Applications 17
2.3.2. Facilities 18
2.3.3. Networking and Transport 20
2.3.4. Access 25

2.3.4.1. ITS-G5 Frequency and Channel Allocation 26
2.3.4.2. Enhanced Distributed Coordination Access 27
2.3.4.3. Decentralized Congestion Control 27
2.3.4.4. Outside the Context of a BSS 28

2.3.5. Management and Security 28
2.4. Basic Services 29

2.4.1. Cooperative Awareness Basic Service 29
2.4.2. Decentralized Environmental Notification Basic Service 31

2.5. Related Work 31

3. On-board/Roadside Unit Development 33
3.1. Vanetza Library 33
3.2. CAM Receiver Source Code 33
3.3. Setting up the CAM Transmitter and Receiver Environment 34
3.4. Implementation using Raspberry Pi 34

3.4.1. OBU/RSU Testing using Raspberry Pi 35
3.5. Implementation using APU2 36

3.5.1. Linux Wireless Architecture 37

4

aspMore

3.5.2. ATH9K Driver Modifications 38
3.5.3. Verifying iw 39
3.5.4. wireless-regdb Modifications 39
3.5.5. Verifying CRDA 41
3.5.6. OCB Interface and IEEE 802.11p Channel Configuration 41

4. IEEE 802.11p-based Simulator Enhancement 43
4.1. Simulation Framework Overview 43
4.2. IEEE 802.11p Simulator Functions 44

4.2.1. GlobalMapper 44
4.2.2. CaService 45
4.2.3. Rx 45
4.2.4. SystemMonitor 46

4.3. SUMO Scenario 46
4.3.1. SUMO Files 46

4.3.1.1. Network File (*.net.xml) 46
4.3.1.2. Routes File (*.rou.xml) 47
4.3.1.3. Configuration File (*.sumo.cfg) 48

4.3.2. Physical Topologies 49
4.3.2.1. Highway Scenario 49
4.3.2.2. Manhattan Grid Scenario 49

4.3.3. Classification of Vehicle Speed and Density 50
4.4. Simulation Parameters 52

5. Results 54
5.1. On-board/Roadside Unit 54

5.1.1. OBU/RSU Testing 54
5.1.2. Analysis of CAM Fields using Wireshark 57

5.2. IEEE 802.11p-based Simulator 59
5.2.1. Packet Reception Ratio 60

5.2.1.1. Effect of Vehicle Speed 60
5.2.1.2. Effect of Number of Lanes 61
5.2.1.3. Effect of Traffic Flow Direction 62
5.2.1.4. Effect of Walls 63
5.2.1.5. Effect of CAM Frequency 64

5

aspMore

5.2.2. Position Error 64
5.2.2.1. Effect of Vehicle Speed 65
5.2.2.2. Effect of Number of Lanes 66
5.2.2.3. Effect of CAM Frequency 66

5.2.3. Distance Error 67
5.2.4. Neighborhood Awareness Ratio 69

5.2.4.1. Effect of Vehicle Speed 69
5.2.4.2. Effect of Number of Lanes 70
5.2.4.1. Effect of CAM Frequency 70

6. Budget 72

7. Conclusions and Future Development 73

Bibliography 75

Appendices 78
A. OBU/RSU Configuration Guide 78

A.1. CAM Receiver Application Quick Start Guide 78
A.2. Emulation of GPS Signal 79
A.3. Setting up an Ad Hoc Network 80
A.4. Setting up the Linux Kernel 81
A.5. Modifications on the ATH9K Driver Source Codes 82
A.6. Configuring the Kernel Configuration Menu 84
A.7. Setting up the iw 86
A.8. Setting up the wireless-regdb 87
A.9. Setting up the CRDA 88
A.10. Setting up the OBU Interface and IEEE 802.11p Channel 88

B. IEEE 802.11p Simulator Installation Guide and User Manual 90
B.1. Installation Procedure 90
B.2. omnetpp.ini Configuration File 91

B.2.1. Simulation General Settings 91
B.2.2. Run Environment Settings 92
B.2.3. Statistics Settings 92
B.2.4. SUMO Settings 93
B.2.5. Nodes Settings 93

6

aspMore

B.2.6. Medium Settings 94
B.2.7. Scenarios Settings 95

B.3. Running a Scenario 96
B.4. Result and Analysis Files 97
B.5. Complete Set of Figures 98

B.5.1. Packet Reception Ratio 98
B.5.2. Position Error 101
B.5.3. Neighborhood Awareness Ratio 104

Glossary 107

7

aspMore

List of Figures

Figure 1: Project schedule 14

Figure 2: C-ITS Network Architecture 16

Figure 3: ITS-S reference architecture 16

Figure 4: BTP-A header format 21

Figure 5: BTP-B header format 21

Figure 6: GeoNetworking routing schemes 22

Figure 7: GeoNetworking header format 22

Figure 8: Basic header format 23

Figure 9: Common header format 23

Figure 10: IEEE 802.11p PHY packet structure 26

Figure 11: DCC architecture 28

Figure 12: CAM general structure 29

Figure 13: DENM general structure 31

Figure 14: Raspberry Pi 3 Model B+ 35

Figure 15: APU2 platform 36

Figure 16: WLE200NX wireless module 36

Figure 17: Linux wireless architecture 37

Figure 18: Testing the iw program 39

Figure 19: iw reg get output 40

Figure 20: iw list output 40

Figure 21: Testing CRDA and regulatory.bin 41

Figure 22: iw dev output 42

Figure 23: iwconfig output 42

Figure 24: Simulation Framework Overview 43

Figure 25: SUMO network file 46

8

aspMore

Figure 26: NETEDIT 47

Figure 27: SUMO routes file 48

Figure 28: SUMO configuration file 48

Figure 29: 1km highway scenario 49

Figure 30: Manhattan grid scenario 50

Figure 31: Relationship of vehicle density and speed 52

Figure 32: Cohda Wireless MK5 OBU 54

Figure 33: CAM transmitter application 55

Figure 34: CAM receiver application (part 1) 55

Figure 35: CAM receiver application (part 2) 56

Figure 36: Wireshark capture of a CAM 57

Figure 37: CAM contents in the facilities layer 59

Figure 38: Effect of vehicle speed on PRR 60

Figure 39: Effect of lane count on PRR 62

Figure 40: Effect of traffic flow direction on PRR 62

Figure 41: Effect of walls on PRR 63

Figure 42: Effect of CAM frequency on PRR 64

Figure 43: Effect of vehicle speed on position error 65

Figure 44: Effect of lane count on position error 66

Figure 45: Effect of CAM frequency on position error 67

Figure 46: deltaPosition and deltaDistance metrics 68

Figure 47: Distance error in a moderate speed highway scenario 68

Figure 48: Effect of vehicle speed on NAR 69

Figure 49: Effect of lane count on NAR 70

Figure 50: Effect of CAM frequency on NAR 71

Figure 51: interfaces of Raspberry Pi #1 80

9

aspMore

Figure 52: interfaces of Raspberry Pi #2 81

Figure 53: drivers/net/wireless/ath/ath9k/ani.c 82

Figure 54: drivers/net/wireless/ath/ath9k/common-init.c 82

Figure 55: drivers/net/wireless/ath/ath9k/hw.h 83

Figure 56: drivers/net/wireless/ath/ath9k/main.c 83

Figure 57: drivers/net/wireless/ath/regd.c 83

Figure 58: Networking support > Wireless 84

Figure 59: Device Drivers > Network device support > Wireless LAN 85

Figure 60: Networking support > Wireless > Select mac80211 debugging
features

86

Figure 61: 802.11p-wireless-regdb/db.txt 87

Figure 62: Simulation general settings 92

Figure 63: Run environment settings 92

Figure 64: Statistics settings 93

Figure 65: SUMO settings 93

Figure 66: Nodes settings 94

Figure 67: Medium settings 95

Figure 68: Scenario settings 96

Figure 69: Result analysis tool 97

Figure 70: PRR of a bidirectional highway scenario with variable speed 98

Figure 71: PRR of a bidirectional highway scenario with variable lane count 99

Figure 72: Position error of a bidirectional highway scenario with variable
speed

101

Figure 73: Position error of a bidirectional highway scenario with variable
lane count

102

Figure 74: NAR of a bidirectional highway scenario with variable speed 104

Figure 75: NAR of a bidirectional highway scenario with variable lane count 105

10

aspMore

List of Tables

Table 1: Mapping between ITS-S reference architecture and OSI model 17

Table 2: Basic set of applications 18

Table 3: List of ITS facilities 18

Table 4: BTP ports 21

Table 5: Encoding of BTP header types in the Next Header (NH) field of the
GeoNetworking Common Header

21

Table 6: Basic header fields 23

Table 7: Common header field 23

Table 8: Encoding of HT and HST fields 24

Table 9: MCS and data rates for IEEE 802.11p 25

Table 10: IEEE 802.11p PHY packet fields 26

Table 11: ITS-G5 channels 26

Table 12: ITS-G5 Traffic classes 27

Table 13: ITS PDU header 30

Table 14: CAM basic container 30

Table 15: Vehicle speeds 51

Table 16: Average number of vehicles in different bidirectional highway
scenarios

51

Table 17: Simulation parameter values used 52

11

aspMore

1. Introduction

Despite the continuous improvements in the traffic infrastructure and automobile
technology, road accidents still remain one of the leading causes of deaths with an
estimated total of 1.35 million each year [​1​]. While innovations ranging from simple seat
belt to antilock braking systems (ABS) up to sophisticated vehicle sensors have
contributed to automobile safety, these technologies remain isolated in individual
vehicles. However, if vehicles were able to break this isolation and began communicating
with each other, then they could alert each other and prevent potentially dangerous
situations, such as unsafe overtaking and sudden stopping of vehicle ahead.
Consequently, this would significantly reduce the number of traffic fatalities.

Vehicle-to-everything (V2X) communication is thus considered a breakthrough technology
that would revolutionize road safety. Moreover, V2X aims to increase traffic efficiency (by
optimizing the use of traffic infrastructure), to reduce environmental impact (by efficient
driving), and to provide additional services (such as software provisioning and update,
electronic commerce and media downloading), thereby improving the overall transport
experience.

A key aspect of V2X communication is the periodic exchange of status information,
including vehicle identifiers, location, and velocity. Such data are needed in the realization
of several Cooperative Intelligent Transport Systems (C-ITS) applications. For instance,
the collision avoidance warning application relies on the real-time position and speed
information from surrounding vehicles in order to predict and prevent possible collisions.
For this reason, ETSI introduced the Cooperative Awareness (CA) basic service in the
ITS facilities layer as a common service that can be utilized by any application (in the
upper layer of the V2X protocol stack). In particular, the CA basic service defines the
Cooperative Awareness Message (CAM), which is periodically broadcasted by each
vehicle to share status information.

1.1. Objectives and Scope

The main goals of this project were to implement the CA basic service and evaluate its
effectiveness in enabling cooperative awareness among vehicles and traffic
infrastructure. In order to achieve these goals, the project was divided into the following
two subtasks:

1. Development of an On-board Unit (OBU)/Roadside Unit (RSU):

Dedicated V2X platforms are expensive, in addition to their implementation of the
V2X stack being proprietary. This makes it difficult for researchers to carry out
field tests to evaluate the CA basic service. For this reason, one of the objectives
of this project was to develop a low-cost OBU/RSU that implemented the ETSI
C-ITS protocol stack (including the CA messaging capability) using open-source
software, specifically the Vanetza library. The testbed was further modified to work
in the 5.9 GHz frequency band, before being tested using a commercial V2X
device to check interoperability.

12

aspMore

2. Development of an IEEE 802.11p-based simulator:

An existing system-level simulator from the V2X-Arch project [​2​] was used as the
foundation in this project for the experimental evaluation of the CA basic service.
The said simulator was then modified to enable the variation of important
parameters (speed, number of lanes, CAM transmit frequency) in order to deduce
their impact on system performance, and to perform more realistic simulations
under different road topologies (highway, Manhattan grid). Moreover, different
metrics (Packet Reception Ratio or PRR, position error, and Neighborhood
Awareness Ratio or NAR) were designed to assess if the CA basic service indeed
helped in making the vehicles aware of their surroundings.

It is important to note that the experiments carried out did not focus on evaluating
the physical layer and Medium Access Control (MAC) mechanisms, and as such,
the corresponding parameters in the lower layers were kept constant. Moreover,
while there are various V2X technologies (WLAN- and cellular-based) that could
have been employed in the ITS access layer, only the IEEE 802.11p standard was
used all throughout the project, and comparisons of the different V2X technologies
were out of scope of the project.

1.2. Work Plan

As the project consisted of two separate tasks, it was necessary to work on them in
parallel to ensure their successful and timely completion. The project was carried out from
September 2018 to mid-May 2019, and each task was divided into three parts, namely
the ​study phase​, the ​development phase​, and the results and analysis phase. The first
month was dedicated to studying concepts that were necessary for the implementation of
the project. This included both generic topics, such as C++ programming and the C-ITS
protocol stack, and more specific ones, including understanding existing source codes to
be utilized in the project.

The next months were allocated to working on the two tasks in parallel. In the case of the
simulator development, a number of MAC and application layer functions, along with
other road scenarios, were created and modified to implement the metrics for the CA
basic service evaluation. On the other hand, the CAM receiver application was developed
first, and then tested with the transmitter application using a Raspberry Pi. However, due
to incompatibility issues (Section 3.4.1), it was necessary to switch to another hardware
platform. For this reason, an additional period of time was spent studying the Linux
wireless architecture in order to be able to continue with the OBU/RSU development
using the new hardware.

Towards the end of the project, simulations had to be carried out multiple times. This was
because it was often necessary to make adjustments to the code when unexpected
results were observed. This phase was relatively time-consuming since a single batch of
simulations took a few days to complete.

13

aspMore

Figure 1​. Project schedule

1.3. Outline

Chapter 2 introduces the C-ITS concepts necessary to understand and implement the
project. Chapter 3 provides a detailed explanation of the methodology used to develop
the open-source OBU/RSU. Chapter 4 discusses the simulator enhancements, and the
scenarios and parameters employed in the simulations. Chapter 5 presents the results
and analyzes them using specific performance metrics. Chapter 6 gives an estimate of
the costs incurred while working on the project. Chapter 7 concludes the paper, and
recommends future tasks and research direction. Finally, the appendix includes
installation and configuration guides for setting up and replicating both the OBU/RSU and
simulator environments.

14

aspMore

2. State of the Art

This chapter provides a brief description of C-ITS, while giving emphasis on the details of
the ITS protocol stack, including the different layer functionalities and packet header
structures. Moreover, it elaborates on some of the ITS facilities layer entities, specifically
the CA basic service. Lastly, it presents a review of related work to further understand the
motivation of carrying out this research study.

2.1. Cooperative Intelligent Transport Systems

C-ITS utilizes different wireless technologies to allow real-time communication and share
useful information among road users and infrastructures. C-ITS aims to create a safer,
greener and more convenient transportation environment for everyone.

As an enabler of C-ITS, V2X communication refers to the wireless exchange of
information between a vehicle and another entity. There are currently two standardized
V2X technologies being considered: IEEE 802.11p and Cellular V2X (C-V2X). A number
of research studies have been conducted for the purpose of assessing their system
performance to understand the advantages and disadvantages of each technology. While
such comparative analysis contributes to the success of C-ITS, this project specifically
employed the IEEE 802.11p protocol for evaluating the CA basic service in the ITS
facilities layer.

2.2. Network Architecture

The C-ITS network architecture consists of different entities, or ITS stations (ITS-Ss),
communicating with each other [​3​]. As shown in ​Figure 2​, these are:

● Personal ITS-S - handheld devices of pedestrians
● Vehicle ITS-S - OBU mounted on vehicles
● Central ITS-S - traffic management centers
● Roadside ITS-S - RSU or fixed traffic infrastructures

The combination of any of these entities results to different communication modes. In
particular, V2X is an umbrella term used to refer to the following.

● V2V: Vehicle-to-Vehicle
● V2I: Vehicle-to-Infrastructure
● V2P: Vehicle-to-Pedestrian
● V2G: Vehicle-to-Grid
● V2N: Vehicle-to-Network

15

aspMore

Figure 2​. C-ITS Network Architecture [​3​]

2.3. ITS Station Reference Architecture

The ITS-S reference architecture defines the protocol stack implemented on each station.
As illustrated in ​Figure 3​, it comprises four horizontal layers along with two vertical entities
[​3​]. It is analogous to the OSI model, except that it extends the model to include the ITS
applications, depicted in the mapping of the two models in ​Table 1​. The protocol layers
are described in more detail in the following sections.

Figure 3​. ITS-S reference architecture [​3​]

16

aspMore

ITS-S Reference Architecture OSI Model

Applications -

Facilities Application

Presentation

Session

Networking and Transport Transport

Network

Access Data Link

Physical

 ​Table 1​. Mapping between ITS-S reference architecture and OSI model

2.3.1. Applications

ITS applications are formed by complementary ITS-S applications (e.g., server-client
scheme). A group of applications and use cases is known as the Basic Set of
Applications (BSA). Furthermore, these use cases are categorized into the following three
classes, which differ on reliability, latency and security requirements [​4​].

