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Abstract

The classification of invariant subspaces is an open problem related to other important
ones like the Carlson problem. Here we obtain a reduced form of these invariant subspaces
as a new tool to tackle these problems. In particular, it allows us to prove quite easily partial
results already known. The key point is assigning to each invariant subspace a marked one
(its marked type) in order to partition the set of invariant subspaces in a finite number
of subsets (the marked classes), each one containing only one marked subspace. Next, we
parametrize (minimally) each marked class by means of the so-called PM reduced families,
so that representatives of an invariant subspace (its PM reduced forms) appear in just one
of these families.
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1 Introduction

Given an N -dimensional C-vector space E, we consider the study of pairs (V, f), where f runs
over End(E) and, for each one, V runs over the f -invariant subspaces. We recall that for an
endomorphism f ∈ End(E), a subspace V ⊂ E is called f -invariant if f(V) ⊂ V, and two
invariant pairs (V, f) and (V ′, f ′) are called equivalent if there is an automorphism ϕ such that
ϕ(V) = V ′ and ϕ ◦ f = f ′ ◦ ϕ. The classification of invariant pairs according to this equivalence
relation is an open problem, with partial results for quite particular cases: [11] and [4] for
monogenic subspaces; in [12] one proves that there is a finite number of equivalence classes if
the degree of the minimal polynomial prime factors is less than or equal to 5, and one asserts
that the classification problem is “wild” when this degree is greater than 6.

We can restrict ourselves (see section 2.1) to f being a nilpotent endomorphism with a prefixed
Segre characteristic p = (p1, ..., pn), V being a d-dimensional f -invariant subspace and the re-
striction of f to V having a prefixed Segre characteristic q = (q1, ..., qm). We denote by Inv(p, q)
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the set of these invariant pairs (in [13] one shows that it is a differentiable manifold). Moreover,
if two invariant pairs are equivalent then also the quotient endomorphisms must have the same
Segre characteristic, but there are no explicit criteria in order to determine if a quotient Segre
characteristic is compatible with p and q (the Carlson problem: see [2], [3]).

Our basic idea is exploiting the special structure and the nice properties of the marked subspaces,
that is, the invariant subspaces having a Jordan basis of the restriction which can be extended to
a Jordan basis of f (see sections 2.3 and 7.3). The conclusion is that the study of the invariant
subspaces in Inv(p, q) can be reduced to study a finite number of parametrised families in it
(the PM reduced families), each one containing just a marked subspace.

In order to do that, our first goal is to assign to each invariant subspace in Inv(p, q), a marked
subspace which we call its marked type (definition 4.4). Hence, the set Inv(p, q) is partitioned
into a finite number of so-called marked classes, each one formed by the invariant subspaces
having the same marked type. By means of this new classification item, the study of invariant
subspaces (in particular the Carlson problem, the classification problem,...) can be reduced to
each marked class in Inv(p, q).

Then, our second goal is the obtention of a (minimally) parametrised family of each marked
class, where representatives of all the invariant subspaces having the same marked type (and
only of them) appear. Each one (non unique, in general) is called a PM reduced form of the cor-
responding invariant subspace. Indeed, we obtain (see theorem 5.5) a quite simple parametrised
family (the PM reduced family), centered at the marked subspace. Therefore, for example, the
Carlson problem is reduced to discuss the possible quotient Segre characteristics according to
the values of these parameters. In particular, concerning the classification problem, one derives
easily all the partial results known till now (see section 6).

We point out that we use the vectorial representation of invariant subspaces (see section 2.2): the
coordinates of the vectors of a Jordan basis of the restriction to the subspace in a Jordan basis
of the space. In addition, the constructions using vectorial representation are mainly reduced
to pivot transformations, adapted to the special pattern of the matrices representing invariant
subspaces: see corollary 4.5 for the marked type, and definition 5.4 for the PM reduced forms.

Finally, we remark that a geometrical approach is included for interested people (section 7),
although the paper can be understood without this last section. In particular, we see (corollary
7.15) that the marked type of a non-marked class is the greatest marked class which intersects
its boundary. That is to say, among the marked subspaces such that the considered invariant
subspace can be obtained as a perturbation of them, we select the one whose equivalence class
has the maximal dimension. Moreover, we see (corollary 7.7) that the PM parametrised families
are subfamilies of an Arnold miniversal deformation of the corresponding marked subspace,
where the invariant subspace having other marked type has been eliminated.

The paper is organized as follows. In section 2 we summarize the previous results and notation
needed for the development of our work. Specifically, we review the invariant subspaces and
their vectorial representation. We continue with the marked subspaces and recall the vectorial
representations relating them.

In section 3 we study the pivot transformations allowed in the vectorial representation.

In section 4 we introduce the “marked type” for any invariant subspace in Inv(p, q) or equiv-
alently the “marked indices” (definition 4.4) obtained by means of an algorithm (named M
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algorithm in definition 4.1) from any vectorial representation of the subspace, and characterized
in theorem 4.3.

In the section 5 we define the perturbed marked (PM) reduced families parameterizing each
marked class and the PM reduced forms for any invariant subspace in it (definition 5.4) along
with an algorithm for calculating a reduced form from any vectorial representation of it.

In section 6 we present an example of classification (including the solutions of the Carlson
problem and the Littlewood Richardson sequences) and we apply our techniques to the two
particular cases already known (see [4] and [12] respectively): monogenic invariant subspaces,
endomorphisms whose minimal polynomial have degree lower than 6, when there is a finite
number of classes.

Finally, in section 7 we present a geometrical approach, relating our study with geometric
structures and miniversal deformations.

In all the paper we denote by MN (C) the complex N -square matrices and MN,d(C) the ones
having N rows and d columns: In all the cases, if M is a subset of matrices, then M∗ means
those having the maximal rank.

2 Preliminaries

2.1 Invariant Subspaces

We recall some definitions and results concerning invariant subspaces.

Definition 2.1 Let f ∈ End(E) be an endomorphism. A subspace V ⊂ E is called invariant
(or f -invariant) if f(V) ⊂ V.

Then, we denote by f̂ the restriction of f to V and f̃ the quotient endomorphism of E/V induced
by f .

We denote by Invd(E) the set of invariant pairs (V, f), where f ∈ End(E), V is an f -invariant
subspace and dim(V) = d. For a fixed f ∈ End(E) we denote by Invd(f) the set of d-dimensional
f -invariant subspaces of E, which we consider a subset of Invd(E) by means of the identification:
Invd(f) ≡ Invd(f)× {f} ⊂ Invd(E).

Then, if A is the matrix of f in some basis of E, we say that V is an A-invariant subspace, that
(V, A) is an invariant pair and so on.

Definition 2.2 Two invariant pairs (V, f) and (V ′, f ′) are called equivalent if there is ϕ ∈
Aut(E) such that ϕ(V) = V ′ and ϕ ◦ f = f ′ ◦ ϕ. We denote by (̃V, f) the equivalence class of
(V, f).

If A,A′ are the matrices of f, f ′ in respective bases of E, then, (V, A) and (V ′, A′) are equivalent
if there is a matrix of change of basis S such that V ′ = S−1V and A′ = S−1AS.

Bearing in mind the decomposition V = ⊕λ(Ker(f−λI)N∩V), where λ runs over the eigenvalues
of f , from now on we restrict ourselves to f being nilpotent.
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Definition 2.3 A partition α = (α1, α2, . . . , αm, 0, . . . ), will be any nonincreasing finite se-
quence of non negative integers

α1 ≥ α2 ≥ · · · ≥ αm > 0

Its conjugate partition α∗ is defined by α∗j = #{1 ≤ i ≤ m : αi ≥ j}.

Definition 2.4 If f is a nilpotent endomorphism, the Weyr characteristic is α = (dimKerf, dimKerf2−
dimKerf ,dimKerf3 − dimKerf2 , . . . ) and its conjugate partition is the Segre characteristic,
formed by the sizes of Jordan blocks.

When convenient, we focus on the indecomposable invariant pairs (or subspaces):

Definition 2.5 An invariant pair (V, f) ∈ Invd(E) is called indecomposable if there are no two
non-null invariant pairs (U , f) and (U ′, f) such that U ⊕ U ′ = E and V = (V ∩ U)⊕ (V ∩ U ′).

Otherwise, V ∩ U (as well as V ∩ U ′) is called an invariant component of V.

The following classification items are trivial:

Lemma 2.6 Let (V, f) be an invariant pair being f nilpotent. Then, for any other (V ′, f ′)
equivalent to it we have:

(i) f ′ is also nilpotent, with the same Segre characteristic as f .

(ii) dimV ′ = dimV (and (V ′, f ′) is indecomposable if (V, f) is so).

(iii) The restrictions f̂ and f̂ ′ have the same Segre characteristic.

(iv) The quotient endomorphisms f̃ and f̃ ′ have the same Segre characteristic.

Therefore, in order to classify the invariant pairs (V, f), we can restrict ourselves to the following
situation:

Definition 2.7 Let us consider two partitions of integers p = (p1, . . . , pn), q = (q1, . . . , qn) such
that p1 + · · · + pn = N , q1 + · · · + qn = d, p1 ≥ . . . pn > 0, q1 ≥ . . . qm > qm+1 = · · · = qn = 0
and pi ≥ qi for i = 1, . . . , n. Then, we say that q is compatible with p.

(1) We denote by Inv(p, q) the set of invariant pairs (V, f) ∈ Invd(E) verifying that f is
nilpotent having Segre characteristic p and the restriction f̂ having Segre characteristic q.

