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ABSTRACT

We evaluated the performance of a newly developed three-dimensional (3D) model-based global-to-local regis-
tration of multiple organs, by comparing it with a 3D model-based global registration in the prostate region.
This study included 220 prostate cancer patients who underwent intensity-modulated radiotherapy or
volumetric-modulated arc therapy. Our registration proceeded sequentially, i.e. global registration including
affine and piece-wise affine transformation followed by local registration. As a local registration, Laplacian-based
and finite element method-based registration was implemented in Algorithm A and B, respectively. Algorithm C
was for global registration alone. The template models for the prostate, seminal vesicles, rectum and bladder
were constructed from the first 20 patients, and then three different registrations were performed on these
organs for the remaining 200 patients, to assess registration accuracy. The 75th percentile Hausdorff distance
was <1 mm in Algorithm A; it was >1 mm in Algorithm B, except for the prostate; and 3.9 mm for the prostate
and >7.8 mm for other organs in Algorithm C. The median computation time to complete registration was
<101, 30 and 16 s in Algorithms A, B and C, respectively. Analysis of variance revealed significant differences
among Algorithms A–C in the Hausdorff distance and computation time. In addition, no significant difference
was observed in the difference of Hausdorff distance between Algorithm A and B with Tukey’s multiple comparison
test. The 3D model-based global-to-local registration, especially that implementing Laplacian-based registration, com-
pleted surface registration rapidly and provided sufficient registration accuracy in the prostate region.

Keywords: 3D model-based global-to-local registration; finite element method-based registration; Laplacian-
based registration; Hausdorff distance; prostate cancer

INTRODUCTION
The National Cancer Institute reported 164 690 new patients and
29 430 deaths from prostate cancer in 2018 in the USA [1]. For
prostate cancer, 78.2% of patients are diagnosed at the early stage.

External-beam radiotherapy (EBRT) is one of the treatment
approaches for early-stage prostate cancer. Although a meta-analysis

showed that increasing the radiation dose significantly improves bio-
chemical relapse-free survival [2], achieving this using conventional
three-dimensional (3D) conformal radiation therapy is difficult due
to the relationship between the mobility of the prostate and the lar-
ger margin size required to cover its movement, and the risk of tox-
icity to normal tissues around the prostate.

© The Author(s) 2019. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
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Among EBRT approaches, intensity-modulated radiation therapy
(IMRT) and volumetric-modulated arc therapy (VMAT) are rou-
tinely used in clinical practice, which allow delivery of higher doses
of radiation to the target while sparing surrounding normal tissues.
However, IMRT is susceptible to geometric uncertainties due to
steep dose gradients, resulting in lower dose delivery to the target
and a higher dose delivered to the surrounding normal tissues.
Therefore, accurate patient positioning is required to maximize the
advantages of IMRT. As a supporting technique for achieving this,
image-guided radiation therapy (IGRT) has been developed. When
treating prostate cancer, daily cone-beam computed tomography
(CBCT) images are typically acquired and co-registered to refer-
ence planning CT images using rigid registration software before
beam delivery. Many investigators have reported that the shape of
the rectum and bladder changes from day to day due to rectal gas
and bladder filling, causing deviations in the target position in
approved radiotherapy treatment plans [3–5]. During the image
verification process, patient position is corrected only by translations
and rotations, even when organs deform in a highly elastic way.
Ideally, the daily dose is assessed at each fraction, and daily adaptive
radiotherapy should be conducted for further improvement of the
clinical outcomes; however, this deformation cannot be addressed
with translation- and rotation-based registration.

Various 3D registration methods have been developed to
address this issue [6]. 3D global registration, such as affine trans-
formation and thin-plate splines (TPS) [7] without local registra-
tion, lead to large registration errors for regions of high curvature
with spatially discontinuous changes in correspondence across slid-
ing organ boundaries [8]. Meanwhile, local registration alone, such
as B-spline and finite element methods (FEM), can be used to
determine the correspondence point via maximum likelihood esti-
mation, but this often results in erroneous registration of organs
with large deformation [9].

