
Assessing the mapping of
quantum algorithms
on superconducting
quantum processors

Daniel Moreno Manzano

UP
C

an
d
TU

De
lft

Assessing themapping of quantum
algorithms

on superconducting
quantum processors

by

Daniel MorenoManzano

in partial fulfillment of the requirements for the degree of

Master of Telecommunication Engineering

at the UPC,

Affiliation: Quantum and Computer Architecture Lab
Department of Quantum and Computer Engineer-
ing
Faculty of Electrical Engineering, Mathematics and
Computer Sciences
Delft University of Technology

Project duration: February 5, 2018 – February 8, 2019
Thesis committee: Prof. dr. ir. José Antonio Rubio Sola, Eng.Electrònica, UPC (Supervisor)

Prof. dr. ir. Josep Altet Sanahujes, Eng.Electrònica, UPC
Prof. dr. ir. Adolfo Comerón Tejero, Teoria del Senyal i Communica-

tions, UPC
Supervisors: Prof. dr. ir. José Antonio Rubio Sola Dr. ir. Carmina García Almudéver

Abstract

Quantum computers hold the promise for solving efficiently important problems in computational sciences
that are intractable nowadays by exploiting quantum phenomena such are superposition and entanglement.
Research in quantum computing is mainly driven by the development of quantum devices and quantum
algorithms. Quantum algorithms can be described by quantum circuits, which are hardware agnostic – e.g it
is assumed that any arbitrary interaction between qubits is possible. However, real quantum processors have
a series of constraints that must be complied to when running a quantum algorithm. Therefore, a mapping
process that adapts the quantum circuit to chip’s constraints is required.

The mapping process will, in general, increase the number of gates and/or the circuit depth. As qubits and
gates are error prone, it will result in an increment of the failure rate of computation while running the
adapted quantum algorithm in a given quantum device. Most of the current mapping models optimize and
are assessed based on two metrics: circuit depth (or latency) and number of (movement) operations added;
they should be as minimal as possible. However, these metrics are not giving any information about how the
mapping process is affecting the reliability of the algorithm. In other words, can still the algorithm produce
‘good’ results after being mapped?

The aim of this thesis is to propose some new mapping metrics that allow to study the impact of the mapping
process on the algorithm’s reliability. These are, quantum fidelity, probability of success of the algorithm and
quantum volume. They could be used not only to assess the quality of the mapping procedure but also as
parameters to be optimized by the mapping.

To this purpose, different quantum algorithms have been mapped into the superconducting quantum pro-
cessor, called Surface-17, developed at QuTech.

iii

Acknowledgements

I am very thankful to have had the opportunity of carried out this thesis. This research was made possible by
the great support of my supervisors and mentors Carmina G. Almudéver, Lingling Lao and Prof. Koen Bertels.
They accepted me besides my poor background on quantum computing and they were patient enough to
teach me about it and about research. I also would like to separately thank my supervisor in Barcelona,
Antonio Rubio, who offered me and facilitated the opportunity of developing this study.

I appreciated all the help offered by my lab colleagues Hans van Someren, Imran Ashraf, Andreas Papageor-
giou, Leon Riesebos and Aritra Sarkar. We had interesting discussions that helped me to elucidate the solu-
tions of the problems that appeared through out the research. I also would like to thank Savvas Varsamopou-
los, Abid Moueddene, Prof. Koen, Vieri Mattei, Miguel Serrão, Aritra, Leon and Andreas for all the fun and the
beers we had together.

In general, I would like to express my gratitude to all the QCE department, specially to Erik de Vries – who had
deal with all my demands related with the lab servers –, Joyce van Velzen and Lidwina Tromp – who arranged
all the burocracy requirements in TU Delft for me.

Thanks for all your support!

–

Agradezco mucho la compañía de mi familia en este tiempo, quienes no han parado de cuidar de mí. Sin
ellos mi estancia en Los Países bajos hubiera sido inaguantable. Doy gracias a mi madre y a mi hermana por
todas esas videollamadas que me han hecho sentir tan cerca de casa.

Finalmente, quiero agradecer la compañía de todos mis amigos en éste tiempo. Gracias por venir a visitarme
y apoyarme también en la distancia. Especialmente a Carlos Robisco, Cristina Puigjaner y Germán Fañanás,
quienes me han ayudado mucho a aclararme con mi vocación.

¡Muchas gracias a todos por haberme acompañado en éste tiempo!

Daniel Moreno Manzano
Delft, The Netherlands

February 2019

v

List of Acronyms

ALAP As late as possible
ALU Arithmetic logic unit
ASAP As soon as possible
GNFS General number field sieve
GPU Graphics processing units
NN Nearest neighbor
QEC Quantum error correction
SC SuperConducting

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Structure of the thesis . 2

2 Quantum computing andmapping of quantum circuits 3
2.1 Quantum computing . 3

2.1.1 Essential elements of quantum computation . 3
2.1.2 Quantum Circuits . 5
2.1.3 Qubits are faulty . 6

2.2 Mapping of quantum circuits . 6
2.2.1 Initial placement. 6
2.2.2 Routing . 6
2.2.3 Scheduling . 7
2.2.4 Mapping example . 7

2.3 State-of-the-art on the mapping of quantum circuits . 10
2.4 Mapping metrics . 11

2.4.1 Number of SWAPs . 11
2.4.2 Latency . 11
2.4.3 Algorithm reliability . 11

3 Mapping on superconducting quantum processors 13
3.1 Constraints of the Surface-17 chip . 13

3.1.1 Superconducting quantum processor architecture. 13
3.1.2 Gate set, gate time and gate fidelity . 14
3.1.3 Qubits interaction constraint . 16
3.1.4 Frequency constraint . 16
3.1.5 Measurement constraint . 17

3.2 Mapping model . 18
3.2.1 Initial placement. 19
3.2.2 Router . 19
3.2.3 Scheduler . 19

3.3 New Mapping Metrics: algorithm’s reliability . 19
3.3.1 Fidelity and Probability of success . 19
3.3.2 Quantum Volume . 20

4 Benchmarks and analysis framework 23
4.1 Benchmarks. 23

4.1.1 Benchmark selection. 24
4.2 Analysis framework . 24

4.2.1 Compiler (OpenQL) . 24
4.2.2 quantumsim . 25
4.2.3 Analysis Framework . 25

5 Results 29
5.1 Impact of the mapping on the algorithm reliability . 29
5.2 Analysis of the mapping metrics . 31

6 Conclusions and FutureWork 39
6.1 Conclusions. 39
6.2 Future work . 39

ix

x Contents

Bibliography 49

1
Introduction

1.1.Motivation

The discoveries in quantum physics during the last century opened multiple questions due to the observa-
tion of extraordinary behaviours that are far from the classical physics we are used to. The answers of these
questions as well as another field’s investigations rely on the simulation of Nature. In order to understand our
world we need to simulate instances of it, but the simulation of Nature itself requires a huge computational
power that is intractable for classical computers. At the same time, we are witnesses of the Moore’s law halt;
we are reaching the limit in transistor sizes. While trying to make them smaller, quantum phenomena appear
making impossible a transistor behaviour. During the last century Feynman had the idea of getting advantage
of the unexplained but controllable quantum phenomena. He noticed that this quantum phenomena that
would stop the development of smaller transistors and, therefore, powerful chips, actually could be used to
get much more computational power. He was the first to introduce the idea of building a quantum computer
to simulate quantum mechanics in 1982.

Since then, research on quantum computing has been mostly focusing on the development of quantum tech-
nologies and quantum algorithms. In order to bridge the gap between them, the Quantum Computer Archi-
tecture Lab at Delft University of Technology proposed a full-system stack, an architecture for a quantum
computer [1]. As shown in Figure 1.1 it consists of quantum algorithms that can be expressed expressed by
a high-level programming language and then compiled to a series of instructions. In the microarchitecture,
those instructions are translated into signals that are sent to operate on the qubits.

As a part of this full-system stack, and when targeting a real quantum processor, quantum algorithms need
to be adapted to the constraints of the quantum chip; they need to be mapped.

1.2. Problem Statement

Quantum algorithms are represented as quantum circuits when the circuit model of computation is adopted.
Quantum circuits consist of quantum bits and gates operating on them. This representation (at high-levels
of the system stack) is hardware agnostic; that is, it does not take into account the possible constraints of the
quantum chip. Therefore, mapping models are required to have a version of the quantum algorithm adapted
to the quantum device and that can be executed on it. Note that, one of main constraint in current quantum
chips is the reduced connectivity between the qubits that limits their interaction to only nearest- neighbours.

The mapping process results in an increase of the number of gates of the circuit and/or the circuit depth (or
circuit latency), affecting the reliability of the algorithm. As qubits decohere and gates are error prone, the
higher the number of operations or the higher the circuit depth, the higher the probability of having an error
during computation. Therefore, mapping models require an optimization process in search of the best circuit
version that is executable on a given device and still produces ‘good’ results.

Most of the works done about the mapping task optimize in terms of two parameters, either the number of

1

2 1. Introduction

Figure 1.1: Full stack implementation [2]

added operations in the adapted version of the circuit or the latency added to the circuit. Moreover, these
works asses the quality of their mapping algorithms based on one of those two metrics. It is clear that both
parameters should be as small as possible. However, these metrics are not complete and do not give nay
information on how the mapping affects the algorithm’s reliability.

Given this scenario, the aim of this thesis is to propose different metrics that show how the algorithm’s relia-
bility is affected by the mapping process. To this purpose, we will focus on the fidelity and the probability of
success and how they relate with the quantum volume and other metrics such are number of gates, number
of two-qubit gates and circuit depth.

1.3. Structure of the thesis

This thesis follows the structure described below:

In chapter 2, a background on the quantum computing field is given. We also explain the insights of the
mapping task, as well as current state-of-the-art in this field. Finally, a description of the most used mapping
metrics is described.

In chapter 3, we describe the constrains of the quantum chip that we target to map quantum algorithms on.
Constrains that we need to take into account in our mapping model, which we describe afterwards. This
chapter concludes with an explanation of the new mapping metrics we will investigate.

In chapter 4, we explain the process we followed to evaluate the mapping metrics. First, we select a set of
quantum algorithms as benchmarks. This benchmarks will be mapped following the constrains of the quan-
tum chip and then simulated. This process will be led by the analysis framework we developed and that we
describe in detail in this chapter.

In chapter 5, the results are presented and, finally, in chapter 6, we conclude the thesis and we set the future
work for this topic.

2
Quantum computing and mapping of

quantum circuits

In this chapter we offer the background in Quantum Computing required throughout the thesis. First, in
section Quantum computing we describe the general rules and the basic elements of a quantum computer.
After that, in the Mapping of quantum circuits section we explain what is the process of mapping quantum
algorithms, why is required and the basic steps on it. In the State-of-the-art on the mapping of quantum
circuits we talk about the current works and improvements done during the last years about the mapping
task. We finish the chapter with a description of the metrics used to measure the quality of the mapping
process and that serve as parameters to optimize in the mapping algorithms, in the Mapping metrics section.

2.1.Quantum computing

Quantum computers will be able to solve problems that are intractable for classical computers. Due to the
quantum phenomena, quantum computers are able to explore a whole solution space at once. The most
famous example is Shor’s quantum algorithm. It is an integer factorization algorithm able to calculate prime
numbers in polynomial time, which is exponentially faster than its classical counterpart, General Number
Field Sieve (GNFS). In general, quantum computers are a promising technology able to solve problems con-
sidered hard in classical computation. In the next sections we will explain the basics of quantum computa-
tion.

2.1.1. Essential elements of quantum computation

Quantum bits (or qubits) and quantum gates are the basic ingredients in quantum computation. As in classi-
cal computation with boolean gates and bits, quantum gates operate on the qubits to change their state and
return the desired result or calculation.

1. Qubits

A qubit is the basic unit of information in quantum computing. A classical bit can be either 0 or 1. A
qubit’s state could be either 0 or 1 or both at the same time, what is called superposition. Both, ground
or excited states, are represented in the Dirac’s bra-ket notation [3], ∣0⟩ and ∣1⟩ respectively. A qubit is
described as in a probabilistic state ∣ψ⟩ = α0∣0⟩+α1∣1⟩, where α0,α1 ∈ C are the so-called probability

amplitudes. ∣α0∣2 is the probability of measuring ∣0⟩ and ∣α1∣2 is the probability of measuring ∣1⟩. In

other words, when a qubit is measured, one can get the measurement result ’0’ with probability ∣α0∣2

and ’1’ with probability ∣α1∣2. In addition, the qubit’s state collapses to either ∣0⟩ or ∣1⟩, respectively.

As ∣α0∣2 and ∣α1∣2 are probabilities, the sum of them should be ∣α0∣2 + ∣α1∣2
= 1. Therefore a qubit

state can be represented as a vector (eq. 2.1).

3

4 2. Quantum computing and mapping of quantum circuits

ϕ

θ

x̂

ŷ

ẑ= ∣0⟩

−ẑ= ∣1⟩

∣ψ⟩

Figure 2.1: The Bloch sphere

∣ψ⟩= [α0

α1
] (2.1)

As soon as the vectors are 2-dimensional, complex and unitary they can also be described in phase
notation [3]. Like the complex numbers, although requiring two angles in this case. This notation lead
us to an understandable way to visualize the quantum states, the Bloch sphere (Fig. 2.1). A sphere of
radius one, which z-axis extremes represent the ground and excited states.

The power of quantum computers comes from the combination of several qubits. The quantum state
of n qubits can be represented in bra-ket notation, with a 2n size. For instance, the state of two and
n qubits are represented in the eq. 2.2 and 2.3, respectively. Another important quantum property is
entanglement, which qubits are correlated with each other.