(2) We denote by Jp (respectively Jq) the nilpotent lower Jordan matrix having Segre charac-
teristic p (respectively q).

(3) We denote by Invq(Jp) the subset of Invd(Jp) whose restriction has Segre characteristic q.
Then, as in definition 2.1, we identify: Invq(Jp) ≡ Invq(Jp)× {Jp} ⊂ Inv(p, q).

Remark 2.8 We do not prefix the Segre characteristic of the quotient endomorphism f̃ because
one does not know a direct criterium to it being compatible with p and q (the Carlson problem).
An implicit criterium is that these three Segre characteristics must be related by a so-called
Littlewood Richardson sequence. When it happens, in [3] one constructs explicitly an invariant
pair (V, f) having these desired Segre characteristics. See also [2].
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2.2 The vectorial representations in BLD∗(p, q)

The following lemma summarizes the matricial representations of invariant pairs (V, f).

Lemma 2.9 Let f, f ′ ∈ End(E) and A,A′ be their matrices in respective bases. Let us consider
a d-dimensional subspace V ⊂ E.

(1) If (and only if) the columns of S ∈ M∗N (C) form a basis of E adapted to V (that is, an

extension of a basis of V) one has S−1V = Cd × {0} ≡ Cd.

Then, V is f -invariant if and only if S−1AS has the form A0 =

(
A1 A3

0 A2

)
, with A1 ∈

Md(C). Moreover, A1 is the matrix of the restriction f̂ in the corresponding basis of V and
A2 is the matrix of the quotient-endomorphism f̂ in the induced basis of E/V.

(2) If A0, A′0 are matricial representations of (V, A) and (V ′, A′) as above, then these invariant
pairs are equivalent if and only if A0, A′0 are so. Moreover, if A′0 = T−1A0T , then also T

has the form

(
T1 T3

0 T2

)
, and A′1 = (T1)−1A1T1, A′2 = (T2)−1A2T2.

However, it is not easy to achieve that a matrix as A0 above has a prefixed Segre characteristic.
In order to do that, we will mainly use the following vectorial representations of an invariant
pair. We consider Jordan bases of f , so that (V, f) ∈ Inv(p, q) is represented by pairs of the
form (Sp(Y ), Jp) where the columns of Y ∈ M∗N,d(C) are the coordinates of a basis of V in
the considered Jordan basis of E. If in addition the columns of Y form a Jordan basis of the
restriction f̂ , then we say that Y is a vectorial representation of (V, f). We will see the pattern
of these vectorial representations.

Definition 2.10 Let p, q be as in definition 2.7.

1. A matrix is called lower diagonal (LD) if it is a lower triangular matrix constant along the
diagonals.

2. A partitioned matrix whose blocks are LD matrices will be called block lower diagonal
(BLD).

3. We denote by BLD(p, q) the BLD matrices with respect to the block partition (p, q), that
is to say, its rows are partitioned according to p = (p1, p2, . . . , pi, . . . , pn) and its columns
are partitioned according to q = (q1, q2, . . . , qj , . . . , qm).

4. If X ∈ BLD(p, q), we denote by Xij the block in Mpi,qj (C), by Dk
ij the k-diagonal of this

block, where the first diagonal is the element in the left bottom corner, and by xkij the

entries in Dk
ij. Then xkij = 0 if k > min(pi, qj).

5. In each block Xij, we say that the entry xkij or the diagonal Dk
ij has k height, (pi − k)

depth and (qj − k) horizontal depth.

6. We refer to the entry x
qj
ij or the diagonal D

qj
ij as the main ones. In particular, x

qj
ij = 0 if

pi < qj.

We refer to Xmain = (x
qj
ij )1≤i≤n,1≤j≤m, as the main submatrix.
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7. If hij = max{k : xkij 6= 0}, we refer to the entry x
hij
ij or the diagonal D

hij
ij as the maximal

ones.

8. We define Ikij =

(
0 0
Ik 0

)
∈Mpi,qj (C) for 1 ≤ k ≤ min(pi, qj),

so that we have Xij =
∑

1≤k≤hij x
k
ijI

k
ij. In particular, if Xij = Ikij we say that Xij is an

unitary block, and the main unitary one if k = qj.

9. We define a block row and a block column as Xi∗ = (Xi1, Xi2, . . . , Xim) and X∗j =
(Xt

1j , X
t
2j , . . . , X

t
nj)

t, respectively.

10. We denote as parameters the non-zero variable entries.

Example 2.11 X ∈ BLD((3, 2, 1), (2, 1)) and its main submatrix Xmain are of the form

X =



0 0 0
x2

11 0 0
x1

11 x2
11 x1

12

x2
21 0 0
x1

21 x2
21 x1

22

x1
31 0 x1

32

 , Xmain =

 x2
11 x1

12

x2
21 x1

22

0 x1
32



It is well known that:

Lemma 2.12 In the above notation:

1. X ∈ BLD(p, q) has maximal rank if and only if rank(Xmain) = m.

2. BLD∗(p, p) is the closed subgroup of Gl(N) formed by the non singular matrices which
commute with Jp (the lower Jordan nilpotent matrix having Segre characteristic p). Thus,
P ∈ BLD∗(p, p) is a change of Jordan bases of Jp.

3. Analogously for BLD∗(q, q) ⊂ Gl(d). Thus, Q ∈ BLD∗(q, q) is a change of Jordan bases
of Jq.

As announced, by means of a Jordan basis, any invariant pair (V, f) ∈ Inv(p, q) can be repre-
sented by one of the form (Sp(Y ), Jp) where Y ∈ BLD∗(p, q):

Proposition 2.13 [8] Let (p, q) and Jp be as in definition 2.7.

1. If Y ∈ BLD∗(p, q), then (Sp(Y ), Jp) ∈ Inv(p, q) and the columns of Y form a Jordan
basis of Sp(Y ).

2. Conversely, for any (V, A) ∈ Inv(p, q) and any Jordan basis S of A we have
S−1AS = Jp and S−1V = Sp(Y ), for some Y ∈ BLD∗(p, q).

3. BLD∗(q, q) acts freely on BLD∗(p, q) by right multiplication and for any Y, Y ′ ∈ BLD∗(p, q):
Sp(Y ) = Sp(Y ′)⇔ Y ′ = Y Q for some Q ∈ BLD∗(q, q).
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4. BLD∗(p, p) acts freely on BLD∗(p, q) by left multiplication and for any Y, Y ′ ∈ BLD∗(p, q):
(Sp(Y ), Jp) ∼ (Sp(Y ′), Jp)⇔ Y ′ = PY Q for some P ∈ BLD∗(p, p) and Q ∈ BLD∗(q, q).

Definition 2.14 We say that Y ∈ BLD∗(p, q) is a vectorial representation of (V, A) or of its

class (̃V, A) if the two pairs are equivalent. We also say that Y ∈ BLD∗(p, q) is a vectorial
representation of V if one assumes A = Jp. When (4) in proposition 2.13 holds, we simply say
that Y, Y ′ ∈ BLD∗(p, q) are equivalent, so that Ỹ = {PY Q : p ∈ BLD∗(p, p), Q ∈ BLD∗(q, q)}.

Therefore, the classification of invariant pairs in Inv(p, q) is equivalent to the classification of
Y ∈ BLD∗(p, q) with regard to the above equivalence relation. As a direct application, we have:

Proposition 2.15 Let Y ∈ BLD∗(p, q) be a vectorial representation of (V, Jp) ∈ Inv(p, q).

(1) Let us assume that for a certain 1 ≤ j ≤ m we have that for each 1 ≤ i ≤ n, if Yij 6= 0,
then Yis = 0 for all s 6= j. Then, the columns of the block Y∗j span a monogenic invariant
component of V.

(2) In addition, let us assume that for a certain set of column indices L = {j1, ..., jk} we have
that for any s /∈ L Yis = 0 if Yijt 6= 0 for some 1 ≤ t ≤ k. Then, Sp(Y∗j1 , ..., Y∗jk) is an
invariant component of V (which is monogenic if k = 1 as in (1)).

2.3 Marked subspaces

The marked subspaces will play a key role in our approach. See [9] for a full geometric charac-
terization and classification. Here we recall the basic definitions and properties which we will
need in the sequel.

Definition 2.16 Let f ∈ End(E). An invariant subspace V ⊂ E is called f -marked if there is
some Jordan basis of V which can be extended to a Jordan basis of E.

Example 2.17 Let f ∈ End(E) be nilpotent, with p = (3, 1). Let us consider a Jordan basis
e1, f(e1), f2(e1), e2. For q = (2, 0), the subspace V1 = Sp(f(e1), f2(e1)) ∈ Inv(p, q) is marked,
but V2 = Sp(f(e1) + e2, f

2(e1)) ∈ Inv(p, q) is not.

The following lemma collects some trivial properties of marked subspaces:

Lemma 2.18 Let f ∈ End(E)

(1) If a vectorial subspace is equivalent to a f -marked one, then it is also f -marked.

(2) In Inv(p, q) the equivalence classes of marked subspaces are characterized by assigning
injectively to each qj-chain, 1 ≤ j ≤ m, a pij -chain, 1 ≤ ij ≤ n, compatible with it
(that is, qj ≤ pij ). In other words, any class of marked subspaces is characterized by a
permutation p′ = (pi1 , . . . , pim , . . . , pin) of p with qj ≤ pij , 1 ≤ j ≤ m and pim+1 ≥ ... ≥ pin.
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We select the following natural vectorial representation by means of a Jordan basis of the marked
subspace extended to a Jordan basis of the whole space (not well-ordered).

