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Nuclear-magnetic-resonance measurements of an iron �Fe�-based superconductor LaFeAsO1−xFx �x=0.08
and 0.14� were performed at ambient pressure and under pressure. The relaxation rate 1 /T1 for the overdoped
samples �x=0.14� shows T-linear behavior just above Tc, and pressure application enhances 1 /T1T similar to
the behavior of Tc. This implies that 1 /T1T=constant originates from the Korringa relation, and an increase in
the density of states at the Fermi energy D�EF� leads to the enhancement of Tc. In the underdoped samples
�x=0.08�, 1 /T1 measured at ambient pressure also shows T-linear behavior in a wide temperature range above
Tc. However, 1 /T1T shows Curie-Weiss-type T dependence at 3.0 GPa accompanied by a small increase in Tc,
suggesting that predominant low-frequency antiferromagnetic fluctuation is not important for development of
superconductivity or remarkable enhancement of Tc. The qualitatively different features between underdoped
and overdoped samples are systematically explained by a band calculation with hole and electron pockets.
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LaFeAsO1−xFx is the highly important compound that
stimulated tremendous research activity in Fe-based high-Tc
superconductors.1 The compound exhibits several phases
with F substitution, i.e., electron doping, on the temperature-
concentration �T-x� phase diagram.1,2 A spin-density-wave-
type antiferromagnetic �AF� ordering of the parent com-
pound LaFeAsO is suppressed by F substitution, and
superconductivity appears after the AF phase vanishes.2–5 Tc
weakly depends on the doping level. The optimal doping
level is around x=0.11 at which Tc reaches 26 K. Similar
phenomena also appear in a “122” system, �K1−xXx�Fe2As2
�X=Sr or Ba�.6–9

The T-x phase diagram is reminiscent of hole doping in
high-Tc cuprates. However, unlike the case of high-Tc cu-
prates, it is unclear whether AF spin fluctuation plays an
important role in raising Tc. In the case of LaFeAsO1−xFx, Tc
is sensitive to pressure �P�, and shows a clear dome-shaped
pressure dependence on the T-P phase diagram.10 The high-
est Tc is realized by applying pressure to optimally doped
samples �x�0.11� or heavily doped samples �x�0.14�. Tc of
26 and 20 K for x=0.11 and 0.14, respectively, goes up to 43
K with application of a pressure of 4–5 GPa.10–12 �Fig. 1�a��
However, Tc for lightly doped samples �x=0.05� hardly goes
beyond 30 K even under high pressure.11,12 The suppression
of Tc suggests that a superconducting state with a high Tc is
realized apart from the antiferromagnetically ordered phase
on the T-x phase diagram. To investigate the origin of
the Tc enhancement under pressure, and the relationship
between the low-frequency AF spin fluctuation and
superconductivity in this material, we performed
75As �I=3 /2�-nuclear-magnetic-resonance �NMR� measure-

ments under high pressure of underdoped samples �x=0.08�
and overdoped samples �x=0.14�. To determine Tc and in-
vestigate the P dependence, we also measured resistivity at
pressures below 2.6 GPa using a piston-cylinder-type pres-
sure cell and resistance above 4 GPa using a diamond-anvil
cell.

The resistance and resistivity for x=0.08 are plotted in
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FIG. 1. �Color online� �a� P dependence of Tc measured using a
piston-cylinder cell and a diamond-anvil cell. �b� Resistance for 8%
doped samples at various pressures measured using a diamond-anvil
cell. The unit of the vertical axis is ohm. �c� Resistivity for 8%
doped samples at various pressures measured by using a piston-
cylinder cell. The unit of the vertical axis is ohm centimeter.
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Figs. 1�b� and 1�c�, respectively. The resistivity for x=0.14
has been published elsewhere.11,12 Their Tc values are deter-
mined by the onset of superconductivity. In both samples,
zero resistivity was confirmed at low temperatures. The P
dependence of Tc for x=0.08, 0.11, and 0.14 is plotted in Fig.
1�a�. Tc for the underdoped regime �x�0.11� does not go
beyond 35 K whereas that for the overdoped regime
�x�0.11� exceeds 40 K.

