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Abstract 

Nowadays medical evaluation requires in each further step improvements in all the areas 
concerning engineering and materials. This applies to the application of electromyography 
and in specific to surface electromyography which is being used every day to evaluate 
muscular and neuromuscular diseases. In this field electrodes are used as interfaces to 
acquire the biopotential signals generated by muscles. The materials usually used in these 
electrodes are expensive. This fact can be a limitation factor for the applications that use a 
considerable number of them such as High Density surface electromyography. 
 
This thesis aims to evaluate using tests, parameters extraction, results analysis and 
performance comparison a set of different electrode arrays in order to evaluate the 
suitability of low cost material specifically stainless steel to perform the same tasks as other 
materials used in medical applications such silver or silver chloride electrodes. 
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1. Introduction 

 

Motivation 

 

In the context of medical diagnosis, muscular afflictions and illnesses are a common 

problem regarding the locomotor system. Muscular disorders, nerve disorders and 

other problems affecting the connection between nerves and muscles including as 

examples muscular dystrophy, myasthenia gravis, radiculopathies or carpal tunnel 

syndrome need to be diagnosed (Danielle Moores and Erica Cirino 2016). 

The electromyographic signal (EMG) represents the recording of the electric 

potential generated by the muscle fiber membrane depolarization during the 

contraction of a muscle (Merletti and Farina 2016). Muscles are consisted of muscle 

fibers which are innervated and controlled by neurons. Muscle fibers are cells with 

stable difference of intracellular and extracellular potential in resting state. During 

the contraction, neural signal triggers the depolarization of a muscle fiber, which 

then spreads along muscle the fiber and causes the contraction. This depolarization 

is called muscle fiber action potential and can be measured as a difference in 

potential between two electrodes. To maximize the amplitude of recorded signal, 

the electrodes should be positioned along the direction of the muscle fiber. Each 

neuron triggers multiple muscle fibers simultaneously. Therefore, a motor neuron 

and all muscle fibers that it innervates are called muscle unit, whereas the recorded 

depolarization signal is called muscle unit action potential (MUAP).  

 

 

Figure 1: Two motor units, motor neurons and muscular fibers (Strang 2013) 

In a resting state, there is an approximate constant voltage of -90 mV between the 

inside and the outside of the muscle fiber. This potential is called Rest Membrane 

Potential (RMP). The depolarization of a muscular fiber turns the RMP to 

approximately +10 mV. The spread of this depolarization is called fiber action 

potential. Conduction velocity refers to the velocity at which this action potential 

moves over the membrane. 

This parameter helps in the measurement of fatigue of the muscle as it has an 

inverse relationship with it. 

Muscle fatigue can be defined as a loss of the ability to produce force with the 

muscle. It is the result of prolonged or repetitive works (DeLuca 1984). 
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There are two main types of electromyographic measurements: the intramuscular 

EMG and the surface EMG (sEMG). 

The intramuscular EMG consists of introducing an electrode by means of a needle 

into the body. It is an invasive measuring method which allows the positioning of 

the recording electrodes in very close proximity of the muscle fibers. This type of 

recording ensures a very selective recording of muscle fibers in close proximity of 

electrodes and is characterized by high signal to noise ratio, but will not be 

considered in this thesis. 

Surface electromyography (sEMG), on the other hand is a technique that even 

though it shares common objective with electromyography, it uses a different 

approach. In surface electromyography, the electrode is located outside of the body 

and over the skin. The signal acquired this way represents the recording of many 

different muscular fibers. The characteristics of recorded EMG signal at a given 

moment depends on the properties of muscle fibers, number of active muscle units 

and their firing frequency, distance and impedance between the muscle unit and 

electrodes, and orientation of electrodes with respect to muscle fibers. Therefore, 

EMG can mathematically be modeled as a superposition of recorded MUAPs at a 

given time, as illustrated in the Figure 2. 

 

 

Figure 2: EMG Mathematical model (Basmajian and De Luca 1985) 

 

The following equation describes the generation of sEMG signal: 

𝑠𝐸𝑀𝐺(𝑡) =  ∑ ∑ 𝑀𝑈𝐴𝑃𝑖(𝑡)

+∞

𝑗= −∞

𝑁

𝑖=1

 ∙ 𝛿(𝑡 − 𝑡𝑖,𝑗) + 𝑛(𝑡) 

 

, where N is the number of motor units, MUAPi(t) is the waveform of action potential 

of ith motor unit as recorded at the electrodes, ti,j is the time of firing of ith motor 

neuron, and n(t) describes the additive noise. 

The sEMG signals can be acquired using both monopolar and bipolar (also known 

as single differential) configurations. Monopolar approach records the actual 

surface potential with respect to the reference electrode, which is not located over 

the muscle of interest. The drawback is that it also records interference sources and 
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other muscle activity sources that are not meant to be recorded, phenomenon 

known as crosstalk. On the other hand, the single differential configuration 

measures the difference of potential between two closely spaced electrodes and is 

able to reduce the interference as it appears in similar amplitude on consecutive 

electrodes. The level of attenuation of the interference depends on CMRR 

(Common mode rejection ratio), which is a parameter of the amplifier, and similarity 

of the two electrode-skin impedances. The drawbacks are the reduction in the 

detection volume and the attenuation of the deeper potential contributions of the 

muscle (Cavalcanti Garcia and Vieira 2011). 

With technological development in the field of microelectronics and increase of 

transistor density in silicon, recently it became possible to record high number of 

EMG channels simultaneously. These advancements introduced multichannel 

EMG recording. By collocating multiple recording electrodes over the skin covering 

the muscle, it is possible to extract more precise and valuable information about the 

neuromuscular activity. There are two types of multichannel EMG sensing arrays 

with respect to the pattern in which electrodes are located in the array: linear 

electrode arrays, and high-density EMG electrode arrays. In linear electrode arrays, 

the electrodes are collocated in a single line (normally with inter-electrode distance 

from 0.5 cm to 2 cm) and during the recording the array is positioned along the 

direction of muscle fibers. This configuration enables monitoring of propagation of 

MUAPs, calculating the conduction velocity of muscle fibers, and localization of 

innervation zone, i.e., the location in the muscle where neuron innervates muscle 

fibers (Ashley‐ Ross 2005). All these parameters have valuable clinical applications. 

Even more information can be extracted by recording high-density surface 

electromyography (HD-sEMG). By positioning the electrodes in two-dimensional 

grid it is possible to extract the information on spatial distribution of myoelectric 

activity over the muscle surface, and therefore the distribution of active motor units 

within the muscle. It was already proven that spatial distribution of EMG activity 

changes in dependence of exerted force, joint angle, and fatigue (Staudenmann et 

al. 2013; Vieira, Merletti, and Mesin 2010). 

Moreover, it was demonstrated that recorded HD-EMG signal can be decomposed 

into individual firings of muscle units, which is proportional to neural train that 

controls the muscle (Figure 1). That is, by using the decomposition algorithm, the 

neural code can be extracted non-invasively from EMG signal (Holobar et al. 2010; 

Holobar and Zazula 2007). 

