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Abstract
Radiation is a well-known problem for satellites in space. It can produce different
negative effects on electronic components which can provoke errors and failures.
Therefore, mitigating these effects is especially important for the success of space
missions. One of the techniques to increase the reliability of memory chips and reduce
transient errors and permanent faults is Error Detection and Correction (EDAC).
EDAC codes are characterised by the use of redundancy to detect and correct errors.
This final project consists in the implementation of a software EDAC algorithm to
protect the main memory of a microcontroller. The implementation requirements
and the issues of software EDAC are described and the test results are commented.
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Symbols and abbreviations

Symbols

dmin Minimum Hamming distance
Rc Code Rate
Cb Block Code
G Generator matrix
H Parity check matrix
c Codeword
m Message
s Syndrome
e Error
k Number of message bits
n Number of codeword bits
t Error-correction capability of a code
Ix Identity matrix. x corresponds to the number of rows of the matrix

Abbreviations

ACE Advanced Composition Explorer
BCH Bose-Chaudhuri-Hocquenguem
CMOS Complementary Metal-Oxide-Semiconductor
CME Coronal Mass Ejection
DEC-TED Double Error Correction - Triple Error Detection
DRAM Dynamic Random-Access Memory
DWC Duplication With Comparison
ECC Error Control Code / Error Correcting Code
EDAC Error Detection And Correction
EEPROM Electrically-Erasable Programmable Read-Only Memory
FRAM Ferroelectric Random-Access Memory
GCR Galactic Cosmic Ray
HW Hardware
IC Integrated Circuit
IDE Integrated Development Environment
I/O Input/Output
LEO Low Earth Orbit
LET Linear Energy Transfer
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
MBU Multiple-Bit Upset
MCU Multiple-Cell Upset
NMOS Negative Metal-Oxide-Semiconductor
NVM Non-Volatile Memory
OS Operating System
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PMOS Positive Metal-Oxide-Semiconductor
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RS Reed-Solomon
RTOS Real-Time Operating System
RW Read-Write
SAA South Atlantic Anomaly
SBU Single-Bit Upset
SEC-DED Single Error Correction - Double Error Detection
SEE Single Event Effect
SEFI Single-Event Functional Interrupt
SEP Solar Energetic Particle
SEU Single-Event Upset
SPE Solar Particle Event
SRAM Static Random-Access Memory
SW Software
TID Total Ionizing Dose
TMR Triple Modular Redundancy
USART Universal Synchronous/Asynchronous Receiver/Transmiter
USB Universal Serial Bus
UV Ultraviolet



1 Introduction

The Sun is the main source of interplanetary radiation. As a result, the radiation
environment is more intense as the distance to the Sun decreases. Satellites in the
Low Earth Orbit (LEO) are subject to radiation due to different sources: solar
energetic particles, trapped radiation in the Earth’s magnetic field and galactic
cosmic rays.

Radiation can produce different negative effects on electronic components which
can provoke errors and failures in the satellites. Therefore, mitigating these effects
is especially important for the success of space missions. Over the years, different
ways to protect the devices from radiation have been studied, for example, the
improvement of the hardware design of the components to make them less sensitive
to radiation.

One category of radiation effects are the single-event effects (SEEs). SEEs in
microelectronics are caused when highly energetic particles strike sensitive regions
of an electronic component. The particle strike can cause different effects such as
transient disruption of a circuit operation, a change of logic state, or even permanent
damage to the device or integrated circuit (IC) [33].

According to Moore’s law, due to the advancement of technology, the physical
size of IC features has decreased and more complex circuitry has been developed.
Due to this significant reduction in the size of the transistors, the amount of energy
required to induce a change in their logical state has also been reduced. This fact
has led to an increase in the sensitivity of components towards SEEs, and the study
of solutions to mitigate them has become more important.

One type of SEE is the Single-Event Upset (SEU). An SEU is produced when
an energetic particle changes the state of a circuit, causing one or more bit flips in
memory cells or registers. These errors are non-destructive effects since the device
can continue to perform normally by reprogramming the circuit into its correct logical
state.

One of the techniques to increase the reliability of memory chips and reduce
transient errors and permanent faults is Error Detection and Correction (EDAC).
EDAC codes were first studied in the late 1940s by Claude Shannon and Richard
W. Hamming, who were interested in how to correct errors that appeared in the
messages sent over long telephone lines. Since then, new codes have been developed
and those already existing have been improved. EDAC codes are characterised by
the use of redundancy to detect and correct errors.

The main goal of error-control coding is to provide reliable messages in an efficient
manner. It is necessary to find a balance between reliability and efficiency, since
higher reliability can imply more calculation time and/or higher memory usage
and, therefore, less efficiency. Hence, for a given application case, the best possible
trade-off between reliability and added overhead must be decided to determine the
most appropriate EDAC code.
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Error-correction codes can be implemented using hardware or software. Hardware
implementation is done by extending the memory bus architecture to accommodate
the check bits, and adding extra circuitry to detect and correct memory errors [35].
The main drawback of hardware EDAC is that it is an expensive solution, as it adds
complexity to the design and increases the silicon footprint.

Software EDAC are a low-cost solution and provide the flexibility of implementic
more complex coding schemes [35]. However, their reliability is lower compared to
hardware EDAC, especially in high-radiation environments.

This project consists in the implementation of a software EDAC algorithm to
protect the main memory of a microcontroller. The main objectives are to implement
a scrubbing algorithm capable of protecting the memory against SEUs, and to analyse
whether software EDAC can be a reliable solution when hardware-implemented EDAC
is not possible. To develop the scrubbing algorithm, it is necessary to decide different
factors such as the EDAC code that will be used and the structure of the program,
among others.

This document is structured as follows:
The first sections (2 to 7) are a theoretical introduction to the radiation environ-

ment in LEO and its effects on memory devices, EDAC codes and their application
in memory protection, and real-time operating systems.

The last sections (8 to 10) describe the EDAC software implementation performed
in this project, the test procedure used to analyse its reliability and performance,
and the results obtained.
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2 Radiation Environment in LEO

Radiation is the propagation of energy in two possible ways: in the form of high-
speed particles (electrons, protons, neutrons and heavy ions), or in the form of
electromagnetic waves (radio waves, microwaves, infrared, visible and UV light,
X-rays and gamma rays).

The main source of interplanetary radiation is the Sun. The Sun produces a
continuous stream of particles known as solar wind. This stream is composed mainly
of protons and electrons in almost equal numbers, and a low percentage of heavy
nuclei. In the vicinity of the Earth, the solar wind speed can vary between 300 and
1000 km/s, depending on solar activity [6].

The Sun also routinely emits massive bursts of plasma in events known as coronal
mass ejections (CMEs). These events are known as solar particle events (SPEs).
SPEs are unpredictable and can occur at any time during the solar cycle. The
frequency of SPEs directed to the Earth can vary from one every two months to
one every two years [2]. Large SPEs -which can last for several days- occur more
frequently in periods of increased solar activity [1].

Energetic particles in the heliosphere are variable in intensity and composition.
Figure 1 shows the helium, oxygen and iron fluences obtained by the spacecraft
Advanced Composition Explorer (ACE) during a 3-year period (from 1997 to 2000).
The measurements were made at 1.5 million km from Earth and 148.5 million km
from the Sun [10].

The energy range between 5 and 10 keV/nucleon that can be observed in Figure
1 is dominated by the solar wind (including both slow and high-speed wind). In the
intermediate region, from ∼ 30 keV/nucleon to ∼ 30 MeV/nucleon different sources
or events contribute to the fluence spectra. [8]

The particle radiation in LEO originates from three main sources: solar energetic
particles, trapped radiation and galactic cosmic rays.

2.1 Solar energetic particles

The particles emitted during CMEs are known as solar energetic particles (SEPs).
They are mainly protons, electrons and heavier charged particles. These particles
travel in a spiral path along the Sun’s magnetic field lines and a small percentage of
them reaches the Low Earth Orbit [3].

Figure 2 gives the fluence energy spectra for the larger SPEs between 1956 and
1990.
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Figure 1: Fluences of He, O, and Fe nuclei measured by several instruments on board
ACE during a 3-year period. Figure taken from [8].

Figure 2: Solar particle event fluence: spectra of larger solar proton events from 1956
to 2003. Figure taken from [9].

2.2 Trapped radiation

When the energetic particles emitted by the Sun encounter the Earth’s magnetic
field, they are deflected by Lorentz forces. Due to this phenomenon, some of the
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particles, mainly protons and electrons, can be trapped in a region called the Van
Allen radiation belts. This region contains two main belts: a relatively stable inner
belt dominated by the presence of protons, and an outer belt consisting predominantly
of high-energy electrons. The energies for protons range from 0.01 to 400 MeV, with
fluxes that range from 600 to 108/cm2; electron energies range from 0.4 to 4.5 MeV,
with fluxes that range from 100 to 4 · 108/cm2 [2]. Variations in the particle fluxes
are caused by fluctuations in solar activity, such as the frequency and magnitude of
solar particle events. In general, the Sun’s activity increases and decreases over an
11-year period, called a solar cycle.

The particles trapped in the Van Allen Radiation Belts are distributed within the
region in a non-homogeneous way, both in altitude and in latitude. Figure 3 shows
the distribution of trapped protons with energies above 10 MeV and the trapped
electron population above 1 MeV.

(a) Trapped electron population above 1 MeV (b) Trapped proton population above 10 MeV

Figure 3: Particle fluxes of trapped radiation. Figures taken from [11].

One of the reasons for this varied distribution is that the outer electron radiation
belt is closer to the Earth at high latitudes than at low altitudes. The other main
reason is known as the South Atlantic Anomaly and is located at low altitudes and
low inclinations [5].

The South Atlantic Anomaly (SAA) is caused by the displacement and inclination
of the geomagnetic axis in relation to the Earth’s rotation axis [2], as shown in Figure
4. This phenomenon increases the flux of trapped particles (especially protons) in
that region. The protons of the SAA are a known radiation problem for spacecraft
in LEO.
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Figure 4: South Atlantic anomaly: proton radiation belt is brought below 500 km
altitude due to tilt and offset of the geomagnetic axis. Figure taken from [2].

2.3 Galactic cosmic rays

Galactic cosmic rays (GCRs) are highly energetic nuclei (mainly between 100 MeV
per nucleon and 10 GeV per nucleon) which are accelerated in the shocks produced
by supernova explosions [1]. Although the flux of particles is expected to be almost
constant outside of the Solar system, GCRs are affected by the modulation of solar
activity and, in periods of low solar activity, the flux of low-energy GCRs in the inner
Solar System is four to five times greater than during high solar activity [3]. GCRs
are mainly composed of protons and alpha particles, and a few heavy ions. Figure 5
shows a GCR spectrum. It can be seen that the GCR fluxes are anti-correlated with
solar activity: when the solar activity is the highest, GCR fluxes are low and vice
versa.
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Figure 5: GCR spectra depicting the intensity variations between solar maximum
and solar minimum conditions. The upper curve for each species is for solar minimum,
when cosmic rays can penetrate into the inner heliosphere more easily. Figure taken
from [1], source: Courtesy of R.A. Mewaldt, California Institute of Technology.
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3 Memory devices

Over the years, different memory technologies have been used to store digital data.
One of the first devices designed to store data is magnetic core storage, which was
developed in the early 1950s. These first devices, in which data could be accessed in
microseconds, started being replaced in the 1960s by solid-state memories, which can
access the data in a matter of nanoseconds. Solid-state memories are implemented
on a single integrated circuit (IC) made up of transistors printed on small chips of
silicon.

