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Executive Summary 

Miscible Gas injection (MGI) is an effective enhanced oil recovery (EOR) method 

used worldwide often for light oil recovery. In the petroleum industry, many MGI 

processes typically involve injection of an associated gas (AG) mixture or CO2, which 

have both been recognised as excellent candidates for such processes. However, in 

general, the viscosity of a typical injected gas at reservoir condition is significantly 

lower than that of the resident crude oil leading to an unfavourable mobility ratio and 

low volumetric sweep efficiency. In addition, reservoir heterogeneity tends to further 

worsen the situation by, for example, promoting gas channeling through high 

permeability layers, leading to a low oil recovery. Several techniques that have been 

proposed in the literature to counteract the negative effects of such challenges during 

an MGI process, including water alternating gas flooding (WAG), foam flooding, and 

direct gas thickening. 

For many years, direct gas thickening has been recognised as a game changing 

technology to improve volumetric sweep efficiency for MGI projects. However, to 

date, the viability of this method with technically feasible thickeners has not been 

verified at the field-scale due to a combination of potential issues such as high costs 

and potential environmental complications. In addressing some of these issues, two 

main objectives were set for this study: 1) identifying viable, commercial, and safe gas 

thickeners that are capable of increasing the viscosity of an AG and CO2 at high 

temperature conditions. 2) explore a technique to lower the volume of thickeners 

utilised during field-scale applications as an attempt to improve the economic 

feasibility of the technique. The primary focus of this study has been on an oilfield 

(Field A) located in the Harweel cluster in southern Oman. 

In this study, extensive experimental and simulation evolutions have been carried out 

to predict the potential benefits of adding a thickener to the injected gas in Field A and 

to identify, and test chemical additives that can be dissolved in either CO2 or field’s 

AG mixture to form a thickened gaseous phase to be used as the injection fluid during 

MGI. A mechanistic simulation study performed for Field A indicates that an increase 

from 0.1 to 0.16 cP (3.3 to 5.3 fold) in the viscosity of the injected gas (AG mixture or 

CO2) would be adequate to improve gas mobility favourably and enhance sweep 

efficiency. In an ensuing laboratory study, the suitability of a library of commercially 
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available polymers/oligomers capable of thickening the AG mixture and CO2 at a high 

pressure and temperature (55 MPa and 377 K, respectively) was assessed using a 

parallel gravimetric extraction technique combined with cloud point pressure 

measurements. Then, the viscosity of the AG mixture and CO2 thickened with the 

identified soluble polymeric candidates was measured in a capillary viscometer at 

reservoir conditions. For the AG mixture, three additives were found to be completely 

or partially soluble including poly(1-decene) (P-1-D), poly(methyl hydro siloxane) 

(PMHS), and poly(dimethylsiloxane) (PDMS). Among the three candidate additives, 

P-1-D was found to be completely soluble in the AG mixture in the concentration range 

of 1.5−9 wt%. The viscosity of the P-1-D-thickened AG mixture increased by 2−7.4 

times compared with that of the unthickened AG mixture at 358−377 K. For CO2, four 

additives of ((P-1-D), poly(ethyl vinyl ether) (PVEE), poly(iso-butyl vinyl ether) 

(Piso-BVE), and (PDMS)) were found to be completely soluble. Given the relatively 

low in-situ viscosity of oil in Field A (0.23 cP), P-1-D was deemed as an effective 

thickener for the AG mixture, while for CO2 both of P-1-D and PVEE could be 

considered suitable. Piso-BVE was not considered effective because despite its 

solubility it did not change the CO2 viscosity above 358 K (55 MPa) when used at a 

concentration of 1.5 wt%.  

In the next step, reservoir condition core flooding experiments were performed to 

examine the performance of continuous thickened AG as well as alternating injection 

of thickened AG (TAG) or thickened CO2 (TCO2) with unthickened AG at the 

laboratory-scale. Twelve experiments were conducted using different injection 

schemes (i.e., continuous unthickened, continuous thickened, and alternating 

thickened−unthickened). These tests demonstrated that continuous thickened-AG 

mixture flooding would delay gas breakthrough and result in 8−15% additional oil 

recovery. In addition, it was found that the alternating injection of TAG or TCO2 with 

unthickened AG mixture may yield additional recoveries close (5-12%) to those 

obtained with continuous thickened AG mixture injection. Such an outcome helps to 

reduce the consumption of thickening agents noticeably resulting in reduced 

operational costs and improved economic viability of the direct gas thickening method.  

Finally, the phase behaviour of P-1-D and PVEE in the two gas solvents (CO2 and AG 

mixtures) was examined. In addition, a qualitative assessment was made of the effect 

of the dissolution of these oligomers in CO2 and AG mixture on the equilibrium IFT 
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and miscibility pressures using the vanishing interfacial tension (VIT) technique. The 

cloud point pressure measurements revealed that the P-1-D-thickened CO2 would 

exhibit a UCST (upper critical solution temperature) trend while P-1-D-thickened AG 

mixture would follow a LCST (lower critical solution temperature) behaviour. The 

solubility of P-1-D in CO2 is a function of enthalpy and in AG mixture a function of 

entropy. The solubility of PVEE is entropically driven through the molecular 

interactions between ether oxygen atom in PVEE and the carbon atom in CO2. 

Moreover, the dissolution of P-1-D and/or PVEE in CO2 resulted in a slight reduction 

in the IFTs and miscibility of the light oil/CO2 system. The plasticization effects of 

dissolved gas in P-1-D and the dissolution of P-1-D in the AG mixture can cause an 

increase in the IFTs and miscibility pressures of the light oil/AG mixture.  
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Chapter 1. Introduction and Background 

1.1 Enhanced Oil Recovery  

Over the past few decades, the rate of the new substantial oil discoveries has been 

on the decline. As a result nowadays, many oil companies are trying to maximise oil 

production from their existing reserves and maintain oil flowrates at or above the 

economic level through production optimisation and the use of enhanced oil recovery 

(EOR) techniques.[1] Enhanced oil recovery refers to the methods of increasing or 

maintaining the ability of oil to flow through interconnected pores towards the 

production wells by changing the physical and/or chemical properties of the in-situ 

fluid-rock system. Presently, the average recovery factor (RF) from mature oilfields 

under the primary and secondary recovery is only 20 to 40%.[2] Given the earlier 

mentioned lack of substantial new discoveries, increasing the RF from matures fields 

has become important to meet the growing energy demand in the years to come.  

 During the life cycle of an oil field, the oil extraction may occur typically in three 

recovery stages of primary, secondary, and tertiary (i.e. EOR). Essentially, the 

petroleum product is produced from the reservoir initially by the natural reservoir 

energy such as the solution gas drive, gas cap drive and aquifer influx.[3] This is often 

termed as primary recovery, where the first wells drilled in the field are able to produce 

the oil from the reservoir without any intervention. In this stage primarily, the pressure 

gradient between the reservoir and surface controls the hydrocarbon flow into the well 

and then to surface. Over time, the reservoir pressure may decline reducing the 

pressure at the bottomhole which may then become closer to the hydrostatic head of 

the fluid column in a production well reducing the oil flowrate achievable from the 

well. Subsequently, secondary recovery methods may be applied, for example, by 

injecting water or gas via injection wells into the reservoir to maintain the reservoir 

pressure and eliminate or minimise the previously observed decline in oil flow. This 

type of recovery methods has its own technical and economic limitations as may be 

determined by the cost and availability of injection fluids and/or the issues that may 

arise during the development of the in-situ flooding. For instance, in both water and 

gas flooding, the difference in fluid properties between the displacing fluid and to be 

displaced in-situ oil can result in unstable displacement, leading to a large oil volume 
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left behind due to poor displacement efficiency and early breakthrough. Therefore, the 

application of such techniques may typically add up to only 40-50% of eventual oil 

recovery. 

When the oil in a reservoir can no longer be produced by natural reservoir pressure 

(i.e. primary recovery), or by water or gas injection (i.e. secondary, improved recovery 

methods (IOR), or pressure maintenance), EOR techniques may be considered. In 

general, as briefly referred to earlier, EOR techniques aim to stimulate oil flow by 

overcoming the physical, chemical and geologic factors that inhibit the production of 

the remaining hydrocarbons.[4] One of the most widely implemented EOR processes 

today is thermal recovery, which involves heating the oil bearing interval with steam 

or hot water to reduce the oil viscosity. Miscible Gas injection (MGI) is another most 

widely used approach today, which is carried out by the injection of a high-pressure 

gas, such as carbon dioxide or hydrocarbon gas, to sweep an additional oil towards the 

wellbores by employing a number of in-situ mechanisms such as oil viscosity and IFT 

reductions. Chemical agents dissolved in water and injected into the reservoir can also 

improve the displacement properties during a water flood. Currently, various EOR 

projects executed around the world, as shown in Figure 1.1, account for only 4.5% (3 

million barrels per day (bpd)) of the total world oil production (75 million bpd). 

However, further application of these technologies has the potential to increase oil 

recovery from existing fields and new discoveries and alleviate oil supply shortage in 

the future.[5, 6] 

 

Figure 1.1 Worldwide EOR projects contribute to global oil production.[6] 
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The application of EOR techniques in Oman may be considered as a successful 

example of how such techniques may be used to boost oil production and achieve 

substantial enhancements in recovery. Over the past decade, a number of EOR projects 

in the Middle East (ME) have been executed. Among the ME countries, Oman leads 

the way mainly owing to its declining overall oil production rate[7] which has seen 

EOR to become a major strategy to meet target oil production from its existing 

fields.[8] In 2007, this country’s oil production declined to an average of 700,000 bpd. 

However, with the aid of EOR methods, the field operators have been able to increase 

the country’s overall oil production to its current level of nearly 1 million bpd. 

Miscible gas injection is one of the EOR technique used in the country. The largest 

fields produced using EOR techniques in Oman and the indicative contributions made 

by such techniques in each field are depicted in Figure 1.2. The daily oil production 

rate from these Fields with implanting EOR techniques varies between 40 to 80 

thousand bpd (Mbpd). While without EOR it was 3 to 45 Mbpd making such 

techniques the key driver of Oman’s oil production nowadays.[9] 

 

Figure 1.2 The contribution of current EOR projects implemented in Oman oil 

fields.[7]  

1.2 Miscible Gas Injection (MGI)  

The MGI is one of the most effective EOR methods used to enhance the production 

of light crude oil in the petroleum industry.[10] This method is PVT driven in which 

the injected gas (CO2, Associated Gas (AG), or Natural Gas Liquids (NGL)), in 

addition to helping with pressure maintenance, would mix with and alter the properties 

of the in-situ oil allowing the otherwise trapped oil to become mobile and easily 
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displaced.[11, 12] During the miscible gas flooding, the injected gas would become 

miscible with the reservoir oil at or above the minimum miscibility pressure (MMP) 

of the reservoir oil (Figure 1.3). By definition, the MMP is the pressure at which the 

mass transfer and molecular interactions between the gas and oil intensify forcing the 

physical and chemical properties of the two phases to converge.[13, 14] In other words, 

upon reaching MMP, the gas acts as a solvent for the oil towards forming a single fluid 

phase (liquid) in the reservoir with the potential of effectively reducing the saturation 

of the remaining oil to near zero under ideal conditions.[4] During this process, the 

improved displacement efficiency of the flood is realised via three main mechanisms 

including substantial reduction in IFT (i.e. elimination of the interface between the two 

fluids and reduction of capillary pressure to zero), reduction of oil viscosity, and oil 

swelling.[15, 16]  The value of MMP depends on the reservoir temperature as well as 

the compositions of the injected gas and in-situ oil.[17, 18] 

 

Figure 1.3 Development of miscibility of injected CO2 in oil.[19]  

In general, the miscibility process of the crude oil-gas system may occur through 

two paths of multi-contact miscibility (MCM) and first-contact miscibility (FCM).[20]  

The MCM would take place if the in-situ pressure is equal to MMP which as discussed 

previously, is a critical property to be taken into account for designing an MGI 

process.[21] The MCM may develop gradually via a number of processes including 

vaporising gas drive, condensing gas drive and a combination of the two drives.[14] 

On the other hand, when the reservoir pressure is adequately high and well above 

MMP, FCM would take place in which the injected gas would develop miscibility with 

the in-situ oil at all proportions as soon as they are brought in contact. Since FCM 
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would only occur at high enough pressures, depending on the type of injectant used, 

achieving this type of miscibility could be challenging. 

The type of the injected gas used for MGI depends on the gas availability and 

reservoir conditions[2] with the common gases used around the world being CO2, 

hydrocarbon gas mixture (AG, NGL), flue gas and N2.[20, 22] Carbon Dioxide , which 

has been most widely used in the United State, Canada, and China,[23] can achieve 

miscibility at relatively low pressures (when compared to other gases) and has a 

relatively high density (can be similar to oil). The latter can help to reduce the severity 

of gravity segregation and override which can negatively affect the sweep efficiency. 

The use of this gas for flooding can also help to reduce the global level of CO2 

emissions. However, some of the main challenges for a successful CO2 flooding in 

general are the availability of CO2 and corrosion in wells and surface facilities which 

can result in considerable cost increases, in particular, for remotely located fields.   

In the Middle East, the available CO2 supply is limited to industrial sources[24] 

which, when combined with the earlier mentioned issues associated with using this 

gas, has made its wide application limited. However, the hydrocarbon gas injection 

could be considered for MGI processes more widely for which the produced AG is 

usually readily available from the field itself or those close by. On the other hand, as 

mentioned earlier, unlike CO2, conducting MGI using AG, depending on the gas 

composition, requires a relatively high pressure to achieve miscibility. To date, there 

have been three MGI projects (at either pilot- or field-scale) in the Middle East as 

reported in the literature.[25] Two of the projects involve miscible CO2 injection and 

the other utilises AG injection. The Rumaitha Field in Abu Dhabi was the first pilot 

miscible CO2 injection implemented in the region.[25-28] The second pilot CO2-EOR 

project has been implemented in Minagish Oolite Reservoir in west Kuwait.[29] The 

third project has been implemented in Field A located in the Harwell Cluster in 

southern Oman in which the field’s AG mixture (CH4 enriched with light and heavy 

hydrocarbon fractions found in natural gas as well as considerable amounts of sour 

gases (3-5 mol % H2S and 10-25 mol % CO2)) is used for re-injection.[30, 31] As will 

be discussed in further details later, improving the MGI process in this field is a main 

focus of the current study. 
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Harweel Fields consist of a cluster reservoirs deep within the tight carbonate oil-

bearing rocks in the south of Oman in the Petroleum Development Oman (PDO) 

concession area, as shown in Figure 1.4 .The figure also presents a geological cross-

section of the carbonate stringers, as encased in the Ara salt, and the general geological 

setting of the area. The fields are expected to make a significant contribution to the 

Sultanate’s oil production over the coming 30 years. The reservoir rocks in these fields 

are more than half a billion years old (where the hydrocarbon deposits are among the 

oldest in the world) located at a depth of about 5 kilometers, making them PDO’s 

deepest producing oil fields.[32, 33] As indicated earlier, the MGI in Field A, located 

in the cluster, has already begun in which the source of the injection gas is the Field’s 

AG.[30] The produced AG mixture is reinjected into the reservoir at high pressures of 

up to 55 MPa during which the injected gas develops miscibility with the in-situ oil 

under the reservoir’s high temperature (up to 377 K). The reservoir contains a light 

crude oil with a typical gravity of 42°API and a viscosity of 0.23 cP at reservoir 

conditions. It was initially estimated that up to 47% of the Field’s original oil in place 

(OOIP) could be recovered with the MGI process.[32] However, it has been realised 

since then that the presumed RF might not be eventually achievable due to the 

technical and operational challenges faced in this field e.g. premature gas breakthrough 

and high degree of reservoir heterogeneity. As mentioned earlier, this research will be 

mainly focusing on addressing some of the technical challenges experienced during 

MGI in Field A and similar fields by proposing and testing a novel mobility control 

technique applicable to such a high pressure and temperature environment.   

 

Figure 1.4 Geological cross-section of the carbonate stringers (left) and an aerial 

overview of Harweel Fields in southern Oman (right).[34] 
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1.3 Challenges Associated with MGI Process 

As with other EOR techniques, MGI can be economically expensive and technically 

challenging to implement.[35] For example, even when the injection gas is readily 

available on site (e.g. associated gas), gas processing , handling and compression as 

part of the expected gas recycling scheme can be costly.[2, 36] Full lifecycle 

economics of a gas injection project, therefore, must be taken into account to justify 

its implementation. In addition, as an example, a technical challenge in achieving a 

profitable MGI is the instability of the oil displacement process in the reservoir mainly 

due to the expected unfavourable mobility ratio and possible gravity segregation 

whose effects may be intensified by the level of reservoir heterogeneity.  

From a more general technical perspective, the efficiency of an MGI is controlled 

by the collective effects of several physical forces acting on the displacement front. 

These forces include the viscous forces that stem from viscosity contrast in the flood, 

gravity forces caused by fluid-fluid density differences, dispersive forces driven by the 

fluid concentration gradients and, finally, the capillary forces that have roots in the IFT 

between any immiscible fluids. The large differences in fluid viscosities can cause 

viscous fingers at the displacement front. If the vertical permeability in the reservoir 

is quite high, a pronounced density difference can cause gravity segregation. Both of 

the above have the potential to leave a large amount of oil unswept. The capillary and 

dispersive forces tend to enhance the fluid mixing but do not often overwhelm the 

viscous fingering.[37, 38] Therefore, the gravity and viscosity forces are the essential 

forces driving the instability of the oil displacement process during MGI.[39] Provided 

in the following two subsections are further details about the underlying mechanisms 

behind these two forces and how they may interfere with the performance of an MGI 

process. Possible mitigation strategies to lessen their effects will be outlined and 

adequately discussed in later sections of this chapter. 