1. Active road safety

The goal of this class is to improve traffic safety by preventing road casualties.
Vehicles exchange status information (speed, position, etc.) periodically or in a
event-triggered manner, creating cooperative awareness and possibly avoiding
fatalities. This enables use cases such as collision risk warning and emergency
vehicle warning.

2. Cooperative traffic efficiency

The goal of this class is to improve to improve road traffic management, and
increase the traffic efficiency in terms of travel times, fuel consumption and
emissions, etc. This usually involves communication with the infrastructure. For
instance, in the case of V2I communication, the roadside station sends specific
information to the vehicles, enabling use cases like speed limit notification and
optimal route recommendation.

3. Other applications

These include applications providing other services such as those for
infotainment. Some examples are point-of-interest notification and media
downloading.

17

aspMore

Applications class Application Use Cases

Active road safety Driving assistance - Co-operative
Awareness (CA)

Emergency vehicle warning
Slow vehicle indication
Intersection collision warning
Motorcycle approaching indication

Driving assistance - Road Hazard
Warning (RHW)

Emergency electronic brake lights
Wrong way driving warning
Stationary vehicle - accident
Stationary vehicle - vehicle problem
Traffic condition warning
Signal violation warning
Roadwork warning
Collision risk warning
Decentralized floating car data - Hazardous location
Decentralized floating car data - Precipitations
Decentralized floating car data - Road adhesion
Decentralized floating car data - Visibility
Decentralized floating car data - Wind

Co-operative traffic
efficiency

Speed Management (CSM) Regulatory/contextual speed limits notification
Traffic light optimal speed advisory

Co-operative Navigation (CoNa) Traffic information and recommended itinerary
Enhanced route guidance and navigation
Limited access warning and detour notification
In-vehicle signage

Co-operative local
services

Location Based Services (LBS) Point of Interest notification
Automatic access control and parking management
ITS local electronic commerce
Media downloading

Global internet
services

Communities Services (ComS) Insurance and financial services
Fleet management
Loading zone management

ITS station Life Cycle
Management (LCM)

Vehicle software/data provisioning and update
Vehicle and RSU data calibration

Table 2​. Basic set of applications [​4​]

2.3.2. Facilities

The ITS facilities layer maps to layers 5, 6 and 7 of the OSI reference model. As such, it
exhibits the corresponding functionalities of those three layers combined with ITS-specific
ones. Its main role is to provide service to the ITS applications in the upper layer, and
thus, the facilities are also referred to as basic service. Some of the facilities are listed in
Table 3​, and can be grouped in two ways, according to: (1) type of support, and (2) scope
of support provided to the ITS BSA [​4​].

Classification Facility name Short description

Common
facilities for the
application
support
facilities

Priority management Message and use case priority assignment.

Identities
management

Manage the station identifier used by the applications and the V2X
messages.

HMI interface Provide common interface to multiple HMIs.

18

aspMore

CAM management Provide management support for Cooperative Awareness Message.

Security access
management

Provide and manage the high layer security requirements and data to the
security entity.

Time management Provide the time management and time synchronization service within the
ITS station.

Service management Manage the supporting ITS service and applications within the ITS station.

Common
facilities for the
information
support
facilities

Station type/capability Manage the ITS station type and capabilities information.

Position management Provide and manage the station position and movement information.

Location referencing Provide location referencing functionalities for the station positioning
according to the application requirements.

Data presentation Provide presentation support for the V2X messages.

Common
facilities for the
communication
support
facilities

Communication
management

Contribute from the high layer for the management and the selection of the
optimal communication profiles to be used for the V2X message
transmission.

Addressing mode Select the addressing mode for the V2X message transmission and
provide the message dissemination requirements to the network and
transport layer.

Domain
facilities for the
application
support
facilities

Mobile station
dynamics

Manage the vehicle ITS station dynamics information from the in vehicle
networks and vehicle electronic functions.

Mobile station status
monitoring

Monitor mobile station status from in vehicle network and vehicle
electronic functions and provide information for applications.

DENM management Manage DENM and DENM protocol.

Roadside ITS station
state monitoring

Monitors the roadside ITS station status.

Client ID
management

Manage and define the service clients profile information.

Web service High layer protocols for the web service e.g. SOA application protocol
support.

Billing and payment Provide service access to the billing and payment service.

GIS support Provide the interface to the GIS service.

Discovery mechanism Discover the users of a community service either by a service
announcement (passive) or by a subscription (active).

Station life cycle
management

Provide the support for station software updating and data updating.

Relevance check Provide the relevance check for the received information from other ITS
stations, according to the application requirements.

Domain
facilities for the
information
support
facilities

LDM LDM database.

Map data base Provide interface to the map data base at the central ITS station.

Service content
database

Manage a database of the ITS service content.

RSU registration Manage the roadside ITS stations and their information that are under the

19

aspMore

control of a central ITS station.

User repository Management of the user information at a central ITS station providing an
ITS service.

Fleet Monitoring Monitor the community service behaviour at the central ITS station
relevant.

Message queuing Manage the V2X messages queuing based on the message priority and
the client services/use case requirements.

Domain
facilities for the
communication
support
facilities

Session support Support the communication session establishment and closure.

Table 3​. List of ITS facilities [​4​]

Classification of facilities according to the type of support provided [​4​]:

1. Application support facilities - provide application support functionalities
2. Information support facilities - provide common data and database management

functionalities
3. Communication support facilities - provide services for communication and

session management

Classification of facilities according to the scope of support provided [​4​]:

1. Common facilities - provide basic core services and functions for all applications
and for the operation of the ITS stations

2. Domain - provide specific services and functions for one or several applications

2.3.3. Networking and Transport

The Basic Transport Protocol (BTP) provides an end-to-end, unreliable and
connectionless transport service. It is responsible for multiplexing the messages from the
different processes at the ITS facilities layer, and at the other end, demultiplexing of
messages received through the the GeoNetworking protocol. The way
multiplexing/demultiplexing works is based on ports, which act as identifiers to distinguish
different processes running on the ITS station. Moreover, BTP allows the facilities layer to
access the services provided by the GeoNetworking protocol, as well as the exchange of
protocol control information between those two entities [​5​]. A list of well-known BTP ports
is given in ​Table 4​.

There are two types of BTP headers, which is indicated in the Next Header (NH) field of
the GeoNetworking Common header. BTP-A is for interactive packet transport, while
BTP-B signals non-interactive. Moreover, they differ in packet structure, with BTP-A
containing both the source and destination ports, and BTP-B specifying only the
destination port with the addition of destination port information in case of well-known
ports [​5​].

20

aspMore

Well-known BTP port ITS facilities layer entity

2001 CAM

2002 DENM

2003 MAP

2004 SPAT

2005 SAM

Table 4​. BTP ports

Next Header (NH) Encoding Description

BTP-A 1 BTP-A header

BTP-B 2 BTP-B header

Table 5​. Encoding of BTP header types in the Next Header field of the GeoNetworking Common Header

Figure 4​. BTP-A header format [​5​]

Figure 5​. BTP-B header format [​5​]

The GeoNetworking protocol is a network-layer protocol that uses geographical positions
and areas to route packets across the ITS ad hoc network. It enables infrastructure-less
communication, and meets the vehicle networking requirements, such as support for high
node mobility and continuously changing network topology [​6​].

The GeoNetworking protocol has the following main functions.

1. Geographical addressing

A packet is sent to a destination node with a specific geographical position or to a
number of destination nodes belonging to a geographical area.

21

aspMore

2. Geographical forwarding

Each node maintains a knowledge of the network topology. When a node receives
a packet, it examines the destination field, and compares the indicated
geographical address to its knowledge of the network topology to make forwarding
decisions. This eliminates the need for complicated IP routing tables.

The GeoNetworking routing employs different packet forwarding schemes as depicted in
Figure 6​.

1. GeoUnicast

The unicast packet is continuously forwarded by intermediate nodes (multi-hop)
until it reaches its destination node.

2. GeoBroadcast

The packet is continuously forwarded until it reaches its destination geographical
area. The nodes inside the area re-broadcasts the packet, unlike in GeoAnycast,
where a node inside the area receives the packet and does not resend it.

3. Topologically-scoped broadcast

The packet is continuously re-forwarded until the n-hop node.

(a) GeoUnicast

(b) GeoBroadcast

(c) Topologically-scoped broadcast

Figure 6​. GeoNetworking routing schemes [​6​]

Figure 7​. GeoNetworking header format [​7​]

As illustrated in ​Figure 7​, the GeoNetworking header includes the mandatory Basic and
Common headers, as well as an optional Extended header. To aid in understanding the

22

aspMore

contents of a GeoNetworking packet, the following figures and tables examine the Basic
and Common header formats and corresponding fields. The contents of the Extended
header depends on the GeoNetworking packet header type specified in ​Table 8​, and the
header format for each type is detailed in [​7​].

Figure 8​. Basic header format [​7​]

Basic header field Description

Version version of the GeoNetworking protocol

Next Header (NH) type of header following the Basic Header

0: ANY (unspecified)
1: Common header
2: Secured packet

Reserved reserved, set to 0

Lifetime maximum time a packet could be buffered before
reaching destination

Remaining Hop Limit (RHL) decremented by 1 (hop) every time the packet is
forwarded by the GeoAdhoc router

Table 6​. Basic header fields

Figure 9​. Common header format [​7​]

Common header fields Description

Next header (NH) type of header following the GeoNetworking headers

0: ANY (unspecified)
1: BTP-A
2: BTP-B
3: IPv6

Reserved reserved, set to 0

Header Type (HT) type of GeoNetworking header (refer to ​Table 8​)

Header Subtype (HST) sub-type of GeoNetworking header (refer to ​Table 8​)

Traffic Class (TC) represents requirements of facilities layer

23

aspMore

Flags indicates whether the ITS-S is mobile or stationary

Payload (PL) size of packet following the GeoNetworking headers

Maximum Hop Limit (MHL) maximum hop limit

Reserved reserved, set to 0

Table 7​. Common header field

Header Type (HT) Header Sub-type (HST) Encoding Description

ANY 0 Unspecified

UNSPECIFIED 0 Unspecified

BEACON 1 Beacon

UNSPECIFIED 0 Unspecified

GEOUNICAST 2 GeoUnicast

UNSPECIFIED 0 Unspecified

GEOANYCAST 3 Geographically-Scoped Anycast (GAC)

GEOANYCAST_CIRCLE 0 Circular area

GEOANYCAST_RECT 1 Rectangular area

GEOANYCAST_ELIP 2 Ellipsoidal area

GEOBROADCAST 4 Geographically-Scoped Anycast (GAC)

GEOANYCAST_CIRCLE 0 Circular area

GEOANYCAST_RECT 1 Rectangular area

GEOANYCAST_ELIP 2 Ellipsoidal area

TSB 5 Topologically-scoped broadcast (TSB)

SINGLE_HOP 0 Single-hop broadcast (SHB)

MULTI_HOP 1 Multi-hop TSB

LS 6 Location service (LS)

LS_REQUEST 0 Location service request

LS_REPLY 1 Location service reply

Table 8​. Encoding of HT and HST fields [​7​]

The geographical area is defined by a geometric shape (circle, rectangle or ellipse),
which is indicated in the header subtype of the Common header. The parameters and
coordinates forming the boundaries of the geographical area are specified in the Extender
header. Moreover, the mathematical functions representing the shapes are detailed in [​8​].

24

aspMore

2.3.4. Access

The ITS access layer maps to the data link and physical (PHY) layers of the OSI
reference model. The data link layer consists of the MAC and the Logical Link Control
(LLC) sublayers. The ITS access layer technology is termed ITS-G5, which is based on
the IEEE 802.11-2012 Wireless Local Area Network (WLAN) standard. In particular, IEEE
802.11p corresponds to the PHY and MAC layers and is an enhancement of IEEE 802.11
(specifically, IEEE 802.11a) to meet the requirements of ITS applications.

IEEE 802.11p employs an almost identical physical layer as that of IEEE 802.11a,
including the use of Orthogonal Frequency Division Multiplexing (OFDM) (total of 52
subcarriers, of which 48 are for data and 4 for pilot carriers). However, some differences
are needed to be introduced for it to be able to handle the high node mobility and steadily
changing vehicular environments. For one, IEEE 802.11p utilizes the 10 MHz frequency
channel bandwidth, as opposed to the 20 MHz of IEEE 802.11a, to make the signal more
robust to fading and other propagation effects. ​Table 9 lists down the resulting data rates
for IEEE 802.11p using different modulation and coding schemes (MCSs), with the 3, 6
and 9 Mbps required for all ITS-S. The duration of one OFDM symbol is 8µs, with the
number of data bits per symbol depending on the MCS used [​9​].

Transfer rate
(Mbit/s)

Modulation scheme Coding rate Data bits per OFDM
symbol

Coded bits per
OFDM symbol

3 BPSK 1/2 24 48

4.5 BPSK 3/4 36 48

6 QPSK 1/2 48 96

9 QPSK 3/4 72 96

12 16-QAM 1/2 96 192

18 16-QAM 3/4 144 192

24 64-QAM 2/3 192 288

27 64-QAM 3/4 216 288

Table 9​. MCS and data rates for IEEE 802.11p [​9​]

Figure 10 illustrates the physical packet structure for IEEE 802.11p, and the fields are
briefly described in ​Table 10​. The preamble and signal fields are transmitted using BPSK,
while the MCS varies for the data part.

25

aspMore

Figure 10​. IEEE 802.11p PHY packet structure [​9​]

Field Subfield Description Duration (µs)

Preamble N/A Synchronizing receiver. Consists of a short and a long training sequence. 32

Signal Rate Specifies the transfer rate at which the data field in the PPDU will be
transmitted.

8

Reserved For future use.

Length The length of the packet.

Parity Parity bit.

Tail Used for facilitating decoding and calculation of rate and length subfields.

Data Service Used for synchronizing the descrambler at receiver. Depending on
selected
transfer rate
and packet
length.

PSDU The data from the MAC layer including header and trailer, i.e. MPDU.

Tail Used for putting the convolutional encoder to zero state.

Pad bits Bits added to reach a multiple of coded bits per OFDM symbol (i.e. 48, 96,
192, 288)

Table 10​. IEEE 802.11p PHY packet fields [​9​]

2.3.4.1. ITS-G5 Frequency and Channel Allocation

ITS-G5 frequencies are allocated depending on their purpose of use, which also differ on
performance requirements. To enable various ITS applications, one control channel
(CCH) and seven service channels (SSH) are allocated [​9​].

 Channel
type

Center
Frequency

(MHz)

Frequency
range
(MHz)

IEEE
channel
number

Channel
spacing

(MHz)

Default
data rate
(Mbit/s)

Tx power
limit (dBm

EIRP)

Usage

ITS-G5A G5-CCH 5900 5895-5905 180 10 6 33 ITS road
safety related
applications G5-SCH

2
5890 5885-5895 178 10 12 23

G5-SCH
1

5880 5875-5885 176 10 6 33

ITS-G5B G5-SCH
3

5870 5865-5875 174 10 6 23 ITS
non-safety

26

aspMore

G5-SCH
4

5860 5855-5865 172 10 6 0 applications

ITS-G5C G5-SCH
7

Refer to
ETSI EN
301 893

5470-5725 94-145 several Dependen
t on

channel
spacing

30 (DFS
master)

RLAN
(BRAN,
WLAN)

23 (DFS
slave)

ITS-G5D G5-SCH
5

5910 5905-5915 182 10 6 0 Future ITS
applications

G5-SCH
6

5920 5915-5925 184 10 6 0

Table 11​. ITS-G5 channels

2.3.4.2. Enhanced Distributed Coordination Access

IEEE 802.11p uses a MAC algorithm known as the Enhanced Distributed Coordination
Access (EDCA). It works like the Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) algorithm but allows the prioritization of data traffic. It defines separate
queues corresponding to different access categories (ACs). In the order of lowest to
highest priority, these are: AC_BK (Background), AC_BE (Best effort), AC_VI (Video) and
AC_VO (Voice) [​9​][​10​].

AC TC ID CW (min) CW (max) AIFS Intended Use

AC_VO 0 3 7 58 µs High priority DENM

AC_VI 1 7 15 71 µs DENM

AC_BE 2 15 1023 110 µs CAM

AC_BK 3 15 1023 149 µs Multihop DENM, other data traffic

Table 12​. ITS-G5 Traffic classes

2.3.4.3. Decentralized Congestion Control

In an ITS ad hoc network, the network topology constantly varies, and in particular, the
number of vehicles within the communication range is unpredictable. In the case of high
density scenarios, the communicating vehicles may require a number of resources
beyond the capacity of the channel. As such, the Decentralized Congestion Control
(DCC) mechanism is necessary to avoid channel congestion and allow a fairer access to
the limited resources. The way DCC works is that the vehicle adapts its transmission
parameters according to the measured channel load. Moreover, the applications running
in the upper layers must be aware of the channel load situation to be able to prioritize
among different possible transmissions [​11​]. Thus, DCC operates across several layers
as shown in ​Figure 11​.

27

aspMore

Figure 11​. DCC architecture [​11​]

The different DCC access techniques used to control the channel load is described
below.