To overcome the limitations of previous methods, we have
developed a 3D model-based global-to-local registration of multiple
organs. Our approach transforms a template model into a target
model based on sequential registration, i.e. from global registration
including affine and piece-wise affine transformation to local regis-
tration. As a local registration, FEM- [10, 11] and Laplacian-based
registration [12–14] were implemented. FEM-based registration
solved the problem of optimizing force constraints for the template
model. The template model was deformed so as to represent the
surface of the target model as closely as possible. Suwelack et al.
applied FEM to match the intraoperative shape changes of the liver
[11]. Meanwhile, the Laplacian-based registration was a least-
squares problem for a template and a target model. An evaluation
function on positional and discrete Laplacian constraints was
defined. Kim et al. developed a statistical hippocampal model using
the Laplacian-based registration [13]. Compared with the shape var-
iations in these studies, organs in the prostate region often show lar-
ger shape differences among patients according to their physical
and/or physiological condition. Investigation of the performance of
the 3D model-based global-to-local registration of multiple organs
will contribute to improvement of registration accuracy for prostate
cancer.

We assumed that the accuracy of the 3D model-based global-to-
local registration would depend on the number of patients included
during construction of template models and on the registration
algorithms employed; however, to date, there has been insufficient
literature on this subject. First, we examined the impact of the num-
ber of patients on the accuracy of the 3D model-based global-to-
local registration. Secondly, we assessed the accuracy of the 3D
model-based global-to-local registration by evaluating its perform-
ance for 200 prostate cancer patients.

MATERIALS AND METHODS
Patients

The clinical data used in this study were from 220 randomly
selected prostate cancer patients who underwent IMRT or VMAT
in the prone position between July 2007 and September 2015. The
median age was 72 years (range 49–84 years), and the clinical T-
stage was T1c for 70 patients, T2a for 55 patients, T2b for 24
patients, T2c for 21 patients, T3a for 42 patients and T3b for 8
patients. The patients were numbered sequentially according to the
start date of irradiation.

Written informed consent was obtained from the patients
regarding the use of their clinical data for research and publication
purposes. This study was performed in accordance with the
Declaration of Helsinki and approved by our institutional review
board (approval number R1446).

CT simulation
Patients were immobilized in the prone position with a thermoplas-
tic shell (Hip Fix system; CIVCO Medical Solutions, Kalona, IA,
USA) that extended from the mid-thigh to the upper third of the
leg, in combination with a vacuum pillow (Vac-Lok system; CIVCO
Medical Solutions) and a leg support. Each patient underwent pre-
treatment planning CT scans (LightSpeed RT; GE Healthcare,
Little Chalfont, UK) of 2.5 mm slice thickness. All patients were
instructed to void the bladder and rectum ~1–1.5 h before the CT
simulation, according to their individual urinary conditions.

The prostate, seminal vesicles (SVs), rectum and bladder were
manually contoured by several experienced radiation oncologists
and medical physicists. The rectum was determined as the area
from 15 mm below the prostate apex to 15 mm above the tips of
the SVs or prostate base. Details of our contouring protocol have
been reported previously [15].

The contours of the prostate, SVs, rectum and bladder on plan-
ning CT images were converted to polygon (PLY) file format using
a commercially available system [ITEM’s Viewer planning and
Assistant System (iVAS); ITEM Corporation, Osaka, Japan].

Flow of registration
Figure 1 illustrates the schematic flow of registration. First, patient 1
was selected as the initial template model. Next, the corresponding
template models with the same vertices and mesh topology were
obtained by shape matching from k patients. As the template mod-
els have point-to-point correspondence, the average template model
can be obtained by calculating the average of each coordinate. In
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this study, we used it as the template model. Registration was per-
formed for each organ individually using one of the algorithms below.

• Algorithm A: sequential registration from global registration,
including (STEP 1) affine and (STEP 2) piece-wise affine
transformation, to (STEP 3) Laplacian-based registration was
conducted [12].

• Algorithm B: sequential registration from global registration,
including (STEP 1) affine and (STEP 2) piece-wise affine
transformation, to (STEP 3) FEM-based registration was
conducted [10].

• Algorithm C: only global registration, including (STEP 1)
affine and (STEP 2) piece-wise affine transformation, was
conducted.

During the iteration process, the template model for each organ
was compared with a target model in PLY file format. The mean
bidirectional distance between the template and the target model
was employed as an objective function [16]. At STEP 1, the tem-
plate models were updated until the convergence criterion or ter-
mination criterion was met. The convergence criterion was that the
average mean bidirectional difference between after the end of the
(k – 1)th loop and after the end of the kth loop in the most recent
10 iterations was <0.001 mm. Otherwise, the iteration process was
terminated when the optimization calculation completed the 3000th
iteration. When the convergence criterion or termination criterion
was met, the iteration process for STEP 1 was terminated, and the
iteration process for STEP 2 was then initiated. These processes

were repeated until the convergence criterion or termination criter-
ion was met in the last STEP. Once registration was completed for
one target model, the iteration process was initiated for the next tar-
get model.

The algorithms were applied and implemented using in-house
software written in C++.