Definition 2.19 In Inv(p, q), let us consider a marked subspace characterized by the permu-
tation p′ = (pi1 , ..., pin) of p, as in the above lemma. Its canonical vectorial representation is
Y ∈ BLD∗(p, q) where all the entries are 0 except those in the main diagonals of Yi1,1, ..., Yim,m
which are 1. We denote it by Y (p′).

Example 2.20 In Inv(p, q) with p = (6, 4, 3, 2) and q = (4, 2, 1):

Y (6, 3, 4, 2) =



1
1

1
1

1

1
1



Y (6, 2, 4, 3) =



1
1

1
1

1

1
1



3 BLD transformations

We have seen (proposition 2.13) that the equivalence class of Y ∈ BLD∗(p, q) is preserved
by right (respectively left) multiplication by matrices in BLD∗(q, q) (respectively BLD∗(p, p)).
We will simplify Y by means of these multiplications. Indeed they are equivalent to certain
elementary transformations, as we precise in the following lemma:

Lemma 3.1 Let Y ∈ BLD∗(p, q)

(1) The right multiplication by matrices Q ∈ BLD∗(q, q) is equivalent to a sequence of the
following transformations, for each block-column Y∗j:

(1.1) Multiplying Y∗j by a non-zero scalar α.

(1.2) Adding the last t columns of αY∗j (where α is an arbitrary scalar) to the first t columns
of any Y∗j′ (for any 1 ≤ j′ ≤ m and where t ≤ min(qj , qj′)).

(2) The left multiplication by matrices P ∈ BLD∗(p, p) is equivalent to a sequence of the
following transformations, for each block-row Yi∗:

(2.1) Multiplying Yi∗ by a non-zero scalar β.

(2.2) Adding the first t rows of βYi∗ (where β is an arbitrary scalar) to the last t rows of
any Yi′∗ (for any 1 ≤ i′ ≤ n and where 1 ≤ t ≤ min(pi, pi′)).
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Proof. Clearly (1.1) is equivalent to the right multiplication byQ′ = diag(Iq1 , ..., αIqj , Iqj+1, ..., Iqm).

Concerning (1.2), let us write vj , f(vj), ..., f
qj−1(vj), for 1 ≤ j ≤ m, the columns of Y , which

form a Jordan basis of V = Sp(Y ). Then (1.2) is equivalent to change vj′ , ..., f
t(vj′) by

vj′+αf
qj−t(vj), f(vj′+αf

qj−t+1(vj), ..., f
t(vj′)+αf

qj−1(vj), resulting also a Jordan basis because
f(f t(vj′) + αf qj−1(vj)) = f t+1(vj′).

Clearly it is equivalent to the right multiplication by I + Q′′ ∈ BLD∗(q, q) where the only
non-zero block of Q′′ is Q′′jj′ = Itjj′ .

Finally, it is clear that any matrix Q ∈ BLD∗(q, q) is the product of matrices of the kind Q′

and I +Q′′ above.

Analogously for (2.1) and (2.2).

Definition 3.2 We refer to the transformations in (1) above as column BLD elementary trans-
formations (column BLD-ETs). And to those in (2) as row BLD elementary transformations
(row BLD-ETs).

Example 3.3 Let us consider Y =


1 0 0 0 0
2 1 0 6 0
3 2 1 7 6

4 0 0 8 0
5 4 0 9 8

.

Applying (1.2) with: t = 1, α = −1
2 , j = 2, j′ = 1 we obtain Y Q =


1 0 0 0 0
2 1 0 6 0
0 2 1 7 6

4 0 0 8 0
1 4 0 9 8

.

Applying (2.2) with: t = 2, β = −4, i = 1, i′ = 2 we obtain PY =


1 0 0 0 0
2 1 0 6 0
3 2 1 7 6

0 0 0 8 0
−3 0 0 −13 8

.

As announced, we will use BLD-ETs in order to simplify the matrices Y ∈ BLD∗(p, q). We will
do this in the following way:

Proposition 3.4 Let Y ∈ BLD∗(p, q)

(1) Any block Yij can be reduced, by means of column or row BLD-ETs, to an unitary one I
hij
ij

(see definition 2.10). In particular, it can be reduced to I
qj
ij when Yij has non-zero main

diagonal (only possible if pi ≥ qj).

(1’) In addition, let Yi1j1 , ..., Yisjs be blocks of Y placed in different block-columns (respectively
block-rows), that is, j1, ..., js are different (respectively i1, ..., is are different). Then, by
means of column BLD-ETs (respectively row BLD-ETs) all of them can be reduced to
unitary blocks as in (1).

(2) Let Yij = I
hij
ij be an unitary block:
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(2.1) By means of column BLD-ETs one can make 0 all the other diagonals in Yi∗ having
the same or less height than hij, and the same or greater horizontal depth than qj−hij:

ykis = 0, if k ≤ hij and qs − k ≥ qj − hij

(2.2) By means of row BLD-ETs one can make 0 all the other diagonals in Y∗j having the
same or less height than hij, and the same or greater depth than pi − hij:

yksj = 0, if k ≤ hij and ps − k ≥ pi − hij

(2’) In particular, if Yij = I
qj
ij is the main unitary block, then:

Y is = 0, if s > j and Y sj = 0, if s < i

In addition, if qj = pi, then: Y is = 0, if s 6= j and Y sj = 0, if s 6= i

Definition 3.5 We define as the (i, j)-column BLD-ET the composition of column BLD-ETs
in (1) and (2.1)of proposition 3.4. We define as the right (left) (i, j)-column BLD-ET the same
composition as above but only reducing the blocks in Yis with s ≥ j(s ≤ j).In the same way we
define the (i, j)-row BLD-ET and the upper (lower) (i, j)-row BLD-ET.

Remark 3.6 We point out that when applying (2.1) also yhi′s could change. And analogously
when applying (2.2). See the following example.

Example 3.7 Let us consider Y below. By means of column BLD-ETs as in (1) above, we can
obtain Y1 = Y Q1. Next, by means of column BLD-ETs as in (2.1), we can obtain Y2 = Y Q1Q2.
Finally, by means of row BLD-ETs as in (2.2), we can obtain Y3 = P1Y Q1Q2.

Y =



0 0 0 0 0 0
y113 0 0 0 0 0
y112 · 0 y122 0 0
y111 · · y121 · y131
y213 0 0 0 0 0
y212 · 0 1 0 0
y211 · · y221 1 y231
y312 0 0 y322 0 0
y311 · 0 y321 · y331


, Y1 =



0 0 0 0 0 0
y113 0 0 0 0 0
y112 · 0 y122 0 0
y111 · · y121 · y131
y213 0 0 0 0 0
y212 · 0 1 0 0
y211 · · 0 1 y231
y312 0 0 y322 0 0
y311 · 0 y321 · y331


,

Y2 =



0 0 0 0 0 0
y113 0 0 0 0 0
y112 · 0 y122 0 0
y111 · · y121 · y131
y213 0 0 0 0 0

0 · 0 1 0 0
0 0 · 0 1 0

y312 0 0 y322 0 0
y311 · 0 y321 · y331


, Y3 =



0 0 0 0 0 0
y113 0 0 0 0 0
y′112 · 0 0 0 0
y111 · · 0 y131
y213 0 0 0 0 0

0 · 0 1 0 0
0 0 · 0 1 0

y′312 0 0 y322 0 0
y311 · 0 0 · y331


In addition we can reduce the block Y11 to an unitary one by means of row BLD-ETs. It will
be main if y113 6= 0.

On the other hand, it is not possible to obtain y213 = 0 by means of BLD-ETs (although y113 6= 0,
which has greater depth than y213).

If y331 6= 0, we can make 0 the block Y13 (by means of row BLD-ETs), but probably Y12 will be
changed.
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Remark 3.8 Although we will use only the above techniques, more general ones are possible.

For example, if D
hij
ij is a maximal diagonal (not necessarily the main one), then we can make 0

the diagonals Dk
ij′ having j′ 6= j, k ≤ hij or j′ = j, k < hij.

We point out that if Dk+∆
i′j 6= 0, then the diagonals Dk+1

i′j′ , . . . , D
k+∆
i′j′ are also changed.

4 The marked type of an invariant subspace

The key point of this paper is to partition Inv(p, q) in as many subsets as there are different
classes of marked subspaces. The only marked class represented in each subset will be called
the marked type of all the subspaces in it. In this section, for each invariant subspace we select
its marked type. Hence, the study of the invariant subspaces in Inv(p, q) is reduced to studying
those having the same marked type.

In the next section, we will see that the invariant subspaces in each subset (and only them) are
represented in a parametrised family centered in their marked type (the PM reduced family).
The conclusion is that the set of vectorial representations of Inv(p, q) is partitioned in finitely
many parametrised families (the PM reduced families) in such a way that each invariant subspace
is represented in only the one centered in its marked type. Therefore, the study of invariant
subspaces in Inv(p, q) can be reduced to each of these (finitely many) PM reduced families, each
one centered in a marked subspace.

Firstly, the following lemma assigns indices i1, ..., im, verifying (2) in lemma 2.18, to each in-
variant subspace in Inv(p, q). Next theorem 4.3 shows that they are uniquely characterized.
The conclusion is that they determine (definition 4.4) the so called marked type of the given
invariant subspace.