In 1965, Gordon Moore, the co-founder of Fairchild Semiconductor and CEO of
Intel, wrote a paper describing the growth of the number of components per IC. He
predicted that each year the number of components per IC would double. Ten years
later he revised his prediction and changed it to a duplication every two years. [13]

This growth trend may have changed in recent years, but it is certain that the
number of components per IC has grown exponentially over the years due to the
successful miniaturization of transistors.

In solid-state memories information is stored in binary form in unit memory cells
(one bit per memory cell). Each memory cell is a circuit that contains from one to
several MOS transistors, and sometimes other elements depending on the technology
[14]. Figure 6 shows the schematic of a Metal-Oxide-Semiconductor Field-Effect
Transistor (MOSFET).

Figure 6: Schematic of an N-channel MOSFET

The current between drain and source can be regularly switched on and off by
applying low voltage at the gate electrode.

Memory cells are organized in memory arrays. A peripheral circuitry is used to
access the memory array for writing or reading. Figure 7 shows a component layout
for a Static Random-Access Memory (SRAM) array.

To perform a write operation, the voltage on the corresponding word line is
changed in order to activate that row of cells. Finally, to store the information in
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Figure 7: Component layout for a 8-location SRAM array where each location holds
6 bits of data. Figure taken from [17].

the cell, voltages are applied to the bit lines. When a read operation is performed,
the information is retrieved by sensing the voltage on the bit lines with the sense
amplifiers. [17]

Solid-state memories can be divided into two main categories: volatile memories
and non-volatile memories (NVMs).

3.1 Volatile Memories

Volatile memories are defined as memories in which the information stored is lost
when power supply to the device is discontinued. These memories work at high speed
but, in general, have a high power consumption and lower storage capacity than
NVMs. Two examples of this type of memory are Static Random-Access Memory
(SRAM) and Dynamic Random-Access Memory (DRAM).

3.1.1 SRAM

SRAM uses bistable latching circuitry (flip-flop) to store each bit. An SRAM cell
consists of six transistors: two of them serve to select the memory cell and the other
four form two pairs of cross-coupled inverters which are used to define the memory
state (see Figure 8).
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Figure 8: Electrical schematic for a six-transistor CMOS SRAM cell. Figure from
the public domain.

The word line (WL) that is attached to the gates of M5 and M6 transistors allows
access to the memory cell. These transistors also control the bit line nodes BL and
BL. M1, M2, M3 and M4 form the two cross-coupled inverters that are responsible
for storing the bit value.

SRAMs operate very fast and have low power consumption and good endurance.
However, since SRAM cells require a large number of transistors (6 per cell), they
cannot reach the high densities of other technologies such as DRAM. This fact makes
them comparatively more expensive to manufacture. [14]

SRAMs are used in microcontrollers, microprocessors and high-performance
processors among others. Due to their high speed, they are usually used as caches.

The decrease in both the size of the memories and the operating voltage in recent
years has increased the susceptibility of SRAM to radiation, especially to SEEs [15].
This is explained in more detail in section 4.

3.1.2 DRAM

A DRAM cell consists of a transistor and a capacitor (Figure 9). The capacitors can
either be charged or discharged. These two states are used to represent the two values
of a bit. The transistor isolates the capacitor when no write or read operations are
performed, which is approximately 99% of the time [16]. The word line is connected
to the gate node of the transistor and the bit line is connected to the drain node.

Due to leakage currents, the capacitor slowly discharges. For this reason, to
maintain the memory state, the data in the capacitors are periodically refreshed
(rewritten) by an external circuit [12]. DRAMs are called “dynamic” because of the
required refreshing operation. The capacitors are also discharged when reading the
cell so the cell must be rewritten after every read operation [14].

DRAMs operate slower than SRAMs and have higher power consumption. How-
ever, their simplicity allows them to reach high densities and small sizes, which makes
them much cheaper per bit than SRAMs. These memories are used when a low-cost
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Figure 9: DRAM chip’s memory array. The DRAM memory array is a grid of storage
cells, where one bit of data is stored at each intersection of a row and a column.
Figure taken from [12].

and high-capacity solution is required [14]. They can be found as main working
memories in modern computers or portable devices, among others.

DRAMs, like SRAMs, have become more sensitive to radiation in recent years
due to the decrease of the power voltage and memory cells size [16].

3.2 Non-Volatile Memories

NVMs can retain their contents even when the power supply is removed. These
memories are often used in computers for the long-term data storage, have a low
power consumption and a large capacity. Some examples of this type of memory are
Electrically-Erasable Programmable Read-Only Memory (EEPROM), Flash Memory
and Ferroelectric Random-Access Memory (FRAM). The last two types are described
with more detail below.

3.2.1 Flash

Flash memory stores information in memory cells made up of floating gate MOSFETs.
The current charge that flows between the source and the drain is controlled by two
gates: a floating gate and a control gate. The floating gate is interposed between
the control gate and the MOSFET channel and is insulated by an oxide layer, which
makes that electrons placed on it are trapped. The quantity of charge trapped in
the floating gate is used to set the logic state of the cell (in case of multi-level charge
storage more than one bit per cell can be stored).



21

There are two possible structures of flash memory: NOR and NAND architecture.
The NOR structure provides direct access to each cell, which allows rapid random
access (about 100ns), but also contributes to an augment of the cell areas and,
consequently, a higher cost (Figure 10 (a)) [18]. The NAND structure is more
compact due to there is no direct access to each cell (Figure 10 (b)). In NAND
structure, cells are written or read in blocks, which makes it slower than NOR
structure.

(a) NOR structure with connections per each
cell

(b) NAND structure

Figure 10: Flash memory structures. Figures taken from [19].

Their main drawbacks are that they have low endurance, require high operating
voltages and are slow in the execution of reading and writing operations. This type
of memory is sensitive to TID and SEE [18].

3.2.2 FRAM

FRAM construction is similar to DRAM but instead of a dielectric layer uses a
ferroelectric layer, which makes it a non-volatile memory. After a reading operation,
like in DRAM, FRAM memory cells need to be rewritten [14].

FRAM has a lower power usage, greater endurance and faster programming speed
than the Flash memory. However, Flash memories have better storage density and
cost than FRAMs. [21]

Data are stored in FRAM cells using polarization. This fact makes the memory
cells immune to soft errors from injected energetic particles. However, these memories
can be affected by radiation when energetic particles impact the control logic circuitry
and peripheral circuit components, for example, the address decoders, I/O buffers,
power switch, or sense amplifiers. [20]
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4 Radiation effects on electronic compontents

Radiation produces three main types of effects on electronic components: displace-
ment damage, Total Ionizing Dose (TID), and Single-Event Effects (SEE). The first
two are known as cumulative effects since they arise progressively from cumulative
radiation damage. On the other hand, SEEs are prompt phenomena which can
produce transient or permanent effects.

These three effects can also be classified into two different groups: ionizing
damage (TID and SEE) and non-ionizing damage (displacement damage). Ionizing
damage occurs when semiconductor materials are bombarded with charged particles
or photons with high enough energy to create an electron-hole pair. Non-ionizing
damage is due to atomic displacements in the materials.

Most of the effects of radiation on electronic components in space come from
ionizing damage. The table 3 shows the relationship between the two types of ionizing
damage and the different sources of radiation in LEO.

Table 3: Sources of ionizing damage and their corresponding effects in near-Earth
environment. Table from [4].

Radiation Source Particle Type Effects on Electronics

Solar energetic particles Electrons TID
Protons TID, SEE
Heavy charged particles SEE

Trapped particles Electrons TID
Protons TID, SEE

Galactic cosmic rays Protons TID, SEE
Heavy ions SEE

4.1 Cumulative effects

Displacement damage occurs when an energetic particle (neutron, electron, proton
or heavy ion) transfers enough energy to move an atom of the material from its
normal lattice position to a different one [3]. This movement creates lattice defects,
as can be seen in Figure 11.
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Figure 11: Displacement damage: a) Ordered atoms in a crystal before bombardment
by electrons. b) Crystal with vacancies and interstitial atoms. Figure taken from [6].

The performance of semiconductors worsens with the increase in the number of
defects in the crystalline lattice. The accumulation of defects can gradually degrade
the material and, eventually, end in functional failure.

TID effects on electric components are due to exposure to ionizing radiation
over a period of time. When ionizing radiation interacts with semiconductors and
insulators such as silicon dioxide, it generates electron-hole pairs. These electrons
and holes can recombine, but where holes have lower mobility (in insulators, for
example), they may be trapped within the material, while electrons can more easily
be transported away by electric fields.

The magnitude of TID effects depends on several factors such as the total radiation
dose and its energy, the temperature during and after irradiation and the bias applied.
The threshold voltage of a transistor, which is the voltage required to turn on the
device, may be affected differently depending on the bias conditions during irradiation.
[7]

Continuous exposure to ionizing radiation leads to an accumulation of trapped
holes (positives charges) which modify the electric fields within the device and can
ultimately lead to an increase in leakage currents. Over time, these leakage currents
produce a continuous decrease in functionality until the device finally fails. The total
ionization dose rate increases considerably for higher inclination orbits, for a given
altitude. [6]

4.2 Single event effects

Single-event effects (SEEs) are transient or permanent effects that occur when a
single energetic particle strikes an electronic component. The energetic particle, when
passing through the material, loses its energy and ionizes the medium, generating
electron-hole pairs, as shown in Figure 12. The ionization track left by the charged
particle can interrupt the normal function of a circuit causing a SEE.

A wide range of single-event effects can be produced by the charge deposition of
an energetic particle. These can be classified into two main categories: soft errors
and hard errors. Soft errors can be corrected by reprogramming or restarting the
device, while hard errors are non-recoverable since they produce physical damage to
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Figure 12: Deposition of energy in a semiconductor device. Figure taken from [6].

a circuit element.
SEE can have serious consequences for spacecraft such as loss of information,

functional failure or loss of control. Due to a continuous advance in technology
(smaller sizes of integrated circuits, higher speeds and more complex circuitry), the
sensitivity to SEEs has increased, and the study of solutions to combat them has
become of great importance [15].

Linear energy transfer (LET) is a parameter used to measure the amount of
energy per unit path length that a charged particle deposits in the material. LET is
given by:

LET = 1
ρ

dE

dx
, (1)

where ρ is the density of the material and dE
dx

is the rate of energy loss in the material.
The units of LET are MeV/cm2/mg. The total energy lost by a particle is given by
the integral of LET over path length [34].

The LET of a particle varies as it travels through the material. Figure 13 shows the
curve obtained using the average LET for a simulated particle in an ion beam versus
the depth of the material. This curve can be of particular interest for understanding
the interaction of a given energetic particle with the matter. In Figure 13, the point
of maximum stopping power is called Bragg peak and in general occurs when the
particle reaches energy near 1 MeV/nucleon [33].

The LET parameter allows interpreting the SEEs that can occur in a specific
spatial environment.

The two types of SEE on which the present work is focused are described below:
Single-Event Upsets (SEUs) and Single-Event Functional Interrupts (SEFIs).

4.2.1 SEU

A single-event upset is produced when an individual charged particle changes the
state of a circuit. It can cause transient voltage and current pulses in an analog
device or circuit, or one or more bit flips in memory cells or registers [6]. SEUs
are soft errors and non-destructive effects since the device can continue to perform
normally after a restart or by reprogramming the circuit into its correct logical state.
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Figure 13: Linear energy transfer (LET) versus depth curve for 210-MeV chlorine
ions in silicon. Figure taken from [33].

There are two types of ionizing radiation that can end up producing SEUs:
direct ionization by the incident particle itself, and indirect ionization caused by the
secondary particles that are produced due to nuclear reactions between the incident
particle and the struck device [33].

