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Abstract Accurate and reliable probabilistic forecasts of hydrological quantities like runoff or water
level are beneficial to various areas of society. Probabilistic state-of-the-art hydrological ensemble
prediction models are usually driven with meteorological ensemble forecasts. Hence, biases and dispersion
errors of the meteorological forecasts cascade down to the hydrological predictions and add to the errors of
the hydrological models. The systematic parts of these errors can be reduced by applying statistical
postprocessing. For a sound estimation of predictive uncertainty and an optimal correction of systematic
errors, statistical postprocessing methods should be tailored to the particular forecast variable at hand.
Former studies have shown that it can make sense to treat hydrological quantities as bounded variables. In
this paper, a doubly truncated Bayesian model averaging (BMA) method, which allows for flexible
postprocessing of possibly multimodel ensemble forecasts of water level, is introduced. A case study based
on water levels for a gauge of river Rhine reveals a good predictive skill of doubly truncated BMA
compared both to the raw ensemble and the reference ensemble model output statistics approach. Using
rolling training periods, BMA considerably outerperforms ensemble model output statistics. However, this
gap shrinks drastically when using analog-based training periods.

1. Introduction
Hydrological forecasts are important for a heterogeneous group of users such as the operators of hydro-
logical power plants, flood prevention authorities, or shipping companies. For rational decision making
based on cost-benefit analyses, an estimate of the predictive uncertainty (Krzysztofowicz, 1999; Todini, 2008)
needs to be provided with any forecast. The state-of-the-art approach of using a set of parallel runs of a
hydrological model driven by meteorological ensemble forecasts provided by numerical weather prediction
models (Cloke & Pappenberger, 2009) gives a first estimate of the meteorological input uncertainty. How-
ever, numerical weather prediction ensembles are usually biased and underdispersed (Bougeault et al., 2010;
Buizza et al., 2005; Park et al., 2008). Moreover, additional sources of uncertainty like hydrological model
formulation, boundary, and initial condition uncertainty as well as measurement uncertainties are typically
neglected. Hence, statistical postprocessing is important in order to reduce systematic errors and to obtain
an appropriate estimate of the predictive uncertainty (Buizza, 2018).

In the last decade, various methods of statistical calibration of ensemble forecasts for different weather vari-
ables have been developed (see, e.g., Ruiz & Saulo, 2012; Schmeits & Kok, 2010; Williams et al., 2014; Wilks,
2018), and parametric methods such as ensemble model output statistics (EMOS; Gneiting et al., 2005) or
Bayesian model averaging (BMA; Raftery et al., 2005) provide full predictive distributions. The EMOS predic-
tive distribution is given by a single parametric probability law with parameters depending on the ensemble,
whereas the BMA predictive probability density function (PDF) is a weighted mixture of PDFs correspond-
ing to the individual ensemble members. EMOS and BMA models for various weather quantities differ in
the applied parametric distribution family. Once the predictive distribution is given, its functionals (e.g.,
median or mean) can be considered as classical point forecasts.

Besides the successful application, for example, to ensemble forecasts for temperature (Gneiting et al., 2005),
wind speed (Baran & Lerch, 2015; Lerch & Thorarinsdottir, 2013; Thorarinsdottir & Gneiting, 2010), or
precipitation (Baran & Nemoda, 2016; Scheuerer, 2014; Scheuerer & Hamill, 2015), EMOS-based statisti-
cal postprocessing turned out to improve the predictive performance of hydrological ensemble forecasts for
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different gauges along river Rhine (Hemri et al., 2015; Hemri & Klein, 2017). EMOS is a quite parsimonious
postprocessing method that basically links a parametric forecast distribution to ensemble statistics like the
ensemble mean and the ensemble variance. Therefore, its performance is limited by (i) how well the true
process can be represented by a parametric distribution family and (ii) to what extent the complete infor-
mation from the ensemble can be summarized in a limited set of ensemble statistics. For instance, a typical
EMOS approach based on a Gaussian or a Gamma distribution family is not able to model bimodal fore-
cast distributions. However, BMA, which has also been applied to hydrological ensemble forecasts (see, e.g.,
Duan et al., 2007; Hemri et al., 2013), is more flexible in that it converts a (multimodel) raw ensemble to a
mixture distribution which allows multimodal shapes. Accordingly, we hypothesize that BMA may be able
to outperform EMOS.

As the use of the BMA approach is very convenient in a Gaussian framework, both Duan et al. (2007) and
Hemri et al. (2013) perform a Box-Cox transformation prior to applying BMA in order to achieve approx-
imate normality despite the positive skewness of water levels. Additionally, it is important to ensure that
the resulting water level quantiles of the predictive distribution are within realistic physical bounds. At the
upper bound of the distribution water levels should be lower than a water level threshold resulting from an
extreme flood with a small exceedance probability; at the lower bound water levels should be higher than a
water level threshold resulting from an extreme long-lasting low water period with a small nonexceedance
probability. In order to ensure realistic values while still being able to benefit from the mathematical simplic-
ity of Gaussian models, we use a lower and upper truncated normal distribution. Generally, the data of the
water level gauges are defined to avoid water levels below zero. Accordingly, we are using an ad hoc lower
truncation limit of half of the lowest value ever recorded. Though this ad hoc limit turned out to be appropri-
ate for the gauge considered, in general, we recommend to base the derivation of the lower truncation limit
on a physical property like the cease-to-flow stage. Even though river physics do not provide any hard upper
limit for water level, as a result of the Box-Cox transformation, we need to apply also an upper truncation
limit. Otherwise, due to the skewness of water level, back transformation from the Box-Cox transformed to
the original space may lead to predicted water levels that are way above the range of the rating curve. For this
study we have set the upper truncation limit to two times the maximum gauge level ever recorded. However,
in general, we recommend to base the upper limit based on assessing the range of validity of the rating curve.
Above this range, the hydrometric gauge may be bypassed, and hence, the rating curve becomes obsolete.

To our best knowledge, up to now, there is no study that has applied a doubly truncated normal BMA
approach. In this study, the work by Baran (2014), which introduces a one-sided truncated normal BMA
method, is extended to a two-sided truncated normal BMA approach. Its performance and its suitability for
hydrological ensemble forecasts is assessed through the example of multimodel ensemble forecasts of water
level at gauge Kaub at river Rhine.