Definition 4.1 We call the M algorithm the following one which assigns indices 1 ≤ i1, ..., im ≤
n to each Y ∈ BLD∗(p, q).

For j = 1, let i1 be the greatest 1 ≤ i ≤ n such that the main diagonal of Yi1 is non-zero:

Dq1
i11 6= 0, Dq1

i1 = 0 if i > i1

Such i1 index exists because Ymain has full rank. Then, the main diagonals D
qj
i1j

for j > 1 have
equal or less height and equal horizontal depth than Dq1

i11, so they can become 0 by means of
column BLD-ETs.

In the new equivalent matrix Y 1, D
qj
i1j

= 0 for j > 1, so the only non-zero entry in the i1 row of

Y 1
mainis yi1,1.

Next, for j = 2, there is i2 6= i1 such that Dq2
i22 6= 0, Dq2

i2 = 0 if i > i2
because Y 1

main has full rank (and the second column cannot be 0). As above, by means of column
BLD-ETs there is an equivalent matrix Y 2 with D

qj
i2j

= 0 for j > 2.

And so on.

Example 4.2 Let us consider the parametrised family of subspaces represented by
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Y =



1
y311 1
y211 y311 1 y212
y111 y211 y311 1 y112 y212 y113
y421
y321 y421
y221 y321 y421 y222
y121 y221 y321 y421 y122 y222 1

y331
y231 y331 1
y131 y231 y331 y132 1 y133
y241 y242
y141 y241 y142 y242 y143



∈ BLD∗((6, 4, 3, 2), (4, 2, 1))

Each subspace in this family can be seen as a perturbation of several marked subspaces:
Y (6, 3, 4, 2); Y (6, 3, 2, 4), if y1

43 6= 0; Y (6, 2, 4, 3), if y2
42 6= 0; Y (4, 3, 6, 2), if y1

31 6= 0; etc. But
definition 4.1 selects one of them. Indeed, i1 = 2 if y4

21 6= 0, and i1 = 1 otherwise.

In any case: i2 = 4 if y2
42 6= 0, and i2 = 3 otherwise.

If y4
21 = y2

42 = 0, then i3 = 4 if y1
43 6= 0, and i3 = 2 otherwise.

Let us assume y4
21 = 0 and y2

42 6= 0, so that i1 = 1 and i2 = 4.

Then i3 = 3 if ȳ1
33 = y1

33 − y1
43/y

2
42 6= 0, and i3 = 2 otherwise.

In the first case i4 = 2 and in the second one i4 = 3. The original parametrised family Y has
been reduced respectively to



1
y311 1
y211 y311 1 0
y111 y211 y311 1 ȳ112 0 0

0
y321 0
y221 y321 0 y222
y121 y221 y321 0 ȳ122 y222 1

y331
y231 y331 1
y131 y231 y331 ȳ132 1 ȳ133
y241 y242
y141 y241 y142 y242 0





1
y311 1
y211 y311 1 0
y111 y211 y311 1 ȳ112 0 0

0
y321 0
y221 y321 0 y222
y121 y221 y321 0 ȳ122 y222 1

y331
y231 y331 1
y131 y231 y331 ȳ132 1 0

y241 y242
y141 y241 y142 y242 0



Theorem 4.3 Let V ∈ Inv(p, q). There is a vectorial representation Y ∈ BLD∗(p, q) such that
the only non-zero main diagonals are Dq1

i11, . . . , D
qm
imm

for some different indices 1 ≤ i1, . . . , im ≤
n.

Conversely, if a vectorial representation has just one non-zero main diagonal in each column
block and they are placed in different row blocks 1 ≤ i′1, . . . , i

′
m ≤ n, then (pi′1 , . . . , pi′m) =

(pi1 , . . . , pim) assuming that if qj = qj+s, s > 0, then ij ≥ ij+s.

Proof.
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First of all we prove the existence:

Using the M algorithm we obtain a vectorial representation with non-zero main diagonals
Dq1
i1,1
, . . . Dqm

im,m
, placed in different block rows, such that D

qj
i,j = 0 if i > ij .

Now, for j = 1, by means of row BLD-ETs we make Dq1
i,1 = 0 if i < i1 (possible because they have

the same height and the same or greater depth), and the main diagonals in the other columns
are not changed because Di1,j = 0 for j 6= 1. Next, for j = 2, again by means of row BLD-ETs
we make Dq2

i,2 = 0 if i < i2, and the main diagonals in the other columns are not changed because

D
qj
i2,j

= 0 for j 6= 2 (indeed, by the M algorithm for j > 2, and by the previous step for j < 2).

And so on.

Conversely, the main diagonals D
qj
ijj

cannot be made 0 neither by row BLD-ETs (because the

other non-null main diagonals in the column block Y∗j are deeper) nor by column BLD-ETs
(because the other non-null diagonals in the row block Yij∗ have greater horizontal depth). Then,
sizes of the blocks with non-zero main diagonal cannot be changed by BLD-ETs, and taking
into account that if qj = qj+s, s > 0, then ij ≥ ij+s (to avoid some irrelevant permutation of
indices ij), it results that pi′j = pij .

Definition 4.4 Let V ∈ Inv(p, q) and (i1, . . . , im) be the row indices obtained in theorem 4.3
(or in the M algorithm in definition 4.1) from any representative Y ∈ BLD∗(p, q). We number
the remaining indices 1 ≤ im+1, . . . , in ≤ n in increasing order. Then, we define the indices
p′ = (pi1 , . . . , pin) as the marked indices of V ∈ Inv(p, q) and the marked subspace represented
by Y (p′) its marked type. The subset of Inv(p, q) formed by the invariant subspaces having
marked indices p′ will be called the marked class p′.

Remark 4.5 The M algorithm in definition 4.1 can be applied analogously to the main subma-
trix of any vectorial representation in order to obtain the marked type of an invariant subspace
V ∈ Inv(p, q). Let Y ∈ BLD∗(p, q) be any vectorial representation of V and Ymain = (y

qj
ij ) ≡

(yij) be its main submatrix.
Let i1 be such that yi11 6= 0, yi1 = 0 if i > i1.

By means of right column ET, let us make yi1j = 0 if j > 1.

Next, in the new main submatrix, let i2 be such that yi22 6= 0, yi2 = 0 if i > i2.

By means of right column ET, let us make yi2j = 0 if j > 2.

And so on.

Example 4.6 In the above example, we have

Ymain =


1 y212 y113
y421 y222 1
0 1 y133
0 y242 y143

 ≡


1 y12 y13
y21 y22 1
0 1 y33
0 y42 y43



If y21 = 0, then i1 = 1 and Ymain becomes Y ′main. If in addition y42 6= 0, then i2 = 4 and Ymain
is reduced to Y ′′main,
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Y ′main =


1 0 0
0 y22 1
0 1 y33
0 y42 y43

 Y ′′main =


1 0 0
0 y22 ȳ32
0 1 ȳ33
0 y42 0



where ȳ33 = y33 − (y43/y42), ȳ32 = 1− (y22y43/y42).
Next, i3 = 3 if ȳ33 6= 0 or i3 = 2 if ȳ33 = 0.
Finally i4 = 2 or i4 = 3 respectively.

5 The perturbed marked (PM) reduced forms of an invariant
subspace

Let us construct for each marked type Y ≡ Y (p′) ∈ BLD∗(p, q), a parametrised family Y (∗) in
BLD∗(p, q) centered at Y (that is, Y appears just when all the parameters are 0) which contains
representations of all (and only of them) invariant subspaces having marked type Y . Any
representative of such an invariant subspace will be called a perturbed marked (PM) vectorial
reduced form of it. It is not unique in general, so that it is not a canonical form. However, we
will try to minimize the number of parameters.

From theorem 4.3, it is clear that all the invariant subspaces having the same marked indices
(and only them) appear in the following parametrised family:

Corollary 5.1 Let Y ≡ Y (p′) be the canonical vectorial representation of a marked subspace in
Inv(p, q). Let us consider the parametrised family Y (∗) in BLD∗(p, q) with general parameters
ykij except in the main diagonals:

yq1i11 = ... = yqmimm = 1

y
qj
ij = 0 if i 6= ij

Then, this family contains representations of all the invariant subspaces having marked type
Y , and only of them. In particular, Y is the only marked subspace represented in it and a
representative appears when (and only when) all the parameters are 0.

Example 5.2 In the conditions of example 4.2 the parametrised families



1
∗ 1
∗ ∗ 1
∗ ∗ ∗ 1 ∗

∗
∗ ∗
∗ ∗ ∗ ∗ 1

∗
∗ ∗ 1
∗ ∗ ∗ ∗ 1

∗
∗ ∗ ∗





1
∗ 1
∗ ∗ 1
∗ ∗ ∗ 1 ∗

∗
∗ ∗
∗ ∗ ∗ ∗ 1

∗
∗ ∗
∗ ∗ ∗ ∗
∗ 1
∗ ∗ ∗ 1
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contain representations of all invariant subspaces having marked indices (6,3,4) or (6,2,4) re-
spectively, and only of them.

We will simplify these parametrised families by improving the vectorial representations in the-
orem 4.3:

Theorem 5.3 Let V ∈ Inv(p, q) have marked indices p′ = (pi1 , ..., pin). There is a represen-
tative of it Y ∈ BLD∗(p, q) such that the only non-zero main diagonals are Dq1

i11, . . . , D
qm
imm

and

(1) Yij ,j = I
qj
ij ,j
, Yij ,s = 0 if s > j,

(2) Yi,j = 0 if i < ij,

(3) ykij ,s = 0 if s < j, k ≤ qj,

(4) yki,j = 0 if i > ij , k ≤ pi − pij + qj.

