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Highlights 

 Raw sorghum grains extract was rich in phenolic acids and flavonoids. 

 The extract exhibited strong enzymes inhibitory and antioxidant activities. 

 Levels of phenolic compounds decreased with increasing roasting temperature. 

 Enzymes inhibitory activity decreased with increasing roasting temperature. 

 Antioxidant activity increased as the roasting temperature increased. 

 

Abstract 

Whole grain cereals are important dietary sources for management of metabolic diseases due to 

the bioactive components they contain. Hence, this study investigated enzymes (pancreatic lipase, 

α-amylase, α-glucosidase, xanthine oxidase and angiotensin 1-converting enzyme) inhibitory 

property, antioxidant activity and phenolics profile of raw and roasted red sorghum (Sorghum 

bicolor) grains in vitro. Extracts of flours of raw and roasted (150°C and 180°C, for 20 min) grains 

were assayed for enzymes inhibitory and antioxidant activities using spectrophotometric methods; 

while their phenolic constituents were characterized using HPLC-DAD. The raw grains exhibited 
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strong enzymes inhibitory and antioxidant activities, and contained phenolic acids (gallic, 

chlorogenic, caffeic, ellagic and p-coumaric acids) and flavonoids (quercetin, luteolin and 

apigenin). However, whereas the enzymes inhibitory activity and levels of the phenolic 

compounds in the grains decreased significantly (p < 0.05) with increasing roasting temperature, 

the antioxidant activity increased. Hence, roasting at high temperature may not be recommended 

for the optimum retention of the enzymes inhibitory property and phenolic compounds of red 

sorghum grains.  

Keywords: Antioxidant activity; Enzymes inhibition; Metabolic diseases; Phenolic compounds; 

Sorghum grains.  

 

1. Introduction 

Metabolic diseases including obesity, type 2 diabetes (T2D), hyperuricemia and 

hypertension are major health challenges of this twenty-first century, with high prevalence. These 

diseases form a constellation of cardiovascular risks factors referred to as metabolic syndrome [1-

3]. Clinically, there are pharmacotherapies for treating these metabolic diseases. Examples include 

orlistat for obesity, acarbose for T2D, allopurinol for hyperuricemia and captopril for hypertension. 

These drugs elicit their therapeutic action mainly by inhibiting certain enzymes whose over-

activities promote excessive production and accumulation of metabolites that predispose to these 

metabolic diseases. Thus, orlistat inhibits pancreatic lipase [4], which catalyzes the hydrolysis of 

dietary fats to produce fatty acid [5]; acarbose inhibits α-amylase and α-glucosidase, which 

catalyze the hydrolysis of starch to release glucose [6]. Similarly, allopurinol inhibits xanthine 

oxidase (XO) [7], which catalyzes the oxidation of hypoxanthine first to xanthine, and ultimately 
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to uric acid [8]; while captopril inhibits angiotensin 1-converting enzyme (ACE) [9], which 

catalyzes the proteolytic cleavage of angiotensin 1 to form angiotensin II [10]. However, these 

drugs have some side effects that interfere with their clinical uses. Such side effects include hepatic 

and gastrointestinal tract dysfunction for orlistat [11], flatulence for acarbose [12], renal and 

hepatic dysfunction for allopurinol [13], and hypotension for captopril [14].  

The high prevalence of the aforementioned metabolic diseases and the side effects of the 

available drugs for their management have aroused research efforts targeted at finding affordable 

and effective novel strategies for preventing the onset and decelerating the progression of these 

diseases [15]. In this context, it is gratifying to know that plant-based bioactive components such 

as phenolic compounds in functional foods have been evidently shown to be beneficial [16]. Some 

studies have demonstrated the efficacy of phenolics-rich plant extracts to inhibit relevant enzymes 

implicated in metabolic diseases [17, 18].  

Sorghum, a grain cereal that originated in sub-Saharan Africa, serves mainly as food in 

many parts of Africa and Asia, and as animal feed in the western region [19]. It is prominent for 

its rich polyphenols content, relative to other grain cereals such as barley, wheat, rye and millet 

[20]. Previous studies have reported some bioactivities of different varieties of sorghum grains 

extract including anti-inflammatory [21], antioxidant [22] and anti-proliferative [23] activities. In 

addition to these, a recent study by Tayo et al. [24] concluded that supplementation of routine 

hematinics with sorghum extract ameliorated preoperative anemia in human subjects better than 

the routine hematinics alone. However, most grain cereals are subjected to different processing 

methods, which may influence their bioactive constituents and potential health benefits [25]. 