1.3.1 Viscous Fingering 

When a fluid is injected into a reservoir to displace another, there is almost never a 

collective perfect piston-like displacement across the entire reservoir interval. 

Especially in a gas flood, unstable displacement due to viscous fingering can lead to 

uneven or poor sweep, as depicted in Figure 1.5.[40] Viscous fingering is generally 

defined as a hydrodynamic instability that occurs between two fluids of differing 
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mobility/viscosity in the porous media that could lead to reduced sweep efficiency and 

early breakthrough.[39, 41, 42] The terms mobility, mobility ratio and that in a gas 

flood mobility ratio may be interchangeably used with viscosity ratio would be defined 

and discussed shortly. In MGI, there are several parameters that affect the viscous 

instability at the fluid-fluid interface including fluid viscosities, degree of miscibility, 

gas dissolution and exsolution, and reservoir heterogeneity.[39, 42-44] However, the 

viscosity contrast and permeability heterogeneity are the two that mainly control the 

dynamics of the fingering phenomenon.[37, 45] The importance of mobility/viscosity 

ratio may be further realised after defining the mobility ratio (𝑀) as a widely used 

criterion to characterise and determine the occurrence and possible effects of viscous 

fingering. 

 

Figure 1.5 Effect of viscous fingering on the development of areal sweep efficiency 

against time (t) in a quarter of a 5-spot flood pattern during gas flooding, A) an unstable 

displacement with poor macroscopic sweep, B) A stable displacement good with 

macroscopic sweep, ) An injection well and O) A production well.[40] 

As indicated by Equation 1.1, the mobility of a fluid (𝜆𝑖) in a porous medium may 

be defined as the ratio of effective permeability (Κ𝑖) and effective viscosity (μi) 

experienced by the fluid while flowing in the medium,[40, 46, 47] 

Subsequently, for any fluid-fluid displacement, such as an MGI, the mobility ratio (𝑀) 

can be simply defined as the mobility of the displacing fluid over that of the displaced 

 λi =
Κi

μi
 Eq 1. 1 
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fluid.[40, 47] For instance, Equation 1.2 defines 𝑀 for an MGI process where gas 

displaces the in-situ oil.  

Where, μoil and μgas are the oil and injected gas viscosities, respectively. For a 

miscible displacement, where the gas solvent may displace the oil at irreducible water 

saturation and the effective permeability to both fluids may be considered to be the 

similar, Equation 1.2 may be reduced to Equation 1.3.[40] Furthermore, during gas 

flooding, due to the large viscosity contrast between the gas and the in-situ oil, 

viscosity ratio may be considered adequate for qualitative evaluation of viscous 

instability in the flood.[40, 45, 48] Therefore, for the purpose of qualitatively 

characterising the effect of viscous fingering on the performance of an MGI process, 

the viscosity ratio may be used interchangeably with the mobility ratio.[40] 

During its development, the severity of viscous fingering increases with increase in 

the mobility/viscosity ratio of the fluid system. If 𝑀 is larger than unity, the 

displacement becomes unstable resulting in the development of viscous fingers. 

Therefore, to achieve a stable displacement, where possible, the viscosity of the 

displacing fluid may be increased or its effective permeability reduced until the value 

of 𝑀 approaches unity or less. For instance, if the injected gas viscosity is increased, 

the gas mobility may be suppressed. Hence, the severity of the viscous fingering and 

the chance of developing premature breakthrough can be reduced, resulting in 

improved displacment efficiency. Figure 1.6 demonstrates the effect of mobility ratio 

on the area sweep efficiency of an MGI process as reported by Habermann et al.[40] 

As can be seen from the figure, when 𝑀 = 1, the ultimate areal sweep reaches as high 

as 99%, however, if 𝑀 increases to 38.2, the areal sweep would decrease by more than 

20%. The physical development of viscous fingers as the mobility ratio changes for 

the cases presented in Figure 1.6 is demonstrated by the diagrams included in 

𝑀 =
λgas

λoil
=

Κgas
μgas

⁄

Κoil
μoil

⁄
 Eq 1. 2 

𝑀 =
μoil

μgas
 Eq 1. 3 
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Figure 1.7. As can be seen in this figure, the displacement is characterised as stable if 

the value of 𝑀 is one or lower.  The effect of 𝑀 as demonstrated through the above 

sweep values and Figures 1.6 and 1.7 was for a homogenous porous system. The 

presence of permeability heterogeneity would also make considerable contribution 

towards initiating and development of viscous fingering.[41] A high permeability layer 

would present a preferential flow path for the fingering of the injected gas causing 

early gas breakthrough and a low overall oil recovery factor.[28, 29][49] 

 

Figure 1.6 Areal sweep efficiency as a function of mobility ratio and pore volumes of 

displacing phase injected for an MGI process.[40] 
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Figure 1.7 Viscous fingering growth for different mobility ratio and injected pore 

volume.[40] 

1.3.2 Gravity Segregation  

As indicated earlier, another possible major technical challenge faced by an MGI 

process that influences the vertical sweep efficiency is the gravity segregation or 

gravity override. The injected gas (such as CO2 or hydrocarbon gas) is usually less 

dense than the in-situ oil which may lead the injected gas to flow upwards, rather than 

lateral, forming a gravity tongue.[49, 50] Such a behaviour, similar to unfavourable 

mobility ratio, would result in early gas breakthrough and reduced vertical sweep 

efficiency in horizontal MGI processes as depicted in Figure 1.8. The effect of 

gravitational force on an MGI process has been studied by Moissis et al.[51] using 

numerical simulation. They found two dimensionless parameters of relevance, the 

dimensional density difference (∆ρ):  
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and the dimensionless gravity number (Ng): 

where Ng represents the ratio of gravity forces to viscous forces,  ρo and ρg are the oil 

and gas densities, respectively, Ke is equivalent permeability, μo is the oil viscosity, q 

is the flow rate of the less viscous fluid in the porous medium of interest and g is the 

gravitational acceleration. The simulation results obtained by Moissis et al.[51] show 

that the gravity force does not influence viscous fingering growth at small Ng values 

indicating the dominance of the viscous forces under such a condition.[51] As Ng 

increases to larger values, the gravity force begins to influence the growth rate of 

viscous fingering in the upper part of the porous medium. For sufficiently large Ng 

values, gravity override completely dominates the displacement where, eventhough 

the viscous fingering can still occur near the gravity tongue, it is suppressed in the 

bottom part leaving this part of the porous medium completely unswept.  Overall, as 

may be expected, with increase in Ng the gas breakthrough occurs earlier reducing the 

overall oil recovery.[51] 

Further interplay between the gravity and viscous forces towards controlling the 

efficiency of a gas flood may be deduced by further scrutiny of Equation 1.5. 

Controlled by the magnitude of Ng, the effect of the gravitational force is expected to 

be even larger at high flood viscous ratios because the gravity to viscous forces ratio 

is inversely proportional to the viscosity of the fluid available in the porous medium. 

At the beginning of the flood, as defined by Equation 1.5, this ratio is equal to Ng. 

However, as the displacement proceeds and more of the less viscous gas enters the 

porous medium at constant flow rate, the gravity to viscous forces ratio begins to 

increase resulting in more sever gravity override. Such an effect would be more 

pronounced in the case of floods characterised by a high viscosity ratio.[51]     

∆ρ =
ρo − ρg

ρg
 Eq 1. 4 

   Ng =
(ρo − ρg)gKe

qμo
 Eq 1. 5 
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Figure 1.8 A) Reservoir heterogeneity due to permeability variation versus depth in 

Field A located in South of Oman, B) Example effect of possible gravity segregation 

on vertical sweep efficiency. 

Scott et al.[50] have suggested to combat the gravity segregation by adjusting the 

density of the miscible gas injected as part of an MGI. For example, the pressure within 

the formation can be maintained high enough so that the density of the injected fluid 

approaches that of the reservoir oil. However, for measurable outcomes in general, the 

density of the miscible fluid should be maintained within about 10 percent of the 

density of the to be displaced in-situ oil.[50] Furthermore, this technique may be 

proven difficult and impractical if large injection volumes are required to maintain the 

reservoir pressure. Scott et al.[50] have also indicated that the density adjustment may 

be obtained by injecting carbon dioxide or intermediate natural gas fractions (C2H6, 

C3H8, and C4H10). Carbon dioxide in its supercritical state is capable of exhibiting a 

density greater than that of the reservoir oil.[50] However, hydrocarbon gases alone 

may not normally achieve a density equal or close to that of the resident crude oil under 

typical reservoir conditions therefore, sever gravity override could still occur. Another 

technique to increase the density of injected gas is the use of chemical additives, 

however to date suitable and viable chemical additives to be used for this purpose are 

yet to be developed.[52] As suggested in the literature, the mitigation of the gravity 

segregation can be possibly achieved by mobility or conformance control.[52]   
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1.3.3 Statement of Problem 

As mentioned before, Field A in south Oman (Figure 1.4)  has been the subject of a 

viable MGI process since 2004 during which the Field’s AG mixture has been 

reinjected into the reservoir at high pressure (up to 55 MPa) and high temperature (up 

to 377 K) where it would develop miscibility with the in-situ oil. As outlined earlier, 

the Field’s AG contains CH4 enriched with light and heavy hydrocarbon fractions 

typically found in natural gas as well as considerable amounts of carbon dioxide at 

10−25 mol% and H2S at 3-5 mol%.[30, 31] It was believed initially that with the 

miscible AG injection, an estimated 47% of the Field’s OOIP could be recovered.[32] 

However, even though the Field contains a light oil (42oAPI) with a relatively low 

viscosity (0.23 cP), technical and operational challenges such as early gas 

breakthrough and low sweep efficiency have prevented the ongoing MGI process from 

realising its full potential. In addition, the permeability variation in the Field is quite 

high (0.1-100 mD) negatively impacting on the development of the MGI process. As 

can be seen from Figure 1.8, higher permeability zones (10-100 mD) are located in the 

upper and lower sections of the reservoir leaving the middle sections with mostly sub-

mD permeabilities. In general, in Field A, the presence of high permeability zones that 

present preferential flow paths for the gas leads to uneven oil displacement leaving 

substantial amounts of oil behind in the low and intermediate permeability zones 

sandwiched in the middle. This is one of the main reason behind the observed early 

gas breakthrough in some production wells.  

Given the description provided above, the two suspected major challenges faced by 

the MGI process in Field A may include gravity override and unfavourable mobility 

ratio caused by, respectively, the density and viscosity contrasts between the injected 

AG and the displaced oil. Both of the above factors in conjunction with the Field’s 

heterogeneity could result in the early breakthrough of the injection gas and poor 

volumetric sweep, reducing the overall efficiency of the MGI development. As 

mentioned earlier, some of the production wells in the Field have already experienced 

an early gas breakthrough, leading to their high production GOR and declining oil 

production. With respect to the suspected gravity override, there is not considerable 

density contrast between the injected AG and the displaced oil (400-600 kg/m3 and 

639 kg/m3, respectively). That is due to the presence of CO2 and H2S in the injected 

gas composition that dope the injection gas towards having a high density. Hence, the 
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gravity override may not be a primary problem in this Field. Therefore, the MGI may 

not benefit from any special treatments (e.g., chemical additives) to increase its 

density. However, the injected AG has a relatively low in-situ viscosity (0.01 to 0.03 

cP) compared with that of the oil (0.23 cP). Therefore, the high viscosity contrast in 

combination with the effect of reservoir heterogeneity present the major challenge to 

be possibly addressed using a suitable remedial technique that would be both 

technically and economically viable.     

Although the problem at hand has been stated in the context of Field A, given the 

relatively high pressure (up to 55 MPa), high temperature (up to 377 K), and high 

salinity (275,000 ppm) of this field, any technique and methodology developed in this 

research work can be potentially applied to reservoirs with similar harsh subsurface 

conditions where viscous fingering and sever channelling of the injected gas may 

hamper the development of an MGI process. In fact an extensive literature survey has 

revealed the lack of past research work relevant to such conditions.  

1.4  Gas Mobility Control Techniques  

As mentioned above, the major challenge with the ongoing AG flooding in Field A 

is the unfavourable mobility ratio. This challenge can be addressed by the 

implementation of several approaches as proposed in the literature (although mainly 

for CO2 flooding) including water alternating gas flooding (WAG),[53-55] foam 

flooding,[56-62] and increasing the gas viscosity using the addition of polymers as 

thickening agents.[52, 63-71] The common main objective of these approaches would 

be to control the gas mobility effectively and, as a result, increase the sweep efficiency 

of the gas flooding.[72] Further technical details about each of the above mentioned 

techniques are provided in the upcoming subsections of this chapter. 

1.4.1 WAG Process  

As an EOR method, the WAG process is defined as the injection of a gas (e.g. CO2 

or hydrocarbon gases) and water alternately into an oil bearing formation (Figure 1.9). 

The WAG injection scheme was initially proposed by Claudle and Dyes in 1958[55] 

to improve sweep efficiency during gas flooding. Their study showed that this 

injection scheme would result in the reduction of the relative permeability to the gas 

phase and suppress its mobility. In other words, the WAG would improve the sweep 
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efficiency of the injected gas by using water to control the gas mobility and stabilise 

the displacement front. In general, depending on the MMP of the in-situ oil, this 

technique can be classified into the two categories of miscible and immiscible WAG 

displacements[73] however, as reported in the literature, the majority (79%) of the 

historical WAG field applications fall into the miscible category.[74, 75] In some 

recent field applications, in an injection scheme similar to WAG, the produced gas has 

been reinjected through water injection wells to improve the oil recovery and help to 

provide pressure maintenance.[76] The majority of the WAG injection projects are 

found onshore (88 %), and few others are reported to have been implemented in an 

offshore environment (12%).[75]  

In general, there are a number of factors affecting the performance of the WAG 

process including the degree of reservoir heterogeneity, in-situ fluid properties, 

injection technique, miscibility conditions and other WAG parameters such as the 

individual gas and water slug sizes and their size ratio (WAG ratio), number of 

injection cycles and injection rates.[77-79] Similar to other EOR processes, the WAG 

flooding has a number of advantages and disadvantages that will be presented and 

discussed below.    

 

Figure 1.9 A typical WAG injection process as an EOR method that involves the 

injection of gas and water alternatively into an oil reservoir.  

1.4.1.1 The Mechanisms and Factors Influencing WAG Flooding  
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During WAG injection, the improved recovery is not often achieved through 

modifying the fluid properties of each of the injected phases, it rather tends to combine 

the advantages of each of the continuous gas or continuous water floods through 

creating a synergism between the in-situ flow properties of the two phases if injected 

on their own. Overall, when WAG injection is applied in an oil reservoir, it may yield 

favourable outcomes through several mechanisms.[80] Firstly, the injection process 

may help to maintain the reservoir pressure above the MMP of the oil resulting the 

achievement of the more desirable miscible flood. Secondly, the injected gas mobility 

is reduced by supressing the gas relative permeability in any existing preferential flow 

channels. This is achieved by the increase in water saturation in these zones and 

therefore reduction in gas saturation suppressing the possibility of gas channelling and 

viscous fingering.[52, 81, 82] Thirdly, in the case of a miscible flood, the excellent 

microscopic displacement efficiency of the miscible gas flooding is put into use across 

a larger portion of the reservoir by the mobility control and conformance control 

provided by the water phase, leading to higher oil recovery. Lastly, compared with a 

continuous gas injection process (e.g. continuous MGI) the WAG flooding decreases 

the amount of the gas needed for injection leading to possible improvement in the 

economics of the overall flooding process. Considering the collective advantages 

mentioned here, the WAG injection process may become a viable option for some 

fields around the world. 

Laboratory experiments have been used to study the effect of various parameters 

such as WAG slug size and WAG ratio (tapering), number of WAG cycle and injection 

flow rate on the performance of WAG.[53, 54, 73, 83-89] In general, these parameters 

show strong effects on the oil recovery trends of a WAG injection. It has been found 

that, in general, decreasing slug size and WAG ratio, and increasing the number of 

WAG cycles would lead to a higher oil recovery.[53, 80] However, the optimum WAG 

ratio often depends on the wettability of reservoir rock, in-situ fluid properties and the 

type of gas being used as well as economic evaluations.[53] The optimum WAG ratio 

is considered as a key parameter for the successful implementation of a WAG injection 

process. A high WAG ratio may lead to an excessive water injection into the reservoir 

giving rise to the water blocking effect where the water phase would surround the 

trapped oil in low permeable zones and reduce accessibility by the injected gas 

decreasing the overall oil recovery. On the other hand, if the ratio is too low, the 
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conformance control of the WAG flood would be lost and the injected gas would 

penetrate through the reservoir very fast under the effect of unfavourable mobility ratio 

and lead to early breakthrough. Overall, the experimental results have demonstrated 

that the WAG process may help to suppress viscous fingering and lead to increased oil 

recovery in gas flooding.[74, 75] 

1.4.1.2 Challenges of WAG Flooding  

The WAG injection has been successfully applied in several oilfields worldwide 

demonstrating that it could result in considerable incremental oil recovery at the field-

scale (5-10% of OIIP).[90] However, some published literature also indicate that some 

of the field-scale WAG processes have not reached their expected target recovery 

factors, especially in naturally fractured, highly permeable, and highly heterogeneous 

reservoirs.[75] Furthermore, the field-scale implementation of this technique has also 

helped to identify a number of challenges that may be faced by the field operators. 

Such challenges are presented and discussed below by first dividing them into the two 

categories of operational challenges versus those of subsurface reservoir related. 

