Implementation and verification of a hardware-based
controller for a three-phase induction motor
on an FPGA

by

Marcel Cases Freixenet
BSc

A thesis submitted in partial fulfilment of the requirements for the degree of

Industrial Electronics and Automatic Control Engineering

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

Escola Politécnica Superior d'Enginyeria

de Manresa

Supervisors
David Soler Jimenez (UPC)
Aleksander Sudnitsdn (TalTech)

Escola Politécnica Superior d’Enginyeria de Manresa
Universitat Politécnica de Catalunya. BarcelonaTech, and

School of Information Technologies
Tallinn University of Technology. TalTech

Manresa

Submitted March 2019

Implementation and verification of a hardware-based
controller for a three-phase induction motor on an
FPGA

Marcel Cases Freixenet

Implementation and verification of a hardware-based controller for a three-phase induction
motor on an FPGA

Book size: A4

Pages: 64

Word count: 12.530

Document written with IMTEX 2¢

Compilation date: March 8, 2019

The electronic version of this thesis can be downloaded from:
https://www.marcelcases.com

Licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
CC BY-NC-SA 4.0

@O0

https://www.marcelcases.com

Abstract

catala
L’objectiu d’aquesta tesi és estudiar diverses tecniques de control motor per tal
d’implementar i verificar un controlador basat en hardware per a un motor d’induccié
trifasic, desenvolupat en llenguatge VHDL i funcionant en una FPGA Artix-7 (Xil-
inx). Aquest controlador esta basat en tecniques de variaci6 de freqiiencia. Els moduls
que defineixen la descripcié de hardware funcionen simultaniament entre ells, i perme-
ten agilitzar el sistema, millorant el rendiment i la resposta del motor, en comparacio
amb un microcontrolador. Aquesta tesi esta relacionada amb els sistemes digitals,
I’electronica de potencia i els sistemes de control.

eesti keel
Kaesoleva t66 eesmark on uurida mootorite juhtimise peamisi tehnikaid, et pro-
jekteerida ja rakendada riistvarapohist kontrollerit kolmefaasilise induktsioonimootori
jaoks, mis on vélja t66tatud VHDL keeles ja to6tab Artix-7 FPGA (Xilinx). See kon-
troller pohineb muutuva sagedusega ajamitehnikatel. Moodulid, mis maaratlevad selle
kontrolleri riistvara kirjelduse, suhtlevad tiksteisega ja voimaldavad mootoril kiiremini
reageerida ning parandavad ka selle joudlust vorreldes mikrokontrolleriga. Kéesolev
t006 on seotud digitaalsiisteemide, voimsuselektroonika ja juhtimissiisteemidega.

English
The aim of this thesis is to study the main techniques of motor control in order to
implement and design a hardware-based controller for a three-phase induction motor,
developed in VHDL language and running on an Artix-7 FPGA (Xilinx). This con-
troller is based on variable-frequency drive techniques. The modules that define this
controller’s hardware description run concurrently to each other, and they allow the
motor to have a better time response and they also improve its performance compared
to a microcontroller. This thesis is related to digital systems, power electronics and
control systems.

11

Dedicat a tothom qui m’ha ajudat

Table of Contents

List of Figures
List of Tables
Listings

Abbreviations

| Background
1 Introduction

2 Motivation

Il Control methods for Alternating Current Induction Motors

3 Variable-frequency Drive

3.1 V/Hzscalar control

4 Field-oriented Control

4.1 Clarke transformation (the (a,b,c) — (a,) projection)
4.2 Park transformation (the (o, 8) — (d, q) projection)
4.3 Inverse Park transformation (the (d,q) — (o, 3) projection)
4.4 Space Vector Pulse Width Modulation

441 SPWMvs SVPWM
4.5 Plregulators

5 Direct Torque Control

51 DTCwvs FOC

11l Workflow: implementing the controller and necessary hard-

ware

6 Field Programmable Gate Arrays
6.1 FPGA over a microcontroller

6.2 Artix-7 FPGA and Basys 3 board

111

vi

vii

viii

Table of Contents

6.3 Xilinx’s Vivado Design Suite L. 22
6.4 The VHDL language 23
Inverter and motor 24
7.1 Microchip’s Power Module 24
7.2 ABB’s three-phase induction motor 26

Implementation and Verification of a scalar VFD on an FPGA with VHDL 28

81 BObILY . . o o 28
8.2 Architecture 29
8.3 Components and functions L. 31
8.3.1 16-bit, 1024 address ROM containing sine values 31
8.3.2 Variable clock dividero 32
8.3.3 Computation of ’end of counting’ value 33
8.4 Verification of the Variable-frequency Drive (VFD) scalar control 33
8.4.1 Testbench of the scalar control 33
8.4.2 Assertion of the dead time and other short circuit preventions . 34
8.5 Simulation and testing oL 34
8.6 Field Programmable Gate Array (FPGA) usage 36
8.6.1 Utilization 36
8.6.2 Power 36

Simulation and Verification of a vector FOC on an FPGA with VHDL 37

9.1 Clarke transformation 37
9.2 Park transformation Lo 38
9.2.1 Component: Trigonometry 39

9.3 Inverse Park transformation 40
9.4 Space Vector Pulse Width Modulation 40
9.5 Simulation and Verification, 42
IV Ending 47
10 Conclusion 48
11 Future work 49
Bibliography 50
Appendices 51
A MCI1H 3-Phase Power Module Block Diagram 51

B Voltage Adapter PCB Scheme 52

v

List of Figures

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4

9.1
9.2
9.3
9.4

Classification of induction motor control strategies
A three-phase inverter and its control signals
Sine PWM wave generation

A Field-oriented Control diagram
Clarke transformation and its projections
Park transformation and its orthogonal projections
Space Vector Pulse Width Modulation (SVPWM) sectors
Reference vector as a combination of adjacent vectors
Pattern of SVPWM in the 3rd sector
PI control diagram o

A Direct Torque Control diagram

FPGA architecture
A Xilinx’s Basys 3 board
Vivado Design Suite user interface

Dead time requirements
Dead time in a single-phase inverter
3-Phase High Voltage Power Module MC1H Inverter
ABB’s three-phase motor L.
3-phase and corresponding magnetic field orientation

ROM after synthesis
Simulation of the scalar control at 50Hz

Phase R signals of the scalar control at 50Hz
FPGA usage

Direct-quadrature-zero transformation waveforms
Inverse Park transformation and SVPWM waveforms
Field-oriented Control (FOC) representation as a block
FOC block diagram L o

6

10
11
13
13
14
15

16

19
21
23
24
25
25
27
27

List of Tables

5.1 Direct Torque Control (DTC) vs FOC

6.1 Basys 3’s main features

8.1 Resources utilization .

vi

Listings

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

Used libraries in the project 28
Entity declaration of the top-level file 29
Sawtooth signal generationo 29
Three-phase sine signal generation 30
Frequency set using the physical buttons 30
Three-phase PWM signals generation 30
Phase signals generation 31
Entity of 16-bit 1024 address ROM memory containing the sine values . 31
Architecture of 16-bit 1024 address ROM memory 31
Entity of a variable clock divider, 32
Architecture of a variable clock divider 32
Function gen eoc Lo 33
TestBench: increasing the frequency 33
Short circuit assertion statement L. 34
Clarke transformation description in VHDL 37
Park transformation description in VHDL 38
Trigonometry component description in VADL 39
Inverse Park transformation description in VHDL 40
SVPWM description in VHDL (Entity) 41
SVPWM description in VHDL (Architecture: state machine) 41
SVPWM description in VHDL (Architecture: behavioral) 42
Routing the components on the top level file 43
Stimulus generation (TestBench) (I) 43
Stimulus generation (TestBench) (IT) 44

Vil

Abbreviations

AC
ACIM
ADC
ASIC
BLDC
DC
DTC
FOC
FPGA
HDL
IGBT
LUT
PI
PMSM
RTL
SPWM
SVPWM
THD
VFD
VHDL

VHSIC

Alternating Current

Alternating Current Induction Motor
Analog-to-digital Converter
Application-specific Integrated Circuit
Brushless DC electric motor

Direct Current

Direct Torque Control

Field-oriented Control

Field Programmable Gate Array
Hardware Description Language
Insulated-gate Bipolar Transistor
Look-up Table

Proportional Integral
Permanent-magnet Synchronous Motor
Register-transfer Level

Sinusoidal Pulse Width Modulation
Space Vector Pulse Width Modulation
Total Harmonic Distortion
Variable-frequency Drive

VHSIC Hardware Description Language

Very High Speed Integrated Circuit

viil

Part |

Background

1 Introduction

Thomas Davenport! developed the first motor powered by electricity. Soon after,
Nikola Tesla? discovered Alternating Current (AC) electricity, and he implemented it
to power the first Alternating Current Induction Motor (ACIM) in 1887.

AC motors have been improved ever since, both in their assembly and their con-
trol methods. They are used in many sectors: in industrial drives, vehicles (cranes,
trains, cars, buses) or construction, among others. Nowadays they are boosting the
electric mobility day after day as they are being used more frequently in the automo-
tive industry.

It is estimated that about 25% of the world’s electrical energy is consumed by
electric motors, specifically in industrial applications. The way these motors are com-
manded has a direct impact in the consumption of energy and the motor’s performance.
This is why these control techniques have to be optimized, depending on the type of
motor they have to control, to avoid energy losses and damaging components built in
the motor.

There are many control techniques used to manage their operation. When it comes
to three-phase ACIMs, the ones that are used in machines that require high torque,
there are two main techniques developed enough to control them: Direct Torque Con-

trol (DTC) and Field-oriented Control (FOC).

