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A la meva germana Esther, que 

aconseguirà tot el que es proposi. 

You can and you will. 

 

 

 

 

 

 

  



 
 

Visual object tracking has become one of the hottest topics in computer vision since its 

appearance in the 90s. It has a wide range of important applications in real life, such as 

autonomous driving, robot navigation and video surveillance. Despite the efforts made by 

the research community during the last decades, arbitrary object tracking is still, in its 

generality, an unsolved problem. 

Recently, some tracking algorithms have used convolutional neural networks trained from 

large datasets, providing richer image features and achieving more accurate object tracking. 

Results show that deep learning techniques can be applied to enhance the tracking 

capabilities by learning a better model of the object’s appearance. The aim of this thesis is 

to study and evaluate the implementation of one method of this approach called SiamFC 

and to give a brief overview of the current tracking challenges. The code developed in this 

study makes use of an existing Python implementation of SiamFC and is publicly available 

at https://github.com/sergi2596/pytorch-siamfc 
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El seguiment d’objectes s’ha convertit en un dels temes més candents en visió artificial de 

les últimes dècades. Es pot aplicar a multitud de situacions a la vida real, com per exemple 

conducció autònoma, robòtica i videovigilància. Tot i que la comunitat científica ha estat 

molt activa investigant en aquest camp, el seguiment d’objectes és encara un problema 

complex que necessita ser millorat. 

Recentment, alguns algoritmes han utilitzat les xarxes neuronals convolucionals entrenades 

amb grans bancs de dades per oferir un seguiment d’objectes millor i més fiable. Els 

resultats mostren que les tècniques d’aprenentatge profund es poden aplicar per millorar les 

capacitats de seguiment gràcies a la oportunitat d’aprendre models més complexos de 

l’aparença dels objectes. L’objectiu d’aquest treball és estudiar i provar la implementació 

d’un d’aquests algoritmes anomenat SiamFC, així com donar una visió global dels reptes 

actuals del seguiment d’objectes. El codi desenvolupat en aquesta tesis està basat en una 

implementació ja existent del SiamFC basada en Python i està a 

https://github.com/sergi2596/pytorch-siamfc 
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El seguimiento de objetos se ha convertido en uno de los temas más candentes en visión 

artificial de las últimas décadas. Se puede aplicar a multitud de situaciones en la vida real, 

como por ejemplo la conducción autónoma, la robótica o la videovigilancia. A pesar de que 

la comunidad científica ha estado investigando activamente en este campo, el seguimiento 

de objetos es todavía un problema complejo que necesita ser mejorado. 

Recientemente, algunos algoritmos han utilizado las redes neuronales convolucionales 

entrenadas con grandes bancos de datos para ofrecer un seguimiento de objetos mejor y más 

fiable. Los resultados muestran que las técnicas de aprendizaje profundo se pueden aplicar 

para mejorar las capacidades de seguimiento gracias a la oportunidad de aprender modelos 

más complejos de la apariencia de los objetos. Este trabajo busca estudiar y probar la 

implementación de uno de estos algoritmos conocido como SiamFC, así como dar una 

visión global de los retos actuales del seguimiento de objetos. El código desarrollado en esta 

tesis está basado en una implementación ya existente de SiamFC basada en Python y está 

disponible en https://github.com/sergi2596/pytorch-siamfc.  
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1 
 Introduction 

Visual object tracking (VOT, also referred to as object tracking) is the process of locating a 

moving object (or multiple objects) over time in a video. Object tracking is an important 

computer vision topic with a great number of useful real-world applications such as 

autonomous vehicles [1], robotics [2], human-computer interaction1, security and video 

surveillance [3]. Since its appearance in the 90s, object tracking has become a very active 

research topic in Computer Vision. Although results have been significantly improved over 

the years, the process of tracking arbitrary objects in arbitrary scenes remains unsolved as 

research has not brought a breakthrough. 

The ability to perform reliable and effective object tracking depends on how well trackers 

can deal with challenges such as occlusion, scale variations, low resolution targets, fast 

motion and presence of noise. Different objects have also different appearances, and 

rotations and deformations are problems that need to be addressed too. Moreover, the vast 

majority of applications require object tracking algorithms to operate in real-time, which 

adds an extra level of difficulty due to the time constraint. 

Traditionally, the problem of tracking an object has been solved by learning a model of the 

target’s appearance using only the frames of the video itself. This method has been proved 

to work well in many cases, but there are important limitations in the complexity of the 

model that can be learnt. The main consequence of this is that only objects with similar 

appearances can be correctly tracked. To address a more general problem and track arbitrary 

objects in arbitrary scenes, performing online learning using only data extracted from the 

video frames may be insufficient.  

It has been proved in the last years that object tracking algorithms can take advantage of the 

power of deep learning techniques, i.e. using deep convolutional networks trained from 

large supervised datasets, to learn a richer set of features from a variety of objects. This 

approach is rather a new topic that can bring notorious improvements to the tracking scene. 

 

 

 

                                                 
1 e.g. gesture recognition, eye gaze tracking for data input to computers, etc. 
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1.1 Purpose 

The purpose of the current thesis is to analyse and evaluate the implementation of SiamFC 

[4], a tracking algorithm that merges the power of Siamese networks and deep learning to 

perform arbitrary object tracking. The thesis also aims to give a brief overview of the most 

important challenges and principles in object tracking. This work has been carried out at the 

Institute of Visual Computing and Human-Centered Computing of the Vienna University 

of Technology. It starts from scratch and it has been developed independently from other 

projects in the department. 

 

1.2 Outline 

The rest of the thesis is organized as follows: chapter 2 provides a brief overview of the 

main challenges and approaches to perform tracking, as well as an introduction to siamese 

networks; the description of SiamFC architecture and operation is explained in chapter 3; 

in chapter 4 we perform experiments and evaluate the results using variations in datasets, 

training and tracking parameters; and chapter 5 discusses conclusions and future work. 

