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Abstract 

A key aspect of Vehicle-to-Everything (V2X) communication is the concept of ​cooperative            
awareness​, wherein the periodic exchange of status information allows vehicles to           
become aware of their surroundings for increased traffic safety and efficiency. This            
project aimed to implement the Cooperative Awareness (CA) basic service through the            
development of a low-cost, open-source On-board Unit (OBU)/Roadside Unit (RSU) that           
periodically broadcasts Cooperative Awareness Messages (CAM) using the 5.9 GHz          
band. Its proper operation and interoperability were verified by testing it with a             
commercial V2X device. This project also aimed to evaluate the effectiveness of the CA              
basic service through the development of an IEEE 802.11p-based V2X system simulator.            
The simulations were executed with varying vehicle traffic load (by changing the vehicle             
speed and the number of lanes) and CAM transmit frequency. The performance was then              
assessed by analyzing the Packet Reception Ratio (PRR), position error and           
Neighborhood Awareness Ratio (NAR) metrics. The presence of more vehicles in the            
slow speed and high lane count scenarios caused higher packet losses due to increased              
interference and collision probability, leading to low PRR and NAR values. Despite losing             
more CAMs, the slow speed scenarios had lower position errors since the displacement             
of vehicles was small. When the CAM transmit frequency was increased, the PRR             
decreased due to packet collisions. However, the position error was kept low as it              
benefited from the more frequent CAM transmissions and local database updates.           
Increasing the transmit frequency also increased the NAR, at least until a certain             
frequency threshold, beyond which the NAR started to worsen due to the dominant effect              
of interference in high message traffic situations. 
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1.    Introduction 

Despite the continuous improvements in the traffic infrastructure and automobile          
technology, road accidents still remain one of the leading causes of deaths with an              
estimated total of 1.35 million each year [​1​]. While innovations ranging from simple seat              
belt to antilock braking systems (ABS) up to sophisticated vehicle sensors have            
contributed to automobile safety, these technologies remain isolated in individual          
vehicles. However, if vehicles were able to break this isolation and began communicating             
with each other, then they could alert each other and prevent potentially dangerous             
situations, such as unsafe overtaking and sudden stopping of vehicle ahead.           
Consequently, this would significantly reduce the number of traffic fatalities. 

Vehicle-to-everything (V2X) communication is thus considered a breakthrough technology         
that would revolutionize road safety. Moreover, V2X aims to increase traffic efficiency (by             
optimizing the use of traffic infrastructure), to reduce environmental impact (by efficient            
driving), and to provide additional services (such as software provisioning and update,            
electronic commerce and media downloading), thereby improving the overall transport          
experience.  

A key aspect of V2X communication is the periodic exchange of status information,             
including vehicle identifiers, location, and velocity. Such data are needed in the realization             
of several Cooperative Intelligent Transport Systems (C-ITS) applications. For instance,          
the collision avoidance warning application relies on the real-time position and speed            
information from surrounding vehicles in order to predict and prevent possible collisions.            
For this reason, ETSI introduced the Cooperative Awareness (CA) basic service in the             
ITS facilities layer as a common service that can be utilized by any application (in the                
upper layer of the V2X protocol stack). In particular, the CA basic service defines the               
Cooperative Awareness Message (CAM), which is periodically broadcasted by each          
vehicle to share status information. 

 

1.1.    Objectives and Scope 

The main goals of this project were to implement the CA basic service and evaluate its                
effectiveness in enabling cooperative awareness among vehicles and traffic         
infrastructure. In order to achieve these goals, the project was divided into the following              
two subtasks: 

1. Development of an On-board Unit (OBU)/Roadside Unit (RSU): 

Dedicated V2X platforms are expensive, in addition to their implementation of the            
V2X stack being proprietary. This makes it difficult for researchers to carry out             
field tests to evaluate the CA basic service. For this reason, one of the objectives               
of this project was to develop a low-cost OBU/RSU that implemented the ETSI             
C-ITS protocol stack (including the CA messaging capability) using open-source          
software, specifically the Vanetza library. The testbed was further modified to work            
in the 5.9 GHz frequency band, before being tested using a commercial V2X             
device to check interoperability.  
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2. Development of an IEEE 802.11p-based simulator: 

An existing system-level simulator from the V2X-Arch project [​2​] was used as the             
foundation in this project for the experimental evaluation of the CA basic service.             
The said simulator was then modified to enable the variation of important            
parameters (speed, number of lanes, CAM transmit frequency) in order to deduce            
their impact on system performance, and to perform more realistic simulations           
under different road topologies (highway, Manhattan grid). Moreover, different         
metrics (Packet Reception Ratio or PRR, position error, and Neighborhood          
Awareness Ratio or NAR) were designed to assess if the CA basic service indeed              
helped in making the vehicles aware of their surroundings. 

It is important to note that the experiments carried out did not focus on evaluating               
the physical layer and Medium Access Control (MAC) mechanisms, and as such,            
the corresponding parameters in the lower layers were kept constant. Moreover,           
while there are various V2X technologies (WLAN- and cellular-based) that could           
have been employed in the ITS access layer, only the IEEE 802.11p standard was              
used all throughout the project, and comparisons of the different V2X technologies            
were out of scope of the project. 

 

1.2.    Work Plan 

As the project consisted of two separate tasks, it was necessary to work on them in                
parallel to ensure their successful and timely completion. The project was carried out from              
September 2018 to mid-May 2019, and each task was divided into three parts, namely              
the ​study phase​, the ​development phase​, and the results and analysis phase. The first              
month was dedicated to studying concepts that were necessary for the implementation of             
the project. This included both generic topics, such as C++ programming and the C-ITS              
protocol stack, and more specific ones, including understanding existing source codes to            
be utilized in the project. 

The next months were allocated to working on the two tasks in parallel. In the case of the                  
simulator development, a number of MAC and application layer functions, along with            
other road scenarios, were created and modified to implement the metrics for the CA              
basic service evaluation. On the other hand, the CAM receiver application was developed             
first, and then tested with the transmitter application using a Raspberry Pi. However, due              
to incompatibility issues (Section 3.4.1), it was necessary to switch to another hardware             
platform. For this reason, an additional period of time was spent studying the Linux              
wireless architecture in order to be able to continue with the OBU/RSU development             
using the new hardware.  

Towards the end of the project, simulations had to be carried out multiple times. This was                
because it was often necessary to make adjustments to the code when unexpected             
results were observed. This phase was relatively time-consuming since a single batch of             
simulations took a few days to complete. 
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Figure 1​. Project schedule 

 

1.3.    Outline 

Chapter 2 introduces the C-ITS concepts necessary to understand and implement the            
project. Chapter 3 provides a detailed explanation of the methodology used to develop             
the open-source OBU/RSU. Chapter 4 discusses the simulator enhancements, and the           
scenarios and parameters employed in the simulations. Chapter 5 presents the results            
and analyzes them using specific performance metrics. Chapter 6 gives an estimate of             
the costs incurred while working on the project. Chapter 7 concludes the paper, and              
recommends future tasks and research direction. Finally, the appendix includes          
installation and configuration guides for setting up and replicating both the OBU/RSU and             
simulator environments.  
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2.    State of the Art 

This chapter provides a brief description of C-ITS, while giving emphasis on the details of               
the ITS protocol stack, including the different layer functionalities and packet header            
structures. Moreover, it elaborates on some of the ITS facilities layer entities, specifically             
the CA basic service. Lastly, it presents a review of related work to further understand the                
motivation of carrying out this research study. 

 

2.1.    Cooperative Intelligent Transport Systems 

C-ITS utilizes different wireless technologies to allow real-time communication and share           
useful information among road users and infrastructures. C-ITS aims to create a safer,             
greener and more convenient transportation environment for everyone. 

As an enabler of C-ITS, V2X communication refers to the wireless exchange of             
information between a vehicle and another entity. There are currently two standardized            
V2X technologies being considered: IEEE 802.11p and Cellular V2X (C-V2X). A number            
of research studies have been conducted for the purpose of assessing their system             
performance to understand the advantages and disadvantages of each technology. While           
such comparative analysis contributes to the success of C-ITS, this project specifically            
employed the IEEE 802.11p protocol for evaluating the CA basic service in the ITS              
facilities layer.  

 

2.2.    Network Architecture 

The C-ITS network architecture consists of different entities, or ITS stations (ITS-Ss),            
communicating with each other [​3​]. As shown in ​Figure 2​, these are: 

● Personal ITS-S - handheld devices of pedestrians 
● Vehicle ITS-S - OBU mounted on vehicles 
● Central ITS-S - traffic management centers 
● Roadside ITS-S - RSU or fixed traffic infrastructures 

The combination of any of these entities results to different communication modes. In             
particular, V2X is an umbrella term used to refer to the following. 

● V2V: Vehicle-to-Vehicle 
● V2I: Vehicle-to-Infrastructure 
● V2P: Vehicle-to-Pedestrian 
● V2G: Vehicle-to-Grid  
● V2N: Vehicle-to-Network 
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Figure 2​. C-ITS Network Architecture [​3​] 

 

2.3.    ITS Station Reference Architecture 

The ITS-S reference architecture defines the protocol stack implemented on each station.            
As illustrated in ​Figure 3​, it comprises four horizontal layers along with two vertical entities               
[​3​]. It is analogous to the OSI model, except that it extends the model to include the ITS                  
applications, depicted in the mapping of the two models in ​Table 1​. The protocol layers               
are described in more detail in the following sections.  
 

 
Figure 3​. ITS-S reference architecture [​3​] 
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ITS-S Reference Architecture OSI Model 

Applications - 

Facilities Application 

Presentation 

Session 

Networking and Transport Transport 

Network 

Access Data Link 

Physical 

 ​Table 1​. Mapping between ITS-S reference architecture and OSI model 

 

2.3.1.    Applications 

ITS applications are formed by complementary ITS-S applications (e.g., server-client          
scheme). A group of applications and use cases is known as the Basic Set of               
Applications (BSA). Furthermore, these use cases are categorized into the following three            
classes, which differ on reliability, latency and security requirements [​4​]. 

1. Active road safety 

The goal of this class is to improve traffic safety by preventing road casualties.              
Vehicles exchange status information (speed, position, etc.) periodically or in a           
event-triggered manner, creating cooperative awareness and possibly avoiding        
fatalities. This enables use cases such as collision risk warning and emergency            
vehicle warning.  

2. Cooperative traffic efficiency 

The goal of this class is to improve to improve road traffic management, and              
increase the traffic efficiency in terms of travel times, fuel consumption and            
emissions, etc. This usually involves communication with the infrastructure. For          
instance, in the case of V2I communication, the roadside station sends specific            
information to the vehicles, enabling use cases like speed limit notification and            
optimal route recommendation.  

3. Other applications 

These include applications providing other services such as those for          
infotainment. Some examples are point-of-interest notification and media        
downloading.  
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Applications class  Application Use Cases 

Active road safety Driving assistance - Co-operative 
Awareness (CA)  

Emergency vehicle warning 
Slow vehicle indication 
Intersection collision warning 
Motorcycle approaching indication  

Driving assistance - Road Hazard 
Warning (RHW) 

Emergency electronic brake lights 
Wrong way driving warning  
Stationary vehicle - accident  
Stationary vehicle - vehicle problem  
Traffic condition warning  
Signal violation warning  
Roadwork warning  
Collision risk warning  
Decentralized floating car data - Hazardous location  
Decentralized floating car data - Precipitations  
Decentralized floating car data - Road adhesion  
Decentralized floating car data - Visibility  
Decentralized floating car data - Wind 

Co-operative traffic 
efficiency 

Speed Management (CSM) Regulatory/contextual speed limits notification  
Traffic light optimal speed advisory  

Co-operative Navigation (CoNa) Traffic information and recommended itinerary 
Enhanced route guidance and navigation  
Limited access warning and detour notification  
In-vehicle signage 

Co-operative local 
services  

Location Based Services (LBS) Point of Interest notification 
Automatic access control and parking management  
ITS local electronic commerce  
Media downloading 

Global internet 
services  

Communities Services (ComS) Insurance and financial services 
Fleet management  
Loading zone management 

ITS station Life Cycle 
Management (LCM) 

Vehicle software/data provisioning and update  
Vehicle and RSU data calibration  

Table 2​. Basic set of applications [​4​] 

 

2.3.2.    Facilities  

The ITS facilities layer maps to layers 5, 6 and 7 of the OSI reference model. As such, it                   
exhibits the corresponding functionalities of those three layers combined with ITS-specific           
ones. Its main role is to provide service to the ITS applications in the upper layer, and                 
thus, the facilities are also referred to as basic service. Some of the facilities are listed in                 
Table 3​, and can be grouped in two ways, according to: (1) type of support, and (2) scope                  
of support provided to the ITS BSA [​4​].  

 

Classification Facility name Short description 

Common 
facilities for the 
application 
support 
facilities 

Priority management  Message and use case priority assignment.  

Identities 
management  

Manage the station identifier used by the applications and the V2X 
messages. 

HMI interface  Provide common interface to multiple HMIs.  
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CAM management  Provide management support for Cooperative Awareness Message.  

Security access 
management 

Provide and manage the high layer security requirements and data to the 
security entity.  

Time management  Provide the time management and time synchronization service within the 
ITS station. 

Service management  Manage the supporting ITS service and applications within the ITS station.  

Common 
facilities for the 
information 
support 
facilities 

Station type/capability  Manage the ITS station type and capabilities information.  

Position management  Provide and manage the station position and movement information.  

Location referencing  Provide location referencing functionalities for the station positioning 
according to the application requirements.  

Data presentation  Provide presentation support for the V2X messages.  

Common 
facilities for the 
communication 
support 
facilities 

Communication 
management  

Contribute from the high layer for the management and the selection of the 
optimal communication profiles to be used for the V2X message 
transmission. 

Addressing mode Select the addressing mode for the V2X message transmission and 
provide the message dissemination requirements to the network and 
transport layer. 

Domain 
facilities for the 
application 
support 
facilities 

Mobile station 
dynamics  

Manage the vehicle ITS station dynamics information from the in vehicle 
networks and vehicle electronic functions.  

Mobile station status 
monitoring  

Monitor mobile station status from in vehicle network and vehicle 
electronic functions and provide information for applications. 

DENM management Manage DENM and DENM protocol. 

Roadside ITS station 
state monitoring 

Monitors the roadside ITS station status.  

Client ID 
management  

Manage and define the service clients profile information.  

Web service  High layer protocols for the web service e.g. SOA application protocol 
support. 

Billing and payment  Provide service access to the billing and payment service.  

GIS support  Provide the interface to the GIS service.  

Discovery mechanism  Discover the users of a community service either by a service 
announcement (passive) or by a subscription (active).  

Station life cycle 
management  

Provide the support for station software updating and data updating.  

Relevance check  Provide the relevance check for the received information from other ITS 
stations, according to the application requirements. 

Domain 
facilities for the 
information 
support 
facilities 

LDM LDM database.  

Map data base  Provide interface to the map data base at the central ITS station.  

Service content 
database  

Manage a database of the ITS service content.  

RSU registration  Manage the roadside ITS stations and their information that are under the 
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control of a central ITS station.  

User repository Management of the user information at a central ITS station providing an 
ITS service. 

Fleet Monitoring Monitor the community service behaviour at the central ITS station 
relevant. 

Message queuing Manage the V2X messages queuing based on the message priority and 
the client services/use case requirements. 

Domain 
facilities for the 
communication 
support 
facilities  

Session support  Support the communication session establishment and closure.  

Table 3​. List of ITS facilities [​4​] 

 

Classification of facilities according to the type of support provided [​4​]: 

1. Application support facilities - provide application support functionalities 
2. Information support facilities - provide common data and database management          

functionalities 
3. Communication support facilities - provide services for communication and         

session management 

Classification of facilities according to the scope of support provided [​4​]: 

1. Common facilities - provide basic core services and functions for all applications            
and for the operation of the ITS stations 

2. Domain - provide specific services and functions for one or several applications 

 

2.3.3.    Networking and Transport 

The Basic Transport Protocol (BTP) provides an end-to-end, unreliable and          
connectionless transport service. It is responsible for multiplexing the messages from the            
different processes at the ITS facilities layer, and at the other end, demultiplexing of              
messages received through the the GeoNetworking protocol. The way         
multiplexing/demultiplexing works is based on ports, which act as identifiers to distinguish            
different processes running on the ITS station. Moreover, BTP allows the facilities layer to              
access the services provided by the GeoNetworking protocol, as well as the exchange of              
protocol control information between those two entities [​5​]. A list of well-known BTP ports              
is given in ​Table 4​. 