 

The historical evolution of EMG starts in 18th century and is closely associated with 

the discovery of electricity. It is not until 20th century that the evolution in technology 

allowed the precise amplification and recording of biopotentials. The first steps were 

done by physiologists, later on neurologists contributed by linking 

electrophysiological findings with clinical and pathological significance. The World 

War II period helped the progress significantly due the large amount of patients with 

nerve injuries (Kazamel and Warren 2017). Nowadays, EMG devices are used daily 

in rehabilitation centers and hospitals for therapy and rehabilitation, in control of 

exoskeletons (Vaca Benitez et al. 2013), prosthetic (Li, Schultz, and Kuiken 2010) 

and orthotic devices, control of rehabilitation robots (Marchal-Crespo and 
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Reinkensmeyer 2009) and virtual reality systems, but also in gamification (Van Dijk 

et al. 2016), leisure, and sports (Verikas et al. 2016).  

 

Usually the interface to record the signals are pairs of electrodes in bipolar 

configuration although other interfaces like arrays of electrodes may be used as 

well in high density surface electromyography (HD-sEMG). The common materials 

of the electrodes are silver/silver chloride (Ag/AgCl), silver (Ag) and gold (Au). 

The first ones (Ag/AgCl) are preferred as they are almost non-polarizable and that 

makes them less sensitive to motion artifact besides provide a highly stable 

interface with the skin when electrolyte solution is applied between the electrode 

and the skin (Cavalcanti Garcia and Vieira 2011). 

These materials are expensive and nowadays researchers are trying to find and 

test new materials with a lower associated cost. 

In this thesis, three type of electrodes are tested and compared with focus on their 

performance: 

 Brass electrodes with silver-plated surface (referred to as “silver” in the rest 

of the thesis) 

 Silver / silver chloride electrodes 

 Medical grade stainless steel electrodes 

 

The 2D recording arrays were manufactured using these electrodes and HD-EMG 

was recorded on biceps brachii muscle. From the recorded signals conduction 

velocity, fatigue indexes, and signal-to-noise ratio were calculated and analyzed in 

terms of repeatability and quality of estimation. 
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2. Objectives 

2.1. Main objective 

 

This thesis addresses the problem of finding a low-cost and easy-to-use alternative 

for electrode material in HD-EMG sensing array. The objective of the thesis is to 

compare and evaluate three electrode arrays used for EMG recording without 

application of conductive gel in terms of EMG signal quality parameters and 

robustness of extracted physiological parameters. 

 

2.2. Specific objective 

 

Considering the main objective, a set of specific objectives is defined: 

 

- To develop three electrode arrays for HD-EMG recording. This includes 1) 

selecting the materials for three electrode arrays, 2) manufacturing the arrays, 

and 3) verifying that signals can be effectively acquired and recorded. 

- To evaluate, adjust, and select the appropriate devices of the acquisition system 

from several available options 

- To develop and prepare a protocol for recording the EMG signal database 

- To record the signal database in a set of subjects 

- To process the recorded signals and extract descriptive measures of signal 

quality 

- To analyze and compare the electrode arrays in terms of the extracted 

measures 
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3. Methodology 

3.1. Electrode arrays 

3.1.1. Materials 

The first step to develop the arrays was to choose the materials that were going to 

be evaluated. The selected ones were: 

- Silver-plated brass electrode, diameter: 6 mm 

 

 

Figure 3: Silver electrode 

- Silver / silver chloride, diameter: 4 mm 

 

 

Figure 4: Silver chloride electrode 

- Stainless steel, diameter: 6mm 

 

 

Figure 5: Stainless steel electrode 
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The first two are common interface materials in electrode manufacturing due to the 

electrical properties. The last one is the material that had to be tested with respect 

to the others. The selection in this case was motivated by the significantly lower 

price with respect the other two electrode materials. 

 

3.1.2. The pattern 

Several patterns or distribution of electrodes can be used to develop an array. Since 

there are some constraints the possible solutions are restricted. The constraints are 

the following ones: 

- Fixed inter-electrode distance (IED) is needed. This constraint allows us later to 

compute parameters as the conduction velocity (CV). 

- A maximum and minimum muscle area that the prototype has to cover. 

- The electrodes should not overlap, otherwise the connections could short. 

- The electrodes should have an area big enough to get a minimum quality level 

of signal. There is a trade-off between the third constraint and this one. 

 

 

All these constraints led us to a possible solution that is a squared pattern with 

equispaced electrodes in it. 

The selected dimension is 5 x 4 electrodes with an IED of 10 mm 

 

 

 

Figure 6: Array pattern 
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3.1.3. Electrode substrate 

The substrate in which the electrodes needed to be embedded had to be flexible to 

accommodate different muscle contours, robust to allow the device to be used 

multiple times, breathable to minimize perspiration which can change electrode-skin 

impedance and even short-circuit adjacent electrodes, non-stretchable to keep the 

inter-electrode distance between electrodes fixed. As a straightforward and 

functional solution we used a cotton fabric.  

 

3.1.4. Electrical interface 

Each array was connected through wires to an interface that was later connected 

to the desktop amplifier. The connections were done by soldering. In the case of 

stainless steel, the surface of the electrodes was treated with hydrochloric acid prior 

to soldering. 

The connectors of the desktop amplifier used during the recording had a unique 

order of EMG channels. Therefore, special attention was needed in order to match 

the exact pinout of the connectors in the electrode array prototypes. 

 

 

 

 

 

Figure 7: Electrical interface 
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Figure 8: Adapter and electrode wire 

 

Figure 9: Desktop Amplifier cable with connector 

  

 

Figure 10: Adaptor / connector junction of a desktop 
amplifier cable 

 

Figure 11: Electrode soldered adaptor 

 

 

 

3.1.5. Prototypes 

To attach the array to subject’s body, a strap was needed. The strap was done by sewing 

velcro bands to the fabric. The length should accommodate a variety of diameters so the 

extreme values must assure a good positioning of the array in all subjects. 

During the first tests with silver chloride array prototype (Figure 14) it was noticed that the 

silver chloride array due to the electrodes and the final set-up up would not last and resist 

enough time. Although some results were acquired and processed, the array was 

discarded and another array with embedded silver-plated eyelets, previously developed in 

the BIOART research group (the group where this thesis was carried out), was used (Figure 

15). 
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Figure 12: Silver array prototype 

 

 

 

Figure 13: Stainless steel prototype 

 

Figure 14: Silver chloride array prototype 
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Figure 15: Silver array from BIOART group 

 

3.2. Recording protocol 

 

3.2.1. Equipment 

The equipment used during the recording was divided in two groups. The first is the 

equipment regarding the acquisition system and the environment used to collect the 

data. 

1. Acquisition system, tools and computer 

The initial idea was to use a wireless multichannel amplifier developed previously 

in the BIOART lab. The amplifier was integrated in a box together with the 

necessary circuitry, battery and an implemented firmware to communicate with the 

PC using a Wi-Fi antenna. 

 

 

Figure 16: Wireless multichannel amplifier 
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The input channels to this amplifier were HDMI connectors. In order to be able to 

connect the arrays an adaptor was designed and manufactured. 

 

 

Figure 17: HDMI amplifier adaptor 

 

By doing the first attempts to record signal with the PC, it was discovered that parts 

of the received signal were missing. By doing additional tests, the problem was 

associated with antenna and the casing of the device. As it was not possible to 

assure the proper function of the device, this recording option was discarded.  

 

The proposed alternative option was the EMG desktop amplifier with 128 channels 

available in the lab.  