 

1.3 Work plan 

 

1.3.1 Work packages 

 

Project: Documentation WP ref: WP1 

Major constituent: Documentation Sheet 1 of 5 

Short description: Writing of the thesis documents 

 

 

 

 

Planned start date: 01.10.2018 

Planned end date: 10.05.2019 

Start event: - 

End event: - 

Internal task T1: project proposal redaction 

Internal task T2: project proposal revision 

Internal task T3: project proposal approval 

Internal task T4: critical review redaction 

Internal task T5: critical review revision 

Internal task T6: critical review approval 

Internal task T7: final report redaction 

Internal task T8: final report revision 

Internal task T9: final report approval 

Deliverables: 

 

- Project Proposal 

- Critical Review 

- Final Report 

Dates: 

 

- 05/10/18 

- 30/11/18 

- 11/05/19 

 
Table 1: Description of work package 1 
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Project: Literature review WP ref: WP2 

Major constituent: Documentation Sheet 2 of 5 

 

Short description: Study and understanding of Deep 

Learning and Visual Tracking concepts as well as SiamFC 

 

Planned start date: 05/10/18 

Planned end date: 20/12/18 

Start event: Project Start 

End event: - 

Internal task T1: Object tracking literature study 

Internal task T2: Study of SiamFC paper 

 

Deliverables: 

- 

Dates: - 

 
Table 2: Description of work package 2 

 

Project: Software Implementation WP ref: WP3 

Major constituent: Software Sheet 3 of 5 

 

Short description: work on the implementation of SiamFC 

 

Planned start date: 20/12/18 

Planned end date: 11/03/19 

Start event: -  

End event:  - 

Internal task T1: Study of SiamFC original implementation 

in Matlab 

Internal task T2: learn PyTorch  

Internal task T3: implement a modified alexnet following 

SiamFC structure 

Internal task T4: Study and modify the python 

implementation of SiamFC 

Internal task T5: Create script for synthetic dataset  

Internal task T6: Create script for synthetic video 

Deliverables: 

- 

Dates: - 

 

Table 3: Description of work package 3 

 

Project: Experiments WP ref: WP4 

Major constituent: Research Sheet 4 of 5 

 

Short description: perform experiments using different 

datasets 

 

Planned start date: 11/03/19 

Planned end date: 11/04/19 

Start event: - 

End event: - 

Internal task T1: Training experiments with synthetic 

dataset 

Internal task T2: Training experiments with ImageNet 

 

Deliverables: 

- 

Dates: - 

 

Table 4: Description of work package 4 
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Project: Oral communication WP ref: WP5 

Major constituent: Documentation Sheet 5 of 5 

 

Short description: preparation of final presentation 

 

Planned start date: 13/05/19 

Planned end date: 29/05/19 

Start event: Final Report 

End event: Oral Presentation 

Internal task T1: preparation of slides 

Internal task T2: oral defense 

Deliverables: Dates: 

 

Table 5: Description of work package 5 

 

 

1.3.2 Gantt diagram 

 

 

 

Fig. 1: Gantt diagram 



 

 

2 
 Background 

The first section of this chapter (2.1) presents the main parts of the tracking process, giving 

a general explanation and mentioning the differences between some common approaches. 

In section 2.2 we briefly mention the main challenges that tracking has to deal with. Section 

2.3 gives a general overview of the principles behind learning tracking. Section 2.4 

describes the main concepts behind Siamese networks and some background about SiamFC 

is explained in section 2.5. 

 

2.1 The tracking process 

As described in literature such as [5], [6] and [7], the process of tracking an arbitrary target 

in a video is usually divided into several steps: object state modelling, features and feature 

selection and object tracking. Since it is a very complex process, most of the algorithms 

simplify tracking by applying some constraints. For example, it is common to assume that 

the motion of the target to track is smooth and that velocity or acceleration is constant. Other 

common constraints are prior knowledge about the number, size and appearance of the 

objects. 

 

2.1.1 Object state modelling 

In a tracking scenario, an object can be represented by its shape and appearance. These two 

ways of representation can be used combined or alone, and the choice is determined usually 

by the application domain and purpose. A suitable tracking algorithm must be chosen 

accordingly to the object representation. This section covers the shape representations that 

are usually employed for tracking [5]. 

Points: the target is represented either by a centered point (Fig. 2 (a)) or by a set of points 

(Fig. 2 (b)) [8]. It is usually used for small sized objects. Using multiple points can cause 

trouble when tracking multiple objects that have some interaction during the video. 

Geometric shapes: primitive geometric (Fig. 2 (c), (d)) shapes such as rectangles and 

ellipses [9] are suitable for representing simple rigid objects, although it can also be used 

with non-rigid objects. Since objects usually have more complex shapes, this method causes 
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some parts of the object to be excluded from the shape template or some parts of background 

to be included. 

Articulated shape models: articulated objects are those composed by different parts that 

are grasped together with joints. These parts can be modelled using ellipses or cylinders 

(Fig. 2 (e)). 

Skeletal models: the skeleton of the object (Fig. 2 (f)) is extracted by applying medial axis 

transform2 to the object silhouette. Skeletons can be used to represent both articulated and 

rigid objects. 

Object silhouette and contour: contour (Fig. 2 (g), (h)) defines the outline of an object 

and the area inside the contour is known as the silhouette (Fig. 2 (i)). This is a flexible 

method commonly used for representing complex non-rigid objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2 Feature selection 

In computer vision, a feature is a transformation that helps extracting relevant information 

for solving a certain computational task. In the case of tracking, a feature can be an 

“interesting” part of an image that contains useful and accessible information to distinguish 

the object that is being tracked. Feature selection [10], [11] is the process of selecting a 

subset of relevant features so any kind of redundant or irrelevant information is removed. It 

provides simpler models, which results in shorter training times.  