∣ψ⟩= α0∣00⟩+α1∣01⟩+α2∣10⟩+α3∣11⟩ (2.2)

∣ψ⟩= α0∣0...0⟩+α1∣0...1⟩+ ...+αn−1∣1...1⟩ (2.3)

2. Quantum Operations

Quantum operations leverage the power of quantum computers enabling calculations on the qubits.
Quantum operations change the state of the qubit. We consider three kind of operations in quantum
computing: gates, qubits’ measurements and qubit initialization processes. Quantum gates are repre-
sented as square matrices of 2n × 2n , where n is the number of qubits involved in the operation. This
matrices should be unitary respecting the qubit state vector unitary property (∣α0∣2+∣α1∣2

= 1). Single-
qubit operations can be represented as state rotations in the Bloch sphere (Fig. 2.1). For instance, an
X gate is a rotation of 180° in x-axis of the Bloch sphere and changes the qubit state from ∣0⟩ to ∣1⟩,
or viceversa. An example of the matrix representation of a quantum operation and the way to operate
with qubits is shown in eq. 2.4.

U∣ψ⟩= [u00 u01

u10 u11
][α0

α1
]= [α0u00+α1u01

α0u10+α1u11
] (2.4)

(a) Single-qubit gates

Single qubit gates operate just on one qubit. As explained before, single-qubit gates can be repre-

sented as 21×21 square matrices that should be unitary. The symbol and the matrix representation
of the most common single-qubit gates can be found in Table 2.1.

The Identity gate is the idling operation. It is equivalent to no applying any operation for a cycle.
The Pauli-x, -y and -z gates are 180° rotation over the x-, y- and z-axis, respectively. The Hadamard

2.1. Quantum computing 5

Table 2.1: Most common single qubit gates

Identity Pauli-X Pauli-Y Pauli-Z Hadamard S gate T gate

I X Y Z H S T

[1 0
0 1

] [0 1
1 0

] [0 −i
i 0

] [1 0
0 −1

] 1√
2
[1 1

1 −1
] [1 0

0 i
] [1 0

0 e iπ/4]

gate is also a 180° rotation, but over the diagonal axis between the x- and z-axes, (x̂+ẑ)√
2

. The S and

T gates are also rotations over the z-axis but of 90° and 45° respectively.

(b) Two-qubit gates

Two-qubit gates are quantum operations that involve two qubits. In general, the two-qubit gates
execute a single-qubit operation over one of the qubits, depending on the state of the other. The
qubits that goes through the operation is called target, while the other is called the control qubit.
The most common two-qubit gates are represented in Table 2.2. The CNOT gate is a Controlled-
NOT operation or, what is the same, a Pauli-x gate that, depending on the state of the control qubit
will be executed or not. If the control qubit is ∣1⟩, a Pauli-x will be executed onthe target qubit.
As the CNOT, the CZ gate is a Controlled-Z operation that, in this case, performs a Pauli-z gate in
the target qubit when the control qubit is ∣1⟩. Finally, the SWAP gate exchanges the state of two
qubits. This gate is mostly used for routing purposes as it will be seen in the next sections.

Table 2.2: Most common two-qubit gates

CNOT CZ SWAP

● ●
●

×
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(c) Universality

A universal set of gates is a set of operations able to generate any other gate by combining them
[3]. In classical computation, for example, the OR and the AND gates are able to generate any other
logic gate. Also comparable with the boolean gates, quantum operations can be decomposed in
other set of quantum operations. In quantum computation there are several universal set of gates.
The most used one is the Clifford+T set, formed by the Clifford gate set – phase shifts around the
three axes, H and CNOT – and the T gate.

2.1.2.Quantum Circuits

Quantum algorithms can be described by quantum circuits when the circuit model of computation is adopted.
As mentioned before, they consist of quantum gates and qubits connected in circuit fashion. As most of the
algorithm description models – no matter if classical or quantum –, quantum circuits are hardware agnostic,
which is that they are not specified to any quantum device. In Fig. 2.2 we present an example of a quantum
circuit. This circuit represents the quantum equivalent of a Gray encoder of six bit length. It is composed by
6 qubits and CNOT gates.

6 2. Quantum computing and mapping of quantum circuits

a

b ●
c ●

d ●
e ●
f ●

Figure 2.2: Gray encoder quantum circuit.

2.1.3.Qubits are faulty

Quantum operations are faulty and qubits are not able to hold the desired state for long times, gradually
rotating to another state – the qubit decoheres. For instance, in the case of superconducting technologies [4],
the chips bear with decoherence times of∼ 30µs for qubit relaxation and∼ 60µs for qubit dephase. The error
rates of single-qubit gates are less than 0.1% taking > 20ns to be executed, while two-qubit gates error rate
is 0.6% with times of 40ns and measurement error rates around 1% with execution times of ∼ 300ns [4, 5].
This creates an undesirable environment to compute the most useful algorithms. Therefore, in order to fight
the errors generated by this behaviour, fault-tolerant (FT) and quantum error correction (QEC) mechanisms
have been developed during the last years [3].

2.2.Mapping of quantum circuits

As it was described in the Motivation section, the mapping step is a critical part of the process to run quan-
tum algorithms. Quantum algorithms can be described by quantum circuits, that are hardware agnostic and
assume any interaction between qubits possible. They assume the qubits are all-to-all connected. However,
quantum chips have limitations (see Constraints of the Surface-17 chips). One of the main constraints is the
Nearest Neighbor (NN) constraint. Instead of connected in an all-to-all fashion, the qubits are arranged in a
two-dimensional grid in which connectivity between qubits is limited; each qubit connects at most with four
neighbours. Then, the circuits need a transformation in order to be executed in real quantum device. This
transformation is the so-called mapping process.

The mapping process adapts a quantum circuit representation to the requirements of a real quantum proces-
sor. It brings ideal algorithms down to earth, to the limitations of the quantum chips. Therefore, the mapping
accounts for the realization of quantum algorithms in quantum chips. In order to do this, the qubit states
need to switch places between them – introducing SWAP gates – whenever an interaction between two qubits
that are not NN is required. But, as explained in the previous section (Qubits are faulty), quantum gates are
faulty and the longer a circuit is, the more errors appear. Then, the extra addition of gates or the circuit depth
increment due to the mapping task, causes quantum algorithms to accumulate errors and results in more
noisy or even useless results. Therefore, the optimal mapping would be the one that alters the least the origi-
nal circuit. In order to address the mapping problem, we split it in three steps: scheduling, initial placement
and routing. These steps can be executed several times, or even continuously, and in any order, depending
on the mapping approach.

2.2.1. Initial placement

Throughout this thesis we use the terms virtual qubits and physical qubits referring to the qubits from the
circuit that will be mapped to the real qubits of the quantum chip, respectively. The initial placement task is
responsible to relate the virtual qubits with the physical ones, trying to find the best arrangement in order to
minimize non-NN interactions. As we will see in the example below, an optimal initial placement may help
to reduce the number of SWAP gates introduced by the routing step.

2.2.2. Routing

When two qubits that need to interact – i.e. perform a two-qubit gate – are not NN, they have to be moved
or ’routed’ to adjacent positions. The routing process accounts for finding the best path -e.g. shortest path-
between two qubits far away in the chip that need to interact. Qubits (quantum states) can be moved from

chapter-1.org
chapter-3.org

2.2. Mapping of quantum circuits 7

one position to another by means of SWAP gates. Therefore, it is a decisive step in order to reduce the number
of added gates to the circuit and the circuit depth.

2.2.3. Scheduling

A scheduler organizes the circuit operations through the circuit time, finding whether several operations can
be executed in parallel – at the same time – or not. It is possible to schedule in different configurations, for
instance As Soon As Possible (ASAP) or As Late As Possible (ALAP), depending on the mapping requirements.

In order to schedule the operations, a dependence graph is built. A graph that relates qubits and gates se-
quentially. Starting from the qubits, it chains all the gates with them. It is really convenient while mapping,
mostly scheduling and finding the parallel operations. The gates that are in the same graph column can run
in parallel.

2.2.4.Mapping example

In order to illustrate the mapping steps let us consider the following circuit (see Fig. 2.3(a)) and the device’s
chip layout in Fig. 2.3(c), in which circles represent the physical qubits and the edges the connections be-
tween them and then possible interactions. We want to map the Gray code circuit to such as chip layout. The
mapping flow that we will follow starts with a scheduler, then we set the initial placement, route and, finally,
we re-schedule in order to make all the gate additions as parallel as possible. As illustrated in the dependence
graph of Fig. 2.3(b), there are no parallel gates. No better schedule is possible. Considering the gate times for
this device the same ones as the ones described in Tab. 3.2, the latency of this circuit is 400ns already.

a

b ●
c ●

d ●
e ●
f ●

(a) Gray code circuit to map

a

b

c

d

e

f

CNOT b,a

CNOT c,b

CNOT d,c

CNOT e,d

CNOT f,e

(b) Dependence graph of the circuit

Q2 Q3 Q4

Q0

Q5

Q1

Q6

(c) Chip layout where to map the example circuit

Figure 2.3: Mapping example draft

1. Initial placement

8 2. Quantum computing and mapping of quantum circuits

If we place the qubits based on the required interactions – that is: a next to b, b next to c and so on –
we can find in this case a placement in which all qubits can perform the required two-qubit gates as
shown in Figure 2.4. Then, with an optimal initial placement, we can observe that the circuit could be
the same without adding any gate. No routing would be required.

b→Q2 d→Q3 f→Q4

a→Q0

c→Q5

e→Q1

Q6

Figure 2.4: Chip layout with the qubits in the optimal initial placement

However, if we do a naive initial placement in which, for instance, the virtual qubits (a, b, c . . .) are
mapped to the physical ones Q0,Q1,Q2 . . . in alphabetical order (see Fig. ??). We will need to start
routing them.

c→Q2 d→Q3 e→Q4

a→Q0

f→Q5

b→Q1

Q6

Figure 2.5: Qubit disposition in the chip layout with a naive initial placement

2. Routing

In order to allow the non-NN qubits to interact, we need to move them to adjacent positions by in-
serting SWAPs. The mapping brings smartly the qubits close to the next operation qubit as well. For
example, it routes b next to a but also close to c, avoiding a path increment for the next operation. The
result can be seen in Fig. 2.6(a). After every SWAP, the interchanged virtual qubits appear to follow
easily the mapping. The latency after the routing increases in 1440 ns, 1440+400= 1840 ns.

2.2. Mapping of quantum circuits 9

a→Q0

b→Q1 ×d ● × f

c→Q2 × f ×b

d →Q3 ×b ● × c × f ×d
e→Q4 ● ●
f →Q5 × c ●×b × f × c

(a) Example circuit routed

a

b

c

d

e

f

SWAP b,d

SWAP c,f

CNOT b,a

CNOT c,b

SWAP c,b
CNOT d,c

CNOT e,d

SWAP b,f

SWAP f,c

SWAP f,d

CNOT f,e

b b

c
b

c
d

c d

f
b

c

f d
f f

e

(b) Dependence graph after routing

Figure 2.6: Naive initial placement after routing

3. Scheduling

As one could notice in the dependence graph (Fig. 2.6(b)), there are several operations that can be
parallelized. Therefore, we can apply a scheduling. In the Fig. 2.7 the result of an ASAP scheduling is
shown, reducing the latency to 1520 ns. Note that the dashed boxes enclose all the parallel operations
in a cycle.

a→Q0

b→Q1 ×d ● × f

c→Q2 × f ×b

d →Q3 ×b ● × c × f ×d
e→Q4 ● ●
f →Q5 × c ●×b × f × c

Figure 2.7: Naive initial placement routed and re-scheduled

We summarize the results of using a naive and an optimal initial placement in terms of number of gates
and latency in Tab. 2.3.

Table 2.3: Difference between the naive initial placement and the optimal one in terms of number of operations and latency

Optimal approach Naive apprach
operations 5 11

latency 400 ns 1520 ns

10 2. Quantum computing and mapping of quantum circuits

2.3. State-of-the-art on the mapping of quantum circuits

Quantum algorithms are meant to leverage the promising power of quantum computers [6]. Commonly de-
scribed as quantum circuits, quantum algorithms are hardware agnostic. However, as we have seen they need
to be adapted – mapped – to the quantum device limitations. The main constraints in all of them is the lim-
ited connectivity between qubits. There is a vast amount of literature on the algorithms – high abstraction
level –, neglecting hardware constraints. From ion traps [7] to superconducting qubits [5, 8], through quan-
tum dots [9, 10], each layout has its own requirements and constraints. Although all of them are arranged
in a 2D – planar – structure, ion traps technologies are capable to connect the qubits in all-to-all networks
while superconducting technologies connections form a grid shaped network where each qubit is connected
to a maximum of four neighbors. This grid structure establishes one of the main connectivity limitation in
today’s quantum chips, the nearest-neighbour constraint. Also industry’s superconducting chip layouts from
IBM [11], Google [12] and Rigetti [13] follow this structural limitations. As for the high abstraction level of the
quantum algorithm, a link between the algorithms and the devices is required [1]. As in classical computa-
tion, the algorithms should go through a transformation process in order to adapt them to the hosting device.
Certainly, the mapping procedure is an important element of this process.

There is a considerable amount of literature on the mapping task. Initial works on this field [14–16] focused
primarily on the definition of what they characterized as a scheduler able to parallelize operations and add
the required gates to route qubits. They consider general connectivity constraints as the NN one, common
for most of the devices – although the works were examining ion-traps as hardware implementations. The
proposed techniques by these works examine a dependency graph looking for the best way to organize qubits
and operations. The majority of the methods use latency as the metric to minimize, however some of them
[17] would minimize in number of SWAP operations. As it will be explained in the next section, to minimize
in latency stands for time optimization while minimize in number of SWAP operations means to find the
path that introduces the minimal number of SWAP operations. Following a similar reasoning as the first
approaches, more complex solutions [18] have been published using Constraint Programming together with
temporal planning, optimizing in latency as well. Also, several publications [19, 20] outline only the routing
sub-task using the number of SWAPS as the metric to minimize.