There are two types of BTP headers, which is indicated in the Next Header (NH) field of                 
the GeoNetworking Common header. BTP-A is for interactive packet transport, while           
BTP-B signals non-interactive. Moreover, they differ in packet structure, with BTP-A           
containing both the source and destination ports, and BTP-B specifying only the            
destination port with the addition of destination port information in case of well-known             
ports [​5​]. 
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Well-known BTP port ITS facilities layer entity 

2001 CAM 

2002 DENM 

2003 MAP 

2004 SPAT 

2005 SAM 

Table 4​. BTP ports 

 

Next Header (NH) Encoding Description 

BTP-A 1 BTP-A header 

BTP-B 2 BTP-B header 

Table 5​. Encoding of BTP header types in the Next Header field of the GeoNetworking Common Header 

 

 

Figure 4​. BTP-A header format [​5​] 

 

 

Figure 5​. BTP-B header format [​5​] 

 

The GeoNetworking protocol is a network-layer protocol that uses geographical positions           
and areas to route packets across the ITS ad hoc network. It enables infrastructure-less              
communication, and meets the vehicle networking requirements, such as support for high            
node mobility and continuously changing network topology [​6​]. 

The GeoNetworking protocol has the following main functions. 

1. Geographical addressing 

A packet is sent to a destination node with a specific geographical position or to a                
number of destination nodes belonging to a geographical area. 
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2. Geographical forwarding 

Each node maintains a knowledge of the network topology. When a node receives             
a packet, it examines the destination field, and compares the indicated           
geographical address to its knowledge of the network topology to make forwarding            
decisions. This eliminates the need for complicated IP routing tables. 

The GeoNetworking routing employs different packet forwarding schemes as depicted in           
Figure 6​. 

1. GeoUnicast 

The unicast packet is continuously forwarded by intermediate nodes (multi-hop)          
until it reaches its destination node. 

2. GeoBroadcast 

The packet is continuously forwarded until it reaches its destination geographical           
area. The nodes inside the area re-broadcasts the packet, unlike in GeoAnycast,            
where a node inside the area receives the packet and does not resend it. 

3. Topologically-scoped broadcast 

The packet is continuously re-forwarded until the n-hop node. 

 

 

(a) GeoUnicast 

 

(b) GeoBroadcast 

 

(c) Topologically-scoped broadcast 

Figure 6​. GeoNetworking routing schemes [​6​] 

 

 

Figure 7​. GeoNetworking header format [​7​] 

As illustrated in ​Figure 7​, the GeoNetworking header includes the mandatory Basic and             
Common headers, as well as an optional Extended header. To aid in understanding the              
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contents of a GeoNetworking packet, the following figures and tables examine the Basic             
and Common header formats and corresponding fields. The contents of the Extended            
header depends on the GeoNetworking packet header type specified in ​Table 8​, and the              
header format for each type is detailed in [​7​]. 

 

 

Figure 8​. Basic header format [​7​] 

 

Basic header field Description 

Version version of the GeoNetworking protocol 

Next Header (NH) type of header following the Basic Header 
 
0: ANY (unspecified) 
1: Common header 
2: Secured packet 

Reserved reserved, set to 0 

Lifetime maximum time a packet could be buffered before 
reaching destination 

Remaining Hop Limit (RHL) decremented by 1 (hop) every time the packet is 
forwarded by the GeoAdhoc router  

Table 6​. Basic header fields 

 

 

Figure 9​. Common header format [​7​] 

 

Common header fields Description 

Next header (NH) type of header following the GeoNetworking headers 
 
0: ANY (unspecified) 
1: BTP-A 
2: BTP-B 
3: IPv6 

Reserved reserved, set to 0 

Header Type (HT) type of GeoNetworking header (refer to ​Table 8​) 

Header Subtype (HST) sub-type of GeoNetworking header (refer to ​Table 8​) 

Traffic Class (TC) represents requirements of facilities layer 
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Flags indicates whether the ITS-S is mobile or stationary 

Payload (PL) size of packet following the GeoNetworking headers 

Maximum Hop Limit (MHL) maximum hop limit 

Reserved reserved, set to 0 

Table 7​. Common header field 

 

Header Type (HT) Header Sub-type (HST) Encoding Description 

ANY  0 Unspecified 

UNSPECIFIED 0 Unspecified 

BEACON  1 Beacon 

UNSPECIFIED 0 Unspecified 

GEOUNICAST  2 GeoUnicast 

UNSPECIFIED 0 Unspecified 

GEOANYCAST  3 Geographically-Scoped Anycast (GAC) 

GEOANYCAST_CIRCLE 0 Circular area 

GEOANYCAST_RECT 1 Rectangular area 

GEOANYCAST_ELIP 2 Ellipsoidal area 

GEOBROADCAST  4 Geographically-Scoped Anycast (GAC) 

GEOANYCAST_CIRCLE 0 Circular area 

GEOANYCAST_RECT 1 Rectangular area 

GEOANYCAST_ELIP 2 Ellipsoidal area 

TSB  5 Topologically-scoped broadcast (TSB) 

SINGLE_HOP 0 Single-hop broadcast (SHB) 

MULTI_HOP 1 Multi-hop TSB 

LS  6 Location service (LS) 

LS_REQUEST 0 Location service request 

LS_REPLY 1 Location service reply 

Table 8​. Encoding of HT and HST fields [​7​] 

 

The geographical area is defined by a geometric shape (circle, rectangle or ellipse),             
which is indicated in the header subtype of the Common header. The parameters and              
coordinates forming the boundaries of the geographical area are specified in the Extender             
header. Moreover, the mathematical functions representing the shapes are detailed in [​8​]. 
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2.3.4.    Access 

The ITS access layer maps to the data link and physical (PHY) layers of the OSI                
reference model. The data link layer consists of the MAC and the Logical Link Control               
(LLC) sublayers. The ITS access layer technology is termed ITS-G5, which is based on              
the IEEE 802.11-2012 Wireless Local Area Network (WLAN) standard. In particular, IEEE            
802.11p corresponds to the PHY and MAC layers and is an enhancement of IEEE 802.11               
(specifically, IEEE 802.11a) to meet the requirements of ITS applications.  

IEEE 802.11p employs an almost identical physical layer as that of IEEE 802.11a,             
including the use of Orthogonal Frequency Division Multiplexing (OFDM) (total of 52            
subcarriers, of which 48 are for data and 4 for pilot carriers). However, some differences               
are needed to be introduced for it to be able to handle the high node mobility and steadily                  
changing vehicular environments. For one, IEEE 802.11p utilizes the 10 MHz frequency            
channel bandwidth, as opposed to the 20 MHz of IEEE 802.11a, to make the signal more                
robust to fading and other propagation effects. ​Table 9 lists down the resulting data rates               
for IEEE 802.11p using different modulation and coding schemes (MCSs), with the 3, 6              
and 9 Mbps required for all ITS-S. The duration of one OFDM symbol is 8µs, with the                 
number of data bits per symbol depending on the MCS used [​9​]. 

 

Transfer rate 
(Mbit/s) 

Modulation scheme Coding rate Data bits per OFDM 
symbol 

Coded bits per 
OFDM symbol 

3 BPSK 1/2 24 48 

4.5 BPSK 3/4 36 48 

6 QPSK 1/2 48 96 

9 QPSK 3/4 72 96 

12  16-QAM 1/2 96 192 

18  16-QAM 3/4 144 192 

24  64-QAM 2/3 192 288 

27  64-QAM 3/4 216 288 

Table 9​. MCS and data rates for IEEE 802.11p [​9​] 

 

Figure 10 illustrates the physical packet structure for IEEE 802.11p, and the fields are              
briefly described in ​Table 10​. The preamble and signal fields are transmitted using BPSK,              
while the MCS varies for the data part. 
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Figure 10​. IEEE 802.11p PHY packet structure [​9​] 

 

Field Subfield Description Duration (µs) 

Preamble N/A Synchronizing receiver. Consists of a short and a long training sequence. 32 

Signal Rate Specifies the transfer rate at which the data field in the PPDU will be 
transmitted. 

8 

Reserved For future use. 

Length The length of the packet. 

Parity Parity bit. 

Tail Used for facilitating decoding and calculation of rate and length subfields. 

Data Service Used for synchronizing the descrambler at receiver. Depending on 
selected 
transfer rate 
and packet 
length. 

PSDU The data from the MAC layer including header and trailer, i.e. MPDU. 

Tail Used for putting the convolutional encoder to zero state. 

Pad bits Bits added to reach a multiple of coded bits per OFDM symbol (i.e. 48, 96, 
192, 288) 

Table 10​. IEEE 802.11p PHY packet fields [​9​] 

 

2.3.4.1.    ITS-G5 Frequency and Channel Allocation 

ITS-G5 frequencies are allocated depending on their purpose of use, which also differ on              
performance requirements. To enable various ITS applications, one control channel          
(CCH) and seven service channels (SSH) are allocated [​9​]. 

 

 Channel 
type 

Center 
Frequency 

(MHz) 

Frequency 
range 
(MHz) 

IEEE 
channel 
number 

Channel 
spacing 

(MHz) 

Default 
data rate 
(Mbit/s) 

Tx power 
limit (dBm 

EIRP) 

Usage 

ITS-G5A G5-CCH 5900 5895-5905 180 10 6 33 ITS road 
safety related 
applications G5-SCH

2 
5890 5885-5895 178 10 12 23 

G5-SCH
1 

5880 5875-5885 176 10 6 33 

ITS-G5B G5-SCH
3 

5870 5865-5875 174 10 6 23 ITS 
non-safety 
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G5-SCH
4 

5860 5855-5865 172 10 6 0 applications 

ITS-G5C G5-SCH
7 

Refer to 
ETSI EN 
301 893 

5470-5725 94-145 several Dependen
t on 

channel 
spacing 

30 (DFS 
master) 

RLAN 
(BRAN, 
WLAN) 

23 (DFS 
slave) 

ITS-G5D G5-SCH
5 

5910 5905-5915 182 10 6 0 Future ITS 
applications 

G5-SCH
6 

5920 5915-5925 184 10 6 0 

Table 11​.  ITS-G5 channels 

 

2.3.4.2.    Enhanced Distributed Coordination Access 

IEEE 802.11p uses a MAC algorithm known as the Enhanced Distributed Coordination            
Access (EDCA). It works like the Carrier Sense Multiple Access with Collision Avoidance             
(CSMA/CA) algorithm but allows the prioritization of data traffic. It defines separate            
queues corresponding to different access categories (ACs). In the order of lowest to             
highest priority, these are: AC_BK (Background), AC_BE (Best effort), AC_VI (Video) and            
AC_VO (Voice) [​9​][​10​]. 

 

AC TC ID CW (min) CW (max) AIFS Intended Use 

AC_VO 0 3 7 58 µs High priority DENM 

AC_VI 1 7 15 71 µs DENM 

AC_BE 2 15 1023 110 µs CAM 

AC_BK 3 15 1023 149 µs Multihop DENM, other data traffic 

Table 12​. ITS-G5 Traffic classes 

 

2.3.4.3.    Decentralized Congestion Control 

In an ITS ad hoc network, the network topology constantly varies, and in particular, the               
number of vehicles within the communication range is unpredictable. In the case of high              
density scenarios, the communicating vehicles may require a number of resources           
beyond the capacity of the channel. As such, the Decentralized Congestion Control            
(DCC) mechanism is necessary to avoid channel congestion and allow a fairer access to              
the limited resources. The way DCC works is that the vehicle adapts its transmission              
parameters according to the measured channel load. Moreover, the applications running           
in the upper layers must be aware of the channel load situation to be able to prioritize                 
among different possible transmissions [​11​]. Thus, DCC operates across several layers           
as shown in ​Figure 11​.  
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Figure 11​. DCC architecture [​11​] 

 

The different DCC access techniques used to control the channel load is described             
below. 

● Transmit Power Control (TPC) - adjusts the output power, such that it is lowered              
to reduce the resulting interference in high load scenarios. 

● Transmit Rate Control (TRC) - adjusts the time between consecutive packets,           
such that it is increased in high density scenarios. 

● Transmit Data rate Control (TDC) - adjusts the transfer rate, such that it is lowered               
at high load scenarios. 

 

2.3.4.4.    Outside the Context of a BSS 

One of the ITS requirements, particularly in safety-related applications, is minimizing           
latency/delay in the vehicular environment. To satisfy this criterion, a new operation mode             
called Outside the Context of a BSS (OCB) is introduced in IEEE 802.11p. This is               
activated by configuring the Management Information Base (MIB) parameter         
dot11OCBActivated to ​true​. In this mode, communication outside a Basic Service Set            
(BSS) is possible, which eliminates the need for the vehicle to undergo the MAC              
authentication and association phases. Moreover, since it does not try to join a BSS,              
frequency channel search is also unnecessary, as a predefined channel must be set by              
default [​9​]. Both of these features contribute to the reduction of overhead and latencies in               
the network. 

 

2.3.5.    Management and Security 

The Management entity is used to configure the ITS-S and exchange information among             
the different horizontal layers of the ITS-S reference architecture. The Security entity            
provides services geared towards secure and private communications  [​12​]. 

These two vertical protocol entities were out of scope of the project. 
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2.4.    Basic Services 

As previously mentioned, the main goal of the facilities layer is to provide services to the                
application layer. This section focuses on two facilities, which play an important role on              
the realization of different ITS applications, particularly those that improve traffic safety            
and efficiency. 

 

2.4.1.    Cooperative Awareness Basic Service 

The Cooperative Awareness (CA) basic service is a mandatory facility for all ITS-Ss, and              
is responsible for generating, processing and managing the Cooperative Awareness          
Message (CAM). 

CAM is periodically sent by an ITS-S to all ITS-Ss within its communication range using               
single hop communications to create cooperative awareness. For instance, knowing how           
close the surrounding vehicles are enables applications such as collision avoidance to            
prevent possible road casualties. In particular, this message includes status information           
(speed, position, time, etc.), as well as attribute information (vehicle type, dimensions,            
etc.). The frequency of CAM generation, or the time interval between consecutive CAMs,             
must be at least 100 ms and not exceeding 1000 ms. Moreover, the CAM generation               
time, or elapsed time from the instant at which the CAM generation is triggered to that                
when the CAM reaches the networking and transport layer, must be less than 50 ms. The                
CAM format is given by the Abstract Syntax Notation One (ASN.1) unaligned packed             
encoding rules (PER) [​13​].  

 

 

Figure 12​. CAM general structure [​13​] 

 

The structure of the CAM is shown in ​Figure 12​. Depending on the type of ITS-S, some                 
parts may be omitted. The containers are briefly described below, while more details are              
available in [​13​].  

● ITS PDU header - specifies the protocol version, message type, ITS-S ID 
● Basic container - includes the station type, geographical position during CAM           

generation 
● High-frequency (HF) container - indicates dynamic or fast-changing vehicle         

information 
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● Low-frequency (LF) container - specifies static or slow-changing vehicle         
information 

● Special vehicle container - includes additional information depending on the          
vehicle role indicated in the LF container  

With reference to [​14​], a summary of the possible values for the mandatory fields is               
presented in ​Table 13​ and ​Table 14​. 