Doubly truncated BMA is introduced in section 2 on calibration methods and forecast evaluation, followed
by a brief description of the data in section 3. The results are presented in section 4, and conclusions are
drawn in section 5.

2. Calibration Methods and Forecast Evaluation
2.1. Bayesian Model Averaging
As mentioned in section 1, for the BMA postprocessing approach, the predictive distribution of a future
weather quantity is a weighted mixture of probability laws corresponding to the individual ensemble mem-
bers. In general, if f1, … , fK denote the ensemble forecast of a given weather or hydrological quantity X for
a given location, time, and lead time, the BMA predictive PDF (Raftery et al., 2005) of X equals

p(x|𝑓1, … , 𝑓K ; 𝜃1, … , 𝜃K) ∶=
K∑

k=1
𝜔kg

(
x|𝑓k, 𝜃k

)
, (1)

where g
(

x|𝑓k, 𝜃k
)

is the component PDF from a parametric family corresponding to the kth ensemble mem-
ber fk with parameter (vector) 𝜃k to be estimated and 𝜔k is the corresponding weight linked to the relative
performance of this particular member during the training period. Note that the weights should form a
probability distribution, that is, 𝜔k ≥ 0, k = 1, … ,K and

∑K
k=1 𝜔k = 1.

Recently, most operational ensemble predictions systems incorporate ensembles where at least some mem-
bers can be considered as statistically indistinguishable and in this way exchangeable. This is the case with
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the 51 member operational European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble
(Leutbecher & Palmer, 2008; Molteni et al., 1996), where the 50 members generated using perturbed initial
conditions form an exchangeable group. Further, in this context one can also consider multimodel ensem-
ble predictions systems such as the GLAMEPS ensemble (Iversen et al., 2011) or the THORPEX Interactive
Grand Global Ensemble (Swinbank et al., 2016). Obviously, using ensemble weather forecasts consisting of
groups of exchangeable members as inputs of a hydrological model results in hydrological ensemble fore-
casts with exchangeable members, which is the case with the water level data at hand described in section
3. To account for the existence of groups with exchangeable members, Fraley et al. (2010) suggest to use the
same weights and parameters within a given group. Thus, if we have M ensemble members divided into K
groups, where the kth group contains Mk ≥ 1 exchangeable ensemble members (

∑K
k=1 Mk = M) and fk,𝓁

denotes the 𝓁th member of the kth group, model (1) is replaced by

p(x|𝑓1,1, … , 𝑓1,M1
, … , 𝑓K,1, … , 𝑓K,MK

; 𝜃1, … , 𝜃K) ∶=
K∑

k=1

Mk∑
𝓁=1

𝜔kg
(

x|𝑓k,𝓁 , 𝜃k
)
. (2)

For the sake of simplicity, in the remaining part of this section we provide results and formulae only for
model (1) as their extension to model (2) is rather straightforward.

2.2. Truncated Normal BMA Model
For weather variables such as temperature or pressure, BMA models with Gaussian components provide a
reasonable fit (Fraley et al., 2010; Raftery et al., 2005), whereas wind speed calls for nonnegative and skewed
distributions such as gamma (Sloughter et al., 2010) or truncated normal with truncation from below at zero
(Baran, 2014). However, water levels are typically non-Gaussian (see, e.g., Duan et al., 2007); moreover, as
stated above, they are bounded both from below and from above. These constraints should also be taken
into account during model formulation. A general procedure is to normalize the forecasts and observations
using, for instance, Box-Cox transformation

h𝜆(x) ∶=
{ (

x𝜆 − 1
)
∕𝜆, 𝜆 ≠ 0,

log(x), 𝜆 = 0,
(3)

with some coefficient 𝜆, perform postprocessing, and then backtransform the results using the inverse
Box-Cox transformation (Duan et al., 2007; Hemri et al., 2014, 2015). Following the ideas of Hemri and
Klein (2017), for modeling Box-Cox transformed water levels we use a doubly truncated normal distribution
 b

a
(
𝜇, 𝜎2), with PDF

ga,b (x|𝜇, 𝜎) ∶= 1
𝜎
𝜑

(
x−𝜇
𝜎

)
Φ
(

b−𝜇
𝜎

)
− Φ

(
a−𝜇
𝜎

) , x ∈ [a, b], (4)

and ga,b (x|𝜇, 𝜎) ∶= 0 otherwise, where a and b are the lower and upper bounds and 𝜑 and Φ denote the
PDF and the cumulative distribution function (CDF) of the standard normal distribution, respectively. The
mean and variance of  b

a
(
𝜇, 𝜎2) are

𝜅 = 𝜇 + 𝜎

𝜑

(
a−𝜇
𝜎

)
− 𝜑

(
b−𝜇
𝜎

)
Φ
(

b−𝜇
𝜎

)
− Φ

(
a−𝜇
𝜎

) and (5)

𝜚2 = 𝜎2

⎛⎜⎜⎜⎝1 +
a−𝜇
𝜎
𝜑

(
a−𝜇
𝜎

)
− b−𝜇

𝜎
𝜑

(
b−𝜇
𝜎

)
Φ
(

b−𝜇
𝜎

)
− Φ

(
a−𝜇
𝜎

) −
⎛⎜⎜⎜⎝
𝜑

(
a−𝜇
𝜎

)
− 𝜑

(
b−𝜇
𝜎

)
Φ
(

b−𝜇
𝜎

)
− Φ

(
a−𝜇
𝜎

)⎞⎟⎟⎟⎠
2⎞⎟⎟⎟⎠ ,

respectively. The proposed BMA predictive PDF is

p
(

x|𝑓1, … , 𝑓K ; 𝛼1, … , 𝛼K ; 𝛽1, … , 𝛽K ; 𝜎
)
=

K∑
k=1

𝜔kga,b
(

x|𝛼k + 𝛽k𝑓k, 𝜎
)
, (6)

where we assume that the location of the kth mixture component is an affine function of the corresponding
ensemble member fk and scale parameters are assumed to be equal for all component PDFs. The latter
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Figure 1. Box-Cox transformation parameter 𝜆 as function of the lead time (a); BMA predictive distribution and its
components of Box-Cox transformed water levels for 30 July 2008 corresponding to 48-hr lead time (b). Vertical solid
line: transformed verifying observation; dashedline: BMA median. BMA = Bayesian model averaging; ECMWF HRES
= ECMWF high-resolution; ECMWF ENS = ECMWF ensemble; COSMO LEPS = consortium for small-scale modeling
limited-area ensemble prediction system; NCEP GEFS = National Center for Environmental Prediction global
ensemble forecast system.

assumption is for the sake of simplicity and is common in BMA modeling (see, e.g., Raftery et al., 2005),
whereas the form of the location parameter is in line with the truncated normal BMA model of Baran (2014).
An example of a BMA predictive distribution (6) of Box-Cox transformed water levels for 30 July 2008 is
given in Figure 1b, where the overall predictive PDF and the component PDFs are plotted, together with the
BMA median and the transformed validating observation.