Therefore, this study investigated enzymes (pancreatic lipase, α-amylase, α-glucosidase, xanthine 
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oxidase and angiotensin 1-converting enzyme) inhibitory property, antioxidant activity and 

phenolics profile of raw and roasted red sorghum grains in vitro.   

2. Materials and method  

2.1. Chemicals and reagents 

Porcine pancreatic lipase, α-amylase, Bacillus stearothermophillus α-glucosidase, rabbit 

lung ACE, xanthine oxidase, acarbose, allopurinol, xanthine, orlistat, captopril, hippuryl-histidyl-

leucine, Trolox, luteolin, apigenin and quercetin, L-ascorbic acid, 2,2´-azino-bis-3-

ethylbenzthiazoline-6-sulphonic (ABTS) and 2,2-diphenylpicrylhydrazyl (DPPH) were products 

of Sigma (St. Louis, USA). Gallic, chlorogenic, p-coumaric, ellagic and caffeic acids, methanol, 

and phosphoric acid were products of Merck (Darmstadt, Germany).   

 

2.2. Sample collection and preparation 

Sample (1.5 Kg) of dry sorghum grains (red variety) was purchased from Malete market in 

Ilorin, Kwara State, Nigeria. The sample was later authenticated at the Department of Plant and 

Environmental Biology, Kwara State University, Malete, Ilorin, Nigeria. Subsequently, the sample 

was sorted and divided into three portions of 0.5 kg each. Out of the three portions, a portion (raw) 

was not roasted; another portion was roasted at 150 ± 2 oC for 20 min; while the last portion was 

roasted at 180 ± 2 oC for 20 min in a hot-air oven with thermostatic regulation. After roasting, the 

samples were allowed to cool to room temperature for 30 min, and each portion was later milled 

into flour (0.5 mm). The flours were hermetically packed in opaque plastic containers, and kept at 

4 oC during analysis. 

2.3. Flours extract preparation 
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Each flour sample was extracted by soaking in methanol in a ratio of 1:8 (w/v) for 24 h 

with intermittent shaking. Afterwards, the mixture was filtered through Whatman (No. 1) filter 

paper, and the filtrate was collected. The filtrate was concentrated at 45 °C using a rotary 

evaporator, and the residue was used for the various analyses. 

2.4. In vitro enzymes inhibition assays  

2.4.1. Pancreatic lipase inhibition assay 

Pancreatic lipase inhibition was assayed as per the spectrophotometric method described 

by Eom et al. [26].  P-nitrophenyl butyrate served as substrate, while orlistat served as a reference 

inhibitor. Enzyme solution was prepared by mixing 30 μL of pancreatic lipase (10 units) in 10 

mmol/L morpholinepropane sulphonic acid and 1 mmol/L EDTA (pH 6.8), and 850 μL of Tris 

buffer containing (100 mmol/L Tris-HC1 and 5 mmol/L CaCl2, pH 7.0). Next, 100 μL of varied 

concentrations (5, 10, 15 and 20 μg/mL) of the extract (or orlistat) and 880 μL of the enzyme 

solution were incubated at 37 oC for 10 min. Following this, 20 μL of 10 mM p-nitrophenyl 

butyrate solution in dimethyl formamide was added to initiate hydrolytic reaction at 37 oC for 20 

min. Absorbance of the p-nitrophenol produced from the hydrolytic reaction was measure at 405 

nm, and percentage pancreatic lipase inhibition by the extract was calculated. 

2.4.2. Alpha-amylase inhibition assay 

This was conducted following the protocol described by Kwon et al. [27], using soluble 

starch as substrate and acarbose as a reference inhibitor. Briefly, 500 µL of different concentrations 

(10, 20, 30 and 40 μg/mL) of extract and 500 µL of 0.02 M sodium phosphate buffer (pH 6.9 with 

0.006 M NaCl) containing 0.5 mg/mL α-amylase solution were incubated at 37°C for 10 min. 

Thereafter, 500 µL of 1% starch solution in 0.02 M sodium phosphate buffer was added, and the 

reaction mixture was incubated at 37°C for 15 min.  To terminate the hydrolytic reaction, 1.0 mL 
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of DNSA reagent (1% 3, 5-dinitrosalicylic acid and 12% sodium potassium tartrate in 0.4 M 

NaOH) was added. Next, the reaction mixture was incubated for 5 min in a boiling water bath, 

cooled to room temperature, and diluted with 10 mL distilled water. The absorbance was measured 

at 540 nm, and percentage α-amylase inhibition by the extract was calculated. 