Direct ionization is mostly caused by heavy ions and is the main source of SEUs.
The heavy ion passes through a semiconductor material and loses its energy as it
generates electron-hole pairs. Figure 14 illustrates SEU mechanism in an SRAM cell.

Figure 14: SRAM cell fault model. (a) A particle strikes a transistor in ”off” state
changing it to ”on” state. (b) The collector of the left NMOS collects the charge
generated and creates a current I that discharges the gate of the right transistor.
(c) Right transistor toggles and enables current to charge gates of left transistors.
(d) Left PMOS switches off and the circuit reaches a stable condition. Figure taken
from [24].

Protons and neutrons can also produce significant upset rates through indirect
ionization. When these particles enter the semiconductor lattice and collide with a
target nucleus, nuclear reactions may occur. The products of those nuclear reactions,
which can be much heavier than the original proton or neutron, can deposit energy
along their paths causing an SEU [33].
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The strike of a single energetic particle can result in one or more bit-flips. If it
causes only one bit-flip, it is called Single-Bit Upset (SBU), whereas if it produces
several bit-flips, it is known as Multiple-Cell Upset (MCU). If in an MCU two or
more bits are involved in the same logical word, the event is called Multiple-Bit
Upset (MBU). Figure 15 shows examples of one of the most common types of
MCU, consisting of a cluster of a few bit-flips (up to 10-20 in some cases) that are
topologically close and appear simultaneously [25].

Figure 15: Example of a common type of MCU cluster. The white pixels represent
non-corrupted cells and the black pixels represent upset cells. Figure taken from [25].

As the size of memory technologies is reduced, MCU rate increases since more
memory cells fall under the footprint of a single energetic particle strike [26].

4.2.2 SEFI

Single-event functional interrupts (SEFIs) are produced when an ion strike triggers
an integrated circuit (IC) test mode, a reset mode, or some other mode that causes
the IC to temporarily lose functionality [22]. This type of single event effects can
differ from one device to another since they are dependent on the design of the
device’s peripheral circuitry. SEFIs are more likely in memory chips with complex
control circuits due to the increase in the circuit area exposed to the particles flux
[23].

A SEFI event may lead, for example, to the cluster shown in Figure 16. A cluster
like that may be the result of a temporary failure of the memory’s I/O data buffers
or synchronisation circuitry [27].

Figure 16: Example of a SEFI cluster, as it appears on physical (top) and logical
(bottom) bitmaps. Figure taken from [27].
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5 Error Detection And Correction codes

Error Detection and Correction (EDAC) codes, also known as Error Control Codes
(ECCs), are codes designed to detect and correct errors in read or transmitted data.
This is achieved by adding a controlled redundancy into the information to be
protected.

This discipline started being studied in the late 1940s by Claude Shannon and
Richard W. Hamming, who worked in the problem of error control on noisy channels.
Both of them worked for Bell Telephone Laboratories and were interested in how
to correct errors that appeared in the messages sent over long telephone lines and
that were due, among other reasons, to lightning and crosstalk [28]. Since then, the
study of this field has grown exponentially and has become more necessary due to
advances in, for example, digital communication, space exploration and computer
storage among other applications.

Although Shannon and Hamming were contemporaries, they used different tech-
niques to address the problem of error control on noisy channels. Shannon studied it
from a statistical/existential point of view, whereas Hamming used a combinatorial/-
constructive approach. Because of these different approaches, they came to different
conclusions: Shannon found the limits for ideal error control, while Hamming showed
how to construct and analyze the first practical error control systems. [28]

The main goal of error-control coding is to provide reliable messages/data in an
efficient manner. To be reliable, the received or read data must resemble the original
data within narrow tolerances if the application requires it. To be efficient, error
correction must be done in a small amount of time. It is necessary to find a balance
between reliability and efficiency and, for each specific application case, to study
what is more important to guarantee.

Since the early days of error-control coding, new codes and decoding methods have
been developed, looking for ways to increase both reliability and efficiency. In addition,
rapid advances in electronic and optical devices have allowed the implementation of
powerful codes with high performance. [30]

The messages to protect consist of a set of symbols from a finite alphabet.
The protection of the data is done by coding, which is the process of converting
messages into codewords. This process is done in a way that every codeword is
uniquely decodable, which means that each codeword is only related to one message.
Codewords must be longer than messages, to add the redundancy symbols that make
it possible to detect and correct errors. These errors can appear due to, for example,
noisy channels in communication or bit-flips caused by radiation in satellite memories,
among others.

Figure 17 shows the application of error-control coding in a digital communication
system. In digital communication, the messages are encoded before being sent, in
order to be able to correct errors that may appear due to a noisy channel. After the
transmission through the channel, the codewords are corrected and decoded before
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reaching the sink.

Figure 17: General framekwork for digital communications. Figure taken from [29].

As commented at the beginning of the section, there are several error-correction
codes. These can be classified into two main categories: block coding and convolution
coding. The present work will focus on block coding and especially in one type of
codes: Hamming codes. For more information on convolutional coding, refer to [28],
[29], [30].

Block coding is organized so that the message, generally in binary format,
is grouped into blocks of k bits (message bits), constituting a set of 2k possible
messages. The encoder takes each block of k bits to convert it to a codeword of n
bits, n > k. The decoder recovers the original message containing the information
from the codeword. Block codes are denoted by Cb(n, k): n is said to be the length
of the code and k is the dimension of the code.

The code rate Rc measures the relationship between the codeword symbols and
the message symbols. In the case of binary messages, it can be calculated as follows:

Rc = k/n, (2)

where,
k : number of message bits,
n : number of codeword bits.

The code rate is a measure of the level of redundancy. Rc serves as an indicator
of the additional resources needed when codes are used: time to process more bits
per word, more physical space needed to store the encoded information (overhead)...
Therefore, Rc should be kept at a reasonable level and always be less than one, to
add the necessary redundancy to correct and detect errors. [30]
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Other important parameters for codes are the number of erroneous bits that can
be detected and the number of those that can be corrected. In general, more errors
can be detected than corrected, since to correct them, the position of the error is
needed.

Finally, when selecting a code, the encoding and decoding speed of the code should
be taken into account, since it is important that protection does not significantly
alter the execution time of the processes.

There is a wide range of types of block codes: linear block codes, cyclic codes,
Bose-Chaudhuri-Hocquenghem (BCH), Reed-Solomon (RS), Hadamard, Reed-Muller,
etc. In Table 4 can be found a comparison in general terms of three EDAC codes
commonly used in memories. However, it is important to note that within each
type of code there may be many codes with different variations that can cause the
code parameters to change (e.g. decoding speed, code rate, correction and detection
capability).

Table 4: Comparison of some EDAC codes used in memories. Information from [31]
and [35].

Characteristic Hamming RS BCH
(SEC-DED) (DEC-TED) (DEC-TED)

Check-bit Over-
head

7-32% 13-75% 13-75%

Varies depending
on the number of
check bits.
Error correction
capability

Single Error Cor-
rection - Double
Error Detection
(SEC-DED)

Double Error
Correction - Triple
Error Detection
(DEC-TED);

Double Error
Correction - Triple
Error Detection
(DEC-TED);

Efficient for corre-
lated errors (e.g.
burst)

Efficient for uncor-
related errors (e.g.
random errors)

Implementation Simple to imple-
ment

Complex to decode
and implement

Complex to decode
and implement but
simpler than RS

Binary based Symbol based (con-
sists of a set of fi-
nite field elements)

Binary based

Decoding speed High Medium Medium

As it can be seen in Table 4, a code that guarantees greater error correction
capability, such as RS or BCH, can have as a disadvantage, a worse decoding speed
(efficiency) and also higher check-bit overhead. [31]
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5.1 Linear Block Codes

Linear block codes are the most easily implemented and therefore most widely used of
the block codes. In this section, the basic concepts to generate this type of codes will
be explained. However, the definition or where do they come from will be omitted.
For a more deeper and theoretical definition, refer to [28], [29], [30].

A linear block code Cb[n, k] is composed of a set of M codewords {c0, c1, c2, ..., cM−1},
where each codeword is of the form c = (c0, c1, ..., cn−1). The encoding process consists
of dividing the data to be protected into blocks or messages (m = (m0, m1, ..., mk−1))
of length k, and mapping those blocks into codewords in Cb[n, k] (see Figure 18).

Figure 18: Encoding process for linear block codes. Figure taken from [28].

Table 5 shows an example of linear block code with [n, k] = [5, 2] parameters.

Table 5: Linear block code with (n, k) = (5, 2) parameters.

messages (m) codewords (c)

00 00000
01 01011
10 10101
11 11110

Due to their configuration, a characteristic of linear block codes is that the sum
of any of two codewords is also a codeword. This can be verified in Table 5: the
modulo-2 addition of the second and third codewords results in the fourth one.

In a linear block code, there exists a set of k linearly independent codewords
{g0, g1, ..., gk−1}, such that all possible codewords can be generated as a linear
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combination of them. This set of codewords are known as generator matrix G:

G =

⎡⎢⎢⎢⎢⎣
g0
g1
...

gk−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
g0,0 g0,1 . . . g0,n−1
g1,0 g1,1 . . . g1,n−1

... ... . . . ...
gk−1,0 gk−1,1 . . . gk−1,n−1

⎤⎥⎥⎥⎥⎦ . (3)

Using the generator matrix, the encoding process is very simple. For a given
message m = (m0, m1, ..., mk−1), the corresponding codeword can be calculated as
follows:

c = (c0, c1, ..., cn−1) = m · G = (m0, m1, ..., mk−1) ·

⎡⎢⎢⎢⎢⎣
g0
g1
...

gk−1

⎤⎥⎥⎥⎥⎦
= m0g0 + m1g1 + . . . + mk−1gk−1.

(4)

Another characteristic of these codes is that for each linear block code [n, k]
of dimension k, there exists a dual code [n, n − k] of dimension (n − k) [28]. The
codewords in this dual code can also be formed using a set of n−k linearly independent
codewords h0, h1, ..., hn−k−1. The basis formed by this codewords is used to build
the following matrix H:

H =

⎡⎢⎢⎢⎢⎣
h0
h1
...

hn−k−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
h0,0 h0,1 . . . h0,n−1
h1,0 h1,1 . . . h1,n−1

... ... . . . ...
hn−k−1,0 hn−k−1,1 . . . hn−k−1,n−1

⎤⎥⎥⎥⎥⎦ . (5)

The H matrix of the dual code of C is known as the parity check matrix.
For every linear block code is satisfied that

G · HT = 0. (6)

From the equation 6, it can be concluded that a vector v is a codeword of the
code C, if and only if:

s = v · HT = 0, (7)
where s is called the syndrome [28].

The equation 7 can be used in order to detect errors. If v is a codeword, as stated
by the equation, s = 0. In case there is an error in the vector such that v = c + e,
then s ̸= 0 and an error has been detected:

s = v · HT = (c + e) · HT = cHT + eHT = 0 + eHT = eHT. (8)

However, an error can be undetected if the error pattern is equal to a codeword.
That happens when the number and positions of the errors are such that the trans-
mitted codeword is converted into another codeword, so s = e · HT = 0. Therefore,
in a code Cb[n, k], there are 2k − 1 undetectable error patterns [30].
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5.1.1 Minimum distance

Before defining the minimum distance of a linear block code it is necessary to
define the Hamming distance. The Hamming distance between two vectors is the
number of positions in which the vectors differ. For example, if c1 = (0110010) and
c2 = (1010011), then d(c1, c2) = 3.