● Transmit Power Control (TPC) - adjusts the output power, such that it is lowered
to reduce the resulting interference in high load scenarios.

● Transmit Rate Control (TRC) - adjusts the time between consecutive packets,
such that it is increased in high density scenarios.

● Transmit Data rate Control (TDC) - adjusts the transfer rate, such that it is lowered
at high load scenarios.

2.3.4.4. Outside the Context of a BSS

One of the ITS requirements, particularly in safety-related applications, is minimizing
latency/delay in the vehicular environment. To satisfy this criterion, a new operation mode
called Outside the Context of a BSS (OCB) is introduced in IEEE 802.11p. This is
activated by configuring the Management Information Base (MIB) parameter
dot11OCBActivated to ​true​. In this mode, communication outside a Basic Service Set
(BSS) is possible, which eliminates the need for the vehicle to undergo the MAC
authentication and association phases. Moreover, since it does not try to join a BSS,
frequency channel search is also unnecessary, as a predefined channel must be set by
default [​9​]. Both of these features contribute to the reduction of overhead and latencies in
the network.

2.3.5. Management and Security

The Management entity is used to configure the ITS-S and exchange information among
the different horizontal layers of the ITS-S reference architecture. The Security entity
provides services geared towards secure and private communications [​12​].

These two vertical protocol entities were out of scope of the project.

28

aspMore

2.4. Basic Services

As previously mentioned, the main goal of the facilities layer is to provide services to the
application layer. This section focuses on two facilities, which play an important role on
the realization of different ITS applications, particularly those that improve traffic safety
and efficiency.

2.4.1. Cooperative Awareness Basic Service

The Cooperative Awareness (CA) basic service is a mandatory facility for all ITS-Ss, and
is responsible for generating, processing and managing the Cooperative Awareness
Message (CAM).

CAM is periodically sent by an ITS-S to all ITS-Ss within its communication range using
single hop communications to create cooperative awareness. For instance, knowing how
close the surrounding vehicles are enables applications such as collision avoidance to
prevent possible road casualties. In particular, this message includes status information
(speed, position, time, etc.), as well as attribute information (vehicle type, dimensions,
etc.). The frequency of CAM generation, or the time interval between consecutive CAMs,
must be at least 100 ms and not exceeding 1000 ms. Moreover, the CAM generation
time, or elapsed time from the instant at which the CAM generation is triggered to that
when the CAM reaches the networking and transport layer, must be less than 50 ms. The
CAM format is given by the Abstract Syntax Notation One (ASN.1) unaligned packed
encoding rules (PER) [​13​].

Figure 12​. CAM general structure [​13​]

The structure of the CAM is shown in ​Figure 12​. Depending on the type of ITS-S, some
parts may be omitted. The containers are briefly described below, while more details are
available in [​13​].

● ITS PDU header - specifies the protocol version, message type, ITS-S ID
● Basic container - includes the station type, geographical position during CAM

generation
● High-frequency (HF) container - indicates dynamic or fast-changing vehicle

information

29

aspMore

● Low-frequency (LF) container - specifies static or slow-changing vehicle
information

● Special vehicle container - includes additional information depending on the
vehicle role indicated in the LF container

With reference to [​14​], a summary of the possible values for the mandatory fields is
presented in ​Table 13​ and ​Table 14​.

ITS PDU header field Description

protocolVersion version of ITS message

messageID type of message

1: Decentralized Environmental Notification Message
(DENM)
2: CAM
3: Point of Interest (POI)
4: Signal Phase and Timing (SPAT)
5: MAP
6: In-vehicle Information(IVI)
7: Electric vehicle recharging spot reservation
(EV_RSR)
8: Tyre Information System (TIS), Tyre Pressure Gauge
(TPG)
9: Traffic Light Signal Request Message
10: Traffic Light Signal Request Status Message
11: Electrical Vehicle Charging Spot Notification
12: Services Announcement Extended Message
13: Radio Technical Commission for Maritime Services
(RTCM) Message

statitionID identifier of originating ITS-S

Table 13​. ITS PDU header

Basic container field Description

StationType type of ITS-S
0: unknown
1: pedestrian
2: cyclist
3: moped
4: motorcycles
5: passenger car
6: bus
7: light truck
8: heavy truck
9: trailer
10: special vehicle
11: tram
15: RSU

ReferencePosition specifies the geographical position of the ITS-S, including the:
- latitude
- longitude
- position confidence ellipse (accuracy of

geographical position)
- altitude

Table 14​. CAM basic container

30

aspMore

2.4.2. Decentralized Environmental Notification Basic Service

The Decentralized Environmental Notification (DEN) basic service is the facility in charge
of generating, processing and managing the Decentralized Environmental Notification
Message (DENM).

Unlike CAM, DENM is an event-triggered message that is disseminated to warn about
(detected) hazardous events. It is transmitted to all the users within the affected area
using multi-hop communications. For instance, DENM could be transmitted to notify about
road accidents or that an emergency vehicle is approaching. Having been properly
informed, the users can then make the appropriate maneuver and act accordingly, such
as giving way to an approaching ambulance. The DENM format is also defined by ASN.1
unaligned PER [​15​].

Figure 13​. DENM general structure [​15​]

The message structure of the DENM is depicted in ​Figure 13​. Same with CAM, some
parts may not be included depending on the type of transmitting ITS-S. A brief description
of the containers is presented below, while in-depth information can be found in [​15​].

● ITS PDU header - specifies the protocol version, message type, station ID
● Management container - includes information related to managing the DENM
● Situation container - describes the detected event
● Location container - indicates the location of the event
● À la carte container - specifies additional useful information not included in the

other containers

Although the DEN basic service is also an important ITS facilities layer entity for the
realization of C-ITS, it was out of scope of the project.

2.5. Related Work

As IEEE 802.11p in C-ITS is a relatively mature technology, there are already a number
of scientific work pertaining to its system performance evaluation. This section narrows
down these references to those that are more relevant to the goals of the project.

The paper of [​16​] presented one of the initial implementations of IEEE 802.11p on a Linux
system. While it provided a description on the modifications made in the Linux kernel, it
did not specify how the system was verified to check its operation using the IEEE 802.11p
frequencies. The paper of [​17​] started by conducting a survey on different wireless cards
to determine their suitability, followed by an explanation of the changes made on the
Linux kernel. The project then upgraded a commercial device to use the applicable

31

aspMore

wireless cards previously studied. However, the tests performed were more focused on
evaluating whether the performance of the wireless cards met the requirements specified
in the standards, such as in terms of throughput, switching channel timing and power
transmission. In [​18​], city-scale field tests were carried out using low-cost, open-source
prototypes, also built by modifying the Linux kernel. However, while the tests involved
actual exchange of CAMs, the prototypes were not tested against a commercial OBU or
RSU to confirm its interoperability. Another implementation was presented in [​19​], where
the system was tested using a commercial V2X platform. In this case, the test packets
used employed the US WAVE protocol stack, as opposed to the CAMs of the EU ITS-G5
stack. While the testbed in [​20​] allowed switching to the 760 Mhz (Japan) when the 5.9
GHz (US and UK) communication fails, the testbed was only tested using IP packets.

The study of [​21​] investigated the practical limits of cooperative awareness in vehicular
communication by carrying out small-scale field tests, before performing large-scale
simulations using the Geometry-based Efficient propagation Model for V2V
communication (GEMV​2​) and SUMO. Central to their analysis was a metric called the
Neighboring Awareness Ratio (NAR), defined as the ratio of the number of vehicles from
which a CAM was received over the total number of vehicles within a given range. The
paper suggested a direct correlation between the Packet Delivery Ratio (PDR) and NAR,
which both decreased as the distance between communicating vehicles increased. The
maximum communication range and cooperative awareness were very much affected by
the link quality and propagation conditions. Moreover, it was concluded that after a certain
threshold value, increasing the CAM transmission rate did not anymore significantly
improve the NAR, but only increased the channel load. On the other hand, increasing the
transmit power while lowering the transmit rate, was a more effective way to increase the
NAR, but this also increased the interference of far away vehicles. Thus, it was important
to find the balance between awareness and interference.

In [​22​], the CAM and DENM messaging services were evaluated by utilizing commercial
IEEE 802.11p transceivers in a testbed deployed in a real driving environment. From its
analysis of the Received Signal Strength Indicator (RSSI) measurements, it verified that
the signal quality was heavily affected by the line-of-sight conditions and distance
between the transmitter and receiver, as well as their relative altitude. The signal quality
directly impacted the PDR, such that high signal quality translated to high PDR. The
experiment also showed that the PDR was lower for faster vehicle speeds (although this
is not the case when later analyzing the simulation results of this project). Moreover, the
Connection Time and Connection Distance metrics had been defined, which referred to
the time and distance elapsed between the first and last correctly received CAMs.
Although these metrics are capable of providing deeper insights on the performance of
the CA basic service, the paper did not perform extensive study to elaborate on them. In
addition, the test only involved two entities (one vehicle/OBU and one RSU), with some of
the results being highly dependent on a single environment topology.

As depicted in the above discussion of related work, further study still needs to be done in
order to evaluate the performance of the CA basic service. In particular, this project was
focused on implementing the CA basic service and understanding its effectiveness in
providing awareness among the ITS entities of a cooperative transport system.

32

aspMore

3. On-board/Roadside Unit Development

Field tests to capture real-world measurements for the purpose of evaluating the CA
basic service usually require the use of special V2X platforms. In addition to these
devices being really costly, they are also proprietary systems, and as such, access to
their implementation is very limited. Thus, one of the goals of this project was to develop
a low-cost OBU/RSU that implemented the ETSI C-ITS protocol stack using open-source
software and commercial off-the-shelf hardware. Ultimately, the developed OBU/RSU
was expected to work with any dedicated V2X hardware using the 5.9 GHz channel, such
that it would be able to transmit/receive CAMs to/from a commercial device. The project
focused on the delivery of CAMs by implementing the CA basic service that is a
mandatory ITS facilities layer entity for all ITS-Ss.

This chapter details the steps carried out in developing the OBU/RSU, including the
creation of the CAM application, and the selection and modification of a suitable hardware
platform that supports IEEE 802.11p.

3.1. Vanetza Library

The Vanetza library is an open-source implementation of the ETSI C-ITS protocol suite
[​23​]. It includes the following protocols and feature, which were utilized in the OBU/RSU
development.

● GeoNetworking
● Basic Transport Protocol (BTP)
● Support for ASN.1 messages

As discussed in Section 2.3.3, the GeoNetworking protocol is a network layer protocol
that uses geographical information in routing packets over the ITS ad hoc network, while
BTP is responsible for the end-to-end unreliable delivery of packets. In developing the
source code for the project, we took advantage of Vanetza’s built-in functions that
implement the services provided by these protocols. Moreover, this library contains
ASN.1 modules for easy CAM encoding and decoding.

Vanetza also includes a demo application called ​socktap​, which runs Vanetza on top of
Linux raw packet sockets allowing it to work without dedicated V2X hardware [​23​]. It has
several variants; however, for this project, ​socktap-cam was used. This variant
periodically sends CAMs, and as such, it could be readily used to function as the CAM
transmitter application. On the other hand, the source code for the CAM receiver
application needed to be developed from scratch.

3.2. CAM Receiver Source Code

The central idea when creating the CAM receiver application was being able to correctly
receive and parse all the incoming CAMs. Some of the built-in functions needed were
actually private functions in the Vanetza library. In order to have access on a number of
specific variables, these functions were copied as is to the ​rcv_parse.cpp​.

33

aspMore

The CAM receiver started by defining a buffer in ​router_context.cpp​. This buffer
continuously received the CAMs that were periodically transmitted by the ​socktap-cam
application.

The contents of the buffer were then processed layer-by-layer in ​rcv_parse.cpp​. The
parsing of the received message started from the physical layer, where 0 byte was
assigned. Moving on to the link layer, the 14 bytes represented the source (6 bytes),
destination (6 bytes) and ether type (2 bytes), which was set to ​0x8947 for ITS
GeoNetworking. In the GeoNetworking layer, only the Basic and Common headers were
processed. The optional extended header was skipped, as the project always assumed
single-hop broadcast and disabled security attributes for simplification. The payload size
following the GeoNetworking header was indicated in the Common header. As BTP had a
fixed 4 bytes for its header, the remaining bytes corresponded to the CAM itself, which
was handled in the upper layer. Vanetza included built-in containers that help to easily
decode the CAM. This parsing process was repeated for each of the CAM received.

Note that, depending on the Vanetza version in use, it may be necessary to make some
adjustments to properly represent certain field values included in the CAM. In this project,
modifications were made in the data representation of the speed and geographical
information (latitude, longitude).

3.3. Setting up the CAM Transmitter and Receiver Environment

This section provides a brief description on how to set up the CAM transmitter and
receiver applications that were key components of the OBU/RSU project. The commands
corresponding to the following procedure are listed on Appendix A.1. As mentioned in
Section 3.1, both applications used Vanetza to implement specific protocols and features.
For this reason, the first step was to obtain Vanetza from [​23​], and subsequently, install
and compile the library along with the software dependencies.

Following this, the applications must be compiled. Since both of them build upon raw
packet sockets, it was necessary to run them with special privileges [​23​]. Moreover, the
GPS functionality was a prerequisite. In this project, a GPS signal was emulated instead
of using a GPS receiver. In this case, a recorded GPS file was played in the background
while running the application, as discussed in Appendix A.2.

With no error occuring, both applications were executed. The initial testing was done
using only the loopback interface (i.e., no hardware platform needed). In this setup, it was
necessary to start the applications in separate command windows of the local PC.

3.4. Implementation using Raspberry Pi

Raspberry Pi is a low-cost, credit card sized computer, which was originally intended to
promote education by making the platform accessible to everyone who wants to learn
how to program. Same with a standard computer, several peripherals could be
connected, including a monitor, keyboard, mouse, etc. The recent models offer more
advanced functionalities, such as support for bluetooth, Power-over-Ethernet (PoE) and

34

aspMore

dual-band WiFi (2.4GHz/5GHz) [​24​]. Moreover, the Raspberry Pi boasts a number of
advantages with its low price, small size, customizability and availability in the market.
Taking these into consideration, the Raspberry Pi 3 Model B+ was the selected hardware
platform to implement the OBU/RSU during the initial stages of the project development.
At the time of working on the project, this was the latest model of Raspberry Pi, with the
specifications available in [​24​]. The Emlid Raspbian was used as the operating system
[​25​].

Figure 14​. Raspberry Pi 3 Model B+ [​24​]

3.4.1. OBU/RSU Testing using Raspberry Pi

The first attempt to test the OBU/RSU project using an actual hardware platform was
using the Raspberry Pi. In this case, two devices were employed, one continuously sent
CAMs, while the other received and displayed the message contents in the command
line. The first thing to do was to download the files to the Raspberry Pis, and then install
and compile all the necessary programs as explained in Section 3.3. Before being able to
proceed with the testing, an ad hoc network must be configured to enable wireless
communication between the two devices. The process of setting up an ad hoc network is
detailed in Appendix A.3. Afterwards, the CAM transmitter was executed on one
Raspberry Pi, and the receiver on the other device. At this point, it was confirmed that
both applications were working properly using the Raspberry Pis.

The next step was to configure the devices to operate using the IEEE 802.11p
frequencies. This was crucial for the OBU/RSU project to be able to work with commercial
OBU/RSUs, which utilize the 5.9 GHz frequency band. By default, the Raspberry Pi 3
Model B+ supports 5 GHz WLAN, and as such, modifications had to be made to tune it to
the desired ITS frequencies.

One good reference for the implementation of IEEE 802.11p on Linux is [​17​]. It presented
a detailed guide on how to modify the ATH9K driver to work with IEEE 802.11p. ATH9K is
a Linux kernel driver for Atheros PCI/PCI Express (PCIe) wireless cards, with the
compatible chipsets/devices listed in [​26​]. Unfortunately, after doing some research, it
was concluded that the current Raspberry Pi models are unable to operate using IEEE
802.11p as they do not support PCI interfaces. Thus, it was necessary to implement the
OBU/RSU project using a different hardware.

35

aspMore

3.5. Implementation using APU2

The APU2 platform developed by PC Engines is a single-board computer for networking.
Although it is not as small as the Raspberry Pi, it offers similar advantages such as cheap
price and ease of purchase. More importantly, APU2 is a suitable device that meets the
hardware requirements discussed in the previous section. It has two mini PCIe slots,
along with the several features listed in [​27​].

Figure 15​. APU2 platform [​27​]

The wireless module used is the WLE200NX [​28​]. This mini PCIe module also supports
both 2.4 GHz and 5 GHz WLAN, similar to the Raspberry Pi 3 Model B+. A key difference
is that it uses the Qualcomm Atheros AR9280 chipset, which is compatible to the ATH9K
kernel driver. As such, it was then possible to modify the driver to support IEEE 802.11p.

Figure 16​. WLE200NX wireless module [​28​]

36

aspMore

3.5.1. Linux Wireless Architecture

As mentioned in Section 2.3.4, one of the MAC layer modifications specific to IEEE
802.11p is the introduction of the OCB mode. In the latest Linux kernel versions, this
mode could be enabled using the kernel configuration menu. However, further
modifications have to be made in the ATH9K kernel driver to fully implement IEEE
802.11p on a Linux system [​17​].