 

ITS PDU header field Description 

protocolVersion  version of ITS message 

messageID  type of message 
 
1: Decentralized Environmental Notification Message 
(DENM) 
2: CAM 
3: Point of Interest (POI) 
4: Signal Phase and Timing (SPAT) 
5: MAP 
6: In-vehicle Information(IVI) 
7: Electric vehicle recharging spot reservation 
(EV_RSR) 
8: Tyre Information System (TIS), Tyre Pressure Gauge 
(TPG) 
9: Traffic Light Signal Request Message 
10: Traffic Light Signal Request Status Message 
11: Electrical Vehicle Charging Spot Notification 
12: Services Announcement Extended Message 
13: Radio Technical Commission for Maritime Services 
(RTCM) Message 

statitionID  identifier of originating ITS-S 

Table 13​. ITS PDU header 

 

Basic container field Description 

StationType  type of ITS-S 
0: unknown 
1: pedestrian 
2: cyclist 
3: moped 
4: motorcycles 
5: passenger car 
6: bus 
7: light truck 
8: heavy truck 
9: trailer 
10: special vehicle 
11: tram 
15: RSU 

ReferencePosition  specifies the geographical position of the ITS-S, including the: 
- latitude 
- longitude 
- position confidence ellipse (accuracy of 

geographical position) 
- altitude 

Table 14​. CAM basic container 
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2.4.2.    Decentralized Environmental Notification Basic Service 

The Decentralized Environmental Notification (DEN) basic service is the facility in charge            
of generating, processing and managing the Decentralized Environmental Notification         
Message (DENM). 

Unlike CAM, DENM is an event-triggered message that is disseminated to warn about             
(detected) hazardous events. It is transmitted to all the users within the affected area              
using multi-hop communications. For instance, DENM could be transmitted to notify about            
road accidents or that an emergency vehicle is approaching. Having been properly            
informed, the users can then make the appropriate maneuver and act accordingly, such             
as giving way to an approaching ambulance. The DENM format is also defined by ASN.1               
unaligned PER [​15​]. 

 

 

Figure 13​. DENM general structure [​15​] 

 

The message structure of the DENM is depicted in ​Figure 13​. Same with CAM, some               
parts may not be included depending on the type of transmitting ITS-S. A brief description               
of the containers is presented below, while in-depth information can be found in [​15​]. 

● ITS PDU header - specifies the protocol version, message type, station ID 
● Management container - includes information related to managing the DENM 
● Situation container - describes the detected event 
● Location container - indicates the location of the event 
● À la carte container - specifies additional useful information not included in the             

other containers 

Although the DEN basic service is also an important ITS facilities layer entity for the               
realization of C-ITS, it was out of scope of the project. 

 

2.5.    Related Work 

As IEEE 802.11p in C-ITS is a relatively mature technology, there are already a number               
of scientific work pertaining to its system performance evaluation. This section narrows            
down these references to those that are more relevant to the goals of the project.  

The paper of [​16​] presented one of the initial implementations of IEEE 802.11p on a Linux                
system. While it provided a description on the modifications made in the Linux kernel, it               
did not specify how the system was verified to check its operation using the IEEE 802.11p                
frequencies. The paper of [​17​] started by conducting a survey on different wireless cards              
to determine their suitability, followed by an explanation of the changes made on the              
Linux kernel. The project then upgraded a commercial device to use the applicable             
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wireless cards previously studied. However, the tests performed were more focused on            
evaluating whether the performance of the wireless cards met the requirements specified            
in the standards, such as in terms of throughput, switching channel timing and power              
transmission. In [​18​], city-scale field tests were carried out using low-cost, open-source            
prototypes, also built by modifying the Linux kernel. However, while the tests involved             
actual exchange of CAMs, the prototypes were not tested against a commercial OBU or              
RSU to confirm its interoperability. Another implementation was presented in [​19​], where            
the system was tested using a commercial V2X platform. In this case, the test packets               
used employed the US WAVE protocol stack, as opposed to the CAMs of the EU ITS-G5                
stack. While the testbed in [​20​] allowed switching to the 760 Mhz (Japan) when the 5.9                
GHz (US and UK) communication fails, the testbed was only tested using IP packets. 

The study of [​21​] investigated the practical limits of cooperative awareness in vehicular             
communication by carrying out small-scale field tests, before performing large-scale          
simulations using the Geometry-based Efficient propagation Model for V2V         
communication (GEMV​2​) and SUMO. Central to their analysis was a metric called the             
Neighboring Awareness Ratio (NAR), defined as the ratio of the number of vehicles from              
which a CAM was received over the total number of vehicles within a given range. The                
paper suggested a direct correlation between the Packet Delivery Ratio (PDR) and NAR,             
which both decreased as the distance between communicating vehicles increased. The           
maximum communication range and cooperative awareness were very much affected by           
the link quality and propagation conditions. Moreover, it was concluded that after a certain              
threshold value, increasing the CAM transmission rate did not anymore significantly           
improve the NAR, but only increased the channel load. On the other hand, increasing the               
transmit power while lowering the transmit rate, was a more effective way to increase the               
NAR, but this also increased the interference of far away vehicles. Thus, it was important               
to find the balance between awareness and interference. 

In [​22​], the CAM and DENM messaging services were evaluated by utilizing commercial             
IEEE 802.11p transceivers in a testbed deployed in a real driving environment. From its              
analysis of the Received Signal Strength Indicator (RSSI) measurements, it verified that            
the signal quality was heavily affected by the line-of-sight conditions and distance            
between the transmitter and receiver, as well as their relative altitude. The signal quality              
directly impacted the PDR, such that high signal quality translated to high PDR. The              
experiment also showed that the PDR was lower for faster vehicle speeds (although this              
is not the case when later analyzing the simulation results of this project). Moreover, the               
Connection Time and Connection Distance metrics had been defined, which referred to            
the time and distance elapsed between the first and last correctly received CAMs.             
Although these metrics are capable of providing deeper insights on the performance of             
the CA basic service, the paper did not perform extensive study to elaborate on them. In                
addition, the test only involved two entities (one vehicle/OBU and one RSU), with some of               
the results being highly dependent on a single environment topology.  

As depicted in the above discussion of related work, further study still needs to be done in                 
order to evaluate the performance of the CA basic service. In particular, this project was               
focused on implementing the CA basic service and understanding its effectiveness in            
providing awareness among the ITS entities of a cooperative transport system.   
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3.    On-board/Roadside Unit Development  

Field tests to capture real-world measurements for the purpose of evaluating the CA             
basic service usually require the use of special V2X platforms. In addition to these              
devices being really costly, they are also proprietary systems, and as such, access to              
their implementation is very limited. Thus, one of the goals of this project was to develop                
a low-cost OBU/RSU that implemented the ETSI C-ITS protocol stack using open-source            
software and commercial off-the-shelf hardware. Ultimately, the developed OBU/RSU         
was expected to work with any dedicated V2X hardware using the 5.9 GHz channel, such               
that it would be able to transmit/receive CAMs to/from a commercial device. The project              
focused on the delivery of CAMs by implementing the CA basic service that is a               
mandatory ITS facilities layer entity for all ITS-Ss.  

This chapter details the steps carried out in developing the OBU/RSU, including the             
creation of the CAM application, and the selection and modification of a suitable hardware              
platform that supports IEEE 802.11p. 

 

3.1.    Vanetza Library 

The Vanetza library is an open-source implementation of the ETSI C-ITS protocol suite             
[​23​]. It includes the following protocols and feature, which were utilized in the OBU/RSU              
development.  

● GeoNetworking 
● Basic Transport Protocol (BTP) 
● Support for ASN.1 messages 

As discussed in Section 2.3.3, the GeoNetworking protocol is a network layer protocol             
that uses geographical information in routing packets over the ITS ad hoc network, while              
BTP is responsible for the end-to-end unreliable delivery of packets. In developing the             
source code for the project, we took advantage of Vanetza’s built-in functions that             
implement the services provided by these protocols. Moreover, this library contains           
ASN.1 modules for easy CAM encoding and decoding. 

Vanetza also includes a demo application called ​socktap​, which runs Vanetza on top of              
Linux raw packet sockets allowing it to work without dedicated V2X hardware [​23​]. It has               
several variants; however, for this project, ​socktap-cam was used. This variant           
periodically sends CAMs, and as such, it could be readily used to function as the CAM                
transmitter application. On the other hand, the source code for the CAM receiver             
application needed to be developed from scratch.  

 

3.2.    CAM Receiver Source Code 

The central idea when creating the CAM receiver application was being able to correctly              
receive and parse all the incoming CAMs. Some of the built-in functions needed were              
actually private functions in the Vanetza library. In order to have access on a number of                
specific variables, these functions were copied as is to the ​rcv_parse.cpp​. 
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The CAM receiver started by defining a buffer in ​router_context.cpp​. This buffer            
continuously received the CAMs that were periodically transmitted by the ​socktap-cam           
application. 

The contents of the buffer were then processed layer-by-layer in ​rcv_parse.cpp​. The            
parsing of the received message started from the physical layer, where 0 byte was              
assigned. Moving on to the link layer, the 14 bytes represented the source (6 bytes),               
destination (6 bytes) and ether type (2 bytes), which was set to ​0x8947 for ITS               
GeoNetworking. In the GeoNetworking layer, only the Basic and Common headers were            
processed. The optional extended header was skipped, as the project always assumed            
single-hop broadcast and disabled security attributes for simplification. The payload size           
following the GeoNetworking header was indicated in the Common header. As BTP had a              
fixed 4 bytes for its header, the remaining bytes corresponded to the CAM itself, which               
was handled in the upper layer. Vanetza included built-in containers that help to easily              
decode the CAM. This parsing process was repeated for each of the CAM received. 

Note that, depending on the Vanetza version in use, it may be necessary to make some                
adjustments to properly represent certain field values included in the CAM. In this project,              
modifications were made in the data representation of the speed and geographical            
information (latitude, longitude). 

 

3.3.    Setting up the CAM Transmitter and Receiver Environment 

This section provides a brief description on how to set up the CAM transmitter and               
receiver applications that were key components of the OBU/RSU project. The commands            
corresponding to the following procedure are listed on Appendix A.1. As mentioned in             
Section 3.1, both applications used Vanetza to implement specific protocols and features.            
For this reason, the first step was to obtain Vanetza from [​23​], and subsequently, install               
and compile the library along with the software dependencies. 

Following this, the applications must be compiled. Since both of them build upon raw              
packet sockets, it was necessary to run them with special privileges [​23​]. Moreover, the              
GPS functionality was a prerequisite. In this project, a GPS signal was emulated instead              
of using a GPS receiver. In this case, a recorded GPS file was played in the background                 
while running the application, as discussed in Appendix A.2. 

With no error occuring, both applications were executed. The initial testing was done             
using only the loopback interface (i.e., no hardware platform needed). In this setup, it was               
necessary to start the applications in separate command windows of the local PC. 

 

3.4.    Implementation using Raspberry Pi 

Raspberry Pi is a low-cost, credit card sized computer, which was originally intended to              
promote education by making the platform accessible to everyone who wants to learn             
how to program. Same with a standard computer, several peripherals could be            
connected, including a monitor, keyboard, mouse, etc. The recent models offer more            
advanced functionalities, such as support for bluetooth, Power-over-Ethernet (PoE) and          
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dual-band WiFi (2.4GHz/5GHz) [​24​]. Moreover, the Raspberry Pi boasts a number of            
advantages with its low price, small size, customizability and availability in the market.             
Taking these into consideration, the Raspberry Pi 3 Model B+ was the selected hardware              
platform to implement the OBU/RSU during the initial stages of the project development.             
At the time of working on the project, this was the latest model of Raspberry Pi, with the                  
specifications available in [​24​]. The Emlid Raspbian was used as the operating system             
[​25​].  

 

 

Figure 14​. Raspberry Pi 3 Model B+ [​24​] 

 

3.4.1.    OBU/RSU Testing using Raspberry Pi 

The first attempt to test the OBU/RSU project using an actual hardware platform was              
using the Raspberry Pi. In this case, two devices were employed, one continuously sent              
CAMs, while the other received and displayed the message contents in the command             
line. The first thing to do was to download the files to the Raspberry Pis, and then install                  
and compile all the necessary programs as explained in Section 3.3. Before being able to               
proceed with the testing, an ad hoc network must be configured to enable wireless              
communication between the two devices. The process of setting up an ad hoc network is               
detailed in Appendix A.3. Afterwards, the CAM transmitter was executed on one            
Raspberry Pi, and the receiver on the other device. At this point, it was confirmed that                
both applications were working properly using the Raspberry Pis. 

The next step was to configure the devices to operate using the IEEE 802.11p              
frequencies. This was crucial for the OBU/RSU project to be able to work with commercial               
OBU/RSUs, which utilize the 5.9 GHz frequency band. By default, the Raspberry Pi 3              
Model B+ supports 5 GHz WLAN, and as such, modifications had to be made to tune it to                  
the desired ITS frequencies.  

One good reference for the implementation of IEEE 802.11p on Linux is [​17​]. It presented               
a detailed guide on how to modify the ATH9K driver to work with IEEE 802.11p. ATH9K is                 
a Linux kernel driver for Atheros PCI/PCI Express (PCIe) wireless cards, with the             
compatible chipsets/devices listed in [​26​]. Unfortunately, after doing some research, it           
was concluded that the current Raspberry Pi models are unable to operate using IEEE              
802.11p as they do not support PCI interfaces. Thus, it was necessary to implement the               
OBU/RSU project using a different hardware. 

35 
 



aspMore 

 

3.5.    Implementation using APU2 

The APU2 platform developed by PC Engines is a single-board computer for networking.             
Although it is not as small as the Raspberry Pi, it offers similar advantages such as cheap                 
price and ease of purchase. More importantly, APU2 is a suitable device that meets the               
hardware requirements discussed in the previous section. It has two mini PCIe slots,             
along with the several features listed in [​27​]. 

 

 

Figure 15​. APU2 platform [​27​] 

 

The wireless module used is the WLE200NX [​28​]. This mini PCIe module also supports              
both 2.4 GHz and 5 GHz WLAN, similar to the Raspberry Pi 3 Model B+. A key difference                  
is that it uses the Qualcomm Atheros AR9280 chipset, which is compatible to the ATH9K               
kernel driver. As such, it was then possible to modify the driver to support IEEE 802.11p. 

 

Figure 16​. WLE200NX wireless module [​28​] 
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3.5.1.    Linux Wireless Architecture 

As mentioned in Section 2.3.4, one of the MAC layer modifications specific to IEEE              
802.11p is the introduction of the OCB mode. In the latest Linux kernel versions, this               
mode could be enabled using the kernel configuration menu. However, further           
modifications have to be made in the ATH9K kernel driver to fully implement IEEE              
802.11p on a Linux system [​17​].  

Before diving into the detailed procedure of how to modify the driver, an overview of the                
Linux wireless architecture, depicted in ​Figure 17​, will be briefly discussed. Applications            
and processes run in the user space on top of the kernel space, while the hardware                
device drivers can be found at lowest level of the architecture.  

 

 

Figure 17​. Linux wireless architecture [​16​] 

 

● mac80211 

mac80211 ​is a framework for developing Soft MAC drivers. Wireless cards can             
be classified as either a Full MAC (also known as Hard MAC) or Soft MAC. The                
difference between the two is that the former manages the IEEE 802.11 MAC             
Sublayer Management Entity (MLME) in the hardware, while the latter,          
implements it in the software. The MLME is a management entity where the PHY              
MAC state machines reside. Soft MAC is more commonly used nowadays, as it             
enables more precise control of the hardware, including the implementation of the            
IEEE 802.11 frame management in software [​29​]. 

● cfg80211 

cfg80211 ​is a configuration API for IEEE 802.11 Linux-based devices. It acts as              
a link between the user space and the drivers. Full MAC drivers target ​cfg80211​,              
as ​mac80211 is only for Soft MAC devices. Moreover, it provides support for             
regulatory compliance through the use of ​wireless-regdb​ and ​CRDA​ [​29​]. 

● nl80211 

nl80211 ​is used to configure ​cfg80211​. Using the Netlink socket, it enables the              
communication between the user space and the kernel. It is responsible for the             
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user space part of the configuration management of wireless devices, while           
cfg80211 ​is for the kernel space [​29​]. 

● iw 

iw ​is a Command-Line Interface (CLI) utility based on ​nl80211 ​and is used for                
configuring wireless devices [​29​]. 