2.3. Parameter Estimation
Location parameters 𝛼k, 𝛽k; weights 𝜔k, k = 1, … ,K; and scale parameter 𝜎 can be estimated from train-
ing data, which consists, for instance, of ensemble members and validating observations from the preceding
n days. In section 2.6 several more sophisticated approaches to training data selection are provided. In the
BMA approach, estimates of location parameters are typically obtained by regressing the validating obser-
vations on the ensemble members, whereas weights and scale parameter(s) are obtained via maximum
likelihood (ML) estimation (see, e.g., Raftery et al., 2005; Sloughter et al., 2007, 2010), where the log likeli-
hood function of the training data is maximized using the EM algorithm for mixture distributions (Dempster
et al., 1977; McLachlan & Krishnan, 1997). However, the regression approach assumes the location parame-
ters to be simple functions of the mean, which is obviously not the case for the truncated normal distribution;
see (5). Hence, we propose a pure ML method estimating all model parameters by maximizing the likelihood
function, which ideas have already been considered, for example, by Sloughter et al. (2010) or Baran (2014).

In what follows, for a given location s ∈  and time t ∈  let fk,s,t denote the kth ensemble member and
denote by xs,t the corresponding validating observation. Here  denotes the set of locations sharing the same
BMA model parameters and  is the set of training dates. In the case study of section 4  consists of a
single location; however, for more complex ensemble domains different choices of training data are possible;
for more details, see, for example, Lerch and Baran (2017). Further, as in the case study of section 4 the
different lead times are treated separately; reference to the lead time of the forecast is omitted. By assuming
the conditional independence of forecast errors with respect to the ensemble members in space and time,
the log likelihood function for model (6) corresponding to all forecast cases (s, t) in the training set equals

𝓁(𝜔1, … , 𝜔K , 𝛼1, … , 𝛼K , 𝛽1, … , 𝛽K , 𝜎) =
∑

s,t
log

[ K∑
k=1

𝜔kga,b
(

xs,t|𝛼k + 𝛽k𝑓k,s,t, 𝜎
)]

. (7)

To obtain the ML estimates, we apply EM algorithm for truncated Gaussian mixtures proposed by Lee and
Scott (2012) with a mean correction. In line with the classical EM algorithm for mixtures (McLachlan &
Krishnan, 1997), we first introduce latent binary indicator variables zk,s,t identifying the mixture component
where the observation xs,t comes from, that is, zk,s,t is 1 or 0 accordingly as whether xs,t follows or not the kth
component distribution. Using these indicator variables, one can provide the complete data log likelihood
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corresponding to (7) in the form

𝓁C(𝜔1, … , 𝜔K , 𝛼1, … , 𝛼K ,𝛽1, … , 𝛽K , 𝜎) (8)

=
∑

s,t

K∑
k=1

zk,s,t
[
log

(
𝜔k

)
+ log

(
ga,b

(
xs,t|𝜇k,s,t, 𝜎

))]
,

with 𝜇k,s,t ∶= 𝛼k + 𝛽kfk,s,t. After specifying the initial values of the parameters, the EM algorithm alter-
nates between an expectation (E) and a maximization (M) step until convergence. As first guesses a(0)

k and
b(0)

k , k = 1, … ,K, for the location parameters, we suggest to use the coefficients of the linear regression of
xs,t on fk,s,t, so 𝜇

(0)
k,s,t = 𝛼

(0)
k + 𝛽

(0)
k 𝑓k,s,t. Initial scale 𝜎(0) can be the standard deviation of the observations in the

training data set or the average residual standard deviation from the above regression, whereas the initial
weights might be chosen uniformly, that is, 𝜔(0)

k = 1∕K, k = 1, … ,K. Then in the E step the latent vari-
ables are estimated using the conditional expectation of the complete log likelihood on the observed data,
while in the M step the parameter estimates are updated by maximizing 𝓁C given the actual values of the
latent variables.

For the doubly truncated normal model specified by (4) and (6), the E step of the (j + 1)st iteration is

z( 𝑗+1)
k,s,t ∶=

𝜔
( 𝑗)
k ga,b

(
xs,t|𝜇( 𝑗)

k,s,t, 𝜎
( 𝑗)
)

∑K
i=1 𝜔

( 𝑗)
i ga,b

(
xs,t|𝜇( 𝑗)

i,s,t, 𝜎
( 𝑗)
) . (9)

Once the estimates of the indicator variables (which are not necessary 0 or 1 any more) are given, the first
part of the M step updating the weights is obviously

𝜔
( 𝑗+1)
k ∶= 1

N
∑

s,t
z( 𝑗+1)

k,s,t , (10)

where N is the total number of forecast cases in the training set.

Further, nonlinear equations 𝜕𝓁C
𝜕𝛼k

= 0 and 𝜕𝓁C
𝜕𝛽k

= 0, k = 1, … ,K, lead us to update formulae

𝛼
( 𝑗+1)
k ∶=

[∑
s,t

z( 𝑗+1)
k,s,t

]−1 ∑
s,t

z( 𝑗+1)
k,s,t

⎧⎪⎪⎨⎪⎪⎩
(

xk,s,t − 𝛽
( 𝑗)
k,s,t𝑓k,s,t

)
+ 𝜎( 𝑗)

𝜑

(
b−𝜇( 𝑗)k,s,t
𝜎( 𝑗)

)
− 𝜑

(
a−𝜇( 𝑗)k,s,t
𝜎( 𝑗)

)
Φ
(

b−𝜇( 𝑗)k,s,t
𝜎( 𝑗)

)
− Φ

(
a−𝜇( 𝑗)k,s,t
𝜎( 𝑗)

)
⎫⎪⎪⎬⎪⎪⎭
, (11)