                                                 
2 The medial axis of an object is the set of all points having more than one closest point on the object's 

boundary. Medial Axis Transform (MAT) is a representation that encodes an object with symmetric (medial) 

axes in the object interior. 

Fig. 2: Object representations. (a) centered point, (b) multiple points, (c) rectangular 

shape, (d) elliptical shape, (e) articulated model, (f) object skeleton, (g) (h) different 

object contours, (i) object silhouette. Source: [5] 
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Features may describe objects at different levels of detail. For example, a neural network 

trained for object detection can extract simple features like edges and contours in its first 

layers. The deeper layers may be capable of detecting more complicated patterns, such as 

textures, complex shapes or variations between detected features. 

 

2.1.3 Object tracking 

The tracking part of the process addresses the task of establishing a correspondence between 

object instances across video frames. Tracking can be performed using a broad number of 

inference algorithms which handle different situations. Some focus on tracking single 

objects while others take into account multiple targets. A tracker can also deal with partial 

and total occlusions of the targets. The tracking algorithms can be classified by different 

criteria [12]. A commonly way to classify tracking methods is by dividing it into three main 

categories based on the object state: point tracking, kernel tracking and silhouette tracking 

[5]. These categories are also divided into subgroups, but this thesis covers only the 

differences between the main categorization. 

Point tracking: this method is used when objects are represented by points. To associate 

points between frames the tracker takes into account the previous state of the object, which 

can include information about position and motion. Some constrains are applied by 

assuming, for example, that the object position doesn’t change drastically or that the 

velocity is similar between consecutive frames. 

Kernel tracking: in this context, kernel refers to the shape and appearance of an object. 

This approach computes the motion of an object represented by a primitive object region 

such as rectangle of ellipse. Objects are tracked by considering the coherence of their 

appearances in consecutive frames. 

Silhouette tracking: the goal of this approach is to find a region that matches an object 

model that was generated using the previous frames. This model can include information 

about color histogram, edges and contours of an object. Silhouette tracking provides a more 

accurate shape description than simple geometric shapes, and is therefore used to track 

objects with complex shapes. 

 

2.2 Tracking challenges 

Tracking for arbitrary objects and scenes is in its generality unsolved as there has not been 

an important breakthrough since its appearance in the 90s. So far, the research community 

has only brought partial solutions that work under rather specific constraints. The fact that 

tracking is such a complicated task can be briefly summarized by three important challenges 

[13]: 

Uncertainty: trackers need to deal with a certain amount of changes during the tracking 

process to prevent failure. For example, an ideal tracking algorithm should be invariant to 

variations in the object appearance caused by deformation, rotation, scale variations, 
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changes in illumination or camera movement. Uncertainty refers to the risk of potential 

changes that are unknown and cannot be controlled by the tracker. 

Initialisation: trackers are usually initialised by humans in the first frame. Automatized 

initialisation without human intervention, e.g. by an object detector, is crucial to re-initialise 

the tracker after a full occlusion of an object. This is still a huge challenge as object detectors 

can only detect certain object categories. 

Computability: there is a need to perform accurate and efficient object tracking in order to 

be practical for real world applications. This balancing between accuracy and speed remains 

a major challenge. 

  

2.3 Learning principles 

The learning of object tracking can be performed either online or offline [13]. 

Online learning is a method in which the data is available in a sequential order and is used 

in real time by the algorithm to update the predictor for future steps [14]. It is the most used 

way of learning object tracking, especially to follow categorical objects such as vehicles 

and persons in video surveillance applications. Online learning has been seen in an 

unsupervised or semi-supervised way, which means that either the data is unlabelled or there 

is a small amount of labelled data and the algorithm extends its predictions to unlabelled 

data [15]. 

Offline learning takes a static set of input data and do not change the approximation of the 

target function once the training process is completed. Despite being a well-known approach 

in many other machine learning applications, this is rather a new topic in the tracking field 

that was not used until 2015. Recently, it has been exploited to create more complex models 

of object representations by learning richer sets of spatiotemporal features from a variety of 

object categories. The expectation of this approach is to improve the performance when 

addressing the problem of tracking arbitrary targets in arbitrary scenes.  

Offline learning is usually supervised, which means that is limited by the amount of labelled 

data available. However, the recent appearance of large image datasets [16][17] can suppose 

a considerable reduction on this constraint. 

 

2.4 Siamese networks 

Siamese networks were first introduced by J. Bromley and Y. LeCun in 1994 to design a 

signature verification system for a pen-input tablet [18]. These networks can be really 

simple, yet they are getting increasingly popular and have been used in multiple applications 
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such as face verification [19], object cosegmentation3 [20], one-shot4 image recognition [21] 

and to detect similar questions in online Q&A platforms [22]. 

A siamese network consists of two twin subnetworks that extract features of two different 

inputs [23]. A final layer connects the output of these twin subnetworks and computes the 

distance between them. Siamese networks are trained to compute the similarity between two 

inputs and to decide whether they belong to the same class or not. Since this task is usually 

a binary classification, one of the most common loss functions employed is the binary cross-

entropy loss 

𝐿 = 𝑦 ∙ log(𝑝) + (1 − 𝑦) ∙ log(1 − 𝑝) (1) 

where 𝑦 is the class label (0 or 1) and 𝑝 the predicted class. 

To obtain a system that is symmetric and invariant to switching the inputs, both branches of 

the network must share the same weights and bias. An example of a siamese network 

architecture can be found in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3 Object cosegmentation is the process of discovering similar objects from multiple images and segmenting 

them as foreground simultaneously. 
4 One-shot learning addresses the problem of learning information about an object category from only one 

sample or a few training samples. 