Before diving into the detailed procedure of how to modify the driver, an overview of the
Linux wireless architecture, depicted in ​Figure 17​, will be briefly discussed. Applications
and processes run in the user space on top of the kernel space, while the hardware
device drivers can be found at lowest level of the architecture.

Figure 17​. Linux wireless architecture [​16​]

● mac80211

mac80211 ​is a framework for developing Soft MAC drivers. Wireless cards can
be classified as either a Full MAC (also known as Hard MAC) or Soft MAC. The
difference between the two is that the former manages the IEEE 802.11 MAC
Sublayer Management Entity (MLME) in the hardware, while the latter,
implements it in the software. The MLME is a management entity where the PHY
MAC state machines reside. Soft MAC is more commonly used nowadays, as it
enables more precise control of the hardware, including the implementation of the
IEEE 802.11 frame management in software [​29​].

● cfg80211

cfg80211 ​is a configuration API for IEEE 802.11 Linux-based devices. It acts as
a link between the user space and the drivers. Full MAC drivers target ​cfg80211​,
as ​mac80211 is only for Soft MAC devices. Moreover, it provides support for
regulatory compliance through the use of ​wireless-regdb​ and ​CRDA​ [​29​].

● nl80211

nl80211 ​is used to configure ​cfg80211​. Using the Netlink socket, it enables the
communication between the user space and the kernel. It is responsible for the

37

aspMore

user space part of the configuration management of wireless devices, while
cfg80211 ​is for the kernel space [​29​].

● iw

iw ​is a Command-Line Interface (CLI) utility based on ​nl80211 ​and is used for
configuring wireless devices [​29​].

● wireless-regdb

The ​wireless-regdb is a regulatory database used by ​CRDA​. Each country has
its own regulations on frequency allocation and acceptable transmission power
levels. These are specified in the ​wireless-regdb to help ensure regulatory
compliance. The database is conveniently placed in the user space, so that
changes could be performed without upgrading the kernel. Moreover, together
with the database, an RSA signature is embedded in the generated binary file
(​regulatory.bin​) to ensure the authenticity of the file [​29​].

● CRDA

The ​Central Regulatory Domain Agent ​(​CRDA​) in the user space uploads
the wireless regulatory domain into the kernel. The kernel triggers the CRDA once
it has detected changes in the regulatory domain [​29​].

3.5.2. ATH9K Driver Modifications

This section describes how to modify the ATH9K Linux kernel driver to support IEEE
802.11p. The complete list of commands is available in Appendix A.4.

The basic requirement to start this process was to download the Linux kernel from [​30​].
The kernel version used was 4.20.7, which was the latest stable kernel at the time of
developing the project. The functionalities supported by the kernel depend on its version.
For instance, the OCB mode has been implemented from version 3.19. As the project
used a much later version, this operation mode was already available in the kernel
configuration menu.

After obtaining the Linux kernel source file and installing the software dependencies, the
following ATH9K driver source codes had to be modified.

● drivers/net/wireless/ath/ath9k/ani.c
● drivers/net/wireless/ath/ath9k/common-init.c
● drivers/net/wireless/ath/ath9k/hw.h
● drivers/net/wireless/ath/ath9k/main.c
● drivers/net/wireless/ath/regd.c

Details about the changes are specified in Appendix A.5. In order to support IEEE
802.11p, the modifications were related to enabling the OCB mode and ITS-G5
frequencies, as well as updating the number of channels. As mentioned above, it is
possible that these changes have already been incorporated in the later kernel versions.
Thus, it is advisable to check before modifying them.

The next step was to configure the kernel modules to be included. To ensure the validity
of the kernel configuration file, an option was to copy the configuration file of the currently

38

aspMore

running kernel. After obtaining this, executing the ​make menuconfig command
launched the kernel configuration menu, where the kernel modules could be
enabled/disabled accordingly. Several options were shown, including those related to the
components of the Linux wireless architecture discussed in the previous section. The
configuration used in the project is presented in Appendix A.6, where the settings in the
paths listed below were examined. In particular, ​Verbose OCB debugging must be
enabled.

● Networking support > Wireless
● Device Drivers > Network device support > Wireless LAN
● Networking support > Wireless > Select mac80211 debugging

features

Following this, compile the kernel for the changes to take effect, then install the kernel
modules and the kernel. It was also necessary to enable the kernel for boot and restart
the system, as explained in Appendix A.4.

3.5.3. Verifying ​iw

As discussed in Section 3.5.1, ​iw ​is used to manage WLAN in Linux, much like the
ifconfig for wired networks. The procedure for setting up ​iw is detailed in Appendix
A.7. Note that it is important to check if the running ​iw version supports the OCB mode.
This was done by entering the following command, with the expected output also
specified below.

$ /sbin/iw | grep -i ocb

dev <devname> ocb leave

dev <devname> ocb join <freq in MHz> <5MHZ|10MHZ> [fixed-freq]

Figure 18​. Testing the ​iw​ program

3.5.4. ​wireless-regdb​ Modifications

wireless-regdb is a regulatory database that helps ensure compliance with the
regulations enforced by each country. The procedure for setting up the
wireless-regdb​ is explained in Appendix A.8.

One of the challenges encountered when implementing IEEE 802.11p on Linux was the
modification of ​db.txt to add the ITS-G5 channels and transmission power values. With
reference to [​17​], the initial goal was to add a new country ​AA (in ​db.txt​), and under
which, the said channels and power values were to be specified. Ideally, issuing the ​iw
reg set AA command changes the wireless regulatory domain in use to ​AA​.
Subsequently, the corresponding changes in ​db.txt will be reflected upon executing the
iw reg get and ​iw list commands. However, after several trials, this method did not
work. Instead, the ITS-G5 channels could not be enabled when trying to add them by
creating a new country ​AA​. A possible cause was that the Atheros wireless card used in

39

aspMore

the project was limited to the pre-defined countries only, and as such, it did not allow the
use of non-existent countries like ​AA​.

A workaround was to add the channels and power values under an existing country, such
as ​country ES​, depicted in Appendix A.8. Moreover, it was necessary to set
CTRY_SPAIN in ​regd.c as indicated in Appendix A.5. After doing these modifications,
make sure to restart the system for the changes to take effect. At this point, the ITS-G5
channels and power levels were then displayed when issuing both the ​iw reg get ​and
iw list​ commands.

Figure 19​. ​iw reg get​ output

Figure 20​. ​iw list​ output

40

aspMore

3.5.5. Verifying ​CRDA

The procedure for setting up the ​CRDA is presented in Appendix A.9. It involved copying
the public keys installed by the ​wireless-regdb​, and generating the
regulatory.bin file. To verify that everything was configured correctly, the following
command was issued, which specifically checked the ​CRDA and ​regulatory.bin​. The
expected output is shown below.

$ sudo /sbin/regdbdump /lib/crda/regulatory.bin | grep -i ocb

country 00: invalid

 (5850.000 - 5925.000 @ 20.000), (20.00), NO-CCK, OCB-ONLY

Figure 21​. Testing ​CRDA​ and ​regulatory.bin

3.5.6. OCB Interface and IEEE 802.11p Channel Configuration

After enabling the ITS-G5 channels, the next step was to create an OCB interface by
configuring a wireless interface to OCB mode. This OCB interface was then used in
attempting to join an IEEE 802.11p channel. The detailed procedure is explained in
Appendix A.10.

To verify whether the whole process was successful, the ​iw dev and ​iwconfig
commands were used. In the following figures, it was confirmed that the OCB interface
was indeed able to join an ITS-G5 channel. In particular, this channel was the Control
Channel (CCH), which had a center frequency of 5900 MHz, channel number of 180 and
channel spacing of 10 MHz. At this point, we had successfully implemented IEEE
802.11p on a Linux system. It was then possible to test applications implemented in the
upper layers, such as transmitting and sending CAMs using the ITS-G5 frequencies. Note
that following this procedure, it was necessary to set up the Vanetza library and CAM
applications in the APU2 device as specified in Section 3.3.

41

aspMore

Figure 22​. ​iw dev​ output

Figure 23​. ​iwconfig​ output

42

aspMore

4. IEEE 802.11p-based Simulator Enhancement

This chapter provides an overview of the existing IEEE 802.11p-based simulator,
including details about extending its functionality to enable the experimental evaluation of
the CA basic service. It also describes the scenarios and parameter configurations
utilized in the simulations.

4.1. Simulation Framework Overview

The IEEE 802.11p-based simulator is composed of several simulation frameworks of
different functionality. This section provides an overview of the simulator architecture
illustrated in ​Figure 24​.

Figure 24​. Simulation Framework Overview [V2X-Arch]

The Objective Modular Network Testbed in C++ (OMNeT++) is an extensible and
modular simulation library and framework [​31​]. It works by assembling individual
components/modules (written in C++) to larger components and models using NED,
which is a network description language for creating network topologies. This modularity
makes it easy for the models to be reused and incorporated to different applications.
Moreover, although OMNeT++ is mainly used for building network simulators, it is also
considered as a network simulation platform by its growing number of users. Model
frameworks are often used in conjunction with OMNeT++ to implement more specific
functionalities.

The INET simulation framework is an open-source library containing various models to
simulate communication networks, and is particularly written for the OMNeT++
environment [​31​]. Some of its features include models for the Internet stack (IPv4, IPv6,

43

aspMore

TCP, UDP) and wired/wireless interfaces (Ethernet, IEEE 802.11), and support for
physical environment modelling (propagation model, presence of obstacles). Moreover,
INET could be used as a base for creating other simulation framework such as Veins.

The Veins simulation framework is an open-source library consisting of numerous models
specific to vehicular networking [​32​]. For instance, it has an IEEE 802.11p model, which
includes multi-channel operation, QoS channel access and noise/interference effects.
Veins simulation requires parallel execution of two simulators, namely OMNeT++ (for
network simulation) and SUMO (for road traffic simulation). The interaction between these
simulators is made possible using a TCP socket and a standardized protocol known as
the Traffic Control Interface (TraCI). As such, the movement of vehicles in SUMO is
represented as the movement of nodes in OMNeT++.

Simulation of Urban MObility (SUMO) is an open-source road traffic simulator [​33​]. It
allows the creation of different road topologies for simulation, such as freeway and
Manhattan grid scenarios, as well as the experimentation of various mobility models.
Moreover, it is microscopic, as vehicles are individually modelled (including vehicle color,
shape, maximum speed, route), and move independently through the network. By default,
the simulations are deterministic, with the option of adding randomness to the simulation.

Artery was originally developed as an extension of Veins, although, it could now be used
independently [​34​]. Artery corresponds to the application and facilities layers, which
enable the generation of CAMs and DENMs. Moreover, Artery’s middleware provides
common facilities to the multiple ITS-G5 services running on individual vehicles.

Lastly, Vanetza is an open-source implementation of the ETSI C-ITS protocol suite. In
particular, it implements the GeoNetworking (for routing) and BTP (for transport)
protocols, and supports ASN.1 messages (CAM, DENM) [​23​].

4.2. IEEE 802.11p Simulator Functions

This section provides a brief description of the functions that were created and modified
to extend the functionality of the existing simulator. These functions were designed and
programmed in order to be able to acquire the statistics, which were defined according to
the goals of the project.

4.2.1. ​GlobalMapper

The ​GlobalMapper function (in ​artery/src/artery/application​) maintains a
global database that keeps track of all the nodes present in the scenario. Each entry in
the database represents a single node, and has the following information:

● Node name
● Module name of node
● TxTime​ - current simulation time during CAM generation
● TxPos​ - position of transmitting node during CAM generation
● TxVel​ - speed of transmitting node during CAM generation

The node itself uploads these information to the database whenever it generates and
periodically sends a new CAM. This ensures that these information are constantly being

44

aspMore

updated/refreshed, so that the ​GlobalMapper is always aware of the current status of all
nodes at any given time.

4.2.2. ​CaService

The ​CaService function (in ​artery/src/artery/application​) is responsible for
checking the CAM trigger conditions, as well as generating and transmitting the CAMs. It
includes a step-by-step process of creating these messages using the CAM containers
discussed in Section 2.4.1. Moreover, this is where the node updates the ​GlobalMapper
of its latest status information (position, speed, etc.) every CAM generation instance. The
function also implements an empirical way to know the average speed of each node, by
dividing the total time spent in the scenario over the total distance travelled.

4.2.3. ​Rx

The ​Rx function (in ​artery/extern/inet/src/inet/linklayer/ieee80211/
mac​) handles the reception of CAMs from other nodes. It counts the following statistics in
the link layer:

● Total number of received packets
● Total number of correctly received packets
● Total number of erroneous packets received

As these are taken in the link layer, they do not include the packets that were filtered out
based on power-related threshold values in the physical layer, namely the Receiver
Sensitivity, Energy Detection and SNIR threshold. Moreover, the error model used is the
Ieee80211NistErrorModel​, which is a readily available model for IEEE 802.11
network interfaces. It works by using the SNIR value in the computation of the BER.

Each (receiving) node maintains a local database called ​lastKnownPos​. It stores the
following information for all of the surrounding (transmitting) nodes.

● startEntry​ - current simulation time when database was updated
● lastPos​ - last known position of the transmitting node
● TxRxDist​ - distance from the transmitting node

Each database entry represents a single (transmitting) node. The corresponding entry is
updated whenever a CAM is correctly received from a surrounding node. In effect, the
receiving node is able to keep track of all of its neighboring vehicles, with their perceived
position/distance constantly being updated in its local memory. As such, it can detect
when a neighboring vehicle is already too close compared to a defined safe distance.
This information is especially useful in applications such as collision avoidance warning.

The database is periodically checked every 100ms to ensure the validity of its entries.
Moreover, an expiry time of 2s (or 20 CAMs for a CAM transmit frequency of 100ms) is
configured. That is, when an entry is not updated after 2s in the database, it is
automatically deleted.

45

aspMore

4.2.4. ​SystemMonitor

The ​SystemMonitor (in ​artery/src/artery/application​) is a new function
mainly created for statistics collection, and providing better data representation and
visualization of results. During the initial stages of the project development, the results
were plotted using solely the OMNeT++ analysis file, which placed a constraint on the
way graphs were created (i.e., limited to the built-in features of OMNeT++). To solve this
problem, the ​SystemMonitor function was developed to allow customizing the plots by
being able to modify more properties. For instance, it allows changing the number of bins
to adjust the granularity of the histograms. Moreover, it is capable of exporting the raw
data into an Excel/csv file, giving more freedom on how results would be post-processed.
In this way, it helps in analyzing and understanding the results better by using more
effective visualizations.

4.3. SUMO Scenario

This section details the the creation of different road topologies and mobility scenarios
using the SUMO simulation framework.

4.3.1. SUMO Files

Each scenario is created using three SUMO files [​35​], which are located in
v2x-arch_11p/artery/scenarios/artery/my_roads​.

4.3.1.1. Network File (​*.net.xml​)

The network file contains the description of the physical topology of the scenario. This
may include the roads, intersections, traffic logics and even roundabouts. Using the
SUMO naming convention, the roads or streets are referred to as edges, and the
intersections as junctions or nodes. That is, two edges are connected by junctions. ​Figure
25​ shows the contents of the network file.

Figure 25​. SUMO network file

The ​location field specifies details about the network projection in case the original
network was not using Cartesian coordinates, and therefore, needed to be transformed.

46

aspMore

The ​edge field describes the created lanes including the allowed type of vehicles (or
pedestrian), speed limit, lane length and geometry. The ​junction field defines the lanes
that the junctions connect.

The network file may be created using a tool called NETEDIT. It is a graphical editor for
creating and modifying networks, as illustrated in ​Figure 26​.

Figure 26​. NETEDIT

4.3.1.2. Routes File (​*.rou.xml​)

The routes file specifies the vehicle types and routes for the vehicles in the simulation.
The ​vehicles type field includes the physical properties of the vehicle, such as shape
and color, as well the maximum speed and minimum gap from the vehicle ahead.
Different routes are identified by their ​route id​, and each of them defines the relevant
edges and direction of movement of vehicles (e.g., going to the right). Moreover, a ​flow
contains the following information, which control how the vehicles are inserted in the
scenario and how they behave during the simulation.

● type​ - vehicle type previously defined
● begin​ - departure time of first vehicle
● period​ - insertion period of vehicles

47

aspMore

● end​ - departure time of last vehicle
● departLane​ - lane on which the vehicle will be inserted
● departSpeed​ - speed with which the vehicle will enter the scenario
● departPos​ - position at which the vehicle will enter the scenario
● route​ - route of vehicle previously defined

Figure 27​. SUMO routes file

4.3.1.3. Configuration File (​*.sumo.cfg​)

The configuration file specifies the associated network and routes files for a given
scenario. Moreover, it is possible to configure the ​step-length​, which is the granularity
of the simulation and has a minimum value of 1 ms. It also corresponds to the time
interval with which vehicle positions are updated.

Figure 28​. SUMO configuration file

The parameter values are given in meters (for distance), seconds (for time) and meters
per second (for speed). As detailed in [​35​], other values may be configured, apart from
those used in the project. Moreover, additional attributes may be defined in the SUMO
files. This allows customizing the scenarios according to the requirements and individual
goals of the simulations.