Both techniques are based on classic Variable-frequency Drives (VFDs), as well
as V/Hz control, but they have the ability to adjust some parameters, like the motor
voltage magnitude, the current angle of the motor, and the frequency of the shaft so
as to control in a more precise way the magnetic flux and the torque of the motor.

FOC is a control technique in which the currents that flow through the stator, the
stationary part of the motor system (outer part), are represented as two orthogonal
components that can be addressed like a vector. In order to do this, some processes
have to be described or programmed. These processes are the Clarke transformation,
the Park transformation, and the Inverse Park transformation. Then the output signal
is sent to a Space Vector Pulse Width Modulation (SVPWM) module, which has the

!Thomas Davenport (9 July 1802 - 6 July 1851) was a Vermont blacksmith who constructed the first
American DC electric motor in 1834.

2Nikola Tesla (10 July 1856 - 7 January 1943) was a Serbian-American inventor, electrical engineer,
mechanical engineer, and futurist who is best known for his contributions to the design of the
modern alternating current (AC) electricity supply system.

1 Introduction

function to chop the signal so that the power module, or inverter, is able to give to each
one of the three phases of the motor the required voltage and current at any moment.

DTC is a less common ACIM control method that calculates and estimates the
torque and magnetic flux of the motor in order to directly control the torque of the
motor’s shaft, and thus its speed. This involves measuring the current and voltage of
the motor. The main difference compared to FOC is that it is not necessary to measure
or estimate the current rotor position. The SVPWM or any other PWM modules are
not necessary.

This thesis is the result of a period of research in the fields of electric motor control
techniques and Hardware Description Languages (HDLs) design. The main goal of the
experimental part of this project is to implement a VFD method on a FPGA using
Vivado Design Suite, a Xilinx’s IDE for HDLs, so that each process of this control sys-
tem run concurrently to each other. This allows us to analyze the impact that it has in
the motor: speed response, harmonics reduction, and other improvements compared
to the motor control with classical microcontrollers.

The thesis is structured in two clearly differentiated parts: one is the theoretical
background (= Part II) where FOC, DTC and general V/Hz (VFD) methods are
studied and analyzed as well as every component that pertains to these methods; and
the other one (= Part III) is the implementation of the VFD (V/Hz) controller in
VHSIC Hardware Description Language (VHDL) on a FPGA and the description of
the hardware used: FPGA board, power module, motor, voltage level circuits, and
wiring. A study of the performance of this control method is also included.

2 Motivation

My personal motivation when choosing a topic for my Bachelor’s thesis was my
interest in FPGA technology and the advantages of synthesized hardware over the
classic microcontrollers or any other device used to perform the operations involved in
the control of Alternating Current Induction Motor methods.

Firstly, my motivation to study the hardware design and FPGAs beyond the con-
tents studied in class was my first approach to what this thesis has ended up being. It
was the opportunity I had to attend the course Digital Systems Design with VHDL at
TalTech that helped me to learn concepts of FPGAs, VHDL and the software suite,
Vivado, and to widen my previous knowledge of the VHDL language.

My intention was to find a useful application where FPGAs could have a real
improvement of performance and time response. This is why, while defining the exper-
imental part of the thesis, a good option was the implementation of a motor control
method in VHDL. This was also a good reason to study in depth the most common
used methods of ACIM control, and this has allowed me to develop a research and
more theory-oriented part for this thesis. This is why this thesis is multidisciplinary,
as it involves topics related to mathematical transformations, hardware design, power
electronics, control systems and informatics, to name a few.

Finally, the availability of means was key to the success of the experimental part,
this is, the FPGA board (Basys 3), the power module (inverter), the board designed
specifically to connect the board with the power module, and the induction motor
available in the laboratories of my university.

Part 1l

Control methods for Alternating
Current Induction Motors

3 Variable-frequency Drive

Variable-frequency Drive (VED), also known as variable speed drive or inverter
drive, is a group of control techniques based on adjustable-speed drive for ACIMs. The
methods related to VFD are widely used in electro-mechanical drive systems to control
AC motor speed and torque by varying motor input frequency and voltage.

VFDs have many applications in industry. Not only ACIMs can be controlled
with these strategies. Some of the purposes of VFD beyond motor control are the
commandment of AC-AC and DC-AC drives.

Induction motor control strategies

Scalar control Vector control

\ v

With speed sensor Open loop With speed sensor
*
@

Direct Torque
Control

Field Oriented
Control

Space Vector
Modulation

Direct Self Control

Figure 3.1 Classification of induction motor control strategies

This part of the project studies the three principal techniques for ACIM control:
V/Hz (scalar control), and Field-oriented Control and Direct Torque Control (vector

control).

3 Variable-frequency Drive

3.1 V/Hz scalar control

Among the motor control techniques studied in this thesis, VFD Volt /Hertz scalar
control is the most simple in concept and design, despite having some drawbacks, the
most prominent of them being the impossibility to stabilize the motor at low frequen-
cies (up to 5Hz), and a slow response in speed changes when the motor has a load.

This strategy consists in providing the switches of an inverter (= Figure 3.2) with

a signal corresponding to the current state of the switch (ON or OFF), thus defining
the desired current orientation of the magnetic field.

R

s1 —>\ 53 —\
|

' S5 —»\t

Vde| +

T

s4 —>\ s6 —>\ s2 —>\

Figure 3.2 A three-phase inverter and its control signals

In order to obtain a sinusoidal signal at the outputs to the motor’s three phases,
the signal driven through the six switches of the inverter’s circuit has to be controlled
somehow. This can be done by generating a variable PWM signal at a specific fre-
quency, much higher than the rotation frequency of the magnetic field. When this
signal is generated, the duty cycle of the PWM wave can be adjusted at real time so
that the output signal to the phases of the motor follows a sine pattern.

To produce the corresponding control signal for the Insulated-gate Bipolar Tran-
sistors (IGBTSs), it has to be compared by a sine signal (in light green) stored in a ROM
and a sawtooth signal (in dark blue), and according to this comparison, the duty cycle
of the PWM (pink) is established at every moment, as shown on = Figure 3.3.

This comparison of signals, which generates a variable PWM output, has to be
performed for each one of the three phases of the system concurrently, making sure
that the sine signals are shifted 120 degrees to each other.

The torque of the motor’s shaft when using a scalar control method can be con-
trolled by directly modifying the amplitude of the output sine signals. This is why the
sine signal before the comparison with the sawtooth signal is modulated by a factor,

3 Variable-frequency Drive

p—

source signals

e}

PWM signal

Time

Figure 3.3 Sine PWM wave generation

from 0 to 100. This factor is directly proportional to the current set frequency, from
0Hz to the nominal speed of the motor (usually 3000rpm or 50Hz). For speeds greater
than the nominal speed, the factor remains 100. This factor will prevent the inverter
and the motor from receiving high currents at low speeds, which could be harmful for
the system.

4 Field-oriented Control

Field-oriented Control (FOC), commonly referred as vector control, is a technique
used to control three-phase Alternating Current Induction Motors based on VFD that
is stator-centric. This means that all of the operations that have to be performed in
order to run a FOC are made from the stator’s reference frame, and they are repre-
sented by a vector.

In order to run a FOC, the signal coming from the feedback of the system, which
is the magnitude of the current on two phases from the power module to the motor, has
to be treated and modified by two mathematical transformations: the Clarke transfor-
mation and the Park transformation, as shown in = Figure 4.1. These transformations
lead to a new reference frame, named (d, ¢), which is time-invariant.

An ACIM controlled by a FOC, after the required mathematical transformations,
can be controlled in a way similar of the DC motors. This allows to control the motor
in a more accurate way, whether it is in steady state or transient.

iS ¢ v Park-1t. v ¢VDC
qre Sqref Scref

———O—= Pl |—"> dg > -
i SV _| 3-phase
1S dref VSdref VSpref PWM Inverter

—»() » PI >/ o.f > -

_A y
0
iSq . iSa ia
d,q . (17[3 -‘—0)

154 IS b
o,Lp = B a,b,cl= °)
Park t. Clarke t.
AC
motor

Figure 4.1 A Field-oriented Control diagram

4 Field-oriented Control

4.1 Clarke transformation (the (a,b,¢) — (o,)
projection)

Clarke transformation, also known as Alpha-beta transformation, named after
Edith Clarke!, is a mathematical transformation that has the purpose to convert a,
three-phase system into a bi-dimensional, time-variant system (a, b, c) — («a, 3).

Figure 4.2 Clarke transformation and its projections

In a three-phase system, the signals of the three phases (a, b, ¢) are represented by
three different axis separated 2%mds to each other. After the Clarke transformation,
the projection of the vectors is represented only by two orthogonal components, («a,).
For this result, it is assumed that the axis a and the axis « are in the same direction.

1S = 1q

. . . 4.1
158 = %ZG + %Zb ()
A product of matrix is used to solve this system:
: 11 [)
(isal?)) _ 2! 22 (4.2)

The resulting system is still time-variant.

'Edith Clarke (February 10, 1883 - October 29, 1959) was the first female electrical engineer and
the first female professor of electrical engineering at the University of Texas at Austin.

10

4 Field-oriented Control

4.2 Park transformation (the (o, 3) — (d, q) projection)

Park transformation, named after Robert H. Park?, is considered the most critical
process of the FOC. This projection transforms a two phase orthogonal system, which
is made up by the output signals of the Clarke transformation, into a new rotating ref-
erence frame («,) — (d, q), which is a time-invariant system. The only requirement
is to consider the d axis aligned with the rotor flux.

BA

o=a

Figure 4.3 Park transformation and its orthogonal projections

The result of this projection is sometimes known as Direct-quadrature-zero trans-
formation when referring to the product of the Clarke transformation and the Park
transformation together.