Fig. 3: Example of a Siamese Neural Network architecture used in [34] to compute the similarity 

between facial expressions. Note that the network is composed by two identical branches 

connected at the end by a loss function.  
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2.5 SiamFC 

The main goal of this thesis is to study the tracking algorithm SiamFC. Despite the 

simplicity of its architecture, SiamFC performs very well in the most important object 

tracking benchmarks. In 2017, the tracker won the VOT real-time challenge [24]. It also 

ranks very high in some important benchmarks presented during 2018 such as LaSOT [25] 

and GOT-10k [16]. The LaSOT dataset is composed by 1,400 videos containing 3,52 

million images with 70 different object classes. In the case of GOT-10k, the dataset contains 

10,000 videos with 1.5 million images in total and 563 object categories. The good 

performance on these new benchmarks make SiamFC an interesting tracker to analyse and 

opens the door to important improvements on arbitrary object tracking. 

 



 

 

3 
 SiamFC 

This chapter covers the corresponding explanations of SiamFC, the tracker proposed by L. 

Bertinetto et. Al. [4] in 2016. It includes an overview of the tracker architecture as well as 

the training and tracking phases. 

 

3.1 Introduction 

The goal of SiamFC is to track an arbitrary object in a video without having any prior 

knowledge of it. The object is only identified in the very first frame of the video by a 

rectangular bounding box. The algorithm must be able to track any object so it is not feasible 

to train the tracker for a specific object or group of objects. Instead of learning a specific 

detector, the algorithm addresses a more general similarity problem by training a siamese 

network in an offline phase to compare an exemplar image 𝑧 to a larger search image 𝑥 and 

give a high value if both images contain the same object. An in-depth revision of the 

network architecture is done in the next section. 

 

3.1.1 Network architecture 

As shown in Fig. 4, the network is divided into two branches each one taking an image as 

input. Both images are frames extracted from the video itself. During tracking, the exemplar 

image 𝑧 is a cropped version of the first frame of the video containing the initial appearance 

of the target to track. The rest of the video frames are passed to the network as larger search 

images 𝑥 that are centered at the previous position of the target. 

An identical transformation 𝜑 is applied to both inputs to extract a representation of the 

images. These representations are the feature maps of the last layer of the subnetworks. Both 

feature maps are then combined using a cross-correlation layer according to 

𝑓(𝑧, 𝑥) =  𝜑(𝑧) ∗  𝜑(𝑥) +  𝑏𝟙 (2) 

where 𝑏𝟙 is a bias with value 𝑏 ∈  ℝ. Using this cross-correlation layer, the network can 

determine the position of the object in a new frame by exhaustively testing all possible 
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locations of the exemplar image 𝑧 within the search image 𝑥. This property allows SiamFC 

to be more efficient by using less training data.  

The output of the network is a scalar-valued score map representing the similarity for each 

of these locations. Finding the position of the object in a new image is done by choosing the 

candidate position with the highest value in the score map and computing the distance to 

the center. 

 

 

 

 

 

 

 

 

 

 

 

 

The network applies an embedding function 𝜑 to both images to extract their corresponding 

feature maps. This function is created using a convolutional neural network which is an 

adaptation of the convolutional part of the well-known neural network AlexNet [26] 

presented by A. Krizhevsky et. Al. in 2012. The network consists of five convolutional 

layers and two max pooling layers to introduce invariance to slight appearance changes of 

the target. A complete schema of this architecture is shown in Fig. 5. A ReLu follows every 

convolutional layer except for the last one. 

An important feature of SiamFC architecture is that the network is fully convolutional with 

respect to the search image. In a convolutional network [27] the first layer is the image itself 

and locations in the following layers correspond to the locations in the original image that 

they are path-connected to. A convolutional network is set up with components such as 

convolution, pooling and activation functions whose output depends only on a local input 

region. The main advantage of this is that these networks obey translation invariance so the 

input can be of any size. This property allows the SiamFC to, instead of taking two images 

with the same size, provide a much larger search image as input to compute the similarity 

at every position using translated sub-windows. 

 

 

 

Fig. 4: SiamFC network architecture. (1) input images, (2) embedding function, (3) 

image feature maps, (4) cross-correlation layer, (5) resulting score map. Source: [4] 

(1) 
(2) (3) 

(4) (5) 
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3.1.2 Dataset curation 

SiamFC was originally trained from the ILSVRC 2015 dataset for object detection in video 

[28] (also known as ImageNet) which contains 4417 videos gathering more than 2 million 

labelled images in total. The dataset curation, which is done in an offline phase before 

training the network, consists on creating training pairs of images to use as inputs to the 

network. Each pair is composed by an exemplar and a search image, both extracted from 

the same video and centered at the position of the target. Images are scaled preserving the 

original aspect ratio to get search images of 255 x 255 pixels and exemplar images of 

127 x 127 pixels. If an image cannot be fit in these sizes without corrupting the aspect ratio, 

the portions that extend the image size are filled with the mean RGB value of the image, as 

shown in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Architecture of the convolutional neural network used as embedding function 𝜑. ReLu is 

applied after each convolutional layer except for the last one. Note that conv1 and conv3 are normal 

convolutions while conv2, conv4 and conv5 are grouped convolutions. This means that input 

channels are split into two groups so each filter is convolved with only half of the previous feature 

maps. 

Fig. 6: Training pairs extracted from ImageNet dataset. Top images are 127 x 127 and bottom 

images are 255 x 255. Note that pairs are extracted from the same video. 
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3.1.3 Training  

During training, pairs of search and exemplar images are applied into the network. The 

cross-correlation layer produces a scalar-valued score map 𝑣 :  Ɗ →  ℝ whose dimensions 

depends on the stride 𝑘 of the cross-correlation layer. This score map represents the 

similarity between every position of the search image and the reference image.  