48

aspMore

4.3.2. Physical Topologies

Different road topologies were used in the project. One of which was the highway
scenario, which simulated direct line-of-sight (LOS) conditions and non-stop driving (i.e.,
no traffic lights, intersections). The other one was the Manhattan grid scenario, which
helped in understanding the effects of walls and buildings, as well as intersections.
Moreover, the project defined a statistical region in the scenarios, highlighted in red
below. Statistics were only recorded in this area to eliminate border effects. For instance,
less vehicles may be present at either end of the highway scenario compared to its
central region, and this consequently affects the carrier sense mechanism employed by
IEEE 802.11p. Although the exact coordinates of the statistical area are given below,
these could be readily modified in the ​omnetpp.ini​ file, as discussed in Appendix B.2.

4.3.2.1. Highway Scenario

The length of the highway was 1000 m, with the statistical region corresponding to the
central 400 m (i.e., 300m < x < 700 m). In ​Figure 29​, the highway had only four lanes,
with each lane having a width of 3.2 m. However, the scenario could be easily configured
using NETEDIT to have varying number of lanes. In the project, 4-, 8- and 16-lane
highways were used. Moreover, both unidirectional and bidirectional scenarios were
created to deduce any implication on the system performance. For instance, a 4-lane
bidirectional highway scenario had 2 lanes in each direction.

Figure 29​. 1km highway scenario

4.3.2.2. Manhattan Grid Scenario

The Manhattan grid scenario measured 445 m x 445 m, with the statistical area bounded
by 30 m < x < 375 m and 111.25 m < y < 333.75 m, which was an approximation of the
central region of the grid. The presence of walls could also be configured in
omnetpp.ini​.

49

aspMore

Figure 30​. Manhattan grid scenario

4.3.3. Classification of Vehicle Speed and Density

Defining different vehicle speeds was an effective way to understand how the CA basic
service performed in sparse and dense situations. Slow vehicle speed translated to dense
environments with more vehicles being packed in the scenario. On the contrary, vehicles
moving fast required greater braking distance, and thus, less vehicles fit into the same
scenario, creating light vehicle density.

The following are the different factors affecting the vehicle speed in SUMO [​35​].

● Maximum vehicle speed (in ​*.rou.xml​)
● Maximum lane speed (in ​*.net.xml​)
● speedFactor​, which is a speed multiplier (not used in the project)
● Car-following model, which defines vehicle speed in relation to the vehicle ahead

There are different car-following models available. However, the project used the
default model that is the ​carFollowing-Krauss​. Basically, this model always
selects the maximum speed safe enough for the vehicles to be able to stop before
any collision occurs.

● departSpeed​ and ​arrivalSpeed​ (in ​*.rou.xml​)

departSpeed is the speed with which the vehicle enters the scenario, while
arrivalSpeed is the speed when the vehicle reaches its destination or leaves
the scenario.

Each sets an upper bound, but the actual speed implemented is the minimum speed
resulting from all of these factors. A simple and effective way to control the speed was to
assign different values for the maximum vehicle speed (​maxSpeed​) in ​*.rou.xml as
explained later in this section.

50

aspMore

The ​minGap parameter in ​*.rou.xml could also be configured to control the vehicle
density. ​minGap is the empty space after the vehicle ahead. While the default value is 2.5
m, the project used 2 m to fit in more vehicles in the scenario. Moreover, ​departPos
parameter in ​*.rou.xml ​was set to ​random to populate the scenario with vehicles
faster. Configuring this to ​random allowed the vehicles to enter the scenario in any
position. This was in contrast to having all the vehicles enter the scenario through the
same entry point, such as from the leftmost side of the highway scenario.

In the project, the following classification was defined according to the maximum vehicle
speed (​maxSpeed​) specified in ​*.rou.xml.

Classification of Speeds Maximum Vehicle Speed [m/s]

Fast 33.33

Moderate 17.00

Slow 3.00

Table 15​. Vehicle speeds

Table 16 lists down the average number of vehicles in different highway scenarios, which
turned out to be the same for the unidirectional and bidirectional cases. As the highway
spans 1 km in length, an approximation of the vehicle density was obtained by dividing
the average number of vehicles by the number of lanes. This resulted to the number of
vehicles per km per lane. ​Figure 31 shows the relationship between the vehicle speed
and density.

Classification of
Vehicle Speeds

Approximate number of vehicles in the
scenario

Vehicle Density

[vehicles/km/lane]
4 Lanes 8 Lanes 16 Lanes

Fast 145 290 586 37.00

Moderate 216 420 845 53.00

Slow 357 706 1421 89.00

Table 16​. Average number of vehicles in different bidirectional highway scenarios

51

aspMore

Figure 31​. Relationship of vehicle density and speed

4.4. Simulation Parameters

Table 17 provides a summary of the parameters used in the simulations. These
parameters could be readily configured in the ​omnetpp.ini file, as detailed in Appendix
B.2.

Category Parameter Value

Node Operation mode 802.11p

Carrier frequency 5.9 GHz

Bandwidth 10 MHz

Channel number 180

Modulation BPSK

Bitrate 6 Mbps

Transmitter power 200 mW

Receiver sensitivity -95 dBm

Energy detection -95 dBm

SNIR threshold 16 dB

Medium Obstacle loss type {dielectric, ideal, “ “}

52

aspMore

Path loss type Rayleigh fading

Path loss alpha 3

Background noise type Isotropic scalar

Background noise power -110 dBm

Scenario Topology {bidirectional highway, unidirectional highway, grid}

Maximum vehicle speed {3, 17, 33.33 m/s}

CAM message period {100, 200, 500, 1000 ms}

Mobility model Krauss (default)

Simulation time limit {50 s (highway), 500 s (grid)}

Warm-up period {25 s (highway), 300 s (grid)}

Table 17​. Simulation parameter values used

The parameter values used to model the individual nodes were selected based on those
specified in the standards. In accordance to ​Table 11​, a control channel (CCH) was used,
with 10 MHz of bandwidth centered at 5.9 GHz, channel number of 180 and default data
rate of 6 Mbps. The nodes were configured to transmit with a power of 200 mW or 23
dBm, which was well below the 33 dBm power limit. The receiver sensitivity was set to
-95 dBm, with reference to the power measurements cited in the specifications of
commercial V2X devices.

The radio medium was modelled using the Rayleigh fading profile, which allowed
simulating highly dense urban environments without direct LOS between the
communicating nodes. The corresponding alpha values for urban areas ranged from 2.5
to 3.5, from which a value of 3 was arbitrarily chosen to be used in the simulations. The
physical environment allowed more realistic simulations by enabling or disabling the
walls/buildings in the scenario through the obstacle loss type field. Setting the field to
either dielectric or ideal enabled the walls, while leaving it blank disabled them. The
properties of the walls could be configured in the ​walls.xml​ file.

The default road topology was the bidirectional highway scenario, although in some
cases, the unidirectional highway and grid scenarios were also simulated to understand
the impact of certain parameters. Depending on the scenario, the value of the warm-up
period and the simulation time differed. Statistics were recorded only upon reaching the
warm-up time in the simulation. For this reason, the value of the warm-up period was
selected such that the scenario had reached steady-state conditions by the time the
statistics were started to be recorded. The ETSI specification indicates that the CAM
generation period ranges from 100 to 1000 ms [​13​]. Simulations were conducted while
varying the transmit period to deduce its impact on performance.

53

aspMore

5. Results

This chapter is mainly divided into two sections, presenting the results and analyses for
the two subtasks of the project.

5.1. On-board/Roadside Unit

As detailed in Section 3.5, the modification of the different entities belonging to the Linux
wireless architecture was central to the development of an open-source, low-cost
OBU/RSU that supports IEEE 802.11p. In order to check the validity of the entire
procedure, as well as the operation of the newly-developed CAM application, the system
was tested using a commercial V2X platform, that is, the Cohda Wireless MK5 OBU
shown in ​Figure 32​. The test was also meant to prove the interoperability of the
developed OBU/RSU with commercial devices, which was one of the goals of the project.

Figure 32​. Cohda Wireless MK5 OBU [​36​]

5.1.1. OBU/RSU Testing

The test setup consisted of the OBU/RSU project and the commercial Cohda Wireless
MK5 OBU. Both devices are capable of transmitting and receiving periodic CAMs. For the
testing, one device was set to be in transmit mode while the other device was set to be in
receive mode, and then their roles were switched afterwards.

In order to monitor the flow of packets in real time, the CAM applications were
programmed to continuously print CAM information in the command line, as depicted in
the following figures.

54

aspMore

Figure 33​. CAM transmitter application

Figure 34​. CAM receiver application (part 1)

55

aspMore

Figure 35​. CAM receiver application (part 2)

The CAM transmitter application in ​Figure 33 could be seen sending periodic CAMs with
a message size of 99 bytes to the destination broadcast address ​ff:ff:ff:ff:ff:ff​.
In the initial part of the transmission, the application took a few seconds to retrieve the
device’s GPS coordinates, which, for this project, were acquired from an emulated GPS
signal playing in the background (in a separate command window). The GPS coordinates
were necessary because without a valid position, the application was not able to
successfully transmit CAMs. Moreover, looking at the executed command, the application
sent the packets through the ​ocb0 interface that was configured to join and use the 5.9
GHz channel, as discussed in Section 3.5.6. This configuration was verified during the
testing, where the CAMs transmitted by the APU2 using IEEE 802.11p were successfully
received by the Cohda device.

In ​Figure 34 and ​Figure 35​, the contents of the packets received by the CAM receiver
application were printed out in the command line and were classified according to the
different ITS layers. An analysis of the CAM message fields is presented in the next
section using a Wireshark capture. Same as with the transmitter, the CAMs coming from
the Cohda device were received through the configured ​ocb0 interface that uses the 5.9
GHz channel. At this point, the proper operation of both the CAM transmitter and receiver
applications were confirmed. Moreover, being able to continuously transmit and receive
using the IEEE 802.11p channel also verified the configurations previously made in the
Linux wireless network. The developed OBU/RSU was proven to be functioning as
expected and interoperable with a commercial V2X platform.

56

aspMore

5.1.2. Analysis of CAM Fields using Wireshark

While displaying the CAM contents in real time using the command line provided a quick
way to view them, it did not offer the functionality of recording the packets for offline
analysis. For this reason, Wireshark, a well-known network packet analyzer, was used
during the testing. In particular, the CAMs coming from the Cohda device and received by
the developed OBU/RSU were captured, as illustrated in ​Figure 36​. Note that a special
dissector was utilized in order to decode the CAM, which was not possible with the
standard Wireshark releases. This section aims to discuss and interpret the different
message fields of a CAM. In addition, it verifies whether the contents are in accordance
with the ETSI standards discussed in Section 2.3, where a description of the ITS layers
and packet header structure is provided.

Figure 36​. Wireshark capture of a CAM

Figure 36 shows the contents of a 102-byte CAM, with 14 bytes belonging to the Ethernet
II field of the ITS access layer. As the CAM originated from the Cohda device, the source

57

aspMore

field was set to the device’s MAC address, while the destination was a broadcast
address. The ether type was ​0x8947​, specifically corresponding to ITS GeoNetworking.

Several information were included in the GeoNetworking field, which was mainly divided
into the mandatory Basic and Common headers, as well as the optional Extended
header. The Basic header took up 4 bytes, with its contents briefly described in ​Table 6​.
Based on the Wireshark capture, the GeoNetworking protocol version used was 1; the
next header was set to 1, indicating that the Common header followed next; and the
values for the lifetime and remaining hop limit were also specified.

GeoNetworking’s Common header amounted to 8 bytes, and its fields are defined in
Table 7​. The next header was set to 2, meaning the header following GeoNetworking was
BTP-B. The values of the header type and subtype could be decoded by referring to
Table 8​, which in this case, indicated topologically-scoped single-hop broadcast. The
traffic class ID used in the data traffic prioritization had a value of 2 that pertained to
CAM, as specified in ​Table 12​. The flag indicates that the ITS-S was a mobile station.
The payload length corresponded to the packet size following the GeoNetworking header.
In this case, the 48 bytes belonged to the BTP and CAM (in the ITS facilities layer). As
mentioned in Section 3.2, the Extended header was out of scope of the project, but
further information could be found in [​7​].

The BTP field took up 4 bytes in total, which meant that for this specific packet, the
message size of the CAM itself was 44 bytes. As specified in GeoNetworking’s Common
header, the BTP header type was BTP-B that included both the destination port and
additional port information in its header structure. With reference to ​Table 4​, destination
port ​2001​ indicated that the ITS facilities layer entity in use was CAM.

Figure 37 shows the actual contents of a CAM in the ITS facilities layer during the testing.
The general message structure is illustrated in ​Figure 12​. As depicted in the Wireshark
capture, the CAM was broadly grouped into two sections, the ITS PDU header and ​cam
fields.

The ITS PDU header specified the version of the ITS message, which was 1 in this case.
The ​messageID indicated the type of message, with the value of 2 corresponding to
CAM, as listed in ​Table 13​. The ​stationID identified the ITS-S from which the CAM
originated.

The ​cam part included the CAM payload, which consisted of the message timestamp
(​generationDeltaTime​) and a number of vehicle containers. The basic container is a
mandatory container that specifies the type of ITS-S and the geographical position of the
ITS-S when the CAM was generated. In this case, the ITS-S was a passenger car with
reference to the mapping of values in ​Table 14​. The ​referencePosition provided
information about the longitude, latitude and altitude of the ITS-S.

At least one high frequency container is mandatory in each CAM, and includes dynamic
or fast-changing attributes. Reference [​13​] specifies the mandatory fields inside this
container, specifically, the heading, speed, drive direction, vehicle length and width,
longitudinal acceleration, curvature, curvature calculation mode and yaw rate, which were
all present in the captured CAM. The acceleration control and lateral acceleration are
optional, along with the lane position, steering wheel angle, vertical acceleration,
performance class and CEN DSRC tolling zone.

58

aspMore

In addition, there are other containers that may be included, such as the low frequency
and special containers. These are optional parts of the CAM and could be seen omitted in
the Wireshark capture.

Figure 37​. CAM contents in the facilities layer

5.2. IEEE 802.11p-based Simulator

This section presents the results for the experimental evaluation of the CA basic service
using the modified IEEE 802.11p simulator. Its performance was studied by varying
different parameters such as the lane count, vehicle speed and CAM transmit frequency.
For this purpose, a number of performance metrics had been designed and employed,
including the Packet Reception Ratio, position error (​deltaPosition​), distance error
(​deltaDistance​), and Neighborhood Awareness Ratio. These were plotted according
to the Tx-Rx distance, defined as the distance between two communicating nodes

59

aspMore

Note that in the following sections, only selected figures, corresponding to specific
scenario configurations, are included and used for analyzing the results. However, the
complete set of figures are available in Appendix B.5 for reference.

5.2.1. Packet Reception Ratio

The Packet Reception Ratio (PRR) is an ITS access layer metric commonly used by the
scientific community in order to evaluate link reliability. The resulting PRRs of the different
scenarios were used to better understand the behavior of the upper-layer performance
metrics that are discussed in the later sections. In this project, PRR was defined as
follows.

A CAM is considered to be correctly received when it reaches the MAC layer without
errors, in addition to satisfying the receiver sensitivity, energy detection and SNIR
threshold values in the PHY layer.

5.2.1.1. Effect of Vehicle Speed

The effect of vehicle speed on the resulting PRR is depicted in ​Figure 38​.

Figure 38​. Effect of vehicle speed on PRR

60

aspMore

The length of the highway was fixed to be 1 km, and as such, increasing the speed
affected the spacing between the vehicles. In the fast speed scenario, the vehicles were
more spread out. Since the vehicles were moving fast, a large braking distance had to be
maintained between vehicles, as specified by the ​Krauss car-following model. On the
other hand, the vehicles were more tightly packed in the slow speed scenario, and thus,
only required a small braking distance. For instance, taking the 4-lane case in ​Table 16​,
there were 357 vehicles in the slow scenario, compared to only 145 vehicles in the fast
scenario. Given these numbers, it could be inferred that the speed is related to vehicle
density. The fast speed scenario corresponded to low vehicle density, while the slow
speed scenario implied high density. Given a fixed number of lanes in ​Figure 38​, it could
be observed that the PRR decreased as the vehicle speed decreased. Slow-moving
vehicles created a highly dense environment, with more vehicles being packed in the 1
km highway scenario. This resulted to an increase in interference and packet collisions,
and more CAMs being lost, which consequently decreased the PRR. This explains why
the slow scenario had much lower PRR values than the fast scenario.

5.2.1.2. Effect of Number of Lanes

The number of lanes had a significant impact on the resulting PRR, since the lane count
correlated with the number of vehicles present in the scenario. Given a fixed vehicle
speed, increasing the number of lanes translated to an increase in the total vehicle count
(i.e., there are more vehicles in a 16-lane scenario than in a 4-lane scenario). As an
example, considering the case of fast vehicle speed, there were 145 vehicles in the
4-lane scenario as opposed to the 586 vehicles in the 16-lane scenario, listed in ​Table 16​.
With more vehicles accessing the channel to periodically send their CAMs, higher
interference was created and the probability of collisions increased, resulting to more
packets being lost, thereby decreasing the PRR. This could be observed in ​Figure 39​,
where there was a significant difference between the PRRs of the extreme cases, the
4-lane and 16-lane scenarios, considering a fixed vehicle speed. With the 4-lane scenario
having less vehicles, and thus, having lower interference and collision probability, its PRR
was much higher than those of the 8-lane and 16-lane scenarios.