2.4.3. Αlpha-glucosidase inhibition assay 

This was conducted following the method reported by Kim et al. [28], using p-

nitrophenylglucopyranoside (PNPG) as substrate and acarbose as a reference inhibitor. Briefly, 5 

units aliquot of α-glucosidase was incubated with different concentrations (5, 10, 15 and 20 

μg/mL) of extract for 15 min. Next, 3 mM PNPG dissolved in 20 mM phosphate buffer, pH 6.9 

was added as a substrate to initiate the hydrolytic reaction. The hydrolytic reaction was allowed to 

proceed for 20 min at 37°C, after which it was terminated by adding 0.1 M Na2CO3 (2 mL). The 

absorbance of the p-nitrophenol released from PNPG hydrolysis was measured at 400 nm, and 

percentage α-glucosidase inhibition by the extract was calculated. 

2.4.4. Xanthine oxidase (XO) inhibition assay 

This assay was performed as per the spectrophotometric method reported by Osada et al. 

[29]. Xanthine was used as substrate, while allopurinol was used as a reference inhibitor. Xanthine 

(15 mM) and XO (0.1 mU/µL) solutions were freshly prepared with Tris–HCl buffer (50 mM, pH 

7.4). Afterwards, 40 µL of xanthine solution, 10 µL of xanthine oxidase solution and 1950 µL of 

varied concentrations (10, 20, 30 and 40 μg/mL) of extract were mixed and incubated at 37 oC for 

10 min. Next, 50 µL of perchloric acid solution in the same Tris–HCl buffer (3.2% (v/v) was added 

to terminate the XO-catalyzed hydrolysis of xanthine. Absorbance of the uric acid formed was 

then measured at 292 nm, and the percentage xanthine oxidase inhibition by extract was calculated. 

2.4.5. Angiotensin 1-converting enzyme (ACE) inhibition assay 
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This was performed as per the method reported by Cushman and Cheung [30], using 

hippuryl-histidyl-leucine as substrate and captopril as a reference inhibitor. In brief, 50 μL of 

different concentrations (10, 20, 30 and 40 μg/mL) of the extract (or captopril, 64 nmol/L) and 50 

μL of ACE solution (4 mU/mL) were incubated at 37 oC for 15 min. Afterwards, 150 μL of 8.33 

mM of hippuryl-histidyl-leucine in 125 mM Tris–HCl buffer (pH 8.3) was added to the mixture, 

and this was incubated for 30 min at 37 oC. Next, 250 μL of 1 M HCl was added to terminate the 

hydrolytic reaction, and the hippuric acid produced was extracted with ethyl acetate (1.5 mL), and 

separated by centrifugation. Then, 1.0 mL of the ethyl acetate layer was dispensed into a clean test 

tube and evaporated to dryness in an oven. The hippuric acid residue was redissolved with 1.0 mL 

of deionized water; following which its absorbance was measured at 228 nm, and the percentage 

ACE inhibition by the extract was calculated. 

2.4.6. Antioxidant activity assays 

DPPH* scavenging ability of extracts was determined according the method described by 

Cervato et al. [31], using ascorbic acid as a reference antioxidant. ABTS*+ scavenging ability was 

carried as per the method described by Re et al. [32], and expressed as trolox equivalent antioxidant 

capacity (TEAC). Iron (II) (Fe2+) chelation assay was performed using the method reported by 

Puntel et al. [33], using ascorbic acid as a reference antioxidant. Reducing power assay was carried 

out as per the method reported by Oyaizu [34], and expressed as gallic acid equivalent (GAE). 