We measured NMR spectra under pressure using ran-
domly oriented powder samples. Field �H�-swept spectra of
the central transition, I=−1 /2⇔1 /2, show a broad powder
pattern, which prevented accurate Knight-shift measure-
ments �Fig. 2 inset�. The line shape is explained by consid-
ering the second-order quadrupole effect under a magnetic
field.13 The resonance position depends on the angle � be-
tween H and the maximum electric field gradient �EFG� at
an As nucleus.13 The lower- and higher-field peaks in the
inset correspond to �=90° and 42°, respectively. The sepa-
ration between them is proportional to the square of the pure
quadrupole frequency ��Q� except for a minor correction due
to the asymmetry parameter ��� of the EFG tensor.14 We
estimated � as 0.1 from the NMR spectra and found that � is
insensitive to the doping level. The frequency �Q is defined
as 2�Q=eQVzz /h, where Q and Vzz are the nuclear quadru-
pole moment and maximum EFG, respectively. The separa-
tion between the peaks decreases with increasing pressure.
The results of �Q at several pressures are plotted in the main
panel of Fig. 2. The frequency �Q, i.e., Vzz originates from
the on-site charge density and the surrounding Fe ions. Vzz is
sensitive to the distance between Fe and As ions: a stretching
of the Fe-As distance decreases EFG originating from the
surrounding Fe ions and weakens the hybridization between
As 4p and Fe 3d orbitals, which would lead to the decrease
in the on-site charge density. The decrease in �Q or EFG due
to application of pressure can be explained by the stretching
of the Fe-As distance. The stretching due to application of

pressure has been observed from synchrotron-radiation mea-
surements under high pressure.15

We measured the relaxation rate 1 /T1 at �=90° using a
saturation recovery method. The T dependence of 1 /T1 for
x=0.08 and 0.14 is shown in Figs. 3�a� and 3�b�, respec-
tively. The T dependence of 1 /T1T is shown in Fig. 4. 1 /T1
for the two doping levels shows qualitatively different T de-
pendence.

In the case of x=0.14, T-linear dependence is observed in
a narrow T range just above Tc. The T-linear dependence is
clearly observed as a plateau in Fig. 4. Tc values determined
from the resistivity measurements are indicated by arrows in
Figs. 3�b� and 4. The value of 1 /T1T is enhanced with in-
creasing pressure similar to the behavior of Tc. 1 /T1T seems
to change in accordance with Tc with increasing pressure:
both 1 /T1T and Tc increase remarkably with increasing pres-
sure from 0 to 3.0 GPa, and the change in 1 /T1T between 3.0
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FIG. 2. �Color online� P dependence of pure quadrupole fre-
quency of 75As nuclei. The inset shows field-swept spectra of the
central transition, I=−1 /2⇔1 /2.

0.01

0.1

1

10

1/
T 1(

s-1
)

4 6 8
10

2 4 6 8
100

2

T (K)

0 GPa
1.7 GPa
3.0 GPa

F 8%

(a)

4 6 8
10

2 4 6 8
100

2

T (K)

0 GPa
3.0 GPa
3.7 GPa

F 14%

TC

TC

(b)

FIG. 3. �Color online� 75As-nuclear-magnetic-relaxation rate
1 /T1 for H� the maximum electric field gradient of 75As. �a� Un-
derdoped regime �x=0.08�. �b� Overdoped regime �x=0.14�.

0.25

0.20

0.15

0.10

0.05

0.00

1
/T

1
T

(s
-1

K
-1

)

250200150100500

T (K)

F 8% 0 GPa
F 8% 1.7 GPa
F 8% 3.0 GPa

F 14% 0 GPa
F 14% 3.0 GPa
F 14% 3.7 GPa

FIG. 4. �Color online� 1 /T1T measured at several pressures. The
dotted curve represents a Curie-Weiss curve. The other lines are
guide to the eyes.