The minimum distance dmin of a linear block code Cb[n, k], is the minimum
value of the distance between all the possible pairs of codewords of that code [29]:

dmin = min{d(ci, cj); ci, cj ∈ Cb; ci ̸= cj}. (9)

The minimum distance dmin can also be calculated as the minimum number of
columns of the parity check matrix of the code which when added together result in
the all-zero vector 0 [30].

For a linear block code Cb[7, 4] with the following parity check matrix

H =

⎡⎢⎣ 1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤⎥⎦ ,

the addition of the 1st, 3rd and 7th columns results in the all-zero vector. Therefore,
the minimum distance of the code is dmin = 3.

An (n, k) code with minimum distance dmin can be also denoted as an (n, k, dmin)
code.

5.1.2 Detection and correction capabilities of a code

If fewer than dmin errors are introduced to a codeword c, these can be detected,
since v = c + e cannot be another codeword in this case. If dmin or more errors are
introduced, then v can become a different codeword, making it not possible to detect
that there are errors.

A code C can correct an error vector e introduced to a codeword c1 if for all the
codewords, c1 is the unique closest codeword to v1 = c1 + e. Therefore, the number
of errors that an (n, k, dmin) code can correct is

t =
⌊

dmin − 1
2

⌋
, (10)

where the notation ⌊x⌋ means to take the greatest integer ≤ x [29].
Figure 19 shows a graphic representation of the concepts explained above for a

code with dmin = 3 and t = 1. If the number of errors introduced in a codeword is
greater than the correction capability t, either a decoding error or a decoder failure
may occur. A decoding error is produced when the resulting vector happens to be
in the correctable area of a different codeword (see v2 in Figure 19(a)). A decoder
failure is produced when the resulting vector does not fall into any of the decoding
spheres (see v3 in Figure 19(a)). [29]
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Figure 19: Representation of the detection and correction capabilities of a code
Cb[n, k, dmin] with dmin = 3. c1 and c2 are codewords of Cb. The code is capable of
single-error correction or double-error detection, but it can not do both at the same
time.

5.1.3 Systematic codes

A code Cb[n, k] is systematic if the message symbols can be found unchanged in
the codeword. A code can be rewritten in order to transform it into a systematic
one. The generator matrix of a systematic code is written in the form

G =
[

P Ik

]
=

⎡⎢⎢⎢⎢⎣
p0,0 p0,1 . . . p0,n−k−1 1 0 0 . . . 0
p1,0 p1,1 . . . p1,n−k−1 0 1 0 . . . 0
p2,0 p2,1 . . . p2,n−k−1 0 0 1 . . . 0

... ... . . . ... ... ... . . . ...
pk−1,0 pk−1,1 . . . pk−1,n−k−1 0 0 0 . . . 1

⎤⎥⎥⎥⎥⎦ , (11)

where P generates the check symbols and Ik leaves the message/data symbols
unchanged: c = m · [ P Ik ] = [ p m ].

If C is in the systematic form, the parity check matrix can be written as

H =
[

In−k −P T
]

=

⎡⎢⎢⎢⎢⎣
1 0 0 . . . 0 −p0,0 −p1,0 . . . −pk−1,0
0 1 0 . . . 0 −p0,1 −p1,1 . . . −pk−1,1
0 0 1 . . . 0 −p0,2 −p1,2 . . . −pk−1,2
... ... ... . . . ... ... ... . . . ...
0 0 0 . . . 1 −p0,n−k−1 −p1,n−k−1 . . . −pk−1,n−k−1

⎤⎥⎥⎥⎥⎦ . (12)

Depending on the application for which the protection is needed, a systematic
coding scheme may be necessary to keep the information symbols visible. For example,
if the code has to protect the data residing in a memory, it may be necessary to use
a systematic encoding, so that data can be continuously fetched and used without
unnecessary decoding operations.

However, in some cases, a non-systematic code may be a better solution. For
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example, in applications involving sequential decoding, a non-systematic code may
offer a lower undetected error probability. [32]

The systematic coding scheme is not necessary when the codewords are not
accessed directly but are decoded before being used. For example, in a communication
system, the messages are delivered to the EDAC encoder, which calculates the check
bits. Then, the codewords are transmitted through the channel and given to the
EDAC decoder. After checking the codewords and correcting possible errors, the
data is decoded and ready to use. Another application in which it is not necessarily
needed a systematic code is a secondary storage system, such as a hard disk. In this
case, the data are decoded when it is retrieved into a memory buffer for use. [35]

5.1.4 Modifications to Linear codes

Table 6 describes the different modifications that can be done to linear codes to
obtain new codes with changes in some of the parameters.

Table 6: Modifications to a linear code Cb[n, k, d]. Information taken from [28] and
[29].

Technique Description Scheme

Augmenting
[n, k + 1, ≤ d]

Consists of adding code-
words to Cb. Can be done
by adding rows to the gen-
erator matrix.

G′ =

⎡⎢⎢⎣
g0,0 . . . g0,n−1

... . . . ...
gk−1,0 . . . gk−1,n−1

1 . . . 1

⎤⎥⎥⎦

Expurgating
[n, k − 1, ≥ d]

Consists of deleting code-
words of Cb. Can be done
by taking away rows of the
generator matrix.

G′ =

⎡⎢⎣ g0,0 . . . g0,n−1
... . . . ...

gk−2,0 . . . gk−2,n−1

⎤⎥⎦
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Extending
[n + 1, k, d + 1]

Consists of adding extra
check bits to Cb. Can be
done by adding columns to
the generator matrix.
If d is odd, when extend-
ing the code, the capabil-
ity of detecting errors is in-
creased by one unity:

d = 3, t = ⌊1.5⌋ = 1

d′ = 4, t′ = ⌊2⌋ = 2.

G′ =

⎡⎢⎣ g0,0 . . . g0,n−1 g0,n
... . . . ... ...

gk−1,0 . . . gk−1,n−1 gk−1,n

⎤⎥⎦

H′ =

⎡⎢⎢⎣
h0,0 . . . h0,n−1 0

... . . . ... ...
hn−k−1,0 . . . hn−k−1,n−1 0

1 . . . 1 1

⎤⎥⎥⎦

Puncturing
[n − 1, k, ≤ d]

Consists of deleting check
bits of Cb. Can be done by
taking away columns of the
generator matrix.

G′ =

⎡⎢⎣ g0,0 . . . g0,n−2
... . . . ...

gk−1,0 . . . gk−1,n−2

⎤⎥⎦

Lengthening
[n + 1, k + 1, d′]

Lengthening is a combina-
tion of extending followed
by augmenting.

G′ =

⎡⎢⎢⎣
g0,0 . . . g0,n−1 g0,n

... . . . ... ...
gk−1,0 . . . gk−1,n−1 gk−1,n

gk,0 . . . gk,n−1 gk,n

⎤⎥⎥⎦

Shortening
[n − 1, k − 1, d′]

Shortening is a combina-
tion or expurgating fol-
lowed by puncturing.
When a code is shortened
by deleting all codewords
containing a zero in a po-
sition i and puncturing in
the ith coordinate, d′ ≥ d,
since only zeros have been
removed.
Depending on how this
operation is carried out,
the minimum distance of
the code may be increased
(d′ > d), which increases
the code detection capabil-
ity [32].

G′ =

⎡⎢⎣ g0,0 . . . g0,n−2
... . . . ...

gk−2,0 . . . gk−2,n−2

⎤⎥⎦
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5.1.5 Binary Hamming codes

Binary Hamming codes H[n, k, dmin] are linear block codes characterized by the
following parameters:

Length : n = 2m − 1,

Number of message bits : k = 2m − m − 1,

Number of check bits : n − k = m, m ≥ 2,

Error-correction capability : t = 1, dmin = 3,

(13)

where m is the number of check bits. [28]
The parity check matrices for a Hamming code of length (2m−1) can be constructed

easily by using as columns all nonzero binary m-tuples. For example, a H[7, 4] code
is defined by the parity check matrix

H =

⎡⎢⎣ 1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎤⎥⎦ .

Due to their simplicity, Hamming codes have a high coding and decoding speed.
These codes are capable of correcting 1-bit error in the block or detecting up to 2-bit
errors.

As described in subsection 5.1.4, when extending a code which has odd minimum
distance the capability of the code to detect errors is increased by one unity. Therefore,
since all Hamming codes have d = 3, extending them makes possible to have single-
error correction and, at the same time, double-error detection (SEC-DED) (see Figure
20).

Figure 20: Scheme of a SEC-DED code with dmin = 4.
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6 Memory protection with EDAC

Over the years, different techniques have been developed to increase the reliability of
memory chips and reduce transient errors and permanent faults. Depending on the
phase of the development cycle, two different strategies can be used: fault avoidance
and fault tolerance.

Fault avoidance strategies are used during the design phase and their objective
is to prevent the occurrence of faults. Some examples of fault avoidance are the
improvement of the materials and the devices used.

Fault tolerance strategies are used during the execution time. These techniques
use redundancy to detect and recover from faults and can be implemented through
hardware, software or a combination of both. Some examples of redundancy are
Duplication With Comparison (DWC), Triple Modular Redundancy (TMR) [31] or
Error Detection and Correction (EDAC), which can be implemented with hardware
or software.

6.1 Hardware EDAC

When EDAC codes are implemented in hardware, the memory bus architecture is
extended to accommodate extra check bits. Another element necessary to imple-
ment hardware EDAC is the encoding/decoding circuitry that allows detecting and
correcting memory errors [35].

Figure 21 shows a basic scheme of hardware implemented EDAC. As it can be
seen, the check bits are added at the end of each data word, which is referred to as
horizontal code.

Figure 21: Basic scheme of hardware EDAC. Figure adapted from [31].

Hardware EDAC checks all the data that are read from memory in every read
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operation, which makes it a highly reliable solution. Depending on the application,
hardware EDAC may also perform what is known as periodic scrubbing. Periodic
scrubbing consists in periodically reading all the data in the memory and correcting
the errors. This is done to avoid the accumulation of errors, which could lead to the
presence of several non-correctable errors.

The main drawback of implementing EDAC via hardware is that it is a very
expensive solution. The high cost of hardware EDAC is due to the fact that it
requires additional hardware components, extra power and extra area and shielding
[31].

The fact of checking the data in every read operation makes hardware EDAC
a highly reliable solution. In addition to this, hardware EDAC maintains good
reliability both in low and high-radiation environments. [35]

6.2 Software EDAC

Software EDAC, unlike hardware EDAC, is a low-cost solution and has the flexibility
to implement different and more complex codes. However, it has lower reliability
than hardware EDAC, especially in high-radiation environments. Another drawback
is that with software EDAC, extra memory accesses are needed to fetch the check
bits while with hardware EDAC, these are fetched from the memory at the same
time the corresponding data bits are accessed [35].

Some of the requirements needed to implement memory protection with software
EDAC are described below.

6.2.1 Scrubbing

The operation of reading the bits from a memory block, correcting any error found
and writing the bits back is referred to as scrubbing. The time between two successive
scrub operations is known as scrubbing interval.

When software EDAC is implemented to protect main memories, it is not possible
to check each word in every read operation as in hardware EDAC, since this would
have a great overhead in the program execution time [35]. Therefore, software EDAC
performs only periodic scrubbing.

As can be seen in Table 7, the reliability of software EDAC is closely related to
the scrubbing interval selected and the upset rate of the environment [35].