A recent review of the literature on the mapping topic focused on mapping quantum algorithms on a specific
quantum device. In all the cases, taking into account the specific chip connectivity constrain. IBM’s chip
have been gaining much attention due to the open online tools that make the chips accessible to everybody.
Various approaches to map algorithms for the IBM family of chips have been proposed [21–24]. Zulehner et.
al [21] developed a routing algorithm that optimizes in the number of SWAPs building a graph – similarly to
previous works – and searching the best route in the chip layout with the A* algorithm. Siraichi et. al [22]
work defines a weighted dependence graph where the mapping algorithm is able to find a solution for all
the mapping steps, initial placement, scheduling and routing. Also, apart from the works related to the IBM
devices, Rigetti’s devices have been approached [25].

Many attempts have been made [26–30] with the purpose of develop a FT mapping able to work at the log-
ical – qubit – level. However, due to the high complexity of the QEC techniques, quantum chips with large
amounts of qubits are still theory. Current and near-future quantum processors are what Preskill [31] calls
Noisy Intermediate-Scale Quantum (NISQ) devices; chips with an amount of 50-100 qubits and without QEC
or much simpler encodings. Several studies, for instance [32–34], have been conducted on the mapping algo-
rithms required for NISQ devices. Also, the works on device specific solutions [21–25] described before, could
be considered part of the NISQ works collection.

Besides latency and the number of operations that serve to analyze the quality of a mapping algorithm, few
studies have been published on quantum metrics. In this thesis, we will propose another metrics to evaluate
the mapping process. Fidelity has been addressed in order to characterize the error of a quantum circuit
based on the qubits state [3, 35]. And, recently, Quantum Volume has been defined to assert the capability
of a quantum computer [36]. In the next section and in the New metrics section we offer an overview of the
important metrics in this work.

chapter-3.org

2.4. Mapping metrics 11

2.4.Mapping metrics

As outlined in the state-of-the-art, the literature considers mainly two metrics to optimize in their mapping
algorithms and as an output to evaluate how good the mapping is. These are the added latency and the
number of introduced operations after the mapping procedure. The routing step from the mapping process
introduces SWAP gates in the quantum circuit in order to move the qubits around. And latency is the time
required to run a quantum circuit in a given quantum device. It depends on the chip cycle time and the depth
of the circuit, Latenc y = depth×tc ycle . Depth is the number of cycles the algorithm encloses. Actually, most
of the studies [14–16] assert the latency in terms of circuit depth, avoiding the cycle time specification of any
device. As shwon in Fig. 2.7, one can see how after some mapping process some SWAP operations have been
added as well as the depth of the circuit or latency grows. From five cycles depth in the original circuit to nine
cycles.

2.4.1.Number of SWAPs

As explained before in the Mapping of quantum circuits section, routing means to introduce SWAP operations
– or any other operation that allows qubits to be moved. Whenever a two-qubit gate requests two qubits
that are far apart, a path in the gridlike chip layout should be given. Each step on this grid would mean
a SWAP operation between the vertex qubits of that step. We already know that quantum gates are error
prone and that one of the main problems that the mapping task is dealing with is to use the least amount of
gates as possible. Although the general mapping problem is to avoid the introduction of error to the original
algorithm, that is caused by more sources apart from the number of gates. Nonetheless, the quantum gates
is one of the main error sources altogether with the decoherence time. That is the reason why the number of
SWAPs is commonly used to assert the quality of a mapper, but it is not enough.

The number of SWAPs does not give any information about how long the circuit is, or how much it will be
affected by decoherence. The higher number of SWAPs does not mean the longer the circuit necessarily. The
SWAPs can be in parallel, for instance. It could be the case of a short circuit with a long number operation in
parallel.

2.4.2. Latency

Latency is the time required to run a quantum circuit in a given quantum device. The introduction of gates
due to the mapping makes the target circuit longer. Or what is the same, the introduction of SWAPs adds
several cycles to the depth of the circuit. Therefore, the latency of the circuit increases. For instance, in
the Mapping example, we can see how the latency grows after the circuit is routed to 1840 ns and then it is
reduced to 1520 ns after re-scheduling.

One of the main source of errors in quantum computing is the decoherence, that is the quantum phenomena
that makes the qubits loose their state along time. The longer a quantum device is running an algorithm, the
more errors would appear. Or what is the same, the longer the circuit, the more erroneous will be the result.
The task of the scheduler – one of the three mapping steps – is to look for gates that can be run in parallel.
Considering that time is one of the main error sources and that the scheduler task is to make operations
simultaneously, one can understand why latency is used in order to assert the quality of a mapping algorithm.
Nonetheless, as the number of SWAPs this metric is not giving enough information for that.

The latency of a circuit gives an intuition of how long it is but, it is not sufficient to assess the quality of the
mapping. For instance, unlike the number of SWAPs metric, it gives no information about the number of
operations a circuit has.

2.4.3. Algorithm reliability

The ideal mapping would be the one affecting the least as possible the original circuit or, what is the same,
introducing the least amount of errors. Clearly, both, latency and number of SWAPs, are direct effects of the
mapping procedure that have an impact in the error increase as well. To optimize in any of them stands on
correct – but not sufficient – reasoning. Latency optimization assumes that the most important error source
comes from the qubit lifetime. And, indeed, time is a main issue in quantum computing. Decoherence time

12 2. Quantum computing and mapping of quantum circuits

is not only a maximum qubit lifetime, it is harder and harder to hold a quantum state for use times closer
to the decoherence time. On the other hand, to optimize in number of SWAPs stands on the intuition that
the gate error is the prominent error in a quantum device. Although intuitively one can think that the more
operations are in a circuit, the longer it will be; as seen in the Problem Statement section, the higher the
number of operations does not necessarily mean the longer circuit depth. Several operations can be run in
parallel in the same cycle – at the same time. Actually, to minimize in latency is to maximize in parallelism.
Therefore, even though related, to optimize in one or the other holds different baselines.

In addition, these metrics are not enough to assess how good the mapping process is. These metrics do not
tell you how the algorithm is affected by them. In other words, will my algorithm still produce ‘good’ results
after the mapping? They are related with the error rate increase but the relationship is not totally clear. For
instance, it could be the case that concatenation of errors introduced by contiguous gates would end up in a
correction of the first error. Or, that the busier the qubit is, the less affected by decoherence would be.

In this thesis, we propose three new metrics to analyze how the mapping process affects the algorithm re-
liability. As we will explain in Section New Mapping Metrics: algorithm reliability these metrics are fidelity,
probability of success and quantum volume. To perform this analysis we will map several small quantum al-
gorithms on the superconducting quantum chip develop at Qutech by DiCarlo’s group [5]. In the next chapter,
we will explain the constraints of this chip and the mapping model that we used.

chapter-1.org

3
Mapping on superconducting quantum

processors

In this chapter we will describe the superconducting quantum processor used in this thesis and its con-
straints. Although the work done in this thesis could be apply to any quantum technology, we limit our study
to the surface code 17 chip (Surface-17) developed by Leo Di Carlo’s group at QuTech [5]. In addition, we will
explain the mapping model and the new metrics proposed in this work.

3.1. Constraints of the Surface-17 chip

In this section the constraints of the superconducting Surface-17 quantum processor developed at QuTech by
Di Carlo’s group are summarized. To operate on this kind of qubits, analogue signals with a specific frequency,
amplitude and envelop are sent.

3.1.1. Superconducting quantum processor architecture

Figure 3.1(a) shows a schematic of the layout for the Surface-17 chip where the circles represent the qubits [5]
and the different colors the frequency used for single-qubit microwave control. In order to perform a single-
qubit gate microwave pulses are used, whereas flux-pulses (qubit specific detuning sequence) are used for
two-qubit gates. To this purpose, every qubit has a dedicated flux-control line (yellow) and microwave-drive
line (red) to control the qubit frequency and send operating waves, respectively. Several qubits are connected
through a readout resonator (in purple) to the feedlines (diagonal blue lines) that are used for measuring
them. Note that readout resonators are simultaneously interrogated using frequency-division multiplexing.
Finally, only qubits connected by bus resonators (in orange) can interact, this is the nearest-neighbour con-
straint. For more details, please read [5].

Figures 3.1(b) show a schematic of the topology for the Surface-17 quantum chip. Circles represent the qubits
and the edges represent the ’connections’ or possible interactions between them. Numbers are the physical
addresses of the qubit. As we just mentioned the different colors represent the frequency for single-qubit
microwave control: red for f1, blue and green for f2 and pink for f3.

13

14 3. Mapping on superconducting quantum processors

(a) Schematic of the realization of SC-17 chip [5]

0

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16
Feed

lin
e 0

Feed
lin

e 1

Feed
lin

e 2

(b) Simpler layout of the SC-17. All the examples will refer to this picture

Figure 3.1: SC-17 chip layouts describing its architecture

3.1.2.Gate set, gate time and gate fidelity

In order to perform universal computation, a whole set of universal gates should be executable in a given
device. However, not all kind of gates are supported in real quantum processors. In our case, any kind of single
qubit rotation can be performed on the superconducting quantum processor, but gates need to be calibrated
before performing any experiment and obviously one cannot calibrate infinite amount of gates. Furthermore,
Z rotations do not perform very well on this kind of superconducting qubits. Based on these observations,
we will limit single qubit gates to X and Y rotations, in which the most common are ± 90 (degrees) and ±
180. Conditional-phase (CZ) gates and measurement in the Z basis are also possible. Therefore, the gates
supported (elementary gates) by the superconducting quantum processor are:

• X gate with arbitrary angle rotation. Most common±90 and±180 degrees rotations

• Y gate with arbitrary angle rotation. Most common±90 and±180 degrees rotations

• CZ gate

• Measurement in the Z basis (Mz)

Table 3.1 shows the gate time and the errors rates for single-qubit gates, CZ gate and measurement [5]. Note
that the default basis of measurement will be Z basis unless one specifies.

Table 3.1: The gate time and fidelity of primitive set from experiments. The measurement time includes both measuring and depletion
time.

Gate type Gate time Fidelity
Single-qubit 20 ns ∼ 99.97%
CZ 40 ns ∼ 99.93%
Mz 600 ns ∼ 99.5%

For the mapping process, we assume that arbitrary rotations and multi-qubit gates are first decomposed to
the Clifford+T group, {H,T,S,CNOT}. Although this is a universal gate set that is not directly supported by the
quantum chip. These gates need to be further decomposed into the elementary gates as shown in Figure 3.2.

3.1. Constraints of the Surface-17 chip 15

Z ≡ X Y

H ≡ Y-90 Z ≡ Z Y+90 ≡ X Y-90

T ≡ H X+45 H ≡ Y+90 X+45 Y-90

T † ≡ H X−45 H ≡ Y+90 X−45 Y-90

S ≡ H X+90 H ≡ Y+90 X+90 Y-90

S† ≡ H X+90 H ≡ Y+90 X−90 Y-90

● ≡ ●

Y−90 ● Y+90

× ≡ ● ● ≡ ● Y−90 ● Y+90 ●

× ● Y−90 ● Y+90 ● Y−90 ● Y+90

Figure 3.2: Decomposition in the X-Y-Z-CZ set of the Clifford + T gates that are not directly supported in the quantum chip

Their gate time – shown in Table 3.2 – depends on the gate time of the gates in which is decomposed. We
show this gate times, the gate time of the chip allowed gates, in Table 3.3.

Table 3.2: The gate time for the universal set {H,S,T,CNOT}.

Gate type Gate time
X 20 ns
Y 20 ns
Z 40 ns
H 40 ns

S/Sdag 60 ns
T/Tdag 60 ns
CNOT 80 ns
SWAP 200 ns

MZ 600 ns

Table 3.3: The gate time for the universal set allowed in the devices {RX , RY ,C Z , MZ }

.

Gate type Gate time
RX (±45,±90) 20 ns
RY (±45,±90) 20 ns

CZ 40 ns
MZ 600 ns

16 3. Mapping on superconducting quantum processors

In the next sections, the different constraints of the superconducting quantum chip will be explained in detail.
Note that we will distinguish two kind of constraints: the ones coming from the quantum chip- e.g. nearest-
neighbour interactions- that we call hardware constraints and the ones from the electronics control setup -
e.g. qubits operated by the same AWG- called electronics constraints.

3.1.3.Qubits interaction constraint

In Surface-17 each qubit is connected to a maximum of four qubits, the nearest-neighbours, limiting the
possible interactions -e.g. two-qubit gate- between them (hardware constraint). This constraint will make
that qubits that need to interact and are not place in neighboring positions will need to be moved to adjacent
positions. Quantum states in superconducting technology can be ‘moved’ by using SWAP operations.

This constraint implies that in Surface-17 (see Figure 3.1(b))

It is possible to do:

1 CZ q[1],q[5]
2 CZ q[8],q[6]

but impossible to do (directly, without any map-
ping):

1 CZ q[1],q[2]
2 CZ q[0],q[16]

The code shown here and in the next sections is written in an eQASM fashion. The letters represent the kind
of gate operation and the number will refer to the qubit number in the Surface-17 layout (Figure 3.1(b)). Also,
the character ’|’ represents the operations that can be executed in parallel.

3.1.4. Frequency constraint

Single-qubit gates

In order to perform single-qubit gates, electromagnetic microwaves are sent. As shown in Figures 3.1(b),
three or four different frequencies for single-qubit microwave control can be used in Surface-17. In principle,
any qubit can be operated individually and then any combination of single-qubit gates can be performed in
parallel. However, qubits using the same frequency are controlled by the same Quantum Waveform Generator
(QWG) and then they are limiting the possible parallelism of operations.