The flux and torque are components of a new vector. This vector is calculated by
solving the linear system of the & Equation 4.3.

{ 1S4 = 150 COS O + 1g3sin 6 (4.3)

i5q = —15q SN0 + g cost

In this equation, 6 is the rotor flux position, and it has to be either measured or

estimated. Knowledge of the rotor flux position is the core of the correct performance
of FOC.

From this transformation on, the system is treated as if we were rotating inside
of the armature or the shaft.

2Robert H. Park (March 15, 1902 - February 18, 1994) was an American electrical engineer and
inventor.

11

4 Field-oriented Control

4.3 Inverse Park transformation (the (d,q) — (o, 5)
projection)

The Inverse Park transformation is the process in which the reference signals and
the feedback processed signals are transformed again from the rotating reference into
a two-phase orthogonal system (d,q) — («, 5). It transforms voltage signals instead
of current in order to command the IGBTSs of the inverter.

The equations that define this transformation are the following:
{ USaref — USdref cos 0 — USqref sin ¢ (4 4)
VSBref = USdref SN0 + Vggref COS 0

The voltage vector, which is the output of the Inverse Park transform block, is
then applied as the input vector to the SVPWM component.

4.4 Space Vector Pulse Width Modulation

The Space Vector Pulse Width Modulation (SVPWM) is a technique used to
transform an orthogonal reference, represented by a vector, to digital pulses that di-
rectly control the inverter that provides the signal to the three phases of an ACIM.

This technique is based on PWM and is applicable to different types of AC mo-
tors, such as ACIMs, Brushless DC electric motors (BLDCs) and Permanent-magnet
Synchronous Motors (PMSMs).

Some studies of SVPWM reveal that this technique utilizes DC voltage more effi-
ciently and generates less harmonic distortion when compared to the classic Sinusoidal
Pulse Width Modulation (SPWM) method. [1]

The commutation of these switches must respect the following conditions:

[three of the switches must always be ON and three always OFF, and

(3 the upper and the lower switches of the same branch have to be driven with two
complementary signals in order to avoid short-circuits.

SVPWM can be represented by vectors that divide the plan into six sectors =
Figure 4.4. Depending on the sector that the voltage reference is in, two adjacent
vectors are chosen. These two adjacent vectors are time-weighted in a sample period
to produce the desired output voltage to the inverter.

12

4 Field-oriented Control

Figure 4.4 SVPWM sectors

As an example, if the current orthogonal input vector was located on the 3rd
sector, like in @ Figure 4.5, then a linear system made from the adjacent vectors
would have to be solved (= Equation 4.5).

vV, (100)

Figure 4.5 Reference vector as a combination of adjacent vectors

_ T, T
Vref — %Vll + TGV(S
Where T, and Ty are the times during which the vectors Vj, Vi are applied and

Ty the time during which the zero vectors are applied.

The = Figure 4.6 shows the output time-weighted signal that feeds the inverter.
This would be the configuration for the third sector too.

13

4 Field-oriented Control

0

t
|

t;
2

t,

T4 T2 | T2 T/4 | T, /A T4 T4 | Ty

e i oa] e i ek

-+

SR G et SR, e e PSR Bl B [S Rt S

Figure 4.6 Pattern of SVPWM in the 3rd sector

4.4.1 SPWM vs SVPWM

Both techniques Sinusoidal Pulse Width Modulation and Space Vector Pulse Width
Modulation have the same objective: feeding the transistors of the inverter to produce
a sinusoidal signal than can make the motor turn. However, each system has a different
method to achieve this purpose.

While SPWM generates a 3-phase frequency from a simple PWM sine-sawtooth
wave comparison, SVPWM is a more sophisticated technique that provides a higher
voltage to the motor with lower Total Harmonic Distortion, providing a more efficient
use of the supply voltage.

In SPWM, the locus of the reference vector is inside of a circle with a radius of
1/2Vq., while in SVPWM the locus is located at 1/v/3Vg.. This difference shows that
the output voltage of SVPWM is 15.47% more efficient than that of SPWM.

4.5 PI regulators

The Proportional Integral (PI) regulators in FOC have the function to regulate
the two signals that are the input to the control system: the torque component ref-
erence and the flux component reference. They are dependent on the constants that
have to be set in order to reach the quickest time response with the lowest overshooting

14

4 Field-oriented Control

possible.

Before these two signals are regulated by the PI regulators, they are compared
with the output vector of the Park transformation and an error signal is calculated.
Finally, the regulated signal is the input to the Park transformation component.

Figure 4.7 PI control diagram

15

5 Direct Torque Control

Direct Torque Control (DTC) is a more recent AC motor control method de-
veloped by ABB engineers in 1985. DTC is optimal for ACIMs and PMSMs. This
technique is also based on vector VFDs.

The principles of operation of the DTC is to monitor the flux dynamics of the
stator and then to directly manipulate the flux that goes through the stator in the
form of a vector. This vector is proportional to the torque force at the motor’s shaft.
Thus, DTC directly controls torque and stator flux, and indirectly controls the stator
currents and voltages.

Flux Comparator

*
/1.5‘ "'.;n A’a"s _ x;l ,
1 sl ®
T, +-AATL’ T X ogic
":l’_ U " .
Torque VS
(Comparator Sector Number
Generator
0, I
1, Flux/Torque [5
gl Calculator | s

s

Figure 5.1 A Direct Torque Control diagram

In a DTC, torque and flux can be changed very fast by modifying the references.
It also has high efficiency and low losses. The step response has virtually no overshoot.
No coordinate transforms are needed, all calculations are done in stationary coordinate
system. No separate modulator is needed (although it can be used). The hysteresis
control defines the switch control signals directly. There is no need for PI current
controllers. Thus no tuning of the control is required and the same control can be used

in different motors.

According to ABB, the main advantages of DTC over other control methods are
the following:

16

5 Direct Torque Control

[No need for motor speed or position feedback.
O Installation of costly encoders or other feedback devices can be avoided.

O DTC control available for different types of motors, including PMSM and the
newer synchronous reluctance motors.

[Accurate torque and speed control down to low speeds, as well as full startup
torque down to zero speed.

3 Excellent torque linearity.
O High static and dynamic speed accuracy.

(3 Absence of co-ordinate transform.
However, DTC has some drawbacks:

[Possible problems during starting.

[Requirement of torque and flux estimators, implying the consequent parameters
identification.

5.1 DTC vs FOC

Direct Torque Control is considered to have a slight better performance than FOC
for the following reasons:

DT d t stati f f
Coordinates reference frame ¢ (d,) at stationary reference frame
FOC (d, q) at rotor
DT T d stator fl
Controlled variables ¢ Orque and Statol X
Rotor flux, torque current and rotor
FOC
flux current
Parameter sensitivit DTC Stator resistance
Y FOC | (d, q) inductances and rotor resistance
Rotor speed measurement bTC Not required
P FOC Required (measured or estimated)
DTC Not required
C dinate t fi ti
COTAInAte Lranstotmations mroc Required (Clarke and Park)
DTC Lowest
Switching 1
witching losses FOC Tow
p)) ¢ DTC Lower
rocessing requirements
& red FOC Higher

Table 5.1 DTC vs FOC

17

Part 11l

Workflow: implementing the
controller and necessary hardware

18

6 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are a hardware-based technology de-
signed to performing calculations, routing digital signals, and controlling embedded
systems using programmable logic.

FPGAs consist of arrays of logic blocs that are programmable. The chip that
contains the FPGA is surrounded by programmable routing resources, which allow the
hardware designer to make interconnections between these logic units. Some of these
units have ports that connect the internal signals with physical signals.

The first FPGA was introduced by Xilinx in 1985. Nowadays, most of the com-
mercially available FPGAs are manufactured by Xilinx and Altera (Intel), which make

up 90% of FPGAs market, but recently more companies have started developing their
own FPGA boards.

-

:
DI:IDI:II:]DDI%I
I0IEIE
IEIEIE
IEIEIE
mm|m|=
00 OO0 OO0 OO0

O
O
O
O
O
O
O
O

Figure 6.1 FPGA architecture

19

6 Field Programmable Gate Arrays

6.1 FPGA over a microcontroller

Microcontrollers have become a dominant component in modern electronic design.
They are highly versatile and inexpensive, and can do many of the operations needed in
industry, automotive or any other field. They usually are a person’s first introduction
to the fields related to electronics. Nonetheless, a microcontroller is built around a
processor and processors come with fundamental limitations. In some cases, an FPGA
can be more useful than a classical microcontroller.

By definition, a processor performs its tasks by executing instructions sequen-
tially, this is, that the processor’s operations are inherently constrained: the desired
functionality must be adapted to the available instructions and, in most cases, it is not
possible to accomplish multiple processing tasks simultaneously, even if the instruction
set is designed to be highly versatile.

A good alternative to these limitations would be a hardware-based approach, close
to the functionality of Application-specific Integrated Circuits (ASICs). This is where
FPGAs have their niche: they have a time performance close to that of ASICs but
without the need of having additional hardware. In the case a FPGA is used, its op-
eration will be described in a Hardware Description Language, like VHDL or Verilog,
and once the code has been synthesized, the final result will have a behavior like a
real hardware component. An advantage is that this code can be rewritten and re
synthesized as many times as necessary, and the modules of a top level project are
run concurrently to each other, avoiding the sequential operation that microcontrollers
have.

6.2 Artix-7 FPGA and Basys 3 board

Basys 3 = Figure 6.2 is a FPGA development board intended for education pur-
poses that includes a FPGA chip (Artix-7) and a complete set of peripherals ready
to use together. Hardware descriptions for the Basys 3 can be written in VHDL or
Verilog, and synthesized, on Vivado Design Suite. In case of the necessity of a copro-
cessor for a given project, a simple ALU can be instantiated on the architecture of this
project to work as a processor, and a compiled C program can be run on it.