● wireless-regdb 

The ​wireless-regdb is a regulatory database used by ​CRDA​. Each country has            
its own regulations on frequency allocation and acceptable transmission power          
levels. These are specified in the ​wireless-regdb to help ensure regulatory           
compliance. The database is conveniently placed in the user space, so that            
changes could be performed without upgrading the kernel. Moreover, together          
with the database, an RSA signature is embedded in the generated binary file             
(​regulatory.bin​) to ensure the authenticity of the file [​29​].  

● CRDA 

The ​Central Regulatory Domain Agent ​(​CRDA​) in the user space uploads               
the wireless regulatory domain into the kernel. The kernel triggers the CRDA once             
it has detected changes in the regulatory domain [​29​]. 

 

3.5.2.    ATH9K Driver Modifications 

This section describes how to modify the ATH9K Linux kernel driver to support IEEE              
802.11p. The complete list of commands is available in Appendix A.4.  

The basic requirement to start this process was to download the Linux kernel from [​30​].               
The kernel version used was 4.20.7, which was the latest stable kernel at the time of                
developing the project. The functionalities supported by the kernel depend on its version.             
For instance, the OCB mode has been implemented from version 3.19. As the project              
used a much later version, this operation mode was already available in the kernel              
configuration menu. 

After obtaining the Linux kernel source file and installing the software dependencies, the             
following ATH9K driver source codes had to be modified.  

● drivers/net/wireless/ath/ath9k/ani.c 
● drivers/net/wireless/ath/ath9k/common-init.c 
● drivers/net/wireless/ath/ath9k/hw.h 
● drivers/net/wireless/ath/ath9k/main.c 
● drivers/net/wireless/ath/regd.c 

Details about the changes are specified in Appendix A.5. In order to support IEEE              
802.11p, the modifications were related to enabling the OCB mode and ITS-G5            
frequencies, as well as updating the number of channels. As mentioned above, it is              
possible that these changes have already been incorporated in the later kernel versions.             
Thus, it is advisable to check before modifying them. 

The next step was to configure the kernel modules to be included. To ensure the validity                
of the kernel configuration file, an option was to copy the configuration file of the currently                
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running kernel. After obtaining this, executing the ​make menuconfig command           
launched the kernel configuration menu, where the kernel modules could be           
enabled/disabled accordingly. Several options were shown, including those related to the           
components of the Linux wireless architecture discussed in the previous section. The            
configuration used in the project is presented in Appendix A.6, where the settings in the               
paths listed below were examined. In particular, ​Verbose OCB debugging must be              
enabled. 

● Networking support > Wireless 
● Device Drivers > Network device support > Wireless LAN 
● Networking support > Wireless > Select mac80211 debugging               

features 

Following this, compile the kernel for the changes to take effect, then install the kernel               
modules and the kernel. It was also necessary to enable the kernel for boot and restart                
the system, as explained in Appendix A.4.  

 

3.5.3.    Verifying ​iw 

As discussed in Section 3.5.1, ​iw ​is used to manage WLAN in Linux, much like the                 
ifconfig for wired networks. The procedure for setting up ​iw is detailed in Appendix              
A.7. Note that it is important to check if the running ​iw version supports the OCB mode.                 
This was done by entering the following command, with the expected output also             
specified below. 

 

$ /sbin/iw | grep -i ocb 

dev <devname> ocb leave 

dev <devname> ocb join <freq in MHz> <5MHZ|10MHZ> [fixed-freq] 

Figure 18​. Testing the ​iw​ program 

 

3.5.4.    ​wireless-regdb​ Modifications 

wireless-regdb is a regulatory database that helps ensure compliance with the           
regulations enforced by each country. The procedure for setting up the           
wireless-regdb​ is explained in Appendix A.8. 

One of the challenges encountered when implementing IEEE 802.11p on Linux was the             
modification of ​db.txt to add the ITS-G5 channels and transmission power values. With             
reference to [​17​], the initial goal was to add a new country ​AA (in ​db.txt​), and under                 
which, the said channels and power values were to be specified. Ideally, issuing the ​iw               
reg set AA command changes the wireless regulatory domain in use to ​AA​.               
Subsequently, the corresponding changes in ​db.txt will be reflected upon executing the            
iw reg get and ​iw list commands. However, after several trials, this method did not                  
work. Instead, the ITS-G5 channels could not be enabled when trying to add them by               
creating a new country ​AA​. A possible cause was that the Atheros wireless card used in                
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the project was limited to the pre-defined countries only, and as such, it did not allow the                 
use of non-existent countries like ​AA​.  

A workaround was to add the channels and power values under an existing country, such               
as ​country ES​, depicted in Appendix A.8. Moreover, it was necessary to set              
CTRY_SPAIN in ​regd.c as indicated in Appendix A.5. After doing these modifications,            
make sure to restart the system for the changes to take effect. At this point, the ITS-G5                 
channels and power levels were then displayed when issuing both the ​iw reg get ​and                  
iw list​ commands. 

 

 

Figure 19​. ​iw reg get​ output 

 

 

Figure 20​. ​iw list​ output 
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3.5.5.    Verifying ​CRDA 

The procedure for setting up the ​CRDA is presented in Appendix A.9. It involved copying               
the public keys installed by the ​wireless-regdb​, and generating the          
regulatory.bin file. To verify that everything was configured correctly, the following           
command was issued, which specifically checked the ​CRDA and ​regulatory.bin​. The           
expected output is shown below. 

 

$ sudo /sbin/regdbdump /lib/crda/regulatory.bin | grep -i ocb 

country 00: invalid 

  (5850.000 - 5925.000 @ 20.000), (20.00), NO-CCK, OCB-ONLY 

Figure 21​. Testing ​CRDA​ and ​regulatory.bin 

 

3.5.6.   OCB Interface and IEEE 802.11p Channel Configuration 

After enabling the ITS-G5 channels, the next step was to create an OCB interface by               
configuring a wireless interface to OCB mode. This OCB interface was then used in              
attempting to join an IEEE 802.11p channel. The detailed procedure is explained in             
Appendix A.10. 

To verify whether the whole process was successful, the ​iw dev and ​iwconfig              
commands were used. In the following figures, it was confirmed that the OCB interface              
was indeed able to join an ITS-G5 channel. In particular, this channel was the Control               
Channel (CCH), which had a center frequency of 5900 MHz, channel number of 180 and               
channel spacing of 10 MHz. At this point, we had successfully implemented IEEE             
802.11p on a Linux system. It was then possible to test applications implemented in the               
upper layers, such as transmitting and sending CAMs using the ITS-G5 frequencies. Note             
that following this procedure, it was necessary to set up the Vanetza library and CAM               
applications in the APU2 device as specified in Section 3.3. 
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Figure 22​. ​iw dev​ output 

 

 

Figure 23​. ​iwconfig​ output 
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4.    IEEE 802.11p-based Simulator Enhancement 

This chapter provides an overview of the existing IEEE 802.11p-based simulator,           
including details about extending its functionality to enable the experimental evaluation of            
the CA basic service. It also describes the scenarios and parameter configurations            
utilized in the simulations. 

 

4.1.    Simulation Framework Overview 

The IEEE 802.11p-based simulator is composed of several simulation frameworks of           
different functionality. This section provides an overview of the simulator architecture           
illustrated in ​Figure 24​. 
 

 

Figure 24​. Simulation Framework Overview [V2X-Arch] 

 

The Objective Modular Network Testbed in C++ (OMNeT++) is an extensible and            
modular simulation library and framework [​31​]. It works by assembling individual           
components/modules (written in C++) to larger components and models using NED,           
which is a network description language for creating network topologies. This modularity            
makes it easy for the models to be reused and incorporated to different applications.              
Moreover, although OMNeT++ is mainly used for building network simulators, it is also             
considered as a network simulation platform by its growing number of users. Model             
frameworks are often used in conjunction with OMNeT++ to implement more specific            
functionalities. 

The INET simulation framework is an open-source library containing various models to            
simulate communication networks, and is particularly written for the OMNeT++          
environment [​31​]. Some of its features include models for the Internet stack (IPv4, IPv6,              
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TCP, UDP) and wired/wireless interfaces (Ethernet, IEEE 802.11), and support for           
physical environment modelling (propagation model, presence of obstacles). Moreover,         
INET could be used as a base for creating other simulation framework such as Veins. 

The Veins simulation framework is an open-source library consisting of numerous models            
specific to vehicular networking [​32​]. For instance, it has an IEEE 802.11p model, which              
includes multi-channel operation, QoS channel access and noise/interference effects.         
Veins simulation requires parallel execution of two simulators, namely OMNeT++ (for           
network simulation) and SUMO (for road traffic simulation). The interaction between these            
simulators is made possible using a TCP socket and a standardized protocol known as              
the Traffic Control Interface (TraCI). As such, the movement of vehicles in SUMO is              
represented as the movement of nodes in OMNeT++. 

Simulation of Urban MObility (SUMO) is an open-source road traffic simulator [​33​]. It             
allows the creation of different road topologies for simulation, such as freeway and             
Manhattan grid scenarios, as well as the experimentation of various mobility models.            
Moreover, it is microscopic, as vehicles are individually modelled (including vehicle color,            
shape, maximum speed, route), and move independently through the network. By default,            
the simulations are deterministic, with the option of adding randomness to the simulation. 

Artery was originally developed as an extension of Veins, although, it could now be used               
independently [​34​]. Artery corresponds to the application and facilities layers, which           
enable the generation of CAMs and DENMs. Moreover, Artery’s middleware provides           
common facilities to the multiple ITS-G5 services running on individual vehicles. 

Lastly, Vanetza is an open-source implementation of the ETSI C-ITS protocol suite. In             
particular, it implements the GeoNetworking (for routing) and BTP (for transport)           
protocols, and supports ASN.1 messages (CAM, DENM)  [​23​]. 

 

4.2.    IEEE 802.11p Simulator Functions 

This section provides a brief description of the functions that were created and modified              
to extend the functionality of the existing simulator. These functions were designed and             
programmed in order to be able to acquire the statistics, which were defined according to               
the goals of the project.  

 

4.2.1.    ​GlobalMapper 

The ​GlobalMapper function (in ​artery/src/artery/application​) maintains a       
global database that keeps track of all the nodes present in the scenario. Each entry in                
the database represents a single node, and has the following information: 

● Node name 
● Module name of node 
● TxTime​ - current simulation time during CAM generation 
● TxPos​ - position of transmitting node during CAM generation 
● TxVel​ - speed of transmitting node during CAM generation 

The node itself uploads these information to the database whenever it generates and             
periodically sends a new CAM. This ensures that these information are constantly being             
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updated/refreshed, so that the ​GlobalMapper is always aware of the current status of all              
nodes at any given time. 

 

4.2.2.    ​CaService 

The ​CaService function (in ​artery/src/artery/application​) is responsible for        
checking the CAM trigger conditions, as well as generating and transmitting the CAMs. It              
includes a step-by-step process of creating these messages using the CAM containers            
discussed in Section 2.4.1. Moreover, this is where the node updates the ​GlobalMapper             
of its latest status information (position, speed, etc.) every CAM generation instance. The             
function also implements an empirical way to know the average speed of each node, by               
dividing the total time spent in the scenario over the total distance travelled. 

 

4.2.3.    ​Rx 

The ​Rx function (in ​artery/extern/inet/src/inet/linklayer/ieee80211/     
mac​) handles the reception of CAMs from other nodes. It counts the following statistics in               
the link layer: 

● Total number of received packets 
● Total number of correctly received packets 
● Total number of erroneous packets received 

As these are taken in the link layer, they do not include the packets that were filtered out                  
based on power-related threshold values in the physical layer, namely the Receiver            
Sensitivity, Energy Detection and SNIR threshold. Moreover, the error model used is the             
Ieee80211NistErrorModel​, which is a readily available model for IEEE 802.11          
network interfaces. It works by using the SNIR value in the computation of the BER. 

Each (receiving) node maintains a local database called ​lastKnownPos​. It stores the            
following information for all of the surrounding (transmitting) nodes.  

● startEntry​ - current simulation time when database was updated 
● lastPos​ - last known position of the transmitting node 
● TxRxDist​ - distance from the transmitting node 

Each database entry represents a single (transmitting) node. The corresponding entry is            
updated whenever a CAM is correctly received from a surrounding node. In effect, the              
receiving node is able to keep track of all of its neighboring vehicles, with their perceived                
position/distance constantly being updated in its local memory. As such, it can detect             
when a neighboring vehicle is already too close compared to a defined safe distance.              
This information is especially useful in applications such as collision avoidance warning.  

The database is periodically checked every 100ms to ensure the validity of its entries.              
Moreover, an expiry time of 2s (or 20 CAMs for a CAM transmit frequency of 100ms) is                 
configured. That is, when an entry is not updated after 2s in the database, it is                
automatically deleted. 
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4.2.4.    ​SystemMonitor 

The ​SystemMonitor (in ​artery/src/artery/application​) is a new function        
mainly created for statistics collection, and providing better data representation and           
visualization of results. During the initial stages of the project development, the results             
were plotted using solely the OMNeT++ analysis file, which placed a constraint on the              
way graphs were created (i.e., limited to the built-in features of OMNeT++). To solve this               
problem, the ​SystemMonitor function was developed to allow customizing the plots by            
being able to modify more properties. For instance, it allows changing the number of bins               
to adjust the granularity of the histograms. Moreover, it is capable of exporting the raw               
data into an Excel/csv file, giving more freedom on how results would be post-processed.              
In this way, it helps in analyzing and understanding the results better by using more               
effective visualizations.  

 

4.3.    SUMO Scenario 

This section details the the creation of different road topologies and mobility scenarios             
using the SUMO simulation framework. 

 

4.3.1.    SUMO Files 

Each scenario is created using three SUMO files [​35​], which are located in             
v2x-arch_11p/artery/scenarios/artery/my_roads​.  

 

4.3.1.1.    Network File (​*.net.xml​) 

The network file contains the description of the physical topology of the scenario. This              
may include the roads, intersections, traffic logics and even roundabouts. Using the            
SUMO naming convention, the roads or streets are referred to as edges, and the              
intersections as junctions or nodes. That is, two edges are connected by junctions. ​Figure              
25​ shows the contents of the network file.  

 

 
Figure 25​. SUMO network file 

 

The ​location field specifies details about the network projection in case the original             
network was not using Cartesian coordinates, and therefore, needed to be transformed.            
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The ​edge field describes the created lanes including the allowed type of vehicles (or              
pedestrian), speed limit, lane length and geometry. The ​junction field defines the lanes             
that the junctions connect. 

The network file may be created using a tool called NETEDIT. It is a graphical editor for                 
creating and modifying networks, as illustrated in ​Figure 26​.  

 

 
Figure 26​. NETEDIT 

 

4.3.1.2.    Routes File (​*.rou.xml​) 

The routes file specifies the vehicle types and routes for the vehicles in the simulation.               
The ​vehicles type field includes the physical properties of the vehicle, such as shape               
and color, as well the maximum speed and minimum gap from the vehicle ahead.              
Different routes are identified by their ​route id​, and each of them defines the relevant                
edges and direction of movement of vehicles (e.g., going to the right). Moreover, a ​flow               
contains the following information, which control how the vehicles are inserted in the             
scenario and how they behave during the simulation. 

● type​ - vehicle type previously defined  
● begin​ - departure time of first vehicle 
● period​ - insertion period of vehicles 

47 
 



aspMore 

● end​ - departure time of last vehicle 
● departLane​ - lane on which the vehicle will be inserted 
● departSpeed​ - speed with which the vehicle will enter the scenario 
● departPos​ - position at which the vehicle will enter the scenario 
● route​ - route of vehicle previously defined 

 

 
Figure 27​. SUMO routes file 

 

4.3.1.3.    Configuration File (​*.sumo.cfg​) 

The configuration file specifies the associated network and routes files for a given             
scenario. Moreover, it is possible to configure the ​step-length​, which is the granularity             
of the simulation and has a minimum value of 1 ms. It also corresponds to the time                 
interval with which vehicle positions are updated. 