𝛽
( 𝑗+1)
k ∶=

[∑
s,t

z( 𝑗+1)
k,s,t 𝑓 2

k,s,t

]−1 ∑
s,t

z( 𝑗+1)
k,s,t 𝑓k,s,t

⎧⎪⎪⎨⎪⎪⎩
(

xk,s,t − 𝛼
( 𝑗)
k,s,t

)
+ 𝜎( 𝑗)

𝜑

(
b−𝜇( 𝑗)k,s,t
𝜎( 𝑗)

)
− 𝜑

(
a−𝜇( 𝑗)k,s,t
𝜎( 𝑗)

)
Φ
(

b−𝜇( 𝑗)k,s,t
𝜎( 𝑗)

)
− Φ

(
a−𝜇( 𝑗)k,s,t
𝜎( 𝑗)

)
⎫⎪⎪⎬⎪⎪⎭
,

respectively. However, using then simply 𝜇
( 𝑗+1)
k,s,t ∶= 𝛼

( 𝑗+1)
k + 𝛽

( 𝑗+1)
k 𝑓k,s,t as the update of the location results

in an unstable parameter estimation process due to numerical issues. Hence, similar to Baran (2014), where
the same problem occurred in case studies with wind speed data, we introduce a mean correction of form

𝜇
( 𝑗+1)
k,s,t ∶= 𝜇

(0)
k,s,t − 𝜎( 𝑗)

𝜑

(
a−𝛼( 𝑗+1)−𝛽( 𝑗+1)𝑓k,s,t

𝜎( 𝑗)

)
− 𝜑

(
b−𝛼( 𝑗+1)−𝛽( 𝑗+1)𝑓k,s,t

𝜎( 𝑗)

)
Φ
(

b−𝛼( 𝑗+1)−𝛽( 𝑗+1)𝑓k,s,t
𝜎( 𝑗)

)
− Φ

(
a−𝛼( 𝑗+1)−𝛽( 𝑗+1)𝑓k,s,t

𝜎( 𝑗)

) , (12)

which reflects the difference between the location and mean of a truncated normal distributions; see (5).
Finally, from 𝜕𝓁C

𝜕𝜎
= 0 we obtain the last update formula

𝜎2( 𝑗+1) ∶= 1
N

∑
s,t

K∑
k=1

z( 𝑗+1)
k,s,t {

(
xs,t − 𝜇

( 𝑗+1)
k,s,t

)2
(13)

+ 𝜎( 𝑗)

(
b − 𝜇

( 𝑗+1)
k,s,t

)
𝜑

(
b−𝜇( 𝑗+1)

k,s,t
𝜎( 𝑗)

)
−
(

a − 𝜇
( 𝑗+1)
k,s,t

)
𝜑

(
a−𝜇( 𝑗+1)

k,s,t
𝜎( 𝑗)

)
Φ
(

b−𝜇( 𝑗+1)
k,s,t

𝜎( 𝑗)

)
− Φ

(
a−𝜇( 𝑗+1)

k,s,t
𝜎( 𝑗)

)
⎫⎪⎪⎬⎪⎪⎭
.
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Note that without truncation (−a = b = ∞) the terms of (11) and (13) depending on 𝜎(j) disappear, so
location (mean) and scale (standard deviation) are updated separately, no mean correction is required, and
we get back the classical EM algorithm for normal mixtures.

As a more simple alternative approach, one can omit the update step (11) for 𝛼k and 𝛽k, simplify the mean
correction step (12) to

𝜇
( 𝑗+1)
k,s,t ∶= 𝜇

(0)
k,s,t − 𝜎( 𝑗)

𝜑

(
a−𝜇( 𝑗)k,s,t
𝜎( 𝑗)

)
− 𝜑

(
b−𝜇( 𝑗)k,s,t
𝜎( 𝑗)

)
Φ
(

b−𝜇( 𝑗)k,s,t
𝜎( 𝑗)

)
− Φ

(
a−𝜇( 𝑗)k,s,t
𝜎( 𝑗)

) , (14)

and only after the EM algorithm stops, estimate location parameters 𝛼k and 𝛽k from a linear regression of
the final value of 𝜇k,s,t on fk,s,t.

Finally, one can also try the classical naive approach, where location parameters 𝛼k and 𝛽k are not updated
at all, that is, 𝜇( 𝑗+1)

k,s,t ≡ 𝛼
(0)
k + 𝛽

(0)
k 𝑓k,s,t. In the case study of section 4.1, the latter two approaches do not

show significantly different forecast skills in terms of the verification scores defined in section 2.4, so only
the results for the naive and pure ML approaches are reported. The two simple approaches provide very
similar location and scale parameters; the corresponding predictive distributions mainly differ in weights. In
contrast, the pure ML method results in completely different location parameters. In terms of computation
costs the ranking is naive, naive with mean correction and pure ML. A more detailed analysis of computation
times of these approaches can be found in Baran (2014).

2.4. Verification Scores
In probabilistic forecasting, the principal aim is to access the maximal sharpness of the predictive distribu-
tion subject to calibration (Gneiting et al., 2007), where the latter means a statistical consistency between
the predictive distributions and the validating observations, whereas the former refers to the concentration
of the predictive distribution. One of the simplest tools for getting a first impression about the calibration of
forecast distributions is the probability integral transform (PIT) histogram. By definition, the PIT is the value
of predictive CDF at the validating observation (Raftery et al., 2005), which in case of proper calibration
should follow a uniform distribution on the [0, 1] interval. In this way the PIT histogram is the continu-
ous counterpart of the verification rank histogram for the raw ensemble, which is defined as histogram of
ranks of validating observations with respect to the corresponding ensemble forecasts (see, e.g., Wilks, 2011,
section 7.7.2). Again, for a properly calibrated ensemble the ranks should be uniformly distributed.