Evaluation
Two experiments were conducted in this study. In the first, the tem-
plate models for the organs were constructed from the first 10, 20
and 50 patients, and 3D model-based global-to-local registration
using Algorithms A and B was then performed on the prostate, SVs,
rectum and bladder for 100 patients (numbers 51–150). In the
second experiments, the template models for these organs were con-
structed from the first 20 patients, and then three different registra-
tions, using Algorithms A, B and C, were performed on the organs
for the remaining 200 patients (numbers 21–220).

The Hausdorff distance [17] was calculated for the surfaces of
the organs in both experiments. The experiment was conducted on
a personal computer with 32 GB RAM and an Intel Xeon E5-
2687W v4 processor (dual-core CPU; 3.0 GHz).

The differences in Hausdorff distances and times to complete
registration among Algorithms A–C were assessed by analysis of
variance (ANOVA). Tukey’s multiple comparison test was also con-
ducted to assess the difference of Hausdorff distance among
Algorithms A–C for the remaining 200 patients. A P-value of 0.05
was considered statistically significant. All statistical analysis was per-
formed using SPSS v.25.0 (IBM Corp., Armonk, NY, USA).

Fig. 1. The schematic flow of registration. At STEP 1, the template models were updated until the convergence criterion or
termination criterion was met. The convergence criterion was that the average mean bidirectional difference between after the
end of the k – 1th loop and after the end of the kth loop in the most recent 10 iterations was <0.001 mm. Otherwise, the
iteration process was terminated when the optimization calculation completed the 3000th iteration. When the convergence
criterion or termination criterion was met, the iteration process for STEP 1 was terminated, and the iteration process for
STEP 2 was then initiated. These processes were repeated until the convergence criterion or termination criterion was met in
the last STEP. Once registration was completed for one target model, the iteration process was initiated for the next target
model.
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RESULTS
Volume characteristics

Table 1 summarizes the means ± standard deviation prostate, SVs,
rectum and bladder volumes. In order of descending mean volume,
the largest organ was the bladder, followed by the rectum, prostate
and SVs.

Impact of the number of patients used to construct the
template models on registration accuracy

Table 2 summarizes the Hausdorff distance using Algorithms A and
B. The 75th percentile Hausdorff distance was <0.8 mm for all

organs with Algorithm A; no significant difference was observed
among the organs.

With Algorithm B, the 75th percentile Hausdorff distances were
>1 mm for the SVs and rectum and <0.4 mm for the prostate. No
significant difference was observed among the organs. The
Hausdorff distances became significantly smaller when larger num-
bers of patients were used to construct the bladder template
models.

When 10 patients were used to construct template models, the
ratios of the median Hausdorff distance with Algorithm B to that
with Algorithm A were 1.2, 2.3, 1.8 and 1.7 for the prostate, SVs,
rectum and bladder, respectively. With increasing numbers of

Table 1. Mean ± standard deviation (range) volume of each organ

No. of patients used to construct template models No. of patients to be registered

10 pts. 20 pts. 50 pts. 100 pts. 200 pts.

Prostate (cm3) 30.9 ± 16.6 32.5 ± 16.1 28.4 ± 12.3 26.0 ± 8.9 26.8 ± 10.6

(17.4–65.2) (12.1–65.2) (12.1–65.2) (9.0–76.6) (9.0–90.5)

Seminal vesicles (cm3) 4.1 ± 1.9 4.9 ± 2.5 6.4 ± 3.4 6.7 ± 3.6 7.0 ± 3.5

(1.7–7.3) (1.7–10.5) (1.7–19.8) (1.3–19.4) (1.3–19.8)

Rectum (cm3) 50.9 ± 9.8 59.4 ± 24.4 64.9 ± 33.9 56.0 ± 19.5 59.9 ± 25.2

(38.5–69.6) (38.5–124.2) (29.9–203.6) (23.6–121.4) (23.6–203.6)

Bladder (cm3) 80.6 ± 27.6 117.8 ± 66.1 127.5 ± 68.8 156.8 ± 83.9 150.0 ± 79.9

(42.0–121.5) (42.0–288.0) (42.0–316.7) (56.7–427.6) (55.1–442.6)

Abbreviation: pts. = patients.