 

 
Figure 28​. SUMO configuration file 

 

The parameter values are given in meters (for distance), seconds (for time) and meters              
per second (for speed). As detailed in [​35​], other values may be configured, apart from               
those used in the project. Moreover, additional attributes may be defined in the SUMO              
files. This allows customizing the scenarios according to the requirements and individual            
goals of the simulations. 
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4.3.2.    Physical Topologies 

Different road topologies were used in the project. One of which was the highway              
scenario, which simulated direct line-of-sight (LOS) conditions and non-stop driving (i.e.,           
no traffic lights, intersections). The other one was the Manhattan grid scenario, which             
helped in understanding the effects of walls and buildings, as well as intersections.             
Moreover, the project defined a statistical region in the scenarios, highlighted in red             
below. Statistics were only recorded in this area to eliminate border effects. For instance,              
less vehicles may be present at either end of the highway scenario compared to its               
central region, and this consequently affects the carrier sense mechanism employed by            
IEEE 802.11p. Although the exact coordinates of the statistical area are given below,             
these could be readily modified in the ​omnetpp.ini​ file, as discussed in Appendix B.2. 

 

4.3.2.1.    Highway Scenario 

The length of the highway was 1000 m, with the statistical region corresponding to the               
central 400 m (i.e., 300m < x < 700 m). In ​Figure 29​, the highway had only four lanes,                   
with each lane having a width of 3.2 m. However, the scenario could be easily configured                
using NETEDIT to have varying number of lanes. In the project, 4-, 8- and 16-lane               
highways were used. Moreover, both unidirectional and bidirectional scenarios were          
created to deduce any implication on the system performance. For instance, a 4-lane             
bidirectional highway scenario had 2 lanes in each direction. 

 

 
Figure 29​. 1km highway scenario 

 

4.3.2.2.    Manhattan Grid Scenario 

The Manhattan grid scenario measured 445 m x 445 m, with the statistical area bounded               
by 30 m < x < 375 m and 111.25 m < y < 333.75 m, which was an approximation of the                      
central region of the grid. The presence of walls could also be configured in              
omnetpp.ini​. 
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Figure 30​. Manhattan grid scenario 

 

4.3.3.    Classification of Vehicle Speed and Density 

Defining different vehicle speeds was an effective way to understand how the CA basic              
service performed in sparse and dense situations. Slow vehicle speed translated to dense             
environments with more vehicles being packed in the scenario. On the contrary, vehicles             
moving fast required greater braking distance, and thus, less vehicles fit into the same              
scenario, creating light vehicle density. 

The following are the different factors affecting the vehicle speed in SUMO [​35​].  

● Maximum vehicle speed (in ​*.rou.xml​)  
● Maximum lane speed (in ​*.net.xml​) 
● speedFactor​, which is a speed multiplier (not used in the project) 
● Car-following model, which defines vehicle speed in relation to the vehicle ahead 

There are different car-following models available. However, the project used the           
default model that is the ​carFollowing-Krauss​. Basically, this model always          
selects the maximum speed safe enough for the vehicles to be able to stop before               
any collision occurs. 

● departSpeed​ and ​arrivalSpeed​ (in ​*.rou.xml​) 

departSpeed is the speed with which the vehicle enters the scenario, while            
arrivalSpeed is the speed when the vehicle reaches its destination or leaves            
the scenario. 

Each sets an upper bound, but the actual speed implemented is the minimum speed              
resulting from all of these factors. A simple and effective way to control the speed was to                 
assign different values for the maximum vehicle speed (​maxSpeed​) in ​*.rou.xml as            
explained later in this section. 
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The ​minGap parameter in ​*.rou.xml could also be configured to control the vehicle             
density. ​minGap is the empty space after the vehicle ahead. While the default value is 2.5                
m, the project used 2 m to fit in more vehicles in the scenario. Moreover, ​departPos                
parameter in ​*.rou.xml ​was set to ​random to populate the scenario with vehicles              
faster. Configuring this to ​random allowed the vehicles to enter the scenario in any              
position. This was in contrast to having all the vehicles enter the scenario through the               
same entry point, such as from the leftmost side of the highway scenario. 

In the project, the following classification was defined according to the maximum vehicle             
speed (​maxSpeed​) specified in ​*.rou.xml. 

 

Classification of Speeds Maximum Vehicle Speed [m/s] 

Fast 33.33 

Moderate 17.00 

Slow 3.00 

Table 15​. Vehicle speeds 

 

Table 16 lists down the average number of vehicles in different highway scenarios, which              
turned out to be the same for the unidirectional and bidirectional cases. As the highway               
spans 1 km in length, an approximation of the vehicle density was obtained by dividing               
the average number of vehicles by the number of lanes. This resulted to the number of                
vehicles per km per lane. ​Figure 31 shows the relationship between the vehicle speed              
and density. 

 

 
Classification of 
Vehicle Speeds 

Approximate number of vehicles in the 
scenario 

 
Vehicle Density 

[vehicles/km/lane] 
4 Lanes 8 Lanes 16 Lanes 

Fast 145 290 586 37.00 

Moderate 216 420 845 53.00 

Slow 357 706 1421 89.00 

Table 16​. Average number of vehicles in different bidirectional highway scenarios 
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Figure 31​. Relationship of vehicle density and speed 

 

4.4.    Simulation Parameters 

Table 17 provides a summary of the parameters used in the simulations. These             
parameters could be readily configured in the ​omnetpp.ini file, as detailed in Appendix             
B.2. 

 

Category Parameter Value 

Node Operation mode 802.11p 

Carrier frequency 5.9 GHz 

Bandwidth 10 MHz 

Channel number 180 

Modulation BPSK 

Bitrate 6 Mbps 

Transmitter power  200 mW 

Receiver sensitivity -95 dBm 

Energy detection -95 dBm 

SNIR threshold 16 dB 

Medium Obstacle loss type {dielectric, ideal, “ “} 
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Path loss type Rayleigh fading 

Path loss alpha 3 

Background noise type Isotropic scalar 

Background noise power -110 dBm 

Scenario Topology {bidirectional highway, unidirectional highway, grid} 

Maximum vehicle speed {3, 17, 33.33 m/s} 

CAM message period {100, 200, 500, 1000 ms} 

Mobility model Krauss (default) 

Simulation time limit {50 s (highway), 500 s (grid)} 

Warm-up period {25 s (highway), 300 s (grid)} 

Table 17​. Simulation parameter values used 

 

The parameter values used to model the individual nodes were selected based on those              
specified in the standards. In accordance to ​Table 11​, a control channel (CCH) was used,               
with 10 MHz of bandwidth centered at 5.9 GHz, channel number of 180 and default data                
rate of 6 Mbps. The nodes were configured to transmit with a power of 200 mW or 23                  
dBm, which was well below the 33 dBm power limit. The receiver sensitivity was set to                
-95 dBm, with reference to the power measurements cited in the specifications of             
commercial V2X devices. 

The radio medium was modelled using the Rayleigh fading profile, which allowed            
simulating highly dense urban environments without direct LOS between the          
communicating nodes. The corresponding alpha values for urban areas ranged from 2.5            
to 3.5, from which a value of 3 was arbitrarily chosen to be used in the simulations. The                  
physical environment allowed more realistic simulations by enabling or disabling the           
walls/buildings in the scenario through the obstacle loss type field. Setting the field to              
either dielectric or ideal enabled the walls, while leaving it blank disabled them. The              
properties of the walls could be configured in the ​walls.xml​ file. 

The default road topology was the bidirectional highway scenario, although in some            
cases, the unidirectional highway and grid scenarios were also simulated to understand            
the impact of certain parameters. Depending on the scenario, the value of the warm-up              
period and the simulation time differed. Statistics were recorded only upon reaching the             
warm-up time in the simulation. For this reason, the value of the warm-up period was               
selected such that the scenario had reached steady-state conditions by the time the             
statistics were started to be recorded. The ETSI specification indicates that the CAM             
generation period ranges from 100 to 1000 ms [​13​]. Simulations were conducted while             
varying the transmit period to deduce its impact on performance. 
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5.    Results 

This chapter is mainly divided into two sections, presenting the results and analyses for              
the two subtasks of the project. 

 

5.1.    On-board/Roadside Unit 

As detailed in Section 3.5, the modification of the different entities belonging to the Linux               
wireless architecture was central to the development of an open-source, low-cost           
OBU/RSU that supports IEEE 802.11p. In order to check the validity of the entire              
procedure, as well as the operation of the newly-developed CAM application, the system             
was tested using a commercial V2X platform, that is, the Cohda Wireless MK5 OBU              
shown in ​Figure 32​. The test was also meant to prove the interoperability of the               
developed OBU/RSU with commercial devices, which was one of the goals of the project. 

 

 
Figure 32​. Cohda Wireless MK5 OBU [​36​] 

 

5.1.1.    OBU/RSU Testing 

The test setup consisted of the OBU/RSU project and the commercial Cohda Wireless             
MK5 OBU. Both devices are capable of transmitting and receiving periodic CAMs. For the              
testing, one device was set to be in transmit mode while the other device was set to be in                   
receive mode, and then their roles were switched afterwards.  

In order to monitor the flow of packets in real time, the CAM applications were               
programmed to continuously print CAM information in the command line, as depicted in             
the following figures.  
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Figure 33​. CAM transmitter application 

 

 

Figure 34​. CAM receiver application (part 1) 
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Figure 35​. CAM receiver application (part 2) 

 

The CAM transmitter application in ​Figure 33 could be seen sending periodic CAMs with              
a message size of 99 bytes to the destination broadcast address ​ff:ff:ff:ff:ff:ff​.            
In the initial part of the transmission, the application took a few seconds to retrieve the                
device’s GPS coordinates, which, for this project, were acquired from an emulated GPS             
signal playing in the background (in a separate command window). The GPS coordinates             
were necessary because without a valid position, the application was not able to             
successfully transmit CAMs. Moreover, looking at the executed command, the application           
sent the packets through the ​ocb0 interface that was configured to join and use the 5.9                
GHz channel, as discussed in Section 3.5.6. This configuration was verified during the             
testing, where the CAMs transmitted by the APU2 using IEEE 802.11p were successfully             
received by the Cohda device. 

In ​Figure 34 and ​Figure 35​, the contents of the packets received by the CAM receiver                
application were printed out in the command line and were classified according to the              
different ITS layers. An analysis of the CAM message fields is presented in the next               
section using a Wireshark capture. Same as with the transmitter, the CAMs coming from              
the Cohda device were received through the configured ​ocb0 interface that uses the 5.9              
GHz channel. At this point, the proper operation of both the CAM transmitter and receiver               
applications were confirmed. Moreover, being able to continuously transmit and receive           
using the IEEE 802.11p channel also verified the configurations previously made in the             
Linux wireless network. The developed OBU/RSU was proven to be functioning as            
expected and interoperable with a commercial V2X platform.  
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5.1.2.    Analysis of CAM Fields using Wireshark 

While displaying the CAM contents in real time using the command line provided a quick               
way to view them, it did not offer the functionality of recording the packets for offline                
analysis. For this reason, Wireshark, a well-known network packet analyzer, was used            
during the testing. In particular, the CAMs coming from the Cohda device and received by               
the developed OBU/RSU were captured, as illustrated in ​Figure 36​. Note that a special              
dissector was utilized in order to decode the CAM, which was not possible with the               
standard Wireshark releases. This section aims to discuss and interpret the different            
message fields of a CAM. In addition, it verifies whether the contents are in accordance               
with the ETSI standards discussed in Section 2.3, where a description of the ITS layers               
and packet header structure is provided. 

 

 
Figure 36​. Wireshark capture of a CAM 

 

Figure 36 shows the contents of a 102-byte CAM, with 14 bytes belonging to the Ethernet                
II field of the ITS access layer. As the CAM originated from the Cohda device, the source                 
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field was set to the device’s MAC address, while the destination was a broadcast              
address. The ether type was ​0x8947​, specifically corresponding to ITS GeoNetworking. 

Several information were included in the GeoNetworking field, which was mainly divided            
into the mandatory Basic and Common headers, as well as the optional Extended             
header. The Basic header took up 4 bytes, with its contents briefly described in ​Table 6​.                
Based on the Wireshark capture, the GeoNetworking protocol version used was 1; the             
next header was set to 1, indicating that the Common header followed next; and the               
values for the lifetime and remaining hop limit were also specified. 

GeoNetworking’s Common header amounted to 8 bytes, and its fields are defined in             
Table 7​. The next header was set to 2, meaning the header following GeoNetworking was               
BTP-B. The values of the header type and subtype could be decoded by referring to               
Table 8​, which in this case, indicated topologically-scoped single-hop broadcast. The           
traffic class ID used in the data traffic prioritization had a value of 2 that pertained to                 
CAM, as specified in ​Table 12​. The flag indicates that the ITS-S was a mobile station.                
The payload length corresponded to the packet size following the GeoNetworking header.            
In this case, the 48 bytes belonged to the BTP and CAM (in the ITS facilities layer). As                  
mentioned in Section 3.2, the Extended header was out of scope of the project, but               
further information could be found in [​7​]. 

The BTP field took up 4 bytes in total, which meant that for this specific packet, the                 
message size of the CAM itself was 44 bytes. As specified in GeoNetworking’s Common              
header, the BTP header type was BTP-B that included both the destination port and              
additional port information in its header structure. With reference to ​Table 4​, destination             
port ​2001​ indicated that the ITS facilities layer entity in use was CAM. 

Figure 37 shows the actual contents of a CAM in the ITS facilities layer during the testing.                 
The general message structure is illustrated in ​Figure 12​. As depicted in the Wireshark              
capture, the CAM was broadly grouped into two sections, the ITS PDU header and ​cam               
fields.  

The ITS PDU header specified the version of the ITS message, which was 1 in this case.                 
The ​messageID indicated the type of message, with the value of 2 corresponding to              
CAM, as listed in ​Table 13​. The ​stationID identified the ITS-S from which the CAM               
originated.  

The ​cam part included the CAM payload, which consisted of the message timestamp             
(​generationDeltaTime​) and a number of vehicle containers. The basic container is a            
mandatory container that specifies the type of ITS-S and the geographical position of the              
ITS-S when the CAM was generated. In this case, the ITS-S was a passenger car with                
reference to the mapping of values in ​Table 14​. The ​referencePosition provided            
information about the longitude, latitude and altitude of the ITS-S. 

At least one high frequency container is mandatory in each CAM, and includes dynamic              
or fast-changing attributes. Reference [​13​] specifies the mandatory fields inside this           
container, specifically, the heading, speed, drive direction, vehicle length and width,           
longitudinal acceleration, curvature, curvature calculation mode and yaw rate, which were           
all present in the captured CAM. The acceleration control and lateral acceleration are             
optional, along with the lane position, steering wheel angle, vertical acceleration,           
performance class and CEN DSRC tolling zone. 

58 
 



aspMore 

In addition, there are other containers that may be included, such as the low frequency               
and special containers. These are optional parts of the CAM and could be seen omitted in                
the Wireshark capture. 
 

 

Figure 37​. CAM contents in the facilities layer 

  

5.2.    IEEE 802.11p-based Simulator 

This section presents the results for the experimental evaluation of the CA basic service              
using the modified IEEE 802.11p simulator. Its performance was studied by varying            
different parameters such as the lane count, vehicle speed and CAM transmit frequency.             
For this purpose, a number of performance metrics had been designed and employed,             
including the Packet Reception Ratio, position error (​deltaPosition​), distance error          
(​deltaDistance​), and Neighborhood Awareness Ratio. These were plotted according         
to the Tx-Rx distance, defined as the distance between two communicating nodes  
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Note that in the following sections, only selected figures, corresponding to specific            
scenario configurations, are included and used for analyzing the results. However, the            
complete set of figures are available in Appendix B.5 for reference. 

 

5.2.1.    Packet Reception Ratio 

The Packet Reception Ratio (PRR) is an ITS access layer metric commonly used by the               
scientific community in order to evaluate link reliability. The resulting PRRs of the different              
scenarios were used to better understand the behavior of the upper-layer performance            
metrics that are discussed in the later sections. In this project, PRR was defined as               
follows.  

 

 

 

A CAM is considered to be correctly received when it reaches the MAC layer without               
errors, in addition to satisfying the receiver sensitivity, energy detection and SNIR            
threshold values in the PHY layer. 