It could also be generally observed in ​Figure 38 and ​Figure 39 that the PRR decreased
as the Tx-Rx distance increased. The transmitted signal naturally weakened as the
distance increased due to the noise and propagation effects. However, even at much
greater distances, there were still few packets being correctly received in some of the
scenarios. This could be attributed to the random fluctuations in the Rayleigh fading
model.

61

aspMore

Figure 39​. Effect of lane count on PRR

5.2.1.3. Effect of Traffic Flow Direction

The impact of the traffic flow direction is now studied by comparing the PRRs of a
unidirectional and a bidirectional highway scenarios. The resulting PRRs are depicted in
Figure 40​, with both simulations having 4 lanes each and having vehicles running in fast
speed.

Figure 40​. Effect of traffic flow direction on PRR

62

aspMore

It could be observed that there was no significant difference between their PRRs. As
IEEE 802.11p uses the CSMA/CA mechanism for transmitting CAMs, the resulting
collisions were handled in the same manner, irrespective of the direction of vehicle
movement. This explains why switching to the unidirectional case did not result to any
substantial change in the PRR.

As the PRRs of the unidirectional and bidirectional scenarios were almost the same, the
bidirectional case was henceforth set to be the default highway scenario in the
succeeding analyses of the other performance metrics.

5.2.1.4. Effect of Walls

In the Manhattan grid scenario, walls can be enabled or disabled to understand their
effect on PRR. The presence of walls allows for a more realistic simulation of an urban
environment where actual buildings are situated, thereby affecting signal transmissions.

Figure 41​. Effect of walls on PRR

A comparison of PRRs is presented in ​Figure 41 in the case of a fast speed scenario. It
could be observed that disabling the walls in the grid scenario resulted to a PRR
exhibiting a decreasing trend as the distance between the communicating vehicles
increased. This is similar to that of the highway topology, where the transmitted signal
weakened as the distance increased, due to the noise and propagation effects, besides
the interference caused by neighboring vehicles. When the walls were enabled, the
resulting PRR was higher than when the walls were disabled. Most of the neighboring
vehicles that were supposed to cause interference (and decrease the PRR), were out of
sight and hidden behind the walls. In that case, the walls blocked the interfering signals
such that they did not affect the good ones, which explains why the PRR was high. The
good signals were mostly those coming from vehicles located in the same street (LOS,
without walls in between) and above receiver sensitivity. On the other hand, when the

63

aspMore

walls were disabled, the interfering signals directly affected the good ones, and thus, the
PRR decreased.

5.2.1.5. Effect of CAM Frequency

Figure 42 shows the resulting PRRs that correspond to the different CAM generation
periods in a 4-lane, fast speed highway scenario. It could be observed that the higher the
period was, the higher was the PRR. Lower periods translated to higher transmission
frequencies, meaning more CAMs were sent per second. The large volume of CAMs sent
led to an increase in interference and number of collisions, subsequently decreasing the
PRR.

Figure 42​. Effect of CAM frequency on PRR

5.2.2. Position Error

The position error or ​deltaPosition is the difference between the perceived position
specified in the ​lastKnownPos database and the actual position of a neighboring vehicle
in the scenario. As discussed in Section 4.2.3, ​lastKnownPos is a local database
maintained by each vehicle, and acts like a local memory for storing various information
about neighboring vehicles. Whenever a correct CAM is received, the vehicle updates the
database entry corresponding to the transmitting vehicle.

deltaPosition measures how accurate the perceived positions (of neighboring
vehicles) are every 100 ms, which is an important aspect to increase traffic safety through
cooperative awareness among vehicles. For instance, the Rx node receives a CAM from
the Tx node at time ​t​, and registers the Tx node’s position in its ​lastKnownPos
database. Both vehicles then move, but at time ​t’​, the Rx node has yet to receive a new
CAM from the Tx node. For this reason, the Rx node still thinks that the Tx node is still in

64

aspMore

the same position as when it last received a CAM from that node (perceived position).
However, in reality, the Tx node had already moved to a new position (actual position).
This difference between the perceived and actual positions is referred to as the position
error. As such, it is ideal to have lower values of ​deltaPosition​, since large ones
indicate more erroneous readings on the perceived positions. Knowing where and how
close surrounding vehicles are enables triggering timely warnings in cases where the
distance between vehicles is less than a defined safe distance. This in turn gives enough
time for vehicles to make the proper maneuver to avoid road casualties.

5.2.2.1. Effect of Vehicle Speed

Considering a fixed lane count and variable vehicle speed, as in the 4-lane highway
scenario in ​Figure 43​, it could be observed that the ​deltaPosition decreased as the
vehicle speed decreased. Recall from Section 5.2.1.1 that the speed directly affected the
vehicle density in the scenario. The slower the vehicles were, the denser was the
scenario, since more vehicles could be packed in the 1 km highway scenario. The
presence of more vehicles in the slow scenario, compared to the fast and moderate
cases, translated to more interference. However, despite losing more packets, it could be
observed that the position error was lowest for the slow speed scenario. This could be
attributed to the fact that since the vehicles moved slower, their displacement in the
scenario was small. Thus, even without correctly receiving a number of CAMs and
updating the ​lastKnownPos database, the position error for the densest scenario still
appeared to be low. On the contrary, when the vehicles moved fast, it follows that their
displacement was large, such that missing even a single CAM led to high position error.

Figure 43​. Effect of vehicle speed on position error

65

aspMore

5.2.2.2. Effect of Number of Lanes

The position error is examined in the case of a moderate speed highway scenario while
varying the lane count, depicted in ​Figure 44​. As previously discussed in Section 5.2.1.2,
increasing the number of lanes also increased the total number vehicles in the scenario,
thereby creating higher interference and packet collisions. This explains why the
deltaPosition ​of the 16-lane scenario was much greater than that of the 4-lane
scenario. As there was greater interference in the case of the 16-lane scenario, more
CAMs were getting lost and the corresponding ​lastKnownPos database entries were
not being updated. The longer these entries were not refreshed, the higher was the
resulting position error, since the neighboring vehicles continuously moved in the
scenario causing greater disparity between the perceived and actual positions.

Figure 44​. Effect of lane count on position error

5.2.2.3. Effect of CAM Frequency

Figure 45 illustrates the impact of the CAM transmit frequency on the position error. In the
PRR analysis in Section 5.2.1.5, higher CAM transmit frequency (or lower transmit
period) led to greater interference and more packets lost. However, since the CAMs were
sent more frequently, the vehicles got updated more frequently as well. As such, despite
the high risk of packet collisions due to high message traffic, the vehicles received
enough CAMs to update their database entries, leading to lower position error. In this
case, the positive impact of sending more CAMs for more frequent database updates was
more dominant than the negative effect of packet collisions on the position error.

66

aspMore

Figure 45​. Effect of CAM frequency on position error

5.2.3. Distance Error

When the local database of a node is not updated (due to missed CAMs and/or due to a
significant discrepancy between the time of update and the time of measuring the
statistics), there would be a difference between the perceived and actual positions of
known neighboring nodes, causing a position error. Instead of looking at the difference in
terms of position, it is also possible to look at the difference in terms of distance. This
difference is called the distance error ​or ​deltaDistance​, as illustrated in ​Figure 46​. It is
ideal to have lower values for the ​deltaDistance since this would indicate that the
vehicle is up-to-date on the true positions of its neighboring vehicles.

Figure 47 shows the ​deltaDistance for a 4-lane highway scenario, while varying the
vehicle speed. As discussed in Section 5.2.1.1, slow scenarios create dense
environments. The presence of more vehicles in the slow scenario translates to greater
interference and collision probability, leading to more CAMs being lost. This resulted to
higher distance errors compared to the fast and moderate cases. When comparing this to
the ​deltaPosition in ​Figure 43​, it could also be observed that in smaller Tx-Rx
distances, the ​deltaDistance was lower than the ​deltaPosition​. This behavior is
also depicted in the left scenario of ​Figure 46​. If we argue that errors in the shortest
ranges are more important than errors in longer ranges, this would make
deltaDistance a less reliable metric than position error, because ​deltaDistance
gives the impression of having much smaller errors at this range.

Moreover, as the distance between the two nodes increased, the values of the
deltaDistance in ​Figure 47 approaches the values of ​deltaPosition in ​Figure 43​.
This behavior is illustrated in the right scenario of ​Figure 46​. As both ​deltaPosition

67

aspMore

and ​deltaDistance resulted in more or less the same values in high Tx-Rx distances, it
could be said that ​deltaDistance​ is redundant.

Therefore, it has been decided that the ​deltaDistance statistic would not be explored
any further, as ​deltaPosition​ was decided to be the more insightful metric.

Figure 46​. ​deltaPosition​ and ​deltaDistance​ metrics

Figure 47​. Distance error in a moderate speed highway scenario

68

aspMore

5.2.4. Neighborhood Awareness Ratio

The Neighboring Awareness Ratio (NAR) is a measure of the cooperative awareness
achieved by the vehicles in a scenario. This statistic is taken every 100 ms, and is
computed as follows.

The perceived number of vehicles corresponds to the number of entries in the
lastKnownPos database, with each entry representing a distinct neighboring vehicle in
the scenario. To ensure the validity of the database entries, recall that an expiry time was
defined to be 2 seconds. Thus, after 2 seconds (20 missing CAMs) that an entry has not
been updated, it will be automatically removed from the database. On the other hand, the
actual number of vehicles is taken from the ​GlobalMapper​, which maintains a global
database that contains various information about all the vehicles in the scenario, including
their actual position at any given time.

5.2.4.1. Effect of Vehicle Speed

The impact of vehicle speed on NAR is depicted in ​Figure 48​, where the lane count was
fixed to 8 for a highway scenario.

Figure 48​. Effect of vehicle speed on NAR

69

aspMore

As previously discussed, slow vehicle speed translates to denser environments, with
more vehicles being packed in the highway scenario. Since NAR acknowledges the
presence of vehicles based on whether they are registered in the ​lastKnownPos
database, the inability to update this database due to CAMs being lost to interference and
collisions, directly affects the calculation of NAR. This explains why the resulting NAR of
the slow speed scenario was much lower than that of the sparser scenarios, as the high
level of interference negatively impacted NAR.

5.2.4.2. Effect of Number of Lanes

Fixing the vehicle speed, ​Figure 49​ illustrates the effect of the number of lanes on NAR.

Figure 49​. Effect of lane count on NAR

Increasing the number of lanes meant increasing the number of vehicles as well. The
presence of more vehicles in the 16-lane scenario created higher interference and
collision probability compared to the 4-lane and 8-lane scenarios. This in turn caused
more CAMs to be lost, and after a certain period of not being able to update the local
database, the corresponding entries were automatically removed, thereby impacting the
NAR calculation.

5.2.4.1. Effect of CAM Frequency

Figure 50 shows the effect of CAM frequency on NAR in a 4-lane, fast speed highway
scenario. It could be observed that decreasing the CAM transmit period resulted to higher
NAR values. As with the observations made in the effect of CAM frequency on position
error, it seemed that increasing the frequency translated to vehicles becoming more
aware of their surroundings through more frequent CAM exchanges and database

70

aspMore

updates. However, further increases in frequency caused the NAR values to start
worsening, which is the same trend observed in [​21​]. That is, increasing the CAM transmit
frequency improved cooperative awareness only up to a certain point, after which, further
increases in frequency started to have a negative impact on NAR. This was because in
situations with sufficiently large CAM traffic, the detrimental effects of interference
become more dominant over the beneficial effects of having frequent updates. This
contributed to the decrease in NAR.

Figure 50​. Effect of CAM frequency on NAR

71

aspMore

6. Budget

The APU2 device and the WLE200NX wireless module for the OBU/RSU project were
acquired from the i2CAT Foundation. As for the simulator project, a desktop PC was
provided by UPC. All the software programs utilized were open-source and incurred no
additional costs.

In terms of manpower, as the duration of the project was from September 2018 to
mid-May 2019 (34 weeks), the total time spent in developing the project assuming an
8-hour workday is 1360 hours.

72

aspMore

7. Conclusions and Future Development

A low-cost OBU/RSU that implemented the ETSI C-ITS protocol stack was successfully
developed using an open-source software. In particular, the testbed implemented the CA
basic service, so that it was capable of periodically transmitting and receiving CAMs. An
important aspect of the task was determining which hardware to use such that it was
configurable to operate in the 5.9 GHz band. This functionality was supported by a
number of Atheros wireless cards that use the ATH9K Linux kernel driver and also
required the PCI interface. While the initial plan was to use the Raspberry Pi 3 Model B+,
it was later concluded that it was not suitable, since it did not support PCI interfaces. On
the other hand, the combination of the APU2 hardware and the WLE200NX wireless
module met all the requirements, and was therefore used to develop the OBU/RSU. In
order to tune the testbed to work using the IEEE 802.11p channel, several modifications
were made in the Linux kernel driver and in the user-space entities. These included
configuring it in OCB operation mode and adding the ITS-G5 frequencies and power
levels to the wireless regulatory database. The proper operation and interoperability of
the developed OBU/RSU were verified by testing it with a commercial V2X device.
Moreover, the contents of the CAM were analyzed to be compliant with the ETSI
standards.

An existing IEEE 802.11p-based simulator was modified to include additional
functionalities and simulate different scenarios. Parameters including the vehicle speed,
number of lanes and CAM transmit frequency, were varied to evaluate the CA basic
service using different performance metrics such as the PRR, position error and NAR.

Due to the usage of the Krauss car following model, changing the vehicle speeds affected
the vehicle traffic density of the simulations. Slow-moving vehicles only required small
braking distances, thus allowing more vehicles to fit into the scenario, and consequently
creating dense environments. The presence of more vehicles resulted to higher
interference and collision probability as more nodes attempt to access the channel to
send their periodic CAMs, ultimately decreasing the PRR values. The computation of
NAR relied on the local database maintained in each vehicle, which was only updated
whenever a CAM is correctly received. Since more CAMs were lost in the slow speed
scenarios, this also led to lower NAR values. An interesting result was that the densest
cases had the lowest position errors. However, this was due to the fact that given the
vehicles moved slowly, it followed that their displacement in the scenario was small. As
such, even without receiving a number of CAMs, the position errors were low.

Increasing the number of lanes also increased the vehicle count in the scenario. As
previously discussed, this created interference and collisions, which resulted to more
packets being lost and the local database not being updated. This led to lower PRR and
NAR values. Higher lane count yielded higher position error, since the error was
computed taking into account the perceived position specified in the local database. As
such, the longer the database was not updated, the larger was the position error.

Higher CAM frequency meant that the CAMs were transmitted more frequently. This
created a higher collision probability, which consequently decreased the PRR. In the case
of the position error, it was observed that higher transmit frequencies translated to lower
errors. The positive impact of sending more CAMs and updating the database more

73

aspMore

frequently was more prevalent than the negative effect of high risk of packet collisions.
Increasing the transmit frequency caused an increase in the resulting NAR values up to a
certain point, after which, further increases in frequency had a negative impact on the
NAR. This was because the detrimental effects of interference overpower the beneficial
effects of having frequent CAM updates when the message traffic is sufficiently high,
thereby decreasing the NAR.

There are a number of recommendations for continuing with this research study. For one,
the development of a low-cost, open-source OBU/RSU encourages carrying out future
field trials without the need for expensive hardware. As the testing done in the project was
confined to the laboratory, it would be interesting to see how the developed OBU/RSU
performs in real-world settings. Moreover, while the project mainly tackles the CA basic
service, it could also be extended to transmit and receive other types of V2X messages,
such as DENM, SPAT, IVI, etc.

In the case of the system simulator, other road topologies could be tested, since the
project only dealt with highway and grid scenarios. For instance, SUMO allows importing
real-world maps, so that it is possible to study the performance of the CA basic service in
more realistic environments.

74

aspMore

Bibliography

[​1​] World Health Organization. Road traffic injuries [Online]. Available: https://www.
who.int/news-room/fact-sheets/detail/road-traffic-injuries. [Accessed: May 12,
2019].

[​2​] i2CAT. [Online]. Available: https://www.i2cat.net/. [Accessed: May 12, 2019].

[​3​] European Telecommunications Standards Institute (ETSI). “Intelligent Transport
Systems (ITS); Communications Architecture” ETSI EN 302 665 V1.1.1 (2010-09).

[​4​] European Telecommunications Standards Institute (ETSI). “Intelligent Transport
Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 1:
Functional Requirements” ETSI TS 102 637-1 V1.1.1 (2010-09).

[​5​] European Telecommunications Standards Institute (ETSI). “Intelligent Transport
Systems (ITS); Vehicular Communications; GeoNetworking; Part 5: Transport
Protocols; Sub-part 1: Basic Transport Protocol” ETSI EN 302 636-5-1 V1.2.1
(2014-08).