Predictive performance can be quantified with the help of scoring rules, which are loss functions assigning
numerical values to pairs of forecasts and observations. In hydrology and atmospheric sciences, one of the
most popular scoring rules is the continuous ranked probability score (CRPS; Gneiting & Raftery, 2007;
Wilks, 2011), as it assesses calibration and sharpness simultaneously. For a (predictive) CDF F(y) and real
value (observation) x the CRPS is defined as

CRPS (F, x) ∶= ∫
∞

−∞

(
F(𝑦) − 1{𝑦≥x}

)2d𝑦 = ∫
x

−∞
F2(𝑦)d𝑦 + ∫

∞

x
(1 − F(𝑦))2d𝑦 (15)

= E|X − x| − 1
2

E|X − X ′|,
where 1H denotes the indicator of a set H, whereas X and X′ are independent random variables with CDF
F and finite first moment. CRPS is a negatively oriented proper scoring rule (Gneiting & Raftery, 2007), that
is, the smaller the better, and the right-hand side of (15) shows that it can be expressed in the same unit
as the observation. For truncated normal distribution the CRPS has a simple closed form (see, e.g., the R
package scoringRules; Jordan & Krüger), whereas for the truncated normal mixture (6), similar to the
mixture model of Baran and Lerch (2016), the second integral expression in the definition (15) should be
evaluated numerically. Moreover, in our case study each calibration approach provides a predictive CDF F
for the Box-Cox transformed water level X ∈ [a, b]. Thus, the CRPS corresponding to the predictive CDF
G(𝑦) ∶= F

(
h𝜆(𝑦)

)
of the original water level Y = h−1

𝜆
(X) ∈

[
h−1
𝜆
(a), h−1

𝜆
(b)

]
and a real value y equals

CRPS (G, 𝑦) = ∫
𝑦

h−1
𝜆

(a)
F2 (h𝜆(u)

)
du + ∫

h−1
𝜆

(b)

𝑦

(
1 − F

(
h𝜆(u)

))2du, (16)
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which integral should again be approximated numerically. Further, in order to get the CRPS of the raw
ensemble, the empirical CDF is considered as predictive distribution.

In case studies, competing forecast methods can be compared by the mean CRPS value

CRPS ∶= 1
N

N∑
n=1

CRPS
(

Fi, xi
)

over all pairs (Fi, xi), i = 1, … ,N, of forecasts and observations in the verification data. Further, the
improvement in CRPS with respect to a reference method can be quantified with the help of the continuous
ranked probability skill score (CRPSS; Gneiting & Raftery, 2007; Murphy, 1973), defined as

CRPSS ∶= 1 − CRPS
CRPSref

,

where CRPSref denotes the mean CRPS value corresponding to the reference approach. In contrast to the
CRPS, the CRPSS is positively oriented, that is, the larger the better.

Calibration and sharpness of a predictive distribution can also be investigated using the coverage and average
width of the (1 − 𝛼)100 %, 𝛼 ∈ (0, 1), central prediction interval, respectively (Gneiting et al., 2007). As the
coverage we consider the proportion of validating observations located between the lower and upper 𝛼∕2
quantiles of the predictive CDF, and level 𝛼 should be chosen to match the nominal coverage of the raw
ensemble, that is, (K − 1)∕(K + 1)100%, where K is the ensemble size (see, e.g., Baran & Lerch, 2015; Raftery
et al., 2005). As the coverage of a calibrated predictive distribution should be around (1 − 𝛼)100 %, such a
choice of 𝛼 allows direct comparison with the raw ensemble.

Further, as point forecasts we consider the medians of the predictive distributions and the raw ensemble,
which are evaluated with the help of the mean absolute error (MAE).

Finally, as suggested by Gneiting and Ranjan (2011), statistical significance of the differences between the
verification scores is assessed by utilizing the Diebold-Mariano (DM; Diebold & Mariano, 1995) test, which
allows accounting for the temporal dependencies in the forecast errors. In the case study of section 4 we
report the p values of the test. The p values less than 0.05 indicate significant difference in scores at a 5%
level. The detailed description of the DM test can be found, for example, in Baran and Lerch (2016).

2.5. Truncated Normal EMOS Model
As a reference postprocessing method for calibration of Box-Cox transformed ensemble forecasts for water
levels, we consider the truncated normal EMOS model of Hemri and Klein (2017). In this approach the
predictive distribution is a single doubly truncated normal distribution  b

a
(
𝜇, 𝜎2) defined by (4), and the

ensemble members are just linked to the location 𝜇 and scale 𝜎 via equations

𝜇 = a0 + a1𝑓1 + … + aK𝑓K and 𝜎2 = b0 + b1S2, (17)

where S2 denotes the variance of the transformed ensemble. In case of existence of groups of exchangeable
ensemble members the equation for the location in (17) is replaced by

𝜇 = a0 + a1𝑓 1 + … + aK𝑓K , (18)

where 𝑓 k denotes the mean value of the kth group. According to the optimum score estimation principle
of Gneiting and Raftery (2007), location parameters a0, a1, … , aK ∈ R and scale parameters b0, b1 ≥ 0
are estimated from the training data by optimizing a proper verification score, which is usually the CRPS
defined by (15).

2.6. Analog-Based Approaches to Choosing Training Data
Following Hemri and Klein (2017), we rely on the series distance method (SD; Ehret & Zehe, 2011; Seibert
et al., 2016), the hydrograph matching algorithm (HMA; Ewen, 2011), and dynamic time warping (DTW;
Sakoe & Chiba, 1978) to select analog-based training periods. The goal of SD and HMA is to mimic the
human hydrologist in quantifying the difference between two hydrological time series. SD matches peaks,
troughs, and the falling and rising limbs in between. The amount of corrections needed to match the two
time series with regard to both timing and amplitude is used as a measure of similarity. HMA is similar; it
connects each element of the first time series to the other time series allowing moderate time shifts. The total
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length of all connections constitutes another measure of similarity. DTW provides a measure of similarity by
finding the minimal amplitude error between the two time series that can be obtained by temporal stretching
and compression only.

While these methods are typically used to compare simulated with observed hydrological time series, we
use them here to find training data with a forecast time series that is similar to the one at the verification
date of interest. Accordingly, for each verification date and for each of SD, HMA, and DTW, we select the 100
training dates with the highest similarity in the ECMWF ENS mean trajectories. Obviously, training dates
with forecast trajectories that overlap with one of the verification dates are excluded from the training set.
Refer to Hemri and Klein (2017) for details on these approaches.