Table 3.4: Frequency groups for Surface-17 when using 3 different frequencies.

QWG Qubits Frequency Group
0 1, 2, 3, 13, 14, 15 f1

1 7, 8, 9 f3

2 0, 4, 5, 6, 10, 11, 12 16 f2

3.1. Constraints of the Surface-17 chip 17

It is not possible to perform two different single-qubit gates at the same time on qubits using the same fre-
quency and operated by the same QWG. For instance in SC-17,

It is possible to do:

1 { X q[1] | X q[7] }
2 8{ X q[6] | Y q[7] }
3 { X q[1] | X q[2] | X q[5] | X q[0] }
4 { Y q[10] | Y q[4] }

But not

1 { X q[1] | Y q[2] }
2 { X q[5] | Y q[0] }
3 { X q[10] | Y q[4] }
4 { X q[7] | Y q[9] }

Obviously, it is not possible to perform more than one single-qubit gate on the same qubit at the same time
(gate dependency).

Two-qubit gates

In order to perform a two-quibt gate in superconducting qubits, interacting qubits need to be brought to a

specific close frequencies [5]. More specifically, C Z f gates are performed between qubits at f i nt
1 and f2 or at

f i nt
2 and f3 as shown in Figure 3.3. In addition, the qubits that share a connection with the qubits performing

a 2-qubit gate need to be detunned away. This limits the amount of two-qubit gates that can be performed in
parallel (hardware constraint).

Figure 3.3: Frequency arrangement and detuning frequencies for the qubits in the unit cell.

As we assume the frequency scheme of Figure 3.3 we can formulate the following: 1) If a two-qubit gate is
being performed between D1 (D2) and X1 (X1 or Z1), D2 (D1) cannot interact with X1 or Z1 (X1) at the same
time; 2) In the same way, if a two-qubit gate is being performed between D3 (D4) and X1 or Z2 (X1 or Z1
or X2 or Z2), D4 (D3) cannot interact with X1 or Z1 or X2 or Z2 (X1 or Z2) at the same time. Obviously, if a
two-qubit gate is being performed between two qubits, the qubits involved can not perform another single-
or two-qubit gate at the same time.

As an example, in Figure 3.4, a CZ gate is applied between qubits 11 and 14 (cz (q[11], q[14])). Thus, both

qubits need to be tuned to closer frequencies – f i nt
1 and f2 in this case. And, as explained before, in order to

not create intereferences between qubits some of them should be detunned away. Specifically, qubits 10 and

16 need to be detunned to f
par k

2 because they share a connection with the qubits performing the CZ gate.
This means that no single-qubit gate can be applied to these qubits that are outside their main frequency (f2).
And, also, that they cannot perform another two-qubit gate at the same time with any other qubit from the
QWG 0 – the red qubits with main frequency f1 – because it is required to tune them to f2.

Finally, all the qubits that are already in use cannot be used at the same time. Therefore, qubits 11 and 14 in
the example cannot be used in any single- or two-qubit gates.

3.1.5.Measurement constraint

Measuring the qubits is done by using feedlines coupled to several qubits. For example, in the SC-17 chip, the
feedline 1 is used to measure qubits 1, 4, 5, 7, 8, 10, 11, 14 and 15. This will lead us to the last limitation, the
measurement constraint (hardware constraint). In this case, the measurement on a qubit cannot start when
another qubit coupled to the same feedline is being measured, but it allows to start measurement on any
combination of qubits coupled to the same feedline at the same time. Furthermore, there is no dependency
between measurements of any two qubits coupled to different feedlines.

18 3. Mapping on superconducting quantum processors

0

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16

Z2Z2

X2

D1

Z1Z1

X1

X1

X2

D2D1

D3 D4 D3

D1 D2 D1

c0 c1

c6c5
c2

c13

c3

c8

c12

c7

c4

c9 c10
c11

c14 c15

c16

c17

c22 c23

c19
c20 c21c18

X2

D2

c13 c14 c1

c23

c19
c2018

Not allowed interactions

CZ gate

Not-allowed qubit for
single-qubit gate

Figure 3.4: Example of a two qubit gate and allowed and not allowed parallel gates in SC-17

In SC-17, it is possible to do

1 measure q[0] | measure q[2] | measure q[3] | measure
q[6] | measure q[9] | measure q[12]↪

2 measure q[1] | measure q[13]
3 qwait 30
4 measure q[3] | measure q[8]

notice that the measurement of qubits 13 and 16
is executed at the same cycle.

On the other hand it is not possible to do

1 measure q[2]
2 measure q[6]

Note that, in order to measure qubit 2 and 6 in
different times, the latter instruction should wait
30 cycles for the first one to finish. In other
words, this code is missing a qwait 30 instruc-
tion.

3.2.Mapping model

In order to map quantum circuits on the superconducting quantum chip we will use the mapping model
developed in our group [30]. A mapping algorithm or mapper is an algorithm able to find a mapping solu-
tion given a quantum circuit and a target device. We consider that a mapper is subdivided in three tasks:
scheduler, initial placement and routing, as described in the Mapping of quantum circuits section. Our pro-
cedure is modular, although the flow is restricted to the one described below. The mapper is fully adaptable
to any device constrain. As we will explain, it also offers two different kinds of schedulers and three router
possibilities, as well as the option of running or not the initial placement and another options related to the
chip constrains. We believe this solution will aid researchers to investigate the best mapping, with different
configurations. The mapping model works as follows.

3.3. New Mapping Metrics: algorithm’s reliability 19

3.2.1. Initial placement

The first step is to map the virtual qubits (the ones of the circuit) to the physical ones (the ones in the quantum
chip). Once the mapper knows the qubits required by the algorithm, it will try to find the best initial place-
ment for the given circuit, that is, the placement that requires less movements of qubits. First, it will check
the first set of two-qubit gates and their target qubits. If those qubits are not NN, it will initiate an Integer
Liner Programming (ILP) algorithm [30] to find the optimal initial placement. This optimal initial placement
tries to place the qubits in a way that the minimum number of qubit movements are required.

3.2.2. Router

The function of the router is to move non-neighbouring qubits to adjacent positions whenever they need to
interact. To this purpose, our router inspects all the gates, one by one, looking for non-NN qubits interactions.
Whenever the router encounters one, it will calculate several shortest paths – the ones that use the minimal
amount of SWAPs – and selects one of them. This path is selected based on the circuit depth, that is, the path
that better interleaves with the previous operations. Then, it will insert the SWAP operations (decomposed or
not decomposed) required to follow the selected path.

There are three router options, and a different path is selected depending on the router option that was se-
lected by the user:

1. base finds all the shortest paths and selects one of them randomly. The shortest paths are calculated
based on the Manhattan distance, counting the number of steps that the qubits will need to move.

2. minextend finds all the shortest paths as well, but selects the one that will minimally increase the
circuit depth. In this case, only gate dependencies are considered, not chip constraints that limits the
parallelism.

3. The minextendrc approach is exactly the same as the second one, but taking into account the chip
constraints when selecting the path.

3.2.3. Scheduler

The RC-scheduler will finally schedule the circuit using either an ALAP or an ASAP approach, depending on
the user requirements. It will take into account the chip parallelism constraints, as the ones described in 3.1.

One downside factor regarding this methodology is that the mapper only takes into account one gate every
time. It does not look ahead in order to decide the best path for next iterations. Or, what is the same, it does
not always find the best mapping solution. This limitation comes from the fact that, the more steps you are
looking ahead while mapping, the more computationally complex will the mapper be. We highlight that the
mapping problem is an NP problem [22]. Therefore, this method represents a viable solution, although a lot
of future work should be done.

3.3.New Mapping Metrics: algorithm’s reliability

As mentioned in the Mapping metrics section in the second chapter, we name mapping metrics to those met-
rics used to assert the quality of a mapper and that are also used by the mapper algorithm as a cost function
to optimize. In this section, we will present and define some new mapping metrics: fidelity, probability of
success and Quantum Volume.

3.3.1. Fidelity and Probability of success

Fidelity and probability of success are two different ways to measure how errors affect the algorithm reliability.
Fidelity is measured before measuring the qubits, and it is the difference between the obtained quantum
state (affected by errors) and the expected quantum state (the one without errors). Probability of success
is obtained after measuring the qubits, and then after collapsing the quantum state. Note that in this case
measurement errors are also considered. After running the algorithm several times, it shows how many times

20 3. Mapping on superconducting quantum processors

fidelity prob. success

a 0

b ● 0

c ● 0

d ● 0

e ● 0

f ● 1

Figure 3.5: Example of the fidelity and probability of success calculation in the Gray encoder quantum circuit

a correct result is measured. Therefore, while fidelity is a theoretical metric that can only be calculated in
simulations, the probability of success is a hardware metric that can be asserted in experiments in real life.

Fidelity

Fidelity compares two quantum states. Unlike the success of an algorithm, that is a boolean metric – either
success or failure –, the fidelity returns a float number between 0 to 1 asserting how different the states are –
how far is one state from the other. 0 fidelity would mean that the states are the same – they do not differ –
and 1 would mean that states are perpendicularly different. As an analogy, if we consider the quantum states
as vectors, the fidelity would be the dot product between them. However, the fidelity between orthogonal
states – states that differ in rotations around the x-axis as ∣0100⟩, ∣0001⟩ and ∣1111⟩ – is also 0. For more
information, we refer to [3].

Probability of success

We define probability of success as the probability of having the correct or expected results after running and
measuring several times a quantum algorithm. For instance, if the expected result of an algorithm is 0100
and the results are either 0001 or 1111 we will get a failure. We will only get a success if the algorithm returns
0100. Then, in the previous example, if we get 0001, 0100 and 1111 as results after running the algorithm
three times the resulting probability of success will be 1

3
.

In our study, we will use both metrics in order to study how the mapping process and then the amount of
errors affect the algorithm reliability. Note that as we already mention, the fidelity is calculated before mea-
surement and then it does not take into account the measurement errors. It could be the case that a quantum
state is erroneous before the measurement and, then, due to the error added from the measurement the erro-
neous state would flip and converge into the expected state. At the same time, a correct quantum state could
be measured wrongly due to the measurement errors.

It is worth noting that both metrics, the fidelity and probability of success, are obtained by using a quantum
computer simulator as we will explain in the next chapter.

3.3.2.Quantum Volume

Another metric that could be useful for the mapping quality assessment is Quantum Volume [36, 37]. Quan-
tum Volume is a metric proposed by IBM to depict whether a device is able to run a quantum circuit or not.
Given the different hardware implementations and technologies in Quantum Computation (superconduct-
ing, ion-trap, spin qubits, . . .), it is often difficult to benchmark the usefulness or power of quantum systems.
The aim of Quantum Volume is to quantify the computational power of quantum devices. Consequently we
will use it as a metric to measure the runnability of the quantum algorithms on the quantum devices. But,
while the device is the target of the Quantum Volume metric, we focus on the circuit. Our goal is to assess
how the mapping procedure affects the runnability of a given circuit and to study how the Quantum Volume
is related to the fidelity and the probability of success.

The general Quantum Volume formula is defined in eq. 3.1 where N is the number of physical qubits and
d(N) is the achievable circuit depth, i.e. the maximum circuit depth for which the results, after running it on

3.3. New Mapping Metrics: algorithm’s reliability 21

some device, are correctable and useful. d(N) depends on the number of qubits in the circuit as well as on
the error rate of the quantum device.

VQ =min(N , d(N))2
(3.1)

In our case, we want to relate the Quantum Volume of a device with the circuit. Therefore, we define the
algorithms Quantum Volume and the runnability of the quantum circuit on a given device.

As with VQ , we initially derived the algorithm’s Quantum Volume from the general equation VQ (see eq. 3.2),
although we will adapt it later.

V
a

Q =min[n, d]2
(3.2)

Note that d is not d(N) but the real depth of the given algorithm. At the same time, n is the number of qubits
required by the algorithm itself.

We are aware that this approach has a limitation regarding the mapping of the quantum circuit. As explained
before, VQ is able to take into account the sophistication of the mapping procedure. It is inherited in the
model algorithm. But, in this case, the V a

Q of an algorithm before and after mapping will remain the same.
After mapping an algorithm, the usual effect is an increase in the depth and the number of operations. Rare
mapping methods consider the qubit addition in the technique. And, even considering it, n is not often
growing too much in comparison with d . In the current NISQ era, the quantum circuits need much less
qubits than depth. Therefore, most of the times, the minimum value between n and d will be n. As soon
as V a

Q is taking into account the minimum of them and the mapping procedure affects mostly to d we can
conclude that this definition of V a

Q is not considering the mapping in its results.

A simplified solution for this problem would be the V a
Q definition as the multiplication between n and d (see

eq. 3.3). Unfortunately, this approach has several drawbacks as well. As Moll et al. point out [36], extreme
cases of high n and low d – or the other way around – lead to inconsistencies of the multiplication metric.
But, considering that most of our work is not going to be in any of these extreme cases and that we can avoid
those outliers, we define the algorithm’s Quantum Volume as:

V
a

Q = n×d (3.3)

Finally, once the Quantum Volume of an algorithm is stated, we define runnability as the condition for which
the VQ should be bigger than V a

Q . That is the condition that the computational power of the device should be
bigger than the computational power required by the algorithm.

Runnable if: VQ >V
a

Q when N ≥ n (3.4)

For instance, in order to understand this concept, one may imagine the process of checking, whether or
not, some cube with a given volume – representing the algorithm – would fit in a box – the device –. If the
algorithm’s box volume is smaller than the volume of the device’s box, the algorithm’s box will fit inside.

Indeed, one acceptable criticism of this definition is that, as VQ and V a
Q are finally defined in the previous

sections, it seems that it is not really fair to compare them. But, as soon as the general behaviour of both def-
initions of V a

Q is the same we believe that this definition of runnability is mathematically correct and useful.