The logistic loss is employed to calculate the loss for each component of the score map and 

the loss of the score map is defined as the mean of the individual losses 

𝐿(𝑦, 𝑣) =
1

|Ɗ|
∑log(1 + 𝑒−𝑦[𝑖]·𝑣[𝑖])

𝑖∈Ɗ

 (3) 

where 𝑣[𝑖] is the value of the score map component and 𝑦[𝑖] is the ground-truth label, which 

takes values 𝑦[𝑖] ∈  {+1,−1}. Once the loss is computed, backpropagation [29] is applied 

by using Stochastic Gradient Descent for the optimization. 

Since all images in the dataset have been centered on the target before training, it is known 

beforehand that the maximum value of the score map should be centered as well. Therefore, 

an element of the score map is considered to belong to the target if it is within a radius 𝑅 of 

the center. This is reflected by a ground truth mask, which is the same for all training pairs 

and takes the form of a matrix with the same size as the score map  

𝑦[𝑖] =  {
+1      𝑖𝑓 𝑖 ≤ 𝑅/ 𝑘 
−1        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

where 𝑘 is the stride of the cross-correlation layer. Since there are more values belonging 

to background than to the target, the individual losses are weighted to avoid class imbalance 

by applying 

𝑤[𝑖] =  

{
 

  
0.5

 𝑠𝑢𝑚𝑃𝑜𝑠
    𝑖𝑓 𝑦[𝑖] = +1

0.5 

 𝑠𝑢𝑚𝑁𝑒𝑔
    𝑖𝑓 𝑦[𝑖] = −1

 (5) 

where 𝑠𝑢𝑚𝑃𝑜𝑠 and 𝑠𝑢𝑚𝑁𝑒𝑔 are the total number of positive and negative values in the 

ground truth mask. 
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3.1.4 Tracking 

The online phase of the network consists on evaluating the equation (2) for every frame of 

the video. The first frame, where the object is identified with a bounding box, is used as the 

exemplar image 𝑧 for the whole video. This means that the feature map of the exemplar 

image is computed only once and is fixed for the rest of the tracking process. The feature 

map for the search image is computed for all the remaining video frames. 

During the tracking process the search images are centered at the previous position of the 

target. After the cross-correlation layer, the new position of the target is given by the 

displacement between the center of the score map and the position its maximum value. A 

cosine window is applied to penalize large displacements, assuming that the motion of a 

real object must be smooth. 

For each frame, the algorithm handles scale variations by searching the target over five 

scales. The score map is computed for each scale and the one with the highest maximum 

value is selected to calculate the displacement. 

Before calculating the displacement of the target, the score map is upsampled from 17 x 17 

to 272 x 272. The authors of SiamFC state that this technique improve the accuracy in 

localization. 

 

 

 

 



 

 

4 
 Experiments 

4.1 Implementation details 

This section covers relevant explanations regarding the code implementation and the 

procedures followed during experimentation. The experiments have been performed using 

an existing implementation of SiamFC [30] that has been studied and modified according 

to the needs of the thesis. Other parts of the implementation have been developed from 

scratch. All the code is written in Python5 and make use of the deep learning framework 

Pytorch6. It is publicly available on https://github.com/sergi2596/pytorch-siamfc and it 

includes a step by step description to reproduce the experiments of this thesis. 

 

4.1.1 System setup 

All the experiments have been performed using the resources provided by Vienna Scientific 

Cluster7. Depending on the task and availability, we employed either one or multiple 

NVIDIA GeForce GTX 1080 with 8gb of RAM each. 

 

4.1.2 ImageNet dataset 

SiamFC was originally trained using the ImageNet8 dataset, and so we use it to perform 

some of the experiments. ImageNet is a large visual database for use in visual object 

recognition tasks that includes three main challenges to evaluate algorithms in object 

localization, object detection and object detection from video. Specifically, we use the 

dataset for object detection in video, which consists in 4417 videos containing more than 2 

million labelled images with 30 different object categories. 

 

                                                 
5 https://www.python.org/ 
6 https://pytorch.org/ 
7 http://vsc.ac.at/ 
8 http://image-net.org/ 

https://github.com/sergi2596/pytorch-siamfc
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4.1.3 LaSOT dataset 

LaSOT [25] is a recently released dataset for Large-scale Single Object Tracking. It contains 

1,400 videos gathering 3.52 million annotated images with 70 different object categories.  

We use some individual videos to evaluate the performance of the tracker in some of the 

experiments. 

 

4.1.4 Synthetic dataset 

Before training SiamFC on a real dataset such as ImageNet, we have created a synthetic 

dataset consisting on a set of 255 x 255 images, each one containing a simple centered 

square with a fixed size as shown in Fig. 7. Images are clustered together in subfolders.  

The color of the square and background is randomly chosen for each subfolder. We also 

apply random noise type with random intensity level to each image. It is well known that 

adding noise to input when training usually improves the robustness of the network, which 

results in better generalization and faster training. 

 

 

 

 

 

 

 

 

 

 

 

The purpose of using this dataset is to assure the proper functioning of the network when 

it’s trained with a dataset containing a simple easily identifiable target. We also aim to 

compare the performance of a tracker trained with this dataset and a tracker trained with 

ImageNet. Due to space limitations, we have created for this thesis a dataset of 500k images 

grouped in 2000 subfolders, each one containing 250 samples.  

 

 

4.1.5 Synthetic video 

Following the idea of the previous section, we have also developed a synthetic video to test 

the network once is trained with the synthetic dataset. The target to track in the video is a 

black square with a fixed size on top of a white background, as shown in Fig. 8. The motion 

Fig. 7: Samples extracted from synthetic dataset. Note that each group belongs to a different 

subfolder and that images from the same group have fixed colors and random noise.  
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of the target is random and the maximum displacement from frame to frame can be chosen 

when the video is created.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.6 Training 

The implementation of the training process follows the procedure explained in section 3.1.3. 