 

  

Figure 18: EMG desktop amplifier 

 

The device is intended for multichannel surface electromyography amplification. It 

allows simultaneous acquisition, amplification, filtering and recording up to 128 

channels with a sampling frequency of 2048 Hz and to register single differential 

channels together with the software OT Biolab. Each of the 8 sockets can manage 

inputs up to 16 channels coming from a cable connected to the electrodes. 

Regarding the security, this device has a medical grade electrical insulation of all 
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the circuitry connected to the subject. The device is a research instrument for 

clinical purposes and not available for general use.  

 

2. Tools used in each exercise of the protocol 

During the exercise, the following equipment was used: rope, a dynamometer, a 

timer and a chair. 

Moreover, the following auxiliary tools were also used: gauze, gel, isopropyl 

alcohol and water to clean and prepare the skin, step pipette and electrical ground 

wristband. 

 

 

Figure 19: Tools used in exercise recording 

 

 

3.2.2. Subjects 

The subjects were asked to voluntarily contribute to this work and were recruited 

both from the same group and other groups from Escola Tècnica Superior 

d’Enginyeria Industrial de Barcelona (ETSEIB). In order to accomplish with the 

confidential aspects, the anonymity shall be preserved referring to them as subjects 

or subject # for individual approach. In total there were nine people, in the range 

between 21 and 35 years old, eight male and one female. 

3.2.3. Protocol 

The protocol that has been designed consists of four exercises. Between each 

exercise a rest time is defined also. 

For each array the same set of four exercises was carried out. 

The sequence in which each array is recorded in each subject was randomized to 

avoid, correlations derived from the same order 
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First, the skin needed to be prepared. There are different ways to approach this 

cleaning (Merletti and Farina 2016): 

1. No treatment 

2. Rubbing with ethyl alcohol 

3. Rubbing with abrasive paste 

4. Stripping with adhesive tape 

5. Washing with soap (30 sec) and rinsing 

 

The second option was used because of the improvement with respect to not 

treating the skin, the facility to acquire and apply the material and the lack of 

materials as abrasive paste. 

First step was to clean the area where the array was going to be put on with a gaze 

and alcohol to remove oily substances. 

As the alcohol leaves the skin very dry and does not improve its conductance a 

second step with a wet gaze was applied, that helped to reduce the electrode-skin 

impedance (Cavalcanti Garcia and Vieira 2011). 

 

Before each exercise started, a blank time of 5 seconds with the setup prepared to 

begin but with no contraction of the muscle was recorded in order to acquire signal 

in which all the sources except the muscular activity itself were recorded - mainly 

noise and interferences. Later, these recordings would help to compute the SNR of 

the channels. 

 

The exercise consists of an isometric contraction of the biceps brachii during a 

specified time. This is done by pulling a rope connected to a dynamometer to 

measure the exerted force while an assistant provided a verbal feedback to the 

subject. During the exercise, the force had to be kept as constant as possible to 

ensure isometric contraction. 

In each consecutive exercise, a fraction of the maximal voluntary contraction (MVC) 

was defined as a target force. The first exercise set the reference for the rest of 

exercises by applying the maximum voluntary contraction and hence the maximum 

force.  

 

i. Exercise 1 

The subject was supposed to develop the 100% of its MVC and was 

important that this applied force was kept constant until the end of a 

specified period of 10 seconds. The force was monitored using the 

dynamometer. 
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ii. Exercise 2 

This exercise consisted in applying the 10% MVC. The reference was used 

to estimate the corresponding force by computing the weight to pull. For 

example, if 20 kg were pulled in the first exercise, in the second exercise the 

subject was supposed to pull 2 kg (10%). 

 

iii. Exercise 3 

The third exercise consisted in apply the 30% of MVC. The weight to pull 

was computed in the same manner as in exercise 2. 

 

iv. Exercise 4 

The last exercise was 50% of the MVC and, contrary to the rest of the 

exercises, it lasted for 2 minutes or until subject could not maintain the 

constant level of force further. During this exercise, muscle fatigue 

developed. 

 

 

 

The scheme for the exercises is summarized in the following table. 

 

Total time Action Notes Time 

 Skin preparation   

00:00 Exercise 1 100% MVC 10 s + 5 s 

00:15 Rest  2 min 

02:15 Exercise 2 10% MVC 10 s + 5 s 

02:30 Rest  1 min 

03:15 Exercise 3 30% MVC 10 s + 5 s 

03:30 Rest  2 min 

05:30 Exercise 4 50% MVC Up to 2 min + 5s 

 End   

 

Table 1: Exercise set 
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3.2.4. Set up 

 

The purpose of the posture shown in (Figure 20) is to help the subject to activate just the 

biceps brachii. 

The set up used to record each exercise is shown. As it can be seen, the rope had a 

dynamometer in one side to measure the force applied and a hand taken in the other side. 

The elbow had to keep contact with a surface. 

 

 

Figure 20: Exercise Set up 

 

Each subject was instructed to maintain the same posture during the contraction and to 

perform the exercise by activating only biceps brachii muscle. 

The arm and the position of the array was the same during all the exercises.  

While the subject sat and the skin was being prepared, an assistant was taking care to 

control the chronometer in order to meet the times and rests for each exercise, as defined 

in table 1. 
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3.3. Signal Processing 

 

Before describing the processing, itself, relevant information shall be exposed: 

- 20 electrodes were used in each array. 

- The signals were acquired in single differential mode; differentiation was done 

at the hardware level. The final number of channels then (using 20 electrodes) 

is 16 and this is due to the configuration in four columns and five rows each 

(Figure 21). When positioned to the body, the columns were aligned with the 

propagation of muscle unit action potentials. 

There were 5 electrodes in each column (same color in Figure 21). In each 

column (propagation direction), differential signals between consecutive 

electrodes were measured. The signals acquired at the PC level were: 

o Starting with the first column (red) the differential signals between the 

following electrodes were recorded, 1 - 2, 2 - 3, 3 - 4, 4 – 5. Although the 

differential signal between last electrode (5) in first column (red) and first 

electrode (1) in second column (blue) 5 – 1 was also acquired, this one 

was discarded as it does not preserve the IED. Four differential signals 

were acquired in each of four columns, having a total of 16 differential 

signals. 

 

 

Figure 21: Array pattern 

 

- The sampling frequency of the system was 2048 samples/second. 

- The software to gather the signals was OT BioLab by OT Bioeletronica linked 

with the acquisition hardware. 

- The software used to process the signals was Matlab by Mathworks. 
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3.3.1. Preprocessing 

 

Before starting to extract measures the signal was filtered: 

- Band pass filtering: Signals were filtered using a zero-phase (filtfilt matlab 

function) flat frequency response, 3rd order Butterworth filter with cut-off 

frequencies of 15 Hz and 350 Hz. This is approximately the bandwidth range of 

EMG reference. 

- Notch filtering: 50 Hz is filtered due to its large contribution of power-line 

interference. Despite some authors (Luca 2002) (Day 2004) recommend not to 

filter this frequency because it is in the EMG bandwidth, in most of the signals 

processed in this work the filter is applied, the third harmonic, 150 Hz, is also 

filtered.  The filters applied have a central frequency of 50 and 150 Hz 

respectively with a bandwidth of 2 Hz. The functions used to implement them 

are iirnotch Matlab function to calculate the coefficients and filtfilt function to 

apply them to the data. 

 

 

 

3.3.2. Extraction of EMG measures 

 

In this section, the parameters and implemented algorithms to process the samples are 

explained. 