Basys 3 is the board that has been used for this motor control project given the
huge amount of cells (more than the necessary for this project), the 12-bit resolution
ADC converter and the ability to connect the board with the power module. Its main
features are summarized in = Table 6.1

20

6 Field Programmable Gate Arrays

Figure 6.2 A Xilinx’s Basys 3 board

Artix-7 FPGA Trainer Board Features

On-chip analog-to-digital converter (XADC, 12-bit resolution)

Key Specifications

FPGA part number

XCTA35T-1CPG236C

Logic cells

33,280 in 5200 slices

Block RAM 1,800 Kbits
DSP slices 90
Internal clock 100MHz

Connectivity and Onboard I/0

Pmod connectors 3

Switches 16

Buttons)

User LED 16

7-seg displays 4-Digit

VGA 12-bit

USB HID Host (KB/Mouse/Mass Storage)
Electrical characteristics

Power USB (5V in)

Logic level 3.3V output

Physical characteristics

Width

7.1 cm

Length

12.2 cm

Table 6.1 Basys 3’s main features

21

6 Field Programmable Gate Arrays

6.3 Xilinx’s Vivado Design Suite

Vivado Design Suite by Xilinx is the development platform of hardware descrip-
tion for all types of Xilinx’s boards. The whole process of hardware description can be
handled in the suite, from highlighting the code, simulating or synthesizing to imple-
menting, programming and debugging the output of the project on the boards.

Usually, a project on Vivado consists in the following steps:

Code The first and most important part of the project consists in the development
of the code, in VHDL or Verilog. This is the part where the entity (input and
output ports) and the architecture (behavioral model) are defined.

Block design integration Although this part is optional, it consists in integrating
components or IP’s (Intellectual Property modules) to the main project and to
wire them in a graphical, more user-friendly way.

Simulation Simulation is a key part of the hardware description process. it allows us
to test every part of the code and to monitor each one of the internal signals
so that the developer can easily find mistakes or the source of an unexpected
behavior of the code. Usually simulations run according to a testbench, which
is an independent VHDL piece of code, compiled (not synthesized), that defines
the state of the inputs at every moment.

RTL analysis Register-transfer Level (RTL) is a design abstraction which shows a
model of a digital circuit in terms of the flow of digital signals (data) between
hardware registers, and the logical operations performed on those signals. This
analysis generates a sketch of the VHDL code pre-synthesis.

Synthesis Process that transforms high level constructs in human-readable code, which
don’t have real physical hardware that can be wired up to do your logic, into low
level logical constructs which can be literally modeled in the form of transistor
logic or look-up tables or other FPGA or ASIC hardware components.

Implementation Vivado implementation includes all steps necessary to place and
route the netlist onto device resources, within the logical, physical, and timing
constraints of the design.

Programming and debugging Last part of the process. A bitstream file is generated
and programmed into the FPGA.

22

6 Field Programmable Gate Arrays

X vfd - [DyMarcel/TFG/codi/vid/vfdxpr] - Vivado 20182
Synthesis Out-of-date details. ~

File Edt Flow Tools Repors Window Lajout View Help Quick Access
fa, B X »r B g Z * == Default Layout ~
Flow Navigator ER R PROJECT MANAGER -1fd ? X
~ PROJECT MANAGER
Sources. 2 _ 00X | |Pojectsummary x| vidvha x 20@
£} settings
Q ¢ + & D:/Marcel/TFG/CodiMaMd. srcs/sources_1inewhfd.md x
Add Sources
7 Design Saurces (2
Language Templates A Q % BB X[/ ®E Q
@ vid(Behavioral) (dvh) (6) . -
T 1P Catalog ® inst_sawtooth_gen: sawtooth_gen(5 sant =
® inst_sin_gen : sin_gen(Ber
~ P INTEGRATOR ® inst_button_iter: button_i
Create Block Design @ inst_toggle : toggle(Behavio
OpenBl @ clock_dwider(Behavioral) (cloc!
> = Constraints (1
Generate B
> = Simulation Sources (3
' SIMULATION Hierarchy | Libraries Compile Order .
Run Simulation = 0oz
12| librazy ieee;
Source File Properties 200X 13| use icec.std logic 1164.all;
v RTLANALYSIS | use ieee.mmeric std.all;
® viavnd & -
> Open Elaborated Design
| 16F) entity vfd is
/| Enabled ; " y 8
5 port (clk, zeset, emable : in std logic;
¥ STHEN Location: D:MarcellTF GlcodiMdid.srcsls ources_1inew 18 s : out std logic vector(l to €) -- Output to the inverter (pover moduls's & switces)
P Run Synthesis 10 i
T wou | [-] 206 end vEd;
> Open Synthesized Design T *
Library: i_detauttiv, [- | =
2200 architecture Behavioral of vid is
~ IMPLEMENTATION size 43K8 A 2t
P Run Implementation T — 24 component sawtooth_gen is .
General | Froperiies =l g o =)
> Open Implemented Design
TciConsole | Messages | Log | Reports | DesignRuns x 22 = (m] 1]
v PROGRAH AND DEBUG ——
A a|x|¢ + %
i Generate Bitstream
e ot ol Name Constraints Status WNS TNS WHS THS TPWS TotalPower FailedRoutes LUT FF BRAMs URAM DSP Stan Elapsed Run Stiategy Report Strategy
en Hardware Manager
L ? v syt consts_1 Synthesis Out-of-date 4 9 om0 0 0 26M9555PM 00:00:15 Vivado Synthesis Defaults (Vivado Syninesis 2018) Vivado Synihesis Default

Vivado Defaulte (Vivada 2018) Vivado De

impl_1 constrs 1 Notstarted

>
270 Insert VHDL

Figure 6.3 Vivado Design Suite user interface

6.4 The VHDL language

VHSIC Hardware Description Language (VHDL) is a hardware description lan-
guage used in digital electronics design. It first appeared in 1980 and is the IEEE’s
officially supported language for hardware prototyping, hence becoming the standard.

VHDL is a strong-typed language based on the Ada programming language. The
biggest advantage of VHDL over classic programming languages is that, when used for
systems design, it permits the behavior of the designed system to be described and
verified before synthesis tools translate the design into real hardware.

Another benefit of VHDL is that it can handle parallelism, or concurrency. This
is useful, if not essential, in many applications that can be programmed or described.

A VHDL description always consists in the following two main modules:

Entity This is the block as seen from the outside of the module. The entity describes
the input and output signals, the type of signals, the size of these signals and, as
an optional statement, can include generic definitions.

Architecture Definition of the behavior of the internal and external signals of the
hardware description. Other components can be instantiated in the architecture.
Processes and concurrent statements can be described in this section.

23

{ Inverter and motor

7.1 Microchip’s Power Module

Inverting a signal is the process in which a digital signal is transfered to the phys-
ical switches of an inverting circuit in order to amplify the power of that signal (both
the voltage and current). The output signal is directly connected to the three phases
of the motor. In order to obtain a three-phase inverted wave, the six switches of the
inverter’s internal circuit have to be controlled following a switching sequence deter-
mined by the controller.

According to the datasheet of the Microchip’s Power Module used in this project =>
Figure 7.3 (3-Phase High Voltage Power Module MC1H), six units of 600V N-Channel
IGBT transistors with co-packaged anti-parallel 600V diodes are used as solid-state
switches to control the signal through the phases.

Inverting the DC signal is a critical part of the motor control process because it
is the transition from a digital power signal (low power) to a high voltage signal (high
power). This fact requires the designer to take special precautions in order to avoid
electrical hazards.

A concept to take into consideration when designing a motor control is the dead
time. The dead time is defined as a small interval of time during which both the
upper and lower switches in a phase-leg are off. This prevents an hypothetical delay
in the switching of a IGBT to result in a harmful short-circuit, as shown in = Figure 7.2.

The manufacturer specifies that the dead time has to be implemented by the de-
signer of the control system (= Figure 7.1). They also recommend the dead time to
be at least 2us. The highest the dead time is, the worse the Total Harmonic Distor-
tion (THD) will be. For this project, a dead time of 3us has been implemented.

Note: No hardware Dead Time is included in the design as it is included as a
feature of the Motor Control PWM Module of the dsPIC device. A minimum
Dead Time of 2 us should be used. This applies to both turn on and turn off
of both devices.

Figure 7.1 Dead time requirements

24

7 Inverter and motor

Vder2

Figure 7.2 Dead time in a single-phase inverter

X

\‘\._ -
. =

-

Figure 7.3 3-Phase High Voltage Power Module MC1H Inverter

25

7 Inverter and motor

7.2 ABB'’s three-phase induction motor

Alternating Current Induction Motors (ACIMs), or asynchronous motor, are AC
electric motor in which the electric current in the rotor needed to produce torque is
obtained by electromagnetic induction from the magnetic field of the stator winding.
An induction motor can therefore be made without physical electrical connections to
the rotor. Usually, ACIMs are squirrel-cage type, like the one used in this project.

ACIMs are considered asynchronous motors because they always run at a speed
lower than the synchronous speed. This difference is measured by the slip.

The rotational speed of the rotating magnetic field is called as synchronous speed,
and is defined by the => Equation 7.1.

120 f
Ns:OP>< (RPM) (7.1)

where f is the frequency of the supply and P is the number of poles.

The difference between the synchronous speed and actual speed of the rotor is
called slip and is defined by => Equation 7.2.