Proof.

Using the M algorithm we obtain a vectorial representation Y ∈ BLD∗(p, q) with non-zero main
diagonals Dq1

i1,1
, . . . Dqm

im,m
, placed in different block rows, such that D

qj
i,j = 0 if i > ij .

We will obtain the desired representative in four steps. Adding one of the enumerated conditions
in every step. In all of the BLD-ETs below we say increasing/decreasing order according to the
order of the indices i1, ..., im.

(1) By means of the right (ij , j)-column BLD-ETs for j = 1, . . . ,m the block Yij ,j becomes I
qj
ij ,j

and the blocks Yij ,s, for s > j, become 0 because all their diagonals have the same or less
height than qj and the same or greater horizontal depth than 0 (the height and depth of
D
qj
ij ,j

respectively). Notice that for ij+k > ij D
qj
ij+k,j

= 0, then the (ij , j)-column BLD-ET

does not change D
qj+k

ij+k,j+k
6= 0. Notice too that for ij+k < ij D

qj+k

ij ,j+k
= 0 already, then the

(ij , j)-column BLD-ET does not change D
qj+k

ij+k,j+k
6= 0. We call Y 1 the new representative

of V.

(2) Now, by means of the upper (ij , j)-row BLD-ETs applied in decreasing order, the blocks Y 1
i,j

with i < ij become 0. Notice that we only transform the blocks Y 1
is,ij

with is < ij , j < s ≤ n
because Y 1

is,ij
= 0 for is < ij and j > s.

When any upper (ij , j)-row BLD-ET is done, the new blocks Yi,j for i < ij obtained will
not be changed by all the next upper (ik, k)-row BLD-ETs because ik < ij and the blocks
Yik,j were already 0. We call Y 2 the new representative of V.

(3) We use the left (ij , j)-column BLD-ETs in increasing order to reduce the blocks Y 2
ij ,k

for

k < j. Notice that we only reduce the blocks Y 2
ij ,k

, with ik < ij because the others are
already zero. Doing so in increasing order, the reduced blocks in the row ij will not be
changed by the following transformations because Y 2

ij ,s
= 0 if is > ij .

We call Y 3 the new representative of V. Then, y3,k
ij ,s

= 0 for s < j and k ≤ qj .
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(4) Finally, again in decreasing order, we use the lower (ij , j)-row BLD-ETs to reduce the blocks
Y 3
i,j for i > ij . Notice that we only reduce the blocks Y 3

ik,j
, for ik > ij and k > j, because

Y 3
ik,j

= 0 if ik > ij and k < j. Once reduced Y 3
ik,j

, it will be not affected by another reduction

because Y 3
is,j

= 0 for is < ij .

With this operation all the diagonals of Y 3
ik,j

for ik > ij and k > j with less height than qj
and the same or greater depth than pij − qj become 0.

We call Y 4 the new representative of V. Then, y4
i,j,k = 0 for k ≤ pi − pij + qj if i > ij .

Therefore we define:

Definition 5.4 (i) We call PM algorithm the simplification of Y ∈ BLD∗(p, q) in theorem
5.3, that is to say:

(0) The M algorithm.

(1) For j = 1, . . . ,m, the right (ij , j)-column BLD-ETs applied in the increasing order of
the set of integers {1, . . . ,m}.

(2) For j = 1, . . . ,m, the upper (ij , j)-row BLD-ETs applied in the decreasing order of
the set of integers {i1, . . . , im}.

(3) For j = 1, . . . ,m, the left (ij , j)-column BLD-ETs applied in the increasing order of
the set of integers {i1, . . . , im}.

(4) For j = 1, . . . ,m, the lower (ij , j)-row BLD-ETs applied in the decreasing order of
the set of integers {i1, . . . , im}.

(ii) Let Y (p′) be the canonical vectorial representation of a marked subspace in Inv(p, q). The
parametrised family Yred(p

′)(∗) ∈ BLD∗(p, q) with parameters yhij satisfying the above
conditions in theorem 5.3:

yq1i11 = ... = yqmimm = 1

ykisj = 0 except is > ij , max(qs, pis − pij + qj) < k < min(qj , pis + 1)

where qs = 0 if s > m and pim+1 ≥ ... ≥ pin will be called its perturbed marked (PM)
reduced family.

(iii) For an invariant subspace having marked indices p′, any representative in Yred(p
′)(∗) (not

unique, in general) is called a PM vectorial reduced form. In particular, the reduced forms
obtained by means of the PM algorithm, starting from any vectorial representation.

Hence, we reformulate corollary 5.1:

Theorem 5.5 Let us consider a marked subspace in Inv(p, q) and let Y (p′) be its canonical vec-
torial representation. Then, its PM reduced family Yred(p

′)(∗) contains representatives (several,
in general) of all invariant subspaces having marked indices p′ and only of them. In particular,
Y (p′) is the only marked subspace represented in it and its unique representative appears when
all the parameters are 0.
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Proof.

As we have proved in theorem 5.3, in a constructive way by means of an algorithm, every subspace
in Inv(p, q) has a vectorial representation (not unique) in the only one family Yred(p

′)(∗) where
p′ are its marked indices.

If we take a matrix in Yred(p
′)(∗) with some non-zero parameter, it is impossible to eliminate it

by BLD-ETs, so this matrix is not equivalent to Y (p′).

Example 5.6 In the above example 5.2 we obtain respectively

Yred(6, 3, 4, 2)(∗) =



1
1

1
1

∗
∗
∗ 1

∗
∗ 1
∗ 1

∗
∗ ∗



Yred(6, 2, 4, 3)(∗) =



1
1

1
1

∗
∗
∗ 1

∗
∗ ∗
∗ ∗

1
1



Notice that in Yred(6, 2, 4, 3)(∗) above the subspace spanned by the second column block is a
monogenic invariant component (see proposition 2.15). In general, one has:

Corollary 5.7 Let V ∈ Inv(p, q) have marked indices p′ = (pi1 , ..., pim) and Z(∗) ≡ Yred(p′)(∗)
be the corresponding PM reduced family. Then,

(1) If pij = qj for some 1 ≤ j ≤ m, then Sp(Z∗j) is a (marked) monogenic invariant component
of V.

(2) If q1 = ... = qm, then Sp(Z∗m) is a (marked) monogenic invariant component of V.

(3) If q1 = 2 and qm = 1, then Sp(Z∗m) is a (marked) monogenic invariant component of V.

Remark 5.8 In order to improve the classification in Inv(p, q), further classification items are
suggested by the above result, obtaining more simplified reduced forms. For example, for each
m < s ≤ n:

ks = max{k : ykisj 6= 0}; js = max{j : yksisj 6= 0}

Then, the block Yisjs can be reduced to the unitary one Iis,js,ks.

For example, in Yred(6, 2, 4, 3)(∗) above:

ks = 3, 2 or 0; js = 1.

In particular, if ks = 0 for some m < s ≤ n, then the invariant subspace is decomposable.
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6 Applications

Theorem 5.3 solves the classification problem in Inv(p, q) for the most important already known
particular cases. Previously we present an example of classification.

6.1 A classification example

Example 6.1 Let us consider Inv(p, q) with p = (3, 2, 1), q = (2, 1). The possible marked
subspaces are Y (3, 2, 1), Y (3, 1, 2), Y (2, 3, 1) and Y (2, 1, 3), and the corresponding PM reduced
families:


1

1

1

∗

 ,


1
1

1

 ,


1

1
1

1

 ,
 1

1

1

 .

Therefore, in Inv(p, q) there are four marked classes and only one non-marked class Ỹ having

marked type Y (3, 2, 1) and PM reduced form


1

1

1

1

.

Remark 6.2 In addition, we can compute easily the Segre characteristic of the quotient endo-

morphism in each case: (1, 1, 1) for ˜Y (3, 2, 1); (2, 1) for ˜Y (3, 1, 2), ˜Y (2, 3, 1) and Ỹ ; and (3) for
˜Y (2, 1, 3).

In particular, we conclude that the Carlson problem has 3 solutions in this case, so that the Segre
characteristic of the quotient is not sufficient to classify in Inv(p, q).

In this case the Littlewood Richardson sequences (see [3]) do not provide the classification neither.
Indeed, for the three cases with the same Segre characteristic of the quotient, the LR sequences

are: (2,1), (3,1,1), (3,2,1) for ˜Y (3, 1, 2); (2,1), (3,2), (3,2,1) for both ˜Y (2, 3, 1) and Ỹ .

6.2 Monogenic subspaces

For monogenic subspaces (that is, m = 1) the classification problem was solved in [11] and [4].
Indeed, the last one motivated the present work. If m = 1, the vectorial representations in
BLD∗(p, q1) are simply block columns

Y = Y∗1, Yi,1 ∈Mpi×q1

which in [4] are represented by its first column (the ”generator” vector). The marked type is
reduced to a simple index pi1 (in [4] pi1−q1 is called the ”marked” index), so that in the reduced
PM forms:

Yi1,1 = Iq1i1,1, Yi1 = 0 if i < i1
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Let i(2) < ... < i(r) be the row indices of the remainder non-zero blocks in Y∗1:
Yi,1 6= 0 iff i = i1, i(2), ..., i(r).