3. Data
BMA and EMOS calibration approaches are tested on ensemble forecasts for water level (cm) at gauge Kaub
of river Rhine (546 km) and the corresponding validating observations. Predictions for an 8-year period
between 1 January 2008 and 31 December 2015 are investigated with lead times from 1 to 120 hr with a time
step of 1 hr. The minimum and maximum recorded water levels at this particular gauge are 35 and 825 cm,
respectively. Our 79-member multimodel water level ensemble is obtained by plugging ensemble forecasts
for the relevant weather variables produced by different ensemble prediction systems into the hydrological
model HBV-96 (Lindström et al., 1997), which is run at the German Federal Institute of Hydrology (BfG) for
operational runoff forecasting. We consider the ECMWF high-resolution (HRES) forecast, the 51-member
ECMWF forecast (ENS) (Leutbecher & Palmer, 2008; Molteni et al., 1996), the 16-member COSMO LEPS
forecast of the limited-area ensemble prediction system of the consortium for small-scale modeling (Montani
et al., 2011), and the 11-member NCEP GEFS forecast of the reforecast version 2 of the global ensemble
forecast system of the National Center for Environmental Prediction (Hamill et al., 2013). The runoff fore-
casts are then converted into water level forecasts for the navigation-relevant gauges, including gauge Kaub,
using a hydrodynamic model. All ensemble forecasts are initialized at 6 UTC. We remark that the data set
at hand is part of the data studied in Hemri and Klein (2017), where we refer to for further details.

4. Results
As mentioned in sections 2.2 and 2.5, BMA and EMOS postprocessing is applied for modeling Box-Cox
transformed water levels. As in Hemri and Klein (2017), each lead time has an individual Box-Cox parameter
𝜆 (see Figure 1a) maximizing the in-sample skill of seasonally fitted EMOS models in terms of the CRPS
relative to the raw ensemble, where data from the same season of other years are used for training. These
estimates are then averaged over the training periods in order to obtain one estimate per lead time. Obviously,
for a given lead time the same coefficient is applied both for the forecasts and observations.

Similar to Hemri and Klein (2017), we assume that water levels are in the interval spanned by half of the min-
imum and double of the maximum recorded water level, that is, they are between 17.5 and 1,650 cm, so the
Box-Cox transforms of these values serve as lower and upper bounds for the truncated normal distribution
used both in BMA and EMOS modeling.

The generation of the hydrological ensemble forecast described in section 3 induces a natural grouping of
the ensemble members. One contains just the forecast based on the ECMWF HRES, the other 51-member
group corresponds to the ECMWF ensemble (ENS), whereas forecasts based on COSMO LEPS and NCEP
GEFS ensemble weather forecasts form two other groups of sizes 16 and 11, respectively. Hence, Box-Cox
transformed water level forecasts are calibrated using the truncated normal BMA model for exchangeable
ensemble members specified by (2) and (4) and truncated normal EMOS given by (17) and (18) with K = 4
and M1 = 1, M2 = 51, M3 = 16, M4 = 11. This means that the BMA model has 12 free parameters
to be estimated, whereas the corresponding EMOS model has 7. To ensure a reasonably stable parameter
estimation, BMA and EMOS models are trained using forecasts and observations of 100 days. We consider
both rolling training periods (RTP) and analog-based approaches.

While BMA and EMOS models are fit to Box-Cox transformed values, to ensure comparability, we provide
verification scores for the original forecasts and observations. This means that for quantile-based scores
(MAE, coverage, and average width), before evaluating the score, the inverse Box-Cox transformation is
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Figure 2. Mean CRPS values (a) and CRPSS with respect to the raw ensemble (b). p values of Diebold-Mariano tests for
equality of mean CRPS of the two BMA approaches (c) and of all models compared to EMOS (d). Horizontal dotted
lines of (c) and (d) indicate a 5% level of significance. BMA = Bayesian model averaging; ML = maximum likelihood;
EMOS = ensemble model output statistics; CRPS = continuous ranked probability score; CRPSS = continuous ranked
probability skill score.

applied to the appropriate quantiles of the predictive distribution, whereas CRPS is calculated with the help
of (16).

4.1. BMA Versus EMOS Using A RTP
To investigate the forecast skill of the truncated normal BMA model introduced in section 2.2, first, we
use the standard approach in BMA and EMOS postprocessing (Gneiting et al., 2005; Raftery et al., 2005)
and estimate model parameters using a RTP of length 100 days. Thus, BMA and EMOS models are verified
on the period 10 April 2008 to 31 December 2015 (2822 calendar days). Further, we consider 1 day ahead
calibration for all lead times. This means that for modeling water level, for example, for 1 January 2015, we
use forecasts and observations for the preceding 100 days ending at 31 December 2014. For 24-hr lead time
the last forecasts are initialized at 30 December 2014, whereas 120-hr lead time at 26 December 2014.

In Figure 2a the mean CRPS values of the different postprocessing approaches and the raw ensemble are
plotted as functions of the lead time. Note that compared to the raw ensemble, all calibration approaches
reduce the mean CRPS and the gap increases together with the lead time. The differences between the
forecast skills are more pronounced in Figure 2b showing the CRPSS values with respect to the raw ensemble
forecast. Note that all three presented methods have their maximal skill score at hour 9. This reflects that
the relative gap in CRPS between raw and postprocessed forecasts is increasing up to hour 9 and decreasing
again thereafter. However, it does not imply that the absolute forecast skill increases with lead time between
hours 1 and 9. For shorter lead times this increase is very fast and naive BMA shows the best predictive
performance, whereas for longer lead times the pure ML BMA starts dominating. Obviously, longer lead
times are also associated with larger forecast uncertainty which should be taken into account when one
compares predictive performance. According to the results of DM tests for equal predictive performance,
naive BMA significantly outperforms the raw ensemble for all lead times and the same holds for the pure
ML BMA except hour 1. In general, in terms of the mean CRPS the two BMA approaches differ significantly
mainly for very short and long lead times, as can be observed on the graph of p values displayed in Figure 2c.
EMOS also significantly outperforms the raw ensemble for all lead times and except for the first couple of
hours underperforms the BMA approaches, as depicted in Figure 2d.
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Figure 3. Top row: Difference in MAE values from the raw ensemble (a) and p values of Diebold-Mariano tests for
equality of MAE of the various postprocessing approaches (b). Horizontal dotted lines indicate the reference raw
ensemble (a) and a 5% level of significance (b). Bottom row: Coverage (c) and average width (d) of nominal 97.5%
central prediction intervals. In panel (c) the ideal coverage is indicated by the horizontal dotted line. MAE = mean
absolute error; BMA = Bayesian model averaging; ML = maximum likelihood; EMOS = ensemble model output
statistics.