Operational Issues: A numbers of operational related issues have been reported in 

the literature including:[74, 75, 90] 

 Reduced Injectivity:  The ability to inject the required amounts of gas and 

water through the injection wells is critical towards achieving the desirable 

WAG performance. Reduced injectivity can result in a pressure reduction in 

the reservoir, which may impact on, for example, miscibility, performance 

of the displacement and the eventual production yield. This issue may be 

caused by changes in the phase relative permeabilities and/or near wellbore 

formation damage. In general, the field trials have shown that the reduced 

injectivity may be experienced for the water injection rather than the gas 

injection stage during the alternating injection of the two phase.[75, 90] 

 Corrosion:  Corrosion problems have been reported in many projects that 

have involved WAG injection. Often such issues have been encountered 

because the pre-exiting injection and production facilities were not initially 

designed to handle the WAG injection process. Six fields are reported to 

have experienced corrosion problems, mainly on the injection facilities. The 
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existing case studies indicate that in most cases, such problems could be 

adequately addressed by using corrosion resistant materials in the 

manufacture of equipment, coating the flow-lines, and chemical 

treatments.[75, 90] 

 Asphaltene, Scale and Hydrate Formation: Asphaltene and scale 

precipitation and hydrate formation are among other problems that have 

been experienced in various WAG field trials. These problems would lead 

to production disturbance and even flowlines blockage which may increase 

the operating costs of a WAG process. Three fields (East Vacuum, Wertz 

Tensleep, Mitsue) have experienced asphaltene precipitation, and two fields 

(Ekofisk and Wasson Denver) have reported the formation of hydrate in the 

injection wells due to the low temperature in the injectors or cold weather at 

the wellhead. Some of these problems could be resolved by chemical 

treatments.[75, 90]       

Subsurface Reservoir Issues: Besides the operational problems discussed above, 

there are also a number of issues related specifically to the subsurface and fluid flow 

in the bulk of the reservoir presenting challenges for the WAG implementation:    

 Premature Gas Breakthrough: Unexpected early gas breakthrough has 

been reported in several WAG field applications despite the fact that WAG 

is often implemented to combat this issue in particular. The main cause for 

this problem has often been inadequate characterisation of the reservoir, poor 

design of the WAG process or limitations imposed by the existing versus 

required infrastructure (e.g. limited number of injection/production wells). 

Regardless of the cause, early gas breakthrough would often occur due to 

gas channeling through highly permeable layers or gravity override.[91, 92] 

The early gas breakthrough leads to loss of reservoir pressure and lost 

miscibility in a miscible WAG project.[93, 94] As reported in the literature, 

five oil fields (University Block 9, Juravlevsko-Stepanovskoye, Lick Creek, 

Caroline, and Snorre) have experienced this problem because of gas 

channeling.[93, 95-98] Unfortunately, this problem is hard to resolve as once 

occurred, its root causes (as mentioned at the beginning of this paragraph) 

are difficult to address. However, adequate reservoir characterisation before 
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the implementation of this mobility control technique can be helpful in 

avoiding unexpected early gas breakthrough.[75]  

 Oil Trapping: Several studies have demonstrated the occurence of oil 

trapping by water in the WAG flooding.[99-102] This phenomenon is also 

referred to as water blocking.[102] During the WAG injection, the injected 

mobile water traps/encases the residual oil which then becomes difficult for 

the gas phase to access and mobilise. Therefore a high residual oil saturation 

may be left behind in the reservoir even after WAG flooding. It has been 

determined that rock wettability and WAG ratio can strongly affect the oil 

trapping with being more sever in the case of water-wet rock formations or 

high WAG ratios.[80, 99, 100, 103]   

 High Water Production:  The injection of large amounts of the water into 

the reservoir (i.e. high WAG ratio) can cause high water saturation[104] 

leading to excessive water production and, hence, reduced oil recovery.[105] 

In addition, the excessive water production would require additional water 

treatment capacity that brings about additional costs impacting on the project 

economics.[103]   

1.4.2 Gas Foam Flooding Process  

1.4.2.1 Gas-Foam Generation and Foaming Agents  

Gas-foam injection is another approach to combat the conformance and mobility 

limitations encountered in an MGI process. Furthermore, this technique may also bring 

about some of the advantages of the chemical EOR due to the chemical additives 

required for foam stabilisation and generally better foam generation. The foam 

flooding was first introduced by Bond and Halbrook in 1958 to show that the foam 

generated by the injection of an aqueous surfactant solution and miscible/immiscible 

gas could increase sweep efficiency.[106] With the favourable results obtained from 

the above study in the subsequent years, it was proposed to use foam injection as a 

means of gas mobility control. However, the concept did not become widely known 

and immediately adopted due to the lack of understanding of mobility control 

mechanisms behind the foam flooding.[107]  
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In the context of fluid flow in porous media, a foam is generally defined as a gas-

liquid mixture where the liquid phase exists as a continuous wetting phase in the rock, 

whereas all or parts of the gas form the discontinuous phase surrounded by a thin liquid 

film or Lamellae.[60] According to the literature, the research conducted in the area of 

gas foam flooding mostly relate to CO2-EOR because the required chemicals are much 

easier to dissolve in CO2 towards the generation of a CO2 foam at reservoir 

conditions.[72] A gas foam may be stabilised by the addition of effective surfactants, 

which contain a hydrophobic and hydrophilic segment.[72] Surfactants then can be 

either water-soluble or CO2 soluble.[60, 108, 109] The selection of surfactant depends 

on the reservoir conditions. If the reservoir condition is suitable for a surfactant to be 

soluble in the injected gas, then injection of water with the surfactant can be 

eliminated.[110] Numerous CO2 soluble surfactants have been experimentally 

identified.[56, 109, 110] For example, the hydrocarbon-based ethoxylates surfactant 

has been suggested by Scheievelbein et al. as a CO2 foam agent instead of using a 

water-soluble surfactant.[110] The other reported surfactant products include Tergitol 

TMN-6, oligo (vinyl acetate), poly(ethylene glycol) 2,6,8-trimethyl-4-nonyl ethers,  

and ethoxylated amine surfactant.[111-115] For miscible hydrocarbon gas flooding, 

only water-soluble surfactants can be used as the foaming agent because no effective 

surfactant directly soluble in hydrocarbon gases for gas-foam generation has been 

reported in the literature.[57] Nine water soluble surfactants have been identified for 

foam generation with hydrocarbon solvents, including Alkanolamides, Amine oxides, 

Betaine derivatives, Ethoxylated and propoxylated alcohols and alkylphenols, 

Ethoxylated and propoxylated fatty acids,  Ethoxylated fatty amines, Fatty acid esters, 

Fluorocarbon-based surfactants, and Sulfate and Sulfonate derivatives.[57] As the 

temperature increases, most of the water-soluble surfactants become less soluble in 

water. Therefore, it may be necessary to evaluate the surfactant solubility in either CO2 

or water for application in high-temperature reservoirs.[72, 116]         

The foam used for gas foam flooding may be generated in several ways as discussed 

in the literature. It may be formed within the target porous media by alternating 

injection or co-injection of a suitable surfactant and gas (CO2 or hydrocarbon gas 

mixture). In the case of CO2 foam flooding, the foam can be formed when a surfactant 

is dissolved into CO2 (usually in supercritical state) and then injected into the porous 

media, without requiring the injection of a liquid slug.[59] The foam can also be 
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generated at the wellhead by the simultaneous injection of the gas and surfactant 

solution. Then, as the foam leaves the wellbore, it could be re-formed and strengthened 

as it enters the micropores of the reservoir rock.[72]  

As a gas foam enters a rock formation, it would need to propagate through the entire 

formation suppressing the high gas mobility for the whole duration of the flood. 

However, the injected foam is not often thermodynamically stable under in-situ 

conditions, and, therefore, the two-phase foam system may collapse with time. On the 

other hand, as mentioned earlier, the passage of the fluids through the porous rock 

formation could result in the regeneration of the foam due to shearing effects applied 

by the micron sized tortuous pores and pore channels.[117] Therefore, in order to have 

an effective foam for mobility control, the rate of in-situ foam generation would need 

to be equal to or greater than the rate of its decay.[72] In general, the foam propagation 

at the large reservoir scale and the foam stability are the main challenges faced by the 

gas foam flooding technique.   

1.4.2.2 Main Mechanisms of Gas-Foam Flooding  

A gas-foam may be used as part of an EOR scheme for two purposes.[57] Firstly, it 

can be designed to reduce the gas mobility to a level that is comparable to or even less 

than that of the displaced oil so that the gas viscous fingering and channeling can be 

effectively suppressed. Thereby the areal sweep efficiency could be improved 

considerably. However, it is worth noting that the reduction level in the foam mobility 

has to be optimised and controlled to avoid the prohibitive pressure drop in the 

reservoir caused by extremely low foam mobility. Therefore as a compromise, a weak 

and modest foam may be generated by varying the surfactant concentration in a gas-

foam injection.[118] The second possible purpose of using a gas-foam is for 

conformance control or blocking of a thief gas channel to divert the injection fluids 

away from it and into other unswept lower permeability oil-rich zones to mobilise the 

otherwise bypassed oil.[72, 109] Typically, this can be achieved by the alternating 

injection of an aqueous solution with a high concentration of a surfactant.[57] The high 

concentration of surfactant then generates a strong foam that would flow in the highly 

permeable or thief zone[118] resulting in the diversion of the gas flow into the lower 

permeability zones.  
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 The enhanced recovery of a gas foam injection is usually achieved through a 

number of different mechanisms as summarised and briefly discussed below. 

 Stabilising the Displacement Front: The efficiency of a fluid-fluid 

displacement in a porous medium is in general controlled by the three gravity, 

viscous and capillary forces.[60, 119] Therefore, the manipulation of these 

forces can result in enhanced recovery. Concerning the application of a gas 

foam during a gas flooding process such as MGI, the mobility control and, 

therefore, stabilisation of the flood front may be achieved by the higher 

viscosity and reduced relative permeability of the gas-foam both relative to the 

case of injecting the gas on its own. Typically, these effects may be achieved 

through two mechanisms.[60] The first mechanism is related to the movment 

and re-arrangement of bubbles due to the local gradient in the surfactant 

concentration and, therefore, the interfacial tension. The surfactant movement 

within the liquid film (Lamellae) lowers the surface tension between the two 

phases (liquid and gas) that slows down the bubble motion and causes an 

increase in the gas phase effective viscosity.[120-122] The second mechanism 

that reduces the gas-foam mobility is gas trapping.[123, 124] As the foam 

injected and/or formed in a porous medium, as also indicated earlier, it prefers 

to flow through highly permeable and porous zones, while the low permeability 

areas with small pores remain occupied by the wetting phase,[125] 

(Figure 1.10). Thus, the gas bubbles may enter and become trapped in the 

intermediate size pores, where a large fraction of foam bubbles are immobilised 

due to the high enough capillary pressure.[59] Nguyen et al.[126] found that 

the amount of trapped gas in this form is governed by several factors, such as 

the foam texture, pore geometry, and pressure gradients. The blocked 

intermediate size pores  decrease the pore volume available for the gas-foam 

to flow through,  thus the reduced relative permeability and suppressed gas-

foam mobility.[60]  

A gas foam can help to combat gravity segregation too.[60] Figure 1.11 

demonstrates the effectiveness of a CO2 foam towards stabilising the 

displacement front in the X-ray CT scanned core-flooding experiments 

conducted by Wellington and Vinegar.[127] As can be seen from the left hand 

side images, the researchers found that CO2 injection alone would lead to the 
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formation of a gravity tongue whereas, the right hand side images show that 

the CO2-foam injection prevented the gravity and viscous instabilities towards 

the uniform displacement of the in-situ oil.  

Overall, based on the discussion presented so far, a gas foam would not change 

the gas phase density but exhibit its effectiveness by suppressing the gravity 

and viscous forces, leading to stabilisation of the displacement front. 

 

 Figure 1.10 A micro-pore illustration of foam flow and gas trapping in the porous 

media. The cross-hatched spaces represent the solid grains, and the dotted spaces 

indicate the wetting liquid.[60, 117] 

  

A B 

Figure 1.11 X-ray CT scan images for (A) a CO2 miscible flood (Blue) in a core 

saturated with oil (red) and  residual brine (yellow)  and (B) CO2-foam flooding (blue) 

in a core saturated with oil (red) and a surfactant solution (yellow).[72, 127] 
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 Reducing the Capillary Force: Capillary pressure is usually held responsible 

for the bulk of the entrapped oil (often non-wetting phase) in rock formations. 

That is why Zhang et al.[128] point out that the removal of the trapped crude 

from a reservoir rock needs ultra-low interfacial tension through an 

emulsification mechanism. The capillary number as set out in Equation 1.6 

defines the ratio between viscous and capillary forces acting on a displacement. 

The lower the interfacial tension (low capillary forces), the higher the capillary 

number and, therefore, the more dominant would be the viscous forces 

resulting in higher recoveries.  

where: Nc: capillary number, dimensionless, K: absolute permeability of the 

porous medium, ∆P: pressure drop along the porous medium, σ: the interfacial 

tension between the two fluids, L: length of the porous medium, and θ: contact 

angle. 

Once during foam injection, the surfactant in the injected slugs proceeds 

through the porous rock, different interactions occur at oil, foam and rock 

interface[129] leading to ultra-reduction of the interfacial tension between the 

oil and water resulting in the formation of an oil-in-water emulsion. 

Accordingly, the capillary force reduces to near zero allowing the emulsion to 

move through the pore throats (Figure 1.12) resulting in enhanced recovery.[60]  

 

Figure 1.12 (A) A high inferential tension results in large capillary force, which 

prevents the oil drop from crossing through the downstream pore throat, (B) Ultra-low 

interfacial tension leads to near zero capillary force, which allows the oil drop to flow 

through the pore throat and be produced.[59]            

              Nc =
K∆P

σLcosθ
 Eq 1. 6 
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 Altering the Rock Wettability: The wettability of a porous rock formation is 

an essential factor to be taken into account in its characterisation because of its 

impact on the bond between oil and rock, the multiphase flow behaviour and 

distribution of fluid saturations in the reservoir.[108] Wettability alteration 

may occur in the foam flooding process due to the interactions between the 

surfactants used and the rock surface.[59] According to Equation 1.6, the 

capillary number can also be increased by changing the contact angle, which 

means altering the rock wettability. As mentioned before, increasing the 

capillary number can result in low residual oil.[59] The importance of 

wettability alteration is not often considered in both experimental and 

simulation work, because of the erroneous assumption that all rocks remain 

water-wet during foam injection and it is difficult to quantify the reservoir 

wettability in a meaningful and repeatable manner.[130] Although Rai and 

Bernard et al.[131] do not agree that wettability may change due to a foaming 

agent, in a number of other studies, wettability alteration due the surfactant 

adsorption has been reported to change porous rocks from oil-wet to water-

wet.[131-133]  

Overall, the foam injection process can enhance the oil recovery by mobility control 

in combination with ultra-low IFT and possible alteration of the rock wettability due 

to the presence of surfactant in the foam.    

1.4.2.3 Challenges and Field Application for Gas-Foam EOR 

The application of the gas-foam process in oil fields for mobility control has shown 

to be technically and economically challenging. This is because the effectiveness of a 

gas foam flooding highly depends on several parameters such as oil type, oil and water 

saturation, brine salinity and pH, surfactant formulation and concentration, reservoir 

heterogeneity, capillary pressure and gas flow rate.[134, 135] For example, a high oil 

saturation and low water saturation in the presence of light oil may cause the foam to 

decay and collapse.[136] As a consequence, before applying a foam EOR process, it 

is extremely important to gain a comprehensive understanding of the physical aspects 

of the process and how the foam may flow and behave once injected through a porous 

rock formation. The two main broad technical and operational difficulties in applying 

foam-EOR at the large field scale are described below.      
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 Foam Stability and Propagation: According to the numerous studies 

conducted to date, it may be difficult to achieve a stable and reliable foam 

generation under the harsh reservoir condition (high temperature and high 

salinity) often encountered and also control the propagation of the foam over 

large distances in the reservoir scale. Under high salinity and high temperature, 

the gas-foam cannot be stabilised with the surfactant, because under such 

conditions the surfactant solubility in water or CO2 would be reduced resulting 

in its precipitation onto the rock surface.[115, 137] In addition, with the loss of 

the surfactant, the necessary ultra-low IFT may not be achievable.[138, 139] 

The level of oil and water saturations are other parameters that affect foam 

stability. Mayberry et al.[140] examined the foam strength at different oil and 

water saturations. Their experimental results indicate that the apparent foam 

viscosity is significantly reduced at oil saturations greater or lower than a 

critical oil saturation. The presence of the oil in the formation has a strong 

effect on the foam rupture, and breakdown due to the interactions occurring 

between the foam lamellae and the oil phase.[141] Law et al.[142] also found 

that foam is degraded if the oil saturation exceeds critical foaming oil saturation 

of the surfactant. It is also shown that the light and less viscous oils are more 

destructive to foam stability than heavy oils.[136] Moreover, the reservoir 

water saturation is crucial for the foam stability. When a foam is injected at 

water saturations below a critical value, which corresponds to a limiting 

capillary pressure, the foam may begin to coalesce and dry out. It should be 

noted that below the critical water saturation and above the critical oil 

saturation the foam is eliminated.[56, 136]  

 Scale up from Pilot to Full Field Application:  There have been several CO2-

foam trials performed since 1990 mainly in the United States.[143-145] Some 

of these, such as that performed in Joffre Viking oil field, were unsuccessful, 

because of the foam propagation control failure.[146] On the other hand, a few 

of the pilot tests have been successful, including that conducted in the Rock 

Creek Field[147] and Northward-Estes Field. In Northward-Estes Field, it was 

observed that the foam injection led to reduced CO2 injectivity by 40 to 

85%.[143] Several other pilot studies were conducted using CO2-foam in East 

Vacuum Grayberg/San Andreas Unit[148] and SACROC Field in West 
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Texas,[149, 150] all of which proved that CO2 mobility could be reduced and 

oil production increased. However, a transition from pilot-scale to a wider field 

application have not been implemented due to various challenges such as issues 

associated with chemical supply and transportation, processing and separation 

of the produced fluids, offshore supply and also safety concern.[151-154] 

1.4.3 Direct Gas Thickeners  

The use of direct gas thickeners is another method that brings together the combined 

possible advantages of using chemical additives and MGI. This technique has been 

recognised as a “game-changing technology” for mobility control, which was first 

reported in late 1960.[68, 69, 72, 155] Since then, the interest in synthesising and 

designing affordable gas thickeners has been carrying on steadily. However, until now 

the term “gas thickener” has been used in laboratory investigations only and its 

effectiveness has not yet been verified in any field-scale applications around the world. 