2.4.7. Analysis of phenolic compounds using HPLC-DAD 

Phenolic compounds in the extracts were characterized at ambient temperature in triplicates 

using a reverse-phase high-performance liquid chromatography with diode-array detection 

(HPLC-DAD) (Shimadzu, Kyoto, Japan). The extracts were injected at 12 mg/mL and separation 

of the phenolic compounds was achieved using reversed phase Phenomenex C18 column (4.6 mm 
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x 250 mm) with particles of 5 μm diameter. The mobile phase was HPLC water with 1% 

phosphoric acid (v/v) (solvent A) and HPLC grade methanol (solvent B) at a flow rate of 0.6 

mL/min and injection volume 50 μL. The gradient system used was as previously described by 

Bitencourt et al. [35]. Quantification of phenolic compounds in the extracts was performed by 

integrating the chromatography peaks using the external standard method. The chromatography 

peaks were confirmed by matching their retention time with those of reference standards and by 

DAD spectra (200 to 600 nm).  

2.5. Statistical analysis  

One-way analysis of variance (ANOVA) was performed on mean values of triplicate 

determinations, followed by least significant difference (LSD) test, using SPSS statistical software 

(version 17), at p < 0.05. Concentration of extracts that scavenged DPPH* by 50% (SC50) and 

concentration of the extracts that inhibited enzymes activity by 50% (IC50) were calculated using 

version 4.0 of Graphpad Prism® (Sandiego, CA). 

3. Results and discussion 

3.1. Enzymes inhibitory activity  

Enzymes (pancreatic lipase, α-amylase, α-glucosidase, XO and ACE) inhibitory activity of 

extracts of raw and roasted sorghum grains, presented as concentration of extract that caused 50% 

enzyme inhibition (IC50), varied significantly (p < 0.05) (Table 1). Generally, raw grain had the 

lowest IC50 values for all the enzymes, followed by grain roasted at 150 oC and grains roasted at 

180 oC; indicating a decreasing order of inhibitory strength with increasing roasting temperature. 

3.1.1. Pancreatic lipase inhibitory activity 

Pancreatic lipase inhibitory activity of raw sorghum extract (IC50: 12.72 ± 1.13 μg/mL) is 

much stronger than those of some other grains that have been reported to inhibit pancreatic lipase, 
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including twenty Canadian lentil cultivars (IC50 range: 6.26 to 9.26 mg/mL) [36] and two Vigna 

Species namely, mung bean (IC50: 17.74 ± 2.00 mg/mL) and moth bean (IC50: 7.32 ± 1.29 mg/mL) 

[37]. The strong pancreatic lipase inhibitory activity of the raw sorghum extract suggests that it 

may be useful for decelerating the rate of formation, absorption and accumulation of fatty acids 

from dietary fats digestion, which is an important strategy for controlling obesity [36]. However, 

orlistat displayed a much stronger pancreatic lipase inhibitory activity (IC50: 0.36 ± 0.02 μg/mL) 

than the raw sorghum extract. 

The IC50 values of the sorghum on pancreatic lipase increased from 12.72 ± 1.13 μg/mL in 

the raw grain to 14.13 ± 1.42 and 17.09 ± 1.75 μg/mL in grain roasted at 150 and 180 oC, 

respectively; indicating that the pancreatic lipase inhibitory activity of the grain decreased with 

increasing roasting temperature. This observation partially agrees with the findings of a recent 

study which reported a decrease, no effect and an increase in the pancreatic lipase inhibitory 

activity of cocoa beans roasted at 100, 150 and 170 °C, respectively [38].   

3.1.2. Alpha-amylase and α-glucosidase inhibitory activity 

The catalytic role α-amylase and α-glucosidase play in the digestion and absorption of 

dietary carbohydrates has made their inhibition clinical targets in the control of postprandial 

hyperglycemia associated with T2D. The IC50 values of raw sorghum extract on α-amylase and α-

glucosidase (16.93 ± 1.08 and 10.78 ± 0.63 μg/mL, respectively) (Table 2) indicate that the extract 

had stronger inhibitory effects on these two enzymes than barnyard millet (IC50: 32.59 ± 1.04 and 

18.60 ± 0.83 μg/mL on α-amylase and α-glucosidase, respectively [39].  

Unlike, acarbose (a reference inhibitor) that had a stronger inhibitory effect on α-amylase 

(IC50: 10.13 ± 0.82 μg/mL) than α-glucosidase (IC50:18.04 ± 1.25 μg/mL), raw sorghum extract 

had a more potent inhibitory effect on α-glucosidase than α-amylase. This inhibition pattern has 
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therapeutic importance, and is in agreement with some earlier reports that indicated similar pattern 

[40, 41]. Since the adverse effects associated with the clinical use of acarbose are due to its stronger 

inhibition of α-amylase than α-glucosidase [12], the observed pattern of inhibition implies that 

such adverse effects may not be present when the extract of sorghumis used to manage T2D. 