Ns — N
e 100 (o/o0) (7.2)

where N is the actual speed of the rotor

Three-phase ACIMs have some advantaged over other motors, that can be cate-
gorized as follows:

[They have very simple and rugged (almost unbreakable) construction
[Reliability and having low cost

 High efficiency and usually a good power factor

(Minimum maintenance is required

[Three-phase induction motor is self starting, so extra starting motor or other
special starting arrangements are not necessary

26

7 Inverter and motor

Figure 7.4 ABB’s three-phase motor

Figure 7.5 3-phase and corresponding magnetic field orientation

27

8 Implementation and Verification of
a scalar VFD on an FPGA with
VHDL

The following chapters comprise the most important elements (components, pro-
cesses, functions, ...) of the hardware description of the scalar control method, as
well as the testbench used to verify the operation of the technique ad to check that
the output signals to the inverter will not create any electrical hazard.

The libraries used in the VFD control are the following:

Listing 8.1: Used libraries in the project

library ieee;

use ieee. .all;
use ieee. .all;
use ieee. .all; —- Library for sin_gen process

All of them are official VHDL libraries, supported by IEEE and reliable after the
synthesis has been done.

8.1 Entity

The entity of a project defines the physical ports that will be used to communicate
to and from the FPGA. A generic value is defined, max_freq, which will define the top
value of the frequency reached by the control system. It is recommended to set this
value to the nominal speed of the motor, 50Hz in this case. This value can be modified
previous to the synthesis.

At the following listing: clk comes from the internal oscillator of the Basys 3
board; reset is an input signal to the FPGA from a button thatwill reset all of the
components, if necessary; up and down are buttons located on the board that will
increase or decrease the frequency one unit; reset_out drives the reset signal to the
power module and will reactivate it after an error has occurred; pwm_wave_phi_out is a
control signal that shows the inverted wave of all of the three phases; s are the output
signals to the six IGBTSs of the power inverter; enable_led will power on the LEDs of
the board to warn us when the motor should be running; cat and an will be routed to

28

8 Implementation and Verification of a scalar VFD on an FPGA with VHDL

the 7-segment displays so that they show the current set frequency.

Listing 8.2: Entity declaration of the top-level file

entity vfd is

generic (max_freq : := 50 —— 3000rpm, nominal
)
port (clk, —-— W5 (internal)
reset,
down, —— btnD
up : in ; —— btnU

reset_out, pwm_wave_phl_out, pwm_wave_ph2_out,
pwm_wave_ph3_out, sync : out g
s : out (1 to 6); —— Output to the inverter

(power module's 6 switces)
enable_led : out (15 downto 0); —— Enable
LED indicator
cat : out (7 downto 0); —-- To 7-seg BCDs
an : out (3 downto 0)

)
end vfd;

8.2 Architecture

The process described in = Listing 8.3 generates a sawtooth signal that is com-
pared real time with the sine wave of each one of the three phases. The amplitude of
the sawtooth signal is 2'¢ and spans from —2'° to 2!°. The period of the sawtooth
wave is 10us, much higher than the top frequency of the sine waves (50Hz).

Listing 8.3: Sawtooth signal generation

proc_sawtooth_gen : process (clk) begin

if (clk) then
if reset = 'l' then
sawtooth_wave_int <= -2x%15;
elsif (enable = 'l') then
if sawtooth_wave_int > 2x%x15-1 then —--32767
sawtooth_wave_int <= -2#%%15;
elsif (sin_wave_clk _div = '1l') then
sawtooth_wave_int <= sawtooth_wave_int + 2048; ——
64;--2048;
end if;
end if;
end if;
end process;
sawtooth_wave <= (to_unsigned (sawtooth_wave_int, 16));

The process described in => Listing 8.4 manages the address map that will request
a sine value to the instances of the ROM component so that a sine signal can be drawn.
This process is considered critical because it defines both the phase shift angle and the
frequency of the generated sine signals. The signal sin_wave_clk_div is the output of a
variable clock divider component that varies its dividing factor according to the value

29

8 Implementation and Verification of a scalar VFD on an FPGA with VHDL

of the current frequency, thus defining the final frequency of the output sine waves.

Listing 8.4: Three-phase sine signal generation

proc_sin_gen : process (clk) begin

if (clk) then
if (reset = 'l') or (enable_pulse = 'l') then
address_phl <= (others => '0'); ——- (0 degrees)
address_ph2 <= "1010101010"; --682 (240 degrees)
address_ph3 <= "0101010101"; --341 (120 degrees)
elsif (enable = 'l') and (sin_wave_clk_div = '1l') then

address_phl <= address_phl + 1;
address_ph2 <= address_ph2 + 1;
address_ph3 <= address_ph3 + 1;
end if;
end if;
end process;

The listing below allows the user to change the frequency of the motor using the
up and down buttons. It also prevents the user from exceeding the top value of the
frequency, set at the entity by the generic constant max_freq.

Listing 8.5: Frequency set using the physical buttons

proc_set_freq up_down_counter : process (clk) begin

if (clk) then
if (reset = '1l') then
current_freqg <= 0;
elsif (up_pulse = 'l') and (current_freg < max_freq) then
current_freqg <= current_freqg + 1;
elsif (down_pulse = 'l') and (current_freq > 0) then
current_freqg <= current_freq - 1;
end if;
end if;

end process;

= Listing 8.6 is a concurrent assignment to the binary signals pwm_wave_i. It is a
comparison between the sine and sawtooth signals, and the result is a Sine-PWM signal.

Listing 8.6: Three-phase PWM signals generation

pwm_wave_phl <= 'l' when ((signed (sawtooth_wave)) <
(signed(sin_wave_phl))) and (enable = 'l') else '0';

pwm_wave_ph2 <= 'l' when ((signed (sawtooth_wave)) <
(signed(sin_wave_ph2))) and (enable = 'l') else '0';

pwm_wave_ph3 <= 'l' when ((signed (sawtooth_wave)) <
(signed(sin_wave_ph3))) and (enable = '1l') else '0';

The following component takes pwm_wave_phi as its input and generates the value
of the IGBTSs for one leg of the inverter (or one phase). This component also generates
a delay in the switching of the IGBTs to create a dead time of 2us.

30

8 Implementation and Verification of a scalar VFD on an FPGA with VHDL

Listing 8.7: Phase signals generation

inst_igbt_signals_legl : phase_gen
port map (clk => clk,

reset => reset,
enable => enable,
pwm_in => pwm_wave_phl,
pwm_h => s (1),
pwm_1 => s (4)
)i

8.3 Components and functions

8.3.1 16-bit, 1024 address ROM containing sine values

A sine wave has to be generated to be compared with the sawtooth wave. There
are many ways to do so. One option is to define a ROM memory containing all the
values of a sine wave, defining the amplitude of the output signal. To make a request,
an address has to be provided as an input vector.

In order to make the amplitude of the sine wave variable (as explained in > Sec-
tion 3.1), a factor is given. This factor ranges from 0 to 100 and will be taken as
a percentage og the maximum amplitude. The output signal is calculated as shown
in = Listing 8.8. Part of the hardware description of the ROM memory is found below.

Listing 8.8: Entity of 16-bit 1024 address ROM memory containing the sine values

entity sin_rom is

port (clk : in g
factor : in range 0 to 100;
address : in (9 downto 0);
data_out : out (15 downto 0)

)i

end sin_rom;

Listing 8.9: Architecture of 16-bit 1024 address ROM memory

process (clk) begin
if((clk)) then
data_out <= (to_unsigned (factor*rom ((
(address))) /100, 16));
end if;
end process;

After the synthesis is performed, the ROM memory described above becomes a
hardware component as shown in = Figure 8.1.

31

8 Implementation and Verification of a scalar VFD on an FPGA with VHDL

CEEBEEREEREEEEEREEEHE
o ml e =) ol ei) | vl si] S]) =) = ool 1= ol o
2] 7 5 B 22 5 2 221 E gle
P O i il i D i o D !t 1) oy B
e EHEEEEHEEEEEHEEE HHHEHEE
P I_‘_‘I _‘_‘I I_‘_‘I _‘_‘I _‘_‘I ‘_‘I _‘_‘I _‘_‘I I_‘_‘I _’_‘I I_‘_‘I _‘_‘I _‘_‘I I_‘_‘\ _‘_‘I _‘_‘I ‘_‘I "J
a ; §| g| a| gl g| a| g| a| a| a| gl a| g| gl a| a| a| gl a\ a| 8I aI .§|
gl e @ @ a sl o] @ 2]] =] = £
315] 5| 8| 8| 5|2, 8| &| 5| 5| 5| &| 5| £ 3| | 5| 5, E|E) E| 5| 5| B 2
=
9
E E
g g
EI .E‘
'{EI]
[+
PRy Lol oy o ot o e 2 2)] i i i B B B B 57621 K1 B B IS B A 1 LS
&, I BN N BN N alalalalaala alalal g afalalail o o i 1 if i og @ i,
5 éé##éd@%iiaasaasa%sag:ﬁliﬁz‘ggggggg i
L] [| R | S) N | | N | N | [| [| @
R EE e ERE R EE E e ENE N REE
fIEIf'f'E'flgglE'Jﬁuﬂmﬁﬂﬁnuﬁgololol o‘ggéggg) i
ElE E|E|E|E =58 a2l =] 2] = E
) | | e 1 = I O =] I G !
P B B I B S 5|5 k-1 B-1 B-1 B 2
Bl 8|28 885 |°° g
§§§§§§§ <
: g
2

Figure 8.1 ROM post-synthesis

8.3.2 Variable clock divider

A clock divider is a component that provides a pulse the size of a clock cycle
every time a counter reaches a specified value (eoc). In this project, this value has to
be modified in real time when the FPGA is running the hardware description. The
reason is that this allows us to change the frequency of the generated sine waves as
shown in = Listing 8.4.