In general, this technique involves increasing the injected gas viscosity by directly 

adding chemicals that exhibit good solubility in common supercritical fluids (SCF) 

used for EOR such as CO2 or hydrocarbon solvents. Chemicals that may increase the 

viscosity of a SCF include entrainers, conventional oligomers and polymers and small 

associating compounds.[156] In an ideal situation, chemical compounds need to be 

readily soluble in the dense CO2 or hydrocarbons solvents and insoluble in both crude 

oil and brine at reservoir conditions.[52] It should be noted that the thickening level of 

the gas is not expected to affect its injectivity because this solution would exhibit a 

shear-thinning behaviour near the wellbore which facilitates the mobility of the 

thickened gas in this area but the mobility ratio of the gas flood would be improved in 

the bulk of the rock formation leading to enhanced recovery (Figure 1.13). In addition, 

the thickened gas would uniformly flow into different zones, allowing the gas to also 

mobilise the trapped oil in the low permeable zones. In other words, this technique can 

be applied as a way of improving the flood conformance and mobility control as 

illustrated in Figure 1.13.   
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Figure 1.13 Simplified illustration of a thickened gas flooding  

Two fundamental strategies have been introduced in the literature to increase the 

injected gas viscosity:[157] 

 Direct Dissolution of Polymers:  In this strategy, a gas thickener is typically a 

synthesised or identified polymer or oligomer that promotes attractive 

interactions and dissolution with gas molecules. However, it has been 

recognised that the use of polymers with extraordinary molecular weight for 

the above purpose would be quite challenging since most of the SCF fluids are 

very stable and weak solvents due to the very low dielectric constant, no dipole 

momentum and sometimes low density. The intermolecular attractions 

between the polymer molecules are typically strong enough at ambient 

temperature so that even stirring them would be insufficient to attain 

dissolution. Therefore, they may only dissolve in a gas solvent at elevated 

pressure and temperature because such conditions give rise to the 

intermolecular forces between the solvent-polymer segments, or solvent-

solvent or polymer segment-segment pairs in the solution given by difference 

on the free volume between the polymer and gas solvent and the free 

energy.[158] In addition, heat may be required too weaken intermolecular 

interactions between the polymer molecules (e.g. hydrogen bond).[158] 

Another approach for obtaining high solubility of the polymer in solvents is to 
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introduce associating or functional groups in the polymer’s molecular chains, 

for example to become CO2 philic, and therefore assist the polymer dissolution 

in the solvent.[159, 160] Some examples of the associated polymers include 

polyvinyl acetate (PVAc), oligo (3-acetoxy oxetane), poly [(1-O-(vinyloxy) 

ethyl-2, 3, 4, 6-tetra-O-acetyl-β-D-glucopyranoside)] and amorphous 

polylactic acid.[161, 162] Once the molecules of the polymer are dissolved in 

the solvent, the intermolecular/intramolecular association may occur which 

would result in an increased solution viscosity. Some of the polymers can 

increase the solvent viscosity significantly by simply changing the thickener 

concentration or by twining their molecular structure like a hair between 

different polymer chains.[163] 

 Dissolution of Small Molecules (Self-Assembling and Associating 

Compound): The second strategy is focusing on the design of small molecules 

material that contain a self-assembling and associating compound to form a 

viscosity-enhancing supramolecular network structure in the solution. Such a 

material contains an associating group composed of a solvent philic segment 

that facilitates dissolution and one or more solvent-phobic segments that would 

induce the intramolecular association with neighboring molecules, thereby 

molecular association establishing a viscosity enhancement for the solution, 

but its impact on viscosity could be minimal.[72] The small molecules 

thickeners have shown little success to thicken CO2 and light alkane solvents 

primarily because these are regarded as weak solvents for the ionic and polar 

associating compounds that are commonly composed into the small molecules 

thickeners.[71, 157]     

Overall, a polymeric or small molecules compound thickener capable of dissolving 

into CO2 or light hydrocarbon solvents has to be identified to increase the solution 

viscosity under typical field conditions. The ideal chemical additives are those that can 

effectively increase the viscosity of the injected gas very close to that of the crude oil.  

Furthermore, a viscosified gas used for EOR has to be transparent and single phase 

rather than opaque viscous solution in order to be capable of flowing through micro-

pore throats in rock formations.[157] A viscosified gas with the above described 

desirable characteristics used for an MGI process can suppress the gas mobility in the 

reservoir reducing the severity of viscous fingering and the chance of developing 
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premature gas breakthrough and high production gas oil ratio (GOR). As a result, the 

sweep efficiency would be improved for the gas flood. Various studies conducted over 

the past several decades have resulted in successful laboratory-scale progress in 

thickening of CO2 and NGL (natural gas liquefied). The successful CO2 thickeners 

include the fluoroacrylate-styrene copolymer polyFAST and poly(dimethylsiloxane)-

toluene solutions.[160] These two thickeners have been found to be capable of 

increasing the CO2 viscosity by approximately 10 and 4 fold, respectively, at dilute 

concentrations.[160] A drag-reducing agent (DRA) poly(α-olefin) was presented as 

the most significant thickener that can increase the viscosity of the NGL.[164] A 

detailed review of all the previous attempts made to synthesise and/or identify the 

polymeric and small molecules material suitable for thickening CO2 and light 

hydrocarbon solvents will be presented in Chapter 2. 

1.4.3.1 Challenges and Opportunity for Gas Thickeners    

The use of gas thickeners has the potential to eliminate many of the earlier 

mentioned challenges and difficulties associated with WAG and gas-foam injections. 

However, the discovery of inexpensive polymers or small molecules materials soluble 

in CO2 or alkane solvents has so far been a major challenge. Furthermore, the 

performance of none of the identified or synthesised thickeners has been verified in 

even a field pilot test yet.  

In general, the following challenges have hindered the identification of effective 

thickeners that could be used for a gas flood: 

 Thickener Solubility:  The attainment of adequate solubility has been the 

primary obstacle in finding viable thickeners because most of the designed 

and identified polymers for the CO2 and hydrocarbon gases exhibit 

extremely low solubility unless a large volume of a co-solvent (e.g., 10-15 

wt% toluene) is added. The reason behind this problem is that CO2 and 

alkane gases are poor solvents for extremely high molecular weight, polar 

and ionic associated groups that are composed in small molecules thickeners. 

The alkane gases (methane and ethane) do not have dipole or quadruple 

moments, so the dispersion interactions are dominant with these solvents. 

Thereby, alkane gases would not be suitable SCF solvents unless the density 

of these solvents is increased considerably by increasing the system pressure.  
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Unlike alkane gases,CO2  has a substantial quadrupole moment that induces 

quadruple interaction as the temperature is low.[158] In addition, CO2 acts 

as a Lewis acid for the polymers containing oxygen.[165] In general, as 

mentioned before, a polymeric CO2 thickener needs to contain a CO2-philic 

function group that facilitates the polymer solubility and CO2-phobic 

function group that promotes intermolecular associations to enhance the 

viscosity.[166] To date, solubility remains a key major challenge in the 

identification of an inexpensive thickener for CO2 and hydrocarbon solvents. 

 Cost and environmental persistence: The high price and environmental 

issues are other challenges that impede the use of the identified or developed 

thickeners to date in field applications. In fact, most of such thickeners are 

unaffordable and/or unavailable in large enough quantities. The requirment 

of an organic co-solvent to obtain the necessary dissolution levels further 

adds to the cost. Moreover, some of the developed thickeners, such as 

fluoroacrylate-styrene copolymers (polyFAST) and semi-fluorinated 

trialkyltin fluorides, are fluorinated compounds that contain Fluorine. These 

thickeners have been identified as the best thickeners for CO2 and NGL, 

respectively. However, the Fluorine in these thickeners would bring about 

potential negative effects on the environment making them unsuitable for 

EOR applications.[52, 72, 157, 160] 

1.4.4 Mobility control: Field A  

Overall, from the discussions presented so far, it is clear that each of the proposed 

mobility control methods, as applicable to an MGI process, has its own challenges and 

deficiencies. The possible field-scale implementation of each method often depends 

primarily on the in-situ conditions and specific characteristics of the field of interest. 

The objective of this section of the chapter is to present an evaluation of the 

applicability of each of the techniques discussed earlier in Field A given its specific 

conditions and characteristics.      

 WAG Technique: As mentioned earlier, in field applications, the WAG 

process has been applied successfully in a number of oil fields around the 

world.[74, 75] A total of 72 field-scale miscible and immiscible WAG 
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projects were reviewed by Skauge et al. that have utilised hydrocarbon or 

non-hydrocarbon gases. Majority of these projects have been successful 

resulting in incremental oil recoveries in the range of 5-10% of OIIP. For 

successful projects, the WAG process consistently yielded better oil 

recovery than that could be achieved with continuous gas injection even 

though, often, a large amount of oil (35-65 % of OIIP) would still be left 

behind.[52] Some of reviewed projects have also been unsuccessful due to 

operational and/or reservoir related difficulties such gas gravity segregation, 

extreme reservoir heterogeneity, excessive water production, corrosion, 

scale and/or hydrate formation, etc.[74]  In the case of Field A, in-situ water 

saturation is very low (<10%) and, therefore, the field surface facilities and 

well completions are not designed to inject or handle large amounts of water. 

Therefore, the WAG strategy is not the best choice to implement in this field.  

 Gas Foam Technique: It was previous discussed that the gas foam injection 

process has been tried at the pilot-scale in some fields in the US and Canada. 

However, this technique has never been performed in any field in the Middle 

East due to the difficulties of finding a suitable surfactant (water soluble) or 

due to the harsh reservoir conditions encountered including high salinity and 

high temperature. Although there has been a number laboratory-scale studies 

done to date evaluating the application the technique under conditions 

encountered in this region. For example, in a recent study conducted by 

Sumaiti et al.[56, 111], the foamability and mobility of CO2-ethoxylated 

amine in carbonate cores was investigated at a salinity of 220,000 ppm and 

temperature of 393 K. The Foamability of Ethomeen (C12) and apparent 

foam viscosity increase were confirmed at these conditions. In addition, 

CO2-foam core flooding obtained 8.89% of additional oil recovery. 

However, the availability of CO2 is very limited in the Middle East. 

Concerning Field A, the reservoir presents a harsh environment with a 

formation brine salinity of 275,000 ppm and a reservoir temperature of 377 

K with low in-situ water saturation and a very light oil (42°API). It is 

extremely difficult to find a surfactant, especially water-soluble, that can 

work under these conditions. For the CO2-foam process, there is a lack of 

adequate CO2 availability in Oman. As a result, it is expected that achieving 
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adequate foam stability would be a major challenge to implement a gas-foam 

process in Field A.     

 Direct Thickened Technique: As discussed earlier, several laboratory-scale 

studies have been conducted to date to find and/or develop direct thickeners 

for CO2 and NGL. However, the cost and environmental issues associated 

with these thickeners have prevented their application outside the 

laboratory.[167] In addition, none of the identified thickeners (non-

fluorous), as presented in the literature, have been tested for their 

performance at high temperatures (<373 K) or evaluated specifically as 

direct thickeners for an AG mixture. As outlined earlier, this technique has 

several distinct advantages compared to the other two mobility/conformance 

control techniques of WAG and gas-foam injection. Firstly, a screened 

thickener additive would be thermodynamically stable and chemically inert 

(with no or minimal interaction with reservoir sediments), making it ideal 

for application in harsh reservoir conditions (i.e., high formation salinity and 

temperature). Secondly, the gas viscosity increase achievable by a thickener 

does not dependent on rock characteristics, properties and saturations of 

other fluids in the reservoir and injection flow rates. Thirdly, it eliminates 

the need for water co-injection which minimises the chance of excessive 

water production and treatment requirements substantially and eliminates 

the water blocking effect too. Lastly, it has been demonstrated at the 

laboratory-scale that this technique can increase the sweep efficiency 

considerably because of delayed gas breakthrough and improved gas 

mobility. Hence, it is believed that CO2 or AG mixture thickening may be 

the only viable technique for Field A to counteract unfavourable mobility 

conditions present in the Field and further enhance the oil recovery of the 

current ongoing MGI. 

1.5 Research Objectives  

The main objective of this research is to identify, and test chemical additives that 

can be dissolved in either CO2 or hydrocarbon gases enriched with CO2 to form a 

thickened gaseous phase in high pressure and temperature reservoirs. This thickened 

gaseous phase could then be used as the injection fluid during MGI to mitigate the 
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unstable displacement in the reservoir. In other words, the thickened gas would help 

to control the gas mobility and possible channeling through any existing high-

permeability streaks in the reservoir and eventually lead to improved sweep efficiency. 

Furthermore, this research aims to develop and test the applicability of the alternating 

thickened-unthickened gas injection as a novel technique that has a real potential to 

address the economic issues associated with the direct gas thickening technique. What 

is more, this study would examine the effectiveness of any identified chemical additive 

and the above alternating injection approach in the context of the complexities 

surrounding oil production from Field A in southern Oman. 

The followings outline the specific objectives perused in conducting different 

phases of this research:  

 Identifying any chemical additives (low/high molecular weight polymers) that 

can be dissolved in an AG mixture enriched with CO2 (60 mol% methane, 6 

mol% ethane, 6 mol% propane and 25 mol% CO2) or pure CO2, this would be 

accomplished by using a parallel gravimetric extraction method and cloud 

point pressure measurements. 

 Examining a possible viscosity enhancement for the identified highly soluble 

additives in the AG mixture and CO2, to form a viable thickened gas solution, 

using a capillary viscometer at different temperatures, pressures, and 

concentrations. 

 Evaluating the potential and effectiveness of the thickened gas injection to 

improve the oil sweep efficiency by conducting reservoir condition core 

flooding experiments and numerical simulation using a box model. The results 

of this numerical simulation work could also help in deciding the level of 

thickening necessary to achieve measurable enhancement in the recovery.  

 Developing a novel approach that can lower the volume of thickeners utilised 

by implementing an alternating thickened-unthickened gas injection scheme, 

with the performance to be determined by carrying out extensive core flooding 

experiments. 
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 A qualitative assessment of the effect of dissolved polymers in CO2 and AG 

mixture on the equilibrium IFT and miscibility pressures of the gas-crude oil 

system using the vanishing interfacial tension (VIT) technique. 

1.5.1 Thesis Organisation  

As also evident from the discussions presented so far in this chapter, this thesis 

presents and discusses the results of a coupled experimental and numerical simulation 

approach to evaluate the performance of thickened AG and thickened CO2 injection at 

high temperatures in an MGI process. It is organised in eight chapters to cover the 

introduction and background, literature review, results and discussion (five chapters), 

and conclusions and recommendations for future work. Provided below is a short 

description of the contents of all eight chapters presented according to the way they 

appear in the thesis from the beginning to the end.   

Chapter 1- Introduction and Background−At the highest level, this chapter may be 

divided into four consecutive sections. The initial part provides a broad introduction 

and background to the EOR techniques used worldwide as well as those implemented 

in Oman oil fields and briefly discusses their critical importance. The second part 

covers the technical details of the MGI process and the potential problems and 

challenges associated with it, while the third part focuses mainly on the common 

techniques used to control gas mobility during gas flooding including MGI. The 

impediments and challenges for wide application of the mobility control techniques 

and a statement of the problem addressed by this research are also presented in this 

part. The last section of this chapter presents the objectives of the current study and 

thesis organisation.    

Chapter 2- Literature reviewer: Previous Attempts at Thickening Gases − This 

chapter presents a comprehensive review of previously developed and/or identified 

polymeric and small molecule thickeners to increase the viscosity of injected gases. 

The first part of this chapter covers the previous attempts made to thicken CO2, while 

the second part describes those relevant to hydrocarbon gas components (ethane, 

propane, and butane). The reviewed literature cover the studies aimed at controlling 

the gas mobility during EOR gas floods as well as those focused on enhancing 

productivity in tight reservoirs via hydraulic fracturing. 
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 Chapter 3- A Numerical Study of Using Polymers to Improve the Gas Flooding in 

the Harweel Cluster, SPE-185999-MS−This chapter presents the details of a 

mechanistic or box model numerical simulation study, which was performed to assess 

the potential benefits of adding polymers to the injected gas for mobility control. 

Considering the composition of the AG in Field A, this study gives a preliminary 

evaluation of the level of viscosity enhancement required to improve the gas mobility 

favourably towards further enhancement in oil recovery in Field A.     

Chapter 4- Experimental Study of Miscible Thickened Natural Gas Injection for 

Enhanced Oil Recovery, Energy & Fuels 31, no. 5 (2017): 4951-4965− This Chapter 

assesses the suitability of a library of polymers and oligomers to thicken AG as a means 

of mobility control. Firstly, the solubility of the polymers and oligomers in an AG 

mixture were determined using a parallel gravimetric extraction technique combined 

with cloud point pressure measurements. Then, the achievable viscosity enhancements 

by the identified soluble candidates in the AG mixture was measured in a capillary 

viscometer at reservoir conditions. Furthermore, core flooding experiments were 

performed to examine the effectiveness of the thickened AG gas mixture to enhance 

oil recovery under reservoir conditions. 