4
Benchmarks and analysis framework

In this chapter we describe the benchmarks that will be mapped to the Surface-17 chip and the simulation
framework develop for the study of the mapping metrics.

4.1. Benchmarks

In order to analyze the different metrics to assess the quality of a mapping algorithm, we selected a set of
quantum algorithms available in the literature.

I built a list of quantum algorithms coming from different sources. The sources we chose are RevLib [38],
ScaffCC [39], some benchmarks from Zulehner’s et al. work [21] and QLib [40] because of the variety of al-
gorithms and because they are already decomposed in the Clifford+T set. Note that the language used to
describe the algorithm varies from source to source. Although, they all use a QASM-based language, there are
small syntax differences. As we will explain in the next section, we will use our own programming languages
– OpenQL and cQASM – and compiler. Therefore we had to translate all the selected algorithms from their
QASM versions to the OpenQL notation. I developed a parser in order to do that.

I also profiled each benchmark including: the number of qubits of the algorithm, the number of gates, the
functionality of the algorithm and different graphs, showing the percentage of the operations types or the
degree of parallelism of the algorithm. Most of the benchmarks are classical algorithms adapted to quantum
circuits. They are deterministic and then the result is always the same if there are no errors. This is because
at the end of the circuit, before measuring the qubits, qubits are in either ground or excited state, but never
superposition.

The benchmarks were also classified by their functionality. This is an important step because algorithms that
do similar calculations use to have common gates distribution. From all the benchmarks we have, we can
distinguish six different classes.

• Quantum Gates: Circuits that are a decomposition of a Quantum Gate

• Search Algorithms

• Worst Cases: Circuits that were really difficult to generate for RevLib

– HWB: is the simplest function with exponential Ordered Binary Decision Diagrams (OBDD) size.

• Encoding Functions: Classical codification functions

• Arithmetic Functions: Functions that perform an arithmetic operation

• Miscellaneous: Mix of different kind of algorithms

We came up with a list of 84 different algorithms – 697 benchmarks taking into account the different versions
of the same functionality – that can be found in the qbench Github repo, as well as the previous information

23

https://github.com/QE-Lab/qbench

24 4. Benchmarks and analysis framework

in much more detail. These algorithms cannot only be used for the mapping problem but also for other
activities in our group.

4.1.1. Benchmark selection

In order to have a small, but representative, set of benchmarks to map, we selected just some of them. This
requirement comes by the fact that simulations are long and computationally exhaustive. In order to do that,
we studied the different benchmark profiles looking for most illustrative cases. The criteria used for selecting
the algorithms used in this work are: i) the number of qubits of the algorithm. It should be less than 17 as we
will use the Surface-17 chip; ii) the number of gates. We select benchmarks with a number of gates as spread
as possible; iii) different functionality. We try to have the least number of versions of the same algorithm as
possible. We only take the same algorithm versions for cases in which the number of qubits and the number
of gates show an interesting combination. For example, two similar algorithms in which number of qubits or
number of gates are very distinct appear as the first three selected benchmarks in Tab. 5.1.

Once we had our requirements we could start the analysis and the selection afterwards. In Tab. 5.1 we show
the final benchmark selection. 43 benchmarks (with qubits numbers from 3 to 17 qubits) were selected after

Table 4.1: Restriction summary of the benchmark selection

Criteria:

- # qubits < 17
- # gates as spread as possible and in the case of repeated benchmark the minimum number of gates
- The less number of the same algorithm versions/classes as possible
- The benchmarks that are repeated and have an interesting combination of No. qubits/No. gates are preferred

applying the previous restrictions to the analysis of the benchmarks described in the next section (see Table
5.1). After simulating the algorithms, few of them returned errors (segmentation fault) due to the high com-
putational level they required and some others did not finish the simulation in less than two weeks; so we
discarded them.

4.2. Analysis framework

In this section we introduce the framework used to map the quantum algorithms and analyze the quantum
metrics. It is based on two steps: compilation and simulation. With this purpose we connect two tools,
OpenQL [41] and quantumsim [4], and we build a whole framework over them.

4.2.1. Compiler (OpenQL)

OpenQL is a framework for high-level quantum programming developed by our group to describe quantum
algorithms and compile them. The framework can be found as a library in either C++ or Python and, there-
fore, the circuits are described over one of these programming languages. It can target real quantum chips as
well as different quantum computer simulators such are QX simulator [42] or quantumsim [4].

One of the passes of the compiler is the mapper algorithm developed by our group. It performs the initial
placement, schedule the operations and route the qubits taking into account the quantum chip constraints
that are described in a JSON file. It is also able to load different compiler configurations like the kind of
scheduler, router or initial placement. We will use OpenQL to describe the selected benchmarks and compile
them for the SC-17 chip. In Fig. 4.1 we show an example of OpenQL code using Python that describes the
Gray encoder quantum circuit (Fig. 2.2). More insights can be found in the github repository.

https://github.com/QE-Lab/OpenQL

4.2. Analysis framework 25

1 from openql import openql as ql
2

3 def circuit(config_file, scheduler='ASAP', uniform_sched= 'no', mapper='base', initial_placement='no',
output_dir_name='test_output', optimize='no', measurement=True, log_level='LOG_WARNING'):↪

4 curdir = os.path.dirname(__file__)
5 output_dir = os.path.join(curdir, output_dir_name)
6 ql.set_option('output_dir', output_dir)
7 ql.set_option('optimize', optimize)
8 ql.set_option('scheduler', scheduler)
9 ql.set_option('scheduler_uniform', uniform_sched)

10 ql.set_option('mapper', mapper)
11 ql.set_option('initialplace', initial_placement)
12 ql.set_option('log_level', log_level)
13

14 config_fn = os.path.join(curdir, config_file)
15

16 platform = ql.Platform('starmon', config_fn)
17 sweep_points = [1,2]
18 num_circuits = 1
19 num_qubits = 6
20 p = ql.Program('graycode6', platform, num_qubits)
21 p.set_sweep_points(sweep_points, num_circuits)
22 k = ql.Kernel('graycode6', platform, num_qubits)
23 k.gate('cnot',[1,0])
24 k.gate('cnot',[2,1])
25 k.gate('cnot',[3,2])
26 k.gate('cnot',[4,3])
27 k.gate('cnot',[5,4])
28

29 if measurement:
30 for q in range(num_qubits):
31 k.gate('measure', [q])
32

33 p.add_kernel(k)
34 p.compile()

Figure 4.1: OpenQL description in python code describing the Gray code algorithm.

4.2.2. quantumsim

Quantumsim [4] is a simulator for superconducting systems and designed to study the SC-17 chip. Its error
model has been induced from the chip’s behaviour after several experiments. Therefore, quantumsim’s error
model is much more complete for the superconducting case than other general simulators. It is based on
the decoherence time and the observed gate error rates. Although the detail in its error model makes each
simulation computationally harder. As a matter of fact, quantumsim is able to boost its calculations with a
Graphics Processing Unit (GPU). Quantumsim can be found as a python library in its github repository with
instructions to install it and an overview of how to use it.

4.2.3. Analysis Framework

In order to study the metrics, we developed a simulation framework. This framework was developed in order
to be a tool extensively used by our group. For this reason it was thought as a modular system. The framework
maps a quantum algorithm to a given device, using OpenQL. Then it simulates it with quantumsim. Later
on, the framework will execute an analysis of the simulation results. The analysis is based on the fidelity,
probability of success and quantum volume calculations besides the depth, number of added SWAPs and the
total number of operations extracted from the different circuit descriptions. Finally, all the data is stored in a
database with the aim to do an exercise of data analysis to study the mapping metrics. The framework flow
can be followed in the Fig. 4.2. Note that, although we choose quantumsim to run our experiments, we could
have introduced any other simulator due to the modular nature of the framework.

1. Benchmark mapping

First, the framework compiles the benchmarks described in OpenQL depending on the configuration
introduced. The configuration options are the mapper characteristics (scheduler, initial placement and
router) and the JSON file describing the quantum device for which the algorithm should be mapped.
OpenQL exports the mapped version of the circuit in a language understandable by a simulator, in
either quantumsim or cQASM [43] code. From all the circuits descriptions – before and after being
mapped –, the framework extracts the algorithm name, the number of qubits used and the number of

https://github.com/quantumsim/quantumsim

26 4. Benchmarks and analysis framework

operations. Also, from the circuits before mapping it will extract the source and the functionality and
from the ones mapped the depth and the number of SWAPs added. All this information will be stored
in the database.

2. Mapping simulation

After being mapped, the simulator will load the mapped circuit and the simulation characteristics. The
mapped algorithm will be simulated first without errors, in order to know what is the correct result or
the result we should expect from this circuit. We store both, the resultant quantum stateψ and its ideal
measurement M(ψ). Note that, as long as our benchmarks are all deterministic (see the Benchmarks
section) the quantum state and the measurement will be the same. After saving the correct result, the
framework proceeds to simulate N times the benchmark. The results affected by the errors will be

used to calculate the fidelity – between the quantum state ψ′ and the expected one ψ – as well as the

probability of success – between the measurement M(ψ′) and the expected one M(ψ). The final value
for fidelity and probability of success will be calculated averaging all the fidelities and probabilities of
success calculated per simulation. At the same time the quantum volume will be calculated with the
depth and the number of qubits from the qubits mapped. Finally these results and the simulations
parameters will be stored in the database.

3. Database

The database is conformed by six different tables. The Benchmarks table will store the information
from the circuits before being mapped: the algorithm name, its source and functionality, the number
of qubits used and the number of operations. The Configurations table will save the device configura-
tion and the mapper characteristics. HardwareBenchs will store the name, the number of qubits and
operations from the mapped algorithms as well as the SWAPs added and the circuit depth. Simulations
will save the simulator options as the simulator used, the number of simulations, the error rate, the
decoherence times and the measurement error. The Results table stores all the results from the simula-
tions and the Experiments table saves data about the moment when the framework was used in order
to identify the different experiments done.

4.2. Analysis framework 27

F
ig

u
re

4.
2:

A
n

al
ys

is
Fr

am
ew

o
rk

5
Results

In this chapter the simulation results are presented with reference to the aim of the thesis, which was to study
the mapping metrics: their precision when assessing the mapping quality and their relation with the error
amount after mapping. First, in the Impact of the mapping on the algorithm reliability section we show how
the mapping procedure affects the general increment of errors. After that, we analyze the metrics and their
correlation with the error increase in the Analysis of the mapping metrics section.

5.1. Impact of the mapping on the algorithm reliability

After the selection of benchmarks in the Benchmarks section, we started their simulations using our simula-
tion framework. Some of the benchmarks either had very long simulation times or were even impossible to
simulate due the computational power required by the quantumsim’s complex error model. In most of those
cases the circuits had more than ten qubits. As we mentioned before throughout this thesis, the simulation of
quantum systems is computationally exhausting. The higher the number of qubits or the length of the circuit,
the harder is it to simulate it. Indeed, it is a critical issue in our case, as soon as we need to run multiple sim-
ulations in a complex error model. Therefore, as can be seen in Tab. 5.1, we address that the final benchmark
selection has a limitation in the number of qubits.

As explained in the Analysis framework section, after running each benchmark for one thousand times, the
results obtained are the fidelity and the probability of success. We also extracted other metrics like the num-
ber of SWAPs added, the depth of the circuits and the Quantum Volume, among other circuit statistics. These
metrics were obtained for all mentioned benchmarks before (non-mapped) and after mapping (mapped).
Note that, for a fair comparison both the mapped and the non-mapped circuits have been decomposed into
the gates supported by the Surface-17 chip (see Fig. 3.2). For the mapped ones, we use the three router
algorithms developed in our group (see Mapping Model): base, minextend and minextendrc.

In quantumsim, we also try different configurations regarding the decoherence time in order to study the
mappers in different error regimes. All the results are detailed in Appendix A.

In order to illustrate how the mapping process affects the algorithm reliability, Figure 5.1 shows the fidelity for
some of the benchmarks before being mapped and after being mapped using the minextendrc router and a
decoherence time of 30µs. We can see that fidelity is smaller for long circuits – like sf_274 or mod5adder_127
– than for the short ones – graycode6_47 or xor5_254. It can be seen that, for the long circuits, the fidelity
can even decrease more than 50%. For instance, sf_274’s fidelity goes from 0.35 to 0.17, mod5adder_127’s
goes from 0.45 to 0.19. On the other hand, for the small circuits like graycode6_47 or xor5_254 the fidelity
decreases around 1%; from 0.99 to 0.98 and from 0.99 to 0.97, respectively. For more details, we show the
exact result values for all the benchmarks in Appendix A.

As we mentioned before, we use three different routers, each one giving a different mapped version per
benchmark and, therefore, different metric statistics. For instance, as it can be seen in Appendix A and in

29

chapter-4.org
chapter-4_old.org
appendix-1.org
appendix-1.org
appendix-1.org

30 5. Results

Table 5.1: Table of the selected benchmarks to be mapped.

Benchmark # qubits # gates two-qubit gates (fraction)
graycode6_47 6 5 1.000
xor5_254 6 7 0.714
4mod5_v0_20 5 20 0.500
ham3_102 3 20 0.550
mod5d1_63 5 22 0.591
4gt11_82 5 27 0.667
rd32_v0_66 4 34 0.471
alu_v0_27 5 36 0.472
4mod5_bdd_287 7 70 0.443
one_two_three_v3_101 5 70 0.457
decod24_bdd_294 6 73 0.438
alu_bdd_288 7 84 0.452
one_two_three_v1_99 5 132 0.447
mod10_176 5 178 0.438
4gt12_v1_89 6 228 0.439
hwb4_49 5 233 0.459
4gt4_v0_72 6 258 0.438
decod24_enable_126 6 338 0.441
mod8_10_177 6 440 0.445
mod5adder_127 6 555 0.431
sf_276 6 778 0.432
sf_274 6 781 0.430
sym6_145 7 3888 0.438

xor5_254 graycode6_47 hwb4_49 mod5adder_127 sf_2740.0

0.2

0.4

0.6

0.8

1.0

fid
el
ity

Before mapped
After mapped

Figure 5.1: Difference of fidelities before and after mapping with the minextendrc router for five different benchmarks.