 

5.2.1.1.    Effect of Vehicle Speed 

The effect of vehicle speed on the resulting PRR is depicted in ​Figure 38​.  

 

Figure 38​. Effect of vehicle speed on PRR 
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The length of the highway was fixed to be 1 km, and as such, increasing the speed                 
affected the spacing between the vehicles. In the fast speed scenario, the vehicles were              
more spread out. Since the vehicles were moving fast, a large braking distance had to be                
maintained between vehicles, as specified by the ​Krauss car-following model. On the            
other hand, the vehicles were more tightly packed in the slow speed scenario, and thus,               
only required a small braking distance. For instance, taking the 4-lane case in ​Table 16​,               
there were 357 vehicles in the slow scenario, compared to only 145 vehicles in the fast                
scenario. Given these numbers, it could be inferred that the speed is related to vehicle               
density. The fast speed scenario corresponded to low vehicle density, while the slow             
speed scenario implied high density. Given a fixed number of lanes in ​Figure 38​, it could                
be observed that the PRR decreased as the vehicle speed decreased. Slow-moving            
vehicles created a highly dense environment, with more vehicles being packed in the 1              
km highway scenario. This resulted to an increase in interference and packet collisions,             
and more CAMs being lost, which consequently decreased the PRR. This explains why             
the slow scenario had much lower PRR values than the fast scenario. 

 

5.2.1.2.    Effect of Number of Lanes 

The number of lanes had a significant impact on the resulting PRR, since the lane count                
correlated with the number of vehicles present in the scenario. Given a fixed vehicle              
speed, increasing the number of lanes translated to an increase in the total vehicle count               
(i.e., there are more vehicles in a 16-lane scenario than in a 4-lane scenario). As an                
example, considering the case of fast vehicle speed, there were 145 vehicles in the              
4-lane scenario as opposed to the 586 vehicles in the 16-lane scenario, listed in ​Table 16​.                
With more vehicles accessing the channel to periodically send their CAMs, higher            
interference was created and the probability of collisions increased, resulting to more            
packets being lost, thereby decreasing the PRR. This could be observed in ​Figure 39​,              
where there was a significant difference between the PRRs of the extreme cases, the              
4-lane and 16-lane scenarios, considering a fixed vehicle speed. With the 4-lane scenario             
having less vehicles, and thus, having lower interference and collision probability, its PRR             
was much higher than those of the 8-lane and 16-lane scenarios. 

It could also be generally observed in ​Figure 38 and ​Figure 39 that the PRR decreased                
as the Tx-Rx distance increased. The transmitted signal naturally weakened as the            
distance increased due to the noise and propagation effects. However, even at much             
greater distances, there were still few packets being correctly received in some of the              
scenarios. This could be attributed to the random fluctuations in the Rayleigh fading             
model. 
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Figure 39​. Effect of lane count on PRR 

 

5.2.1.3.    Effect of Traffic Flow Direction 

The impact of the traffic flow direction is now studied by comparing the PRRs of a                
unidirectional and a bidirectional highway scenarios. The resulting PRRs are depicted in            
Figure 40​, with both simulations having 4 lanes each and having vehicles running in fast               
speed. 

 
Figure 40​. Effect of traffic flow direction on PRR 
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It could be observed that there was no significant difference between their PRRs. As              
IEEE 802.11p uses the CSMA/CA mechanism for transmitting CAMs, the resulting           
collisions were handled in the same manner, irrespective of the direction of vehicle             
movement. This explains why switching to the unidirectional case did not result to any              
substantial change in the PRR.  

As the PRRs of the unidirectional and bidirectional scenarios were almost the same, the              
bidirectional case was henceforth set to be the default highway scenario in the             
succeeding analyses of the other performance metrics.  

 

5.2.1.4.    Effect of Walls 

In the Manhattan grid scenario, walls can be enabled or disabled to understand their              
effect on PRR. The presence of walls allows for a more realistic simulation of an urban                
environment where actual buildings are situated, thereby affecting signal transmissions. 

 
Figure 41​. Effect of walls on PRR 

 

A comparison of PRRs is presented in ​Figure 41 in the case of a fast speed scenario. It                  
could be observed that disabling the walls in the grid scenario resulted to a PRR               
exhibiting a decreasing trend as the distance between the communicating vehicles           
increased. This is similar to that of the highway topology, where the transmitted signal              
weakened as the distance increased, due to the noise and propagation effects, besides             
the interference caused by neighboring vehicles. When the walls were enabled, the            
resulting PRR was higher than when the walls were disabled. Most of the neighboring              
vehicles that were supposed to cause interference (and decrease the PRR), were out of              
sight and hidden behind the walls. In that case, the walls blocked the interfering signals               
such that they did not affect the good ones, which explains why the PRR was high. The                 
good signals were mostly those coming from vehicles located in the same street (LOS,              
without walls in between) and above receiver sensitivity. On the other hand, when the              
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walls were disabled, the interfering signals directly affected the good ones, and thus, the              
PRR decreased. 

 

5.2.1.5.    Effect of CAM Frequency 

Figure 42 shows the resulting PRRs that correspond to the different CAM generation             
periods in a 4-lane, fast speed highway scenario. It could be observed that the higher the                
period was, the higher was the PRR. Lower periods translated to higher transmission             
frequencies, meaning more CAMs were sent per second. The large volume of CAMs sent              
led to an increase in interference and number of collisions, subsequently decreasing the             
PRR.  
 

 
Figure 42​. Effect of CAM frequency on PRR 

 

5.2.2.    Position Error 

The position error or ​deltaPosition is the difference between the perceived position            
specified in the ​lastKnownPos database and the actual position of a neighboring vehicle             
in the scenario. As discussed in Section 4.2.3, ​lastKnownPos is a local database             
maintained by each vehicle, and acts like a local memory for storing various information              
about neighboring vehicles. Whenever a correct CAM is received, the vehicle updates the             
database entry corresponding to the transmitting vehicle.  

deltaPosition measures how accurate the perceived positions (of neighboring         
vehicles) are every 100 ms, which is an important aspect to increase traffic safety through               
cooperative awareness among vehicles. For instance, the Rx node receives a CAM from             
the Tx node at time ​t​, and registers the Tx node’s position in its ​lastKnownPos               
database. Both vehicles then move, but at time ​t’​, the Rx node has yet to receive a new                  
CAM from the Tx node. For this reason, the Rx node still thinks that the Tx node is still in                    
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the same position as when it last received a CAM from that node (perceived position).               
However, in reality, the Tx node had already moved to a new position (actual position).               
This difference between the perceived and actual positions is referred to as the position              
error. As such, it is ideal to have lower values of ​deltaPosition​, since large ones               
indicate more erroneous readings on the perceived positions. Knowing where and how            
close surrounding vehicles are enables triggering timely warnings in cases where the            
distance between vehicles is less than a defined safe distance. This in turn gives enough               
time for vehicles to make the proper maneuver to avoid road casualties. 

 

5.2.2.1.    Effect of Vehicle Speed 

Considering a fixed lane count and variable vehicle speed, as in the 4-lane highway              
scenario in ​Figure 43​, it could be observed that the ​deltaPosition decreased as the              
vehicle speed decreased. Recall from Section 5.2.1.1 that the speed directly affected the             
vehicle density in the scenario. The slower the vehicles were, the denser was the              
scenario, since more vehicles could be packed in the 1 km highway scenario. The              
presence of more vehicles in the slow scenario, compared to the fast and moderate              
cases, translated to more interference. However, despite losing more packets, it could be             
observed that the position error was lowest for the slow speed scenario. This could be               
attributed to the fact that since the vehicles moved slower, their displacement in the              
scenario was small. Thus, even without correctly receiving a number of CAMs and             
updating the ​lastKnownPos database, the position error for the densest scenario still            
appeared to be low. On the contrary, when the vehicles moved fast, it follows that their                
displacement was large, such that missing even a single CAM led to high position error.  

 

 

Figure 43​. Effect of vehicle speed on position error 
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5.2.2.2.    Effect of Number of Lanes 

The position error is examined in the case of a moderate speed highway scenario while               
varying the lane count, depicted in ​Figure 44​. As previously discussed in Section 5.2.1.2,              
increasing the number of lanes also increased the total number vehicles in the scenario,              
thereby creating higher interference and packet collisions. This explains why the           
deltaPosition ​of the 16-lane scenario was much greater than that of the 4-lane              
scenario. As there was greater interference in the case of the 16-lane scenario, more              
CAMs were getting lost and the corresponding ​lastKnownPos database entries were           
not being updated. The longer these entries were not refreshed, the higher was the              
resulting position error, since the neighboring vehicles continuously moved in the           
scenario causing greater disparity between the perceived and actual positions. 

 

 

Figure 44​. Effect of lane count on position error 

 

5.2.2.3.    Effect of CAM Frequency 

Figure 45 illustrates the impact of the CAM transmit frequency on the position error. In the                
PRR analysis in Section 5.2.1.5, higher CAM transmit frequency (or lower transmit            
period) led to greater interference and more packets lost. However, since the CAMs were              
sent more frequently, the vehicles got updated more frequently as well. As such, despite              
the high risk of packet collisions due to high message traffic, the vehicles received              
enough CAMs to update their database entries, leading to lower position error. In this              
case, the positive impact of sending more CAMs for more frequent database updates was              
more dominant than the negative effect of packet collisions on the position error. 
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Figure 45​. Effect of CAM frequency on position error 

 

5.2.3.    Distance Error 

When the local database of a node is not updated (due to missed CAMs and/or due to a                  
significant discrepancy between the time of update and the time of measuring the             
statistics), there would be a difference between the perceived and actual positions of             
known neighboring nodes, causing a position error. Instead of looking at the difference in              
terms of position, it is also possible to look at the difference in terms of distance. This                 
difference is called the distance error ​or ​deltaDistance​, as illustrated in ​Figure 46​. It is               
ideal to have lower values for the ​deltaDistance since this would indicate that the              
vehicle is up-to-date on the true positions of its neighboring vehicles. 

Figure 47 shows the ​deltaDistance for a 4-lane highway scenario, while varying the             
vehicle speed. As discussed in Section 5.2.1.1, slow scenarios create dense           
environments. The presence of more vehicles in the slow scenario translates to greater             
interference and collision probability, leading to more CAMs being lost. This resulted to             
higher distance errors compared to the fast and moderate cases. When comparing this to              
the ​deltaPosition in ​Figure 43​, it could also be observed that in smaller Tx-Rx              
distances, the ​deltaDistance was lower than the ​deltaPosition​. This behavior is           
also depicted in the left scenario of ​Figure 46​. If we argue that errors in the shortest                 
ranges are more important than errors in longer ranges, this would make            
deltaDistance a less reliable metric than position error, because ​deltaDistance          
gives the impression of having much smaller errors at this range.  

Moreover, as the distance between the two nodes increased, the values of the             
deltaDistance in ​Figure 47 approaches the values of ​deltaPosition in ​Figure 43​.            
This behavior is illustrated in the right scenario of ​Figure 46​. As both ​deltaPosition              
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and ​deltaDistance resulted in more or less the same values in high Tx-Rx distances, it               
could be said that ​deltaDistance​ is redundant.  

Therefore, it has been decided that the ​deltaDistance statistic would not be explored             
any further, as ​deltaPosition​ was decided to be the more insightful metric. 
 

 
Figure 46​. ​deltaPosition​ and ​deltaDistance​ metrics 

 

 
Figure 47​. Distance error in a moderate speed highway scenario 
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5.2.4.    Neighborhood Awareness Ratio 

The Neighboring Awareness Ratio (NAR) is a measure of the cooperative awareness            
achieved by the vehicles in a scenario. This statistic is taken every 100 ms, and is                
computed as follows. 

 

 

 

The perceived number of vehicles corresponds to the number of entries in the             
lastKnownPos database, with each entry representing a distinct neighboring vehicle in           
the scenario. To ensure the validity of the database entries, recall that an expiry time was                
defined to be 2 seconds. Thus, after 2 seconds (20 missing CAMs) that an entry has not                 
been updated, it will be automatically removed from the database. On the other hand, the               
actual number of vehicles is taken from the ​GlobalMapper​, which maintains a global             
database that contains various information about all the vehicles in the scenario, including             
their actual position at any given time. 

 

5.2.4.1.    Effect of Vehicle Speed 

The impact of vehicle speed on NAR is depicted in ​Figure 48​, where the lane count was                 
fixed to 8 for a highway scenario.  

 
Figure 48​. Effect of vehicle speed on NAR 
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As previously discussed, slow vehicle speed translates to denser environments, with           
more vehicles being packed in the highway scenario. Since NAR acknowledges the            
presence of vehicles based on whether they are registered in the ​lastKnownPos            
database, the inability to update this database due to CAMs being lost to interference and               
collisions, directly affects the calculation of NAR. This explains why the resulting NAR of              
the slow speed scenario was much lower than that of the sparser scenarios, as the high                
level of interference negatively impacted NAR. 

 

5.2.4.2.    Effect of Number of Lanes 

Fixing the vehicle speed, ​Figure 49​ illustrates the effect of the number of lanes on NAR.  

 
Figure 49​. Effect of lane count on NAR 

 

Increasing the number of lanes meant increasing the number of vehicles as well. The              
presence of more vehicles in the 16-lane scenario created higher interference and            
collision probability compared to the 4-lane and 8-lane scenarios. This in turn caused             
more CAMs to be lost, and after a certain period of not being able to update the local                  
database, the corresponding entries were automatically removed, thereby impacting the          
NAR calculation. 

 

5.2.4.1.    Effect of CAM Frequency 

Figure 50 shows the effect of CAM frequency on NAR in a 4-lane, fast speed highway                
scenario. It could be observed that decreasing the CAM transmit period resulted to higher              
NAR values. As with the observations made in the effect of CAM frequency on position               
error, it seemed that increasing the frequency translated to vehicles becoming more            
aware of their surroundings through more frequent CAM exchanges and database           
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updates. However, further increases in frequency caused the NAR values to start            
worsening, which is the same trend observed in [​21​]. That is, increasing the CAM transmit               
frequency improved cooperative awareness only up to a certain point, after which, further             
increases in frequency started to have a negative impact on NAR. This was because in               
situations with sufficiently large CAM traffic, the detrimental effects of interference           
become more dominant over the beneficial effects of having frequent updates. This            
contributed to the decrease in NAR.  

 

 
Figure 50​. Effect of CAM frequency on NAR 
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6.    Budget 

The APU2 device and the WLE200NX wireless module for the OBU/RSU project were             
acquired from the i2CAT Foundation. As for the simulator project, a desktop PC was              
provided by UPC. All the software programs utilized were open-source and incurred no             
additional costs.  

In terms of manpower, as the duration of the project was from September 2018 to               
mid-May 2019 (34 weeks), the total time spent in developing the project assuming an              
8-hour workday is 1360 hours. 
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7.    Conclusions and Future Development 

A low-cost OBU/RSU that implemented the ETSI C-ITS protocol stack was successfully            
developed using an open-source software. In particular, the testbed implemented the CA            
basic service, so that it was capable of periodically transmitting and receiving CAMs. An              
important aspect of the task was determining which hardware to use such that it was               
configurable to operate in the 5.9 GHz band. This functionality was supported by a              
number of Atheros wireless cards that use the ATH9K Linux kernel driver and also              
required the PCI interface. While the initial plan was to use the Raspberry Pi 3 Model B+,                 
it was later concluded that it was not suitable, since it did not support PCI interfaces. On                 
the other hand, the combination of the APU2 hardware and the WLE200NX wireless             
module met all the requirements, and was therefore used to develop the OBU/RSU. In              
order to tune the testbed to work using the IEEE 802.11p channel, several modifications              
were made in the Linux kernel driver and in the user-space entities. These included              
configuring it in OCB operation mode and adding the ITS-G5 frequencies and power             
levels to the wireless regulatory database. The proper operation and interoperability of            
the developed OBU/RSU were verified by testing it with a commercial V2X device.             
Moreover, the contents of the CAM were analyzed to be compliant with the ETSI              
standards. 