Chapter 5- Experimental Evaluations of Polymeric Solubility and Thickeners for 

Supercritical CO2 at High Temperature for Enhanced Oil Recovery, Energy & Fuels 

32, no. 2 (2018): 1600-1611 − This chapter presents the solubility and thickening 

results of a library of commercially available polymers/oligomers to thicken CO2 at a 

high temperature. 

Chapter 6- A New Approach to Alternating Thickened-Unthickened gas Flooding 

for Enhanced oil Recovery, Industrial & Engineering Chemistry Research 57, no. 43 

(2018): 14637-14647 − This chapter covers the details of a new alternating injection 

approach developed in this study that can lower the volume of thickeners required 

during field-scale application of a thickened gas flood. It presents and discusses the 

results of a detailed core flooding program conducted to evaluate the performance 

alternating thickened-unthickened gas injection (similar to water-alternating-gas 

(WAG)) as compared with a continuous thickened/unthickened gas injection. 

Chapter 7- Effects of Oligomers Dissolved in CO2 or Associated Gas on IFT and 

Miscibility Pressure with a Gas-light Crude Oil System, Journal of the Taiwan 
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Institute of Chemical Engineers (2019): under review − This chapter examines the 

phase behaviour of poly (1-decene) (P-1-D) in the AG mixture and CO2 and the phase 

behaviour of poly (ethyl vinyl ether) (PVEE) in CO2. In addition, the chapter evaluates 

the effect of dissolved oligomers in CO2 and AG mixture on the equilibrium IFT and 

miscibility pressures using the vanishing interfacial tension (VIT) technique.  

Chapter 8- Conclusions and Recommendations − This chapter presents a summary 

of the research program, and then based on the experimental and numerical simulation 

results, provides a list of its key conclusions. It also provides a few recommendations 

for future research to be conducted in the same area. 
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Chapter 2. Literature Reviewer: Previous Attempts at 

Thickening Gases 

Over the past 50 years, several research groups have attempted to increase the 

viscosity of gas-solvents for two purposes. The first purpose is to reduce the gas 

mobility and improve conformance control for miscible gas injection (MGI). By 

simply increasing the injected gas viscosity, gas mobility will be reduced and as a 

result the sweep efficiency and oil recovery would be improved. The second purpose 

is to thicken a supercritical fracturing fluid that is used to enhance well productivity in 

a tight reservoir.[157, 168, 169] This is a particularly useful technique for reservoirs 

that are sensitive to the typical water-based fluids used for fracturing. Increasing the 

viscosity is shown to result in a more effective fracturing fluid.[168] In addition, at 

high pressures, a viscous fluid would be able to propagate wider fractures by 

improving the transport of proppant particles and reducing the leak-off of gas into the 

faces of the fracture.[168-170] 

In previous studies about direct gas thickening, the majority of efforts were centred 

on identifying CO2 and NGL (i.e. ethane, propane, and butane) thickeners. These 

attempts were based on polymeric and small molecules candidates as will be reviewed 

and highlighted in this chapter. The mechanisms behind the thickening of any solvent 

depend on polymer coil expansion, association, entanglement, aggregation (depend on 

the polymer molecular weight distributions), self-assembly and indirectly through 

polymer molecules effect on nearby solvent molecules.[171]     

2.1 Direct Carbon Dioxide Thickeners 

2.1.1 Polymeric Thickeners 

Use of a polymer thickener is one fundamental strategy for increasing CO2 viscosity 

[157] and the main advantages are that the thickening process can enhance CO2 

viscosity over a wide range of temperatures and improve sweep efficiency across the 

reservoir formation.[52] Although high molecular weight (Mw) polymers (Mw >106) 

are effective viscosity enhancers at dilute concentrations, it is extremely challenging 

to dissolve ultra-high molecular weight in dense CO2 at reservoir conditions.[52, 72] 
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In the literature, several polymers (Mw 103-106) have been designed and identified that 

can be dissolved and thicken supercritical CO2.[168] However, the pressure required 

for the dissolution of these polymers is very high in the range of 68.95-275.79 MPa, 

which is significantly higher than the typical reservoir pressures for CO2 flooding 

(MMP, 10.3-27.6 MPa).[168]  

The earliest attempts at viscosity enhancers for dense CO2 were with oil-soluble 

polymers (e.g., non-polar organic polymers) because CO2 is known to be a non-polar 

solvent capable of dissolving certain hydrocarbons and other small molecules quite 

well.[52, 172] Therefore, it was expected that oil-soluble polymers would be a more 

likely candidate to dissolve in supercritical CO2 compared to water-soluble polymers. 

Heller et al. identified 18 hydrocarbon-type polymers that exhibited encouraging 

solubility (0.22 to 10 g/liter) in CO2 at pressures of 11.7-21.4 MPa and temperatures 

of 293-331 K.[64, 66, 173-177] Although several polymers showed a slight increase 

in CO2 viscosity, none of the studied polymers were capable of enhancing the viscosity 

of CO2 significantly to a useful level. This is attributed to low solubility in CO2 leading 

to a random polymer coil structure that is not efficient at increasing viscosity 

significantly. Furthermore, the molecular weight of the polymers found to be soluble 

in CO2 were very low. For example, a 1 wt% solution of low molecular weight atactic 

poly(methyl oxirane) (Mw 408) exhibited slight solubility in CO2 and increased its 

viscosity by approximately 25% at 301-306 K and 13.7-17.9 MPa.[66] These initial 

efforts were followed by subsequent attempts to maximise the entropy of mixing 

between the CO2 and polymers by using disordered polymers with irregularity in 

multiple components and side chains that varied in chain length.[64] Thereby, focus 

was put on poly(α-olefins), such as poly(1-hexene), poly(1-pentene) and poly(1-

decene) (P-1-D). Although some achievements were made with some of the evaluated 

polymers, none of these amorphous polymers were considered to be effective 

thickeners primarily due to their low solubility in CO2. In general, it is concluded that 

the molecular weight of the polymers had to be fairly low (Mw > 1000) and thus less 

effective at enhance viscosity to achieve the significant measure of solubility in 

CO2.[52] Typically, high and ultra-high molecular weight polymers are used as 

effective thickeners. In 2012, Zhang et al. reported that less than 1 wt% solutions of 

two oligomers (i.e. P-1-D and poly(vinyl ethyl ether)(PVEE)) (Figure 2.1) could 

increase the viscosity of CO2 by 13-14 fold at 329 K.[178] Previous research groups 
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found that neither a 1 wt% mixture of PVEE nor P 1-D was capable of enhancing the 

viscosity in either toluene or CO2 by more than serval percents.[52, 157, 172] 

Therefore, Zhang et al. findings do not correlate and are inconsistent with the results 

of other research groups. Most previous studies reported that for low/high molecular 

weight polymers a concentration of 1.5 to 7 wt% is required to thicken CO2 albeit at 

very high pressure.[52] The results from Zhang et al. have not been substantiated with 

other types of capillary viscometers.   

 

Figure 2.1 High/low molecular weight polymeric thickener tested in CO2 with/without 

co-solvent.[172] 

In 1987, a patent published by Bullen and co-workers[179] claimed that CO2-based 

fracturing could be improved by adding a small amount of a polycarbonate copolymer 

(Mw 20,000 – 150,000) that was formed via low-temperature reaction of CO2 with 

propylene oxide in a homogeneous catalyst  (e.g., diethylzinc and/or acetic acid 

anhydride). This copolymer exhibits dissolution in CO2 and is capable of increasing 

its viscosity by 3-fold at a concentration of 2.5 wt% at 295 K and pressures ranging 

from 10-25 MPa. Furthermore, Sarbu et al.[180] tested the solubility of poly(ether-

carbonate) copolymers (derived from propylene oxide and CO2) in CO2. They found 

that this copolymer (Mw 16000) could only be dissolved at 1 wt% at 295 K and 14 

MPa. However, there was no significant increase in CO2 viscosity under these 

conditions. This calls into question some of the results by Bullen and co-workers as 

they are much better than later literature.[157] 
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Other researchers have attempted to use entrainers (co-solvents) to improve the 

solubility of polymers in CO2[181] and as such increase the CO2 viscosity as well as 

increase the solubility of crude oil components in the CO2 rich phase.[182] These 

entrainers are relatively low molecular weight non-polar or polar organic compounds 

which include alcohols, glycols, ethoxylated alcohols and hydrocarbons.[182] 

Chullick’s patent claimed that addition of alcohol and glycol would promote the 

solubility of polymers in CO2.[181] The rationale is that polar entrainers improve the 

polarizability of CO2, which may act in a similar manner to a surfactant in the water/oil 

system, while non-polar entrainers may function as mutual solvents in a polymer/CO2 

system.[181] Therefore, the addition of entrainers to a supercritical fluid (SCF) leads 

to increase in the solvent power of SCF.[182] Furthermore, a NIPER (National 

Institute for Petroleum and Energy Research) group evaluated the use the entrainers 

(without polymer) as CO2 thickeners.[182] They reported substantial increase of CO2 

viscosity with high concentration of entrainers in CO2. For example, 13 mol% of 

isoocatane and 44 mol% of 2-ethylhexanol increased viscosity of CO2 by 243% and 

1565%, respectively. However, at dilute concentration of entrainers in CO2, the 

viscosity enhancement was subtle. For example, 2 mole% of 2-ethylhexanol resulted 

in 24 % of CO2 viscosity enhancement.[182] In another patent, a treating fluid was 

used to increase the viscosity of CO2 solution. This treating fluid is formed by 

solubilising a polymer or copolymer of dimethylacrylamide (0.25-2.5 wt%) in the 

substantially anhydrous liquid which was crosslinked by a metal ion source (0.01-2 

wt% of titanium, zirconium, and/or aluminium). The substantially anhydrous 

fluid/polymer and CO2 solutions formed a single phase and viscosified fluid (13 to 30 

cP) at temperatures of 338-377 K and pressures of 6.89-12 MPa).[183]  Although these 

are significant increase in CO2 viscosity, the amount of entrainers added is extremely 

higher.[52] 

A group of researchers at the University of Wyoming attempted at in-situ 

polymerization of CO2 soluble alkene monomers, including ethylene, octane and 

decene.[67] They found that polymerized monomers could be miscible in CO2 at tested 

conditions (306 K and 17.9 MPa). However, the polymers did not form stable solutions 

and formed solid precipitates over time. As a result, no viscosity enhancement was 

observed. In an attempt to obtain a very high molecular weight polymeric thickener 

for CO2, researchers at Chevron [63, 184, 185] have assessed candidates that exhibited 
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Hildebrand solubility parameters of less than 7 (cal/cc)0.5 which is closer to the CO2 

solubility parameter at reservoir conditions (327 K and 17.2 MPa), which is 

approximately 6 (cal/cc)0.5.[186] Furthermore, they found it beneficial if the polymer 

candidates contained electron donor atoms such as oxygen, nitrogen and sulfur that are 

capable of interacting favourably with the carbon atom (i.e. an electron acceptor) 

within the CO2 molecules. Electron donor functional groups used in this study included 

ethers, sulfones, siloxanes, thioethers, silyethers, esters, carbonyls, dialkylamides and 

tertiary amines. The researchers concluded that such functional groups associated 

within polymers would enhance the solubility of the polymers to some extent through 

specific interaction with CO2. However, fully dissolution of such polymers in CO2 

could not be attained without the addition of toluene as a co-solvent.[184]  

High molecular weight polydimethylsiloxane (PDMS, Mw 135,000) (Figure 2.1) 

was initially tested by Heller et al.[66] for solubility in CO2. They found that 0.03 wt% 

of PDMS could dissolve in CO2 at 298 K and 18.9 MPa. However, at this dilute 

concentration PDMS did not appreciably enhance CO2 viscosity. Furthermore, others 

attempted to increase the PDMS concentrations in CO2, but the solubility of PDMS in 

CO2 could not be attained without substantial addition of toluene as a co-solvent. 

Therefore, it was determined that very high molecular weight PDMS (Mw 197,000 

and 7.3 (cal/cc)0.5) could effectively thicken CO2 only if a toluene co-solvent (10-20%) 

was added into the solution.[63] For example, addition of 20 wt%  toluene co-solvent 

enabled up to 4 wt% of PDMS to be dissolved in CO2, resulting in a 30-fold of CO2 

viscosity enhancement.[63] This viscosity enhancement was compared only with pure 

CO2 viscosity, but it was not compared against toluene/CO2 viscosity, because it was 

expected that toluene addition into CO2 may not contribute directly to the CO2 

viscosity enhancement and it only improves the solubility of polymer in CO2. 

However, their core flooding experiment results showed that CO2/toluene flood gives 

higher oil recovery than pure CO2 flood. This attributes to that toluene is a strong 

solvent which causes a higher oil swelling and oil viscosity reduction. It was also found 

the viscous solution (20 wt%  toluene, 4 wt% of PDMS, and 76 wt% of CO2) can 

significantly reduce gas mobility, increase oil recovery (10-20%) and delay the 

breakthrough in porous media. In another study a group of researchers from Texas 

A&M University added an organic co-solvent (e.g., toluene) into CO2-philic polymeric 

thickeners (PDMS and poly(vinyl acetate) (PVAc)) during core-flooding experiments 
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in order to enhance the solubility in CO2.[187, 188] They prepared solutions of PDMS 

(5 wt% with a Mw of 260,000) and PVAc (5 wt% with a Mw of 170,000) with a range 

of toluene concentrations (10-20 wt%) added as a co-solvent. In addition, PVEE was 

used at the concentration of 0.8 wt% in CO2 without the addition of a co-solvent, as 

this polymer has the ability to dissolve in CO2 without a co-solvent.[188] Their results 

proved that PDMS and PVAc with the addition of toluene could improve the gas 

mobility, accelerated the oil recovery (5-10% with PDMS and 4-9 % with PVAc) and 

delay CO2 breakthrough. These results were consistent with the finding of Chevron 

researchers that 4 wt% PDMS was soluble and could thicken CO2 with the presence 

of a co-solvent. In other words, both groups found that PDMS and PVAc are both to 

be CO2-philic and effective thickeners with the use of substantial amounts of a co-

solvent. PVEE (Mw 3800) at low concentration (0.8 wt%) did not show any increase 

in viscosity or improvement in CO2 mobility and oil recovery.[188] This means that 

the PVEE may not be able to increase the CO2 viscosity at this concentration which 

further confirms that the thickening level reported by Zhang et.al is higher than 

expected. 

A group of researchers at the New Mexico Petroleum Recovery Research Centre 

(PRRC) proposed another route towards high-performance thickeners by introducing 

an associating group at each end of the polymer chains.[177] These polymers with 

terminal ionic groups (linear, difunctional and telechelic ionomers) were through to be 

effective thickeners in non-polar solvents as the ionic groups in each chain could 

aggregate into multiple ion pairs causing interaction between separate chains. They 

incorporated sulfonate groups onto the ends of polyisobutylene and although the 

polyisobutylene is soluble in CO2 at a concentration of 0.4 wt%, the sulfonated 

ionomer was only partially dissolved in CO2 as CO2 is a weak solvent for this ionic 

group. In a recent publication, O’Brien et al.[167] used a similar route proposed by 

PRRC group. The difference between two studies is that PRRC group used associated 

group in the polymer chain that forms aggregation interactions with CO2 while the 

associated group proposed by O’Brien forms self-assembly and association 

interactions via hydrogen bond (donor−acceptor), π−π stacking, and dipole−dipole. 

Therefore, the strategy used by O’Brien group could be used to explore oligomeric 

molecules. So, they synthesised a series of aromatic-amide terminated PDMS 

oligomers (i.e. low molecular weight polymers) to maximise the entropic 
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characteristics for oligomeric species interacting with CO2 by choosing a solute with 

high free volume and flexible chains. In addition, the aromatic moieties promotes the 

formation of supramolecular structure between the low molecular weight oligomers. 

Amide and amide-aromatic further enhance this interaction and induce self-assembly 

through strong hydrogen bond donor-acceptor interactions. The researchers found that 

amide-terminated-PDMS oligomers with simple aromatic groups and incorporation of 

electron-deficient aromatic groups onto these amides (i.e. 4-nitrobenzamide, biphenyl-

4-carboxamide and anthraquinone-2-carboxamide) did not show any significant 

impact on CO2 viscosity at a concentration of 1 wt% due to the inefficient associating 

group in these compounds with CO2. However, they achieved promising results with 

anthraquinone-2-carboxamide (AQCA) as an end group where it was found to be a 

gelator of hexane at concertation of 15 wt% and at concentrations of 5-10 wt% in 

hexane, a significant increase in viscosity was observed. However, this behaviour did 

not extend to other similar compounds based on either biphenyl-4-carboxamide or 4-

nitrobenzamide end groups. Therefore, they attempted to improve the intermolecular 

association with the AQCA end group by utilising branched anthraquinone amides, 

where the number of AQCA end groups per molecule can be increased. It was found 

that branched anthraquinone amides were insoluble in CO2 at concentrations of 1 wt%. 