5.2. Analysis of the mapping metrics 31

Tab. 5.2, the depth of the graycode6_47 circuit before being mapped is 32 cycles and after being mapped
grows to 111, 61 or 82 depending on the router.

In Fig. 5.2(a) and Fig. 5.3(a) we plot the fidelity of some of the benchmarks non-mapped and mapped, using
the three different versions of the router. Benchmarks are ordered from the shortest to the longest circuit
depth, from left to right, as shown in Tab. 5.2. The dark blue dots represent the benchmarks before being
mapped and the light blue ones represent the different mapped version of it from the different routers. Fig.
5.2(a) presents the result with a decoherence time of 30µs and Fig. 5.3(a) the ones with a decoherence time of
10µs. As mentioned in the Qubits are faulty section, the shorter the decoherence time the more errors would
appear. From these results, we observe that, in general: i) the fidelity decreases as the circuit depth increases,
ii) the shorter the decoherence time (td) the lower the fidelity and the faster it decreases and iii) as we showed
before, the fidelity decreases after the mapping. This behaviour is certainly because the longer the circuit, the
more errors it will get.

To analyze, the difference in fidelity between the mapped and non-mapped cicuits, in Fig. 5.2(b) and Fig.
5.3(b) we plot the maximum (red) and minimum (blue) percentage of difference in fidelity. We calculate the

percentage of the fidelity difference as
fbefore− fafter

fbefore
where fafter is the fidelity of the mapped circuit and fbefore

is the fidelity of the non-mapped one. In Fig. 5.2(a) and Fig. 5.3(a), this difference is illustrated as a red and a
blue lines.

We can observe how the fidelity difference between non-mapped and the mapped algorithms tends to grow.
As soon as most of the selected benchmarks have a similar two-qubit gates percentage and also a similar
number of qubits – main parameters for the mapping task –, we can say that this increasing tendency is mostly
is due to the length of the circuit before being mapped. In other words, the longest the circuit, the higher the
difference between fidelities. Moreover, another remark we see is that, in the case of a decoherence time of
10µs (Fig 5.3), we observe strange results like negative fidelities. This is due to the chaotic behaviour of the
quantum system whenever the latency of the circuit is very close or longer than the decoherence time of the
qubit. As we explained in the Qubits are faulty section, the decoherence time is related with the amount of
errors that affect our circuit; the shorter the decoherence time, the more errors will appear in our quantum
system.

Table 5.2: Different depth per benchmark

Benchmark Depth before mapping Depth after mapping with minextendrc Depth after mapping with minextend Depth after mapping with base
graycode6_47 32 111 61 82
mod5d1_63 59 209 136 146
ham3_102 60 127 121 98
alu_v0_27 80 248 156 214
miller_11 112 307 278 231
one_two_three_v3_101 143 440 302 323
decod24_bdd_294 144 407 328 300
alu_bdd_288 165 495 383 360
one_two_three_v1_99 256 839 530 609
mod10_176 327 1090 687 734
hwb4_49 439 1387 961 1006
mini_alu_167 516 1598 992 1274
decod24_enable_126 612 1788 1440 1446
mod8_10_177 794 2275 1761 2006
mod5adder_127 944 2878 2667 2378

5.2. Analysis of the mapping metrics

Once we acknowledge the behaviour of the fidelity decrease due to the mapping process, in this section, we
will analyze how different circuit parameters affect the fidelity and the probability of success. If we are able
to answer which metric is more correlated with the appearance of errors in the circuit, we will know the most
critical metric for the mapping quality. Therefore, in this section we evaluate the behaviour of the number
of gates, the number of two-qubit gates – in accordance with the number of SWAPs –, the depth and the
Quantum Volume metrics in comparison with the algorithm’s reliability, or what is the same, the fidelity and
the probability of success.

Before doing that, first we analyze the probability of success and fidelity correlation. As we explained in
the Fidelity and Probability of success section, one of the main differences between these two metrics is
that the probability of success takes into account the measurement process of the qubits, while fidelity does
not. This makes the probability of success not only sensitive to the errors related with the measurement
but also to the inherent non-deterministic behaviour of it. This means that, although our benchmarks are

quantum_computing.org
quantum_computing.org

32 5. Results

(a) Fidelity per benchmark

Benchmarks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fid
el
ity

 d
iff
er
en

ce
 p
er
ce

nt
ag

e

Upper bound
Lower bound

(b) Difference of fidelity per benchmark

Figure 5.2: Impact of mapping for td = 30µs

5.2. Analysis of the mapping metrics 33

(a) Fidelity per benchmark

Benchmarks

−0.4

−0.2

0.0

0.2

0.4

0.6

fid
el
ity

 d
iff
er
en

ce
 p
er
ce

nt
ag

e

Upper bound
Lower bound

(b) Difference of fidelity per benchmark

Figure 5.3: Impact of mapping for td = 10µs

34 5. Results

deterministic, a circuit could result erroneously in a state in superposition due to the quantum noise, forcing
the measurement to collapse to either the correct or the wrong state. For example, let us say that we are
expecting 1 as the result of a given qubit but, before measuring instead of ∣1⟩ we got

√
0.3∣0⟩+

√
0.7∣1⟩. In

this case, without taking into account the measurement errors, the measurement will result in 0 with a 30%
chance and 1 with a 70% chance. For this reason, the probability of success tends to be more chaotic in
regimes with high amount of errors; as we will throughout this section.

In Fig. 5.4 we plot the correlation of probability of success and fidelity. For this figure and the figures from
now on in this section, each dot represents a different benchmark, before being mapped and also after being
mapped with the three router versions (see Appendix A). The colors represent different decoherence times,
blue for 30 µs and orange for 10 µs. Note that for the rest of the results, we are not interested in analyzing
the difference between mapped and non-mapped algorithms (as it has been already analyzed in previous
section). In this case we just treat them as circuits with different number of gates or circuit depth, or Quantum
Volume.

0.0 0.2 0.4 0.6 0.8 1.0
fidelity

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

. o
f s

uc
ce

ss

Fitting line
Fitting line
t_d 30 µs
t_d 10 µs

Figure 5.4: Correlation between fidelity and probability of success for two different decoherence times

As expected, our experiments prove that both metrics are highly correlated. We also appreciated the fact that
most of the samples are above the x = y line; meaning that the probability of success, in general, is higher
than the fidelity. This could suggest that the measurement is ’correcting’ circuit errors collapsing the state in
the correct result, instead of the wrong one. It seems that the measurement is committing ’good’ mistakes
that result in the expected solution. That is, this behaviour could be happening because of the indeterministic
behaviour of the measurement. Further research should be done to better understand this behaviour.

Another observation we see is that, the closer the samples get to 0 fidelity or 0 probability of success, the more
chaotic the values are. Actually we can delimit two parts in the graph: above and below 0.7 in fidelity – around
0.8 in probability of success. Above 0.7 we observe an almost linear behaviour and below 0.6 we start seeing
more chaotic results. This behaviour happens because, whenever a circuit accumulates a high amount of
errors, fidelity or probability of success low but almost random values. Finally, we see that most of the orange
samples are below the 0.6 fidelity value; or what is the same, most of the benchmarks simulated with the low
decoherence time have more chaotic values. This can be explained by the fact that the correctness of circuits
that are run in lower error rate regimes will have much better results in systems with higher error rates.

Now we will analyze the relation between the fidelity and the probability of succes with the number of gates,
number of two-qubit gates, circuit depth and Quantum Volume (new metric).

The results of the main mapping metrics against fidelity are depicted in Fig. 5.5. We observe that, for all
the cases, the fidelity decreases with a behaviour that looks inverse exponential and that decreases faster for

appendix-1.org

5.2. Analysis of the mapping metrics 35

small decoherence times. Certainly, the shorter the decoherence times we use, the more benchmarks will
have non-useful results. We can also see how fidelity never goes to zero, but it gets constant around 0.2, due
to the randomness of the results. We consider the point where fidelity is constant as the limit in terms of each
one of the variables. We plot a line for the orange samples to mark this point. Note that in the case of the blue
samples this point is not visible. Finally, it can be seen how the number of gates is the metric most related
with the fidelity; it is the one with the samples less scattered.

Figure 5.5: Correlation between fidelity and the mapping metrics.

The correlation between the probability of success and the other metrics can be see in Fig. 5.6. We observe a
decreasing behaviour, although the samples are much more spread in this case than in the case of the fidelity.
We believe that this is caused by the indeterministic effect in the nature of the measurement. We can see
again that for shorter decoherence times the probability of success is lower and descends much faster.

In general, we observe a certain correlation between all of the metrics and the fidelity and the probability of
success; so in order to differ between the metrics, we calculate the Pearson correlation coefficients to mea-
sure the correlation quality between them for different amounts of errors in a circuit. Note that the Pearson
coefficient measures linear correlations and, as it looks like in Fig. 5.5, the metrics behave in an inverse expo-
nential fashion against fidelity. For this reason, in order to see the real correlation between the metrics and
the fidelity, we applied a log(⋅) transformation to our fidelity data in order to make it linear for the Pearson
calculation.

As it can be seen in the Pearson values (Tab. 5.3 and Tab. 5.4) the most correlated metric is the number
of gates. Then, this suggests that for our specific case, the mapping algorithm should optimize in terms of
number of gates, or what is the same, in number of SWAPs. As Tab. 5.3 and Tab. 5.4 highlight, we have a
worse correlation for the shorter decoherence time. This lack of correlation can be attributed to the fact that
the majority of the samples with td = 1000 are highly affected by the errors and, therefore, the samples have
more random values.

36 5. Results

0 1000 2000 3000 4000 5000
of gates

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

. o
f s

uc
ce

ss

0 250 500 750 1000 1250
of two-qubit gates

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

. o
f s

uc
ce

ss

Fitting line
Fitting line
t_d 30 µs
t_d 10 µs

0 1000 2000 3000 4000
depth

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

. o
f s

uc
ce

ss

0 10000 20000 30000
Quantum Volume

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

. o
f s

uc
ce

ss

Figure 5.6: Correlation between probability of success and the mapping metrics.

5.2. Analysis of the mapping metrics 37

Moreover, contrary to our expectations, the Quantum Volume is the least correlated metric. This small lack of
correlation can be attributed to the imprecise formula that we chose to compute it. Future work needs to be
done to devise a better formula. Note that the idea of introducing Quantum Volume as a metric was to have
an easier way to calculate the algorithm’s reliability without having to obtain the probability of success and
the fidelity through simulations.

Finally, if we compare both tables, we can see that the fidelity is more correlated with the metrics than
the probability of success. It is very likely that the reason for this result is that the measurement error to-
gether with the measurement indeterministic behaviour adds more noise and spreads our samples. Also the
’correcting-errors behaviour’ of the measurement should be taken into account.

Table 5.3: Pearson correlation coefficient of the log transformation of fidelity against the metrics(ρl og(f),Y), where Y is one of the four
metrics we analyze

of Gates # of Two-qubit gates Depth VQ

td = 3000 -0.9730 -0.9600 -0.9455 -0.9118
td = 1000 -0.8466 -0.8135 -0.8093 -0.7736

Table 5.4: Pearson correlation coefficient for the probability of success against the metrics (ρps ,Y), where Y is one of the four metrics
we analyze

of Gates # of Two-qubit gates Depth VQ

td = 3000 -0.9363 -0.9248 -0.9179 -0.8797
td = 1000 -0.8341 -0.8097 -0.8076 -0.7686

6
Conclusions and Future Work

6.1. Conclusions

In this thesis we have proposed three different metrics to analyze how the mapping process affects the relia-
bility of the algorithms. These metrics are the quantum fidelity, the probability of success of the algorithms
and the Quantum Volume. They can be used not only to evaluate how good the mapping model is, but also as
parameters to optimize during the mapping. Note that to calculate the fidelity and the probability of success
of a quantum algorithm we need to simulate it – using a quantum simulator – which is time consuming and
limits you to small circuit sizes. That is why we have investigated the Quantum Volume as possible alternative.

To this purpose we have developed a simulation framework combining the OpenQL mapping model, that
takes into account the constrains of a real chip – the SC-17 –, and the quantumsim simulator. The analy-
sis framework also stores the results of the simulations as well as the results from the mapping model in a
database.

The results of this study indicates that, as expected, mapping quantum algorithm on a quantum processor
decreases the algorithm’s reliability (quantum fidelity). And this difference in fidelity is more pronounced for
longer circuits.

In addition, although correlated, there is a slight difference between probability of success and fidelity due to
the non-deterministic behaviour of the quantum measurements.

We have also investigated the correlation of both metrics, the fidelity and probability of success, with the
number of gates, number of two-qubit gates, circuit depth and Quantum Volume. Our results suggest that
the number of gates is the most correlated metric and then, the best candidate to optimize by the mapping
model, for this specific case.

Finally, although we observe a certain correlation between fidelity/probability of success with Quantum Vol-
ume, the use of Quantum Volume to measure the algorithm’s reliability should be further investigated.

6.2. Future work

While reviewing our results we identify several points that require further research.

Bigger selection of benchmarks

Although our results explore a big set of values for each metric, we are aware that some regions in our plots
are much more populated in terms of samples than others. In order to fully understand the behaviour of
the metrics, more and different benchmarks should be analyzed with our simulations framework. Therefore,
future work should include a bigger benchmark selection.