Clearly, by means of row BLD-ETs, the non-zero blocks can be reduced to unitary ones Yi(s),1 =

I
k(s)
i(s),1, where k(s) = hi(s),1, for 2 ≤ s ≤ r.

Therefore, in this particular case we have PM canonical forms, which classify the monogenic
subspaces, each class being determined by the indices

i1; i(s), k(s), 2 ≤ s ≤ r

Notice that pi(2)−pi1 +q1 < k(2) < q(1) so that pi(2) ≤ pi1−2 and analogously for pi(3),....Hence,
we have the next proposition equivalent to proposition 5.4 in [4]:

Proposition 6.3 [4] Let V be a monogenic subspace. We can assume that it belongs to Inv(p, q1).

(1) The marked type is characterized by a unique marked index 1 ≤ i1 ≤ n.

(2) For any marked type, each equivalence class has an unique PM reduced form, having at
maximum a non-zero parameter (which can be valued 1) in the blocks Yi,1, i > i1, that is
to say, each class has a PM canonical form characterized by i1 < i(2) < · · · < i(r) ≤ n
and 1 ≤ k(r) < ... < k(2) < q1, as follows:

Yi,1 = 0 iff i 6= i1, i(2), . . . , i(r); Yi1,1 = Iq1i1,1 and Yi(s),1 = I
k(s)
i(s),1, for 2 ≤ s ≤ r.

(3) The sets of possible values i(s) and k(s), for 2 ≤ s ≤ r are characterized by:

(i) pi(2) ≤ pi1 − 2, pi(3) ≤ pi(2) − 2,...

(ii) q1 > k(2) > pi(2) − pi1 + q1, k(2) > k(3) > pi(3) − pi(2) + k(2),...

(3’) In particular, if we restrict ourselves to the indecomposable subspaces (that is to say:
i1 = 1, i(s) = s) we have:

(i) p2 ≤ p1 − 2, p3 ≤ p2 − 2,...

(ii) q1 > k(2) > p2 − p1 + q1, k(2) > k(3) > p3 − p2 + k(2),...

Example 6.4 The (non marked) indecomposable monogenic classes for q1 = 2 or 3 are:


· ·
1 0
0 1

· ·
1 0





· · ·
1 0 0
0 1 0
0 0 1

· · ·
1 0 0
0 1 0





· · ·
1 0 0
0 1 0
0 0 1

· · ·
1 0 0





· · ·
1 0 0
0 1 0
0 0 1

· · ·
1 0 0
0 1 0

· · ·
1 0 0


where the dots mean additional null rows in such a way that p2 ≤ p1 − 2, p3 ≤ p2 − 2.
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6.3 Degree of the minimal polynomial lower than 6

On the other hand, in [12] one shows that the number of classes is finite if and only if the degree
of the minimal polynomial is lower than 6. Here, by means of PM vectorial reduced forms, we
study the indecomposable non-monogenic invariant subspaces in Inv(p, q), with p1 ≤ 5. Indeed,
for each possible PM reduced form, we will separate successively the indecomposable invariant
components by applying corollary 5.7. As the first consequence we obtain the following necessary
conditions for the indecomposable non-monogenic invariant subspaces:

Proposition 6.5 Let Yred(p
′)(∗) be a PM reduced form of an indecomposable non-monogenic

invariant subspace. Then,

(1) pij > qj for all 1 ≤ j ≤ m,

(2) q1 > 2.

Proof.

(1) By construction pij ≥ qj . But pij = qj is not possible because of corollary 5.7.

(2) Again, it is a direct consequence of corollary 5.7.

Now, we can tackle the main result:

Theorem 6.6 Let us consider Inv(p, q), with p1 ≤ 5. Then, there are only 14 indecomposable
non-monogenic invariant subspaces:

(i) For p1 = 1, 2 or 3 there are no indecomposable non-monogenic invariant subspaces.

(ii) For p1 = 4, the only indecomposable non-monogenic invariant subspace is

0 0 0
1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 1


(iii) For p1 = 5 and q1 = 4, there are 7 indecomposable non-monogenic invariant subspaces:

(1)



0
1

1
1

1

1 0
1 1

1 1


, (2)



0
1

1
1

1

1 0
1 1

1 1

1


, (3)



0
1

1
1

1

1 0
1 0

1 1


, (4)



0
1

1
1

1

1 0
1 1

1 1

1
1
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(5)



0
1

1
1

1

1 0
1 1


, (6)



0
1

1
1

1

0
0
1

1

1
1 1


, (7)



0
1

1
1

1

0
0
0
1

1

1
1 1



(iv) For p1 = 5 and q1 = 3, there are 6 indecomposable non-monogenic invariant subspaces:

(8)



0
0
1

1
1

0 0
1 0

1 1


, (9)



0
0
1

1
1

0
1

1

1 1


, (10)



0
0
1

1
1

1 0
1 1



(11)



0
0
1

1
1

0 0
1 0

1 1

1


, (12)



0
0
1

1
1

0
1

1

1 0
1 1


, (13)



0
0
0
1

1

0
1

1
1

1
1 1



Proof.

In all the proof M(s, l; k) ∈ Ms,l(C) will be a lower diagonal matrix with the only non-zero
entries in the k-diagonal (see (4) in definition 2.10).

(i) It is obvious from the above proposition.

(ii) For the given invariant subspace, it is clear that none BLD-ET can eliminate any entry, so
that it is indecomposable.

Let us see that, when p1 = 4, any invariant subspace has an invariant component of the
above type or a monogenic invariant component with p1 = 4. Thus, by recurrence, we
return to the case p1 ≤ 3 above.

We know that any invariant subspace is monogenic or decomposable if q1 ≤ 2 or pij = qj .
Therefore, let us consider Z ≡ Yred(p

′)(∗) be a generic PM reduced form of an invariant
subspace with q1 = 3 and pi1 = p1 = 4, that is to say, Z11 = I3

11 ∈ M4,3(C) is a main
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unitary block. Also, if qj = 3 and pij = 4, then Zij ,j = I3
ij ,j

and the possible non-zero

parametrised blocks in Z∗j are M(2, 3; 2) or M(1, 3; 1).

If qj = 2 and pij = 4, then Zij ,j = I2
ij ,j

and the possible non-zero parametrised blocks in

Z∗j are M(2, 2; 1) or M(1, 2; 1).

If qj = 2 and pij = 3, then Zij ,j = I2
ij ,j

and the possible non-zero parametrised blocks are

M(1, 2; 1).

If qj = 1, only the unitary block is non-zero in Z∗j .

We will proceed by recurrence when some block Zi1, i 6= 1, is non-zero. Else, Sp(Z∗1) is a
(marked) monogenic invariant component.

Firstly, let us assume that there is some non-zero Zi1 = M(2, 3; 2) in a row block which
does not contain any unitary block, that is to say i 6= ij for all 1 ≤ j ≤ m. Then, by
means of (i, 1)-row BLD-ET, the other blocks Zk1 = M(2, 3; 2) or Zk1 = M(1, 3; 1) become
0. Also, by means of (i, 1)-column BLD-ET, the blocks Zij , j > 1 become 0; notice that
the main unitary blocks Zij ,j do not change and that the perturbed blocks Z1j can be
returned to 0 by means of (ij , j)-row BLD-ETs (that does not change the other blocks
because in this case Zij ,k = 0, 1 ≤ j ≤ m for k 6= j). Hence, in this case, we have obtained
a PM reduced form with Zi1,1 = I3

i1,1
and Zi1 = M(2, 3; 2) the only two non-zero blocks in

Z∗1 and Zi1,j = Zij = 0 for j > 1. Then, Sp(Z∗1) is a (non-marked) monogenic invariant
component.

Secondly, let us assume that there are no non-zero blocks Zi1 = M(2, 3; 2) with i 6= ij for
all 1 ≤ j ≤ m, but there is some non-zero block Zij ,1 = M(2, 3; 2). As pij = 2, it must
be qj = 1, so that Zij ,j = I1

ij ,j
∈ M2,1(C). Again the other blocks in Zij∗ become 0 by

means of (ij , 1)-column BLD-ET. Also the blocks Zk1 = M(1, 3; 1) by means of (ij , 1)-row
BLD-ET. Notice that one uses only the up row of Zij ,1, so that no change is induced in
Z∗j . Finally, the other blocks Zk1 = M(2, 3; 2) become 0 by means of (ij , 1)-row BLD-ET,
and the changes in Zkj can be reversed by column BLD-ETs with the unitary block in
Zk∗ (also belonging to M3,1(C)). Hence, Sp(Z∗1) ⊕ Sp(Z∗j) is a non-monogenic invariant
component: the announced one.

Thirdly, let us assume that there are no non-zero blocks Zi1 = M(2, 3; 2), but there is Zi1 =
M(1, 3; 1) for some i. In this case none unitary block is possible in Zi∗ . By means of (i, 1)-
row BLD-ET we obtain a new PM reduced form where the other blocks Zk1 = M(1, 3; 1)
become 0. Next, by means of (i, 1)-column BLD-ET the blocks Zij = M(1, 3; 1), j > 1
become 0. If there are no non-zero blocks Zij = M(1, 2; 1), this new PM reduced form
shows that Sp(Z∗1) is a (non-marked) monogenic invariant component.