However, it was soluble in CO2 when hexane as co-solvent was added. Hence, this 

branched compound can be a useful thickener in the presence of substantial amount of 

hexane as co-solvent. For example, at a temperature and pressure of 348 K and 34.5 

MPa, respectively, a transparent solution composed of 13.3% branched anthraquinone-

amide functionalised oligomers, 26.7% hexane and 60% CO2 was found to have a 

viscosity 3 times greater than that of a CO2/hexane mixture without a thickener. Given 

the low viscosity enhancement (3 fold) and high concentration of this compound and 

the co-solvent required, this compound was not considered to be economical and 

practical for CO2 flooding. The associating small molecules compounds would be 

further discussed in the next section of this chapter.  Overall, all studies found that 

high/low molecular weight PDMS polymers were more CO2-philic than hydrocarbon-

based polymers,[189] although they were not capable of viscosifying CO2 without the 

use of substantial amounts of a co-solvent. However, the high cost of PDMS 

polymer/oligomer and high concentration of co-solvent required make the field 

application for this polymer impractical.[52, 72, 157] 
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DeSimone research group[190] was arguably among the first to report on a high 

molecular weight polymer-based CO2 thickener capable of increasing viscosity 

without the need of a co-solvent. They found that 3.4 wt/v% of either poly(1-,1-, 

dihydroperfluorooctyl acrylate (PFOA)) (Figure 2.1) or polyfluoroacylate (PFA, Mw 

1,400,000) could be dissolved in CO2 and remarkably increase the viscosity of CO2 by 

a factor of 2.5 at a pressure of 31 MPa and temperature of 323 K. Figure 2.2 shows the 

increase in CO2 viscosity resulted from the dissolutioning of  3.7 wt/v% and 6.7 wt/v% 

of PFOA at 323K. This is the first example of high Mw polymers that can be dissolved 

in CO2 and significantly thicken CO2 in the absence of a co-solvent. To date, PFOA is 

still recognised as the most soluble polymer in CO2 and among the most effective 

thickeners of CO2. Unfortunately, PFOA is a fluoropolymer type, which makes it 

relatively expensive. Furthermore, fluoriniated polymers have environmental concerns 

and there is a high potential risk that PFOA is a suspected carcinogen.[161]  Therefore, 

if the cost and environmental constraints are considered, PFOA is not practical for 

field application in CO2 flooding.[157] 

 

Figure 2.2 The viscosity enhancements of PFOA in CO2 at different pressures and 

concentrations and temperature of 323 K.[190] 

To limit these negative aspects of fluorinated polymers and potentially make them 

viable, Enick and Beckman and others co-workers at the University of Pittsburgh have 

tried to reduce the amount of fluorinated polymers needed without affecting its 
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performance.[156, 170, 191] They prepared a copolymer based on a 

perfluoropolyacrylate and associative group which engages strongly in intermolecular 

interactions, in order to promote an increase in CO2 viscosity. This copolymer is 

composed of 71-79 mol% of fluoroacrylate monomer (1-,1-,2-,2-ttatrahydro 

heptaecfluorodecylacrylate) and 21-29 mol% of styrene-associative group 

(polyfluoroacrylate styrene or polyFAST) (Figure 2.1). The fluoroacrylate monomer 

is highly CO2-philic and facilitates polyFAST solubility in CO2. The associating 

styrene group is a mildly CO2 phobic monomer that promotes intermolecular 

interactions and improves viscosity enhancement through supramolecular interactions. 

This copolymer was found to be soluble in CO2 at pressure and temperature conditions 

close to those used in CO2-EOR.[156] However, the solubility was found to decrease 

with an increase in the styrene content.[170] For instance, the cloud point pressure of 

1 wt% of 29 mol% styrene-71 mol% fluoroacrylate copolymer and 35 mol% styrene-

71 mol% fluoroacrylate copolymer in CO2 at 297 K are 12 MPa and 16.2 MPa, 

respectively.  Furthermore, it was also found to significantly increase CO2 viscosity at 

dilute concentrations of polyFAST. As it can be seen in Figure 2.3, 0.5 wt% and 1 wt% 

of polyFAST in CO2 at 298 K are able to increase the viscosity of CO2 by 1.5 and 2.3 

fold, respectively.[156] Although polyFAST is the most effective polymeric thickener 

for CO2 at dilute concentration in the absence of a co-solvent. Comparing to PFOA 

results, this copolymer was successful to reduce concentration by 73 % to achieve the 

same viscosity improvement (2.3 fold) at 323K and 34 MPa. However, It was not 

practical to be used for CO2-EOR application due to the cost of the copolymer (roughly 

$132 per kg) and lack of its availability in large quantities.[157] In addition, this 

copolymer contains a large amount of fluorine, which is environmentally and 

biologically persistent.[188] 
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Figure 2.3 The effect of temperature on the relative viscosity of  polyFAST in CO2 

solution at 34 MPa.[191]  

Another promising strategy to obtain effective CO2 thickeners was introduced to 

avoid the aforementioned environmental and economic concerns associated with 

fluorous and silicone-based polymers. Several researchers have focused on the 

synthesis and design of non-fluorinated oligomers and polymers. Tapriyal et al.[162] 

found that PVAc is the second most CO2 soluble polymer among non-fluorous 

polymers with PDMS being the most soluble. However, the dissolution of high Mw 

PVAc in CO2 requires a very high pressure. In addition, no measureable viscosity 

increase was observed with 1-2 wt% of PVAc (Mw 11000) in CO2 at 298 K and 64 

MPa. Furthermore, Enick and co-workers[162] designed a non-fluorinated version of 

PFOA in the hopes of finding a thickener candidate that is cheap, environmentally 

friendly and capable of increasing CO2 viscosity at low concentration. Therefore, they 

developed new copolymers based on an oxygenated hydrocarbon polymer (making it 

CO2-philic) and an associating group (or CO2-phobic) to enhance viscosity. Some of 

the attractive oxygenated hydrocarbon monomers include vinyl acetate, alkyl vinyl 

ether, carbonyl, and sugar acetate functional groups.[165, 192-197] Oxygenated 

hydrocarbon monomers containing functional groups with one or more oxygen atoms 

can induce thermodynamic interactions with CO2. These oxygen atoms are 

electropositive while the carbon atoms in CO2 are electronegative, which facilities 
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Lewis acid-base interactions. In addition, the hydrogen bond in the polymer backbone 

or side chain having increased the positive charge (H
…

O) acts Lewis acids toward 

electron the oxygen atoms in CO2.[165] As mentioned above, PVAc is among the most 

CO2-philic of high MW oxygenated hydrocarbon polymers.[197] Therefore, Enick and 

co-workers replaced the fluoroacrylates in polyFAST with vinyl acetate monomers in 

order to reduce the cost and design non-fluorous copolymer for CO2 solubility, while 

the styrene group was replaced with a benzoyl group for intermolecular association 

and also to simplify the synthesis as styrene cannot be polymerised with vinyl acetate 

monomer due to the large reactivity ratios difference.[162] They synthesised a 5% 

benzoyl-95% vinyl acetate copolymer or polyBOVA (Mw 7840). A modest increase 

in CO2 viscosity of 40-80% at a concentration of a 1 and 2 wt% was observed; 

however, high pressure was required (64 MPa) to attain the dissolution of this 

copolymer in CO2 at 298 K. 

2.1.2 Small Molecules Self-Associating Thickeners  

An alternate strategy to increase the viscosity of CO2 is to employ self-associating 

low molecular weight compounds as thickeners. In order to differentiate between this 

class of compounds and co-solvents, these compounds as summarised in Chapter 1 as 

well are associating and self-assembling compounds that contain a solvent-philic 

group and a solvent-phobic segment while a co-solvent is a non-associated compound 

composed solely of a solvent-philic segment.[72] Therefore, the small molecules 

compounds do not have the requisite molecular weight to substantially increase the 

gas viscosity, because the molecules in this compound have capability to  associate 

and form a  supramolecular network for CO2 viscosity-enhancing.[157] In general, 

these compounds contain functional groups with both CO2-philic segments that 

promotes dissolution and CO2-phobic moieties that induce intermolecular 

association.[198] Therefore, the various associations between neighboring molecules 

within the CO2 matrix lead to viscosity enhancement.[157] Furthermore, the self-

assembly of these molecules in solution can be characterised via a dramatic viscosity 

change or small angle neutron scattering (SANS), FT-IR, circular dichroism, x-ray 

diffraction, electron microscopy or differential scanning calorimetry.[199-207] To 

date, small associating molecules have yielded little success in thickening CO2 because 

CO2 is a poor solvent for the ionic and polar associating groups, which are inherently 
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necessary to increase viscosity using small molecule compounds.[172] Based on the 

previous attempts, the small molecules used to thicken CO2 are mainly classified as 

follows.                  

2.1.2.1 Trialkyltin Fluorides and Semi-Fluorinated Trialkyltin Fluorides 

Heller and co-workers studied a series of trialkyltin fluorides compounds as light 

alkane and CO2 thickeners.[174, 176, 198] These compounds show a moderate 

increase in CO2 viscosity via the formation of intermolecular association between the 

tin and fluorine atoms in the solution. Figure 2.4 shows the association of tributyltin 

fluoride molecules. Trialkyltin fluoride forms a long linear transient polymeric chain 

through intermolecular association between the tin atom and fluorine atom of 

neighbouring molecules.  In fact, the tin atom is slightly electropositive which interacts 

with the electronegative fluorine atom to form an intermolecular Sn-F association, as 

can be seen in Figure 2.4. While the hydrocarbon arms branching from the tin atom 

enhance the free volume which facilitates the solubility in CO2.[166] Apparently, these 

molecular structures form linear and associating structures in which the alkyl arms 

stabilise the aggregation, while the tin atoms in each molecule associate with the 

fluorine atoms in adjacent neighbour molecule.[166] Although there was some success 

with tributyltin fluoride or other trialkyltin fluorides in thickening light alkane 

components, these compounds were insoluble in CO2 and ineffective as thickeners, 

even with the addition of pentane as a co-solvent.[208, 209] Later on, Shi et al.[166] 

synthesised semi-fluorinated trialkyltin fluorides and fluorinated telechelic ionomers 

to prepare a solution containing both CO2-philic fluorinated groups to enhance the 

solubility and CO2-phobic associating group to promote intramolecular association for 

viscosity enhancement. Both ionomers were soluble in CO2 at 2-4 wt% without 

requiring the addition of a co-solvent. Their results indicated that both ionomers were 

capable of increasing the viscosity of CO2 by 2-3 fold over a concentration range of 2-

4 wt%. For example, at 4 wt% of tri(2-perfluorobutyl ethyl) tin fluoride in CO2 , the 

viscosity increased 3 times at 298 K and 16.5 MPa. This viscosity increase was found 

to be much less than expected because the side-chain fluorine atoms on the Sn-F 

associations were disrupted. This is attributed to the fluorine atom at the end alky arms 

competing with the fluorine atom attached to the tin atom caused by the 

electronegativity differences between these chain-end fluorines and those adjacent to 
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the tin. Hence, the disruption the of fluorinated alkyl chains is responsible for the 

viscosity increase.[166]  Overall, given the necessary high concentrations of the 

ionomers required and their high costs, these fluorinate oligomers are not considered 

viable thickeners for field application.[52, 157, 166] 

 

Figure 2.4 Association mechanism of tributyltin fluoride.[210]  

2.1.2.2 Fluorinated and Non-Fluorous Hydroxyaluminum Disoaps 

Hydroxyaluminum disoaps were developed to thicken gasoline which was used to 

make napalm which was an infamous weapon type used in World War II.[211-213] 

These molecules are an aluminium-based soap with two carboxylic acid groups linked 

to the aluminium atom.[214] A small amount of hydroxyaluminum disoap added to 

low viscosity gasoline transforms it to a thick and extremely viscous fluid referred as 

napalm. In an analogous manner, these compounds were studied to determine their 

solubility in CO2 and quantify their ability to thicken CO2. Enick and co-workers 

synthesised a series of hydroxyaluminum disoaps.[65] Unfortunately, none of the 

hydroxyaluminum disoaps were soluble in CO2. Similar to the results with trialkyl tin 

compounds summarised above, unpublished results by Enick showed that the 

solubility of some of these compounds in CO2 could be enhanced either by fluorinating 

the alkyl arms or using highly branched alkyl chains.[157] However, this trial has not 

been successful in fully dissolving the hydroxyaluminum disoaps in CO2.[157] 

Another attempt to thicken CO2 was done by heating a mixture of CO2 and metallic 

stearate powders.[215] Metal stearates are salts which are produced from the reaction 

of stearic acid and metal oxide. When dissolved in hydrocarbon-based oils usually with 

the assistance of heat to break up strong intermolecular forces, the viscosity is 

enhanced when the solution cools down. This same approach was attempted with CO2; 

however, this was unsuccessful as they are insoluble even with the assistance of heat.   
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2.1.2.3 Semi-Fluorinated Alkanes 

Iezzi and co-workers[216] made an early attempt to thickened CO2 by using semi-

fluorinated alkanes. They designed a series of linear diblock alkane compounds 

(F(CF2)n (CH2)m H) which contained two immiscible segments forced to interact via a 

covalent carbon-carbon bond. It is found this compound can gel organic liquid (e.g. 

decane and octane) through the formation of micro-fiberillar network if the solution is 

heated and then leave it to cool down. After the solution (CO2 and semi-fluorinated 

alkane) cools, the semi-fluorinated compounds form a covalent cross-link between 

molecules, high porosity and micro-fiberillar networks that can gel the dense CO2. The 

fluorinated segments stack with other adjacent fluorinated segments (analogous to 

hydrocarbon segments) to form the fibres network.[72, 208] However, the gel solution 

is not suitable for gas mobility control due to its phase behaviour where the viscous 

solution could not flow through a porous medium and retained at the surface of the 

rock. This solution may be applicable for conformance control to block fractures or 

high permeable zones. 

2.1.2.4 Hydroxystearic Acid   

Heller and co-workers[217] proposed a small organic compound, known as 12-

hydroxystearic acid (HAS). This compound (H3C(CH2)5 CHOH(CH2)10COOH), had 

previously been used to gel hydrocarbon and chlorinated solvents. However, the 

essential assessment results indicated that the HAS was insoluble in CO2 unless a 

significant amount of a co-solvent (i.e. ethanol) was added. For instance, the addition 

of 15 wt% of ethanol co-solvent enabled a solubility of up to 3 wt% of HAS in CO2 

resulting in a nearly 100-fold increase in viscosity in the temperature range of 300-307 

K. As the temperatures decrease, the solution exhibits a slight viscosity increase. In 

addition, the presence of micro-fibers in the gel solution forms an opaque solution that 

would probably impede the fluid flow in the reservoir formation.  

2.1.2.5 Fluorinated and Non-Fluorinatd Bis-Ureas 

A group of researchers at Yale University and the University of Pittsburgh 

developed a series of small molecules compounds associated with either one or two 

urea groups.[218] The urea groups in these compounds induce self-assembly 

interactions via a hydrogen bond, thereby these interactions form macromolecular 
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associations that can enhance the viscosity of the CO2 rich solution. Out of the twelve 

compounds tested, four fluorinated bis-urea compounds were highly soluble in CO2 

without needing heat and capable of imprving the CO2 viscosity by 3-5 fold at 5 wt% 

of bis-urea at 298 K and 31 MPa. In the hopes of obtaining a non-fluorous bis-urea, 

Paik et al.[219] attempted to incorporate the CO2-philic groups (hydrocarbon, carbonyl 

and ether groups) into the molecular structure of the bis-urea as illustrated in 

Figure 2.5. However, their assessment results revealed that after forming a transparent 

solution, micro-fibres began to form slowly due to the molecules undergoing self-

assembly and precipitating out of solution. Therefore, these compounds cannot be 

considered for EOR applications. 

 

Figure 2.5 Molecular structure of a non-fluorous bisures.[219] 

2.1.2.6 Surfactants with Twin and Divalent Metal Cations  

Eastoe and co-workers designed semi-fluorinated surfactants based on a previous 

study that used aerosol-OT (AOT) based water-in-oil micro-emulsions in cyclohexane 

solvent.[203, 220, 221] The molecular structure of these surfactants are illustrated in 

Figure 2.6 and were soluble in CO2. They form rodlike micelles that enhanced CO2 

viscosity with the addition of a small amount of water. The purpose of adding water 

into the solution is to form a stable microemulsion in the presence of AOT surfactant 

and also promote an aggregate shape change of surfactant from spheroid (non-viscous) 

to rod shape (viscous) which significantly contributes to the viscosity enhancement of 

the solution. Two di-chain perfluorinated sulfosuccinate surfactants (nickel bis-

nonofluoropentane sulfosuccinate (Ni-diHCF4) and sodium pentadecfluoro-5-dodecyl 

sulfate (NaF7H4)) yielded the greatest viscosity increase among the compounds 

assessed. These surfactants have been modified in such way that can form rod-like 

micelles to promote the viscosity enhancement and also soluble in CO2.  This was 
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achieved by the exchange of Na+ ions with Ni2+ or Co2+
 to drive a sphere-to-rod 

transition as it as shown in Figure 2.6.[203, 222] Furthermore, a di-chain 

perfluorinated AOT-analogues is known to stabilise microemulsions of water in 

CO2.[223-226] A high-pressure small angle neutron scattering (SANS) confirmed the 

solubility of both surfactant in CO2 and formation of rod-like micelles. At 298 K and 

40 MPa, both surfactants (0.05 mol dm-3) with 10-12.5 moles of water per mole of 

surfactant achieved a transparent solution in CO2.[203, 222] At 298 K, 35 Mpa, 6 wt% 

of (Ni-diHCF4) and 10 moles of water per mole of surfactant added into CO2 resulted 

in viscosity enhancements of up to 1.5 fold[203] and 4.4 wt% of NaF7H4 with 12.5 

moles of water per mole of surfactant, caused a 2 fold  increase in viscosity at 313 K 

and 40 MPa.[222] However, these surfactants required a very high pressure to attain a 

single phase and high concentrations of 5 to 7 wt% were necessary to achieve a 

significant viscosity increase. Therefore, these thickeners would not be suitable for 

field applications as both need a relatively high concentration of these expansive 

surfactants. 