39

40 6. Conclusions and Future Work

More qubits

Also, we targeted a similar benchmarks distribution in terms of number of qubits. Due to quantumsim lim-
itations, the number of qubits are between 3 and 7 qubits, which is a low amount of qubits. Therefore, in
order to explore higher systems in terms of qubits, we suggest that further research should be undertaken
in the improvement of simulators. If we are able to simulate higher amounts of qubits, we will be able to
study the behaviour of the mapping and the metrics in higher qubits systems. To this purpose we could use
the QX simulator, developed at the QCA lab, that will include more realistic error models and will allow the
exploration of quantum systems with higher number of qubits.

Improve Quantum Volume

As we mention in the Quantum Volume section, the metric of Quantum Volume defined as the multiplication
of qubits and depth of the circuit is an initial attempt of studying it as mapping metric. As we showed in the
Results chapter, this definition, although correlated with the fidelity/probability of success, it is not having
the best results. Thus, further studies, which take a better definition of Quantum Volume, will need to be
undertaken.

Fidelity and probability of success estimation

One of the main restrictions we have found through the development of this work are the simulation lim-
its. Simulations of long circuits require long time to be simulated and, in some cases, are not even able to
be simulated. In order to avoid this overload that drags out our work we would like to model fidelity and
probability of success given the different circuit parameters. Further studies on different and more samples
configurations are therefore required in order to elucidate the regression model able to estimate fidelity and
probability of success with the least error.

Understanding more about probability of success

We observed in the results chapter that probability of success tends to be higher than the fidelity. We are not
sure about the source of this behaviour, therefore further investigation is needed.

Appendix A

In this appendix we add the exact results of the simulations for each one of the benchmarks and each of
the configurations we used. Note that the non-mapped version of the benchmarks have the quantum gates
decomposed in the operations allowed in the SC-17 chip. Also, notice that not all the benchmarks have given
results for the simulations with a decoherence time of 10µs due to the long simulation times.

4gt11_82

Table 1: Step 1 results after 1000 iterations, td = 30µs

Mapper # qubits depth # gates # SWAPS p. success f VQ
no 5 78 84 0 0.96 0.97823066 390
minextendrc 7 226 237 17 0.929 0.92937318 1582
minextend 8 158 228 16 0.947 0.9312172 1264
base 6 177 228 16 0.932 0.906571 1062

4gt12-v1_89

Table 2: Results after 1000 iterations, td = 30µs

Mapper # qubits depth # gates # SWAPS p. success f VQ
no 6 416 658 0 0.768 0.66623522 2496
minextendrc 9 1172 1360 78 0.562 0.44841106 10548
minextend 9 1008 1549 99 0.601 0.40972458 9072
base 6 1069 1423 85 0.517 0.3581228 6414

4gt4-v0_72

Table 3: Results after 1000 iterations, td = 30µs

Mapper # qubits depth # gates # SWAPS p. success f VQ
no 6 442 746 0 0.786 0.68007548 2652
minextendrc 9 1352 1592 94 0.452 0.37749204 12168
minextend 8 963 1736 110 0.498 0.34067243 7704
base 6 1056 1547 89 0.532 0.35703954 6336

4mod5-bdd_287

Table 4: Results after 1000 iterations, td = 30µs

Mapper # qubits depth # gates # SWAPS p. success f VQ
no 7 147 203 0 0.916 0.87474237 1029
minextendrc 9 436 500 33 0.753 0.65935538 3924
minextend 9 332 500 33 0.798 0.69281491 2988
base 7 334 419 24 0.776 0.67942877 2338

41

42 6. Conclusions and Future Work

4mod5-v0_20

Table 5: Results after 1000 iterations, td = 30µs

Mapper # qubits depth # gates # SWAPS p. success f VQ
no 5 53 61 0 0.985 0.97145968 265
minextendrc 9 139 142 9 0.944 0.9092329 1251
minextend 8 128 160 11 0.938 0.88981602 1024
base 6 133 119 8 0.947 0.89871898 714

alu_bdd_288

Table 6: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 7 247 0 165 0.94 0.89851036 1155
minextendrc 8 571 36 495 0.847 0.78096707 3960
minextend 8 616 41 383 0.846 0.73109047 3064
base 7 472 25 360 0.841 0.71637503 2520

Table 7: Results after 1000 iterations, td = 10µs

Mapper p. success f
no 0.823 0.7239169
minextendrc 0.645 0.53390012
minextend 0.635 0.44304306
base 0.619 0.42191365

alu_v0_27

Table 8: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 5 107 0 80 0.98 0.96369032 400
minextendrc 9 278 19 248 0.959 0.92602273 2232
minextend 10 296 21 156 0.944 0.89032214 1560
base 6 278 19 214 0.915 0.84492332 1284

Table 9: Results after 1000 iterations, td = 10µs

Mapper p. success f
no 0.935 0.88798044
minextendrc 0.86 0.78330212
minextend 0.838 0.71318628
base 0.764 0.6236159

6.2. Future work 43

decod24_bdd_294

Table 10: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 6 207 0 144 0.938 0.91098461 864
minextendrc 9 441 26 407 0.888 0.7749599 3663
minextend 7 468 29 328 0.816 0.73708015 2296
base 6 405 22 300 0.781 0.71803687 1800

Table 11: Results after 1000 iterations, td = 10µs

Mapper p. success f
no 0.824 0.76021761
minextendrc 0.697 0.48128717
minextend 0.583 0.47226973
base 0.522 0.46210864

decod24_enable_126

Table 12: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 6 978 0 612 0.894 0.74038417 3672
minextendrc 9 2049 119 1788 0.831 0.57285276 16092
minextend 10 2184 134 1440 0.805 0.50947313 14400
base 6 1959 109 1446 0.74 0.42630108 8676

graycode6_47

Table 13: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 6 21 0 32 0.995 0.99332325 192
minextendrc 7 111 10 111 0.991 0.98223938 777
minextend 10 102 9 61 0.987 0.97012132 610
base 6 84 7 82 0.991 0.98075312 492

ham3_102

Table 14: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 3 61 0 60 0.987 0.98246387 180
minextendrc 4 115 6 127 0.971 0.95999051 508
minextend 4 115 6 121 0.974 0.96288976 484
base 4 106 5 98 0.973 0.95944625 392

44 6. Conclusions and Future Work

hwb4_49

Table 15: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 5 676 0 439 0.932 0.83574294 2195
minextendrc 8 1513 93 1387 0.836 0.64431638 11096
minextend 8 1486 90 961 0.841 0.61627052 7688
base 6 1342 74 1006 0.793 0.55657097 6036

miller_11

Table 16: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 3 147 0 112 0.974 0.95730728 336
minextendrc 4 300 17 307 0.936 0.89826972 1228
minextend 4 291 16 278 0.941 0.90537705 1112
base 4 282 15 231 0.936 0.89555086 924

mini_alu_167

Table 17: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 5 833 0 516 0.891 0.77613311 2580
minextendrc 8 1805 108 1598 0.843 0.6160112 12784
minextend 8 1832 111 992 0.805 0.53931365 7936
base 6 1697 96 1274 0.774 0.51881554 7644

mod10_176

Table 18: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 5 515 0 327 0.9 0.82976826 1635
minextendrc 7 1199 76 1090 0.758 0.62105388 7630
minextend 10 1127 68 687 0.733 0.60641905 6870
base 6 983 52 734 0.697 0.56115058 4404

Table 19: Results after 1000 iterations, td = 10µs

Mapper p. success f
no 0.738 0.59602509
minextendrc 0.453 0.31989048
minextend 0.443 0.31320313
base 0.372 0.27839542

6.2. Future work 45

mod5adder_127

Table 20: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 6 1583 0 944 0.71 0.45135226 5664
minextendrc 9 3320 193 2878 0.491 0.1922222 25902
minextend 10 3779 244 2667 0.548 0.18165444 26670
base 6 3248 185 2378 0.591 0.18911191 14268

Table 21: Results after 1000 iterations, td = 10µs

Mapper p. success f
no 0.528 0.18188697
minextendrc 0.36 0.1484162
minextend 0.399 0.14349585
base 0.465 0.12694018

mod5d1_63

Table 22: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 5 69 0 59 0.989 0.98368741 295
minextendrc 8 195 14 209 0.958 0.93474128 1672
minextend 8 195 14 136 0.969 0.93997349 1088
base 6 195 14 146 0.95 0.91002595 876

Table 23: Results after 1000 iterations, td = 10µs

Mapper p. success f
no 0.97 0.95187372
minextendrc 0.901 0.84099717
minextend 0.914 0.83627787
base 0.892 0.7849484

mod8_10_177

Table 24: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 6 1270 0 794 0.858 0.70131629 4764
minextendrc 10 2674 156 2275 0.52 0.39211003 22750
minextend 10 2827 173 1761 0.411 0.29686116 17610
base 6 2773 167 2006 0.335 0.26106507 12036

Table 25: Results after 1000 iterations, td = 10µs

Mapper p. success f
no 0.698 0.42021822
minextendrc 0.244 0.19792409
minextend 0.123 0.14638911
base 0.068 0.16412249

46 6. Conclusions and Future Work

one_two_three_v1_99

Table 26: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 5 383 0 256 0.832 0.78653106 1280
minextendrc 7 887 56 839 0.633 0.59855522 5873
minextend 10 869 54 530 0.729 0.62135956 5300
base 6 833 50 609 0.662 0.57083541 3654

Table 27: Results after 1000 iterations, td = 10µs

Mapper p. success f
no 0.602 0.55524768
minextendrc 0.266 0.38317882
minextend 0.355 0.33820922
base 0.26 0.31493265

one_two_three_v3_101

Table 28: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 5 203 0 143 0.937 0.88807716 715
minextendrc 8 464 29 440 0.746 0.620299 3520
minextend 8 509 34 302 0.732 0.63161506 2416
base 6 428 25 323 0.742 0.62081173 1938

Table 29: Results after 1000 iterations, td = 10µs

Mapper p. success f
no 0.809 0.69629912
minextendrc 0.411 0.31374806
minextend 0.391 0.31579028
base 0.42 0.31189591

rd32_v0_66

Table 30: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 4 102 0 83 0.983 0.97241164 332
minextendrc 7 219 13 195 0.947 0.91458844 1365
minextend 7 228 14 142 0.958 0.91079208 994
base 5 219 13 169 0.955 0.90759692 845

Table 31: Results after 1000 iterations, td = 10µs

Mapper p. success f
no 0.95 0.9176419
minextendrc 0.88 0.79475368
minextend 0.902 0.77708902
base 0.896 0.77242986

6.2. Future work 47

sf_274

Table 32: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 6 2227 0 1359 0.484 0.34974095 8154
minextendrc 7 5116 321 4515 0.0 0.16778098 31605
minextend 10 5071 316 3007 0.097 0.14752778 30070
base 6 4450 247 3289 0.088 0.15461728 19734

Table 33: Results after 1000 iterations, td = 10µs

Mapper p. success f
no 0.108 0.16219308
minextendrc 0.002 0.19857107
minextend 0.0 0.1458942
base 0.0 0.14493197

sf_276

Table 34: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 6 2224 0 1360 0.472 0.30846996 8160
minextendrc 9 4852 292 4103 0.0 0.16746873 36927
minextend 10 4807 287 2747 0.092 0.14342305 27470
base 6 4447 247 3280 0.089 0.13928494 19680

Table 35: Results after 1000 iterations, td = 10µs

Mapper p. success f
no 0.034 0.15718296
minextendrc 0.0 0.22111901
minextend 0.0 0.15992956
base 0.0 0.14842314

sym6_145

Table 36: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 7 11185 0 6759 0.506 0.15429107 47313
minextendrc 8 24658 1497 20984 0.513 0.22079977 167872
minextend 10 25756 1619 14156 0.546 0.12489321 141560
base 7 21679 1166 15613 0.531 0.12176519 109291

Table 37: Results after 1000 iterations, td = 10µs

Mapper p. success f
no 0.513 0.1407412
minextendrc 0.518 0.24438143
minextend 0.543 0.1533595
base 0.53 0.14274046

48 6. Conclusions and Future Work

xor5_254

Table 38: Results after 1000 iterations, td = 30µs

Mapper # qubits # gates # SWAPS depth p. success f VQ
no 6 23 0 36 0.995 0.99375935 216
minextendrc 7 68 5 75 0.984 0.9736118 525
minextend 7 68 5 58 0.958 0.94092446 406
base 6 104 9 92 0.942 0.91559086 552

Table 39: Results after 1000 iterations, td = 10µs

Mapper p. success f
no 0.984 0.97720823
minextendrc 0.952 0.91998206
minextend 0.896 0.84674549
base 0.837 0.77312906

Bibliography

[1] X. Fu, L. Riesebos, L. Lao, C. G. Almudever, F. Sebastiano, R. Versluis, E. Charbon, and K. Bertels, A
heterogeneous quantum computer architecture, Proceedings of the ACM International Conference on
Computing Frontiers - CF ’16 (2016), 10.1145/2903150.2906827.

[2] X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen, J. C. de Sterke,
W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, An experimental microar-
chitecture for a superconducting quantum processor, in Proceedings of the 50th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO-50 ’17 (ACM, New York, NY, USA, 2017) pp. 813–825.

[3] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, (2009),
10.1017/cbo9780511976667.

[4] T. E. O’Brien, B. Tarasinski, and L. DiCarlo, Density-matrix simulation of small surface codes under cur-
rent and projected experimental noise, npj Quantum Information 3 (2017), 10.1038/s41534-017-0039-x.

[5] R. Versluis, S. Poletto, N. Khammassi, B. Tarasinski, N. Haider, D. Michalak, A. Bruno, K. Bertels, and
L. DiCarlo, Scalable quantum circuit and control for a superconducting surface code, Physical Review
Applied 8 (2017), 10.1103/physrevapplied.8.034021.