 

The parameters computed are:  

 

SNR (dB): Signal to noise ratio. This parameter is computed for each channel and 

measures the ratio between signal power and noise power. This parameter when 

measured experimentally is done under two assumptions: 

-Power measurement of noise assumes no useful signal is in that measurement, and the 

measurement of signal power assumes useful signal is much larger than the noise 

contribution. To depict and explain better the parameter a signal recording divided in parts 

follows: 
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Figure 22: Exercise defined parts 

 

The SNR compares the power of the signal gathered in the first part (noise power) and the 

power of the signal gathered in the third part (useful signal).  

 

𝑆𝑁𝑅𝑑𝐵 = 10 · log
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
 

 

Considerations in this part: 

- We avoid the use of transitory parts (2nd and 4th part) as the power is not 

constant. 

- We have to take into account that as we have used the assumption of a much 

higher contribution of the useful signal in the power estimation of useful signal 

(3rd part), the confidence of this measure has a dependency on the exercise 

done (percentage of MVC). Different percentages of MVC give different 

amplitudes and different powers comparing the same signal part among 

exercises. 

- As it is described in (Merletti and Farina 2016), when the electrode is placed 

over the skin the contact makes at some point the skin sweat. This sweating 

has an impact on the electrode skin impedance decreasing it and helping 

therefore to couple the electrode. 

R: Cross Correlation. This parameter measures the degree of similarity of two time signals. 

related are in each time step. 

 

𝑅𝑥𝑦(𝜏) = ∫ 𝑥(𝑡 + 𝜏)𝑦∗(𝑡)𝑑𝑡
∞

−∞
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This measure between two signals allows: 

- Quantify how related are two signals, correlation coefficient (magnitude) 

- Make out if its positive or negative relation, correlation coefficient (sign) 

- Search for the highest correlation (peak in cross correlation function) between 

this two signals when shifting in time. 

- If the correlation coefficient is high enough understand the time associated to 

this peak as a time shift (τ) between alike time signals 

 

The correlation is computed between each pair of consecutive differential signals in one 

column of the array. 

 

At this point is important to highlight the way the signal is going to be analyzed. 

First in each array there are 20 electrodes divided in columns of 5 electrodes, so 4 single 

differential signals per column, a total of 16 signals.  

The following procedure is explained focusing on just one single differential signal but is 

applied to all of them. 

1. The signal is windowed in segments of 500 ms, first segment comprises first 500 ms. 

2. The window is shifted for a step of 250 ms comprising from time 250 ms to 750 ms, 

500 ms in total but overlapping the first segment a 50% of the samples. 

3. The window goes forward 250 ms more so third segment goes from 500 ms to 1000 

ms, 500 ms in total and overlapping a 50% with the second segment, 

4. From this point, step 2 is repeated until the end of the recording is reached 

 

Figure 23: Windowing and segments processing 

M = Length of the Windows = 500 ms 

D = Step of the window = 250 ms 
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CV (m/s): Conduction Velocity. Physical parameter that reflects the propagation velocity of 

the depolarization potential over the membrane in the muscle fiber.  

 

𝐶𝑉 =  
𝐼𝐸𝐷

𝑃ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡
 

 

IED represents the inter-electrode distance and measures 10 mm, whereas Phase shift 

represents the time shift existing among the two differential signals used to derive this 

parameter. As explained before if the maximum of the correlation function is high enough 

indicates a great similarity between signals and the time associated to the moment at which 

the signals are more alike understood as a time shift. This time shift determines how much 

time the signal needs to propagate from location of one electrode to the other (separated 

by IED), and describes the conduction velocity (CV). As the system is discrete, the time 

shift is given in number of samples instead of actual time. This values are acquired from 

the cross-correlation function. 

 

 

MNF (Hz): Mean Frequency. MNF is a frequency-domain feature that is usually used to 

assess muscle fatigue. It is defined by the average frequency calculated by summing the 

products of EMG power spectrum bins and dividing by the sum of the power spectrum bins. 

(Limsakul et al. 2012) 

 

𝑀𝑁𝐹 =  ∑ 𝑓𝑗 · 𝑃𝑗

𝑀

𝑗=1

∑ 𝑃𝑗

𝑀

𝑗=1

⁄  

 

𝑓𝑗: frequency value of EMG power spectrum bin j. 

𝑃𝑗: EMG power spectrum at the frequency bin j. 

𝑀: Number of frequency bins. 

 

 

MDF(Hz): Median Frequency. MDF is a frequency-domain feature that is also used to 

assess muscle fatigue. It is defined as the frequency at which the EMG power spectrum is 

divided in two regions with the equal power at both sides, the frequency that splits the 

power spectrum in two regions with same area. (Asghari Oskoei, Hu, and Gan 2009) 

 

 ∑ 𝑃𝑗 = ∑ 𝑃𝑗 =  
1

2
∑ 𝑃𝑗  

𝑀

𝑗=1

𝑀

𝑀𝐷𝐹

 

𝑀𝐷𝐹

𝑗=1
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Because of the skewness of the EMG power spectrum the MNF is always slightly higher 

than MDF.(Knaflitz, Merletti, and De Luca 2017) 

The evaluation and appreciation of muscle fatigue using surface EMG comprises several 

techniques as it can be RMS or averaged instantaneous frequency but MNF and MDF 

parameters have been accepted as one of the best solutions due the fact that a muscle 

fatigue manifests as a shift of the EMG spectrum towards the lower frequencies. (Petrofsky, 

Glaser, and Phillips 1982) 

 

The parameters MNF and MDF were calculated from the power spectrum estimate of EMG 

signal. The method used for this estimation was Welch-Bartlett method due to reduction of 

the variance by averaging periodograms of the time signal segments (Manolakis, Ingle, 

and Kogon 2000). 

 

At this point the processing of the signal is approached. Starting by the SNR the parameters 

estimation algorithms are explained and discussed, whereas the algorithm implementation 

can be found in the appendix. 

 

 

Signal to Noise Ratio (SNR) 

 

Even though a time is defined for each exercise, the recordings were performed manually 

and therefore differences exist in the starting time of the muscle activation in each recording. 

That is why an automated way to set the starting time of muscle activation is not reliable. 

Instead, the following steps were performed: 

- Every recording was visually inspected 

- Starting time of muscle activation and ending time (if existing) were observed 

- The times were written in a text file associated to each recording 

- The text file was used later in the Matlab script to process the SNR together with 

the rest of parameters 

These times correspond in (Figure 22) as the transients. (2nd and 4th parts) In order to avoid 

parts with non-constant power, a margin of 512 samples corresponding to 250 ms is kept 

when computing both power of noise and power of signal. 
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Conduction Velocity (CV) 

 

For the CV estimation, the segments of two consecutive channels were used. With the 

computation of this parameter, a problem appeared. As the CV makes use of the phase 

shift between this two segments, the sampling frequency limited the resolution.  

The conduction velocity range of human muscles is between 3 m/s and 5 m/s approximately 

(Merletti and Farina 2016). With an IED of 10 mm and a sampling frequency of 2048 

samples/second the result is a highly quantized CV and this makes extremely difficult to 

detect trends or slopes in the CV function.  