An existing IEEE 802.11p-based simulator was modified to include additional          
functionalities and simulate different scenarios. Parameters including the vehicle speed,          
number of lanes and CAM transmit frequency, were varied to evaluate the CA basic              
service using different performance metrics such as the PRR, position error and NAR.  

Due to the usage of the Krauss car following model, changing the vehicle speeds affected               
the vehicle traffic density of the simulations. Slow-moving vehicles only required small            
braking distances, thus allowing more vehicles to fit into the scenario, and consequently             
creating dense environments. The presence of more vehicles resulted to higher           
interference and collision probability as more nodes attempt to access the channel to             
send their periodic CAMs, ultimately decreasing the PRR values. The computation of            
NAR relied on the local database maintained in each vehicle, which was only updated              
whenever a CAM is correctly received. Since more CAMs were lost in the slow speed               
scenarios, this also led to lower NAR values. An interesting result was that the densest               
cases had the lowest position errors. However, this was due to the fact that given the                
vehicles moved slowly, it followed that their displacement in the scenario was small. As              
such, even without receiving a number of CAMs, the position errors were low. 

Increasing the number of lanes also increased the vehicle count in the scenario. As              
previously discussed, this created interference and collisions, which resulted to more           
packets being lost and the local database not being updated. This led to lower PRR and                
NAR values. Higher lane count yielded higher position error, since the error was             
computed taking into account the perceived position specified in the local database. As             
such, the longer the database was not updated, the larger was the position error. 

Higher CAM frequency meant that the CAMs were transmitted more frequently. This            
created a higher collision probability, which consequently decreased the PRR. In the case             
of the position error, it was observed that higher transmit frequencies translated to lower              
errors. The positive impact of sending more CAMs and updating the database more             
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frequently was more prevalent than the negative effect of high risk of packet collisions.              
Increasing the transmit frequency caused an increase in the resulting NAR values up to a               
certain point, after which, further increases in frequency had a negative impact on the              
NAR. This was because the detrimental effects of interference overpower the beneficial            
effects of having frequent CAM updates when the message traffic is sufficiently high,             
thereby decreasing the NAR.  

There are a number of recommendations for continuing with this research study. For one,              
the development of a low-cost, open-source OBU/RSU encourages carrying out future           
field trials without the need for expensive hardware. As the testing done in the project was                
confined to the laboratory, it would be interesting to see how the developed OBU/RSU              
performs in real-world settings. Moreover, while the project mainly tackles the CA basic             
service, it could also be extended to transmit and receive other types of V2X messages,               
such as DENM, SPAT, IVI, etc.  

In the case of the system simulator, other road topologies could be tested, since the               
project only dealt with highway and grid scenarios. For instance, SUMO allows importing             
real-world maps, so that it is possible to study the performance of the CA basic service in                 
more realistic environments.  
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Appendices 

A.    OBU/RSU Configuration Guide  

A.1.    CAM Receiver Application Quick Start Guide  

This quick start guide describes how to set up and run the CAM receiver application. Prior                
to performing the steps below, it is necessary to obtain a copy of the CAM receiver                
application from the i2CAT Foundation.  

1. Install the Vanetza requirements. 

Python 3, pip3 and CMake from pip (the last step could require several minutes or               
even hours): 
$ sudo apt install python3 python3-pip 

$ sudo pip3 install --upgrade pip 

$ sudo pip install scikit-build 

$ sudo python3 -m pip install cmake 

 

Boost, GeographicLib, Crypto++, git: 
$ sudo apt install g++ libcrypto++-dev libgeographic-dev libboost-date-time-dev 
libboost-program-options-dev libboost-serialization-dev libboost-system-dev git -y 

 

2. Build Vanetza (last step could require several minutes). 
$ git clone https://github.com/riebl/vanetza 

$ cd vanetza/ 

$ mkdir build && cd build 

$ cmake .. 

$ make 

 

3. Install the ​socktap​ example application dependencies. 
$ sudo apt install libgps-dev gpsd-clients python-gps -y 

 

4. Build ​socktap​. 
$ cmake -D BUILD_SOCKTAP=ON .. 

$ make 

 

5. Build the ​cam-rcv​ application and proper permissions to binary. 
$ cd <project_folder> 

$ mkdir build && cd build 

$ cmake .. 

$ make 

$ sudo setcap cap_net_raw+ep bin/cam-rcv 
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6. Run the ​cam-rcv​ application with the desired network interface. 
$ bin/cam-rcv -i <network_interface> --gpsd-host localhost 

 

Example 

Using the loopback interface: 
$ bin/cam-rcv -i lo --gpsd-host localhost 

Using the OCB interface: 
$ bin/cam-rcv -i ocb0 --gpsd-host localhost 

 

Note that the ​cam-rcv application requires the GPS functionality. One option is to             
emulate a GPS signal as described in Appendix A.2. In this case, the recorded              
GPS file is played in the background (in a different terminal), while running the              
cam-rcv​ application. 

 

A.2.    Emulation of GPS Signal 

In the case that a real GPS signal is not available, an alternative way is to emulate it                  
using the ​gpspipe​ and ​gpsfake​ tools. 

In order to record a real GPS session, follow these steps: 

1. Ensure that the ​gpsd​ daemons are running. 
$ systemctl is-active gpsd ; systemctl is-active gpsd.socket 

 

Both should be in ​active​ status. If not, try to start them. 
$ sudo systemctl restart gpsd && sudo systemctl restart gpsd.socket 

 

2. Start recording. 
$ gpspipe -r | tee <gps_recorded_file>.gps 

 

3. Stop recording by pressing ​Ctrl + C​.  
 

4. Save the newly created GPS file. 

 

In order to reproduce any session, follow these steps: 

1. Ensure that the ​gpsd​ daemons are NOT running. 

$ systemctl is-active gpsd ; systemctl is-active gpsd.socket 
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Both should be in ​inactive​ status. If not, try to stop them. 

$ sudo systemctl stop gpsd && sudo systemctl stop gpsd.socket 

 

2. Start playing the recorded file. 

$ gpsfake -c 0.5 <gps_recorded_file>.gps 

You could check the output of the recorded file with the ​gpsmon​ or ​xgps​ tools (in 
a different terminal). 

 

3. Stop playing by pressing ​Ctrl + C​. 

 

A.3.    Setting up an Ad Hoc Network  

An ad hoc network is necessary to enable wireless communication between devices,            
including the Raspberry Pis. The following steps are required to successfully configure            
such network. 

1. For both Raspberry Pis, go to ​/etc/network/ and save a copy of the             
interfaces​ file. 

$ sudo cp /etc/network/interfaces /etc/network/interfaces-orig 

 

2. Modify the ​interfaces file with reference to the following lines. Note that the             
only difference for the two devices is their assigned IP address.  

$ sudo nano /etc/network/interfaces 

 

source-directory /etc/network/interfaces.d 
 
auto lo 
iface lo inet loopback 

 
iface eth0 inet dhcp 

 
auto wlan0 
iface wlan0 inet static 

  address 192.168.1.1   
netmask 255.255.255.0   
wireless-channel 1   

  wireless-essid PiAdhoc 
  wireless-mode ad-hoc 

Figure 51​. ​interfaces​ of Raspberry Pi #1  

 

 

 

source-directory /etc/network/interfaces.d 
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auto lo 
iface lo inet loopback 

 
iface eth0 inet dhcp 

 
auto wlan0 
iface wlan0 inet static 

  address 192.168.1.2   
  netmask 255.255.255.0   
  wireless-channel 1   
  wireless-essid PiAdhoc 
  wireless-mode ad-hoc 

Figure 52​. ​interfaces​ of Raspberry Pi #2 

  

3. Stop or disable the ​dhcp​ service in both devices. 

$ sudo systemctl stop dhcpcd.service 

 

4. Reboot both devices. Ping each other to verify the ad hoc network configuration. 

 

A.4.    Setting up the Linux Kernel 

The following procedure details how the Linux kernel is set up and configured [​37​]. 

1. Download the Linux kernel from [​30​]. This project uses kernel version 4.20.7. 
 

2. Install the software dependencies. 
$ sudo apt-get install git fakeroot build-essential ncurses-dev xz-utils libssl-dev                   
bc flex libelf-dev bison 

 

3. Extract the downloaded Linux kernel source file. 
$ tar xf linux-4.20.7.tar.xz 

 

4. Modify the ATH9K driver source codes, as described in Appendix A.5. 
 

5. Configure which kernel modules to include.  
a. Copy the configuration file of the currently running kernel. 

$ cp /boot/config-$(uname -r) .config 

b. By running the following command, the kernel configuration menu will be           
launched, where kernel modules can be enabled/disabled. The        
configuration used in the project is specified in Appendix A.6.  
$ make menuconfig 

 

6. Compile the kernel. 
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$ make 

 

7. Install the kernel modules previously enabled. 
$ make modules_install 

 

8. Install the kernel. 
$ sudo make install 

 

9. Enable the kernel for boot, and then restart the system. 
$ sudo update-initramfs -c -k 4.20.7 

$ sudo update-grub 

 

A.5.    Modifications on the ATH9K Driver Source Codes  

It is necessary to modify some of the ATH9K driver source codes to fully implement IEEE                
802.11p on a Linux system [​17​]. The changes are written in red. 
 

if ​(is_scanning || 
(ah->opmode != NL80211_IFTYPE_STATION && 
       ​ah->opmode != NL80211_IFTYPE_OCB && 
       ah->opmode != NL80211_IFTYPE_ADHOC)) { 
/* 

* If we're scanning or in AP mode, the defaults (ini) 

Figure 53​. ​drivers/net/wireless/ath/ath9k/ani.c 

 

static const struct ​ieee80211_channel ath9k_5ghz_chantable[] = { 
       ... 
       ​CHAN5G(5850, 38), /* Channel 170 */ 
       /* ITS-G5B */ 
       CHAN5G(5855, 39), /* Channel 171 */ 
       CHAN5G(5860, 40), /* Channel 172 */ 
       CHAN5G(5865, 41), /* Channel 173 */ 
       CHAN5G(5870, 42), /* Channel 174 */ 
       /* ITS-G5A */ 
       CHAN5G(5875, 43), /* Channel 175 */ 
       CHAN5G(5880, 44), /* Channel 176 */ 
       CHAN5G(5885, 45), /* Channel 177 */ 
       ​CHAN5G(5890, 46), /* Channel 178 */ 
       CHAN5G(5895, 47), /* Channel 179 */ 
       CHAN5G(5900, 48), /* Channel 180 */ 
       CHAN5G(5905, 49), /* Channel 181 */ 
       /* ITS-G5D */ 
       CHAN5G(5910, 50), /* Channel 182 */ 
       CHAN5G(5915, 51), /* Channel 183 */ 
       CHAN5G(5920, 52), /* Channel 184 */ 
       CHAN5G(5925, 53), /* Channel 185 */ 
}​; 

Figure 54​. ​drivers/net/wireless/ath/ath9k/common-init.c 
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#define ​ATH9K_RSSI_BAD          -​128 
 
#define ​ATH9K_NUM_CHANNELS      ​54 
 
/* Register read/write primitives */ 
#define ​REG_WRITE(_ah​, ​_reg​, ​_val) \ 

Figure 55​. ​drivers/net/wireless/ath/ath9k/hw.h 

 

       ​ath9k_hw_setopmode(ah)​; 
 
       ​ctx->switch_after_beacon = ​false; 
       if ​((iter_data.nstations + iter_data.nadhocs + iter_data.nmeshes ​+ iter_data.nocbs​) 
> ​0​) 
               ah->imask |= ATH9K_INT_TSFOOR​; 
       else ​{ 
               ah->imask &= ~ATH9K_INT_TSFOOR​; 
               if ​(iter_data.naps == ​1 ​&& iter_data.beacons) 
                       ctx->switch_after_beacon = ​true; 

Figure 56​. ​drivers/net/wireless/ath/ath9k/main.c 

 

/* We allow IBSS on these on a case by case basis by regulatory domain */ 
#define ​ATH9K_5GHZ_5150_5350    REG_RULE(​5150​-​10​, ​5350​+​10​, ​80​, ​0​, ​30​,​\ 
                                        NL80211_RRF_NO_IR) 
#define ​ATH9K_5GHZ_5470_​5925​    REG_RULE(​5470​-​10​, ​5925​+​10​, ​80​, ​0​, ​30​,​\ 
                                        NL80211_RRF_NO_IR) 
#define ​ATH9K_5GHZ_5725_​5925​    REG_RULE(​5725​-​10​, ​5925​+​10​, ​80​, ​0​, ​30​,​\ 
                                        NL80211_RRF_NO_IR) 
 
#define ​ATH9K_2GHZ_ALL          ATH9K_2GHZ_CH01_11​, ​\ 
                               ATH9K_2GHZ_CH12_13​, ​\ 
                               ATH9K_2GHZ_CH14 
 
#define ​ATH9K_5GHZ_ALL          ATH9K_5GHZ_5150_5350​, ​\ 
                               ATH9K_5GHZ_5470_​5925 
 
/* This one skips what we call "mid band" */ 
#define ​ATH9K_5GHZ_NO_MIDBAND   ATH9K_5GHZ_5150_5350​, ​\ 
                               ATH9K_5GHZ_5725_​5925 
 
/* Can be used for: 
* 0x60, 0x61, 0x62 */ 
 
//----------------------------------------------------------------- 
 
     ​   if (reg->country_code == CTRY_DEFAULT && 
            regdmn == CTRY_DEFAULT) { 
  printk(KERN_DEBUG "ath: EEPROM indicates default " 
  "country code should be used\n"); 
  reg->country_code = ​CTRY_SPAIN​; 
  } 

Figure 57​. ​drivers/net/wireless/ath/regd.c 
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A.6.    Configuring the Kernel Configuration Menu  

Different kernel modules can be enabled/disabled in the kernel configuration menu. It is             
important to enable ​Verbose OCB debugging​ [​17​]. 

 

Figure 58​. ​Networking support > Wireless 
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Figure 59​. ​Device Drivers > Network device support > Wireless LAN 
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Figure 60​. ​Networking support > Wireless > Select mac80211 debugging features 

 

A.7.    Setting up the ​iw  

The following procedure details how the ​iw is set up and verified to support the OCB                
mode [​38​]. 

1. Install the software dependencies. 
$ sudo apt-get install pkg-config libnl-genl-3-dev 

 

2. Clone the ​iw​ repository. 
$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/jberg/iw.git 
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3. Build ​iw​. 
$ cd iw 

$ make 

 

4. Install ​iw​. 
$ sudo PREFIX=/ make install 

 

5. Check if the ​iw​ version used supports the OCB mode. 
$ /sbin/iw | grep -i ocb 

Expected output: 

dev <devname> ocb leave 

dev <devname> ocb join <freq in MHz> <5MHZ|10MHZ>[fixed-freq] 

 

A.8.    Setting up the ​wireless-regdb 

The following procedure details how the ​wireless-regdb is set up and configured to             
support the ITS-G5 frequencies [​38​]. 

1. Install the software dependencies. 
$ sudo apt-get install python-m2crypto 

 

2. Clone the ​wireless-regdb​ repository. 
$ git clone --branch its-g5_v1 
https://github.com/CTU-IIG/802.11p-wireless-regdb.git 

 

3. Modify ​db.txt accordingly. In the RSU project, the ITS-G5 channels and           
transmission power values are added under ​country ES​ in ​db.txt​. 
 

country ES: DFS-ETSI 
(2400 - 2483.5 @ 40), (100 mW) 
(5150 - 5250 @ 80), (100 mW), NO-OUTDOOR 
(5250 - 5350 @ 80), (100 mW), NO-OUTDOOR 
(5470 - 5725 @ 80), (500 mW), DFS 
# For ITS-G5 evaluation 
(5840 - 5935 @ 10), (30) 
# 60 gHz band channels 1-4, ref: Etsi En 302 567 
(57240 - 65880 @ 2160), (40), NO-OUTDOOR   

Figure 61​. ​802.11p-wireless-regdb/db.txt 

 

4. Build ​wireless-regdb​. 
$ cd 802.11p-wireless-regdb 

$ make 
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5. Install ​wireless-regdb​. 
$ sudo make install PREFIX=/ 

 

6. Reboot the system for the changes in ​db.txt​ to take effect. 

 

A.9.    Setting up the ​CRDA 

The following procedure details how the ​CRDA is set up to implement the wireless              
regulatory domain [​38​]. 