Listing 8.10: Entity of a variable clock divider

entity clock_divider is
port (clk : in g
reset : in g
eoc : in 8
clk_div : out
) ;
end clock_divider;

Listing 8.11: Architecture of a variable clock divider

process (clk) begin

if (clk) then
clk_div <= '0"';
if reset = '1l' then

counter <= 0;
elsif counter > eoc then
counter <= 0;
clk_div <= '1"';
else counter <= counter + 1;
end if;
end if;
end process;

32

8 Implementation and Verification of a scalar VFD on an FPGA with VHDL

8.3.3 Computation of 'end of counting’ value

The following function calculates the end of counting (eoc) value, used as an input
to the variable clock divider component that provides a signal sin_wave_clk_div that
defines the frequency of the sine signals generation in the process labeled proc_sin_gen.
This function is a linearization of the current frequency using a factor of 98000.

Listing 8.12: Function gen eoc

function get_eoc (current_freq :) return is
begin
if (current_freqg > 0) then
return 100%x980/current_freq;
end if;
return 100%980;
end get_eoc;

8.4 Verification of the VFD scalar control

Verification of VHDL hardware descriptions is done by writing a Testbench, which
is a program also written in VHDL, that automatizes a bunch of conditions and signal
assignments that could simulate a real-life performance of the synthesized model.

8.4.1 Testbench of the scalar control

The Testbench described in = Listing 8.13 will run simulating a user pushing 60
times the up button. If the description is well written, then the counter should stop
at max_freq.

Listing 8.13: TestBench: increasing the frequency

stimulus : process begin
wait for 10ms;
for 1 in 1 to 60 loop
up_tb <= '1'; wait for 10ns;
up_tb <= '0'; wait for bms;
end loop;
wait;
end process;

The statement described in => Listing 8.14 will assert at every moment that the
boolean condition is true. If at any moment this condition becomes false, then the con-
sole will report a message "SHORT-CIRCUIT” and the simulaiton will stop because
the severity level is set to failure (the worst of the cases).

The boolean condition to assert is that there is not a single moment when the
upper and the lower IGBTSs of a same leg are driving current, a condition that would

33

8 Implementation and Verification of a scalar VFD on an FPGA with VHDL

lead to a short circuit.

8.4.2 Assertion of the dead time and other short circuit
preventions

Listing 8.14: Short circuit assertion statement

assert_short_circuit :

assert (not ((s_tb (1) = '1'" and s_tb(4) = '1"'") or
(s_tb(3) = '"1l' and s_tb(6) = '"1') or
(s_tb(5) = '"1l' and s_tb(2) = "1")

)
)
report "SHORT-CIRCUIT"
severity failure;

8.5 Simulation and testing

Simulation of a VHDL description is a method to monitor internal and external
signals and to check the correct behavior of the system. For the scalar VFD, the
simulation is stopped at 300ms, when the frequency has reached 50Hz. From = Figure
8.2, some signals are shown:

3 current_freq is the frequency of the magnetic field rotation

O sawtooth_wave is the signal that is compared to the sine waves

O sine_wave_phi is generated for each phase and is compared with the sawtooth_wave
O s/1:6] is the output to the IGBTSs of the power inverter
0

proof is a proof that some current is driving through at least two phases of the
motor

When the system is tested on real hardware, then the external signals of the FPGA
can be monitored with an oscilloscope. At = Figure 8.3, two signals are shown when
the motor is stable at 50Hz: the higher amplitude one shows the period of the sine
signal (used as a synchronization reference), and the chopped wave shows the behavior
of an inverted sine after the signal has been converted from Direct Current (DC) to AC.

34

8 Implementation and Verification of a scalar VFD on an FPGA with VHDL

id_tb_behav:wcfg

Q W @ @ N« KM T

M M

W sawtooth_wave[15:0]

M Pos: 1,200 s TRIGGER

YTl Ty o™ T TP VTY

Video

Slope
Rising

u Source

Mode
Auto

Coupling
0C

Lkl 3y _:-__n__--,l-_;_' T ""‘l",j":,. |:; ¥
CH1 1.00V CHZ SO0Umv 1 § CH2 / 1.80%

Figure 8.3 Phase R signals of the scalar control at 50Hz

35

8 Implementation and Verification of a scalar VFD on an FPGA with VHDL

8.6 FPGA usage

This is an analysis of the impact that the synthesized design has to the FPGA
chip and its power consumption.

8.6.1 Utilization

The synthesized design is transformed to real hardware elements, like look-up
tables, flip flops or digital signal processors, as shown in => Table &8.1.

Resource | Utilization | Available | Utilization [%]
LUT 2176 20800 10.46
FF 348 41600 0.84
DSP 3 90 3.33
10 41 106 38.68
BUFG 1 32 3.13
Table 8.1 Resources utilization
LUT- 10%
FF 1%
DSPfm 3%
10 39%
BUFGjm 3%
0 25 50 75 100

Utilization (%)

Figure 8.4 FPGA usage

8.6.2 Power

The total power required by the hardware elements generated during the synthesis
is 0.155W, broken down as shown in the figure below.

Dynamic; D.083W (54%)
Clocks: .004 W (4%
34%
St Signals: 0.020W (34%
335 Logic: 0.028W (33%
DSP: 0.003W (4%
2404 110 0.020W (24%
46% Static: 0072W (46%)
100% PL Staticc. 0.072W (100%

36

O Simulation and Verification of a
vector FOC on an FPGA with
VHDL

This chapter contains the development process of the Field-oriented Control of
a three-phase motor with VHDL. The aim of this part of the project is to use, at
simulation level, the capabilities of the VHDL language in order to simulate and verify
the system, as well as its signals and its behavior. The code written below is not
synthesizable due to the use of non supported libraries and the use of a new type
intended only for simulation purposes: the reals.

9.1 Clarke transformation

Clarke transformation, as studied in = Section 4.1, is the projection of the three

phases of a system into a two-phase based new time-variant reference frame: (alpha,
beta,).

According to = Equation 4.1, the new reference frame can be obtained through
direct projections of the 3-phase vector, and can be described in hardware as shown
in > Listing 9.1. The signal beta has to be handled as real values until just before the
concurrent assignation, when it is converted into an integer value, so to avoid losing
resolution.

Listing 9.1: Clarke transformation description in VHDL

entity clarke is
port (a, b: in ;
alpha, beta : out
)i

end clarke;
architecture behavioral of clarke is begin

alpha <= a;
beta <= (0.5774% (a) + 1.1547+% (b)) ;

end behavioral;

37

9 Simulation and Verification of a vector FOC on an FPGA with VHDL

9.2 Park transformation

Park transformation, as described in ©> Section 4.2, is the projection of (alpha,
beta) into a time-invariant (d, ¢) frame, which is rotating at the same speed as the
magnetic field theta.

The new reference frame (d, ¢) is generated from = Equation 4.3. A new compo-
nent, Trigonometry, is defined in order to calculate the sin and cos values of a given
theta.

Listing 9.2: Park transformation description in VHDL

entity park is

port (clk, reset : in g
alpha, beta : in g
theta : in g
@l, : out
)
end park;

architecture behavioral of park is

component trigonometry is
port (clk, reset : in g
address : in range 0 to 359;
sin, cos : out range —-1.0000 to 1.0000
)

end component;
signal sin, cos : range —-1.0000 to 1.0000;
begin

inst_trigonometry : trigonometry
port map (clk => clk,
reset => reset,
address => theta,
sin => sin,
cos => cos

)i

d <= ((alpha) xcos + (beta) *sin) ;
q <= (= (alpha) xsin + (beta) xcos) ;

end behavioral;

38

9 Simulation and Verification of a vector FOC on an FPGA with VHDL

9.2.1 Component: Trigonometry

The component Trigonometry is used as a Look-up Table to generate the sin and
cos values of a discrete theta value, which spans from 0 to 359 degrees. To generate
the value of the cos, an internal theta (theta_90) is created to access the memory 90
positions in advance from the sin signal.

Listing 9.3: Trigonometry component description in VHDL

entity trigonometry is

port (clk, reset : in g
address : in range 0 to 359;
sin, cos : out range -1.0000 to 1.0000

)i

end trigonometry;
architecture behavioral of trigonometry is

type rom_type is array (0 to 359) of range —-1.0000 to 1.0000;
constant rom : rom_type := (

0.0000 ,

0.0175
0.0349
0.0523
0.0698

~ N N 0~

-0.0349 v
-0.0175
)i

signal address_90 : range 0 to 359 := 89;
begin

process (clk) begin
if((clk)) then
sin <= rom(address);
cos <= rom(address_90);
end if;
end process;

process (clk) begin
1f((clk)) then
if (address >= 269) then
address_90 <= address - 269;
else
address_90 <= address + 90;
end if;
end if;
end process;

end behavioral;

From now on, the output time-invariant reference frame (d, ¢), which are the
magnetic flux and the torque signals, can be used to analyze the three-phase AC
system like it was a DC system. These signals can be easily compared with a reference
and be sent to the Inverse Park module, to further feed the IGBTs of the inverter.

39

9 Simulation and Verification of a vector FOC on an FPGA with VHDL

9.3 Inverse Park transformation

Inverse Park transformation, as described in => Section 4.3, is the reverse trans-
form of the Direct-zero quadrature. It works the same way as the Park transformation,
but inverting the signals and assigning them to the (alpha, beta) reference frame, ac-
cording to = Equation 4.4.