As increase of the sampling frequency needs to be considerable, a solution was to once 

the correlation was computed it was interpolated with the purpose to add samples and then 

increase the resolution of the CV. The equation that explains considers the interpolation 

factor follows: 

 

𝐶𝑉 =  
𝐼𝐸𝐷

𝑃ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡
𝐼𝐹 ·⁄

 

 

𝐼𝐹: Interpolation factor 

𝐹𝑠: Sampling Frequency 

The phase shift in a discrete signal is given by a number of samples (integer quantity). 

When the signal is interpolated the number of samples is increased by the interpolation 

factor and the phase shift accordingly. Therefore, to represent a shift in time the phase shift 

needs to be normalized (divided) by the interpolation factor.  

As a result, in the equation of CV, the denominator is a fraction instead of an integer. The 

resolution increases with the interpolation factor but there is a limit in the amount of samples 

that can be interpolated in a reliable way. The other solution to increase further more the 

resolution (reduce the quantization effect in CV, not temporal resolution) would be 

increasing the sampling frequency.  

It can be noticed that finer changes in the denominator turn into finer changes (less 

quantized) in the CV.  

 

 

Mean Frequency (MNF) 

 

The computation of the MNF was an exact translation of the equation that defines the 

parameter performed individually to each channel. Starting from the estimated EMG 

spectrum the addition of the multiplication of the frequency bins by the power contained in 

each bin having as a result this spectral descriptor. 
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Median Frequency (MDF) 

For the computation of the MDF, the following procedure was used: 

 Sum all the bins of the power spectrum to know the total value of the spectrum  

𝑃𝑠𝑢𝑚 

 Compute the cumulative function of the bins of the power spectrum  𝑃𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 

 Find the first frequency such that: 

𝑃𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 ≥  
𝑃𝑠𝑢𝑚

2
  

 The frequency bin that by addition to the cumulative function accomplishes the 

inequality is the estimated median frequency MDF. 
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4. Results and Discussion  

In this section first the results and then the discussion is going to be presented. 

In order to do it a list of meaningful ways to represent data follows: 

 

- Time signals  

- Signal Spectra 

- Bivariate Analysis  

- Intensity comparison 

- Boxplots 

- Regression coefficients 

 

 

While performing the tests as it has been explained earlier in this work the third electrode 

array broke and another one from BIOART group was used. This array appears in the 

results with the name “reference”, since it was previously used in various successful 

research projects by the group. 

The results and discussion section is focused and mainly emphasizes the result with the 

silver array and stainless steel array, although the same tests were performed with the 

BIOART group array using gel and not using gel as well. 

 

 

4.1. Time signals 

 

In this section, segments of time signal are presented. These figures show the best 

representative time segments those that have a higher correlation coefficient. The purpose 

of this time signal representations is to observe the quality of the signals by visual 

inspection. Some points to consider are: 

 

- The correct visualization of the channels depicted 

- The observation of the motor unit action potential (MUAP) 

- The propagation of the MUAP along channels and time 

- Check that high correlations are not due to power line couplings 

- Check for non-expected behavior of the segments considered 

 

In each figure are represented first a title with the subject who it belongs to if it was a dry 

test (not using gel) or with gel applied previously to the electrodes (some recordings were 

performed with gel in the case of the silver array from BIOART group to look for differences 

in the results of that specific array the focus, however, is in the dry results between silver 

array prototype and stainless steel prototype), the name of the material, the percentage of 

maximal voluntary contraction (MVC), and the column of the array which this signal was 

recorded from (1 to 4).  
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The main upper graph shows 200 ms of the four differential signals recorded from one 

column of the array. The selection criterion of the column was the higher averaged 

correlation coefficient among all the columns. The averaged correlation coefficient was 

calculated averaging the three correlation coefficients resulting from each pair of 

consecutive differential signals in a column, this correlation coefficient appears on top of 

the graph. 

Below the single differential graph, it is depicted a double differential (differential signal of 

two differential signals) graph corresponding to the ordered differentiation of the signals in 

the single differential graph, i.e., double differential signals in the same time window. On 

top of this one there are the results of the estimation of CV using double differential signals, 

as there are three double differential signals two CVs are estimated, they are represented 

in (m/s). 

There are two figures per material and MVC percentage, not taking into account the 100% 

MVC. 

 

4.1.1. Time series graphs,  

Material: Silver, 50% MVC 

 

Figure 24: Time signal 1, Silver, 50% MVC 
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Figure 25: Time signal 2, Silver, 50% MVC 

Material: Silver, 30% MVC 

 

 

Figure 26: Time signal 3, Silver, 30% MVC 

 



 

 37 

 

Figure 27: Time signal 4, Silver, 30% MVC 

Material: Silver, 10% MVC 

 

 

Figure 28: Time signal 5, Silver, 10% MVC 
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Figure 29: Time signal 6, Silver, 10% MVC 

Material: Stainless steel, 50% MVC 

 

 

Figure 30: Time signal 7, Stainless steel, 50% MVC 
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Figure 31: Time signal 8, Stainless steel, 50% MVC 

Material: Stainless steel, 30% MVC 

 

 

Figure 32: Time signal 9, Stainless steel, 30% MVC 
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Figure 33: Time signal 10, Stainless steel, 30% MVC 

Material: Stainless steel, 10% MVC 

 

 

Figure 34: Time signal 11, Stainless steel, 10% MVC 
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Figure 35: Time signal 12, Stainless steel, 10% MVC 

 

 

4.1.2. Time series results 

 

The results show in most cases clean signals both in single differential, SD, (upper window) 

and double differential, DD, (lower window), the motor unit action potential (MUAP) and its 

propagation along the channels can be visualized in silver and in stainless steel electrode 

arrays. The correlation coefficients, computed over the SD channels, are high and even 

though this could be the result of coupled noise in channels it can be noticed by visual 

inspection that noise does not have an impacting contribution in the signal quality. 

The estimation of the conduction velocity, computed from the DD signals pairs, shows in 

almost all cases similar values, despite this result does not mean by itself a conclusive 

result (the estimation of the value could be wrong), it is a good result as the conduction 

velocities are expected to be similar in close areas (columns of the array) and the results 

acquired are inside the expected range. 
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4.2. Signal Spectra 

 

The examples of both silver and stainless steel are depicted in each of the different MVC 

cases. In each graph the 16 single differential signals are represented in the frequency 

domain for a time segment of 500 ms. Although the sampling frequency was 2048 

samples/second the resulting spectra has been cut to a 250 Hz bandwidth as little power 

was located in higher frequencies. 

The method used to calculate the spectrum was Welch’s method. This method splits the 

signal into sub segments that are windowed. The periodogram is calculated for each sub 

segment, afterwards the resulting periodograms are averaged to reduce the variance. As 

an example the 500 ms segment would be divided into smaller segments (sub segments) 

in each of this sub segments periodogram is calculated, then each of this periodograms 

are averaged keeping the signal spectral components (considered constant during along 

the sub segment) and reducing the variance. 

 

 

4.2.1. Spectra graphs 

Each channel spectrum is represented in a color in the graph. 