Fourthly, if there is some non-zero block Zij = M(1, 2; 1), pij = 4, the other Zkj =
M(1, 2; 1), k 6= i become 0 by means of (i, j)-row BLD-ET. Next, by means of (i, j)-column
BLD-ET followed by (is, s)-row BLD-ET for s 6= j, Sp(Z∗j) becomes a monogenic invari-
ant component. Repeating this elimination for the other Zis = M(1, 2; 1), pis = 4 we come
back to the third case.

(iii) We sketch the proof following the same recurrent reasoning. Now, for Z ≡ Yred(p
′), we

assume q1 = 4 and pi1 = p1 = 5, that is, Z11 = I4
11 ∈M5,4(C). The other possible non-zero

blocks Zi1, i 6= 1, are M(3, 4; 3),M(2, 4; 2) or M(1, 4; 1).

In the first case, the only possible non-zero blocks Zij , j 6= 1, are the unitary ones of
the type M(3, 2; 2) or M(3, 1; 1). If the remainder blocks in Z∗1 are 0, then we obtain
irreducible non-monogenic components of the form (1) and (2) in the first case, or of the
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form (3) in the second case. If there is in Z∗1 a non-zero block of the form M(2, 4; 2), it
can be made 0 by means of row BLD-ETs, giving the case (4)(in its PM reduced form). If
it is of the form M(1, 4; 1), it can be also made 0 without additional changes.

Secondly, let us assume that in Z∗1 there is some non-zero block of the form M(2, 4; 2) and
none of the form M(3, 4; 3). As above the non-zero blocks of the form M(1, 4; 1) can be
made 0 without additional changes. Only two types of non-zero blocks are possible in Zi∗:
M(2, 1; 1), which gives (5); M(2, 2; 1), which gives (6) or (7).

Thirdly, if in Z∗1 there are only additional non-zero blocks of the form M(1, 4; 1), then
Sp(Z∗1) is a monogenic component.

(iv) In a similar way, if q1 = 3 and pi1 = p1 = 5 that is, Z11 = I3
11 ∈M5,3(C), the other possible

non-zero blocks Zi1, i 6= 1, are M(2, 3; 2),M(3, 3; 2) or M(1, 3; 1) and we obtain the cases
(8), (9), (10), (11) and (12). If q1 = 3 and pi1 = p2 = 4 that is, Z21 = I3

21 ∈ M4,3(C), we
obtain (13).

6.4 More general cases

For p1 = 6 and q2 6= 0, continuous valued parameters, giving different equivalence classes for
each value, can appear. For example:

Proposition 6.7 Let

Yx =



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 0 0 1

1 0 0 0 0 0
0 1 0 0 x 0



∈ BLD∗((6, 4, 2), (4, 2)).

Then, Sp(Yx) and Sp(Yy) are not equivalent if x 6= y.

Proof.

Let us see that Sp(Yx) and Sp(Yy) are not equivalent if x 6= y. That is to say that there are no

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 ∈ BLD∗(p, p), B =

[
B11 B12

B21 B22

]
∈ BLD∗(q, q)

such that AYx = YyB.

Taking into account that Yx =

 I4
11 0
I3

21 I2
22

I2
31 xI1

32

 ∈ BLD∗(p, q) (see definition 2.10), the above

system splits into the matricial equations:
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A11I
4
11 +A12I

3
21 +A13I

2
31 = I4

11B11(1)

A12I
2
22 + xA13I

1
32 = I4

11B12(2)

A21I
4
11 +A22I

3
21 +A23I

2
31 = I3

21B11 + I2
22B21(3)

A22I
2
22 + xA23I

1
32 = I3

21B12 + I2
22B22(4)

A31I
4
11 +A32I

3
21 +A33I

2
31 = I2

31B11 + yI1
32B21(5)

A32I
2
22 + xA33I

1
32 = I2

31B12 + yI1
32B22(6)

In particular, we have a4
22 = b411, a4

22 = b222, a2
33 = b411 and xa2

33 = ya4
22 from (3), (4), (5) and (6)

respectively. As a2
33, b

2
22 6= 0 because A33 and B22 have maximal rank, it implies x = y.

7 A geometrical interpretation

Here we present a geometrical point of view of our constructions. It is not necessary for the
validity of our results and conclusions, but perhaps it makes them more clear and motivated.

7.1 Geometric structures

First, we reformulate the conclusions in section 2.2.

Corollary 7.1 Let (p, q) and Jp be as in definition 2.7.

1. The map ϕ : BLD∗(p, q) → Invq(Jp), ϕ(Y ) = Sp(Y ) is surjective and factorizes as
follows:

BLD∗(p, q)→ BLD∗(p, q)/BLD∗(q, q) ∼= Invq(Jp) ⊂ Inv(p, q)

2. It induces a bijection
BLD∗(p, q)/ ∼∼= Inv(p, q)/ ∼,

where we recall that: Ỹ = {PY Q : P ∈ BLD∗(p, p), Q ∈ BLD∗(q, q)} ⊂ BLD∗(p, q),
˜(Sp(Y ), Jp) = {Sp(S−1Y ), S−1JpS : S ∈MN (C)} ⊂ Inv(p, q).

Explicitly: Ỹ = ϕ−1(Invq(Jp) ∩ ˜(Sp(Y ), Jp).

In addition, differentiable structures can be considered in the above sets. In order to do that,
we consider the set GrN (d)×MN (C) of general pairs (V, A) where GrN (d) is the Grassmannian
of d-dimensional subspaces of V ∈ E. Hence

Inv(p, q) ⊂ Invd(E) ⊂ GrN (d)×MN (C).

We start with Invd(E):

Proposition 7.2 [7] We have that:
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(1) Invd(E) is a submanifold of GrN (d)×MN (C) having dimension N2.

(2) Each class (̃V, A) is a submanifold. Indeed, it is an orbit with regard to the action of the

Lie group M∗N (C): (̃V, A) = {(S−1V, S−1AS), S ∈M∗N (C)}.

In [8] one shows that Invd(Jp) is not, in general, a submanifold but it is a stratified manifold:
Invd(Jp) = ∪qInvq(Jp).

Proposition 7.3 [8] We have that:

(1) The quotient space Invq(Jp) ∼= BLD∗(p, q)/BLD∗(q, q) has a differentiable structure such
that the map ϕ in the corollary 7.1 is a submersion.

(2) Each class Ỹ is a submanifold. Indeed, an orbit with regard to the action of a Lie group:

Ỹ = {PY Q, P ∈ BLD∗(p, p), Q ∈ BLD∗(q, q)}

Its dimension has been computed in [5] when it is marked.

7.2 Miniversal deformations

These differentiable structures allow us to use Arnold’s techniques ([1], [8] for the basic concepts

and results) in order to study the classes near a given one (̃V, A) or equivalently near Ỹ . The
starting point is that any invariant subspace is a perturbation of a marked one (see [6]), not
unique in general. In turn, Arnold’s theory warrants that any perturbation of an object is rep-
resented in the so-called miniversal deformation: a (minimally) parametrised family of objects,
centered in the initial one. Thus, any invariant subspace appears in the miniversal deformation
of some marked subspace. For such a subspace, the miniversal deformation of its canonical
vectorial representation has been obtained in [5].

Example 7.4 For the marked subspaces in example 2.20, the miniversal deformations in [5] are
respectively:

Y (6, 3, 4, 2)(∗) =



1
1

1
1

∗
∗ ∗
∗ ∗
∗ ∗ 1

∗
∗ 1
∗ 1

∗ ∗
∗ ∗ ∗ ∗



Y (6, 2, 4, 3)(∗) =



1
1

1
1

∗
∗ ∗
∗ ∗
∗ ∗ 1

∗
∗ ∗
∗ ∗ ∗

1
1
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However, an invariant subspace can be represented in several of these miniversal deformations.
For example it can be seen that in Inv((3, 2, 1), (2, 1, 0)), the invariant subspace Y (3, 2, 1) is
represented in the miniversal deformations of all marked subspaces. To avoid this redundance,
we will restrict the parameters in the miniversal deformation in [5] in order to each invariant
subspace is represented in only one of them.

Indeed, let us see that the PM reduced families in definition 5.4 are just these desired restricted
miniversal deformation.

Proposition 7.5 Let Y (p′) ∈ BLD∗(p, q) be the canonical representation of a marked subspace
(see definition 2.19). Then, the miniversal deformation of Y (p′) in [5] can be obtained by apply-
ing the BLD-ETs in definitions 3.2 and 3.5 to a general perturbation Y (p′)(∗) in BLD∗(p, q).

Proof.

The proof has the same four steps as in the proof of theorem 5.3 and it is very analogous to
it. We have take into account that in all the transformations the non nullity of the diagonals
Dq1
i1,1
, . . . Dqm

im,m
is not affected because we assume that the parameters of the perturbation are

small, and they can become equal to 1 by multiplying by a factor near to 1.

The next example shows the sequence of BLD-ETs which makes 0 as many perturbation pa-
rameters (*) as possible.

Example 7.6 Let us consider the marked subspace represented by Y ∈ BLD∗((6, 4, 3, 2), (4, 2, 1)),
where Y = Y (6, 3, 4, 2), and a general perturbation Y (∗), where the new entries are assumed
much smaller than 1. Applying (1) as in theorem 5.3 or in definition 5.4 we obtain Y1(∗).