Similar to the impact of roasting on PL inhibition, both the α-amylase and α-glucosidase 

inhibitory activity of the grain decreased as the roasting temperature increased, as indicated by the 

higher IC50 values of the roasted grain on these enzymes (Table 2). Whereas this is in concordance 

with the findings of Vadivel et al. [25], who reported a decrease in the α-amylase and α-glucosidase 

inhibitory effects of some under-utilized legume grains due to roasting, it contradicts the report of 

Kunyanga et al. [42] that indicated an increase in α-amylase and α-glucosidase inhibitory activities 

of some indigenous grain cereal and oil seeds, including pearl millet and pigeon pea, due to 

roasting. 

3.1.3. XO inhibitory activity 

Raw sorghum extract exhibited a strong inhibitory effect on XO, with IC50 of 28.35 ± 1.86 

μg/mL. Extracts of other grain cereals such as kodo millet [43] have been previously been reported 

as potent inhibitors of XO.  Whereas the raw sorghum extract had a stronger XO inhibitory effect 

than raw Brachystegia eurycoma seed extract (IC50: 45.17 ± 2.14 μg/mL) as recently reported by 

Irondi et al. [44]; allopurinol, a reference XO inhibitor with IC50 of 7.04 ± 0.44 μg/mL in this study, 

had a more potent inhibitory effect than it. The IC50 values of the extracts increased significantly 

(p < 0.05) from 28.35 ± 1.86 μg/mL in raw grain to 30.75 ± 1.90 μg/mL and 33.06 ± 1.97 μg/mL 

in grain roasted at 150 and 180 °C, respectively. This indicates a decreasing order of XO inhibitory 

activity with increasing roasting temperature. A similar finding in which the XO inhibitory effect 

of Brachystegia eurycoma seed decreased after roasting was recently reported [44]. Through the 
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inhibition of XO, and consequently, deceleration of uric acid formation, raw sorghum extract may 

be beneficial for mitigating ROS generation, hyperuricemia and inflammation, which result from 

excessive XO activity [43].  

3.1.4. ACE inhibitory activity 

As the enzyme that catalyzes the formation of angiotensin II (a physiologically potent 

vasoconstrictor) by cleavage of angiotensin 1, inhibition of ACE has become a therapeutic target 

for regulating the blood pressure [45]. Raw sorghum extract inhibited ACE (IC50: 19.64 ± 1.06 

μg/mL), but not as much as captopril, a standard ACE inhibitor with IC50 of 6.34 ± 0.72 μg/mL. 

The result further shows that the IC50 values increased from 19.64 ± 1.06 μg/mL in the raw grain 

to 20.99 ± 1.17 and 22.81 ± 1.52 μg/mL in grain roasted at 150 and 180 °C, respectively. Thus, 

the ACE inhibitory activity of sorghum grains decreased as the roasting temperature increased. 

This is in agreement with the findings of Hyun et al. [46], who also reported a decrease in ACE 

inhibitory activity of Cassia tora seed due to roasting. 

3.2. Antioxidant activity 

Potentiating cellular antioxidant ability has been noted as being crucial for a successful 

treatment of the various metabolic diseases [47]. Hence, the antioxidant activity of raw and roasted 

sorghum grains was tested and the results are presented in Table 2. Raw sorghum extract 

effectively scavenged DPPH* and ABTS*+, chelated Fe2+ and reduced Fe3+. However, in contrast 

to the impact of roasting on the enzymes inhibitory activity of the grain, the antioxidant activity 

increased significantly (p < 0.05) as the roasting temperature increased. This increment 

notwithstanding, ascorbic acid, a standard antioxidant, had stronger DPPH* scavenging and Fe2+ 

chelating ability than both raw and roasted grain. There have been conflicting reports by some 

previous studies on the effect of roasting on antioxidant activity of grains. Whereas Vadivel et al. 
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[48] reported a drastic decrease in antioxidant activity of ten under-utilized legume grains; 

Kunyanga et al. [49] reported a significant increase in antioxidant activity of finger millet and 

sunflower seed due to roasting. 