All experiments are performed over 50 epochs using mini-batches of 8 samples. During 

training, we split the dataset using 90% for training and 10% for validation. The validation 

phase is performed after every epoch. To initialize the weights of the network, we employ 

a Xavier initialization [31].  

Table 6 describes important training parameters that are fixed for all the experiments. 

 

Parameter Description Value 

exemplar_size Size of exemplar images (in pixels) 127 

search_size Size of search images (in pixels) 255 

train_batch_size Size of batch for training 8 

valid_batch_size Size of batch for validation 8 

learning_rate Learning rate of optimizer 10-2 

epoch Number of epochs 50 

Fig. 8: Samples extracted from a synthetic video. In this example, the video contains 300 images 

that are 255 x 255 pixels. The target has a size of 40 x 40 pixels and the maximum displacement 

from frame to frame is set to 4 pixels. 
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radius Radius to define which positions of the score map belongs to the 

target and which to the background. 

16 

train_ratio Ratio of training data over validation data 0.9 

 

Table 6: Description and values of training parameters. 

 

4.1.7 Tracking  

The tracking algorithm follows the description of section 3.1.4. More specifically, the 

algorithm initializes the tracker with the first frame of the video containing the target with 

its corresponding bounding box. This first frame is used as the exemplar image for the whole 

tracking. We store the initial position and size of the target and then, for each of the 

following video frames: 

1. We compute the score map for different scales of the target and upsample them using 

a bicubic interpolation. 

2. We choose the score map with the highest maximum value and we update the size 

of the target. 

3. We apply a cosine window to penalize large displacements of the target. 

4. We choose the position in the score map with the highest value and we compute the 

distance to the center. The new position of the target is computed by adding the 

displacement to the previous position. 

 

4.1.8 Evaluation metric 

We evaluate the results of the experiments by computing the Center Error for every frame 

𝑖 of a given video. The center error is defined by the Euclidean distance between the center 

of the predicted bounding box and the center of the ground truth bounding box. We then 

compute the mean of the Center Error for all the frames of the video 

𝑐𝑒𝑛𝑡𝑒𝑟_𝑒𝑟𝑟𝑜𝑟 =
1

𝑁
 ∑√(�̂�[𝑖] − 𝑥[𝑖])2 + (�̂�[𝑖] − 𝑦[𝑖])2

𝑖

 (6) 

where (�̂�, �̂�) are the Cartesian coordinates of the center of the predicted bounding box, 

(𝑥,  𝑦) are the Cartesian coordinates of the center of the real position of the target and 𝑁 is 

the total number of frames of the video. 
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4.2 Experiment 1: synthetic dataset 

This first experiment consists on using the complete synthetic dataset to train the SiamFC 

and ensure that the implementation works well when detecting a simple type of target. All 

training parameters are fixed as indicated in Table 6. 

 

 

4.2.1 Training  

We observe that since the very first epoch of the training process, the loss becomes a 𝑁𝑎𝑁 

value. 𝑁𝑎𝑁 stands for “not a number”, and is a numeric data type representing an undefined 

or unrepresentable value that appears especially in floating-points operations. An extract of 

the training output showing this issue can be found in Fig. 9. 

 

 

 

 

 

 

 

 

 

 

 

 

Although we were not able to experimentally prove the cause of this problem, we strongly 

believe that is caused because the input of the logistic loss function, i.e. the values of the 

score map, is outside of the function domain. This can be caused either by a large negative 

number in a positive pair (i.e. when the ground truth is +1) or by a large positive number in 

a negative pair (i.e. when the ground truth is -1). In both cases, evaluating the function 

results in a log(∞), which gives a 𝑁𝑎𝑁 value.  

Another potential cause could be a learning rate too high, which can cause the training to 

not converge or even diverge. However, we have empirically observed that decreasing the 

learning rate does not fix the problem. 

The use of the logistic loss during training has also another issue. The function 

implementation in Pytorch does not accept any weights as input, which means that the 

weights defined in equation (5) cannot be applied to eliminate class imbalance. To use this 

Fig. 9: Output of the training process showing the issue with 𝑁𝑎𝑁 values. 
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loss function with weights, a custom implementation should be developed, which is out of 

scope for this study. 

The solution adopted for these issues is to replace the logistic loss function with a binary 

cross entropy (BCE) loss 

𝐿(𝑦, 𝑣) =
1

|Ɗ|
∑y[i] · log 𝑥[𝑖] + (1 − 𝑦[𝑖]) · log(1 − 𝑥[𝑖])

𝑖∈Ɗ

 (7) 

where 𝑦[𝑖] ∈ {0,1} is the ground truth label. Note that these values are different from the 

ones used with the logistic loss (−1,+1), so the implementation of the ground truth mask 

must be also modified. The BCE loss is a suitable loss for binary classification tasks and is 

broadly used with siamese networks. We also noticed that most of the existing Python 

implementations of SiamFC [30], [32], [33] make use of this loss instead of the logistic loss. 

The results show that the BCE loss is more stable during training and fixes the problem with 

𝑁𝑎𝑁. However, we have not focused on mathematically demonstrating this change of 

behavior between losses. As shown in Fig. 10, the BCE loss has also inputs that are out of 

the function domain and could cause problems with 𝑁𝑎𝑁 values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can also observe in  Fig. 11 that the validation loss shows a point of inflexion in which 

it starts to increase. This is a clear sign that the model is overfitting. The best validation loss 

is achieved in epoch 7. Since the implementation of the training process allows us to save 

the state of the model at each epoch, we use the state of the model at epoch 7 to perform the 

evaluation. 