50% MVC Spectrum 

 

- Silver 

 

Figure 36: Spectrum Silver 50% MVC 
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- Stainless steel 

 

Figure 37: Spectrum Stainless steel 50% MVC 

30% MVC Spectrum 

 

- Silver 

 

Figure 38: Spectrum Silver 30% MVC 
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- Stainless steel 

 

Figure 39: Spectrum Stainless steel 30% MVC 

10% MVC Spectrum 

 

- Silver 

 

Figure 40: Spectrum Silver 10% MVC 
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- Stainless steel 

 

Figure 41: Spectrum Stainless steel 10% MVC 

 

4.2.2. Spectra graphs, separate channels  

In this section the four first channels of each array have been plotted separately in order to 

observe better the shapes of some of them in each situation. The plots are from different 

subjects in respect the previous section. 
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50% MVC Spectrum 

- Silver 

 

 
 

- Stainless steel 
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30% MVC Spectrum 

- Silver 

 

 
 

- Stainless steel  
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10% MVC Spectrum 

- Silver 

 

 
- Stainless steel  
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4.2.3. Signal spectra results 

 

The results of the spectra analysis show an expected power distribution along the 

frequencies. A big part of the total power is concentrated at lower frequencies. The effect 

of the notch filters is clearly visualized surrounding 50 and 150 Hz.  

 

4.3. Bivariate analysis 

 

In the following section, the variables of conduction velocity CV and the correlation 

coefficient of the time segments are analyzed at the same time. This analysis is performed 

in order to separate segments and detect how many of them deliver valid information. 

To select what is valid information referring the CV computed in a segment it is necessary 

at least to have a high correlation coefficient 0.8 and the CV to be inside a human feasible 

range from 3 to 6 m/s. 

The first attempt to represent the samples (segments) was using a scatterplot shown in the 

following image. There are six colors representing the three initial arrays in both situations 

with gel and without gel (dry). 

 

 

Figure 42: Scatter plot showing Correlation coefficient and CV 

The main problem with this approach is the difficulty to properly visualize and quantify the 

amount of samples inside the region defined. To solve this, a bivariate analysis in the form 

of 2-D histogram was used. This way it was easier to separate regions. In the following 

image, a red circled area shows approximately the region with valid samples. 
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Figure 43: Bivariate graph Correlation coefficient /CV 

 

Following this approach, four cases are represented, both materials, silver and stainless 

steel, with both single differential signals and double differential signals. In each case the 

representation of the four MVC acquisitions are included. 
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Figure 44: Bivariate analysis Silver SD 

4.3.1. Bivariate analysis graphs 

 

Material: Silver, single differential 
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Figure 45: Bivariate analysis Silver DD 

Material: Silver, double differential 
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Figure 46: Bivariate analysis Stainless steel SD 

Material: Stainless steel, single differential 
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Figure 47: Bivariate analysis Stainless steel DD 

Material: Stainless steel, double differential 
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4.3.2. Bivariate analysis results 

 

First of all, and focusing first on single differential bivariate analysis, it can be observed that 

a lot of samples fall in regions out of the expected human range of CV (all values above 10 

m/s are represented in the section just above that level in the graphics). Although a lot of 

values are concentrated in the area with high correlation (close to 1 in the correlation axis 

perspective) there are still spread samples both low correlation zones and zones out of the 

CV human range.  

As explained in the times series results, the values with high correlation and an out of range 

CV (much higher) may be caused by some channels with coupled noise from the power 

line for example. This perturbation can reach the array and the channels at a much higher 

speeds than the EMG signal having therefore a very little delays between very correlated 

channels, what gives high correlation coefficients and big, out of range, CV. Another 

possibility could be movement artifacts as they would affect the array almost at the same 

time but since the contraction of the muscle is sustained and the exercise is isometric this 

possibility should not have a high impact. 

 

On the other hand, the results in double differential bivariate analysis show a better 

performance compared to SD, the double differentiation reduces the effect of non-traveling 

potentials, noises that affect all the electrodes at the same time like the one coming from 

the power line. In this case, most of the samples out of human range have disappeared 

and even though there are still some samples with low correlation most of the samples are 

in the meaningful area having correlations higher than 0.8 and in CV human range. 

 

At the first view comparing double differential signals of silver and stainless steel the 

performance seems comparable as the improvements and the areas where the samples 

are concentrated are the expected ones, however taking a closer look it can be observed 

that stainless steel has less samples with low correlation and more samples concentrated 

in the meaningful area, specially the 50 MVC exercise that, as it has duration of two minutes, 

has more samples depicted and the graph that corresponds to stainless steel show very 

few samples with low correlation coefficient. 
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4.4. Intensity analysis 

 

In this section the RMS value of the signals in the different arrays and exercises is 

evaluated (Rojas-Martínez, Mañanas, and Alonso 2012), the channels have been 

averaged. In these cases the graph shows both materials silver and stainless steel besides 

an extra array named afterwards as “reference” although is just the silver array from the 

BIOART group (Figure 15is depicted with the same exercises performed in the subject with 

gel and dry approach. The representation form is a boxplot, a descriptive statistical graph 

that helps to summarize.  

 

4.4.1. Intensity analysis graphs 

 

The y-axis shows RMS value, in the x-axis there are two indexes first one represents the 

array being 1 - Dry reference, 2 - Gel reference, 3 - Silver, 4 - Stainless steel, and the 

second one the exercise number being, 2 – 10% MVC, 3 – 30% MVC, 4 – 50% MVC.  

 

 

 

 

Figure 48: Intensity analysis, Boxplot 1 

 

 

Array number 

Exercise number 

Array number:  1 - Dry reference 

  2 - Gel reference 

  3 - Silver 

4 - Stainless steel 

  

Exercise number: 2 - 10% MVC 

  3 - 30% MVC 

  4 - 50% MVC 
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Figure 49: Intensity analysis, Boxplot 2 

 

 

Figure 50: Intensity analysis, Boxplot 3 



 

 58 

For the last graph all the subject’s values have been averaged. 

 

 

Figure 51: Intensity analysis, Boxplot 4, all subjects 

 

 

4.4.2. Intensity analysis results 

 

In the columns 1 and 2 the results of the array from BIOART with dry and gel applied 

situations show a big variance in the first case with RMS levels similar to the other two 

arrays and in the second case less variance but lower RMS levels. 

Focusing on the columns 3 and 4, silver and stainless steel respectively, the results show 

comparable RMS values for both materials. In the las graph, that averages the results of 

all the subjects the medians of the three exercises are almost aligned and the quartiles are 

not very different one from the other showing a similar behaviour of the materials. 
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4.5. Boxplots of Conduction Velocity (CV) 

 

In this part, the boxplot is used to represent the CV of the arrays already mentioned in the 

intensity analysis (Figure 15: Silver array from BIOART) so four array cases then both 

single differential and double differential and for each of the four exercises. 

In order to represent valid data in the boxplots, only the samples (segments) with a 

correlation coefficient higher than 0.8 have been taken into account. In the y-axis is shown 

the percentage of the total number of samples that accomplish this criteria, in some cases 

columns are missing. This is because none of the samples in that subject reached the 

minimum of 0.8. 