From Table 7 different conclusions can be drawn. First, software EDAC reliability
decreases drastically when the upset rate increases. For this reason, software EDAC
should not be used to protect memories in high-radiation environments. Another
fact that can be observed is that variations in the scrubbing interval have a greater
effect on the reliability in high-radiation environments. In contrast, in low-radiation
environments, this effect is minimal.
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Table 7: Reliability sensitivity to scrubbing interval for a program Software EDAC
and Hardware EDAC. The units of the upset rate are upset/bit-cycle (number of
single-bit upsets in a cycle). This is derived from 10 upsets/Mbyte-day using a clock
rate of 25 MHz. Table taken from [35].

Reliability for a Period of 1 Day

Scrubbing SW EDAC, upset rate= HW EDAC, upset rate=
interval 5.52 · 10-19 5.52 · 10-18 5.52 · 10-19 5.52 · 10-18

10 min 0.935506 0.513345 0.999999 0.999904
20 min 0.935504 0.513274 0.999998 0.999808
30 min 0.935503 0.513202 0.999997 0.999712
40 min 0.935502 0.513130 0.999996 0.999617
1 day 0.935319 0.503198 0.999862 0.996297

Memory can be divided into two types of information: code and data. The code
segment contains instructions and when it is loaded, it rarely changes. On the other
hand, data segments are constantly changing during execution. Therefore, protecting
data segments with software EDAC may not be worthwhile since updating the check
bits after each change can generate a great overhead [35].

6.2.2 Check bits location

The location of the check bits can follow two types of coding: horizontal code and
vertical code.

Hardware EDAC, as stated before, is implemented using a horizontal code, which
means that the check bits are located at the end of the data words (Figure 22(a)). In
horizontal codes with software EDAC, the check bits are concatenated and located in
a memory region separated from the data words (Figure 22(b)). If multiple bit-flips
occur in different words but at the same bit position within each word (bit-slice),
horizontal codes are capable of correcting them since they belong to different data
words. On the contrary, if several bit-flips occur in the same word, they may be
non-correctable.

Software EDAC can also be implemented using a vertical code. In vertical codes,
the check bits are calculated over the data bits corresponding to one bit-slice of
consecutive words in a block (Figure 22(c)). Vertical codes are easier to implement via
software than horizontal codes since they can encode all the bit-slices in parallel while,
in horizontal codes, several shifts and logical operations are required for encoding
each word [35]. If multiple bit-flips occur in the same bit-slice, vertical codes are not
able to correct them since, in this case, they belong to the same data word. On the
contrary, if several bit-flips occur in the same word, vertical codes can correct them.
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Figure 22: Horizontal and vertical code schemes. Figure adapted from [35].

6.2.3 Interleaving

Logical mapping of bits differs from physical mapping. Usually, the physical bits of
a word are stored distant from each other. This is known as bit interleaving. Bit
interleaving is used to increase performance and to optimize the layout of the cell
I/O circuits [26]. This technique also increases the correction capability of EDAC
towards MCU in horizontal codes. If a single energetic particle affects more than
one adjacent bits, they may be correctable if bits are interleaved since they will
correspond to different logical data words (see Figure 23).

Figure 23: Simplified scheme of protection against MCU provided by bit interleaving.

However, bit interleaving is not useful to correct MCU in a vertical code. When
using a vertical code, to handle MCU that happen in adjacent bits, these can be
separated by interleaving the words that belong to a protected block, as shown in
Figure 24 [35].
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Figure 24: Simplified scheme of word interleaving. (a) Blocks of EDAC protected
data and the corresponding check bits. (b) Location of the words using word
interleaving. Figure taken from [35].

6.2.4 Protection of the scrubbing program

The scrubbing program is also vulnerable to errors. Therefore, it should be specially
protected. Different solutions can be adopted to ensure its protection. One possible
solution is to have a second copy of the EDAC program and do cross-checking using
both copies of the program in order to ensure its correctness. Another solution is to
have a second copy stored in a radiation-tolerant memory, e.g. FRAM, and in case
an error in the program is found, copy the image of the scrubbing program again.
[35]
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7 FreeRTOS

FreeRTOS is a class of Real-Time Operating System (RTOS). The OS is used in
real-time applications and is designed to be small enough to run on a microcontroller,
although its use is not limited to this one. For this reason, FreeRTOS does not have
the full functionality of an RTOS: it only provides the core real-time scheduling
functionality, inter-task communication, timing and synchronization primitives [38].
FreeRTOS does not support networking, external hardware access and filesystem
[40].

FreeRTOS can be structured as a set of independent tasks or threads. These
threads are executed periodically and only one thread can be running at any point in
time. The RTOS scheduler is responsible for deciding which thread should be running,
taking into account each thread’s priority and other factors such as semaphores,
mutexes and queues. Since only threads have been used in the implementation, the
other elements will not be explained. More information can be found in [38] and [39].



43

8 Experimental setup

The hardware and software tools used for the implementation are detailed in the
following section.

The microcontroller used for the implementation is the STM32L432-KC. This
microcontroller is based on the high-performance ARM R⃝ Cortex R⃝-M4 32-bit RISC
core operating at a frequency of up to 80 MHz [37].

The main reason for selecting this device was the large amount of available
SRAM memory (64kB). Given that the objective of the project is the software
implementation of memory scrubbing algorithms, having more memory facilitates
the implementation and performance test of the algorithm.

In addition, the STM32L432-KC is provided with other features that are also
useful for the implementation. The key features of the device are detailed in Figure
25.

Figure 25: STM32L432Kx family device key features [37].

The board used is the STM32 Nucleo-32 board, which is shown in Figure 26. This
board does not require any separate probe, as it integrates on-board ST-LINK/V2-1
debugger/programmer. Therefore, only a Micro-USB to USB cable is necessary to
program and debug it.

The Integrated Development Environment (IDE) used in this project has been
Keil R⃝ MDK.

For STM32 users there is a graphical tool called STM32CubeMX that allows
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Figure 26: STM32 Nucleo-32 board.

a very easy configuration of the microcontroller, as well as the generation of the
corresponding initialization C code for the ARM R⃝ Cortex R⃝-M core. This tool has
been used to set up the configuration required for the project.

The software used to get the results of the test has been STMStudio. This
program reads and displays the variables of the application in real time and is a
non-intrusive tool, so it preserves the real-time behaviour of the application.

Finally, a program called RealTerm has been used as a serial terminal to receive
and send information through USART.
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9 Software implementation

In order to protect the data and code regions of other tasks, the EDAC program
needs privileges to read and write in those regions. Normally, the code region is
located in flash. The first disadvantage of having the code to protect located in flash
is that flash memory is programmed by blocks so, in order to correct a bit when an
error occurs, the whole block where this bit is located has to be erased and rewritten.
The second drawback is that flash memory can only be written a limited number of
times: the endurance of STM32L432-KC is 10,000 cycles [37]. In case the error rate
is low, this second disadvantage would not be a big problem since it would not be
necessary to correct/write too often. Despite this, it is important to keep this fact in
mind.

For these two reasons, it was decided to locate the programs to be protected in
SRAM. Using SRAM both problems detailed before are solved. The disadvantage of
using SRAM is that, as explained in section 3, SRAM is more sensitive to radiation.

In order to run the application from SRAM, a bootloader was programmed.

9.1 Bootloader and application processes

The structure of both bootloader and application are shown in the block diagram of
Figure 27.

The function of the bootloader is to receive via USART the binary file containing
the application, copy it into the SRAM and start the execution of the application. The
application, in this implementation, is sent from the computer to the microcontroller.

When the application starts, hardware initialization is performed first. Then, the
different threads are created (the behaviour of the threads will be explained in detail
in the following subsection 9.3). Before starting the scheduler, the parity bits for the
regions to be protected are calculated and stored in a specific memory region.

In case a non-correctable error is detected, a system reset will be performed. Once
the bootloader is restarted, the application can be fetched again without errors from
a secure source. As stated at the beginning of this subsection, in this implementation,
the binary file of the application is stored in the computer and sent from there to the
microcontroller. However, in an embedded application, the optimal place to store
the binary file of the application would be an external radiation-tolerant memory,
such as an FRAM, as discussed in section 3.

The most relevant code for the implementation of the bootloader and the appli-
cation can be found in Appendix B and Appendix C respectively.
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Figure 27: Block diagram of bootloader and application processes.

9.2 Memory map

Figure 28 shows the memory map of the implementation, and its details are described
below.

The SRAM1 of the microcontroller has been divided into different regions: ap-
plication code and RO data, Parity bits, Error function, Application RW data, and
Bootloader RW data. The first two regions are the ones to be protected (25 kB).

The application does not use all the protected memory space (25 kB). 11 kB
are used for RO code and 3.5 kB are used for RO data, including the parity bits.
Part of the remaining space contains dummy RO data and their parity bits (4.4
kB), and the rest of the space is not used. The scrubbing algorithm protects all the
used space, including dummy data. Therefore, only 18.9 kB are protected by the
scrubbing algorithm and consist of 58.2% of RO code, 18.5% of RO data and 23.3%
of dummy RO data.

In order to test the performance of the scrubbing algorithm, it was necessary to
implement a function that introduces random errors in the protected memory space
(18.9 kB) with a determined periodicity. This function has been located in a separate
region after the parity bits region.
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Figure 28: Memory map of the implementation

The last regions of SRAM1 are the RW data of both application and bootloader.
It was decided not to protect those regions since as explained in section 6, RW
regions are variable and therefore, if they are protected, the parity bits need to be
recalculated after every write operation, which will negatively affect the performance.

In this implementation, the bootloader is located at the beginning of the flash
memory and is the only thing located there. However, if desired, there could be other
things running from flash, for example, the error function.

When Keil R⃝ MDK is used, the memory regions are configured in a file called
scatter file. The scatter files corresponding to the implementation can be found in
Appendices B.1 and C.1.

9.3 Threads

As described in section 7, a Real-Time Operating System (FreeRTOS) has been
used in order to create a set of independent threads that inter-communicate. The
following threads have been programmed: ThreadApplication(), ThreadError()
and ThreadScrubbing(). The threads are described below and table 8 shows a
summary of their characteristics: the priority, the time interval between two thread
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executions (periodicity) and their main tasks.

Table 8: Characteristics of the threads implemented.

Thread Priority Periodicity Function

Application 0 500ms Blink a led
Error 0 ERROR_PERIODICITY Call errorInProtectedRegion()

Send message via USART
Scrubbing 3 SCRUB_PERIODICITY Call HammingScrubMemory()

Send message via USART
If uncorrectable error,

call HAL_NVIC_SystemReset()

The only function of ThreadApplication() is to make a led blink. This thread
has been created to test the inter-communication between threads and to facilitate
the testing of the programmed scrubbing algorithm.

ThreadError() calls the function errorInProtectedRegion(). This function
introduces an error in one of the two protected regions (RO code and data of the
application, or parity bits). This error consists of changing the value of a single bit in
a memory address. The address and location of the bit to change are calculated using
the function rand() of the C library math.h, which returns a pseudo-random number
between 0 and 1. Since this function returns pseudo-random numbers, different seeds
have been used to obtain different numbers in each iteration.

ThreadError() also sends a message through USART indicating in which of the
protected regions the error was introduced. This thread is executed with a periodicity
indicated in the constant variable ERROR_INTERVAL.

Finally, ThreadScrubbing() calls the function HammingScrubMemory(), which
performs the detection and correction of the errors. This thread has the highest
priority, so if other threads need to be executed at the same time, this one will run
first. The time between two thread executions is indicated in the constant variable
SCRUB_INTERVAL.

If the HammingScrubMemory() function detects an uncorrectable error, the func-
tion HAL_NVIC_SystemReset() is called and the following message is sent through
USART: ”Uncorrectable error detected, restarting bootloader...”.

To test the correct behaviour of the scrubbing algorithm against MBUs, the
function errorInProtectedRegion() was modified to introduce double errors. As
expected, the algorithm is capable of detecting every MBU and, after detecting it,
performs a system reset.