There is much less variety in the performance of BMA and EMOS calibrated medians in terms of the MAE.
According to Figure 3a showing the difference in MAE with respect to the raw ensemble, the pure ML BMA
has the best forecast skill; however, even this approach underperforms the raw ensemble until hour 70. Note
that DM tests for equality of MAE values indicate that all differences plotted in Figure 3a are significant (DM
test results are not reported), which is definitely not the case if we compare the performance of the three
postprocessing methods; see the p values of Figure 3b.

The positive effect of postprocessing on calibration can be clearly observed in Figure 3c showing the
coverages of nominal 97.5% central prediction intervals as functions of the lead time. All postprocessing
approaches for all lead times result in almost perfect coverage, whereas the coverage of the raw ensemble
is much lower and strongly depends on the lead time. The coverage values of the two BMA approaches are
almost identical, and after hour 4 they are closer to the nominal value than those of the EMOS. Finally, as
depicted in Figure 3d, the raw ensemble produces the sharpest forecasts for all lead times, however, at the
cost of being uncalibrated. This is fully in line with the verification rank histograms of the raw ensemble
and PIT histograms of postprocessed forecasts for lead times 24, 72, and 120 hr plotted in Figure 4a. All
verification rank histograms are strongly U shaped (and the same holds for other lead times, not reported),
indicating that the raw ensemble is strongly underdispersive and requires postprocessing. BMA and EMOS
approaches significantly improve the statistical calibration of the forecast and result in more uniform PIT
histograms, although for hour 120 naive BMA and EMOS still show a slight underdispersion. Figure 4b dis-
plays the values of the test statistic of the Kolmogorov-Smirnov test for uniformity of PIT values for different
postprocessing approaches (the smaller the test statistic, the better the fit). Although the uniformity of the
PIT values of pure ML BMA, naive BMA, and EMOS can be accepted at a 5% level of significance for only 9
(5, 6, 7, 14, 17, 72, 75, 77, and 79 hr), 6 (4, 5, 6, 7, 14, and 17 hr), and 4 (5, 6, 7, and 9 hr) different lead times
(test statistic values under the dotted line), respectively, Figure 4b nicely illustrates the ranking of different
approaches in terms of goodness of fit of PIT.

4.2. Analog-Based Versus RTP
According to the results of Hemri and Klein (2017), the analog-based choice of training data significantly
improves the predictive performance of EMOS compared with the use of RTPs. Here we investigate whether
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Figure 4. Verification rank histogram of the raw ensemble and probability integral transform histograms of
the BMA and EMOS postprocessed forecasts for lead times 24, 72, and 120 hr (a). Values of the test statistic of
Kolmogorov-Smirnov tests for uniformity of probability integral transform values (b). Smaller values indicate better fit;
dotted horizontal line corresponds to 5% level of significance. BMA = Bayesian model averaging; EMOS = ensemble
model output statistics.
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Figure 5. Mean CRPS values of BMA forecasts (a) and CRPSS with respect to the BMA with rolling training period
(BMA RTP) (b). p values of Diebold-Mariano tests for equality of mean CRPS of the analog-based BMA approaches
(c) and analog-based models compared to BMA RTP (d). Horizontal dotted lines of (c) and (d) indicate a 5% level of
significance. CRPS = continuous ranked probability score; BMA = Bayesian model averaging; SD = series distance
method; HMA = hydrograph matching algorithm; DTW = dynamic time warping.

this holds for the doubly truncated normal BMA approach, too. We compare the forecast skill of the pure
ML BMA with training data chosen according to the SD, HMA, and DTW approaches described in section
2.6 (BMA SD, BMA HMA, and BMA DTW) and using a BMA RTP. To ensure comparability, all models
are verified on data of the same 2,822 calendar days between 10 April 2008 and 31 December 2015 as in
section 4.1.

Figure 5a shows the mean CRPS values of the four investigated BMA approaches as functions of the lead
time, whereas in Figure 5b the corresponding skill scores with respect to the BMA RTP are plotted. Accord-
ing to the results of DM tests for equal predictive performance depicted in Figures 5c and 5d, there is no
significant difference between the analog-based methods in terms of the mean CRPS, however, until hour
50 all of them significantly outperform the BMA RTP.

The use of analogs in model training results in more gain in terms of the MAE, as can clearly be observed
in Figure 6a. MAE values of all three analog-based models are significantly lower than those of the BMA
RTP for all lead times (DM test results are not reported). For lead times until 35 hr the BMA SD, for lead
times between 40 and 104 hr the BMA HMA, whereas for longer lead times again the BMA SD yields the
smallest MAE values. However, after 80 hr the differences in MAE between the analog-based methods are
not significant; see Figure 6b.

In terms of coverage there is no big difference between the analog-based models and they are able to outper-
form BMA RTP only for very short lead times (Figure 6c). Further, according to Figure 6d, BMA SD, BMA
HMA, and BMA DTW models result in slightly sharper central prediction intervals than BMA RTP.

Finally, the PIT histograms of the analog-based models plotted in Figure 7a are rather similar to the corre-
sponding histograms in the second row of Figure 4a. These histograms, at least for lead times 24, 72, and
120 hr, indicate similar calibration of all BMA approaches. One can get more insight into the behavior of
PIT values by comparing Figure 7b, showing the values of the test statistic of the Kolmogorov-Smirnov test
for uniformity for the analog-based BMA approaches, with the corresponding line (BMA ML) of Figure 4b.
The uniformity of PIT of BMA SD, BMA HMA, and BMA DTW can be accepted at a 5% level of significance
for 25, 21, and 24 lead times, respectively, whereas for the BMA RTP (BMA ML in Figure 4b) there are just
9 such lead times.
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Figure 6. Top row: Difference in MAE values from the BMA RTP (a) and p values of Diebold-Mariano tests for equality
of MAE of the various analog-based BMA approaches (b). Horizontal dotted lines indicate the reference BMA RTP
(a) and a 5% level of significance (b). Bottom row: Coverage (c) and average width (d) of nominal 97.5% central
prediction intervals. In panel (c) the ideal coverage is indicated by the horizontal dotted line. MAE = mean absolute
error; BMA = Bayesian model averaging; SD = series distance method; HMA = hydrograph matching algorithm;
DTW = dynamic time warping; RTP = rolling training period.