NAKANO et al. PHYSICAL REVIEW B 81, 100510�R� �2010�

RAPID COMMUNICATIONS

100510-2



and 3.7 GPa is small, similar to that in Tc. The T-linear
dependence is attributable to the Korringa relation, and the
value of 1 /T1T just above Tc is proportional to the square of
the density of states �DOS� at the Fermi energy, D�EF�. At
high temperatures, deviation from the T-linear dependence
becomes remarkable. The increase in 1 /T1T can be explained
by a characteristic band structure of this system, as described
below.16 At low temperatures, another T-linear dependence
appears, suggesting the existence of the impurity
scatterings.17–19 In the overdoped regime, the system can be
well described as a band metal, and application of pressure
causes an increase in D�EF� and enhancement of Tc.

In the case of x=0.08, 1 /T1 shows T-linear dependence in
a wide T range above Tc at ambient pressure, and T3 depen-
dence below Tc, as already reported by other groups.20–22 Tc
values determined from the resistivity measurements, indi-
cated by arrows in Fig. 4, are consistent with those estimated
from the change in 1 /T1T within an accuracy of several
kelvins. At first glance, the T-linear dependence is reminis-
cent of the Korringa relation, as in the case of x=0.14. How-
ever, it does not originate from the conventional Korringa
relation: if the T-linear dependence originates from the Kor-
ringa relation, the estimated Tc should go beyond 40 K be-
cause the value of 1 /T1T, namely, D�EF� for x=0.08 is much
larger than that for x=0.14. Furthermore, 1 /T1T�constant,
observed at ambient pressure, breaks down under high pres-
sure, as seen from the data at 3.0 GPa. 1 /T1T increases mo-
notonously toward Tc. 1 /T1T at 1.7 GPa shows transitional
behavior from 1 /T1T�constant to Curie-Weiss behavior.
The dotted curve in Fig. 4 represents a Curie-Weiss curve:
1 /T1T=0.09+6.2 / �T+39� �s−1 K−1�. The Curie-Weiss be-
havior is reminiscent of high-Tc cuprates. Although low-
frequency AF fluctuation predominates by applying pressure,
an increase in Tc is small. Low-frequency AF fluctuation is
not essential to achieving the highest Tc, although it would
contribute to raising Tc to some extent: the highest Tc is
realized for x=0.11–0.14 without development of low-
frequency AF fluctuation. It is concluded that low-frequency
AF fluctuation suppresses the development of superconduc-
tivity or the enhancement of Tc in this material.

The qualitatively different features between samples with
x=0.08 and 0.14 are explained by a scenario based on a band
calculation with electron and hole pockets.23,24 The system
can be treated as a simple two-dimensional square lattice of
an Fe atom, although two Fe atoms are contained in the
actual unit cell. In the unfolded Brillouin zone, hole pockets
exist around ��0,0� and ���� ,�� in addition to electron
pockets around M points.23 ���� ,�� overlaps ��0,0� in the

original folded Brillouin zone. With increasing doping level,
the Fermi energy moves upward and the hole pockets around
����� become smaller. The hole pocket around ���� ,�� is
sensitive to the doping level, and it first vanishes with in-
creasing doping level, as illustrated in Fig. 5.25 In the under-
doped regime, the nesting between electron and hole pockets
gives rise to AF fluctuation, which predominates and would
suppress development of superconductivity, namely, remark-
able enhancement of Tc. Application of pressure seems to
promote the nesting. In the overdoped regime, the nesting
becomes weak when electron doping moves the Fermi en-
ergy upward and the hole pockets around ����� become
smaller. In such a situation, remarkable enhancement of Tc is
possible. When the hole pocket around �� vanishes, a large
weight of DOS still remains just below the Fermi energy as
illustrated in Fig. 5. The contribution from these energy lev-
els presumably leads to an increase in 1 /T1T at high tem-
peratures, as seen in the x=0.14 doped samples. The scenario
can be expanded to other systems, such as hole-doped sys-
tems, in this case the Fermi energy moves downward with
increasing doping level, and AF fluctuation predominates un-
til the Fermi energy comes across the bottom of the electron
band, which would suppress any rise in Tc. This scenario
may answer the question of why the highest Tc �over 50 K� is
realized only for “1111” systems. To investigate the origin of
the highest Tc observed in a 1111 system, the pressure effect
on the electron pockets around M seems important.
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