The threads implementation can be found in Appendix C.3.
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9.4 Scrubbing Algorithm

9.4.1 Code selected: Hamming(39,32)

The EDAC code selected to implement the scrubbing algorithm was Hamming(39,32):
each 32-bit protected word has 7 additional check bits, producing a 39-bit codeword.
Since the parity bits are stored in 8-bit variables, the use of the check bits results in
a 25% overhead in memory usage. One characteristic of Hamming codes is that they
have a fast encoding/decoding speed, which serves to reduce the performance overhead
in real-time systems. This characteristic was considered of special importance at the
time of choosing the code to be used, above the ability to correct multiple errors.

The Hamming(39,32) code comes from Hamming(63,57), with parameters [n, k, d] =
[63, 57, 3]. The final code has been obtained by applying two modification techniques:
shortening and then extending.

As explained in section 5.1.5, Hamming codes have a minimum distance d of
three between codewords, which makes them capable of correcting single errors or
detecting double errors.

The original code has been first shortened from Hamming(63,57) to Hamming(38,32),
with parameters [38, 32, ≥ 3]. This first modification has been done because full
words in SRAM are 32 bits long. By shortening the code, we are also reducing the
error rate per word, so there is less probability of finding more than one error in the
same word, which would not be correctable. Depending on how the shortening is
done, the minimum distance may be increased, which is also beneficial (see subsection
5.1.4).

In order to have a SEC-DED code able to detect every double error in a word,
Hamming(38,32) has been extended to Hamming(39,32). By extending the code, as
explained in subsection 5.1.4, the minimum distance increases one unity. Therefore,
the parameters of this code are [39, 32, 4] and the code is able to detect two errors in
a word and correct one.

As described in subsection 5.1.3, it is necessary to keep the protected data bits
in their original form so that they are transparent to the rest of the system. For this
reason, the code matrices have been modified to the systematic form.

The final schemes of the matrices that have been used are shown below:

G =
[

P Ik

]
=

[
P7x32 I32

]
(14)

H =
[

In−k P T
]

=
[

I7 P T
32x7

]
(15)

The complete matrices corresponding to schemes 14 and 15 can be found in
Appendix A.
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9.4.2 Implementation

The functions that have been programmed for the scrubbing algorithm are described
below:

The function HammingEncode() calculates the check bits (syndromes) for all
protected words in memory and stores them in the region parity bits. This function
is called only once before starting the scheduler.

The function HammingScrubMemory() iterates through the addresses of the pro-
tected words and for each address calls the function HammingDecode(). This function,
given a pointer to the protected word and a pointer to the corresponding syndrome,
calls the function HammingCheckSyndrome() to check if there is an error and corrects
it.

HammingCheckSyndrome() checks for an error in a codeword by multiplying the
codeword by the parity check matrix H (7). If there is no error, the result is zero. If
there is a single-error, the function returns a syndrome which is equivalent to one
of the columns in H (8). This column is used to identify in which position of the
codeword the error is located. If there is a double-error (uncorrectable), the function
returns a value that does not correspond to any column of H.

If HammingCheckSyndrome() has returned a non-zero value, HammingDecode()
looks up whether the value corresponds to any of the columns in H. If a match is
found, the codeword is corrected by flipping the bit in the corresponding position. If
no column matches the syndrome, it means an uncorrectable error has been found.

HammingDecode() returns 1 if an error has been corrected, 0 if the word has no
errors and 0xFF if an uncorrectable (double) error has been found.

HammingScrubMemory() returns the total number of errors corrected during scrub-
bing or, if a non-correctable error was detected, returns 0xFF.

The functions developed for the implementation of the scrubbing algorithm can
be found in Appendix C.4.
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10 Results

10.1 Experimental results

Different configurations were used in order to test the performance of the scrubbing
algorithm implemented. For each configuration, the application was executed 10
times. In each one of the iterations, a different seed was used for the calculation of
pseudorandom numbers, so the errors introduced were different in every execution.
The four configurations used are summarized in the following table 9:

Table 9: Characteristics of the testing configurations.

Scrubbing algorithm Scrubbing periodicity Error periodicity

1 NO - 1s
2 YES 10s 1s
3 YES 2s 1s
4 YES 1s 1s

As shown in Table 9, in all cases, single-errors were introduced with a constant
periodicity of one second. This was done to evaluate the performance of the software
EDAC when changing the scrubbing periodicity (time between two thread executions).

However, a typical value for the SRAM SEU rate in LEO is ∼ 6·10−7 SEU/bit-day
[36], which in the protected region in this project, corresponds to an SEU rate of
∼ 0.093 SEU/day.

The functions developed for the introduction of errors can be found in Appendix
C.4.

One of the main drawbacks of using a software EDAC to protect main memory
is that single-bit errors can cause failures. Data in main memories are read and used
constantly. Therefore, if a single-bit error is entered in an instruction and that data
is read before the next scrub operation, the read instruction will be erroneous. If
this happens, depending on where the error is located, it can cause failures. [35]

This problem was found when testing the project implementation. When this type
of error occurs, the ARM Cortex-M core stops executing the current instruction, and
usually branches to the hard fault handler function, where it enters an infinite loop.
A hard fault is the default exception and can be triggered for two different reasons:
an error during exception processing or an exception that cannot be managed by
any other exception mechanism [42].

When a hard fault is triggered, a possible solution would be to catch the in-
terruption, program a hard fault handler to try to fix the situation and continue
with the execution. However, in some cases, it may not be possible to continue
the execution from the instruction that caused the fault. For example, there is a
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possibility that a corrupted instruction does not immediately cause a hard fault, but
that the following instruction does. If this happens, tracing the corrupted instruction
is almost impossible.

Another possibility after correcting the error, would be to restart the thread that
was running in the moment of the fault. For systems running a real-time operating
system, the task that created the fault may be terminated and restarted from the
fault handler if needed [42].

In case the reading of the erroneous data does not cause a hard fault, there may
be another problem. The bit-flip may remain imperceptible and, consequently, the
processor may make a calculation error. Recovering from this condition could be
possible only with software redundancy and restartable software modules.

The results obtained when errors are introduced with a periodicity of one second
are plotted in the following graphs. As can be seen in Figure 29, the average duration
of the executions is limited due to the problem with hard faults explained above.

As can be seen in Figure 29, the application with no EDAC lasts an average
of ∼ 18 seconds, which means 18 errors have been introduced before failing. This
may be for different reasons. As explained in subsection 9.2, not all the protected
memory space contains relevant data: if the error is introduced in the dummy RO
data, nothing will happen. If an error is introduced in the RO data, it may cause
erroneous data, but not necessarily the application fails in this case. The errors
introduced in the RO code (58.2% of the protected space) are the ones that, if read,
can cause failures. However, there may be code that is not periodically read, but
only at the beginning of the execution; an error introduced in this type of code will
not affect the application.

Figure 29: Average duration of the application for the established configurations.

The same test was executed 20 times for the no-EDAC configuration but removing
the dummy RO data. Therefore, the errors were introduced only in relevant RO
code and data. With this new configuration the mean time between failures caused
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by accumulated errors was of 16987 ms.

Figure 30: Percentage of errors corrected for the established configurations.

Figure 31: Performance overhead due to the scrubbing algorithm for the established
configurations. The performance overhead was obtained by dividing the scrub
duration by the time elapsed from the start of the scrub operation until the beginning
of the next one.

From the results obtained, it can be concluded that the reliability of the software
scrubbing algorithm is closely related to the scrubbing periodicity. As can be seen in
Figures 30 and 29, the percentage of errors corrected and the average duration of
the application increase when the scrubbing period is shorter, since there are fewer
possibilities of making calculation errors due to corrupted data.

However, as illustrated in Figure 31, the use of a short scrubbing period results in
a high overhead on system performance. Consequently, it is important to choose the
scrubbing periodicity correctly in order to find a reliable solution without excessive
performance overhead.
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The scrub operation is done in 1.3713 seconds. Since the protected region has a
size of 18.9 kB, the scrubbing speed of the algorithm is 13.78 kB/s.

As discussed previously, the use of software scrubbing algorithm for protecting
the main memory is risky, since single-bit errors can cause failures if they occur after
the last scrub operation and before the time of reading. Therefore, hardware EDAC
provides greater reliability to protect the main memory and should be used whenever
possible, since it checks and corrects all the data read from the memory.

On the other hand, software EDAC can be a good solution for secondary storage
memories, where data are not constantly read and written from the memory [35]. In
this case, the scrubbing algorithm can always be executed before a read operation
and therefore, single-bit errors cannot corrupt the data.

10.2 Application of the results to a case study

The impact of using a software scrubbing algorithm to protect the memory of the
FORESAIL-1 small satellite was analyzed.

FORESAIL-1 is a CubeSat mission of the Finnish Center of Excellence in Research
of Sustainable Space. It hosts two payloads: the particle telescope (PATE) and a
plasma brake experiment for plasma measurement and satellite deorbiting. PATE is
a particle detector capable of measuring electron and proton fluxes, their energies
and pitch angles. The avionics of this small satellite are designed and built in Aalto
University; it will be launched in late 2019. [43]

Figure 32: FORESAIL-1 satellite. Figure from [43].

The amount of code and RO data to protect on this satellite is approximately 391
kB (∼ 383 kB of code and ∼ 8 kB of RO data). Therefore, the amount of memory
required to store the corresponding check-bits is ∼ 97.75 kB.

Consequently, the total amount of protected memory (code, RO data and check-
bits) is 488.75 kB. Taking into account an SEU rate in LEO of ∼ 6 · 10−7 SEU/bit-
day [36], the estimated SEU rate in the FORESAIL-1 protected memory is ∼ 2.40
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SEU/day.
Since the scrubbing speed of the algorithm is 13.78 kB/s, the estimated time

required to scrub the FORESAIL-1 protected memory would be ∼ 35.47 seconds.
Although the SEU rate is not high, the scrubbing interval must be low to increase

the reliability and to avoid possible failures due to errors occurring between two
scrub operations. Table 10 shows the performance overhead for different scrubbing
intervals and the average of errors that can be present in the protected code given
the scrubbing interval and an SEU rate of ∼ 2.40 SEU/day.

Table 10: Performance overhead for different scrubbing intervals.

Scrubbing interval Performance overhead Average of errors

10 min 5.91% 0.02 errors
20 min 2.95% 0.03 errors
30 min 1.97% 0.05 errors
1 hour 0.98% 0.1 errors
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11 Summary

This final project manuscript presented the implementation of a software scrubbing
algorithm to protect the main memory of an MCU against SEU. The scrubbing
algorithm was implemented using Hamming(39,32) code. Hamming(39,32) is a
SEC-DED code, which means that is able to detect double errors in a word and to
correct single errors.

Hamming codes do not have high capability of error correction and detection.
However, their fast decoding speed is especially important in real-time applications
to reduce the performance overhead. Codes with a higher decoding speed should be
selected above those capable of correcting multiple errors but with a slow decoding
speed. There are several ways to reduce the possible occurrence of multiple errors
and increase the code reliability, such as reducing the scrubbing interval and using
bit/word interleaving.

When implementing an EDAC code with software, an important parameter to
take into account is the error rate. Software-implemented EDAC should not be
used in high-radiation environments since their robustness in those environments is
especially low [35]. However, for LEO, where the expected SEU rate is low, software
EDAC can be an appropiate solution.

Another important parameter in software EDAC is the scrubbing interval. Since
software EDAC only performs periodic scrubbing, its reliability is closely related to
it. A lower scrubbing interval increases the reliability of the algorithm since there
are fewer possibilities of making calculation errors due to corrupted data.