As reported above, the analog-based BMA approaches significantly outperform BMA RTP at shorter lead
times up to about 40 hr. Up to about 80 hr this outperformance is still borderline significant, while this is not
the case for longer lead times. This indicates that the gain by analog selection of training periods is restricted
to shorter lead times. This is not surprising insofar as that a higher predictability at shorter lead times, which
is usually the case compared to longer lead times, implies also that similarity in forecasts is more likely to
be connected to similarity in the observations. Any analog-based approach assumes that such a connection
can be established.

4.3. Analog-Based BMA Versus Analog-Based EMOS
According to the results of section 4.1, when the estimation of the postprocessing model coefficients is based
on a simple RTP, pure ML BMA significantly outperforms EMOS in terms of the mean CRPS for almost all
lead times (see Figures 2b and 2d) and in terms of MAE for very short (1–5 hr) and medium (21–75 hr) lead
times (see Figures 3a and 3b).

The use of analog-based training data drastically changes the situation. In Figure 8a the CRPSS values of the
analog-based BMA models with respect to the corresponding analog-based EMOS approaches are plotted as
functions of the lead time. Note that the skill scores vary in a very short interval between−0.0117 and 0.0084.
BMA SD, BMA HMA, and BMA DTW outperform EMOS SD, EMOS HMA, and EMOS DTW for only 60,
82, and 80 different lead times, respectively; however, for lead times 27, 28, 31, 43–46, and 71–117 hr none
of the differences are significant (see Figure 8b). In this way, for SD, HMA, and DTW approaches there are
46, 47, and 41 different lead times, respectively, when BMA is significantly better in terms of mean CRPS
and 11, 8, and 14 when EMOS performs better.

Further, Figure 8c shows that BMA SD, BMA HMA, and BMA DTW result in lower MAE values than their
EMOS counterparts in 77, 82, and 77 cases, respectively. However, as one can observe in Figure 8d where
the results of the corresponding DM tests are given, most of the differences are nonsignificant at a 5% level.

The above results indicate that analog-based BMA approaches are still slightly outperforming the corre-
sponding analog-based EMOS models; however, the differences are far less pronounced than in the case of
RTPs. Obviously, EMOS, which is based on a rather simple parametric predictive distribution, benefits a lot
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Figure 7. Probability integral transform histograms of the analog-based BMA postprocessed forecasts for lead times 24, 72, and 120 hr (a). Values of the test
statistic of Kolmogorov-Smirnov tests for uniformity of probability integral transform values (b). Smaller values indicate better fit; dotted horizontal line
corresponds to 5% level of significance. BMA = Bayesian model averaging; SD = series distance method; HMA = hydrograph matching algorithm;
DTW = dynamic time warping.
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Figure 8. Top row: CRPSS values of the analog-based Bayesian model averaging (BMA) models with respect to the
corresponding analog-based ensemble model output statistics (EMOS) approaches (a). p values of Diebold-Mariano
tests for equality of mean continuous ranked probability score of BMA and EMOS postprocessed forecasts (b).
Horizontal dotted line of panel (b) indicates a 5% level of significance. Bottom row: Difference in MAE values of
various analog-based BMA models from the corresponding EMOS approaches (c) and p values of Diebold-Mariano
tests for equality of MAE (d). Horizontal dotted lines indicate the reference EMOS model (c) and a 5% level of
significance (d). CRPSS = continuous ranked probability skill score; SD = series distance method; HMA = hydrograph
matching algorithm; DTW = dynamic time warping; MAE = mean absolute error.

from analog-based selection of training periods. This is most probably due to the fact that analog-based train-
ing periods allow for a stronger dependence between raw ensemble means and observations. This improves
sharpness, at the cost of slightly deteriorating calibration (Hemri & Klein, 2017). In contrast, BMA leads to
a quite flexible predictive distribution, which can have several modes in our case study. When using RTPs,
this flexibility leads to a strong improvement in forecast skill compared to EMOS. Analog-based selection
of training periods is also able to sharpen the BMA predictive distribution, but its effect on forecast skill is
lower than in the case of EMOS. This may indicate that by using analog-based training periods, the post-
processed forecast skill is close to the theoretically achievable skill based on the forecast models at hand,
and accordingly, the gain by using the more sophisticated BMA approach is rather marginal. Though out
of scope of this paper, future work on postprocessing of water levels may benefit from identifying hydro-
logical and statistical features like catchment size, climatic region, size of the data set available for training,
or shape of the climatological distribution of water levels that may be able to predict which of the different
postprocessing approaches is likely to perform best.

5. Conclusions
We introduce a new BMA model for calibrating Box-Cox transformed hydrological ensemble forecasts for
water level, providing a predictive distribution which is a weighted mixture of doubly truncated normal
distributions. The model with three different parameter estimation approaches is tested on the 79-member
ensemble forecast of BfG for water level at gauge Kaub of river Rhine for 120 different lead times. For verifi-
cation we use the CRPS of the probabilistic forecast distributions and the MAE of the corresponding median
forecasts. Further, we analyze coverage and the average width of nominal central prediction intervals, which
serves as a measure of sharpness. Furthermore, the forecast skill of the BMA model is compared to that of
the recently introduced EMOS model of Hemri and Klein (2017) and the raw ensemble.

Based on the results of the presented case study, one can conclude that compared with the raw ensemble,
postprocessing always improves the calibration of probabilistic and accuracy of point forecasts. With rolling
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window training periods the BMA model outperforms the reference EMOS approach considerably. How-
ever, when using the analog-based selection of training periods from Hemri and Klein (2017) the gap in
forecast skill decreases drastically leaving only a small advantage of BMA compared to EMOS. This indi-
cates that using a more sophisticated postprocessing approach or the use of a smarter selection of training
periods is fairly redundant. Accordingly, we recommend to use EMOS with analog-based training periods if
a sufficiently long set of hydrological hindcasts is available and BMA otherwise.

Further, following the ideas of Hemri et al. (2015) and Bellier et al. (2018), one can combine the BMA cali-
brated forecasts corresponding to different locations and lead times either into temporally or both spatially
and temporally coherent multivariate predictions. This can be done with the help of modern techniques
such as the ensemble copula coupling (Schefzik et al., 2013) or the Gaussian copula approach (Pinson &
Girard, 2012). However, these studies are beyond the scope of the present paper.
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