 

Figure 2.6 Molecular structure of a fluorinated twin-tailed surfactant as a CO2 

thickener.[203]    

2.1.2.7 Cyclic and Aromatic Amide and Urea Based 

Most of the successful associating small molecules compounds as CO2 thickeners 

that have been described above, are fluorinated or semi-fluorinated materials. These 
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fluorinated materials are both expansive, and environmentally persistent due to the 

fluorine contents and high concentrations (3-5 wt%) required for use as a CO2-EOR 

thickener.[227] Therefore, in a recent publication, Doherty et al.[227] synthesised and 

examined a series of cyclic and aromatic amide and urea compounds as non-fluorous 

small-molecules thickeners for dense CO2 and organic liquids. They designed the 

molecular structure of the compounds as shown in Figure 2.7. These compounds 

contain cyclic or aromatic core molecules (e.g. cyclohexane or benzene) which are 

mildly CO2-phobic to promote intermolecular interactions. These core ring groups are 

combined with associating or linking groups (labelled as ‘X’) which are typically 

either amide, urea or ester groups to establish the intermolecular interaction for 

viscosity enhancement. In addition, these linking groups also facilitie the connection 

of CO2-philic segments (siloxane or heavily acetylated) to cyclic or aromatic core 

molecules to improve dissolution in CO2. It has been found that after heating and 

cooling the mixture these compounds were capable of thickening organic liquids such 

as hexane and toluene. Researchers have found branched benzene trisurea 

(propyltris(trimethylsiloxy)silane-functionalised benzene trisurea and trisurea 

compounds functionalised with varying proportions of 

propyltris(trimethylsiloxy)silane and propyl poly(dimethylsiloxane)-butyl groups) to 

be soluble in dense CO2 and capable of thickening CO2 (3−300 fold) at remarkably 

low concentrations (0.5−2 wt% in the presence of hexane as a co-solvent at high 

concentrations (18−48 wt%).[157, 172] A 300 fold viscosity increase is to large and 

definitely not suitable for EOR purpose. In addition, the high concentration of required 

co-solvent at low concentration of the additive, the associated high costs and 

environmental concerns severely limit the applicability of this approach. 

 

Figure 2.7 General Molecular structure of small molecules Cyclic Amide and Urea 

Based.[227]  
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2.1.2.8 Thickening CO2- Summary  

In summary, despite over 50 years of extensive work in developing and identifying 

both fluorous and non-fluorous polymers or copolymers and small molecules 

compounds, none of these  additive materials may be considered as a viable thickener 

for field application.[52] In fact, the design of an affordable CO2 thickener that can 

increase the CO2 viscosity at dilute concentrations (less than 1 wt%) is highly 

challenging due the low solubility of the additives in CO2. From the above review on 

the efforts made towards thickening CO2, the following conclusions may be drawn: 

 Three polymeric candidates (PDMS, polyFAST and PFOA) are known as the best 

and most successful CO2 thickener candidates for CO2 mobility and conformance 

control at the lab-scale.[52, 168, 228] However, due to a combination of either 

costs, necessity for a high concentration, environment concerns or reservoir 

condition, none of these polymers can be considered viable for CO2 flooding in 

Field A. Therefore, in this study the focus would be on the identification of cheap 

and readily available non-fluorous polymers.  

 There are several small molecules compounds identified as CO2 thickeners as it 

can be seen in Table 2.1, including semi-fluorinated trialkyltin fluorides, fluorinated 

bis-ureas, di-chain perfluorinated sulfosuccinate surfactants, and branched 

benzene trisurea. In general, these compounds are capable of increasing the CO2 

viscosity between 1.5 to 300 fold at lower temperatures (298- 313 K). However, 

most of these materials are fluorinated and can improve the viscosity only at high 

concentrations (2-10 wt%). In addition, the small molecules compounds are low 

soften temperature compound and cannot work at typical reservoir conditions due 

to the diminishing the intermolecular associations at high temperature.[157] 

Therefore, this work would not focus on identifying small molecules compounds 

for thickening CO2.   
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Table 2.1 Review of small molecules compounds solubility in CO2 and their thickening capability results  
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2.2 Hydrocarbon Gas Thickeners 

2.2.1 Polymeric Thickeners  

As discussed so far, most of the research regarding gas thickening agents have 

focused solely on CO2 because it is the most common injected fluid for MGI projects 

in the United States, Canada and elsewhere.[229, 230] In addition, CO2 is a slightly 

more powerful solvent than short chained alkane gases in dissolving polymers due to 

the structural symmetry of CO2 resulting in a substantial quadruple moment (Qi) and 

being a dense solvent at modest pressure and temperature, which can magnify the 

quadrupole interaction by scale inversely with the molar volume to the 5/6 power 

(Qi
*=Qi 

.
 Vi

-5/6).[158] Despite these characteristics, CO2 is still considered a weak 

solvent when compared to most organic solvents. However, there have been a few 

attempts at identifying the polymeric thickeners for pure light hydrocarbon gases.[68, 

69, 155] In the late 1960s, serval registered patents reported the initial attempts made 

at thickening light alkane gases. Henderson et al.[155] made the first attempt to thicken 

the buffer hydrocarbon by using three polymers including poly methyl laurylate, 

polybutadiene and poly(alkyl styrene). These polymers at a concentration of 0.25 vol% 

are capable of improving the viscosity of light hydrocarbon gases by about 0.1%. 

Subsequently, Dauben and co-workers examined polyisobutylene polymer (PIB, Mw 

130,000) in a rich condensate mixture containing 75 vol% propane and 25 vol% 

heptane rich. They claimed to achieve a 2-5 fold viscosity increase at a concentration 

of 0.25 wt% of PIB.[69]  However, none of patented work reported the details of the 

method used to measure the viscosity of the solutions examined.  

 Subsequent attempts by Heller et al. to identify polymeric thickeners for LPG and 

CO2[64] found that various poly 𝛼-olefin polymers (PAO) based on n-pentene, n-

hexene and n-decene could be used. These polymers were found to be quite soluble in 

n-butane at a temperature of 298 K and pressure of 8.2 MPa; however, their solubility 

in CO2 was much more limited at a temperature of 305 K and pressure of 17.2 MPa. 

At 1-2.2 wt% of these polymers in n-butane an approximately 5-fold viscosity 

enhancement was achieved. In a recent publication, Dhuwe et al. assessed the 

solubility and viscosity enhancing property of high and ultra-high molecular weight 

polymers in NGL (i.e. a mixture of ethane, propane and butane).[164, 231] Polymers 

that have been studied in their study included ultra-high molecular weight drag 
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reducing agent (DRA) poly-𝛼-olefin (Mw 20,000,000) and high molecular weight 

PDMS (Mw 980,000) and PIB (Mw 130,000). Ultra-high molecular weight DRA poly-

α-olefin is commonly used in the oil export pipelines to supress the energy dissipations 

near the pipe wall resulted from the turbulent flow at high flow rates. This polymer 

has been found not to change the fluid properties (e.g viscosity) at dilute concentrations 

used for this application. Dhuwe et al.[231] found it to be sufficiently soluble in NGL 

with significant amounts of hexane added as a co-solvent. For example, at 0.5 wt% of 

DRA polymer and 24.5 wt% hexane in propane or butane, the cloud point pressures at 

temperatures of 333 K found be equal to 3.07 MPa and 0.77 MPa, respectively. 

However, it requires very high pressure to attain solubility in ethane (46.95 MPa) at 

the same concentrations. At 0.5 wt% of DRA polymer and 24.5 wt% of hexane, the 

viscosity of ethane and propane could be improved by 3-9 fold, while 23-30 fold 

enhancement was obtained in butane. The reason for greater increase in butane 

viscosity obtained with DRA polymer is that butane has greater solvent strength to 

expand the polymer coil and swell the DRA polymer than propane and ethane.[164, 

231]  

Furthermore, they have also tested the solubility of high molecular weight PIB and 

PDMS in NGL components. PIB was found to be insoluble in ethane, propane, and 

butane at temperatures of 298-353 K and high pressure, while PDMS was soluble in 

all NGL constituents without a co-solvent added.[164, 231] In propane and butane, 

PDMS was soluble at pressures close to vapour pressures of propane and butane, while 

in ethane, it required high pressure (much greater than its vapour pressure) to attain 

solubility. For example, at 333 K and 2 wt% of PDMS in ethane, propane and butane, 

the cloud point pressures were obtained to be equal to 18 MPa, 2.56 MPa and 0.92 

MPa, respectively. Furthermore, they found PDMS to be an effective thickener in 

propane and butane, but ineffective thinker in ethane. For example the concentration 

of 2 wt% PDMS achieved viscosity increases of 1.2 fold in ethane, 2 fold in propane 

and 4 fold in butane at 333 K. It was also found to be a better thickener at high pressure 

(62 MPa). Overall, high molecular weight PDMS was not found to be a viable 

thickener of NGL for EOR applications.[231] 

 In comparison to the results obtained by Heller et al. for 2.2 wt% of PAO (poly(1-

pentene), poly (1-hexene), and P-1-D) in butane at 298 K, DRA increases butane 

viscosity substantially at even lower concentration (0.5 wt%). This is because DRA 
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has extremely higher molecular weight and also a relatively high concentration of 

hexane was added. Although PDMS has a higher molecular weight (Mw 980,000), it 

resulted in a lower relative viscosity (4 fold) than that obtained by low molecular 

weight PAO (5 fold). The reason behind this difference is that increase in gas viscosity 

does not only depend on the molecular weight of the additive, there are other factors 

that can influence the viscosity-enhancing ability of an additive, such as the nature of 

additives and the solvent, concentration of additives, the molecular weight distribution 

of the additives and intermolecular interaction between the additives and solvent.[232, 

233] These chemical additives (PDMS and PAO) have different chemical structures. 

PAO has a carbon–carbon backbone with atactic molecular structure of mostly 

uniform head-to-tail connections with some head-to-head type connections in the 

structure.[234] On the other hand, PDMS has silicone–oxygen backbone and more 

flexible molecules than P-1-D molecules. Hence, PDMS can have lower steric 

hindrance and greater bond angle (143o vs 110o for C-C-C) to rotate around the Si-O 

bond.[235] Furthermore, the effect of molecular structure and polymer molecular 

weight on viscosity has been studied by Zolper et al.[235] who found that similar 

viscosity can be obtained for different molecular mass. For example, the viscosity of 

PAO at 1000 g/mol is equivalent to the viscosity of PDMS at around 10,000 g/mol.  

This was attributed to the additional attractive intermolecular forces between the 

polymers with increasing branch which leads PAO to having higher viscosity indices 

than PDMS. Therefore, the effect of PAO on butane viscosity could be attributed to 

the structure of the polymer. These effects could be more pronounced in improving the 

solvent viscosity than molecular weight for PAO. 

2.2.2 Small Molecules Self-Associating Thickeners 

Similarly to studies for CO2, low molecular weight self-associating compounds have 

been studied as thickening agents of light alkane gases for gas mobility control and 

hydraulic fracturing purposes.[70, 71, 164, 210] Ideally, the small molecules 

compounds need two processes to attain dissolution and viscosity enhancement.[70, 

71] The first is a high pressure heating cycle, which disrupts the intermolecular 

association to enhance the dissolution. The second process is the cooling cycle to 

establish the intermolecular association necessary for viscosity enhancement. 

However, some of the small molecules compounds do not require this two-step process 
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to attain dissolution and viscosity enhancement in NGL.[71] The previous studies on 

the application of the small molecules compounds in light alkane gases are discussed 

and reviewed below. 

2.2.2.1 Trialkyltin Fluorides            

Dunn and Oldfield first reported on the use of tri-n-butyl tin fluoride (TBTF) as a 

direct thickener of non-polar solvents including carbon tetrachloride and n-

propane.[236]  Figure 2.8 illustrates the association mechanism of tributyltin fluoride 

where a linear polymeric chain of penta-coordinate tin atoms linked by fluorine atoms. 

It is in the form of a white powder with melting point 544 K.[70, 71] The three butyl 

arms attached to the tin atom enhances the solubility of TBTF in a hydrocarbon 

solvent, while the intermolecular association form between the tin and fluorine atoms 

induces the viscosity-enhancing. It has been found that TBTF is soluble in organic 

liquids and light alkane under stirring process for several minutes without requiring a 

heating and cooling cycle.[71] TBTF is also found to be an effective thickener for the 

intermediate hydrocarbon components. Dandge et al.[210] found TBTF to be capable 

of improving the viscosity of propane and butane. For instance, at concentrations of 

0.13-0.15 wt% at 298 K, it increased the viscosity of these components by 2-10 fold 

at 8.3 MPa. In addition, they also found that TBTF was only partially soluble in ethane 

and with no viscosity change measurable.[210] Later on, Enick and co-workers 

confirmed the ability of TBTF to thicken propane and butane liquids at 298 K and 

concentrations of 0.2-5 wt%.[208] Furthermore, other trialkyltin fluorides have also 

been tested in hydrocarbon solvents. Tripropyltin fluoride (TPTF) was not dissolved 

in propane and butane, because propyl arms are too short to induce the dissolution of 

TPTF in these solvents.[237] Therefore, it confirmed that the solubility of trialkyltin 

fluoride in n-alkane increases as the number of carbon atoms in n-alkyl arms (R) 

increases.[210]  However, at equivalent mass concentration, TBTF in n-hexane or n-

butane has shown to outperform in viscosity enhancement compared with other 

solvents.[210] For example, at a concentration of 10 g/L and 310 K, TBTF increases 

the viscosity of n-hexane by 750 fold (from 0.265 cP to 196 cP), while the 

tetrachloroethylene viscosity is enhanced by 380 fold (124.45 cP).[210] 
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Figure 2.8 Association mechanism of tributyltin fluoride.[71] 

A recent study has tested the solubility and viscosity enhancement ability for dilute 

concentrations (> 1 wt%) of TBTF in ethane, propane, and butane at high pressures 

(38-64 MPa) and high temperatures (298-373 K).[70, 71, 164] TBTF was found to be 

soluble in propane and butane at above vapour pressure of these components, while in 

ethane, it required pressures much higher than ethane vapour pressure. In addition, it 

was found that the relative viscosity of TBTF in NGL components increases slightly 

with increasing pressure at all temperatures and TBTF concentrations. Increasing the 

pressure does not affect the self-assembly of the supramolecular structure, it only 

affects the solvent strength which has a less significant effect on the solution viscosity. 

Furthermore, as temperature increases, the intermolecular association between the tin 

and fluoride molecules diminish, leading to a significant decrease in the viscosity-

enhancement in all light alkane components. For example, with 1wt% concentration 

of TBTF in ethane at 298K, and 62 MPa, the achieved relative viscosity is 90, and it 

drops to 75 at 313 K. The relative viscosity significantly drops further to 20, 6 and 1.5 

at 333, 353 and 373K, respectively.[164]            

2.2.2.2 Hydroxyaluminum Di-2-Ethyl Hexanoate (HAD2EH) 

     As mentioned earlier, hydroxylauminum disoap (often called napalm) was 

invented in World War II in order to gel and weaponise an organic liquid 

(gasoline).[211-213] A mixture of aluminium disoap and gasoline liquid was heated 

to high temperatures to promote its dissolution by dismantling the intermolecular 

associations between the aluminium disoap. Then it cooled down to allow self-

assembly of the disoap molecules, whereby the viscosity of the solution is enhanced 

significantly.[70, 71] Enick and co-workers[65] studied a single aluminum salt, 
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referred to as hydroxyaluminum di-2-ethylhexanoate (HAD2EH). Figure 2.9 depicted 

the association mechanism of HAD2EH. They found HAD2EH to exhibit a remarkable 

solubility in light hydrocarbon gases such as propane and butane and also capable of 

thickening these components at dilute concentrations. For example, At 293 K, 

HAD2EH concentrations of 0.2-1 wt% were capable of increasing the viscosity of the 

solution by 10-100 fold as tested in a high pressure falling ball cylinder viscometer. 

However, the solution formed was not transparent and hazy, due to a portion of the 

HAD2EH molecules forming solid fibres in both liquid propane and butane at high 

pressures. 

Dhuwe et al.[71, 164] examined HAD2EH again in all of the NGL constituents (i.e. 

ethane, propane, and butane) individually under a range of pressures (34-62 MPa) and 

temperatures (298-273 K).  HAD2EH was found to be soluble in propane and butane 

while insoluble in ethane. At the temperature of 298 K, HAD2EH was insoluble in all 

light alkanes, requiring heating to 373 K at high pressure and stirring to attain 

dissolution and then cooling down to a temperature above 313 K for the solution 

remained in a single phase. When the solution cooled down to a temperature of 298 K, 

HAD2EH precipitated in both propane and ethane. Accordingly, it has been found that 

HAD2EH is an effective thickener in butane and propane at temperatures as low as 

313 K. For example, at a concentration of 0.5 wt% HAD2EH and temperatures of 333-

373 K, butane viscosity increases by 15-19 fold, while propane is thickened by 2-3 

fold.[71, 164]      

    

Figure 2.9 Association mechanism of HAD2EH molecules.[71] 

2.2.2.3 Crosslinked Phosphate Esters  

These are several reports available on the attempts made to gel light hydrocarbon 

gas (LPG) using phosphorous-based esters crosslinked with polyvalent metal ions 

(Figure 2.10) for dry hydraulic fracturing applications.[238-242] These techniques 

used phosphate mono/di-esters linked to alkyl tails. Typically, a hydrocarbon liquid 
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agent solution is formed by combining two low viscosity liquid reactants (i.e. a 

solution containing the phosphate ester and one containing a polyvalent metal ion 

crosslinking agent) together in the fluid that is being thickened. It has been found that 

the two low viscosity liquids quickly dissolve in the fluid (e.g. light alkane) without 

needing a heating/cooling cycle. The polyvalent metal ion bounds more tightly with 

phosphate esters than the ligand which leads the phosphate ester to quickly chelate 

with metal ion and form long micellar and a supramolecular structure as shown in 

Figure 2.11. If this long micellar structure remains soluble in the solvent, then it can 

significantly improve the solution viscosity. Rapid dissolution of phosphate esters 

system in the solvent and the rapid kinetics of viscosity-enhancement could make these 

attractive for use with NGL in an EOR project.[70, 71] 

 

Figure 2.10 Molecular structure of Phosphate di/mono-ester, Phosphonic acid ester 

and dialkyl phosphinic acid.[71] 

There are a few studies reporting that oil-soluble phosphate mono/di-esters, dialkyl 

phosphinic acids or alkyl phophonic acid ester crosslinked with polyvalent metal ions 

including Fe3+, Mg2+, Al3+, Zn2+, and Ti4+ can increase the viscosity of hydrocarbon 

oils (e.g. desiel and kerosene) by 2-100 fold at concentrations of 0.2-2.5 wt%.[240, 

241, 243] Furthermore, it has been reported that phosphate-based esters could be used 

as a gel agent for CO2 and hydrocarbon liquid mixtures.[244, 245] In recent 

publications,[70, 71, 164] Lee and Dhuwe et al. studied the mixture of crosslinked 

phosphate esters (phosphate ester (HGA 70-C6) and cross linker (HGA 65)) with NGL 

components (ethane, propane and butane) at a range of temperatures (298–373 K) and 

pressures (13.8-62 MPa).They found that phosphate ester and the crosslinked solution 

are soluble in ethane, propane, and butane at concentrations of 0.25-1wt% and 

temperatures of 298-333 K. However, the cross-linked solution was not a transparent 

phase and instead was slightly hazy due to small droplets suspended in the solution. 