  



 

 60 

4.5.1. Boxplots of Conduction Velocity graphs 

 

Exercise 1: 100% MVC, Single differential 

 

 

 

Figure 52: Conduction Velocity boxplot 100% MVC SD 
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Exercise 1: 100% MVC, Double differential 

 

 

 

Figure 53: Conduction Velocity boxplot 100% MVC DD 
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Exercise 2: 10% MVC, Single differential 

 

 

 

Figure 54: Conduction Velocity boxplot 10% MVC SD 
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Exercise 2: 10% MVC, Double differential 

 

 

 

Figure 55: Conduction Velocity boxplot 10% MVC DD 
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Exercise 3: 30% MVC, Single differential 

 

 

 

Figure 56: Conduction Velocity boxplot 30% MVC SD 
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Exercise 3: 30% MVC, Double differential 

 

 

 

Figure 57: Conduction Velocity boxplot 30% MVC DD 
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Exercise 4: 50% MVC, Single differential 

 

 

 

Figure 58: Conduction Velocity boxplot 50% MVC SD 
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Exercise 4: 50% MVC, Double differential 

 

 

 

Figure 59: Conduction Velocity boxplot 50% MVC DD 
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4.5.2. Boxplots of Conduction Velocity results 

 

Looking first at the single differential results, it can be observed a clear difference 

between the two first diagrams (corresponding to the BIOART array applied in dry skin 

and with gel) and silver and stainless steel prototypes. Although the percentage of 

samples with a high correlation is high in all cases and in all exercises except 10 MVC, 

the boxes spread a lot and out of the CV human range in the case of the first two 

diagrams. Focusing on silver and stainless steel, it can be seen medians close to the CV 

human range however some of them are not. 

 

For the double differential results and only focusing on silver and stainless steel it’s 

observed that the CV distribution values are very concentrated around their medians and 

all of them inside the expected range. The exercise with more difficulty to get high 

correlated samples is 10% MVC on the other side the exercise with higher number of 

correlated samples is 50% MVC.  

Regarding the silver and the stainless steel array, a similar behavior is observed although 

in bigger number of occasions stainless steel has had higher number of high correlated 

samples. 
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4.6. Regression coefficients 

 

This last section is focused on the 4th exercise 50% of MVC. In this particular exercise, that 

lasts up to 2 minutes, muscle ends up developing fatigue due the duration of the sustained 

contraction. For segments of time in this exercise the parameters of CV, MNF MDF and 

RMS were computed. Each of this parameters have a relation with the fatigue: CV, MNF, 

and MDF decrease while RMS increases when the muscle is fatigued.  

 

In order to detect the trends in the 4th exercise of all these parameters during the exercise, 

a linear regression of each the parameters over time was performed. Linear regression fits 

a linear function relating the data. As an outcome, the slope of the linear regressions is 

depicted in the next graphs. A positive coefficient indicates a positive slope, therefore, an 

increase over time of that parameter, whereas a negative indicates a decrease over time. 

 

 

Figure 60: Regression coefficient, MDF 

 

 

 

Figure 61: Regression coefficient, MNF 
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Figure 62: Regression coefficient, CV 

 

 

 

Figure 63: Regression coefficient, RMS 
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For the CV, the negative regression coefficients show a decrease over the time, there’s a 
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The most varying results and the less conclusive are depicted in the RMS graph showing 

a big number of subjects with positive regression coefficient, some of them close to 0 and 

the same subject that had a positive CV regression coefficient it shows here a negative 

regression coefficient in the evolution of the RMS value what seems to be opposite to the 

expected. 
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5. Conclusions and future development 

 

The aim of this work was to evaluate the quality of low-cost and easy-to-use alternatives 

for electrode arrays in terms of EMG parameters that can be extracted from the recorded 

EMG signal. The motivation comes from the idea of using the HD-EMG technology outside 

of the research environment, in medical practice and in everyday life. To achieve this goal, 

the devices based on HD-EMG should be affordable and easy-to-use. Although the 

affordability is a relative term with respect to the application, e.g. the cost of a diagnosis 

tool based on HD-EMG and used in clinical centers can have several times higher price 

than consumer electronics intended for home use and leisure, but easy-to-use 

characteristic is of vital importance for usability. Currently, the use of HD-EMG implies 

manual application of conductive gel to each electrode. Considering that in some 

applications the number of electrodes can be several hundreds, the set-up process can 

take several hours, which is surely a limiting factor in practical use. Therefore, the main 

objective of this thesis was to evaluate the use of dry electrode alternatives in practical 

conditions with motivation to arrive to the plug-and-play HD-EMG solution.  

 

Since it was not expected that these electrodes, especially when used without the 

conductive gel, could achieve comparable signal quality with commercial electrodes that 

use gel, the comparison with commercial electrodes was not performed. Instead, the 

electrodes were used to estimate the conduction velocity and muscle fatigue using the 

known and well-documented algorithms. The ability to estimate these parameters in a 

meaningful, expected, and physiologically viable range indicates the sufficient quality of the 

recording equipment. 

 

Summing up the results acquired it's observable: 

From the time series results, a clear visualization of the MUAP propagating along the 

channels with high correlation coefficient associated specially in the double differential 

recordings and consistent estimations of conduction velocity of both materials. 

Regarding the spectra results, a normal power distribution in the expected range along the 

channels is observed in both materials. 

In respect the bivariate analysis the performance in single differential approach seems to 

be reasonably similar. However, the number of samples with low correlation coefficient or 

out of the CV human range seems to be still high. On the contrary, double differential 

approach reduces effectively the number of samples with no physical meaning (out of 

human CV range).  

Stainless steel shows in double differential a good performance and better compared to 

silver, the great majority of samples are concentrated in the high correlation and human 

expected range. This can be clearly observed in the 50% MVC DD of Stainless steel 

bivariate analysis. 

The intensity analysis shows a similar result comparing silver and stainless steel in the all 

subject analysis the medians very close (almost aligned) and the variances very similar 

also so showing a reasonably similar behavior in this point. 
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The box plot analysis of conduction velocity and correlation shows extra info respect the 

bivariate analysis by adding the percentage of highly correlated samples and confirming 

once again very similar results both for silver and stainless steel. 

 

The obtained results confirm that the low-cost alternatives to commercial electrode arrays 

without application of conductive gel, in particular stainless steel plates and silver-plated 

brass can be used to record EMG signal with sufficient quality to extract parameters for 

estimation of conduction velocity of muscle fibers and to estimate the muscle fatigue. This 

result indicates that the signal obtained using these electrodes is of sufficient quality to be 

used in the practical application. 

 

Summarizing, the following points highlight some conclusions: 

- Although not concluding the results show similar performances between these 

two materials. 

- The results encourage the research in the possibility to use stainless steel as 

an alternative material for applications regarding surface electromyography. 

- The applications could include medical purposes. 

 

 

 

Next steps and future work encourage the research to move forward in reconfirm the results 

here exposed by investigating other aspects and trying to compare as well between these 

two materials including more subjects and different muscles to be applied. A related work 

could study the physical and electrical properties as it could be the impedance and its 

behavior over the skin and their response as it could be the motion artifact. Another step 

could be the use and test of the material in a new prototype designed for a specific purpose 

or application and establish indicators of the viability examples of this could be rehabilitation 

and robot control. 
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Appendices 

Parameters processing Matlab Script: 

%% PROCESSING %% 

 

close all 

clear all 

colordef none 

 

 

subject_name = {'Sujeto_1', 'Sujeto_2', 

'Sujeto_3','Sujeto_4','Sujeto_5','Sujeto_6','Sujeto_7','Sujeto_8','Sujet

o_9'}; 

task_name = {'_100MVC_A', '_10MVC_A', '_30MVC_A','_50MVC_fatigue'}; 

electrode_name = 

{'Dry_reference','Gel_reference','Dry_Silver','Dry_SS'}; 

 

 

 

fs = 2048;              % sampling rate (tasa de muestreo) 