Table 2. Median Hausdorff distance with Algorithms A and B by the number of patients used to construct the template
models

10 pts. 20 pts. 50 pts. P-value

Algorithm A

Prostate (mm) 0.23 (0.20–0.29) 0.24 (0.20–0.30) 0.23 (0.19–0.27) 0.61

Seminal vesicles (mm) 0.37 (0.29–0.47) 0.38 (0.28–0.51) 0.35 (0.28–0.47) 0.84

Rectum (mm) 0.53 (0.42–0.69) 0.52 (0.42–0.62) 0.62 (0.49–0.76) 0.87

Bladder (mm) 0.40 (0.33–0.50) 0.41 (0.32–0.52) 0.40 (0.34–0.47) 0.57

Algorithm B

Prostate (mm) 0.28 (0.23–0.34) 0.26 (0.23–0.34) 0.26 (0.23–0.32) 0.99

Seminal vesicles (mm) 0.85 (0.54–1.33) 0.69 (0.45–1.07) 0.64 (0.48–1.31) 0.27

Rectum (mm) 0.95 (0.66–1.44) 0.90 (0.68–1.40) 0.93 (0.70–1.31) 1.00

Bladder (mm) 0.66 (0.46–1.36) 0.59 (0.43–1.00) 0.53 (0.41–0.87) <0.05

The number of patients used for validation of registration accuracy was 100. The interquartile range is shown in parentheses.
Algorithm A = 3D model-based global-to-local registration (Laplacian-based registration was used as a local deformable registration); Algorithm B = 3D model-based
global-to-local registration (finite element method-based registration was used as a local deformable registration).
Abbreviation: pts. = patients.
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patients used to construct the template models, the ratios became
smaller, but were >1 for all organs (1.1, 1.8, 1.5 and 1.3 for the
prostate, SVs, rectum and bladder, respectively).

Comparison of registration accuracy between 3D model-
based global-to-local registration and 3D model-based

global registration
Figure 2 illustrates the cumulative histograms by organ. In the pros-
tate, Algorithms A and B yielded Hausdorff distances of <1 mm;
the proportion of Hausdorff distances <2 mm was 18% using
Algorithm C. For the SVs, the proportion of Hausdorff distances
<2 mm was 100% and 94% with Algorithms A and B, respectively,
and for the rectum the values were 98.5% and 92%. A similar trend
was observed for the bladder. The proportion of Hausdorff dis-
tances <2 mm was 0% for the SVs, rectum and bladder using
Algorithm C.

Table 3 summarizes the median Hausdorff distance and the
computation time required to complete registration. The 75th per-
centile Hausdorff distance was <1 mm with Algorithm A. However,

the value was >1 mm with Algorithm B, except for the prostate.
The Hausdorff distance was 3.9 mm for the prostate and >7.8 mm
for the other organs using Algorithm C. The median computation
time required to complete registration was <101, 30 and 16 s for
Algorithms A, B and C, respectively.

The ANOVA revealed significant differences among Algorithms
A–C in Hausdorff distance and computation time. In addition, no
significant difference was observed in the difference of Hausdorff
distance between Algorithm A and B with Tukey’s multiple com-
parison test.

DISCUSSION
To our knowledge, this is the first study to assess the accuracy of
3D model-based global-to-local registration via the FEM- and
Laplacian-based registration in the prostate region. Compared with
other relevant studies, the number of patients used for validation of
registration accuracy herein was greater. The 3D model-based
global-to-local registration, especially that implementing the
Laplacian-based registration, provided high registration accuracy for
all organs in the prostate region. This would dramatically improve

Fig. 2. Cumulative histograms as a function of Hausdorff distance for the (a) prostate, (b) seminal vesicles, (c) rectum and
(d) bladder. Algorithm A = 3D model-based global-to-local registration (Laplacian-based registration was used as a local
registration); Algorithm B = 3D model-based global-to-local registration (finite element method-based registration was used
as a local registration); Algorithm C = 3D model-based global registration.
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the accuracy of contour-based registration in the field of
radiotherapy.

When implementing 3D model-based global-to-local registration,
important factors that should be considered include the number of
patients used to construct the template models and the registration
algorithms employed. No study thus far has investigated the impact
of the number of patients included in template model construction
on registration accuracy. We found that the Hausdorff distance
became significantly smaller only in the bladder when using
Algorithm B, after increasing the number of patients included dur-
ing construction of the template models. As shown in Table 1, the
bladder volume varied more widely among the patients relative to
the other organs. For such an organ, the number of patients used to
construct template models would be important for the FEM-based
registration. Meanwhile, the 3D model-based global-to-local registra-
tion implementing the Laplacian-based registration yielded
Hausdorff distances <1 mm for all organs (Table 2). Unlike the
FEM-based registration, the Laplacian-based registration provided
sufficient registration accuracy, even using the template models con-
structed from only 10 patients. The performance of the FEM-based
registration was comparable to that of the Laplacian-based registra-
tion for small round organs, such as the prostate; however, in gen-
eral, the Laplacian-based registration accurately represented organs
with large curvature, such as SVs and the rectum, better than the
FEM-based registration. Laplacian-based registration overcomes the
instability problem in matching distant structures, is suitable for
large-scale deformations and handles unstructured deformable mesh
models with different vertex densities [14]. Laplacian surface opti-
mization improves the triangle quality of a surface mesh and also
preserves detail when improving the mesh quality through the selec-
tion of different weights [18].