Fig. 10: Comparison between BCE and logistic loss. Red: logistic loss for 𝑦[𝑖]  =  −1; blue: logistic 

loss for  𝑦[𝑖] =  +1 ; yellow: BCE loss for 𝑦[𝑖]  =  0; green: BCE loss for 𝑦[𝑖] =  +1  
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4.2.2 Evaluation 

The performance of the tracker for this experiment has been evaluated using a synthetic 

video of 300 frames of size 255 x 255 pixels and a target of size 40 x 40 pixels. The 

maximum pixel displacement of the target between frames has been limited to 4 pixels. 

Since the size of the target is fixed for all the frame, we only search over 1 scale.  

Table 7 shows the results of the evaluation. The overall performance of the tracker is very 

good, with a Center Error of 1.7 pixels. 

 

 Center error (pixels) 

Experiment 1 1.70 

 

Table 7: Center Error for experiment 1 

 

For this experiment, we also compute a graph showing how many frames have a certain 

number of pixel displacement in both coordinates (Fig. 12). The vertical displacement 

follows a normal distribution and there is no apparent bias. On the other hand, it seems that 

there is a little bias on the horizontal tracking that causes the tracker to put the bounding 

box slightly displaced to the left of the target. Despite this bias, the predicted bounding 

boxes fit almost perfectly the target in all the video frames (Fig. 13). 

Fig. 11: Training and validation loss. 
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4.3 Experiment 2: ImageNet dataset 

This experiment consists on training the network with all the 4417 videos of the ImageNet 

dataset for object tracking in video. The values for the training parameters are the same as 

in Experiment 1. 

 

4.3.1 Training 

As shown in Fig. 14, the validation loss does converge correctly when we train the network 

using ImageNet dataset. Although the training loss is higher than in the previous 

experiment, it is also closer to the value of the validation. 

 

Fig. 12: Pixel error distribution for 𝑥 and 𝑦 coordinates. 

 

Fig. 13: Predicted bounding boxes (in green). 
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4.3.2 Evaluation 

We evaluate the performance of the ImageNet-trained tracker by using the same synthetic 

video as in experiment 1. Table 8 shows an increase in the Center Error but still an overall 

good performance.  

 

 Center error (pixels) 

Experiment 2 4.19  

 

Table 8: Center Error for experiment 2. 

 

It is important to remark that the synthetic video has a rather difference appearance if we 

compared it to the videos that conform ImageNet. Observing the results of this experiment, 

the tracker seems to be able to generalise well and to track unseen objects that have no 

similarity with those used for training. 

 

4.4 Experiment 3: tracker comparison 

The goal of this third experiment is to compare the performance of both trackers from the 

previous experiments, i.e. the one trained with the synthetic dataset and the one trained with 

ImageNet, with different videos. In particular, we select 3 synthetic videos, 3 videos 

extracted from ImageNet and 3 videos extracted from LaSOT dataset. Table 9 shows a more 

detailed description of these videos. 

 

 

Fig. 14: Training and validation loss. 
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Video 
Video 

Source 

Number of 

frames 

Dimensions 

(pixels) 
Description 

Appearanc

e changes 
Motion 

Video 1 
Synthetic 

video 
300 255 x 255 

Black square moving on 

white background 
None Low 

Video 2 
Synthetic 

video 
300 255 x 255 

Black square moving on 

white background 
None Medium 

Video 3 
Synthetic 

video 
300 255 x 255 

Black square moving on 

white background 
None High 

Video 4 ImageNet 464 1280 x 720 Still turtle Low Low 

Video 5 ImageNet 264 1280 x 720 Flying helicopter Medium Medium 

Video 6 ImageNet 419 1280 x 720 
Dog running in the 

countryside 
High High 

Video 7 LaSOT 1335 1280 x 720 Polar bear walking Low Low 

Video 8 LaSOT 3000 1280 x 720 Boat in the sea Medium Medium 

Video 9 LaSOT 2660 1280 x 720 Flying helicopter  Very high High 

 

Table 9: Details of selected videos. 

 

The videos have been selected to include: 

• A variety of object categories with different appearances. 

• Different levels of appearance changes of the target during the video, such as 

rotations, scale and illumination variations. 

• Different levels of target motion or camera movement. 

Therefore, this experiment has two main purposes. First, we want to test how well the 

trackers generalise to new unseen objects. And second, we want to evaluate how the tracker 

deal with variations in the appearances and speed of the targets. Note that the three synthetic 

videos differ in the maximum displacement of the target from frame to frame. Video 1 is 

limited to 4 pixel displacement, video 2 to 16 pixels and video 3 to 32 pixels. 

 

4.4.1 Evaluation  

Table 10 shows the result of evaluating both models using the 9 selected videos for this 

experiment. The first thing we notice is that the tracker trained on the synthetic dataset 

performs surprisingly well on some of the videos from ImageNet and LaSOT with low or 

medium appearance variations.  

This is rather an unexpected result as the synthetic dataset is relatively small and contains 

only one object category. In fact, the validation loss obtained during the training in 
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experiment 1 (Fig. 11) already indicates that the tracker did not learned to generalise to new 

unseen data. Despite this, the tracker seems to be able to perform tracking on other object 

categories under certain limitations. For example, in video 4 (ImageNet) and videos 7 and 

8 (LaSOT) the tracker achieves similar performance to the ImageNet-trained tracker.  

It is also clearly proved that appearance variations and fast motion of the targets affect the 

accuracy in tracking. To take a more in-depth look at the results, we include in Fig. 15, Fig. 

16 and Fig. 17 some snapshots of the videos and the corresponding bounding boxes 

predicted by both trackers. 