Listing 9.4: Inverse Park transformation description in VHDL

entity invpark is

port (clk, reset : in g
d, g : in g
theta : in 5

alpha, beta : out
)

end invpark;
architecture behavioral of invpark is

component trigonometry is
port («clk, reset : in g
address : in range 0 to 359;
sin, cos : out range —-1.0000 to 1.0000
)i

end component;

signal sin, cos : range —-1.0000 to 1.0000;
begin

inst_trigonometry : trigonometry
port map (clk => clk,
reset => reset,
address => theta,
sin => sin,
cos => coS

)i

alpha <= ((d) xcos — (q) *sin) ;
beta <= ((d) *sin + (q) xcos) ;

end behavioral;

9.4 Space Vector Pulse Width Modulation

Space Vector Pulse Width Modulation, as described in & Section 4.4, is the com-
ponent that feeds the three-phase inverter (s) with the (alpha, beta) signals coming
from the Inverse Park transformation (=> Listings 9.5, 9.6 and 9.7).

40

9 Simulation and Verification of a vector FOC on an FPGA with VHDL

Listing 9.5: SVPWM description in VHDL (Entity)

entity svpwm is

port (clk, reset : in g
v_alpha, v_beta: in g
s : out (1 to 6)

)i

end svpwm;

Listing 9.6: SVPWM description in VHDL (Architecture: state machine)

output_decode : process (state) begin
case state is
when s0 =>

pwm_h <= "000";

pwm_1 <= "000";
when sl =>

pwm_h <= "010";

pwm_1 <= "110";
when s2 =>

pwm_h <= "100";

pwm_1 <= "101";
when s3 =>

pwm_h <= "100";

pwm_1 <= "110";
when s4 =>

pwm_h <= "001";

pwm_1 <= "011";
when s5 =>

pwm_h <= "010";

pwm_1 <= "011";

when s6 =>
pwm_h <= "001";
pwm_1 <= "101";
when s7 =>
pwm_h <= "111";
pwm_1 <= "111";
end case;
end process;

next_state_decode : with sector select
next_state <=
sO0 when O,

sl when 1,
s2 when 2,
s3 when 3,
s4 when 4,
s5 when 5,
s6 when 6,
s7 when 7;
state_decode : process (clk) begin
if (clk) then
if reset = '1l' then
state <= s0;
else
state <= next_state;
end if;
end if;

end process;

41

9 Simulation and Verification of a vector FOC on an FPGA with VHDL

The finite state machine of the SVPWM switches among 8 possible states. Each
state corresponds to a sector (2> Figure 4.4). Each sector is adjacent to two vectors,
which drive to a defined configuration of the IGBTs. The two adjacent vectors of a state
only differ in one bit, and this bit is weighted and commuted on proc_pwm_switching
at a fixed frequency (only for simulation purposes). Then the output signals are driven
to the 6-bit vector s which controls the inverter.

Listing 9.7: SVPWM description in VHDL (Architecture: behavioral)

sector_determination : process (clk) begin
if (clk) then
if (reset = 'l') then

sector <= 0;
elsif (v_beta >= 0) then
if (v_alpha >= 50) then
sector <= 3;
elsif (v_alpha <= -50) then
sector <= 5;
else
sector <= 1;
end if;
else
if (v_alpha >= 50) then
sector <= 2;
elsif (v_alpha <= -50) then
sector <= 4;
else
sector <= 6;
end if;
end if;
end if;
end process;

proc_pwm_switching : process begin
vector <= pwm_h; wait for 5Sus;
vector <= pwm_1; wait for 5Sus;
end process;

s_buff (l) <= vector (0);
s_buff (3) <= vector(l);
s_buff (5) <= vector(2);
s_buff(4) <= not (s_buff(l));
s_buff (6) <= not (s_buff(3));
s_buff(2) <= not (s_buff(5));
s <= s_buff;

9.5 Simulation and Verification

On the top level file, the one that collects all of the code parts (functions, com-
ponents, signals, ports, ...) signal routing among them has to be described. For this
purpose, an instance of each one of the components that pertain to the FOC method
have to be instantiated (= Listing 9.8). All of these modules run concurrently, thus
being achieved one of the main purposes of developing a controller in VHDL instead

42

9 Simulation and Verification of a vector FOC on an FPGA with VHDL

of software.

Listing 9.8: Routing the components on the top level file

inst_clarke : clarke
port map (a => i_a,
b => i b,

alpha => i_alpha,
beta => i_beta
)

inst_park : park
port map (clk => clk,
reset => reset,
alpha => i_alpha,
beta => i_beta,
theta => theta,

d=>1i_d,
q=>1igq
)i
inst_invpark : invpark
port map (clk => clk,

reset => reset,

d => v_d_ref,

g => v_qg_ref,

theta => theta,

alpha => v_alpha_ref,
beta => v_beta_ref

);

inst_svpwm : svpwm
port map (clk => clk,
reset => reset,
v_alpha => v_alpha_ref,
v_beta => v_beta_ref,
s => s
)

On the TestBench, the stimulus signals are defined. Stimulus signals have the pur-
pose of testing the Field-oriented Control as a whole to check the correct behavior of
the system and of all of its components. On (= Listing 9.9), a three-phase generation is
simulated, and a theta is defined and calculated, which defines the period of the signals.

Listing 9.9: Stimulus generation (TestBench) (I)

clk_tb <= not clk_tb after 5ns; —--half period

inst_clock_divider_theta : clock_divider
port map (clk => clk_tb,
reset => reset_tb,
eoc => 100,
clk_div => clk_div_theta
)i

43

9 Simulation and Verification of a vector FOC on an FPGA with VHDL

Listing 9.10: Stimulus generation (TestBench) (II)

proc_counter_theta : process (clk_tb) begin
if (clk_tb) then
if (theta_tb >= 359) then
theta_tb <= 0;
elsif (theta_120_tb >= 359) then
theta_120_tb <= 0;
elsif (theta_240_tb >= 359) then
theta_240_tb <= 0;
elsif (clk_div_theta = '1l') then
theta_tb <= theta_tb + 1;
theta_120_tb <= theta_120_tb + 1;
theta_240_tb <= theta_240_tb + 1;
end if;
end if;
end process;

inst_current_wave_gen_phase_a : trigonometry
port map (clk => clk_tb,
reset => reset_tb,
address => theta_tb,
sin => i_a_real_tb

)i

-—— . . . Phases 'b' and 'c'

i_a tb <= (100.0%1i_a_real_tb);
i_b_tb <= (100.0xi_b_real_tb);
i_c_tb <= (100.0%1i_c_real_tb);

At this point, the controller is implemented at simulation, non-synthesis level.
Now a simulation bench is defined to monitor all of the signals involved within the
transformations and modules.

On the = Figure 9.1, the signals for the Clarke and Park transformations to-
gether, which are referred as Direct-quadrature-zero transformation, are shown. From
the currents of the three phases (represented as a phasor), and for a given theta, the
output of the Clarke transformation is a new reference frame (alpha, beta) which are
sinusoidal signals moved 90 degrees from one another. These signals are converted to
continuous, time-invariant signals at Park transformation ((d, ¢q) frame).

On the = Figure 9.2, the same signals are shown for the reverse process: from (d,
q) frame to (alpha, beta) and then to the six IGBT signals to the inverter. The waves
at s define, for each phase, a sine signal that will make the magnetic field inside of the
stator to move at a frequency defined by theta.

44

04 o PR ety P i OSPRS! or JOE RRON Lr o [ERO00CHRN o EEROODERS . uTRNODEEN 0 oo [UREQORNE B ., [RESCORREND .o
8i b 83 _//
bic P _/ /\ _/ /\ \//\J \/\J
4 theta 176 //l///l///|///|//,|/
41 alpha 7 /\\/ \/\ / _/ / \//\
s o /\/ \//\ //\J\/
ai_d 0
di_qg -100
O n O ,
¢ | S O L P Y P e P i L T e 000, NS o LREQRE PO e 0 o [Ee509,eE P e R
@ v_d_ref 86
@ v_g_ref 50
4 velpha_ret e \//\\//\\//\/F\/\/
4 v_beta_ref 44 /\\/\/\j/\ \//\\//\
4 secor s X
v B S[1:6] k3|
M) 1
M2 1
M 3] 0
M 0
5] 0
ol [6] 1
~ Phase A 2
MM 1
ol [4] 0
~ Phase B 1
M 0
ol [6] 1
~ Phase C 1
M 5] 0
o 2] 1

9 Simulation and Verification of a vector FOC on an FPGA with VHDL

foc O

clk

reset
i_a[31:0]
i_b[31:0]
i_e[31:0]
theta[31:0]
v_d_ref[31:0]
v_q_ref[31:0]

RTL S[1:6] m=

foc v1_0

Figure 9.3 FOC representation as a block

invpark_0 =pwir{)
= clk
clk
. Q reset RTL s(ig s O[1:6]
S : =
v alpha[31:0] v_alpha[31:0] =
d[31:0] RTL
beta[31:0] v_beta[31:0]
q[31:0]
theta[31:0] svpwm_vi_0
invpark_v1_0
park_v1_0
clarke_v1_0
theta[31:0] =
beta[31:0] beta[31:0] b[31:0]
q[31:0] TL
RTL alpha[31:0] alpha[31:0] a[31:0]
d[31:0]
reset @=
clk = clarke_0
park_0

Figure 9.4 FOC block diagram

46

Part IV

Ending

47

10 Conclusion

The thesis Implementation and verification of a hardware-based controller for a
three-phase induction motor on an FPGA collects the result of a period of documen-
tation and research in the field of AC electric motors, especially regarding their control
methods. The three most common methods are included: V/Hz scaling control, FOC
and DTC, and a brief overview of FPGAs and induction motors is also done. At the
practical development of the work, the hardware description is made for two of the
methods: one for scalar and another for vectorial control. These two methods have
been developed, implemented, simulated and successfully verified with the VHDL lan-
guage in Vivado. In the case of scalar control, it has been possible to get it to work in
a real three-phase induction motor in the laboratory.