After confirming the impact of the number of patients used to
construct template models on the accuracy of 3D model-based
global-to-local registration, we compared registration accuracy
between 3D model-based global-to-local registration and 3D model-
based global registration, using 200 prostate cancer patients. As with
previous studies, template models were constructed using data from
20 patients [19–22]. As expected, the performance of the 3D
model-based global registration was the poorest among the three
different registrations, because local registration was not conducted.
Budiarto et al. calculated the residual of the deformations of the
prostate using a deformable registration, named TPS robust point
matching (TPS-RPM), and showed that the mean residual errors
were >1 mm [20]. In addition, the TPS-RPM did not consider
preservation of the geometrical features of the surface. In our study,
the median Hausdorff distances were <0.3 mm and <0.8 mm for
the prostate using Algorithms A and B, respectively, while preserv-
ing the geometrical features of the surface.

The results of this study could be applied to the development of a
new generation of statistical shape models (SSMs), which have been
widely utilized in 3D modeling in recent years [23]. SSMs describe
the shape of an object by applying principal component analysis to a
set of landmarks, and are based on the assumption that each shape is
a deformed version of a template model. In the field of radiotherapy,
SSMs have been used as powerful tools to conduct segmentation [24,
25], estimate geometric uncertainties [19, 20] and calculate dose
coverage [21, 22]. It is expected that detailed and robust SSMs will
be generated by our 3D model-based global-to-local registration,
according to the number of patients used to construct the template
models and the registration accuracy (Fig. 3).

There were two notable limitations to this study. First, several
radiation oncologists and medical physicists were involved in

Table 3. Median Hausdorff distance and computation time required to complete registration

Algorithm A Algorithm B Algorithm C P-value

Hausdorff distance

Prostate (mm) 0.24 (0.20–0.30) 0.26 (0.23–0.33) 2.85 (2.22–3.92) <0.05

Seminal vesicles (mm) 0.39 (0.30–0.52) 0.72 (0.47–1.07) 5.87 (4.22–7.80) <0.05

Rectum (mm) 0.52 (0.42–0.62) 0.81 (0.62–1.30) 10.89 (8.28–13.68) <0.05

Bladder (mm) 0.41 (0.33–0.52) 0.59 (0.43–1.00) 8.55 (6.70–10.56) <0.05

Computation time

Prostate (s) 53.77 (32.40–74.10) 13.41 (10.98–15.89) 3.82 (2.79–5.19) <0.05

Seminal vesicles (s) 100.85 (72.86–137.64) 29.75 (21.90–45.24) 15.39 (6.98–32.73) <0.05

Rectum (s) 44.10 (29.47–62.93) 8.75 (7.32–10.05) 3.83 (2.44–5.46) <0.05

Bladder (s) 70.62 (50.02–105.01) 17.00 (13.67–21.09) 5.20 (3.46–8.93) <0.05

The number of patients used for validation of registration accuracy was 200. The interquartile range is shown in parentheses.
Algorithm A = 3D model-based global-to-local registration (Laplacian-based registration was used as a local deformable registration); Algorithm B = 3D model-based
global-to-local registration (finite element method-based registration was used as a local deformable registration); Algorithm C = 3D model-based global registration.
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contouring; although they were well trained, interobserver variation
should be included [26, 27]. However, any interobserver variation
would have been averaged out as a large number of patients were
included in this study. Secondly, we did not assess the applicability
of our methods to other regions. As mentioned by Nakamura et al.,
variations in organ shape in the upper abdominal region, such as of
the stomach and duodenum, would be more complex than those of
the rectum and bladder, even within the same patient [28]. In add-
ition, livers are typically larger than bladders. Therefore, the applic-
ability of our methods to other regions needs to be assessed.

In conclusion, we found that registration accuracy was not
dependent on the number of patients used to construct template
models for the Laplacian-based registration. Furthermore, the 3D
model-based global-to-local registration implementing the
Laplacian-based registration completed surface registration rapidly
and provided better registration accuracy than that implementing
the FEM-based registration for the prostate region.
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