[​6​] European Telecommunications Standards Institute (ETSI). “Intelligent Transport
Systems (ITS); Vehicular Communications; GeoNetworking; Part 1: Requirements”
ETSI EN 302 636-1 V1.2.1 (2014-04).

[​7​] European Telecommunications Standards Institute (ETSI). “Intelligent Transport
Systems (ITS); Vehicular Communications; GeoNetworking; Part 4: Geographical
addressing and forwarding for point-to-point and point-to-multipoint communications;
Sub-part 1: Media-Independent Functionality” ETSI EN 302 636-4-1 V1.3.1
(2017-08).

[​8​] European Telecommunications Standards Institute (ETSI). “Intelligent Transport
Systems (ITS); Vehicular Communications; Geographical Area Definition” ETSI EN
302 931 V1.1.1 (2011-07).

[​9​] European Telecommunications Standards Institute (ETSI). “Intelligent Transport
Systems (ITS); Access layer specification for Intelligent Transportation Systems
operating in the 5 GHz frequency band” ETSI EN 302 663 V1.2.1 (2013-05).

[​10​] European Telecommunications Standards Institute (ETSI). “Intelligent Transport
Systems (ITS); Vehicular Communications; GeoNetworking; Part 4: Geographical
addressing and forwarding for point-to-point and point-to-multipoint communications;
Sub-part 2: Media-dependent functionalities for ITS-G5” ETSI TS 102 636-4-2 V1.1.1
(2013-10).

[​11​] European Telecommunications Standards Institute (ETSI). “Intelligent Transport
Systems (ITS); Decentralized Congestion Control Mechanisms for Intelligent
Transport Systems operating in the 5 GHz range; Access layer part” ETSI TS 102
687 V1.2.1 (2018-04).

[​12​] European Telecommunications Standards Institute (ETSI). “Intelligent Transport
Systems (ITS); Vehicular Communications; GeoNetworking; Part 3: Network
Architecture” ETSI EN 302 636-3 V1.2.1 (2014-12).

75

aspMore

[​13​] European Telecommunications Standards Institute (ETSI). “Intelligent Transport
Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2:
Specification of Cooperative Awareness Basic Service” ETSI EN 302 637-2 V1.3.1
(2014-09).

[​14​] European Telecommunications Standards Institute (ETSI). “Intelligent Transport
Systems (ITS); Users and applications requirements; Part 2: Applications and
facilities layer common data dictionary” ETSI TS 102 894-2 V1.3.1 (2018-08).

[​15​] European Telecommunications Standards Institute (ETSI). “Intelligent Transport
Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3:
Specifications of Decentralized Environmental Notification Basic Service” ETSI EN
302 637-3 V1.2.1 (2014-09).

[​16​] R. Lisovy, M. Sojka, and Z. Hanzalek. “IEEE 802.11p Linux Kernel Implementation”
[Online]. Available: https://rtime.felk.cvut.cz/publications/public/ieee80211p_linux_20
14_final_report.pdf. [Accessed: May 12, 2019].

[​17​] J. F. Pastrana. “802.11p standard and V2X applications on commercial Wi-Fi cards”
[Online]. Available: https://github.com/jfpastrana/802.11p/blob/master/Documentation
/802.11p_standard_and_V2X_applications.pdf. [Accessed: May 12, 2019].

[​18​] I. Mavromatis, A. Tassi, R. Piechocki, and A. Nix. A City-Scale ITS-G5 Network for
Next-Generation Intelligent Transportation Systems: Design Insights and Challenges.
(2018).

[​19​] N. Vivek, P. Sowjanya, B. Sunny and S. V. Srikanth, "Implementation of IEEE 1609
WAVE/DSRC stack in Linux," ​2017 IEEE Region 10 Symposium (TENSYMP)​,
Cochin, 2017, pp. 1-5.

[​20​] A. Abunei, C. Comşa and I. Bogdan, "Implementation of a Cost-effective V2X
hardware and software platform," ​2016 International Conference on Communications
(COMM)​, Bucharest, 2016, pp. 367-370.

[​21​] M. Boban and P. M. d'Orey, "Exploring the Practical Limits of Cooperative
Awareness in Vehicular Communications," in ​IEEE Transactions on Vehicular
Technology​, vol. 65, no. 6, pp. 3904-3916, June 2016.

[​22​] J. Santa, F. Pereñíguez, A. Moragón, and A. Skarmeta, “Experimental evaluation of
CAM and DENM messaging services in vehicular communications”, Transportation
Research Part C: Emerging Technologies, Volume 46, 2014, Pages 98-120.

[​23​] Vanetza. [Online]. Available: https://github.com/riebl/vanetza. [Accessed: May 12,
2019].

[​24​] Raspberry Pi. [Online]. Available: https://www.raspberrypi.org/. [Accessed: May 12,
2019].

[​25​] Raspberry Pi Configuration. [Online]. Available: https://docs.emlid.com/navio2/com
mon/ardupilot/configuring-raspberry-pi/. [Accessed: May 12, 2019].

[​26​] Atheros 802.11n PCI/PCI-E devices. [Online]. Available: https://wiki.debian.org/ath9k.
[Accessed: May 12, 2019].

76

aspMore

[​27​] APU2 Platform. [Online]. Available: https://www.pcengines.ch/apu2.htm. [Accessed:
May 12, 2019].

[​28​] Dual Band 2x2 MIMO 802.11n Mini PCIe Module. [Online]. Available:
https://compex. com.sg/wp-content/uploads/2018/10/wle200nx-v1.3-wh-192.pdf.
[Accessed: May 12, 2019].

[​29​] Linux Wireless. [Online]. Available: https://wireless.wiki.kernel.org/en/users.
[Accessed: May 12, 2019].

[​30​] The Linux Kernel Archives. [Online]. Available: https://www.kernel.org/. [Accessed:
May 12, 2019].

[​31​] OMNeT++. [Online]. Available: https://omnetpp.org/. [Accessed: May 12, 2019].

[​32​] Veins. [Online]. Available: https://veins.car2x.org/. [Accessed: May 12, 2019].

[​33​] SUMO. [Online]. Available: https://sumo.dlr.de/. [Accessed: May 12, 2019].

[​34​] Artery. [Online]. Available: https://github.com/riebl/artery. [Accessed: May 12, 2019].

[​35​] SUMO - Wiki. [Online]. Available: https://sumo.dlr.de/wiki/. [Accessed: May 12, 2019].

[​36​] Cohda Wireless. [Online]. Available: https://cohdawireless.com/. [Accessed: May 12,
2019]

[​37​] J. Wallen. “How to Compile a Linux Kernel”. [Online]. Available: https://www.linux.
com/learn/intro-to-linux/2018/4/how-compile-linux-kernel-0. [Accessed: May 12,
2019].

[​38​] Linux IEEE 802.11p How To. [Online]. Available: https://ctu-iig.github.io/802.11p-
linux/. [Accessed: May 12, 2019].

77

aspMore

Appendices

A. OBU/RSU Configuration Guide

A.1. CAM Receiver Application Quick Start Guide

This quick start guide describes how to set up and run the CAM receiver application. Prior
to performing the steps below, it is necessary to obtain a copy of the CAM receiver
application from the i2CAT Foundation.

1. Install the Vanetza requirements.

Python 3, pip3 and CMake from pip (the last step could require several minutes or
even hours):
$ sudo apt install python3 python3-pip

$ sudo pip3 install --upgrade pip

$ sudo pip install scikit-build

$ sudo python3 -m pip install cmake

Boost, GeographicLib, Crypto++, git:
$ sudo apt install g++ libcrypto++-dev libgeographic-dev libboost-date-time-dev
libboost-program-options-dev libboost-serialization-dev libboost-system-dev git -y

2. Build Vanetza (last step could require several minutes).
$ git clone https://github.com/riebl/vanetza

$ cd vanetza/

$ mkdir build && cd build

$ cmake ..

$ make

3. Install the ​socktap​ example application dependencies.
$ sudo apt install libgps-dev gpsd-clients python-gps -y

4. Build ​socktap​.
$ cmake -D BUILD_SOCKTAP=ON ..

$ make

5. Build the ​cam-rcv​ application and proper permissions to binary.
$ cd <project_folder>

$ mkdir build && cd build

$ cmake ..

$ make

$ sudo setcap cap_net_raw+ep bin/cam-rcv

78

aspMore

6. Run the ​cam-rcv​ application with the desired network interface.
$ bin/cam-rcv -i <network_interface> --gpsd-host localhost

Example

Using the loopback interface:
$ bin/cam-rcv -i lo --gpsd-host localhost

Using the OCB interface:
$ bin/cam-rcv -i ocb0 --gpsd-host localhost

Note that the ​cam-rcv application requires the GPS functionality. One option is to
emulate a GPS signal as described in Appendix A.2. In this case, the recorded
GPS file is played in the background (in a different terminal), while running the
cam-rcv​ application.

A.2. Emulation of GPS Signal

In the case that a real GPS signal is not available, an alternative way is to emulate it
using the ​gpspipe​ and ​gpsfake​ tools.

In order to record a real GPS session, follow these steps:

1. Ensure that the ​gpsd​ daemons are running.
$ systemctl is-active gpsd ; systemctl is-active gpsd.socket

Both should be in ​active​ status. If not, try to start them.
$ sudo systemctl restart gpsd && sudo systemctl restart gpsd.socket

2. Start recording.
$ gpspipe -r | tee <gps_recorded_file>.gps

3. Stop recording by pressing ​Ctrl + C​.

4. Save the newly created GPS file.

In order to reproduce any session, follow these steps:

1. Ensure that the ​gpsd​ daemons are NOT running.

$ systemctl is-active gpsd ; systemctl is-active gpsd.socket

79

aspMore

Both should be in ​inactive​ status. If not, try to stop them.

$ sudo systemctl stop gpsd && sudo systemctl stop gpsd.socket

2. Start playing the recorded file.

$ gpsfake -c 0.5 <gps_recorded_file>.gps

You could check the output of the recorded file with the ​gpsmon​ or ​xgps​ tools (in
a different terminal).

3. Stop playing by pressing ​Ctrl + C​.

A.3. Setting up an Ad Hoc Network

An ad hoc network is necessary to enable wireless communication between devices,
including the Raspberry Pis. The following steps are required to successfully configure
such network.

1. For both Raspberry Pis, go to ​/etc/network/ and save a copy of the
interfaces​ file.

$ sudo cp /etc/network/interfaces /etc/network/interfaces-orig

2. Modify the ​interfaces file with reference to the following lines. Note that the
only difference for the two devices is their assigned IP address.

$ sudo nano /etc/network/interfaces

source-directory /etc/network/interfaces.d

auto lo
iface lo inet loopback

iface eth0 inet dhcp

auto wlan0
iface wlan0 inet static

 address 192.168.1.1
netmask 255.255.255.0
wireless-channel 1

 wireless-essid PiAdhoc
 wireless-mode ad-hoc

Figure 51​. ​interfaces​ of Raspberry Pi #1

source-directory /etc/network/interfaces.d

80

aspMore

auto lo
iface lo inet loopback

iface eth0 inet dhcp

auto wlan0
iface wlan0 inet static

 address 192.168.1.2
 netmask 255.255.255.0
 wireless-channel 1
 wireless-essid PiAdhoc
 wireless-mode ad-hoc

Figure 52​. ​interfaces​ of Raspberry Pi #2

3. Stop or disable the ​dhcp​ service in both devices.

$ sudo systemctl stop dhcpcd.service

4. Reboot both devices. Ping each other to verify the ad hoc network configuration.

A.4. Setting up the Linux Kernel

The following procedure details how the Linux kernel is set up and configured [​37​].

1. Download the Linux kernel from [​30​]. This project uses kernel version 4.20.7.

2. Install the software dependencies.
$ sudo apt-get install git fakeroot build-essential ncurses-dev xz-utils libssl-dev
bc flex libelf-dev bison

3. Extract the downloaded Linux kernel source file.
$ tar xf linux-4.20.7.tar.xz

4. Modify the ATH9K driver source codes, as described in Appendix A.5.

5. Configure which kernel modules to include.
a. Copy the configuration file of the currently running kernel.

$ cp /boot/config-$(uname -r) .config

b. By running the following command, the kernel configuration menu will be
launched, where kernel modules can be enabled/disabled. The
configuration used in the project is specified in Appendix A.6.
$ make menuconfig

6. Compile the kernel.

81

aspMore

$ make

7. Install the kernel modules previously enabled.
$ make modules_install

8. Install the kernel.
$ sudo make install

9. Enable the kernel for boot, and then restart the system.
$ sudo update-initramfs -c -k 4.20.7

$ sudo update-grub

A.5. Modifications on the ATH9K Driver Source Codes

It is necessary to modify some of the ATH9K driver source codes to fully implement IEEE
802.11p on a Linux system [​17​]. The changes are written in red.

if ​(is_scanning ||
(ah->opmode != NL80211_IFTYPE_STATION &&
 ​ah->opmode != NL80211_IFTYPE_OCB &&
 ah->opmode != NL80211_IFTYPE_ADHOC)) {
/*

* If we're scanning or in AP mode, the defaults (ini)

Figure 53​. ​drivers/net/wireless/ath/ath9k/ani.c

static const struct ​ieee80211_channel ath9k_5ghz_chantable[] = {
 ...
 ​CHAN5G(5850, 38), /* Channel 170 */
 /* ITS-G5B */
 CHAN5G(5855, 39), /* Channel 171 */
 CHAN5G(5860, 40), /* Channel 172 */
 CHAN5G(5865, 41), /* Channel 173 */
 CHAN5G(5870, 42), /* Channel 174 */
 /* ITS-G5A */
 CHAN5G(5875, 43), /* Channel 175 */
 CHAN5G(5880, 44), /* Channel 176 */
 CHAN5G(5885, 45), /* Channel 177 */
 ​CHAN5G(5890, 46), /* Channel 178 */
 CHAN5G(5895, 47), /* Channel 179 */
 CHAN5G(5900, 48), /* Channel 180 */
 CHAN5G(5905, 49), /* Channel 181 */
 /* ITS-G5D */
 CHAN5G(5910, 50), /* Channel 182 */
 CHAN5G(5915, 51), /* Channel 183 */
 CHAN5G(5920, 52), /* Channel 184 */
 CHAN5G(5925, 53), /* Channel 185 */
}​;

Figure 54​. ​drivers/net/wireless/ath/ath9k/common-init.c

82

aspMore

#define ​ATH9K_RSSI_BAD -​128

#define ​ATH9K_NUM_CHANNELS ​54

/* Register read/write primitives */
#define ​REG_WRITE(_ah​, ​_reg​, ​_val) \

Figure 55​. ​drivers/net/wireless/ath/ath9k/hw.h

 ​ath9k_hw_setopmode(ah)​;

 ​ctx->switch_after_beacon = ​false;
 if ​((iter_data.nstations + iter_data.nadhocs + iter_data.nmeshes ​+ iter_data.nocbs​)
> ​0​)
 ah->imask |= ATH9K_INT_TSFOOR​;
 else ​{
 ah->imask &= ~ATH9K_INT_TSFOOR​;
 if ​(iter_data.naps == ​1 ​&& iter_data.beacons)
 ctx->switch_after_beacon = ​true;

Figure 56​. ​drivers/net/wireless/ath/ath9k/main.c

/* We allow IBSS on these on a case by case basis by regulatory domain */
#define ​ATH9K_5GHZ_5150_5350 REG_RULE(​5150​-​10​, ​5350​+​10​, ​80​, ​0​, ​30​,​\
 NL80211_RRF_NO_IR)
#define ​ATH9K_5GHZ_5470_​5925​ REG_RULE(​5470​-​10​, ​5925​+​10​, ​80​, ​0​, ​30​,​\
 NL80211_RRF_NO_IR)
#define ​ATH9K_5GHZ_5725_​5925​ REG_RULE(​5725​-​10​, ​5925​+​10​, ​80​, ​0​, ​30​,​\
 NL80211_RRF_NO_IR)

#define ​ATH9K_2GHZ_ALL ATH9K_2GHZ_CH01_11​, ​\
 ATH9K_2GHZ_CH12_13​, ​\
 ATH9K_2GHZ_CH14

#define ​ATH9K_5GHZ_ALL ATH9K_5GHZ_5150_5350​, ​\
 ATH9K_5GHZ_5470_​5925

/* This one skips what we call "mid band" */
#define ​ATH9K_5GHZ_NO_MIDBAND ATH9K_5GHZ_5150_5350​, ​\
 ATH9K_5GHZ_5725_​5925

/* Can be used for:
* 0x60, 0x61, 0x62 */

//---

 ​ if (reg->country_code == CTRY_DEFAULT &&
 regdmn == CTRY_DEFAULT) {
 printk(KERN_DEBUG "ath: EEPROM indicates default "
 "country code should be used\n");
 reg->country_code = ​CTRY_SPAIN​;
 }

Figure 57​. ​drivers/net/wireless/ath/regd.c

83

aspMore

A.6. Configuring the Kernel Configuration Menu

Different kernel modules can be enabled/disabled in the kernel configuration menu. It is
important to enable ​Verbose OCB debugging​ [​17​].