One of the main drawbacks of software EDAC for protecting the main memory is
that single-bit errors can cause failures. This is because the data of the main memory
are read and used constantly. Therefore, if the error is entered in an instruction
and that data is read before the next scrub operation, the read instruction will be
erroneous and can lead to the triggering of a hard fault. Different solutions can be
developed to reduce the impact of this type of errors. For example, a hard-fault
handler could be implemented, which may permit the correction of the error and
after, continue with the execution or, if it is not possible, restart the thread that was
running when the error occurred.

The conclusion that can be drawn from the point above, is that protection of main
memories should be done with hardware EDAC if possible, to avoid the risk of single-
bit errors causing failures. However, software EDAC can be an acceptable/appropriate
solution for secondary storage memories, where data are not constantly read and
written and where the scrubbing algorithm can be executed always before a read
operation [35].

The advantages of software EDAC with respect to hardware EDAC are that it is
a low-cost solution and that there is more flexibility to implement different codes,
adapting the implementation to the needs of each case.
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A Hamming(39,32) matrices

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1
0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1
0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 1 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
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B Bootloader code

B.1 Configuration files

B.1.1 (config.h)

The file config.h contains defines that are used in the scatter files EDACbootloader.sct
and APP.sct. These defines correspond to the addresses and sizes of the different
memory regions.
# ifndef __CONFIG_H
# define __CONFIG_H

# define BOOT_ROM_ADDRESS 0 x08000000
# define BOOT_ROM_SIZE 0 x00040000
# define BOOT_RAM_ADDRESS 0 x2000B000
# define BOOT_RAM_SIZE 0 x00001000

# define APP_ROM_ADDRESS 0 x20000000
// Program
# define APP_ROM_SIZE 0 x00005000
// Parity bits sections starts at the end of ROM
# define APP_PARITYBITS_ADDRESS ( APP_ROM_ADDRESS + APP_ROM_SIZE )
//7 parity bits every 32 bits of data. Aproximated to 8.
# define APP_PARITYBITS_SIZE ( APP_ROM_SIZE / 4)

# define APP_ERROR_ADDRESS ( APP_PARITYBITS_ADDRESS +
APP_PARITYBITS_SIZE )

# define APP_ERROR_SIZE 0x1000

# define APP_RAM_ADDRESS ( APP_ERROR_ADDRESS + APP_ERROR_SIZE )
# define APP_RAM_SIZE ( BOOT_RAM_ADDRESS - ( APP_ERROR_ADDRESS

+ APP_ERROR_SIZE ))

# define APP_TOTAL_SIZE ( BOOT_RAM_ADDRESS - APP_ROM_ADDRESS )

#endif

B.1.2 Scatter file (EDACBootloader.sct)

The scatter file EDACBootloader.sct determines how the memory layout is organized.
The objects are allocated in the defined memory regions. The region ER_APP is not
initialized since is the region in which the application will be copied. The regions
ER_IROM1 and RW_IRAM1 are for the bootloader RO and RW data.
#! armcc -E -I C:\ Users\ritar\ Documents \ FINALPROJECT \ cubemx \ FreeRTOS \

APP_SRAM \MDK -ARM\cfg

# include " config .h"

; Memory Regions
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LR_IROM1 BOOT_ROM_ADDRESS BOOT_ROM_SIZE {
ER_IROM1 BOOT_ROM_ADDRESS BOOT_ROM_SIZE {

*.o (RESET , +First)
*( InRoot$$Sections )
.ANY (+RO)
.ANY (+XO)

}
ER_APP APP_ROM_ADDRESS UNINIT APP_TOTAL_SIZE {

*( NoInit )
}
RW_IRAM1 BOOT_RAM_ADDRESS BOOT_RAM_SIZE {

.ANY (+RW +ZI)
}

}

B.2 Main function (main.c)

The main function contains the behaviour of the Bootloader as defined in Section
9.1.
int main(void)
{

/* MCU Configuration ------------------------------------------*/
/* Reset of all peripherals , Initializes the Flash interface and the

Systick . */
HAL_Init ();

/* Configure the system clock */
SystemClock_Config ();

/* Initialize all configured peripherals */
MX_GPIO_Init ();
MX_DMA_Init ();
MX_USART2_UART_Init ();
HAL_UART_Receive_DMA (& huart2 , aRxBuffer , RXBUFFERSIZE );

/* Infinite loop */
while (1)
{

HAL_Delay (200);
if( number_rxBytes >= TXBUFFERSIZE ){

number_rxBytes = 0;

/* Jump to User define Application Address */
print(" Launching Application .");
Bootloader_JumpToApplication ();
while (1)
{

;
}

}
}
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}

B.3 Jump to Application function (bootloader.c)

void Bootloader_JumpToApplication (void)
{

/* Get the application entry point ( Second entry in the application
Vector Table) */

uint32_t JumpAddress = *( __IO uint32_t *)( PROGRAM_START_ADDR + 4);
pFunction Jump = ( pFunction ) JumpAddress ;

HAL_RCC_DeInit ();
HAL_DeInit ();

SysTick ->CTRL = 0;
SysTick ->LOAD = 0;
SysTick ->VAL = 0;

/* Vector Table , MSP and Relocation in Internal SRAM ( Application )
*/

SCB ->VTOR = PROGRAM_START_ADDR ;
__set_MSP (*( __IO uint32_t *) PROGRAM_START_ADDR );

Jump ();
}

In the file bootloader.h must be indicated the size of the application’s binary file
that has to be loaded:

/*** Bootloader Configuration
************************************************ */

# define SET_VECTOR_TABLE 1 /* Automatically set vector
table location before launching application */

# define PROGRAM_SIZE 18232 /* Size of program
to load */

# define PROGRAM_START_ADDR ( uint32_t )0 x20000000 /* Start
address to write the program */

C Application code

C.1 Configuration files

C.1.1 (config.h)

Same as in Appendix B.
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C.1.2 Scatter file (APP.sct)

The scatter file APP.sct determines the different memory regions required for the
Application: The regions ER_IROM1_APP and RW_IRAM1_APP are for the Application
RO and RW data. The region RW_PARITYBITS_APP is the region in which the check
bits will be stored. The region ER_ERROR_APP is the region in which the functions to
introduce errors error.o,the scrubbing functions hamming.o and the file tasks.o are
allocated. These files are allocated here in order to not introducing errors in them.
#! armcc -E -I .\ cfg

# include " config .h"

LR_IROM1_APP APP_ROM_ADDRESS APP_ROM_SIZE {
ER_IROM1_APP APP_ROM_ADDRESS APP_ROM_SIZE {

*.o (RESET , +First)
*( InRoot$$Sections )
.ANY (+RO)
.ANY (+XO)

}
RW_PARITYBITS_APP APP_PARITYBITS_ADDRESS APP_PARITYBITS_SIZE {

*( syn)
}
ER_ERROR_APP APP_ERROR_ADDRESS APP_ERROR_SIZE {

error.o
tasks.o
hamming .o

}
RW_IRAM1_APP APP_RAM_ADDRESS APP_RAM_SIZE {

.ANY (+RW +ZI)
}

}

C.2 Main function (main.c)

int main(void)
{

/* Memory section to be protected */
sectionProgram . baseAddress = ( uint32_t *)& Image$$ER_IROM1_APP$$Base ;
sectionProgram . lengthSection = ( uint32_t )&

Image$$ER_IROM1_APP$$Length ;

/* Start address where are located parity bits */
baseSyndrome = ( uint8_t *)& Image$$RW_PARITYBITS_APP$$Base ;

DummyArrays ();

/* MCU Configuration -----------------------------------------*/

/* Reset of all peripherals , Initializes the Flash interface and the
Systick . */
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HAL_Init ();

/* Configure the system clock */
SystemClock_Config ();

/* Initialize all configured peripherals */
MX_GPIO_Init ();
MX_USART2_UART_Init ();

/* Create the thread (s) */
/* definition and creation of Application */
osThreadDef ( Application , ThreadApplication , osPriorityNormal , 0,

128);
ApplicationHandle = osThreadCreate ( osThread ( Application ), NULL);

/* definition and creation of ScrubbingMemory */
osThreadDef ( ScrubbingMemory , ThreadScrubbing , osPriorityRealtime , 0,

128);
ScrubbingMemoryHandle = osThreadCreate ( osThread ( ScrubbingMemory ),

NULL);

/* definition and creation of ErrorFunction */
osThreadDef ( ErrorFunction , ThreadError , osPriorityNormal , 0, 128);
ErrorFunctionHandle = osThreadCreate ( osThread ( ErrorFunction ), NULL);

/* Calculate parity bits of the memory section we want to protect */
HammingEncode ( sectionProgram . baseAddress , sectionProgram .

lengthSection , baseSyndrome );
srand(SEED);

/* Start scheduler */
osKernelStart ();

/* We should never get here as control is now taken by the scheduler
*/

/* Infinite loop */
while (1)
{
}

}

C.3 Thread functions (main.c)

All the threads created are written below.
/**

* @brief Dummy Threads . Toggles a LED.
* @param None
* @retval None
*/

void ThreadApplication (void const * argument )
{

/* Infinite loop */
for (;;)
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{
HAL_GPIO_TogglePin (GPIOB , LD3_Pin );
osDelay (500);

}
}

/**
* @brief Scrubbing Thread . Calls the function to scrub the memory .
* performs a System Reset if an uncorrectable error has been

detected .
* @param None
* @retval None
*/

void ThreadScrubbing (void const * argument )
{

uint8_t tx_scrub [14] = " Scrubbing ...\r\n";
uint8_t tx_bootloader [56] = " Uncorrectable error detected ,

restarting bootloader ...\r\n";

// scrubbing interval
TickType_t xLastWakeTime ;
const TickType_t xDelay = pdMS_TO_TICKS ( SCRUB_PERIODICITY );
xLastWakeTime = xTaskGetTickCount ();

/* Infinite loop */
for (;;)
{

HammingScrubMemory ( sectionProgram . baseAddress , sectionProgram .
lengthSection , baseSyndrome );

/* if uncorrectable error detected , bootloader should be restarted
*/
if( uncorrectableError == 0xFF ){

HAL_UART_Transmit (& huart2 , tx_bootloader , sizeof ( tx_bootloader
), 100);

HAL_NVIC_SystemReset ();
}
HAL_UART_Transmit (& huart2 , tx_scrub , sizeof ( tx_scrub ), 100);

/* The task should execute every SCRUB_PERIODICITY ms */
osDelayUntil (& xLastWakeTime , xDelay );

}
}

/**
* @brief Error Thread . Calls the function to introduce errors in the

memory .
* @param None
* @retval None
*/

void ThreadError (void const * argument )
{

uint8_t tx_error [26] = "Error in program memory \r\n";
uint8_t tx_error1 [27] = "Error in syndromes block \r\n";
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uint8_t locationError = 0;

/* Infinite loop */
for (;;)
{

locationError = errorInProtectedRegion ( sectionProgram . baseAddress ,
sectionProgram . lengthSection , baseSyndrome );

if (! locationError ) {
HAL_UART_Transmit (& huart2 , tx_error , sizeof ( tx_error ), 1000);

} else {
HAL_UART_Transmit (& huart2 , tx_error1 , sizeof ( tx_error1 ), 1000);

}
osDelay ( ERROR_PERIODICITY );

}
}

C.4 Hamming code (hamming.c)

This file contains the functions required to perform the memory scrubbing using
Hamming code (39,32). The whole file hamming.c is written below.
/* Includes ------------------------------------------------*/
# include " hamming .h"