IED = 1e-2; 

interp_fact_CV = 10; 

fs_CV = fs*interp_fact_CV; 

 

info_SNR= []; 

info_MNF = []; 

info_MDF = []; 

info_CV = []; 

info_R = []; 

info_Spectrum = []; 

final_data=[]; 

 

for subject = 1:8 

    for task = 1:4 

        for electrode=1:4 

             

            file = [pwd, '\signals\', subject_name{subject}, '\', 

electrode_name{electrode},task_name{task}, '.mat']; 

            if not(isfile(file)), continue; end 

            load(file) 

            var1 = Data; 

             

            display(['Processing: ', subject_name{subject}, ', ', 

task_name{task}, ', ', electrode_name{electrode}]) 

             

             

            if (electrode==1 || electrode==2) 

                if(size(var1,2)>28) 

                    var1(:,[6,12,18,24,30,31,32]) = []; 

                else 

                    var1(:,[6,12,18,24]) = []; 

                end           

            else 

                var1(:, [5,10,15,20:end])=[]; 

            end 

             

            emg = var1; 

            nchan = size(emg,2); 
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            if nchan==16, nrow = 4; else nrow=5; end 

            ncol = nchan/nrow; 

     

             

            times_file = [pwd, '\signals\', subject_name{subject}, '\', 

electrode_name{electrode},task_name{task}, '.txt']; 

            times = dlmread(times_file); 

            t_start = times(1); 

            t_end = times(2); 

             

            %-----------------------------------------------------------

--------------- 

            %                        Use Double differential signals 

            %-----------------------------------------------------------

--------------- 

            emg = diff(emg,1,2); 

            eliminate = nrow:nrow:nchan-1; 

            emg(:,eliminate) = []; 

 

            nrow = nrow-1; 

            nchan = nrow*ncol; 

           

            

%=======================================================================

=== 

            %                               Filtering 

            

%=======================================================================

=== 

            %-----------------------------------------------------------

--------------- 

            %                              Band Pass 

            %-----------------------------------------------------------

--------------- 

            [b,a] = butter(3,[15 350]/(fs/2)); 

            x_filt= filtfilt(b,a, emg); 

   

            %-----------------------------------------------------------

--------------- 

            %                            Notch Filter 

            %-----------------------------------------------------------

---------------      

            Fnotch = 50;            % notch frequency 

            wo = Fnotch/(fs/2);  bw = wo/50; 

            [b,a] = iirnotch(wo,bw); 

            x_filt = filtfilt(b,a, x_filt); 

             

            Fnotch = 150;            % notch frequency; third harmonic 

            wo = Fnotch/(fs/2);  bw = wo/50; 

            [b,a] = iirnotch(wo,bw); 

            x_filt = filtfilt(b,a, x_filt); 

             

 

 

            

%=======================================================================

=== 

            %                       Extraction of Measures 
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%=======================================================================

=== 

            %-----------------------------------------------------------

--------------- 

            %                               SNR 

            %-----------------------------------------------------------

--------------- 

            

            x_noise = x_filt(516:t_start, :); % don't start from the 

beginning 

            x_signal = x_filt(t_start:t_start+length(x_noise)-1, :); 

             

            SNR = nan(1,25); 

            for i = 1:nchan 

                SNR(i) = snr(x_signal(:,i), x_noise(:,i)); 

            end 

             

          

            %-----------------------------------------------------------

--------------- 

            %                        Windowing and PSD estimation 

            %-----------------------------------------------------------

--------------- 

            % be careful when changing length of x1 because dimension of 

            % pwelch depends on it 

            Lw = floor(0.5*fs); %(s) ancho de la ventana 

            step = floor(0.25*fs); 

            Lt = t_end-t_start+1; 

            t_step = 0:step/fs:(Lt-Lw)/fs; 

             

            x = x_filt(t_start :t_end, :); 

             

            MNF = []; 

            MDF = []; 

            CV=[]; 

            R=[]; 

            Spectrum = []; 

             

            % Windowing 

            for  t_aux = 1: step: (Lt-Lw) 

      

                MNF_aux = nan(1,25); 

                MDF_aux = nan(1,25); 

                CV_aux = nan(1,25); 

                R_aux = nan(1,25); 

                Spectrum_aux = []; 

                              

                x_win = x(t_aux:t_aux+Lw-1, :); 

                 

                CV_index = 0; 

                for chan=1:nchan 

                     

                    Spectrum_aux_ch = [];            

                    [P, f] = pwelch(x_win(:, chan), 256, 128, 512); 

                    f = f/pi*(fs/2); 

                    Spectrum_aux_ch = P; 

%                     plot(f,P); 

%                     Spectrum_aux = P; 
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                    %---------------------------------------------------

----------------------- 

                    %                           Mean Frequency 

                    %---------------------------------------------------

----------------------- 

                    MNF_aux(chan)= (f'*P)/sum(P); 

                     

                    %---------------------------------------------------

----------------------- 

                    %                         Median Frequency 

                    %---------------------------------------------------

----------------------- 

                    P_total = sum(P); 

                    P_cum = cumsum(P); 

                    MDF_aux(chan) = f(find(P_cum>P_total/2,1)); 

                     

                    %---------------------------------------------------

----------------------- 

                    %                         Conduction velocity 

                    %---------------------------------------------------

----------------------- 

                    if mod(chan, nrow) % make sure you calculate CV only 

if 

                                       % of channels in the same row 

                    CV_index = CV_index+1; 

                    dvisual1 = x_win(:,chan); 

                    dvisual2 = x_win(:,chan+1); 

                    [r1,lags1] = xcorr(dvisual2,dvisual1,'coeff'); 

                    t1_cor=1:length(r1); 

                    t2_cor=1:(1/interp_fact_CV):length(r1); 

                    r1=interp1(t1_cor,r1,t2_cor,'spline'); 

                    re = r1; 

                    k=length(r1)/2; %Center of the vector 

                    [R_max,I] = max(r1); 

                    dephase_samp = abs(k-I); 

                    CV_aux(CV_index) = IED/(dephase_samp/fs_CV);                    

                    R_aux(CV_index) = R_max; 

                    end 

                    Spectrum_aux(:,:,chan) = Spectrum_aux_ch; 

                end 

                 

                MNF = [MNF; MNF_aux]; 

                MDF = [MDF; MDF_aux]; 

                CV = [CV; CV_aux]; 

                R = [R; R_aux]; 

                Spectrum = [Spectrum; Spectrum_aux]; 

            end 

  

            info_SNR= [info_SNR;subject,task,electrode, SNR]; 

            info_MNF = 

[info_MNF;repmat([subject,task,electrode],size(MNF,1),1),MNF]; 

            info_MDF = 

[info_MDF;repmat([subject,task,electrode],size(MDF,1),1),MDF]; 

            info_CV = 

[info_CV;repmat([subject,task,electrode],size(CV,1),1),CV]; 

            info_R = 

[info_R;repmat([subject,task,electrode],size(R,1),1),R]; 

            info_Spectrum = 

[info_Spectrum;repmat([subject,task,electrode],size(Spectrum,1),1),Spect

rum]; 
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        end 

    end 

end 

 

 

filename = 'info_DD.mat'; 

save(filename,'info_SNR','info_MNF','info_MDF','info_CV','info_R') 

fprintf(1,'Proceso Terminado') 

 