Figure 58​. ​Networking support > Wireless

84

aspMore

Figure 59​. ​Device Drivers > Network device support > Wireless LAN

85

aspMore

Figure 60​. ​Networking support > Wireless > Select mac80211 debugging features

A.7. Setting up the ​iw

The following procedure details how the ​iw is set up and verified to support the OCB
mode [​38​].

1. Install the software dependencies.
$ sudo apt-get install pkg-config libnl-genl-3-dev

2. Clone the ​iw​ repository.
$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/jberg/iw.git

86

aspMore

3. Build ​iw​.
$ cd iw

$ make

4. Install ​iw​.
$ sudo PREFIX=/ make install

5. Check if the ​iw​ version used supports the OCB mode.
$ /sbin/iw | grep -i ocb

Expected output:

dev <devname> ocb leave

dev <devname> ocb join <freq in MHz> <5MHZ|10MHZ>[fixed-freq]

A.8. Setting up the ​wireless-regdb

The following procedure details how the ​wireless-regdb is set up and configured to
support the ITS-G5 frequencies [​38​].

1. Install the software dependencies.
$ sudo apt-get install python-m2crypto

2. Clone the ​wireless-regdb​ repository.
$ git clone --branch its-g5_v1
https://github.com/CTU-IIG/802.11p-wireless-regdb.git

3. Modify ​db.txt accordingly. In the RSU project, the ITS-G5 channels and
transmission power values are added under ​country ES​ in ​db.txt​.

country ES: DFS-ETSI
(2400 - 2483.5 @ 40), (100 mW)
(5150 - 5250 @ 80), (100 mW), NO-OUTDOOR
(5250 - 5350 @ 80), (100 mW), NO-OUTDOOR
(5470 - 5725 @ 80), (500 mW), DFS
For ITS-G5 evaluation
(5840 - 5935 @ 10), (30)
60 gHz band channels 1-4, ref: Etsi En 302 567
(57240 - 65880 @ 2160), (40), NO-OUTDOOR

Figure 61​. ​802.11p-wireless-regdb/db.txt

4. Build ​wireless-regdb​.
$ cd 802.11p-wireless-regdb

$ make

87

aspMore

5. Install ​wireless-regdb​.
$ sudo make install PREFIX=/

6. Reboot the system for the changes in ​db.txt​ to take effect.

A.9. Setting up the ​CRDA

The following procedure details how the ​CRDA is set up to implement the wireless
regulatory domain [​38​].

1. Install the software dependencies.
$ sudo apt-get install python-m2crypto libgcrypt11-dev

2. Clone the ​CRDA​ repository.
$ git clone --branch its-g5_v1 https://github.com/CTU-IIG/802.11p-crda.git

3. Copy the public keys installed by ​wireless-regdb​.
$ cd 802.11p-crda

$ cp /lib/crda/pubkeys/$USER.key.pub.pem pubkeys/

4. Build ​CRDA​.
$ make REG_BIN=/lib/crda/regulatory.bin

5. Install ​CRDA​.
$ sudo make install PREFIX=/ REG_BIN=/lib/crda/regulatory.bin

6. Test ​CRDA​ and the generated ​regulatory.bin​.
$ sudo /sbin/regdbdump /lib/crda/regulatory.bin | grep -i ocb

Expected output:

country 00: invalid

 (5850.000 - 5925.000 @ 20.000), (20.00), NO-CCK, OCB-ONLY

88

aspMore

A.10. Setting up the OBU Interface and IEEE 802.11p Channel

The following procedure details how to configure a wireless interface for OCB mode and
join an IEEE 802.11p channel [​17​].

1. Bring down the wireless interface (for example, ​wlan0​).
$ sudo ip link set wlan0 down

2. Add an OCB interface (​ocb0​).
$ sudo iw dev wlan0 interface add ocb0 type ocb

3. Set the OCB mode.
$ sudo iw dev ocb0 set type ocb

4. Bring down the OCB interface.
$ sudo ip link set ocb0 down

5. Set the wireless regulatory domain to ​ES​, and verify afterwards.
$ sudo iw reg set ES

$ sudo iw reg get

6. Bring up the OCB interface.
$ sudo ip link set ocb0 up

7. Join an IEEE 802.11p channel. In this case, this is the Control Channel (CCH),
with center frequency 5900 MHz, channel number 180 and channel spacing 10
MHz.
$ sudo iw dev ocb0 ocb join 5900 10MHZ

8. Verify the setup. The expected output is explained in Section 3.5.6.
$ sudo iw dev | iwconfig

89

aspMore

B. IEEE 802.11p Simulator Installation Guide and User Manual

B.1. Installation Procedure

The IEEE 802.11p simulator utilizes several simulation frameworks of different
functionality. This section details the framework versions and installation procedure to
create the simulator environment. The Linux distribution used is Ubuntu 16.04 (64-bit).

1. Prepare the software packages.

Extract the ​​Simulador.zip file. Make a copy of the ​v2x-arch_11p folder and
place it in the home directory. This folder will contain all the files related to the
simulator. Note that for the following installation steps, OMNeT++, SUMO and
Artery must be at the same folder hierarchy level inside ​v2x-arch_11p​​.

2. Install OMNeT++.
a. Download the OMNeT++ installer (​omnetpp-5.1.1-src-linux.tgz​​)

from the OMNeT++ download website [​31​]. Save it in the ​v2x-arch_11p
​folder.

b. Extract and proceed with the installation by entering the following
commands.
v2x-arch_11p$ tar xvfz omnetpp-5.1.1-src-linux.tgz

v2x-arch_11p$ cd omnetpp-5.1.1

v2x-arch_11p/omnetpp-5.1.1$./configure

v2x-arch_11p/omnetpp-5.1.1$ make

3. Install SUMO.
a. Download the SUMO installer (​​sumo-src-0.29.0.tar.gz​​) from the

SUMO download website [​33​]. Save it in the ​v2x-arch_11p​​ folder.

b. Extract and proceed with the installation by entering the following
commands.
v2x-arch_11p$ tar xvfz sumo-src-0.29.0.tar.gz

v2x-arch_11p$ cd sumo-0.29.0

v2x-arch_11p/sumo-0.29.0$./configure

v2x-arch_11p/sumo-0.29.0$ make

c. Enter the following command.
v2x-arch_11p$. setenv

d. Update the following line in ​/home/wng/.profile​, then restart the
terminal for the change to take effect.
PATH="$HOME/bin:$HOME/.local/bin:/home/wng/v2x-arch_11p/omnetpp-5.1.1/bin:$H

OME/.local/bin:/home/wng/v2x-arch_11p/sumo-0.29.0/bin:$PATH"

90

aspMore

4. Install Vanetza, Veins and INET.

The installers of the external project dependencies (Vanetza, Veins and INET) are
already included in the​ ​Simulador.zip file. These dependencies can be built all
at once by entering the following command.
v2x-arch_11p/artery$ make all

5. Install Artery.
a. The Artery installer is also included in the ​Simulador.zip file. Enter the

following commands to proceed with the installation.
v2x-arch_11p/artery$ mkdir build

v2x-arch_11p/artery$ cd build

v2x-arch_11p/artery/build$ cmake ..

v2x-arch_11p/artery/build$ cmake --build​ .

b. Update the following line in ​run_ARTERY_cmdenv_from_sublime.cmd
and ​run_ARTERY_guienv_from_sublime.cmd​, which are both located
in the ​v2x-arch_11p/artery/scenarios/artery/​ directory.
MY_NED_PATH="$HOME"

B.2. ​omnetpp.ini​ Configuration File

The main configuration file for the IEEE 802.11p-based simulator is the ​omnetpp.ini in
/home/wng/v2x-arch_11p/artery/scenarios/artery​.

The ​omnetpp.ini includes different parameters that may be configured prior to
executing the scenario. More importantly, it allows the user to modify the parameters
easily without having to go through the source code. Being able to change and
experiment on the parameters helps in understanding their impact on the simulation
results. The contents of ​omnetpp.ini​ are divided into sections as described below.

B.2.1. Simulation General Settings
The general settings for the simulation is shown in ​Figure 62​. Both the ​num-rngs and
seed-0-mt are used for randomization. The succeeding parameters are helpful when
debugging, however, it is advisable to set them to ​false to make the simulation faster.
debug-on-errors creates a breakpoint when an error occurs during runtime to
determine the possible location and cause of the problem. ​record-eventlog creates a
event log file, which can be analyzed using the sequence chart tool to illustrate how a
message is routed between the nodes in the network.

91

aspMore

Figure 62​. Simulation general settings

B.2.2. Run Environment Settings

The run environment settings in ​Figure 63 include parameters specific to simulating either
in command line mode (cmdenv) or graphical mode (qtenv). Enabling
cmdenv-express-mode ensures minimal status updates on the console, while
cmdenv-status-frequency configures the frequency of writing the status to the
console​.

Figure 63​. Run environment settings

B.2.3. Statistics Settings

The statistics settings in ​Figure 64 specify parameters that define how the statistics are
collected. Depending on the configuration, scalar and/or vector statistics are recorded
during the simulation. The scalar statistics are simple measurement values that are
recorded in a scalar result file (​*.sca​). On the other hand, the vector statistics are values
recorded with time and are saved in a vector result file (​*.vec​). However, as vector
statistics take up a lot of disk space, it is advisable to disable it unless needed. Both the
scalar and vector result files are used as inputs to an analysis file (​*.anf​). Moreover, the
filename of the result file can be configured.

92

aspMore

Figure 64​. Statistics settings

B.2.4. SUMO Settings

The SUMO settings in ​Figure 65 ensures that the simulation continues even if no vehicle
is present in the scenario.

Figure 65​. SUMO settings

B.2.5. Nodes Settings

The Nodes settings in ​Figure 66 includes the configurations for the physical, MAC and
application layers of each vehicle (or node).

In the physical layer settings, the IEEE 802.11p parameters such as carrier frequency,
bandwidth and bitrate are specified. In addition, this is where transmit power, receiver
sensitivity, energy detection and SNIR threshold are configured, which ultimately affect
the communication range. In the application layer, the update interval and jitter
parameters are set to introduce randomness and reduce the possibility of collisions, such
as in the case when the nodes may have been synchronized. The boundaries of the
statistical region, or the area in the scenario where statistics are recorded, could be
defined.

93

aspMore

Figure 66​. Nodes settings

B.2.6. Medium Settings

The Medium settings in ​Figure 67 include configurations related to the radio channel. In
the example, the background noise power is set to -110dBm, while the path loss is
modeled using Rayleigh Fading with alpha set to 3 for an urban environment. Moreover,
the presence and impact of physical walls can be configured. The properties of the walls,
such as the shape, position and material, are specified in ​walls.xml​. The presence of
walls can be enabled by either setting ​DielectricObstacleLoss or
IdealObstacleLoss for the ​obstacleLossType and disabled by leaving this field

94

aspMore

blank. ​DielectricObstacleLoss causes partial absorption of signal when passing
through the walls, while ​IdealObstacleLoss​ fully blocks the passage of signal.

Figure 67​. Medium settings

B.2.7. Scenarios Settings

Finally, the Scenarios settings are shown in ​Figure 68​. This section includes
configurations that are specific to certain scenarios. Some example fields are the
simulation time, warm-up time and CAM transmit period. ​Warmup-period defines the
time from which the statistics are started to be recorded, such as when the scenario has
reached steady-state conditions.

95

aspMore

Figure 68​. Scenario settings

B.3. Running a Scenario

There are two ways to run a scenario: (1) using the command line and (2) using the
graphical user interface (GUI). The former is expected to take less time to finish;
however, it is not possible to visualize the flow of packets in the OMNeT++ GUI.

To execute a scenario using the command line, enter the following command.
v2x-arch_11p/artery/scenarios/artery$./run_ARTERY_cmdenv_from_sublime.cmd

The scenario to be executed is configured in ​declare -a configs_to_test of
run_ARTERY_cmdenv_from_sublime.cmd​.

To run a scenario using the OMNeT++ GUI, enter the following command.
v2x-arch_11p/artery/scenarios/artery$./run_ARTERY_guienv_from_sublime.cmd

The scenario to be executed and the message period are selected through the pull-down
menu of the OMNeT++ GUI.

For both cases, it is necessary to update the following line in ​omnetpp.ini to start the
SUMO GUI. The SUMO GUI enables the visualization of the movement of vehicles during
simulation.

*.traci.launcher.sumo = "sumo-gui"

96

aspMore

B.4. Result and Analysis Files

The scalar (​*.sca​) and vector (​*.vec​) statistics may be recorded depending on the
settings indicated in the ​omnetpp.ini (i.e., if they are enabled). The result files are
saved in ​v2x-arch_11p/artery/scenarios/artery​. These are used as inputs to
the analysis file (​*.anf​), which is created by double-clicking either of the two result files
in the OMNeT++ IDE.

The analysis file is used by the built-in Result Analysis tool of the OMNeT++ IDE. As
illustrated in ​Figure 69​, this tool offers several options for processing and visualizing the
results, including customization of scalar/vector/histogram plots.

Figure 69​. Result analysis tool

97

aspMore

B.5. Complete Set of Figures

B.5.1. Packet Reception Ratio

(a) 4 lanes

(b) 8 lanes

98

aspMore

(c) 16 lanes

Figure 70​. PRR of a bidirectional highway scenario with variable speed

(a) Fast

99

aspMore

(b) Moderate

(c) Slow

Figure 71​. PRR of a bidirectional highway scenario with variable lane count

100

aspMore

B.5.2. Position Error

(a) 4 lanes

(b) 8 lanes

101

aspMore

(c) 16 lanes

Figure 72​. Position error of a bidirectional highway scenario with variable speed

(a) Fast

102

aspMore

(b) Moderate

(c) Slow

Figure 73​. Position error of a bidirectional highway scenario with variable lane count

103

aspMore

B.5.3. Neighborhood Awareness Ratio

(a) 4 lanes

(b) 8 lanes

104

aspMore

(c) 16 lanes

Figure 74​. NAR of a bidirectional highway scenario with variable speed

(a) Fast

105

aspMore

(b) Moderate

(c) Slow

Figure 75​. NAR of a bidirectional highway scenario with variable lane count

106

aspMore

Glossary

3GPP - 3rd Generation Partnership Project

ASN.1 - Abstract Syntax Notation One

BRAN - Broadband Radio Access Network

BSA - Basic Set of Applications

BSS - Basic Service Set

BTP - Basic Transport Protocol

CA - Cooperative Awareness

CAM - Cooperative Awareness Message

C-ITS - Cooperative ITS

CLI - Command-Line Interface

ComS - Communities Services

CoNa - Co-operative Navigation

CRDA - Central Regulatory Domain Agent

CSM - Cooperative Speed Management

CSMA/CA - Carrier Sense Multiple Access with Collision Avoidance

CSV - Comma Separated Values

D2D - Device-to-Device

DCC - Decentralized Congestion Control

DEN - Decentralized Environmental Notification

DENM - Decentralized Environmental Notification Message

DSRC - Dedicated Short-Range Communications

EDCA - Enhanced Distributed Coordination Access (EDCA)

ETSI - European Telecommunication Standards Institute

GAC - Geographically-scoped Anycast

HF - High-frequency

HMI - Human Machine Interface

HST - Header Subtype

HT - Header Type

IDE - Integrated Development Environment

IEEE - Institute of Electrical and Electronics Engineers

IP - Internet Protocol

ITS - Intelligent Transport Systems

107

aspMore

ITSC - ITS Communication

ITS-S - ITS Station

LBS - Location Based Services

LCM - Life Cycle Management

LF - Low-frequency

LLC - Logical Link Control

LOS - Line-Of-Sight

LS - Location Service

MAC - Medium Access Control

MATLAB - MATrix LABoratory

MHL - Maximum Hop Limit

MIB - Management Information Base

MPDU - MAC Protocol Data Unit

NED - NEtwork Description

NH - Next Header

OBU - On-Board Unit

OCB - Outside the Context of a BSS

OFDM - Orthogonal Frequency Division Multiplexing

OFDMA - Orthogonal Frequency-Division Multiple Access

OMNeT++ - Objective Modular Network Testbed in C++

OSI - Open Systems Interconnection

PC - Personal Computer

PDU - Protocol Data Unit

PHY - Physical Layer

PL - Payload

PoE - Power-over-Ethernet

PPDU - Physical Protocol Data Unit

PRR - Packet Reception Ratio

PSDU - Physical layer Service Data Unit

QoS - Quality of Service

RSU - Roadside Unit

SAM - Service Announcement Message

SHB - Single-Hop Broadcast

108

aspMore

SPAT - Signal Phase And Timing

SUMO - Simulation of Urban MObility

TC - Traffic Class

TCP - Transmission Control Protocol

TDC - Transmit Data rate Control

TPC - Transmit Power Control

TraCI - Traffic Control Interface

TRC - Transmit Rate Control

TSB - Topologically-Scoped Broadcast

UDP - User Datagram Protocol

V2G - Vehicle-to-Grid

V2I - Vehicle-to-Infrastructure

V2N - Vehicle-to-Network

V2P - Vehicle-to-Pedestrian

V2V - Vehicle-to-Vehicle

V2X - Vehicle-to-Everything

Veins - Vehicles in network simulation

VRU - Vulnerable Road User

WLAN - Wireless Local Area Network

109