/* Constants and variables ---------------------------------*/
# ifndef null
# define null (( void *) 0)
#endif

# define CODEWORD_LEN 0x27 // Total bits per codeword
# define MESSAGE_LEN 0x20 // Message bits per codeword
# define PARITY_LEN 0x07 // Check bits per codeword

# define UNCORRECTABLE 0xFF

// Periodicity with which scrub of memory is performed in milliseconds
const uint16_t SCRUB_PERIODICITY = 1000;
// This variable is set to 1 if an uncorrectable error has been found
uint8_t uncorrectableError = 0;
// Counter for the total number of errors corrected
uint16_t errorsCorrected = 0;

// First seven columns of matrix G. Columns needed to calculate the
syndrome

static const uint32_t _colG [7] = {
0x0000007E ,
0x007FFF00 ,
0x7F00FF00 ,
0x0F8F0F8F ,
0xB33333B3 ,
0xD5D55555 ,



69

0 xE9E996E8
};

// Columns of matrix H
static const uint8_t _colH [39] = {

0x40 , 0x20 , 0x10 , 0x08 , 0x04 , 0x02 , 0x01 , 0x07 ,
0x13 , 0x15 , 0x16 , 0x19 , 0x1A , 0x1C , 0x1F , 0x0B ,
0x23 , 0x25 , 0x26 , 0x29 , 0x2A , 0x2C , 0x2F , 0x31 ,
0x32 , 0x34 , 0x37 , 0x38 , 0x3B , 0x3D , 0x3E , 0x0D ,
0x43 , 0x45 , 0x46 , 0x49 , 0x4A , 0x4C , 0x0E

};

/* Functions -------------------------------------------------*/
/**

* @brief Performs the inner product of two uint8_t vectors
* @param vector1 : first vector
* @param vector2 : second vector
* @param vLength : length of vectors
* @retval uint8_t with the result of the inner product
*/

static uint8_t InnerProduct8 ( uint8_t vector1 , uint8_t vector2 , uint8_t
vLength )

{
uint8_t result = 0x00;
uint8_t calc;

calc = vector1 & vector2 ;
for ( uint8_t i=0; i < vLength ; i++ )
{

result ^= (calc & 1);
calc > >=1;

}

return result ;
}

/**
* @brief Performs the inner product of two uint32_t vectors
* @param vector1 : first vector
* @param vector2 : second vector
* @param vLength : length of vectors
* @retval uint8_t with the result of the inner product
*/

static uint8_t InnerProduct32 ( uint32_t vector1 , uint32_t vector2 ,
uint8_t vLength )

{
uint8_t result = 0x00;
uint32_t calc;

calc = vector1 & vector2 ;
for ( uint8_t i=0; i < vLength ; i++ )
{

result ^= (calc & 1);
calc > >=1;
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}

return result ;
}

/**
* @brief Calculates the syndrome bits corresponding to a message
* @param message
* @retval uint8_t with the syndrome calculated
*/

static uint8_t HammingCalculateSyndrome ( uint32_t message )
{

uint8_t syndrome = 0x00;

for ( uint8_t i=1; i <= PARITY_LEN ; i++ )
{

uint8_t innProd ;

innProd = InnerProduct32 (message , _colG[i-1], MESSAGE_LEN );
innProd <<= ( PARITY_LEN - i);
syndrome |= innProd ;

}
return syndrome ;

}

/**
* @brief Check if there is an error in a codeword . Multiplies a

given codeword ( message + syndrome ) with H matrix , if there is no
error , the result should be zero.

* @param message : information bits of the codeword
* @param syndrome : check bits of the codeword
* @retval uint8_t 0 if there is no error , a syndrome if there is an

error
*/

static uint8_t HammingCheckSyndrome ( uint32_t message , uint8_t syndrome
)

{
uint8_t calcSyndrome ;

// ( codeword * H)
for ( uint8_t i=1; i <= PARITY_LEN ; i++ )
{

uint8_t innProdSyn = InnerProduct8 (syndrome , _colH[i-1],
PARITY_LEN );
uint8_t innProdMess = InnerProduct32 (message , _colG[i-1],

MESSAGE_LEN );
uint8_t innProd = innProdSyn ^ innProdMess ;
innProd <<= ( PARITY_LEN - i);
calcSyndrome |= innProd ;

}

return calcSyndrome ;
}
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/**
* @brief Performs the encoding of the message block allocated in the

address received
* @param * message : pointer to data block to be encoded
* @param blocklength : length of the data block to encode
* @param * syndrome : pointer to where the calculated syndrome block

has to be allocated
* @retval None
*/

void HammingEncode ( uint32_t * message , uint32_t blockLength , uint8_t *
syndrome )

{
uint32_t numMessages = blockLength /4;
for ( uint32_t i = 0 ; i< numMessages ; i++)
{

// Calculate the syndrome and store it in its address
*( syndrome + i) = HammingCalculateSyndrome (*( message + i));

}
}

/**
* @brief Performs the decoding of the codeword allocated in the

address received . If detected an error in the codeword it is
corrected . If more than one error detected or uncorrectable
returns UNCORRECTABLE (0 xFF)

* @param * message : pointer to data to be decoded
* @param * syndromeAddress : pointer to syndrome corresponding to the

data to be decoded
* @retval uint16_t containing only the message decoded or

UNCORRECTABLE
*/

uint16_t HammingDecode ( uint32_t * message , uint8_t * syndromeAddress )
{

uint8_t calcSyndrome = 0x00;
uint16_t correctedErrors = 0;

calcSyndrome = HammingCheckSyndrome (* message , * syndromeAddress );

// If there is an error ( calcSyndrome not equal to zero), correct it
if ( calcSyndrome )
{
// Look if the syndrome corresponds to a column of the parity -check

matrix
for( uint8_t i=0; i < CODEWORD_LEN ; i++ )
{

if ( _colH[i] == calcSyndrome )
{

// If the error is in the syndrome , correct the bit affected
if (i < PARITY_LEN ) {

uint8_t maskCorrector = 0x00;
maskCorrector = ( uint8_t )1<<( PARITY_LEN - (i + 1));
* syndromeAddress ^= maskCorrector ;
correctedErrors = 1;

// If it is in the message , correct the bit affected
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} else {
uint32_t maskCorrector = 0x0000;
maskCorrector = ( uint32_t )1<<( CODEWORD_LEN - (i + 1));
* message ^= maskCorrector ;
correctedErrors = 1;

}
return correctedErrors ;

}
}
// If no match found , it means there is an uncorrectable error
if (! correctedErrors )
{

correctedErrors = UNCORRECTABLE ;
return correctedErrors ;

}
}
return correctedErrors ;

}

/**
* @brief Scrubs the memory block indicated and corrects errors if

detected
* @param * firstMessage : pointer to the beginning of the data block

to be scrubbed
* @param blocklength : length of the data block to scrub
* @param * syndromes : pointer to the beginning of the corresponding

syndromes block
* @retval uint8_t containing the number of errors corrected in that

scrub operation or
* returns 0xFF if an uncorrectable error has been found
*/

uint8_t HammingScrubMemory ( uint32_t * firstMessage , uint32_t
blockLength , uint8_t * syndromes )

{
uint32_t * addressToScrub = firstMessage ;
uint8_t * syndromeToScrub = syndromes ;
uint8_t correctionsCounter = 0x00;
uint32_t numMessages = blockLength /4;

for ( uint32_t i=0; i< numMessages ; i++ )
{

uint16_t numCorrectedErrors ;
numCorrectedErrors = HammingDecode ( addressToScrub , syndromeToScrub

);

if ( numCorrectedErrors == UNCORRECTABLE ) {
uncorrectableError = numCorrectedErrors ;
return uncorrectableError ;

} else {
// first bit of syndrome is always zero since its length is 7
// if a bit -flip is found in that position , correct it
uint8_t syn2bits = (* syndromeToScrub ) & 0x7F;
if ( syn2bits != * syndromeToScrub ) numCorrectedErrors ++;



73

correctionsCounter += numCorrectedErrors ;
}
addressToScrub += 1;
syndromeToScrub += 1;

}

errorsCorrected += correctionsCounter ;
return correctionsCounter ;

}

C.5 Code for the introduction of errors (error.c)

The whole file error.c is written below.
/* Includes ---------------------------------------------------*/
# include "error.h"

/* Constants and variables ------------------------------------*/
# define MESSAGE_LEN 0x20 // Number of bits of the messages
# define PARITY_LEN 0x07 // Number of check bits per codeword

// Periodicity with which errors are introduced in memory in
milliseconds

const uint16_t ERROR_PERIODICITY = 1000;
// Counter for the errors introduced in memory
uint16_t errorsIntroduced = 0;

/* Functions --------------------------------------------------*/
/**

* @brief Gets a random number within a certain range.
* @param range
* @retval Integer random number
*/

uint32_t randomNumberInRange ( uint16_t range)
{

double randNum ;

//We get a random number between 0 and 1 and then we scale it
randNum = (( double )rand () / RAND_MAX ) * (range -1);

return ( uint32_t ) randNum ;
}

/**
* @brief Introduces single bit errors in a block of memory of 32- bit

words.
* @param * memoryBlock : pointer to first address of memory block
* @param sizeMemoryBlock : size in bytes of memory block
* @retval None
*/

void singleBitErrors32 ( uint32_t * memoryBlock , uint32_t sizeMemoryBlock
)

{
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uint32_t randAddress ;
uint32_t randBitPosition ;
uint32_t maskError = 0 x00000000 ;

randAddress = randomNumberInRange ( sizeMemoryBlock );
randBitPosition = randomNumberInRange ( MESSAGE_LEN );

maskError = 1<< randBitPosition ;

// Change bit in the error position
*( memoryBlock + randAddress ) ^= maskError ;

}

/**
* @brief Introduces single bit errors in a block of memory or 8-bit

words.
* @param * memoryBlock : pointer to first address of memory block
* @param sizeMemoryBlock : size in bytes of memory block
* @retval None
*/

void singleBitErrors8 ( uint8_t * memoryBlock , uint32_t sizeMemoryBlock )
{

uint32_t randAddress ;
uint8_t randBitPosition ;
uint8_t maskError = 0x00;

randAddress = randomNumberInRange ( sizeMemoryBlock );
randBitPosition = randomNumberInRange ( PARITY_LEN );

maskError = 1<< randBitPosition ;

// Change bit in the error position
*( memoryBlock + randAddress ) ^= maskError ;

}

/**
* @brief Decides randomly where to introduce a single error: in

memoryBlock or syndrome Block
* calls the function that introduces errors .
* @param * memoryBlock : pointer to first address of memory block
* @param sizeMemoryBlock : size in bytes of memory block
* @param * syndromeBlock : pointer to first address of syndromes block
* @retval 0 if error in program memory ; 1 if error in syndromes

block
*/

uint8_t errorInProtectedRegion ( uint32_t * memoryBlock , uint32_t
sizeMemoryBlock , uint8_t * syndromeBlock )

{
uint32_t memoryRegion ;
uint32_t numMessages = sizeMemoryBlock /4;
uint32_t totalSizeProtectedMem = sizeMemoryBlock + ( sizeMemoryBlock

/4);
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// Select randomly if error is introduced in protected memory block
or in the syndromes region (also protected )

memoryRegion = randomNumberInRange ( totalSizeProtectedMem );
if ( memoryRegion <= sizeMemoryBlock ) {

singleBitErrors32 ( memoryBlock , numMessages );
errorsIntroduced ++;
return 0;

} else {
singleBitErrors8 ( syndromeBlock , numMessages );
errorsIntroduced ++;
return 1;

}
}
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