3.3. Phenolics composition 

Phenolics composition of raw and roasted sorghum grains (Table 3) shows that both 

phenolic acids (gallic, chlorogenic, caffeic, ellagic and p-coumaric acids) and flavonoids 

(quercetin, luteolin and apigenin) were present in the raw grain. Representative chromatograms of 

raw and roasted grain are shown in Figure 1A - C. Chlorogenic acid was the most abundant 

phenolic acid, followed by ellagic and caffeic acids; while quercetin was the most abundant 

flavonoid followed by luteolin. Generally, the levels of all the phenolic acids (except caffeic acid) 

and flavonoids reduced with increasing roasting temperature. Chlorogenic acid and apigenin were 

not detected in grain roasted at 180 oC, while luteolin was not detected in grain roasted at 150 oC 

and 180 oC; suggesting absolute degradation of these compounds at the respective roasting 

temperatures.  

Loss of phenolic compounds during thermal processing have been reported by some 

previous studies [44, 50]. This loss is attributed to thermal decomposition and heat-induced 

oxidation of the phenolic compounds [51, 52]. For instance, phenolic acids were reported to easily 

volatilize during heat treatment, especially during extended heating; while the highly hydroxylated 

structure of flavonoids, which makes them vulnerable to redox reactions, promotes their 

degradation during thermal treatments [50]. Regarding heat-induced oxidation of phenolic 

compounds, roasting promotes the formation of Maillard reaction products at the expense of 

phenolics; the extent of which is dependent on the roasting temperature and time [53].  
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The parallel decrease in enzymes inhibitory activity and phenolics composition of the grain 

with increasing roasting temperature suggests that phenolic acids and the flavonoids might be the 

major enzymes inhibitors in the grain. Some earlier studies had demonstrated the ability of extracts 

of some plants such as Ziziphus mistol [54] and leaf of different Momordica species [55] rich in 

phenolic compounds to inhibit some important enzymes linked to metabolic diseases. Phenolic 

compounds of plant origin have affinity for peptides; a property made possible through hydrogen 

and hydrophobic bonding. This affinity enables phenolics-rich extracts to denature peptide 

enzymes, thereby inhibiting their catalytic activity [18]. Consequently, as the phenolic acids and 

flavonoids levels of the grain decreased, the enzymes inhibitory activity also decreased due to 

increasing roasting temperature. 

In contrast, the increase in antioxidant activity of the grains as the levels of phenolic 

compounds decreased with increasing roasting temperature suggests that the antioxidant activity 

of the grains may not be exclusively attributed to the phenolics. Instead, Maillard reaction products 

that may have been formed during roasting at 150 and 180 oC possibly contributed to the 

antioxidant activity. Roasting process is known to result in the formation of Maillard reaction 

products, which are mainly responsible for some noticeable changes in the organoleptic properties 

of roasted foods, such as alteration in colour and flavor [56]. These Maillard reaction products 

possess antioxidant activity [57]. Thus, as Maillard reaction and its products may have increased 

with increasing roasting temperature, the antioxidant activity of the grain also increased.  

4. Conclusions 

Raw sorghum grains extract displayed strong enzymes (pancreatic lipase, α-amylase and 

α-glucosidase, XO and ACE) inhibitory and antioxidant activities. The extract contained phenolic 

acids (gallic, chlorogenic, caffeic, ellagic and p-coumaric acids) and flavonoids (quercetin, luteolin 
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and apigenin). However, whereas the enzymes inhibitory activity and phenolic compounds levels 

of the extract decreased with increasing roasting temperature of the grains; the antioxidant activity 

increased. Hence, roasting at high temperatures may not be recommended for the optimum 

retention of the enzymes inhibitory property and phenolic compounds of red sorghum grains, and 

the associated health benefits. 
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Figure caption 

Figure 1. HPLC-DAD chromatograms depicting the polyphenolic constituents of sorghum grains: 

1A - raw grains; 1B - grains roasted at 150 oC for 20 min; 1C - grains roasted at 180 oC for 20 min; 

peak 1 - gallic acid; peak 2 - chlorogenic acid; peak 3 - caffeic acid; peak 4 - ellagic acid; peak 5 

- p-coumaric acid; peak 6 - quercetin; peak 7 - luteolin; peak 8 - apigenin. ACCEPTED M
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1A. Raw sorghum 

 

1B. Roasted sorghum, 150 oC 
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1C. Roasted sorghum, 180 oC 

 

 