From all of the work developed, one can deduce that control methods are much
more important than even the construction and the quality of the motor. Depending
on the complexity of the control system used, the motor has a higher performance and
a better response. Of the two cases implemented in VHDL, it emerges that vector
control is much more accurate and appropriate for the vast majority of engines, while
scalar control, a more simple method, can be an effective alternative in other appli-
cations, especially those where the engine operates under familiar conditions: when
torque and speed tend to be more constant.

Implementing controls in an FPGA simplifies the system at a hardware level and
allows scaling and extending it much more easily than if it was made with real hard-
ware. A notable advantage is the fact that an FPGA directly controls signals instead
of bits, so that unlike a microcontroller, the delays are much smaller.

However, the control methods have some limitations at a practical level: if the
purpose was to go beyond the simulation of the vector control method so to control-
ling a real inverter and motor, it would be necessary to adapt the code in order to
implement PI controllers and position and an angular velocity estimator in software.
It would also be necessary to use the Analog-to-digital Converter (ADC) on the board
together with high-precision current sensors. This proposal of content extension is
contemplated in the next chapter.

As a general conclusion, I consider the purposes of the thesis achieved and I want
to show my personal satisfaction of having been able to enjoy, both in Tallinn and in
Manresa, the possibility of studying and working on the topics included in the research,
with two supervisors, David and Aleksander, with whom I have learned a lot.

48

11 Future work

The versatility and power of FPGAs help to quickly extend and improve HDL de-
signs. Some of the proposed improvements are described in the following paragraphs.

Regarding the VFD scalar control, an extension of the project could be to modify
the controller from an open-loop to a closed-loop version, monitoring either the current
on the motor’s phases or coupling an encoder at the shaft. If these variables can be
controlled, then the amplitude of the sine signals (the effective torque of the motor)
would be unlinked from the frequency and could be managed by other components.
This would suppose an improvement in performance and especially the motor would
become reliable at different loads and lower speeds.

When it comes to the vector FOC, the next step would be to adapt the VHDL
model to a version that could run in a real FPGA and control a three-phase motor. For
this purpose, the load of work is greater: an estimator block would have to be designed
to generate an estimation of angular speed and magnetic field orientation according
to the motor parameters, and written in software (e.g. C') on a microcontroller. In
addition, the current of at least two phases would have to me monitored by the FPGA
and converted from an analog into a digital signal.

49

Bibliography

1]

[9]

K Vinoth Kumar, Prawin Angel Michael, Joseph P John, and S Suresh Kumar.
Simulation and comparison of spwm and svpwm control for three phase inverter.
ARPN Journal of Engineering and Applied Sciences, 5(7):61-74, 2010. 12

Vaughn Betz and Jonathan Rose. Vpr: A new packing, placement and routing tool
for fpga research. In International Workshop on Field Programmable Logic and
Applications, pages 213-222. Springer, 1997.

Steven Trimberger, Dean Carberry, Anders Johnson, and Jennifer Wong. A time-
multiplexed fpga. In Field-Programmable Custom Computing Machines, 1997.
Proceedings., the 5th Annual IEEE Symposium on, pages 22-28. IEEE, 1997.

Conrad Brunner. Efficient electric motor systems. In Presentation Slides, Motor
Summit 2014, 2014.

Rakesh Parekh. Ac induction motor fundamentals. Microchip Technology Inc,
2003.

Hisao Kubota and Kouki Matsuse. Speed sensorless field-oriented control of in-
duction motor with rotor resistance adaptation. ITEEE Transactions on Industry
Applications, 30(5):1219-1224, 1994.

Georgios Papafotiou, Tobias Geyer, and Manfred Morari. Optimal direct torque
control of three-phase symmetric induction motors. In Decision and Control, 2004.
CDC. 43rd IEEE Conference on, volume 2, pages 1860-1865. IEEE, 2004.

Douglas E Ott and Thomas J Wilderotter. A designer’s guide to VHDL synthesis.
Springer, 2013.

Gopal B T Venu. Comparison Between Direct and Indirect Field Oriented Control
of IM. Bangalore University, 2017.

50

Appendices

A MCI1H 3-Phase Power Module Block Diagram

dsPICDEM™ MC1H 3-Phase High Voltage Power Module

MC1H 3-PHASE HIGH VOLTAGE POWER MODULE BLOCK DIAGRAM

FIGURE 1-2:

From
Control
Board

9pIS paje|os|
——— uopelosio}dp SAQ 8D F—————————— — — — — — uopjejosio}dQ Yoeqpes |————
apIS 91
o O
-
o¢
O ‘T
Fa Wweuny w50 now [———9BeloA sna oa
< youms oxesg JIneg g0IoWOId | oen |

wauny sng 9@ obejjoA sng 0a 19BAl

—
JUSLIND YOUMS 8 ‘A ‘Y

Jeddoy) exeig 10}931109
)) N J10j0B JOMOd
< [ennaN
| ————O
8 9 ¥ z L
q t < OV AG9C -0
O = ——>><0—~0
Wﬁ Z
%N m 4LFN m o

}0eqpas4 JuaLN) aseyd Paje|os| A B Y

.L

30BQPaa JUBLND
indu| 0@ pajejos|

© 2003 Microchip Technology Inc.

DS70096A-page 6

o1

B Voltage Adapter PCB Scheme

[7 3 7 4 1
A umeiq | 0GPS TSRS GomeN SIS0 B
JO_ 39908 | 610T/20/70] TNt 1N v ad sjuoweiqooesa
ano ano
a4 = =
oISy 0quny ong ano
29praH U001 AU001
5 80: P
oL 2 ano ano AEDIA
w ano AEDA O HY 39puoH
9d STIESdL W
dd-MS T AERER! g3 NVIIVdS LaSad .m
€H0TI191T 22— AN ¥ B £
e BT s sl am [OST 1INV :
oo wN BN w RGN : LERERY oy R vl
o1t sV H 0 ano
ol 1t 138V g ADA =
& INOHS SN g axo HY 39puoH
4 =
oTv- U ano dd-MS o 9
C P A casva < = A i .
o A TSV IS ONIS €4 ¢
ol T A EsvVd [e
o ot :
o= g} ano
oIt = [
ol 9T ASNES snd [SYTOHIPL ano
3 aNov Y — =
o ol & = 0 L Lo HO 19peaR
o 1 3OA =T 3
ayo ol ST oAV el o8 ov [:
o5 ACTE A i ONIS o ‘
¥ | o AS T : y_Hed [z
ok € % I 4
o P AS T il 7 HCd L
o AST F Y 1 ano 7]
© AS HI el by I =
00|I-| , | 57 | T H9wpeH
ano
C ° AS TASHY OSI = ANO 57 w
G AS OSI LINVA/ n 2
o TIVH €SV U001 n0cT NS [T z
G TIVH_casva anov ano 01 6, ano [e
ol SE TIVH [35Vd ano =4 W = 8 = <
Iz = Tl
C oo e D3AV oA 1
80
C ol 29praH
61
,m/%m oA ano :
ano g
ano EU = ano ane 0
PR = o —— = ano =
: X = 9peaH
M E 1aat “d0SONSLT Au001 | anoze M
<O ano o D=
m T €
2 OR T - ~ a
VAEANOd L{¥D0S ¥IMOd
& 198pug ¢ 1pUIL]
2 9 «a ;
> z
1a ¥AMOd €
o
[3 7 4 1

David Soler

Author

52

	List of Figures
	List of Tables
	Listings
	Abbreviations
	I Background
	1 Introduction
	2 Motivation

	II Control methods for Alternating Current Induction Motors
	3 Variable-frequency Drive
	3.1 V/Hz scalar control

	4 Field-oriented Control
	4.1 Clarke transformation (the (a,b,c) (,) projection)
	4.2 Park transformation (the (,) (d,q) projection)
	4.3 Inverse Park transformation (the (d,q) (,) projection)
	4.4 Space Vector Pulse Width Modulation
	4.4.1 SPWM vs SVPWM

	4.5 PI regulators

	5 Direct Torque Control
	5.1 DTC vs FOC

	III Workflow: implementing the controller and necessary hardware
	6 Field Programmable Gate Arrays
	6.1 FPGA over a microcontroller
	6.2 Artix-7 FPGA and Basys 3 board
	6.3 Xilinx's Vivado Design Suite
	6.4 The VHDL language

	7 Inverter and motor
	7.1 Microchip's Power Module
	7.2 ABB's three-phase induction motor

	8 Implementation and Verification of a scalar VFD on an FPGA with VHDL
	8.1 Entity
	8.2 Architecture
	8.3 Components and functions
	8.3.1 16-bit, 1024 address ROM containing sine values
	8.3.2 Variable clock divider
	8.3.3 Computation of 'end of counting' value

	8.4 Verification of the VFD scalar control
	8.4.1 Testbench of the scalar control
	8.4.2 Assertion of the dead time and other short circuit preventions

	8.5 Simulation and testing
	8.6 FPGA usage
	8.6.1 Utilization
	8.6.2 Power

	9 Simulation and Verification of a vector FOC on an FPGA with VHDL
	9.1 Clarke transformation
	9.2 Park transformation
	9.2.1 Component: Trigonometry

	9.3 Inverse Park transformation
	9.4 Space Vector Pulse Width Modulation
	9.5 Simulation and Verification

	IV Ending
	10 Conclusion
	11 Future work
	Bibliography
	Appendices
	A MC1H 3-Phase Power Module Block Diagram
	B Voltage Adapter PCB Scheme