 

  Synthetic dataset tracker ImageNet tracker 

Video Video source Center error (pixels) Center error (pixels) 

Video 1 Synthetic video 3.95 4.19 

Video 2 Synthetic video 4.18 17.70 

Video 3 Synthetic video 4.34 18.72 

Video 4 ImageNet 9.40 8.63 

Video 5 ImageNet 253.90 41.45 

Video 6 ImageNet 291.33 246.37 

Video 7 LaSOT 14.38 9.54 

Video 8 LaSOT 48.90 39.75 

Video 9 LaSOT 388.94 302.06 

Table 10: Center error for Experiment 3 

 

 

We can see from the snapshots of the synthetic videos in Fig. 15 that the performance of the 

tracker trained with the synthetic dataset is excellent on the three videos. The tracker trained 

with ImageNet performs very well in the low motion video, but has some notorious bias on 

videos 2 and 3. It is important to keep in mind that maximum displacement of the target in 

video 2 and 3 is 16 and 32 pixels respectively. This is an unrealistic abrupt motion and we 

can expect some error in the results because the tracker applies a cosine window to penalize 

large displacements, assuming that the movement on a real object should be smooth and 

with no sudden changes. However, it seems that the error is due to a clear bias to the left on 

the horizontal prediction, similar to what we observed when evaluating the tracker trained 

with the synthetic dataset in experiment 1 (see Fig. 12). This bias seems to be a recurrent 

problem regardless of the dataset used during training.  
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By evaluating the trackers on ImageNet videos (Fig. 16) we observe that both trackers 

perform very well in video 4, where the target appearance is practically the same throughout 

the video and the motion is low. While the tracker trained from synthetic data performs well 

only in this first video, the tracker trained on ImageNet also achieves some good results in 

video 5, which includes some rotations and variations in the direction of the target. Video 6 

represents a complex case for object tracking where the target (the dog in frame 0) 

dissapears from the scene a second target from the same category (the dog in frame 60) 

enters the scene after some frames. If we observe the result of the ImageNet tracker, we can 

Fig. 15: Snapshots of the tracking result in synthetic videos 
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see that it losses track of the first dog and it starts following the second dog after some 

frames. The task of differentiating targets of the same category and similar appearances in 

the same scene is quite complex, and in this case the tracker is not able to discern between 

the two targets. It is an expected result since this implementation of SiamFC is not desgined 

to deal with occlusions or multiple targets in the same video. 

 

 

In the case of LaSOT (Fig. 17) both trackers achieve an overall good performance with low 

and medium appearance changes, i.e. video 7 and video 8. The last video represents a really 

complex case that includes not only changes in the target appearance, but also large-scale 

variations, changes in the background, illumination variations and fast motion. As a 

consequence, both trackers achieve poor accuracies. 

Fig. 16: Snapshots of the tracking result in ImageNet videos. 



 Siamese Networks for Visual Object Tracking 31
 
 

 

 

 

Fig. 17: Snapshots of the tracking result in LaSOT videos. 
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All the software used during the development of this thesis is open source and has not 

entailed any costs. The resources employed to carry out the experiments were provided by 

the Vienna Scientific Cluster for free. Table 11 includes an approximation of the costs of 

similar resources available on Google Cloud Platform9. 

 

GPU Price (€/h) Usage (h/week) Weeks Total 

NVIDIA Tesla K80, 12GB GDDR5 0.12 30 28 100.8 € 

 

Table 11: Cost for GPU usage on Google Cloud Platform 

 

 

The main costs of this project come from the salary of the researchers involved. We consider 

my position as an undergraduate researcher and the supervisor of the thesis as a senior 

researcher. 

 

 Amount 
Wager/hour 

(€/h) 

Dedication 

(h/week) 
Weeks Total 

Undergraduate researcher 1 10 30 28 8,400 € 

Senior researcher 1 35 2 28 1,960 € 

TOTAL 10,360 € 

 

Table 12: Costs for researcher’s salaries 

 

                                                 
9 https://cloud.google.com/compute/pricing 

Budget 
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This work gives a general overview of the current tracking challenges and learning 

approaches and performs an in-depth analysis of SiamFC. SiamFC merges the power of 

Siamese networks and supervised learning to solve the problem of arbitrary object tracking.  

Despite the simplicity of its architecture, SiamFC achieves state-of-the-art performance in 

multiple benchmarks. On the one hand, Siamese networks are the simplest networks for 

similarity problems and they are an excellent starting point to consider neural networks for 

object tracking purposes. These networks provide richer image features that affect directly 

the accuracy of the tracker. On the other hand, the use of deep learning techniques for 

tracking has grown since 2015 as it represents a new promising field of research. Deep 

learning has been proved to perform well in most of the problems it has been applied to. In 

the case of object tracking, it seems that this approach uses the available data more 

efficiently to solve the problem of tracking arbitrary objects in arbitrary scenes. 

After performing the experiments, we conclude that SiamFC is really able to extend its 

tracking capabilities to a wide variety of object categories. We observe that the tracker 

trained with the ImageNet dataset has an overall better performance than the tracker trained 

with the synthetic dataset. This proves that SiamFC actually benefits from large datasets 

that contain different object categories. An interesting thing for further investigation could 

be to train SiamFC with some recently proposed datasets such as LaSOT or GOT-10K [16] 

and to see whether it benefits from their larger number of frames and object categories. 

One of the big challenges that tracking has to deal with is the appearance changes of the 

target during the video due to rotations, scale changes, camera movement, illumination 

variations and noise. Experiments show that SiamFC is no exception and that the tracking 

performance under these conditions is sometimes poor. A potential improvement could be 

to take the target’s appearance in the previous frame as the reference image instead of using 

the initial appearance for the whole video. This could have a negative impact on the speed 

of the tracker since it would need to compute the feature map of the reference image for 

every frame, but it also could help to better track targets with a high level of appearance 

variations. 

SiamFC is a promising start of a new research topic in object tracking. The joint of deep 

convolutional networks and the increasing number of labelled data is, with no doubt, a major 

opportunity to finally solve the complex problem of arbitrary object tracking. 

 

 

Conclusions and future work 
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