Tables 

Table 1. IC50 values of raw and roasted sorghum grains extracts on pancreatic lipase (PL), α-

amylase, α-glucosidase, angiotensin I-converting enzyme (ACE) and xanthine oxidase (XO) 

activities 

Enzyme Raw 

(μg/mL) 

Roasted, 

150 oC 

(μg/mL) 

Roasted, 

180 oC 

(μg/mL) 

Orlistat 

(μg/mL) 

Acarbose 

(μg/mL) 

Allopurino

l (μg/mL) 

Captopril 

(μg/mL) 

PL 12.72 ± 

1.13c 

14.13 ± 

1.42b 

17.09 ± 

1.75a 

0.36 ± 

0.02d 

- - - 

α-amylase 16.93 ± 

1.08c 

19.15 ± 

1.24b 

21.82 ± 

1.51a 

- 10.13 ± 

0.82d 

- - 

α-

glucosidase 

10.78 ± 

0.63d 

12.29 ± 

0.96c 

14.69 ± 

1.02b 

- 18.04 ± 

1.25a 

- - 

XO 28.35 ± 

1.86c 

30.75 ± 

1.90b 

33.06 ± 

1.97a 

- - 7.04 ± 

0.44d 

- 

ACE 19.64 ± 

1.06c 

20.99 ± 

1.17b 

22.81 ± 

1.52a 

- - - 6.34 ± 

0.72d 

Results are means ± standard deviations (SD) of triplicate determinations. Along the same row, 

values having different superscript letters vary significantly (p < 0.05). IC50: concentration of 

extract that inhibited enzyme activity by 50%.   
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Table 2. DPPH* and ABTS*+ scavenging ability, Fe2+ chelation and reducing power of raw and 

roasted sorghum grains extracts 

Antioxidant 

activity 

Raw  Roasted, 150 oC Roasted, 180 oC Ascorbic acid 

ABTS*+ 

scavenging ability 

(mmol TEAC/g) 

5.47 ± 0.29c 6.32 ± 0.34b 8.09 ± 0.51a - 

DPPH* SC50 

(μg/mL) 

12.04 ± 0.85a 10.81 ± 0.63b 8.46 ± 0.61c 5.89 ± 0.64d 

Fe2+ chelation CC50 

(μg/mL) 

19.83 ± 1.02a 17.68 ± 0.94b 14.64 ± 0.87c 9.75 ± 0.63d 

Reducing power 

(mg GAE/g) 

72.41 ± 1.42c 75.18 ± 1.80b 77.92 ± 1.96a - 

Results are means ± standard deviations (SD) of triplicate determinations. Along the same row, 

values having different superscript letters vary significantly (p < 0.05). TEAC: Trolox equivalent 

antioxidant capacity; SC50: extract concentration that scavenged 50% of DPPH*; CC50: extract 

concentration that chelated 50% of Fe2+; GAE: Gallic acid equivalent. 

 

Table 3. Phenolic constituents of raw and roasted sorghum grains extracts 

Compounds 

(mg/g) 

Raw Roasted,  

150 oC  

Roasted,  

180 oC  

tR (min) LOD  

(g/mL) 

LOQ 

(g/mL) 
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Gallic acid  1.78 ± 0.02a 1.64 ± 0.03b 0.96 ± 0.02c 10.09 0.015 0.049 

Chlorogenic 

acid 

4.15 ± 0.03a 0.49 ± 0.01b ND 19.45 0.028 0.093 

Caffeic acid 2.63 ± 0.01b 3.87 ± 0.01a 1.82 ± 0.05c 25.11 0.009 0.030 

Ellagic acid 4.09 ± 0.01a 3.92 ± 0.02a 1.93 ± 0.01b 31.62 0.023 0.075 

p-Coumaric 

acid 

1.81 ± 0.05a 0.85 ± 0.04b 0.51 ± 0.01c 39.76 0.011 0.036 

Quercetin 7.93 ± 0.02a 1.76 ± 0.04b 0.91 ± 0.01c 50.97 0.024 0.078 

Luteolin 4.20 ± 0.01 ND ND 54.87 0.018 0.064 

Apigenin 1.75 ± 0.01a 1.67 ± 0.05a ND 59.74 0.013 0.042 

Results are expressed as mean ± standard deviations (SD) of three independent determinations. 

Mean values followed by different letters along the same row differ significantly at p < 0.05. tR: 

retention time; LOD: limit of detection; LOQ: limit of quantification; ND: not detected. 
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