Y =



1
1

1
1

1

1
1



, Y (∗) =



1
∗ 1
∗ ∗ 1 ∗
∗ ∗ ∗ 1 ∗ ∗ ∗
∗
∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 1

∗
∗ ∗ 1
∗ ∗ ∗ ∗ 1 ∗
∗ ∗
∗ ∗ ∗ ∗ ∗



, Y1(∗) =



1
0 1
0 0 1 0
0 0 0 1 0 0 0

∗
∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 1

∗
∗ ∗ 1
∗ ∗ ∗ 0 1 0

∗ ∗
∗ ∗ ∗ ∗ ∗


Applying (2), (3) and (4) as in theorem 5.3 or in definition 5.4 successively we obtain Y2(∗),
Y3(∗) and Y4(∗). This last is the desired miniversal deformation of Y in [5].
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Y2(∗) =



1
0 1
0 0 1 0
0 0 0 1 0 0 0

∗
∗ ∗
∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0 0 1

∗
∗ ∗ 1
∗ ∗ ∗ 0 1 0

∗ ∗
∗ ∗ ∗ ∗ ∗



, Y3(∗) =



1
0 1
0 0 1 0
0 0 0 1 0 0 0

∗
∗ ∗
∗ ∗ ∗ 0
0 ∗ ∗ ∗ 0 0 1

∗
0 ∗ 1
0 0 ∗ 0 1 0

∗ ∗
∗ ∗ ∗ ∗ ∗



, Y4(∗) =



1
0 1
0 0 1 0
0 0 0 1 0 0 0

∗
∗ ∗
0 ∗ ∗ 0
0 0 ∗ ∗ 0 0 1

∗
0 ∗ 1
0 0 ∗ 0 1 0

∗ ∗
∗ ∗ 0 ∗ ∗



Thus, as announced, we have:

Corollary 7.7 (1) The PM reduced family Yred(p
′)(∗) is the subfamily of the miniversal de-

formation of Y (p′) in [5] such that the main diagonals other than D
qj
ij1 are 0. In this way

the marked subspaces other than the central one Y (p′) are eliminated.

(2) The number of parameters that appear in the miniversal deformation in [5] is reduced to:∑
1≤j≤m

∑
s>j

max(0,min(pij − pis − 1, qj − qs − 1, pij − qj , pis − qs)).

Proof.

(1) It is straightforward.

(2) Counting accurately the parameters that appear in theorem 5.3 we obtain:∑
1≤j≤m

∑
s>j

max(0,min(qj − 1, pis)−max(pis − pij + qj , qs)),

and studying the four possible cases we can see that this number is the same as the one in the
statement.

7.3 Marked perturbations

We have seen in section 7.2 that any invariant subspace appears in one and only in one restricted
miniversal deformation (PM reduced family). Its center is just its marked type in section 4.
There, it has been obtained by means of the M algorithm. We can see that once again it
has a geometrical interpretation: for any invariant subspace V = Sp(Y ), its “marked type” is,
among the marked subspaces lying in the boundary of Ỹ , the one whose orbit has the maximal
dimension.

In order to see that, given a marked subspace, we study its perturbations which are also marked.
They can be studied starting from the miniversal deformations in [5]. However, we present an
autonomous approach.
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Definition 7.8 Let V ∈ Inv(p, q) be a marked subspace and Y ≡ Y (p′) ∈ BLD∗(p, q) be its
canonical vectorial representation (see definition 2.19). Its marked uniparametric perturbations
are the marked subspaces obtained by introducing a unique non-zero additional parameter in Y .

Example 7.9 Let us consider p = (6, 4, 3, 2), q = (4, 2, 1) and Y = Y (6, 3, 4, 2) as in example
7.6. It is clear that the only parameters which can give marked uniparametric perturbations are
those placed in the main diagonals: α1, ...α7

Y (α1, ...α7) =



1
1

1 α2

1 α2 α5

α1

α1

α1 α3

α1 α3 1

1
1 α6

α4

α4 α7



Clearly α2, α3, α5 can be eliminated by means of row BLD-ETs, so that, the corresponding
invariant subspaces are equivalent to Y . Analogously α6 can be eliminated by means of column
BLD-ETs.

However, if α1 6= 0, the blocks Y11 and Y23 can be made 0, whereas Y13 becomes non-zero. Hence
Y (α1) ∼= Y (4, 3, 6, 2). Analogously, Y (α4) ∼= Y (6, 2, 4, 3), Y (α7) ∼= Y (6, 3, 2, 4).

Notice that in the above example the new permutation of p is obtained by means of a transpo-
sition in the initial one. In addition, the new transposed pairs are increasing: (4,6), (2,3), (2,4).
The following theorem shows that it is so in general.

Definition 7.10 Let us consider a permutation (pi1 , ...pin) of p compatible with q. The number
of inversions is the number of pairs pij , pij+r such that pij < pij+r , 1 ≤ ij , ij+r ≤ n. We call a
compatible inverse transposition any new permutation of p compatible with q which differs only
in permuting a pair pij , pij+r such that pij > pij+r . Therefore, the number of inversions of the
new permutation is greater than before.

Theorem 7.11 Given a permutation p′ = (pi1 , ..., pin) of p compatible with q, then there is a
one-to-one correspondence between the compatible inverse transpositions of p′ and the marked
uniparametric perturbations of Y (p′).

Proof. Let us assume pij > pij+r and that the corresponding inverse transposition p̄ is also
compatible with q. Let us consider the uniparametric perturbation Y (α) obtained from Y ≡
Y (p′) by means of a parameter α 6= 0 placed in the main diagonal D

qj
ij+r,j

. Let us see that Y (α)

is equivalent to Y (p̄): clearly p̄ij = pij+r and by means of a row BLD-ET with D
qj
ij+r,j

we can
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make 0 the block Yij ,j ; it is enough if Yij ,j+r = 0 (that is qj+r = 0, as for α4 and α7 in the above
example); if it is not (as for α1 in the above example), we can make Yij ,j+r = 0 by means of a

column BLD-ET again with D
qj
ij+r,j

. In any case, Y (α) ∼= Y (p̄).

Conversely, starting on Y ≡ Y (p′), a uniparametric perturbation Y (α), α 6= 0, is marked if the
parameter α is placed in a main diagonal, say D

qj
ij+r,j

. Indeed, if pij < pij+r , the parameter α

can be made 0 by means of a row BLD-ET with D
qj
ij ,j

, so that Y (α) ∼= Y . On the other hand,

if pij > pij+r , then, proceeding as above, it results that Y (α) ∼= Y (p̄).

This theorem leads to a natural organization of the marked subspace in Inv(p, q) as an oriented
graph:

Definition 7.12 The marked subspaces in Inv(p, q) can be organized as an oriented graph as
follows:

(1) The vertices are the permutations of p compatible with q, which we will organize according
to the number of inversions (0,1,2,...).

(2) There is an oriented edge from p′ to p′′ if p′′ can be obtained by means of an inverse trans-
position in p′, or equivalently (see theorem 7.11) if Y (p′′) is an uniparametric perturbation
of Y (p′).

We refer to it as the graph of marked perturbations in Inv(p, q).

Example 7.13 For p = (6, 4, 3, 2) and q = (4, 2, 1, 0) the graph of marked perturbations is
represented in figure 1. For example, a possible path is: (6,4,3,2), (6,4,2,3), (6,2,4,3), (4,2,6,3),
(4,2,3,6). Notice that the edge (4,6,3,2), (4,2,3,6) increases in 3 units the number of inversions.

Clearly, the graph of marked perturbations has origin (p1, ..., pn) and the graph ends in the
compatible permutation having maximal number of inversions (in the above example, (4,2,3,6)).
We can restrict ourselves to the subgraph ending in any prefixed vertex.

Example 7.14 For the above graph, the subgraph ending in Y (4, 2, 6, 3) is represented in figure
1, by means of discontinuous arrows.

Finally, given an invariant subspace V ∈ Inv(p, q) we consider the marked subspaces such that
V is a perturbation of each of them. It is clear that it is also a subgraph, with origin (p1, ..., pn)
and theorem 7.11 shows that its end is the marked type of V. In addition, we point out that if
the initial subspace lies in the boundary of the class of the perturbed one, the dimension of its
orbit is smaller than the one of the perturbed one. Therefore we conclude:

Corollary 7.15 Given V ∈ Inv(p, q), its marked type is the one whose class has the maximal
dimension among the marked subspaces lying in the boundary of its class.

Example 7.16 Let us consider p = (4, 3, 1), q = (2, 1). Then Inv(p, q) is 3-dimensional and
fully parametrised by the miniversal deformation of Y (4, 3, 1):
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Fig. 1: Graph (with continuous arrows) and subgraph (with discontinuous arrows) corresponding
to example 7.13 and example 7.14, respectively.



1
1

a
a

b c



The marked classes are:

values classes dimension
a = b = c = 0 Y (4, 3, 1) 0
a 6= 0, b = c = 0 Y (3, 4, 1) 1
c 6= 0, a = b = 0 Y (4, 1, 3) 2

ac 6= 0 Y (3, 1, 4) 3

.

The non-marked classes are:

values classes

a = c = 0, b 6= 0 Ỹ1

a 6= 0, b 6= 0, c = 0 Ỹ2

a = 0, b 6= 0, c 6= 0, Ỹ3

Only Y (4, 3, 1) lies in the boundary of Ỹ1. Both Y (4, 3, 1) and Y (3, 4, 1) lie in the boundary of
Ỹ2: the marked type of Ỹ2 is Y (3, 4, 1). Both Y (4, 3, 1) and Y (4, 1, 3) lie in the boundary of Ỹ3:
its marked type is Y (4, 1, 3).
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