[6] P. J. Coles, S. Eidenbenz, S. Pakin, A. Adedoyin, J. Ambrosiano, P. Anisimov, W. Casper, G. Chennupati,
C. Coffrin, H. Djidjev, D. Gunter, S. Karra, N. Lemons, S. Lin, A. Lokhov, A. Malyzhenkov, D. Mascarenas,
S. Mniszewski, B. Nadiga, D. O’Malley, D. Oyen, L. Prasad, R. Roberts, P. Romero, N. Santhi, N. Sinitsyn,
P. Swart, M. Vuffray, J. Wendelberger, B. Yoon, R. Zamora, and W. Zhu, Quantum Algorithm Implemen-
tations for Beginners, (2018), arXiv:1804.03719v1 [cs.ET] .

[7] M. J. Dousti and M. Pedram, Minimizing the latency of quantum circuits during mapping to the ion-
trap circuit fabric, 2012 Design, Automation Test in Europe Conference Exhibition (DATE) (2012),
10.1109/date.2012.6176612.

[8] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Camp-
bell, and et al., Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature
508, 500–503 (2014).

[9] C. D. Hill, E. Peretz, S. J. Hile, M. G. House, M. Fuechsle, S. Rogge, M. Y. Simmons, and L. C. L. Hollenberg,
A surface code quantum computer in silicon, Science Advances 1, e1500707 (2015).

[10] R. Li, L. Petit, D. P. Franke, J. P. Dehollain, J. Helsen, M. Steudtner, N. K. Thomas, Z. R. Yoscovits, K. J.
Singh, S. Wehner, and et al., A crossbar network for silicon quantum dot qubits, Science Advances 4,
eaar3960 (2018).

[11] IBM, Ibm q experience backend information, https://github.com/QISKit/
ibmqx-backend-information (2018).

[12] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis,
and H. Neven, Characterizing Quantum Supremacy in Near-Term Devices, (2016), arXiv:1608.00263v3
[quant-ph] .

[13] E. A. Sete, W. J. Zeng, and C. T. Rigetti, A functional architecture for scalable quantum computing, 2016
IEEE International Conference on Rebooting Computing (ICRC) (2016), 10.1109/icrc.2016.7738703.

[14] T. S. Metodi, D. D. Thaker, A. W. Cross, F. T. Chong, and I. L. Chuang, Scheduling physical operations in a
quantum information processor, Quantum Information and Computation IV (2006), 10.1117/12.666419.

49

http://dx.doi.org/10.1145/2903150.2906827
http://dx.doi.org/10.1145/2903150.2906827
http://dx.doi.org/10.1145/3123939.3123952
http://dx.doi.org/10.1145/3123939.3123952
http://dx.doi.org/ 10.1017/cbo9780511976667
http://dx.doi.org/ 10.1017/cbo9780511976667
http://dx.doi.org/10.1038/s41534-017-0039-x
http://dx.doi.org/10.1103/physrevapplied.8.034021
http://dx.doi.org/10.1103/physrevapplied.8.034021
http://arxiv.org/abs/1804.03719v1
http://dx.doi.org/10.1109/date.2012.6176612
http://dx.doi.org/10.1109/date.2012.6176612
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1126/sciadv.1500707
http://dx.doi.org/10.1126/sciadv.aar3960
http://dx.doi.org/10.1126/sciadv.aar3960
https://github.com/QISKit/ibmqx-backend-information
https://github.com/QISKit/ibmqx-backend-information
http://arxiv.org/abs/1608.00263v3
http://arxiv.org/abs/1608.00263v3
http://dx.doi.org/10.1109/icrc.2016.7738703
http://dx.doi.org/10.1109/icrc.2016.7738703
http://dx.doi.org/10.1117/12.666419

50 Bibliography

[15] M. Whitney, N. Isailovic, Y. Patel, and J. Kubiatowicz, Automated generation of layout and control for
quantum circuits, Proceedings of the 4th international conference on Computing frontiers - CF ’07
(2007), 10.1145/1242531.1242546.

[16] T. Bahreini and N. Mohammadzadeh, An minlp model for scheduling and placement of quantum circuits
with a heuristic solution approach, ACM Journal on Emerging Technologies in Computing Systems 12,
1–20 (2015).

[17] A. Farghadan and N. Mohammadzadeh, Quantum circuit physical design flow for 2d nearest-neighbor
architectures, International Journal of Circuit Theory and Applications 45, 989–1000 (2017).

[18] K. E. C. Booth, M. Do, J. C. Beck, E. Rieffel, D. Venturelli, and J. Frank, Comparing and Inte-
grating Constraint Programming and Temporal Planning for Quantum Circuit Compilation, (2018),
arXiv:1803.06775v1 [quant-ph] .

[19] A. Lye, R. Wille, and R. Drechsler, Determining the minimal number of swap gates for multi-dimensional
nearest neighbor quantum circuits, The 20th Asia and South Pacific Design Automation Conference
(2015), 10.1109/aspdac.2015.7059001.

[20] R. Wille, O. Keszocze, M. Walter, P. Rohrs, A. Chattopadhyay, and R. Drechsler, Look-ahead schemes for
nearest neighbor optimization of 1d and 2d quantum circuits, 2016 21st Asia and South Pacific Design
Automation Conference (ASP-DAC) (2016), 10.1109/aspdac.2016.7428026.

[21] A. Zulehner, A. Paler, and R. Wille, An Efficient Methodology for Mapping Quantum Circuits to the IBM
QX Architectures, (2017), arXiv:1712.04722v2 [quant-ph] .

[22] M. Y. Siraichi, V. F. d. Santos, S. Collange, and F. M. Q. Pereira, Qubit allocation, Proceedings
of the 2018 International Symposium on Code Generation and Optimization - CGO 2018 (2018),
10.1145/3179541.3168822.

[23] D. C. McKay, T. Alexander, L. Bello, M. J. Biercuk, L. Bishop, J. Chen, J. M. Chow, A. D. Córcoles, D. Egger,
S. Filipp, J. Gomez, M. Hush, A. Javadi-Abhari, D. Moreda, P. Nation, B. Paulovicks, E. Winston, C. J.
Wood, J. Wootton, and J. M. Gambetta, Qiskit Backend Specifications for OpenQASM and OpenPulse
Experiments, (2018), arXiv:1809.03452v1 [quant-ph] .

[24] G. W. Dueck, A. Pathak, M. M. Rahman, A. Shukla, and A. Banerjee, Optimization of circuits for ibm’s
five-qubit quantum computers, 2018 21st Euromicro Conference on Digital System Design (DSD) (2018),
10.1109/dsd.2018.00005.

[25] D. Venturelli, M. Do, E. Rieffel, and J. Frank, Compiling quantum circuits to realistic hardware architec-
tures using temporal planners, Quantum Science and Technology 3, 025004 (2018).

[26] M. J. Dousti, A. Shafaei, and M. Pedram, Squash, Proceedings of the 24th edition of the great lakes sym-
posium on VLSI - GLSVLSI ’14 (2014), 10.1145/2591513.2591523.

[27] J. Heckey, S. Patil, A. JavadiAbhari, A. Holmes, D. Kudrow, K. R. Brown, D. Franklin, F. T. Chong, and
M. Martonosi, Compiler management of communication and parallelism for quantum computation,
ACM SIGPLAN Notices 50, 445–456 (2015).

[28] Y. Hwang and B.-S. Choi, Hierarchical System Mapping for Large-Scale Fault-Tolerant Quantum Com-
puting, (2018), arXiv:1809.07998v1 [quant-ph] .

[29] D. C. Murphy and K. R. Brown, Controlling error orientation to improve quantum algorithm success rates,
(2018), arXiv:1810.07813v1 [quant-ph] .

[30] L. Lao, B. v. Wee, I. Ashraf, J. v. Someren, N. Khammassi, K. Bertels, and C. G. Almudever, Mapping of
lattice surgery-based quantum circuits on surface code architectures, Quantum Science and Technology
4, 015005 (2018).

[31] J. Preskill, Quantum computing in the nisq era and beyond, Quantum 2, 79 (2018).

[32] S. S. Tannu and M. K. Qureshi, A Case for Variability-Aware Policies for NISQ-Era Quantum Computers,
(2018), arXiv:1805.10224v1 [quant-ph] .

http://dx.doi.org/10.1145/1242531.1242546
http://dx.doi.org/10.1145/1242531.1242546
http://dx.doi.org/10.1145/2766452
http://dx.doi.org/10.1145/2766452
http://dx.doi.org/10.1002/cta.2335
http://arxiv.org/abs/1803.06775v1
http://dx.doi.org/10.1109/aspdac.2015.7059001
http://dx.doi.org/10.1109/aspdac.2015.7059001
http://dx.doi.org/10.1109/aspdac.2016.7428026
http://dx.doi.org/10.1109/aspdac.2016.7428026
http://arxiv.org/abs/1712.04722v2
http://dx.doi.org/10.1145/3179541.3168822
http://dx.doi.org/10.1145/3179541.3168822
http://dx.doi.org/10.1145/3179541.3168822
http://arxiv.org/abs/1809.03452v1
http://dx.doi.org/10.1109/dsd.2018.00005
http://dx.doi.org/10.1109/dsd.2018.00005
http://dx.doi.org/ 10.1088/2058-9565/aaa331
http://dx.doi.org/ 10.1145/2591513.2591523
http://dx.doi.org/ 10.1145/2591513.2591523
http://dx.doi.org/10.1145/2775054.2694357
http://arxiv.org/abs/1809.07998v1
http://arxiv.org/abs/1810.07813v1
http://dx.doi.org/10.1088/2058-9565/aadd1a
http://dx.doi.org/10.1088/2058-9565/aadd1a
http://dx.doi.org/ 10.22331/q-2018-08-06-79
http://arxiv.org/abs/1805.10224v1

Bibliography 51

[33] A. Paler, A. Zulehner, and R. Wille, NISQ circuit compilers: search space structure and heuristics, (2018),
arXiv:1806.07241v1 [quant-ph] .

[34] A. Paler, On the Influence of Initial Qubit Placement During NISQ Circuit Compilation, (2018),
arXiv:1811.08985v1 [quant-ph] .

[35] R. Jozsa, Fidelity for mixed quantum states, Journal of Modern Optics 41, 2315–2323 (1994).

[36] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta,
M. Ganzhorn, and et al., Quantum optimization using variational algorithms on near-term quantum
devices, Quantum Science and Technology 3, 030503 (2018).

[37] A. C. J. M. G. Lev S. Bishop, Sergey Bravyi and J. Smolin, Quantum volume, (2017).

[38] R. Wille, D. Gro, L. Teuber, G. W. Dueck, and R. Drechsler, Revlib: An online resource for reversible func-
tions and reversible circuits, 38th International Symposium on Multiple Valued Logic (ismvl 2008) (2008),
10.1109/ismvl.2008.43.

[39] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong, and M. Martonosi, Scaffcc: Scalable
compilation and analysis of quantum programs, Parallel Computing 45, 2–17 (2015).

[40] C.-C. Lin, A. Chakrabarti, and N. K. Jha, Qlib, ACM Journal on Emerging Technologies in Computing
Systems 11, 1–20 (2014).

[41] N. Khammassi, Openql, high-level quantum programming language, (2017), unpublished.

[42] N. Khammassi, I. Ashraf, X. Fu, C. G. Almudever, and K. Bertels, Qx: A high-performance quantum
computer simulation platform, in Proceedings of the Conference on Design, Automation & Test in Europe,
DATE ’17 (European Design and Automation Association, 3001 Leuven, Belgium, Belgium, 2017) pp.
464–469.

[43] N. Khammassi, G. G. Guerreschi, I. Ashraf, J. W. Hogaboam, C. G. Almudever, and K. Bertels, cQASM
v1.0: Towards a Common Quantum Assembly Language, (2018), arXiv:1805.09607v1 [quant-ph] .

http://arxiv.org/abs/1806.07241v1
http://arxiv.org/abs/1811.08985v1
http://dx.doi.org/10.1080/09500349414552171
http://dx.doi.org/ 10.1088/2058-9565/aab822
https://dal.objectstorage.open.softlayer.com/v1/AUTH_039c3bf6e6e54d76b8e66152e2f87877/community-documents/quatnum-volumehp08co1vbo0cc8fr.pdf
http://dx.doi.org/10.1109/ismvl.2008.43
http://dx.doi.org/10.1109/ismvl.2008.43
http://dx.doi.org/10.1016/j.parco.2014.12.001
http://dx.doi.org/ 10.1145/2629430
http://dx.doi.org/ 10.1145/2629430
http://dl.acm.org/citation.cfm?id=3130379.3130487
http://arxiv.org/abs/1805.09607v1

	Introduction
	Motivation
	Problem Statement
	Structure of the thesis

	Quantum computing and mapping of quantum circuits
	Quantum computing
	Essential elements of quantum computation
	Quantum Circuits
	Qubits are faulty

	Mapping of quantum circuits
	Initial placement
	Routing
	Scheduling
	Mapping example

	State-of-the-art on the mapping of quantum circuits
	Mapping metrics
	Number of SWAPs
	Latency
	Algorithm reliability

	Mapping on superconducting quantum processors
	Constraints of the Surface-17 chip
	Superconducting quantum processor architecture
	Gate set, gate time and gate fidelity
	Qubits interaction constraint
	Frequency constraint
	Measurement constraint

	Mapping model
	Initial placement
	Router
	Scheduler

	New Mapping Metrics: algorithm's reliability
	Fidelity and Probability of success
	Quantum Volume

	Benchmarks and analysis framework
	Benchmarks
	Benchmark selection

	Analysis framework
	Compiler (OpenQL)
	quantumsim
	Analysis Framework

	Results
	Impact of the mapping on the algorithm reliability
	Analysis of the mapping metrics

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography

