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Abstract

Multi impulse with constant time interval is used as a representative of a long-

duration earthquake ground motion. An analytical expression is derived for the

elastic-plastic response of a single-degree-of-freedom (SDOF) model with

nonlinear viscous damping subjected to the “critical multi impulse” which

maximizes the response. The fact that only free vibration appears under such

multi impulse enables the smart application of an energy approach in deriving

the analytical expression for a complicated elastic-plastic response with nonlinear

viscous damping. The nonlinear viscous damping characteristic for deformation

is approximated in terms of a quadratic or elliptical function. The critical timing

of the impulses is found to correspond to the zero restoring-force timing or the

maximum velocity timing depending on the input level. It is shown that the

nonlinearity in viscous damping causes a remarkable influence on the earthquake

response in some cases. The reliability and accuracy of the proposed theory are

investigated through the comparison with the results by the time-history response

Received:
2 November 2018

Revised:
15 January 2019

Accepted:
5 February 2019

Cite as: Goki Tamura,
Kotaro Kojima,
Izuru Takewaki. Critical
response of elastic-plastic
SDOF systems with nonlinear
viscous damping under
simulated earthquake ground
motions.
Heliyon 5 (2019) e01221.
doi: 10.1016/j.heliyon.2019.
e01221

https://doi.org/10.1016/j.heliyon.2019.e01221

2405-8440/� 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:takewaki@archi.kyoto-u.ac.jp
https://doi.org/10.1016/j.heliyon.2019.e01221
https://doi.org/10.1016/j.heliyon.2019.e01221
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2019.e01221&domain=pdf
https://doi.org/10.1016/j.heliyon.2019.e01221
http://creativecommons.org/licenses/by-nc-nd/4.0/


analysis to the tuned sine wave as a representative of the long-duration earthquake

ground motion.

Keywords: Civil engineering, Natural hazards, Structural engineering

1. Introduction

Historically near-fault ground motions and long-period, long-duration ground mo-

tions caused serious damage to building structures. Some representative near-fault

ground motions were observed during Parkfield earthquake in 1966, San Fernando

earthquake in 1971, Northridge earthquake in 1994, Hyogoken-nanbu earthquake in

1995, Chi-Chi earthquake in 1999, Niigata-ken Chuetsu earthquake in 2004 and Ku-

mamoto earthquake in 2016. On the other hand, the long-period, long-duration

ground motions were observed during Mexico earthquake in 1985, Tokachi-oki

earthquake in 2003, Niigata-ken Chuetsu earthquake in 2004 and Tohoku earth-

quake in 2011 (Takewaki et al., 2011, 2012). It should be pointed out that the

long-period, long-duration ground motions were not supposed in the earthquake

resistant design of super high-rise buildings about 50 years ago and many serious

damages due to this type of ground motions were observed. Many buildings, espe-

cially 6 to 15-story buildings were seriously damaged by long-period ground mo-

tions which lasted more than 2 minutes during Mexico earthquake in 1985 (Beck

and Hall, 1986). The sloshing by the long-period, long-duration ground motions

were observed during Tokachi-oki earthquake in 2003 (Hatayama et al., 2004;

Aoi et al., 2018) and oil storage tanks were seriously damaged in Tomakomai city

about 250 km from the epicenter. In Tokyo, high-rise buildings in resonance with

the long-period ground motion lasted over 5 minutes during 2004 Niigata-ken

Chuetsu earthquake and their elevator cables were damaged (Furumura and

Hayakawa, 2007; Kubo et al., 2009). Rather recently, many records of remarkable

long-period, long-duration ground motions were observed in Tokyo and Osaka dur-

ing Tohoku earthquake in 2011. Some of high-rise buildings in Tokyo and Osaka

were in resonance with these ground motions and lasted more than 10 minutes

(Takewaki et al., 2011, 2012). Furthermore, the damages of lead dampers in base-

isolation stories and pile foundations were observed under these long-duration

ground motions during 2011 Tohoku earthquake (Motosaka and Mitsuji, 2012). It

seems important to investigate the resonance phenomenon for the structural design

of buildings with long natural periods, e.g. high-rise buildings and base-isolated

buildings.

A large number of theoretical studies on steady-state response of an elastic-plastic

system under the harmonic wave have been accumulated in the last several decades

(Caughey, 1960a, b; Iwan, 1961, 1965a, b; Roberts and Spanos, 1990; Liu, 2000).

First of all, Caughey (1960a) opened the door in this field. A resonance curve was
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derived for a single-degree-of-freedom (SDOF) bilinear hysteretic model by taking

advantage of the equivalent linearization method based on a least squares approxi-

mation. Subsequently, the exact solution for an undamped bilinear hysteretic

SDOF model with a positive post-yield stiffness ratio was obtained by Iwan

(1961, 1965a) for the harmonic and square waves. The resonant response has to

be analyzed for a specific acceleration amplitude by changing the input frequency

in a parametric manner and this procedure is too complicated. Furthermore, these

theories are only targeted for undamped models or models with linear viscous damp-

ing. On the other hand, Kojima and Takewaki (2015a, b, 2016) introduced a new

approach to transform the one-cycle and 1.5-cycle sine waves to the double and tri-

ple impulses. It is well known that these two waves represent the principal parts of

the fault-parallel (fling-step) and fault-normal (forward directivity) components of

the near-fault ground motion. Then, Kojima and Takewaki (2015a, b, 2016) derived

the critical elastic-plastic responses in closed-form for such double and triple im-

pulses. Multi impulse has also been introduced as a substitute for a multi-cycle

sine wave representing the main part of a long-duration ground motion, and

closed-form critical steady-state responses have been derived by Kojima and

Takewaki (2015c, 2017) for an undamped elastic perfectly-plastic SDOF model

and an undamped bilinear hysteretic SDOF model. They demonstrated that the

nonlinear response under the multi impulse can be described in terms of free vibra-

tions. Then they derived a closed-form plastic deformation amplitude for the critical

multi impulse by taking advantage of the energy balance law. It should be pointed

out that their approach does not need to solve the equation of motion directly. These

theories using double and multi impulses are expanded for the elastic-plastic model

with linear viscous damping (Kojima et al., 2017; Hayashi et al., 2018, Akehashi

et al., 2018), the elastic-plastic 2DOF model (Taniguchi et al., 2016) and the

elastic-plastic base-isolated building model (Fujita et al., 2017; Takewaki et al.,

2017).

Losanno et al. (2014) introduced the frequency response analysis for the isolation

system of a bridge and proposed a simple procedure to determine the optimal value

of the viscous coefficient or the yield displacement of the isolators. In the reference

(Losanno et al., 2015), a design optimization problem was investigated for a simple

linear-elastic one-bay, one-story frame equipped with elastic-deformable viscous or

friction dissipative braces. An analytical approach was proposed for determining the

theoretical optimal value of the viscous damping or the yielding force parameter,

able to minimize the maximum displacements. Losanno et al. (2017) presented a nu-

merical investigation on the seismic behavior of isolated bridges with supplemental

viscous damping under both far field and near fault ground motions for both simply

supported and continuous bridges. They demonstrated that the base isolation with

the optimal damping is effective for reducing the displacement in the base-

isolation story in bridges. It appears that the introduction of the optimization concept
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in the design of supplemental damping in bridges and structures is important from

the viewpoint of effectiveness in the response mitigation and robustness for a broad

class of input (far-field and near-fault motions). A recent review on damper optimi-

zation was provided by Domenico et al. (2019).

In this paper, the multi impulse is introduced as a substitute for long-duration ground

motions and a closed-form solution is derived for the critical steady-state response of

an elastic perfectly-plastic SDOF model with nonlinear viscous damping under the

multi impulse. Base-isolated building structures consisting of laminated natural rub-

ber bearings, steel dampers and oil dampers with relief mechanism are considered as

the elastic-plastic SDOF model with nonlinear viscous damping. The restoring-force

characteristics of laminated natural rubber bearings and steel dampers are modeled

by the elastic perfectly-plastic restoring force-deformation relation and the oil

damper is modeled by the nonlinear viscous damping with relief mechanism. Oil

dampers are being adopted for many building structures so that the maximum

response under earthquake ground motions or wind loads is decreased and the vibra-

tions are damped at an early stage. The oil damper has a damping mechanism to

generate a damping force, proportional to the relative velocity of the piston, through

the fluid resistance of inner oil and the damping valve (Tsuji et al., 2012). The damp-

ing force provided by the oil damper acts as an external load to braces or beam-

column joints to which the oil dampers are mounted, and the mounting members

or the beam-column joints to the oil dampers are possibly damaged when the damp-

ing force becomes excessively large. Therefore, the oil damper has the mechanism to

prevent the increase of damping force by opening the relief valve when the damping

force becomes larger than a specific value. This mechanism is called the relief mech-

anism and the damping force at the timing when the relief valve opens is called the

relief force.

It may be difficult to derive an exact steady-state response of the SDOF elastic

perfectly-plastic system with nonlinear viscous damping under the critical multi im-

pulse by solving the differential equation directly, even by using the impulse input.

Therefore, the steady-state response is derived approximately by using the energy

balance law and the quadratic or elliptical approximation of the damping force-

deformation relation following the previous approaches (Kojima et al., 2017;

Hayashi et al., 2018). The multi impulse is introduced in Section 2.1. An SDOF

elastic-perfectly plastic system with nonlinear viscous damping is introduced in Sec-

tion 2.2. The critical timing of the multi impulse is investigated and six cases are

introduced in the derivation of the critical responses under the multi impulse in Sec-

tion 3.1. The energy approach and the approximation method of the damping force-

deformation relation are also introduced in Section 3.1. A closed-form solution for

the critical response under the multi impulse is derived approximately in Section 4.1.

The accuracy of the approximate closed-form solution is investigated by the time-

history response analysis to the multi impulse in Section 5.1. The validity of using

4 https://doi.org/10.1016/j.heliyon.2019.e01221

2405-8440/� 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Article Nowe01221

https://doi.org/10.1016/j.heliyon.2019.e01221
http://creativecommons.org/licenses/by-nc-nd/4.0/


the multiple impulse as substitute for the long-period and long-duration ground mo-

tions is investigated through the comparison with the elastic-plastic response under

the corresponding multi-cycle sine wave in Section 5.2. The reliability of the multi

impulse as a substitute for the long-duration ground motions is also checked through

the comparison with the elastic-plastic response under the recorded long-duration

ground motion in Section 5.3. It is also shown that the nonlinearity in viscous damp-

ing causes a remarkable influence on the earthquake response in some cases. The

conclusions are summarized at the end.

2. Model

2.1. Multi impulse as substitute for long-duration ground motions

Kojima and Takewaki (2015c, 2017) expressed the multi-cycle sine wave represent-

ing the principal part of long-duration ground motions in terms of the multi impulse.

The multi impulse with constant time interval t0, as shown in Fig. 1, is expressed by

€ugðtÞ ¼VdðtÞ �Vdðt� t0Þ þVdðt� 2t0Þ �Vdðt� 3t0Þ þ/þ ð� 1ÞN�1

Vdft� ðN � 1Þt0g;
ð1Þ

where V is the velocity imparted to masses or a mass by each impulse (the input

velocity level), N is the number of impulses taken from the multi impulse and

dðtÞ is the Dirac delta function. The ground acceleration and velocity of the multi

impulse and the corresponding multi-cycle sine wave, which represents a long-

duration ground motion (Takewaki and Tsujimoto, 2011), are shown in Fig. 1

(Vl denotes the velocity amplitude of the multi-cycle sine wave with the period

of Tl and will be explained later). It can be confirmed that the multi impulse is a

better approximate of the corresponding sine wave in the form of velocity compared

to the acceleration. In comparing the response under the multi impulse with that un-

der the multi-cycle sine wave, it is essential to modulate the input level of two in-

puts. The input levels of the multi impulse and the multi-cycle sine wave are

modulated by matching the maximum Fourier amplitude. The modulating method

can be found in the reference (Kojima and Takewaki, 2015c, 2017).

For reference, the Fourier transform of €ugðtÞ in Eq. (1) can be derived as shown in

Eq. (2).

€UgðuÞ ¼
ZN
�N

�
VdðtÞ �Vdðt� t0Þ þ/þ ð� 1ÞN�1Vd

�
t� ðN � 1Þt0

�35e�iutdt

¼ V
XN�1

n¼0
ð � 1Þne�iunt0

ð2Þ
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2.2. Elastic perfectly-plastic SDOF model with nonlinear viscous
damping

Consider an elastic perfectly-plastic SDOF model, as shown in Fig. 2, with nonlinear

viscous damping. This model has mass m, stiffness k and damping coefficient c. The

damping coefficient is constant regardless of yielding. Let u1 ¼ ffiffiffiffiffiffiffiffiffi
k=m

p
, T1 ¼ 2p=

u1 and h ¼ c=ð2 ffiffiffiffiffiffiffi
km

p Þ denote the undamped natural circular frequency, the un-

damped natural period and the damping ratio, respectively. Furthermore,

letu0
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
u1 and T0

1 ¼ 2p=u0
1 denote the damped natural circular fre-

quency and the damped natural period, respectively. The parameters u; fR and fD

are the displacement of the mass relative to the ground (deformation of the system),

the restoring force and damping force of the system, respectively, and the parameters

dy and fy ¼ kdy are the yield deformation and the yield force. The oil damper with

relief mechanism is treated as a nonlinear viscous damper. VDR denotes the relief

velocity and the damping force is constant at the relief force fDR ¼ cVDR after the

velocity becomes larger than VDR.

Fig. 1. Multi impulse, sine wave and amplified sine wave, (a) Acceleration, (b) Velocity.
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Vy obtained by the following equation (Eq. (3)) denotes the input level of the single

impulse at which the SDOF model just attains the yield deformation after single

impulse.

1
2
mV2

y ¼
1
2
kd2y5Vy ¼ u1dy ð3Þ

This parameter also presents a strength parameter with velocity dimension. In the

following sections, the deformation of the model is normalized by dy and the input

velocity is normalized by Vy. The normalized values are denoted by an over-bar.

3. Theory

3.1. Maximum response of elastic perfectly-plastic SDOF model
with nonlinear viscous damping under critical multi impulse

The critical timing of each impulse, which maximizes the plastic deformation ampli-

tude up, is investigated for the elastic perfectly-plastic SDOF model with nonlinear

viscous damping. Fig. 3 shows the transition of the critical time interval t0=T1,

normalized by the natural period, with respect to the normalized input velocity level

V=Vy for VDR=Vy ¼ 0:5; 1:5; 2:5 and h ¼ 0:15; 0:30. From Fig. 3, it can be

observed that the critical timing t0 of each impulse is the timing such that each im-

pulse acts at the state corresponding to the zero restoring-force (called ‘the zero

restoring-force timing’) in the lower input velocity level and it shifts from the

zero restoring-force timing to the timing such that each impulse acts at the state cor-

responding to the maximum velocity of the mass (called ‘the maximum velocity

timing’) as the input velocity becomes larger. This is because the damping force re-

mains the relief force in larger input levels.

The zero restoring-force timing and the maximum velocity timing are assumed as the

critical timing of each impulse and the closed-formplastic deformation amplitude up is

approximately derived for the elastic perfectly-plastic model with nonlinear viscous

damping under the critical multi impulse in the following section. Then two solutions

for up can be derived under the multi impulse such that each impulse acts at the zero

Fig. 2. Elastic perfectly-plastic SDOF model with nonlinear viscous damping, (a) SDOF model, (b)

Restoring force-deformation relation, (c) Damping force-velocity relation.
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restoring-force timing or at themaximumvelocity timing. The larger one in up is adop-

ted as the true plastic deformation amplitude under the critical multi impulse.

3.2. Maximum response under critical multi impulse

The critical steady-state response can be classified by the existence range of the

restoring force and the damping force.

The steady state with plastic deformation is only treated in this paper. The schematic

diagram of the point-symmetric restoring force-deformation relation in the steady

state is shown in Fig. 4. Let up; umax1; umax2 denote the plastic deformation ampli-

tude, the negative maximum deformation (absolute value) and the positive

maximum deformation in the steady state. The quantity um is the deformation differ-

ence between the zero restoring-force point and the maximum velocity point. A re-

sidual deformation sometimes exists and changes depending on the input level of the

impulse. It should be noted that the plastic deformation amplitude is not affected by

value of the residual deformation.

The critical steady-state response can be classified into three cases in terms of the

damping force depending on the input velocity level. CASE M1 is the case where

the damping force does not attain the relief force. CASE M2 is the case where the

damping force just before each impulse does not attain the relief force but the damp-

ing force just after each impulse attains the relief force. Furthermore, CASE M3 is

Fig. 3. Critical impulse timing of elastic perfectly-plastic SDOF model with nonlinear viscous damping

under multi impulse, (a) h ¼ 0.15, VDR/Vy ¼ 0.5, (b) h ¼ 0.15, VDR/Vy ¼ 1.5, (c) h ¼ 0.15, VDR/Vy ¼
2.5, (d) h ¼ 0.30, VDR/Vy ¼ 0.5, (e) h ¼ 0.30, VDR/Vy ¼ 1.5, (f) h ¼ 0.30, VDR/Vy ¼ 2.5.
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the case where the damping force attains the relief force before impulse. Fig. 5 shows

the schematic diagram of the damping force-deformation relation in the steady-state

response under the critical multi impulse in the case where the impulse timing is the

zero restoring force timing. On the other hand, Fig. 6 shows the similar one in the

case where the impulse timing is the maximum velocity timing. It should be noted

that the difference in Figs. 5 and 6 can be seen only in the deformation axis because

the force axis in Fig. 4 for characterizing the zero restoring-force timing is fR and the

force axis in Figs. 5 and 6 is fD.

The closed-form solutions for the steady-state response in above three cases are

derived under the multi impulse in which each impulse acts at the zero restoring-

force timing or the maximum velocity timing in the following section.

3.3. Energy equivalent method and approximation in damping
force-deformation relation

Hayashi et al. (2018) have derived the approximate closed-form expression of the

plastic deformation amplitude of the elastic-perfectly plastic system with linear

viscous damping under the critical multiple impulse. The plastic deformation

Fig. 4. Restoring force-deformation relation (circle/maximum response, triangle/acting point of im-

pulse), (a) Impulse timing: Restoring force is zero, (b) Impulse timing: Velocity is maximum.

Fig. 5. Damping force-deformation relation (circle/maximum response, triangle/acting point of impulse)

(Impulse timing: Restoring force is zero), (a) CASE M1, (b) CASE M2, (c) CASE M3.
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amplitude under the critical multiple impulse can be derived by using an energy bal-

ance law without solving directly the equation of motion (differential equation). In

the elastic-plastic system with viscous damping, the kinetic energy given at time

of each impulse is transformed into the sum of the elastic strain energy correspond-

ing to the yield deformation, the energy dissipated during the plastic deformation and

the work done by the damping force (the energy dissipated by the viscous damping).

In order to obtain the plastic deformation by the energy balance law, it is necessary

that the damping force-deformation relation is approximated by the simple function.

In the previous papers by Kojima et al. (2017) and Hayashi et al. (2018), the

quadratic function has been used to approximate the damping force-deformation

relation.

In the derivation of theplastic deformation amplitude in the following section, the curved

portion in the damping force-deformation relation is approximated by the quadratic or

elliptical function appropriately. Figs. 7 and 8 show the approximation method of the

damping force-deformation relation by the quadratic and elliptical functions. The dashed

areas in red indicates the energy by the approximate curve and the dashed area in grey

means the energy by the exact curve. Thequantities u0DR1,u0m, v0m are defined in Section

‘Closed-form solution (Impulse timing: Zero restoring-force timing)’.

4. Method

4.1. Non-iterative determination of plastic deformation of model
with nonlinear viscous damping under critical multi impulse

An approximate closed-form solution is derived for the plastic deformation ampli-

tude of the elastic perfectly-plastic model with nonlinear viscous damping under

the critical multi impulse. First, the plastic deformation amplitude under the multi

impulse is derived in Section 4.2 under the assumption that each impulse acts at

the zero restoring-force timing. Then, it is derived in Section 4.3 under the assump-

tion that each impulse acts at the maximum velocity timing.

Fig. 6. Damping force-deformation relation (circle/maximum response, triangle/acting point of impulse)

(Impulse timing: Velocity is maximum), (a) CASE M1, (b) CASE M2, (c) CASE M3.
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4.2. Closed-form solution (Impulse timing: Zero restoring-force
timing)

(i) CASE M1

CASE M1 is the case where the damping force does not attain the relief force. Let vc
denote the velocity at the zero restoring-force timing, and vc can be obtained by solv-

ing the following equation.

�
m€uþ c _uþ kuþ k

�
umax1 � dy

�¼ 0
uð0Þ ¼ �umax1 ; _uð0Þ ¼ 0 ; uðtcÞ ¼ �umax1 þ dy ; _uðtcÞ ¼ vc

; ð4Þ

where tc ¼ f0:5pþ arctanðh=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
Þg=u0

1 is the time interval between the

maximum deformation point and the zero restoring-force point. From Eq. (4), the

normalized velocity vcð¼ vc=VyÞ at the zero restoring-force timing can be obtained

by

vc ¼ exp

�
� hffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2
p

	
p

2
þ arctan

hffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p

�

¼ ac: ð5Þ

Fig. 7. Quadratic approximation of damping force-deformation relation, (a) CASE M1, (b) CASE M2,

M3.

Fig. 8. Elliptical approximation of damping force-deformation relation, (a) Damping force is not beyond

relief force when restoring force is 0, (b) Damping force is beyond relief force when restoring force is 0.
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The damping force-deformation relation is approximated by a quadratic function

with the vertex ðu; fDÞ ¼ ðumax2; 0Þ and passing the point ðu; fDÞ ¼ ðumax2 � up �
dy;cVþ cvcÞ. The damping force fD can be obtained as follows (see Figs. 5(a) and

7(a)).

fD ¼ cðvc þVÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
umax2 � u
up þ dy

r
ð6Þ

The work by the damping force for deformation can be obtained by integrating Eq.

(6) from u ¼ umax2 � up � dy to u ¼ umax2.

ED ¼
Zumax2

umax2�up�dy

fDdu¼ 2
3
cðV þ vcÞ

�
up þ dy

� ð7Þ

The energy balance law between the impulse acting point (the zero restoring-force

timing) and the point attaining the maximum deformation can be expressed as

follows.

1
2
mðV þ vcÞ2 ¼ 1

2
kd2y þ kdyup þED ð8Þ

From Eqs. (7) and (8), the normalized plastic deformation amplitude upð¼ up=dyÞ
can be expressed by Eq. (9).

up ¼
3
�
V þ vc

�2 � 3� 8h
�
V þ vc

�
2
�
3þ 4h

�
V þ vc

�� ð9Þ

(ii) CASE M2

CASE M2 is the case where the damping force attains the relief force only just after

each impulse. The velocity vc at the zero restoring-force timing can be obtained by

Eq. (5) as in CASEM1. The curved part in the damping force-deformation relation is

approximated by a quadratic function as shown in Figs. 5(b) and 7(b), and the work

by the damping force from the impulse acting point to the maximum deformation

can be obtained approximately.

uDR is the displacement from the impulse acting point to the point where the damp-

ing force just becomes smaller than the relief force as shown in Fig. 5(b). If

uDR < dy, uDR can be derived as

1
2
mðvc þVÞ2 ¼ 1

2
mV2

DR þ
1
2
ku2DR þ cVDRuDR ð10Þ
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5 uDR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vc þV

�2 þ ð4h2 � 1ÞV2
DR

q
� 2hVDR ð11Þ

On the other hand, if dy < uDR, uDR can be obtained as

1
2
mðvc þVÞ2 ¼ 1

2
mV2

DR þ
1
2
kd2y þ kdy

�
uDR � dy

�þ cVDRuDR ð12Þ

5uDR ¼
�
vc þV

�2 �V
2
DR þ 1

2
�
1þ 2hVDR

� ð13Þ

When uDR ¼ dy, uDR derived by Eq. (11) is equal to that derived by Eq. (13). The

boundary input velocity level between Eqs. (11) and (13) is denoted by Vbc. From

Eq. (10) or (12) and uDR ¼ dy, the boundary input velocity level Vbc ¼ ðVbc=VyÞ
can be obtained by Eq. (14).

Vbc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4hVDR þV

2
DR

q
� vc: ð14Þ

The curved part in the damping forceedeformation relation is approximated by a

quadratic function with the vertex ðu; fDÞ ¼ ðumax2; 0Þ and passing the point

ðu; fDÞ ¼
�
umax2 � up � dy þ uDR; cVDR

�
. The damping force fD can be obtained

as follows (Figs. 5(b) and 7(b)).

fD ¼ cVDR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
umax2 � u�

up þ dy
�� uDR

r
ð15Þ

By integrating Eq. (15) from u ¼ umax2 � up � dy þ uDR to u ¼ umax2, the work by

the damping force approximated by the quadratic function is obtained by

Zumax2

umax2�up�dyþuDR

cVDR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
umax2 � u�

up þ dy
�� uDR

r
du¼ 2

3
cVDR

�
up þ dy � uDR

� ð16Þ

From Eq. (16) and the work by the relief force from u ¼ umax2 � up � dy to u ¼
umax2 � up � dy þ uDR, the work by the damping force from u ¼ umax2 � up � dy

to u ¼ umax2 can be obtained as follows.

ED ¼ cVDRuDR þ 2
3
cVDR

�
up þ dy � uDR

�¼ 1
3
cVDR

�
2up þ 2dy þ uDR

� ð17Þ

The energy balance law between the impulse acting point and the point attaining the

maximum deformation can be expressed as follows.
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1
2
mðvc þVÞ2 ¼ 1

2
kd2y þ kdyup þED ð18Þ

From Eqs. (17) and (18), the plastic deformation amplitude up can be obtained by

up ¼ 3
�
vc þV

�2 � 3� 4hVDRðuDR þ 2Þ
2
�
3þ 4hVDR

� : ð19Þ

From Eqs. (11), (13), and (19), the plastic deformation up can be expressed by

(iii) CASE M3

CASEM3 is the case where the damping force attains the relief force before impulse.

In this case, if the velocity vc at the zero restoring-force timing can be obtained, the

plastic deformation amplitude up can be obtained by Eq. (20). Therefore, vc in CASE

M3 is derived here.

To obtain vc, it is assumed that each impulse acts at the zero restoring-force timing in

the elastic perfectly-plastic SDOF model with linear viscous damping. The deforma-

tion and velocity of the model with linear viscous damping at the point where the

damping force is maximum are denoted by �u0m and v0m, as shown in Fig. 8(b).

u0m and v0m can be obtained by

�
m€uþ c _uþ kuþ k

�
umax1 � dy

�¼ 0
uð0Þ ¼ �umax1 ; _uð0Þ ¼ 0 ; uðt0mÞ ¼ �u0m ; _uðt0mÞ ¼ v0m

; ð21Þ

where t0m ¼ f0:5p� arctanðh=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
Þg=u0

1 is the time interval between the

maximum velocity point and the maximum deformation point in the model with

liner viscous damping. From Eq. (21), u0m
� ¼ u0m=dy

�
and v0m

� ¼ v0m=Vy

�
can

be derived by Eqs. (22) and (23).

u0m ¼ 2hv0m þ
�
umax1 � dy

��
dy ; ð22Þ

up ¼

8>>>>><
>>>>>:

3
�
vc þV

�2 � 3þ 8hVDR

�
hVDR � 1

�
2
�
3þ 4hVDR

� � 2hVDR

3þ 4hVDR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vc þV

�2 þ �
4h2 � 1

�
V

2
DR

q �
V < Vbc

�
�
vc þV

�2
2
�
1þ 2hVDR

�þ 2hVDR


V

2
DR � 8hVDR � 8

�
� 3

2
�
1þ 2hVDR

��
3þ 4hVDR

� �
V > Vbc

� ð20Þ
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v0m ¼ exp

�
� hffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2
p

	
p

2
� arctan

hffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p

�

¼ am; ð23Þ

The curved part in the damping force-deformation relation is approximated by an

ellipse with the two vertexes ð�u0m; cv0mÞ and ð� umax1; 0Þ. The damping force

fD in the second quadrant (fD � 0;u � 0) can be obtained from Eq. (24).

fD ¼ cv0m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

	
uþ u0m

umax1 � u0m


2
s

ð24Þ

The deformation at the point where the approximate ellipse and the line fD ¼ cVDR

intersect is denoted by � u0DR1. Then u0DR1 can be obtained by

u0DR1 ¼ 2ham þ 1� 2ham
am

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m �V

2
DR

q
þ ðumax1 � 1Þ: ð25Þ

vc can be derived by using u0DR1 and an energy balance law between the point ð�
u0DR1; cVDRÞ and the zero restoring force timing. Although it is possible that,

regardless of the fact that the damping force attains the relief force, the damping

force before the input of impulse is smaller than fDR at the zero restoring-force point

depending on the input velocity level, such decrease of the damping force is ignored

here and the damping force between the point ð�u0DR1; cVDRÞ and the zero

restoring force point is approximated to be constant by the relief force here

(Fig. 8(a)). The energy balance law between the point ð�u0DR1; cVDRÞ and the

zero restoring force timing can be expressed by

1
2
mV 2

DR þ
1
2
k
�
u0DR1 � umax1 þ dy

�2 ¼ 1
2
mv2c þ cVDR

�
u0DR1 � umax1 þ dy

�
: ð26Þ

From Eq. (26), the following equation can be obtained.

vc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

2
DR þ ðu0DR1 � umax1 þ 1Þ2 � 4hVDRðu0DR1 � umax1 þ 1Þ

q
: ð27Þ

From Eqs. (25) and (27), the velocity vcð¼ vc=VyÞ at the zero restoring-force timing

can be expressed by Eq. (28).

vc ¼

V

2
DR � 8h2amVDR þ ð2hamÞ2 þ

	
1� 2ham

am


2
a2m �V

2
DR

�
þ 4hð1� 2hamÞ

�
am �VDR

�
a2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m �V

2
DR

qs
:

ð28Þ
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4.3. Closed-form solution (Impulse timing: Maximum velocity
timing)

The plastic deformation amplitude up is derived here for the elastic perfectly-plastic

model with nonlinear viscous damping under the multi impulse in the case where

each impulse acts at the maximum velocity timing.

(i) CASE M1

CASEM1 is the case where the damping force does not attain the relief force. Let vm
denote the velocity at the maximum velocity timing after each impulse. The

displacement at the maximum velocity point from the zero restoring-force point is

denoted by um. vm and um can be obtained from Eq. (29) by solving equation of

motion.

�
m€uþ c _uþ kuþ k

�
umax1 � dy

�¼ 0
uð0Þ ¼ �umax1 ; _uð0Þ ¼ 0 ; uðtmÞ ¼ �um �

�
umax1 � dy

�
; _uðtmÞ ¼ vm ;

€uðtmÞ ¼ 0 ð29Þ

um ¼ 2hvm ð30Þ

vm ¼ exp

�
� hffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2
p

	
p

2
� arctan

hffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p

�

¼ am; ð31Þ

where tm ¼ f0:5p� arctanðh=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
Þg=u0

1 is the time interval between the

maximum velocity point and the maximum deformation point. The damping

forceedeformation relation is approximated by a quadratic function with the vertex

ðu; fDÞ ¼ ðumax2; 0Þ and passing the point ðu; fDÞ ¼ ðumax2 � up � dy � um; cVþ
cvmÞ. The damping force fD can be obtained as follows (see Figs. 6(a) and 7(a)).

fD ¼ cðvm þVÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
umax2 � u

up þ dy þ um

r
ð32Þ

The work by the damping force can be obtained as follows by integrating Eq. (32)

from u ¼ umax2 � up � dy � um to u ¼ umax2.

ED ¼
Zumax2

umax2�up�dy�um

fDdu¼ 2
3
cðV þ vmÞ

�
up þ dy þ um

� ð33Þ

The energy balance law between the impulse acting point (the maximum velocity

timing) and the point attaining the maximum deformation can be expressed as

follows.

1
2
mðV þ vmÞ2 þ 1

2
ku2m ¼ 1

2
kd2y þ kdyup þED ð34Þ
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From Eqs. (30), (31), (33), and (34), the normalized plastic deformation amplitude

upð¼ up=dyÞ can be expressed by Eq. (35):

up ¼
3
�
V þ vm

�2 � 3� 8h
�
V þ vm

�� 4h2vm
�
4V þ vm

�
2
�
3þ 4h

�
V þ vm

�� ð35Þ

(ii) CASE M2

CASE M2 is the case where the damping force attains the relief force only after each

impulse. The velocity vm at the impulse acting point is obtained by Eq. (31) as in

CASE M1.

The curved part in the damping force-deformation relation is approximated by a

quadratic function as shown in Figs. 6(b) and 7(b), and the work by the damping

force from the impulse acting point to the maximum deformation can be obtained.

The displacement from the impulse acting point to the point where the damping force

just becomes smaller than the relief force is denoted by uDR þ um as shown in

Fig. 6(b), and uDR can be obtained by the energy balance law. If uDR < dy,

uDRcan be obtained as

1
2
mðvm þVÞ2 þ 1

2
ku2m ¼ 1

2
mV2

DR þ
1
2
ku2DR þ cVDRðum þ uDRÞ ð36Þ

5uDR ¼�2hVDR þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vm þV

�2 þ ð4h2 � 1ÞV2
DR þ um

�
um � 4hVDR

�q
ð37Þ

On the other hand, if dy < uDR, uDR can be derived as

1
2
mðvm þVÞ2 þ 1

2
ku2m ¼ 1

2
mV2

DR þ
1
2
kd2y þ kdy

�
uDR � dy

�þ cVDRðum þ uDRÞ ð38Þ

5uDR ¼
�
vm þV

�2 �V
2
DR þ 1þ um

�
um � 4hVDR

�
2
�
1þ 2hVDR

� ð39Þ

When uDR ¼ dy, uDR derived by Eq. (37) is equal to that derived by Eq. (39). From

Eq. (36) or (38) and uDR ¼ dy, the boundary input velocity level Vbmð¼ Vbm=VyÞ
can be obtained by

Vbm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

2
DR þ 4hVDR þ 1� um

�
um � 4hVDR

�q
� vm: ð40Þ

From Eqs. (30), (31), (37), (39), and (40), uDRð¼ uDR=dyÞ can be expressed by Eqs.
(41) and (42).
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uDR¼

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vmþV

�2þ�
4h2�1

�
V

2

DRþ4h2vm
�
vm�2VDR

�q
�2hVDR


V<V

ðM2Þ
bm

�
�
vmþV

�2�V
2

DRþ1þ4h2vm
�
vm�2VDR

�
2
�
1þ2hVDR

� 
V>V

ðM2Þ
bm

�
ð41Þ

V
ðM2Þ
bm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

2
DR þ 4hVDR þ 1� 4h2vm

�
vm � 2VDR

�q
� am; ð42Þ

where VðM2Þ
bm denotes the boundary input velocity level between Eqs. (37) and (39)

in CASE M2.

The curved part in the damping forceedeformation relation is also approximated by

Eq. (15) and the work by the damping force from u ¼ umax2 � up � dy to u ¼ umax2

can be expressed as follows (Figs. 6(b) and 7(b)).

ED ¼ cVDRðuDR þ umÞ þ 2
3
cVDR

�
up þ dy � uDR

�¼ 1
3
cVDR

�
uDR þ 3um þ 2up þ 2dy

�
ð43Þ

The energy balance law between the impulse acting point and the point attaining the

maximum deformation can be expressed as

1
2
mðvm þVÞ2 þ 1

2
ku2m ¼ 1

2
kd2

y þ kdyup þED ð44Þ

From Eqs. (43) and (44), the plastic deformation amplitude up can be obtained by

up ¼ 3
�
vm þV

�2 � 3� 8hVDR þ 3um
�
um � 4hVDR

�� 4hVDRuDR
2
�
3þ 4hVDR

� ð45Þ

From Eqs. (30), (31), (41), and (45), the plastic deformation amplitude upð¼ up=dyÞ
can be obtained as Eq. (46).

up ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

3
�
vm þV

�2 þ 12h2vm
�
vm � 2VDR

�� 3þ 8hVDR

�
hVDR � 1

�
2
�
3þ 4hVDR

�

� 2hVDR

3þ 4hVDR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vm þV

�2 þ �
4h2 � 1

�
V

2
DR þ 4h2vm

�
vm � 2VDR

�q

V < V

ðM2Þ
bm

�

�
vm þV

�2 þ 4h2vm
�
vm � 2VDR

�
2
�
1þ 2hVDR

� þ
2hVDR


V

2
DR � 8hVDR � 8

�
� 3

2
�
1þ 2hVDR

��
3þ 4hVDR

� 
V > V

ðM2Þ
bm

�
ð46Þ
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(iii) CASE M3

CASEM3 is the case where the damping force attains the relief force before impulse.

The velocity vm at the impulse acting timing can be obtained by approximating the

curved part in the damping force-deformation relation with an ellipse. The displace-

ment �u0DR1 at the point where the approximate ellipse and the line fD ¼ cVDR

intersect can be obtained by Eq. (25). The displacement of the point where the ve-

locity is maximum from the zero restoring-force point is denoted by um as shown

in Figs. 6(c) and 8(b). vm and um can be obtained from Eq. (47) by solving equation

of motion.

(m€uþ cVDR þ kuþ k
�
umax1 � dy

�¼ 0

uð0Þ ¼ �u0DR1 ; _uð0Þ ¼ VDR ; uðtmÞ ¼ � um �
�
umax1 � dy

�
; _uðtmÞ ¼ vm ;

€uðtmÞ ¼ 0

ð47Þ

um ¼ 2hVDR ð48Þ

vm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
u0DR1 � 2hVDR � ðumax1 � 1Þ�2 þV

2
DR

q
; ð49Þ

By substituting �u0DR1 given in Eq. (25) into Eq. (49), the following equation, Eq.

(50), can be obtained.

vm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2h

�
am �VDR

�þ 1� 2ham
am

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m �V

2
DR

q �2

þV
2
DR

s
ð50Þ

By substituting umð¼ um=dyÞ given by Eq. (48) into Eqs. (37), (39), and (40), uDRð¼
uDR=dyÞ and the boundary input velocity levelVðM3Þ

bm ð ¼ V
ðM3Þ
bm =VyÞ of uDR in CASE

M3 can be obtained by Eqs. (51) and (52).

uDR ¼

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vm þV

�2 �V
2
DR

q
� 2hVDR


V < V

ðM3Þ
bm

�
�
vm þV

�2 � �
4h2 þ 1

�
V

2
DR þ 1

2
�
1þ 2hVDR

� 
V > V

ðM3Þ
bm

� ð51Þ

V
ðM3Þ
bm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4h2 þ 1ÞV2

DR þ 4hVDR þ 1
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2h

�
am �VDR

�þ 1� 2ham
am

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m �V

2
DR

q �2

þV
2
DR

s
ð52Þ

The plastic deformation amplitude up can be expressed by Eq. (45) as in CASE M2.

By substituting umð¼ um=dyÞ, vmð¼ vm=VyÞ and uDRð¼ uDR=dyÞ obtained by Eqs.

(48), (49), and (51) into Eq. (45), up in CASE M3 can be obtained as Eq. (53).
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4.4. Boundary condition among cases

Consider the boundary between CASE M1 and CASE M2. At this boundary, the

damping force just after each impulse in the steady state attains the relief force

exactly. When each impulse acts at the point of zero restoring-force, the condition

can be expressed by

V þ vc ¼ VDR5V ¼ VDR � ac
�
hDc

�
; ð54Þ

where Dc denotes the normalized input velocity level at the boundary between

CASE M1 and CASE M2 and ac can be obtained by Eq. (5).

On the other hand, when each impulse acts at the time when the velocity becomes

maximum after each impulse, the condition can be expressed by

V þ vm ¼ VDR5V ¼ VDR � am
�
hDm

�
; ð55Þ

where Dm denotes the normalized input velocity level at the boundary between

CASE M1 and CASE M2 and am can be obtained by Eq. (31).

From Eqs. (54) and (55), if V � Dc;Dm, the steady-state response is in CASE M1

and if V > Dc;Dm the steady-state response is in CASE M2.

Consider the boundary between CASE M2 and CASE M3. At this boundary, the

maximum velocity before impulse in the steady state just attains the relief velocity

and the condition can be expressed by

vm ¼ VDR5VDR � am ¼ Dm ¼ 0 ð56Þ

From Eq. (56), if Dm � 0, the steady-state response is in CASE M2 and if Dm < 0,

the steady-state response is in CASE M3. The boundary input velocity level can be

obtained by the relief velocityVDR and the damping ratio h does not depend on input

velocity level V. If VDR > 1, CASE M3 does not exist because ac < am < 1 and

up ¼

8>>>>><
>>>>>:

3
�
vm þV

�2 � 3� 4hVDR

�
hVDR þ 2

�
2
�
3þ 4hVDR

� � 2hVDR

3þ 4hVDR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vm þV

�2 �V
2
DR

q 
V < V

ðM3Þ
bm

�
�
vm þV

�2 � 4h2V
2
DR

2
�
1þ 2hVDR

� þ
2hVDR


V

2
DR � 8hVDR � 8

�
� 3

2
�
1þ 2hVDR

��
3þ 4hVDR

� 
V > V

ðM3Þ
bm

� ð53Þ
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Dm < Dc in the range 0 < h < 1. In contrast, if CASEM3 exists,Dm � 0 and CASE

M1, in which each impulse acts at the maximum velocity timing, does not exist.

The boundaries between each CASE can be summarized as follows.

[Impulses act at the zero restoring-force timings]

CASE M1: V � Dc, CASE M2: V > Dc and Dm � 0, CASE M3: Dm < 0,

[Impulses act at the maximum velocity timings]

CASE M1: V � Dm, CASE M2: V > Dm and Dm � 0, CASE M3: Dm < 0,

5. Analysis

5.1. Accuracy check by time-history response analysis to multi
impulse

The accuracy of the proposed solutions derived in Section 4 is investigated through

the comparison with the critical steady-state response under the multi impulse calcu-

lated by time-history response analysis. Fig. 9(a)e(f) show the comparison of the

critical steady-state response of the models with VDR=Vy ¼ 0:5; 1:5; 2:5 by the pro-

posed closed-form solution with that by the time-history response analysis. The

damping ratio of this system is h ¼ 0:15; 0:30. In the legends of Fig. 9(a)e(f),

“Approximation” means the response of the elastic perfectly-plastic SDOF model

Fig. 9. Comparison of plastic deformation amplitude of model with nonlinear viscous damping under

critical multi impulse by approximation with that by time-history response analysis, (a) h ¼ 0.15,

VDR/Vy ¼ 0.5, (b) h ¼ 0.15, VDR/Vy ¼ 1.5, (c) h ¼ 0.15, VDR/Vy ¼ 2.5, (d) h ¼ 0.30, VDR/Vy ¼ 0.5,

(e) h ¼ 0.30, VDR/Vy ¼ 1.5, (f) h ¼ 0.30, VDR/Vy ¼ 2.5.
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with nonlinear viscous damping under the critical multi impulse by the proposed

closed-form solution, “THRA(Relief)” indicates that by the time-history response

analysis for the model with nonlinear viscous damping and “THRA(Non-relief)”

means the response of the elastic perfectly-plastic SDOF model with linear viscous

damping (VDR=Vy/N) under the critical multiple impulse by the time-history

response analysis. The approximate closed-form solutions are obtained for the

elastic perfectly-plastic SDOF model with nonlinear viscous damping under the mul-

tiple impulse in which each impulse acts at the zero restoring-force timing (Closed-

form C) and the maximum velocity timing (Closed-form M), and the larger one is

adopted as the critical steady-state response “Approximation”. On the other hand,

the critical steady-state response “THRA(Relief)” is evaluated by varying the time

interval t0 of the multiple impulse with constant input velocity level in time-

history response analysis.

It can be observed from Fig. 9 that the proposed closed-form solution obtained in

Section 4 can evaluate the plastic deformation amplitude under the multiple impulse

despite of the relief velocity ratio VDR=Vy and damping ratio h. The elastic-plastic

response under the multi impulse such that each impulse acts at the zero-restoring

force timing is adopted in the smaller input level and that under the multiple impulse

such that each impulse acts at the maximum velocity timing is adopted in the larger

input level as “Approximation” in Fig. 9. This result corresponds to the result in Sec-

tion ‘Maximum response of elastic perfectly-plastic SDOFmodel with nonlinear
viscous damping under critical multi impulse’.

5.2. Accuracy check by time-history response analysis subjected
to the corresponding multi sine wave

The validity of the multi impulse as a substitute for the multi-cycle sine wave is

investigated for the elastic perfectly-plastic SDOF model with nonlinear viscous

damping and the accuracy of the proposed closed-form solution of the elastic-

plastic system with nonlinear viscous damping is checked through the comparison

with the steady-state response under the corresponding multi-cycle sine wave.

In the comparison of the elastic-plastic response under the multi impulse and the cor-

responding multi-cycle sine wave, Kojima and Takewaki (2015c, 2017) introduced

the method tuning the level of both inputs based on the equivalence of the maximum

Fourier amplitude, and this tuning method is also used in this paper. In this tuning

method, the period of the corresponding sine wave is twice of the time interval of

multi impulse. It is known that the response under impulse input becomes larger

than that under sine wave in this model under the long-duration input. Therefore,

in addition to the above tuning method (a ¼ 1:00), the acceleration amplitude of

the sine wave is amplified by a ¼ 1:15 (Kojima and Takewaki, 2015c). The

elastic-plastic response under the multi-cycle sine wave tuned based on the
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equivalence of the maximum Fourier amplitude is denoted by “MSW” and that un-

der the multi-cycle sine wave amplified by a ¼ 1:15 is denoted by “MSW� 1.15” in

this section.

From the tuning method based on the equivalence of the maximum Fourier ampli-

tude, the acceleration amplitude Al and period Tlð¼ 2p=ul ¼ 2t0Þ of the corre-

sponding sine wave can be calculated by following equations.

Al

V
¼ a

0:5t0
; ð57Þ

Vl

V
¼ a

0:5p
; ð58Þ

ul ¼ p

t0
; ð59Þ

where ul and Vl are the circular frequency and the velocity amplitude of the sine

wave, and a ¼ 1:00; 1:15. t0c=T1 for specific V=Vy, VDR=Vy and h can be ob-

tained by varying the time interval in time-history response analysis as shown in

Fig. 3. t0c is the critical timing between the two impulses which provides the

maximum deformation and T1 is the natural period of the elastic SDOF system.

The validity of the multi impulse as a substitute for the multi-cycle sine wave and the

accuracy of the proposed solution for the steady-state response are investigated

through the comparison with the response under the multi-cycle sine wave whose

acceleration amplitude is tuned by using above method.

Fig. 10 shows the comparison of the plastic deformation amplitude of the model with

VDR=Vy ¼ 0:5; 1:5; 2:5 under the critical multi impulse (MI) and that under the cor-

responding multi-cycle sine wave (MSW and MSW� 1.15). As in Fig. 9, “Approx-

imation” means the response of the elastic perfectly-plastic SDOF model with

nonlinear viscous damping under the critical multi impulse by the proposed

closed-form solution, “THRA, Relief” indicates that by the time-history response

analysis and “THRA, Non-relief” means the response of the elastic perfectly-

plastic SDOF model with linear viscous damping (VDR=Vy/N) by the time-

history response analysis. From Fig. 10, the response under the corresponding

sine wave with a ¼ 1:00 (MSW) is smaller than that under the multi impulse

(MI). This is because the decrease of the energy dissipation by relief mechanism un-

der the multi impulse is larger than that under the sine wave and the damping force

attains the relief force repeatedly under the long-duration ground motion. On the

other hand, the plastic deformation amplitude by the proposed solution for the multi

impulse (MI) and that under the corresponding sine wave with a ¼ 1:15 (MSW�
1.15) exhibit a fairly good correspondence. The effect of the velocity amplitude

of the sine wave on the steady-state response of the model with nonlinear viscous
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damping is remarkable and the further investigation is necessary on the multiplier a

of the acceleration amplitude of the sine wave. In the range of input velocity level

V=Vy < 3:0, the multi impulse is a good substitute of the multi-cycle sine wave

with a ¼ 1:15.

Figs. 9 and 10 are the plastic deformation amplitudes with respect to the input level.

The common trend is that, while the model with linear damping (non-relief) exhibits

smaller responses compared to the model with nonlinear damping (relief), the pro-

posed approximate evaluation method shows a fairly good accuracy based on the

comparison with the results by the time-history response analysis.

5.3. Accuracy check by time-history response analysis under
recorded ground motion

The applicability of the proposed elastic-plastic response under the critical multi

impulse to recorded long-duration ground motions is verified through the compar-

ison with the response under the actual recorded ground motion. Tomakomai EW

component during Tokachioki earthquake in 2003 is used as an actual long-

duration ground motion. The velocity waveform of the long-duration and long-

period ground motion can be represented approximately by the sine wave. A com-

parison of the ground velocity of Tomakomai EW (2003) and the equivalent sine

wave is shown in Fig. 11.

Fig. 10. Comparison of plastic deformation amplitude of model with nonlinear viscous damping under

critical multi impulse (approximation) with that under corresponding multi-cycle sine wave (time-history

response analysis), (a) h ¼ 0.15, VDR/Vy ¼ 0.5, (b) h ¼ 0.15, VDR/Vy ¼ 1.5, (c) h ¼ 0.15, VDR/Vy ¼ 2.5,

(d) h ¼ 0.30, VDR/Vy ¼ 0.5, (e) h ¼ 0.30, VDR/Vy ¼ 1.5, (f) h ¼ 0.30, VDR/Vy ¼ 2.5.
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Although the critical multi impulse is selected for the specific structure and the

approximate closed-form solution is derived for the critical multi impulse in Sections

3 and 4, the parameters of the elastic-plastic system with nonlinear viscous damping

is approximately determined to maximize the steady-state responses for the recorded

ground motion with specific input velocity level in this section. In this paper, the

method by Kojima et al. (2017) and Hayashi et al. (2018) is used in evaluating

the critical response under the recorded ground motion.

First, the main part of the velocity waveform of the recorded ground motion is rep-

resented by the multi-cycle sine wave and the velocity amplitude Vl and period Tl of

the equivalent sine wave are determined. The critical time interval t0c can be ob-

tained as a half of Tl here. The input velocity level V of the multi impulse corre-

sponding to the multi-cycle sine wave can be obtained by using Vl and the

multiplier a with the following equation.

V ¼ 0:5pVl=a ð60Þ

Then t0c=T for a specific set ofV=Vy,VDR=Vy and h is determined. It is necessary to

obtain t0c=T for a specific set ofV=Vy,VDR=Vy and h by varying the time interval in

the time-history response analysis in advance, as shown Fig. 3. Finally, the param-

eters Vy;VDR;u1 and dy of the SDOF model can be obtained as follows with t0c=T,

t0
c ¼ 0:5Tl and Eq. (60).

Vy ¼ V�
V
�
Vy

� ; ð61Þ

VDR ¼
�
VDR

�
Vy

�
Vy; ð62Þ

Fig. 11. Velocity wave of Tomakomai EW (2003) and the corresponding sine wave.
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u1 ¼
2p

�
tc0
�
T1

�
tc0

; ð63Þ

dy ¼ Vy

u1
; ð64Þ

The parameters of the SDOF model maximizing the elastic-plastic response under

the actual recorded ground motion are determined by using the above procedure

and the critical response under the multi impulse is compared with that under the

actual recorded ground motion. The period of the equivalent multi-cycle sine

wave is Tl ¼ 7:0½sec� and the velocity of the equivalent sinusoidal wave is Vl ¼
0:28[m/sec]. Then the input velocity level of the multi impulse corresponding to

the Tomakomai EW component is V ¼ 0:44[m/sec]. Vl is determined so that the

velocity amplitude of the multi-cycle sine wave corresponds to the amplitude of

three wavelets of the ground velocity during 25e45 [sec] as shown in Fig. 11.

Fig. 12 shows the comparison of plastic deformation amplitude of the model with

nonlinear viscous damping under the critical multi impulse (designated as ‘Approx-

imation’) with that under a recorded ground motion (time-history response analysis).

For comparison, the response of the model with linear damping is provided as ‘Non-

relief’. As shown in Fig. 10, the case with an amplified coefficient 1.15 on the input

intensity was also considered. It can be observed from Fig. 12 that the proposed

elastic-plastic response under the critical multi impulse can simulate the critical

elastic-plastic response under the recorded ground motion with a ¼ 1:15 within a

Fig. 12. Comparison of plastic deformation amplitude of model with nonlinear viscous damping under

critical multi impulse (approximation) with that under recorded ground motion (time-history response

analysis), (a) h ¼ 0.15, VDR/Vy ¼ 0.5, (b) h ¼ 0.15, VDR/Vy ¼ 1.5, (c) h ¼ 0.15, VDR/Vy ¼ 2.5, (d) h

¼ 0.30, VDR/Vy ¼ 0.5, (e) h ¼ 0.30, VDR/Vy ¼ 1.5, (f) h ¼ 0.30, VDR/Vy ¼ 2.5.
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reasonable accuracy. In addition, as in Figs. 9 and 10, while the model with linear

damping (non-relief) exhibits smaller responses compared to the model with

nonlinear damping (relief), the proposed approximate evaluation method shows a

fairly good accuracy.

Figs. 13 and 14 show the comparison of the time-history displacement response of

the model with h ¼ 0:15;V=Vy ¼ 5:0 and VDR=Vy ¼ 0:5; 1:5; 2:5 under the critical

multi impulse and the recorded ground motion (a ¼ 1:15). It can be observed that

the displacement response under the recorded ground motion is maximized in reso-

nance with three wavelets during 25e45 [sec], and the difference between the

displacement response of the models with and without relief mechanism is remark-

able in this range.

6. Conclusions

Multi impulse has been employed as a substitute for long-duration ground motions

and the critical steady-state response to that multi impulse has been investigated for

an elastic-perfectly plastic SDOF model with nonlinear viscous damping. This sim-

ple model simulates the base-isolated building structure consisting of laminated nat-

ural rubber bearings, steel dampers and oil dampers with relief mechanism.

The conclusions may be summarized as follows.

(1) A closed-form solution has been obtained for the critical steady-state response

of an elastic perfectly-plastic SDOF model with nonlinear viscous damping

Fig. 13. Displacement response to Tomakomai EW (2003) for V/Vy ¼ 5.0, (a) h ¼ 0.15, VDR/Vy ¼ 0.5,

(b) h ¼ 0.15, VDR/Vy ¼ 1.5, (c) h ¼ 0.15, VDR/Vy ¼ 2.5.

Fig. 14. Displacement response to critical multi impulse for V/Vy ¼ 5.0, (a) h ¼ 0.15, VDR/Vy ¼ 0.5, (b)

h ¼ 0.15, VDR/Vy ¼ 1.5, (c) h ¼ 0.15, VDR/Vy ¼ 2.5.
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under the multi impulse. While the critical timing for an elastic-plastic model

with linear viscous damping is the zero restoring-force timing, it is the zero

restoring-force timing in the lower input velocity level and shifts to the

maximum velocity timing as the input velocity becomes larger for the

elastic-plastic model including oil dampers with relief mechanism. The

steady-state elastic-plastic responses have been derived for two cases, (i)

each impulse acts at the zero restoring-force timing, (ii) each impulse acts at

the maximum velocity timing. Then the larger one has been adopted as the crit-

ical steady-state response. In the derivation of the critical steady-state re-

sponses, the quadratic or elliptical function approximations has been used for

approximating the damping force-deformation relation. The elliptical approxi-

mation of the curved part in the damping force-deformation relation has been

used to obtain the maximum velocity in the stage where the damping force

is constant as the relief force. The quadratic function approximation and the en-

ergy balance law have been used for deriving the plastic deformation

amplitude.

(2) The time-history response analysis to the multi impulse demonstrated that the

proposed closed-form solution can approximately evaluate the steady-state

response of the elastic perfectly-plastic SDOF model with nonlinear viscous

damping under the critical multi impulse.

(3) The comparison with the time-history response analysis result for the elastic-

plastic response under the amplitude-tuned multi-cycle sine wave confirmed

the validity of the proposed closed-form solution. It was made clear that, to

adjust the response under the multi impulse and the corresponding multi-

cycle sine wave, it is necessary to amplify the acceleration amplitude of the

multi-cycle sine wave by 1.15 after it is tuned so that the maximum Fourier

amplitude of the multi-cycle sine wave is equal to that of the multi impulse.

This is because the impulse input gives instantaneous change of velocity of

mass and the responses under the impulse input are amplified larger than that

under the sine wave.

(4) It has been shown through the comparison with a linear viscous damping model

that the nonlinearity in viscous damping causes a remarkable influence on the

earthquake response in some cases.

(5) The applicability of the proposed solutions has been investigated through the

comparison with the elastic-plastic response under a recorded long-duration

ground motion. The velocity of the recorded ground motion is modeled by

the multi-cycle sine wave and it is further transformed into the multi impulse.

The proposed solution for the critical multi impulse exhibits good correspon-

dence with that under the recorded long-duration ground motion.
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