1. Install the software dependencies. 
$ sudo apt-get install python-m2crypto libgcrypt11-dev 

 

2. Clone the ​CRDA​ repository. 
$ git clone --branch its-g5_v1 https://github.com/CTU-IIG/802.11p-crda.git 

 

3. Copy the public keys installed by ​wireless-regdb​. 
$ cd 802.11p-crda 

$ cp /lib/crda/pubkeys/$USER.key.pub.pem pubkeys/ 

 

4. Build ​CRDA​. 
$ make REG_BIN=/lib/crda/regulatory.bin 

 

5. Install ​CRDA​. 
$ sudo make install PREFIX=/ REG_BIN=/lib/crda/regulatory.bin 

 

6. Test ​CRDA​ and the generated ​regulatory.bin​. 
$ sudo /sbin/regdbdump /lib/crda/regulatory.bin | grep -i ocb 

Expected output: 

country 00: invalid 

  (5850.000 - 5925.000 @ 20.000), (20.00), NO-CCK, OCB-ONLY 
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A.10.    Setting up the OBU Interface and IEEE 802.11p Channel 

The following procedure details how to configure a wireless interface for OCB mode and              
join an IEEE 802.11p channel [​17​]. 

1. Bring down the wireless interface (for example, ​wlan0​). 
$ sudo ip link set wlan0 down 

 

2. Add an OCB interface (​ocb0​). 
$ sudo iw dev wlan0 interface add ocb0 type ocb 

 

3. Set the OCB mode. 
$ sudo iw dev ocb0 set type ocb 

 

4. Bring down the OCB interface. 
$ sudo ip link set ocb0 down 

 

5. Set the wireless regulatory domain to ​ES​, and verify afterwards. 
$ sudo iw reg set ES 

$ sudo iw reg get 

 

6. Bring up the OCB interface. 
$ sudo ip link set ocb0 up 

 

7. Join an IEEE 802.11p channel. In this case, this is the Control Channel (CCH),              
with center frequency 5900 MHz, channel number 180 and channel spacing 10            
MHz.  
$ sudo iw dev ocb0 ocb join 5900 10MHZ 

 

8. Verify the setup. The expected output is explained in Section 3.5.6. 
$ sudo iw dev | iwconfig 
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B.    IEEE 802.11p Simulator Installation Guide and User Manual 

B.1.    Installation Procedure 

The IEEE 802.11p simulator utilizes several simulation frameworks of different          
functionality. This section details the framework versions and installation procedure to           
create the simulator environment. The Linux distribution used is Ubuntu 16.04 (64-bit). 

 

1. Prepare the software packages. 

Extract the ​​Simulador.zip file. Make a copy of the ​v2x-arch_11p folder and            
place it in the home directory. This folder will contain all the files related to the                
simulator. Note that for the following installation steps, OMNeT++, SUMO and           
Artery must be at the same folder hierarchy level inside ​v2x-arch_11p​​. 

 

2. Install OMNeT++. 
a. Download the OMNeT++ installer (​omnetpp-5.1.1-src-linux.tgz​​)     

from the OMNeT++ download website [​31​]. Save it in the ​v2x-arch_11p           
​folder. 
 

b. Extract and proceed with the installation by entering the following          
commands. 
v2x-arch_11p$ tar xvfz omnetpp-5.1.1-src-linux.tgz 

v2x-arch_11p$ cd omnetpp-5.1.1 

v2x-arch_11p/omnetpp-5.1.1$ ./configure 

v2x-arch_11p/omnetpp-5.1.1$ make  
 

3. Install SUMO. 
a. Download the SUMO installer (​​sumo-src-0.29.0.tar.gz​​) from the       

SUMO download website [​33​]. Save it in the ​v2x-arch_11p​​ folder. 
 

b. Extract and proceed with the installation by entering the following          
commands. 
v2x-arch_11p$ tar xvfz sumo-src-0.29.0.tar.gz 

v2x-arch_11p$ cd sumo-0.29.0 

v2x-arch_11p/sumo-0.29.0$ ./configure 

v2x-arch_11p/sumo-0.29.0$ make 

 

c. Enter the following command. 
v2x-arch_11p$ . setenv 

 
 

d. Update the following line in ​/home/wng/.profile​, then restart the         
terminal for the change to take effect. 
PATH="$HOME/bin:$HOME/.local/bin:/home/wng/v2x-arch_11p/omnetpp-5.1.1/bin:$H

OME/.local/bin:/home/wng/v2x-arch_11p/sumo-0.29.0/bin:$PATH" 
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4. Install Vanetza, Veins and INET. 

The installers of the external project dependencies (Vanetza, Veins and INET) are            
already included in the​ ​Simulador.zip file. These dependencies can be built all            
at once by entering the following command. 
v2x-arch_11p/artery$ make all 

 

5. Install Artery. 
a. The Artery installer is also included in the ​Simulador.zip file. Enter the            

following commands to proceed with the installation. 
v2x-arch_11p/artery$ mkdir build  

v2x-arch_11p/artery$ cd build  

v2x-arch_11p/artery/build$ cmake ..  

v2x-arch_11p/artery/build$ cmake --build​ . 

 

b. Update the following line in ​run_ARTERY_cmdenv_from_sublime.cmd      
and ​run_ARTERY_guienv_from_sublime.cmd​, which are both located      
in the ​v2x-arch_11p/artery/scenarios/artery/​ directory. 
MY_NED_PATH="$HOME" 

 

B.2.    ​omnetpp.ini​ Configuration File 

The main configuration file for the IEEE 802.11p-based simulator is the ​omnetpp.ini in             
/home/wng/v2x-arch_11p/artery/scenarios/artery​. 
 
The ​omnetpp.ini includes different parameters that may be configured prior to           
executing the scenario. More importantly, it allows the user to modify the parameters             
easily without having to go through the source code. Being able to change and              
experiment on the parameters helps in understanding their impact on the simulation            
results. The contents of ​omnetpp.ini​ are divided into sections as described below.  
 
B.2.1.    Simulation General Settings 
The general settings for the simulation is shown in ​Figure 62​. Both the ​num-rngs and               
seed-0-mt are used for randomization. The succeeding parameters are helpful when           
debugging, however, it is advisable to set them to ​false to make the simulation faster.               
debug-on-errors creates a breakpoint when an error occurs during runtime to           
determine the possible location and cause of the problem. ​record-eventlog creates a            
event log file, which can be analyzed using the sequence chart tool to illustrate how a                
message is routed between the nodes in the network. 
 

91 
 



aspMore 

 
Figure 62​. Simulation general settings 

 

B.2.2.    Run Environment Settings 

The run environment settings in ​Figure 63 include parameters specific to simulating either             
in command line mode (cmdenv) or graphical mode (qtenv). Enabling          
cmdenv-express-mode ensures minimal status updates on the console, while         
cmdenv-status-frequency configures the frequency of writing the status to the          
console​. 
 

 
Figure 63​. Run environment settings 

 

B.2.3.    Statistics Settings 

The statistics settings in ​Figure 64 specify parameters that define how the statistics are              
collected. Depending on the configuration, scalar and/or vector statistics are recorded           
during the simulation. The scalar statistics are simple measurement values that are            
recorded in a scalar result file (​*.sca​). On the other hand, the vector statistics are values                
recorded with time and are saved in a vector result file (​*.vec​). However, as vector               
statistics take up a lot of disk space, it is advisable to disable it unless needed. Both the                  
scalar and vector result files are used as inputs to an analysis file (​*.anf​). Moreover, the                
filename of the result file can be configured. 
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Figure 64​. Statistics settings 

 

B.2.4.    SUMO Settings 

The SUMO settings in ​Figure 65 ensures that the simulation continues even if no vehicle               
is present in the scenario. 
  

 
Figure 65​. SUMO settings 

 
B.2.5.    Nodes Settings 

The Nodes settings in ​Figure 66 includes the configurations for the physical, MAC and              
application layers of each vehicle (or node). 

In the physical layer settings, the IEEE 802.11p parameters such as carrier frequency,             
bandwidth and bitrate are specified. In addition, this is where transmit power, receiver             
sensitivity, energy detection and SNIR threshold are configured, which ultimately affect           
the communication range. In the application layer, the update interval and jitter            
parameters are set to introduce randomness and reduce the possibility of collisions, such             
as in the case when the nodes may have been synchronized. The boundaries of the               
statistical region, or the area in the scenario where statistics are recorded, could be              
defined. 
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Figure 66​. Nodes settings 

 
 
B.2.6.    Medium Settings 

The Medium settings in ​Figure 67 include configurations related to the radio channel. In              
the example, the background noise power is set to -110dBm, while the path loss is               
modeled using Rayleigh Fading with alpha set to 3 for an urban environment. Moreover,              
the presence and impact of physical walls can be configured. The properties of the walls,               
such as the shape, position and material, are specified in ​walls.xml​. The presence of              
walls can be enabled by either setting ​DielectricObstacleLoss or         
IdealObstacleLoss for the ​obstacleLossType and disabled by leaving this field          
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blank. ​DielectricObstacleLoss causes partial absorption of signal when passing         
through the walls, while ​IdealObstacleLoss​ fully blocks the passage of signal.  

 

 
Figure 67​. Medium settings 

 

B.2.7.    Scenarios Settings 

Finally, the Scenarios settings are shown in ​Figure 68​. This section includes            
configurations that are specific to certain scenarios. Some example fields are the            
simulation time, warm-up time and CAM transmit period. ​Warmup-period defines the           
time from which the statistics are started to be recorded, such as when the scenario has                
reached steady-state conditions. 
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Figure 68​. Scenario settings 

 

B.3.    Running a Scenario 

There are two ways to run a scenario: (1) using the command line and (2) using the                 
graphical user interface (GUI). The former is expected to take less time to finish;              
however, it is not possible to visualize the flow of packets in the OMNeT++ GUI.  

 

To execute a scenario using the command line, enter the following command. 
v2x-arch_11p/artery/scenarios/artery$ ./run_ARTERY_cmdenv_from_sublime.cmd 

The scenario to be executed is configured in ​declare -a configs_to_test of              
run_ARTERY_cmdenv_from_sublime.cmd​. 

 

To run a scenario using the OMNeT++ GUI, enter the following command. 
v2x-arch_11p/artery/scenarios/artery$ ./run_ARTERY_guienv_from_sublime.cmd 

The scenario to be executed and the message period are selected through the pull-down              
menu of the OMNeT++ GUI. 

 

For both cases, it is necessary to update the following line in ​omnetpp.ini to start the                
SUMO GUI. The SUMO GUI enables the visualization of the movement of vehicles during              
simulation. 

*.traci.launcher.sumo = "sumo-gui" 
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B.4.    Result and Analysis Files 

The scalar (​*.sca​) and vector (​*.vec​) statistics may be recorded depending on the             
settings indicated in the ​omnetpp.ini (i.e., if they are enabled). The result files are              
saved in ​v2x-arch_11p/artery/scenarios/artery​. These are used as inputs to         
the analysis file (​*.anf​), which is created by double-clicking either of the two result files               
in the OMNeT++ IDE.  

The analysis file is used by the built-in Result Analysis tool of the OMNeT++ IDE. As                
illustrated in ​Figure 69​, this tool offers several options for processing and visualizing the              
results, including customization of scalar/vector/histogram plots. 

 

Figure 69​. Result analysis tool 
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B.5.     Complete Set of Figures 

B.5.1.    Packet Reception Ratio 

 

(a) 4 lanes 

 

 

(b) 8 lanes 
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(c) 16 lanes 

Figure 70​. PRR of a bidirectional highway scenario with variable speed 

 

 
(a) Fast 
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(b) Moderate 

 

 
(c) Slow 

Figure 71​. PRR of a bidirectional highway scenario with variable lane count 
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B.5.2.    Position Error 

 

(a) 4 lanes 

 

(b) 8 lanes 
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(c) 16 lanes 

Figure 72​. Position error of a bidirectional highway scenario with variable speed 

 

 

(a) Fast 

 

102 
 



aspMore 

 

(b) Moderate 

 

 

(c) Slow 

Figure 73​. Position error of a bidirectional highway scenario with variable lane count 
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B.5.3.    Neighborhood Awareness Ratio 

 

(a) 4 lanes 

 

(b) 8 lanes 
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(c) 16 lanes 

Figure 74​. NAR of a bidirectional highway scenario with variable speed 

 

(a) Fast 
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(b) Moderate 

 

 

(c) Slow 

Figure 75​. NAR of a bidirectional highway scenario with variable lane count 
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Glossary 

3GPP - 3rd Generation Partnership Project 

ASN.1 - Abstract Syntax Notation One 

BRAN - Broadband Radio Access Network 

BSA - Basic Set of Applications 

BSS - Basic Service Set 

BTP - Basic Transport Protocol 

CA - Cooperative Awareness 

CAM - Cooperative Awareness Message 

C-ITS - Cooperative ITS 

CLI - Command-Line Interface 

ComS - Communities Services 

CoNa - Co-operative Navigation 

CRDA - Central Regulatory Domain Agent 

CSM - Cooperative Speed Management 

CSMA/CA - Carrier Sense Multiple Access with Collision Avoidance 

CSV - Comma Separated Values 

D2D - Device-to-Device 

DCC - Decentralized Congestion Control 

DEN - Decentralized Environmental Notification 

DENM - Decentralized Environmental Notification Message 

DSRC - Dedicated Short-Range Communications 

EDCA - Enhanced Distributed Coordination Access (EDCA) 

ETSI - European Telecommunication Standards Institute 

GAC - Geographically-scoped Anycast 

HF - High-frequency 

HMI - Human Machine Interface 

HST - Header Subtype 

HT - Header Type 

IDE - Integrated Development Environment 

IEEE - Institute of Electrical and Electronics Engineers 

IP - Internet Protocol 

ITS - Intelligent Transport Systems 
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ITSC -  ITS Communication 

ITS-S - ITS Station 

LBS - Location Based Services 

LCM - Life Cycle Management 

LF - Low-frequency 

LLC - Logical Link Control 

LOS - Line-Of-Sight 

LS - Location Service 

MAC - Medium Access Control 

MATLAB - MATrix LABoratory 

MHL - Maximum Hop Limit 

MIB - Management Information Base 

MPDU - MAC Protocol Data Unit 

NED - NEtwork Description 

NH - Next Header 

OBU - On-Board Unit 

OCB - Outside the Context of a BSS 

OFDM - Orthogonal Frequency Division Multiplexing 

OFDMA - Orthogonal Frequency-Division Multiple Access 

OMNeT++ - Objective Modular Network Testbed in C++ 

OSI - Open Systems Interconnection 

PC - Personal Computer 

PDU - Protocol Data Unit 

PHY - Physical Layer 

PL - Payload 

PoE - Power-over-Ethernet 

PPDU - Physical Protocol Data Unit 

PRR - Packet Reception Ratio 

PSDU - Physical layer Service Data Unit 

QoS - Quality of Service 

RSU - Roadside Unit 

SAM - Service Announcement Message 

SHB - Single-Hop Broadcast 
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SPAT - Signal Phase And Timing 

SUMO - Simulation of Urban MObility 

TC - Traffic Class 

TCP - Transmission Control Protocol 

TDC - Transmit Data rate Control 

TPC - Transmit Power Control 

TraCI - Traffic Control Interface 

TRC - Transmit Rate Control 

TSB - Topologically-Scoped Broadcast 

UDP - User Datagram Protocol 

V2G - Vehicle-to-Grid 

V2I - Vehicle-to-Infrastructure 

V2N - Vehicle-to-Network 

V2P - Vehicle-to-Pedestrian 

V2V - Vehicle-to-Vehicle 

V2X - Vehicle-to-Everything 

Veins - Vehicles in network simulation 

VRU - Vulnerable Road User 

WLAN - Wireless Local Area Network 
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