This mixture (phosphate ester + crosslinker) achieved a modest viscosity increase in 

ethane; while greater increases occurred in propane and butane. For example at the 

concertation of 1 wt% at 333 K and 20.68 MPa, the viscosity of ethane increased by a 
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factor of 1.45 fold and by 2.6 and 3.2 fold with propane and butane, respectively.  As 

the mixture cannot form a single phase in the NGL components due to the suspension 

of very small droplets in the solution, its suitability for injection into porous media is 

limited.[70]     

 

Figure 2.11 Chelation mechanism and micellar structure of phosphate ester/metal ion 

complex.[246] 

2.2.3 Thickening of Hydrocarbon Gases-Summary   

Although the previous works mainly focused on the identifying CO2 thickeners, 

there are a few studies that have reported the NGL components being thickened 

separately with polymer candidates and/or small molecules compounds. Based on the 

above review on work done towards thickening hydrocarbon gases, the following 

conclusions may be drawn:        

 Three polymer candidates were found to be effective thickeners in NGL 

components including DRA polymer, PDMS, and PAO oligomer. These 

thickeners are much more effective for thickening butane and less effective for 

propane and ethane. DRA polymer is a more promising thickener (3 to 23 fold) at 

dilute concentrations over temperatures of 298-333K, while PDMS and PAO 

show moderate viscosity enhancements (1.2 to 5 fold) over the same temperatures. 

However, these thickeners have not been verified at temperature above 373 K.  

 As summarised in Table 2.2, three small molecules compounds (TBTF, HAD2EH, 

and CPE) have been reported as effective thickeners for pure light alkane 

components at moderate temperatures (313-333 K), however phase behaviour, 

environment issues (fluorine content) impede for these materials to be used for 

EOR projects. For example, CPE does not form a single phase in NGL, and TBTF 

contains fluorine substances. In addition, these compounds exhibit solubility in 

ethane at high pressure. As the methane and CO2 are the main components in AG, 
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the dissolution of these materials in AG mixture would face much difficulty in 

comparison with ethane. Therefore, the small molecules compounds examination 

is excluded from this work. 

Overall, none of the above reviewed polymeric candidates have been assessed by 

other researchers as a thickener specifically for an AG mixture containing primarily 

methane, ethane, propane and CO2. In the literature, the available data about thickening 

of an AG mixture are very scarce. Therefore, to date these polymeric materials have 

not been used as a thickener for a field’s AG mixture which is subjected to miscible 

gas flooding. Hence, this work is going to focus mainly in identifying and examining 

non-fluorous polymeric thickeners for AG and CO2 at a viscosity level close to Field 

A oil viscosity under its specific in-situ conditions. 

Table 2.2 Summary of small molecules compounds solubility in NGL 

components and thickening capability results 

Small molecules 

compound  

Concentration 

in NGL 

components  

Co-solvent  Soluble in NGL 

observations 

Relative viscosity   

at 333K 

Ref.  

C2H6 C3H8 C4H10 C2H6 C3H8 C4H10 

tri-n-butyl tin 

fluoride 

1 wt% No  yes yes yes 1.5-4 

fold 

40 

fold 

60 

fold 

[70] 

hydroxyaluminum 

di-2-ethyl 

hexanoate 

(HAD2EH) 

0.5-1 wt% No  No yes yes No 10 

fold 

14 

fold 

[70] 

crosslinked 

phosphate esters                 

(HGA 70-C6)+ 

HGA 65 

0.25-1 wt% No yes yes yes 1.45 

fold 

2.6 

fold 

3.5 

fold 

[70] 
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*Reference: Al Hinai et al. (2017) in SPE Reservoir Characterisation and Simulation Conference and Exhibition. 

 

Chapter 3. Numerical Study of Using Polymer to 

Improve the Gas Flooding in the Harweel 

Cluster* 

3.1 Introduction  

The Harweel Cluster consists of several deep reservoirs with tight carbonate oil-

bearing rocks in the south of Oman. Field A is one of the Harweel cluster reservoirs 

as shown in Figure 3.1. The sediments in the field are more than half a billion years 

old with the hydrocarbon deposits among the oldest in the world, from a depth of 

roughly 5 kilometres, making it the deepest producing oil field in Oman.[30, 32] Right 

from the discovery, miscible gas injection (MGI) was identified as the best enhanced 

recovery process for the field. The gas mixture used for MGI contains mainly methane 

enriched with light hydrocarbons and acid gases. With this MGI process, it is estimated 

that up to 47% of the original oil in place (OOIP) can be recovered.[32] 

 

Figure 3.1 Geological cross-section of the carbonate stringers (left) and an aerial 

overview of Harweel Fields in southern Oman (right). 

 In general, the relatively low viscosity and density of the injected gas present 

challenges for MGI projects.[35, 52] The high viscosity and density contrast of the in-

situ fluid system would lead to an unfavourable mobility ratio and gravity override, 

respectively, both of which tend to lower the volumetric sweep efficiency during 

flooding.[119] In the case of Field A, since the reservoir oil is light (42°API), there is 

not much density contrast between the injected gas and the displaced oil (400-600 

kg.m-3 and 639 kg.m-3, respectively).[32] The presence of CO2 and H2S in the injected 
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gas composition (15-25 mol% and 3 mol%, respectively) also helps to increase the gas 

density.[31] Hence, the gravity segregation is not expected to be the primary problem 

in this field. However, the in-situ viscosity of the AG (0.01-0.03 cP) is much lower 

compared with that of the oil (0.23 cP). This would result in early gas breakthrough 

(BT), poor volumetric sweep and reduced overall efficiency of the MGI. In fact, early 

gas breakthrough has already been experienced in some production wells in Field A. 

Such a challenge may be addressed by the implementation of several methods 

proposed in and described in the literature. The common objective of the proposed 

techniques is to effectively control the gas mobility and, as a result, increase the sweep 

efficiency of the gas flooding.[52] The most commonly used or proposed methods 

include Water Alternatives Gas flooding (WAG),[53, 54] entrainment of the gas into 

a foam during foam flooding,[57, 58, 61, 62] and increasing the gas viscosity by adding 

polymers as thickening agents to the gas.[52, 66] During the WAG process, the gas 

mobility is suppressed by injecting water and gas alternatingly using a single to five 

cycles.[89, 247] With regards to field applications, the CO2-WAG flooding has proven 

to be effective resulting in incremental oil recoveries of around 5-10% of the 

OOIP.[247] However, very often, a large amount of the residual oil is still left behind 

after the completion of the WAG injection because of the operational difficulties and 

challenges associated with this method including the gravity segregation and water 

blocking due to the excessive water injected into the oil reservoir.[54, 89] Therefore, 

the WAG strategy may not be the best choice for Field A, where water saturation is 

already very low and facilities are not designed to inject or handle water. 

The application of foaming agents has also been studied as a way of conformance 

control in miscible flooding.[57] However, applying foams for mobility control has 

shown to be technically and economically challenging because of the difficulties 

associated with controlling its propagation over large distances in the reservoir and 

that large volumes of foam are required.[59] In addition, the majority of the foaming 

agents are of no use in high salinity reservoirs due to the inability of the surfactants to 

reduce the interfacial tension (IFT) to the required ultra-low values.[59] 

To overcome the above limitations associated with WAG and foam flooding, 

another technique has been introduced which brings together the advantages of both 

chemical and miscible gas EOR methods. Introduced for the first time about 45 years 

ago, the application of thickener agents, such as small/high molecular weight 
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polymers, has been proposed to directly thicken the injection gas during gas 

flooding.[66] By increasing the injection gas viscosity, the gas mobility can be 

suppressed. Hence, the severity of the viscous fingering (i.e. instability in displacement 

front) and the chance of developing pre-mature breakthrough can be reduced and the 

microscopic displacement efficiency of an MGI can put into use across a larger portion 

of the reservoir. Among the techniques used to improve the mobility ratio of a gas 

flood, a direct thickening of the AG mixture by using additive polymers may be the 

best method to increase sweep efficiency in Field A. Specific challenges for Field A 

are the high salinity of the formation water (275,000 ppm) and low water saturation in 

the reservoir. The AG in Field A contains 15-25 mol% of CO2. The presence of CO2, 

high pressure (55 MPa) and high temperature (377 K) are considered as positive 

factors as they may make the identification of suitable soluble polymers in the AG 

mixture easier. There are a number of previously completed studies investigating 

polymer solubility in CO2[158] whose results can be used as a guide in choosing 

suitable thickeners for this field. 

In this study, we used the compositional simulator CMG-GEM and the associated 

PVT module CMG-WinProp to evaluate the potential benefits of adding polymers to 

the injected gas to increase its viscosity. A box model has been built based on the 

typical geological & petrophysical characteristics and includes the light oil fluid 

description & properties in Field A. Considering the composition of the AG of Field 

A, we have examined a number of different gas compositions to cover a range of 

hydrocarbon gas and CO2 mixtures. Also, we have evaluated the direct effect of the 

different gas compositions on the oil properties during the flood which, besides the 

viscosity improvement of the thickened gas, can influence the ultimate oil recovery. 

The simulation runs have indicated a positive response with regards to the oil recovery. 

3.2 Numerical Model  

A 3D geological box model has been generated based on the typical geological 

characteristics, fluid properties, and production and injection data of Field A 

(Figure 3.2). The reservoir heterogeneities are captured in the model based on the 

reservoir permeability and porosity distribution as reflected in the available log data. 

The zones with higher permeability are located in the upper and lower sections of the 

reservoir. The horizontal permeability of these zones is in the range of 10-100 mD 
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compared with the permeability of middle zones which falls in the range of a 0.1-10 

mD. The position of high permeability zones leads to unstable oil displacement where 

the injected gas passes through them leaving behind the oil in low and intermediate 

permeable zones as sandwiched between the high permeability zones. The numerical 

model dimensions are 30m × 30m × 79m in X, Y and Z directions, respectively, with 

a grid size of 14m in the X and Y directions. The thickness of the grid blocks in the Z 

direction is 1.53m. Since the reservoir does not contain an aquifer, the entire thickness 

(120.87m) of the model is considered as the pay zone. Figure 3.2 shows the 

permeability distribution in the box model constructed. A direct line drive pattern flood 

was set up for the injection and production wells. The bottom-hole pressure and 

production/injection rates were used as constraints for the operation of the wells. A 

maximum bottom-hole pressure of 55 MPa and an injection flowrate of 1MMm3/day 

were set for the injection wells.  A minimum bottom-hole pressure of 40 MPa (the 

minimum miscible pressure or MMP) and a production flowrate 800 m3/day were set 

for each production well. 

Table 3.1 presents the composition of various injection gas mixtures considered 

during the simulation study including the use of NGL and pure CO2 as two 

possibilities. The injected gas viscosity is modified from its original value in the fluid 

PVT WinProp model. As mentioned earlier, the simulation work was conducted with 

different levels of gas viscosity increases and included the oil viscosity and density 

reductions and oil swelling effects caused by the dissolution of gas into the oil during 

the flood. Some basic reservoir fluid and rock properties used to construct the 

simulation model are provided in Table 3.2.   
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Figure 3.2 3D reservoir model showing the permeability distribution.  

Table 3.1 Composition of various injection gases studied. 

Component AG1 AG2 AG3 NGL CO2 

   mol. 

fraction  

 mol. 

fraction  

 mol. 

fraction  

 mol. 

fraction  

mol. 

fraction  

CO2 0.05 0.25 0.5 0 1 

H2S 0.03 0.02 0.02 0 0 

C1H4 0.7 0.6 0.4 0 0 

C2H6 0.15 0.08 0.05 0.45 0 

C3H8 0.07 0.05 0.03 0.3 0 

C4H10 0 0 0 0.25 0 

Total 1 1 1 1 1 

 

Table 3.2 Reservoir and fuild properties  

 

 

 

 

 

 

 

 

 

 

Reservoir Size (m) 420  × 420 × 316 

Number of grid blocks 71100 

 

 

Reservoir depth (m) 4574 

reservoir pressure (MPa) 55 

reservoir temperature (℃) 104 

Porosity (frac.) 0.033 to 0.169 

Permeability (mD) 5 to 50 

oil density  ( kg.m-3) 639 

oil viscosity (cP) 0.24 

Permeability Z mD 
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3.3 Fluids PVT Model 

As mentioned earlier, to accurately model the fluid characteristics of Field A, the 

CMG’s PVT WinProp module was used. First, the saturation pressure for the 

components up to the residue of C36+ was matched with the experimental saturation 

pressure by altering the equation of state (EOS) parameters for the C36+ component. 

Then, the 36 components were lumped into 8 pseudo components and tuned the Peng-

Robinson Equation of State (PR_EOS) parameters to match the simulation data with 

the experimentally measured field fluid properties data (saturation pressure, viscosity, 

density, API and gas oil ratio (GOR)). At the end, all simulation parameters were 

matched as closely as possible to the experimental data. For instance, the bubble point 

pressure was calculated in the PVT model to be 33.41 MPa while experimentally 

measured value is 33.40 MPa at the reservoir temperature of 377 K. As mentioned 

before, we also modelled the oil swelling and viscosity change due to the dissolution 

of different gas mixtures. The PR_EOS in WinProp was used to model such changes 

in the oil viscosity, density and the saturation pressure (the amount of swelling) at 55 

MPa and 377 K. 

3.4 Results and Discussion 

3.4.1 Effects of Different Dissolved Gas Compositions on Oil Properties  

3.4.1.1 Oil Viscosity Reduction 

The oil viscosity reduction is one of the miscible gas injection (MGI) mechanisms 

that can be achieved by gas solubility into the in-situ oil. Such a mechanism would 

improve the oil mobility resulting in enhanced oil recovery. In this study, the effect of 

the dissolution of the Field A’s AG enriched by CO2, pure CO2 and NGL on the oil 

viscosity was examined in PVT WinProp. While the oil viscosity reduction was indeed 

observed, the reduction level was found to vary with change in the composition of the 

injection gas. Figure 3.3 shows the behaviour of the oil viscosity with the change in 

the amount of dissolved gas into the oil at the reservoir pressure and temperature of 55 

MPa and 377 K, respectively. The AG without CO2 has a greater effect on the 

viscosity. Also, NGL showed higher effect on the viscosity only at 10 mol% and 80 

mol% dissolutions and between these two values the viscosity reduction level is less 

than AG (without CO2) and AG enriched by CO2. This observation is likely due to the 
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dissolution of light hydrocarbon fractions in the oil. The presence of CO2 in the AG 

mixture, on the other hand, leads to a smaller reduction in the oil viscosity than AG 

without CO2. For example, at the reservoir pressure of 55 MPa, when 30 mol% of AG 

with 25 mol% CO2 content is dissolved into the oil, the viscosity is reduced to 0.134 

cP, but when the CO2 content is raised to 50 mol%, with the same amount of gas 

dissolved, the oil viscosity is reduced to 0.14cP. In addition, as the dissolved gas 

content in the oil increases, the bubble point pressure shifts towards higher values due 

to the changing oil composition. Above the saturation pressure, the oil viscosity keeps 

reducing as the dissolved gas content increases. However, as the system pressure 

exceeds the saturation pressure, the oil viscosity starts to increase due to the light gas 

components leaving the oil resulting in increase in the mol% of the heavier 

components. This behaviour is evident from some of the data plotted in the Figure 3.3. 

As can be seen from the figure, the viscosity of the oil increases, for example, after 

exceeding 60 mol% of AG (CO2 25 mol%) in the oil and 70 mol% for other gas 

mixtures. In summary, if the effect of oil viscosity reduction is evaluated on its own, 

it is expected that thickened hydrocarbon gases would result in greater impact than 

thickened CO2 in Field A.      

 

Figure 3.3 The oil viscosity reductions with addition of different gas compositions into 

oil at 55MPa and 377 K. 
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3.4.1.2  Effects on Oil Density  

The effects of the AG composition on the oil density was also examined at reservoir 

conditions. Different gas compositions change the oil density differently as their 

content in the oil varies (Figure 3.4). For pure CO2, there is a substantial increase in 

the oil density as its content in the oil increases. This behaviour is very likely because, 

being in supercritical state, the CO2 density is higher than that of the oil (light oil from 

Field A), making the oil denser. The density of in-situ oil and CO2 at Field A’s 

reservoir conditions are 641 kg.m-3and 832 kg.m-3, respectively. In addition, an 

increase of single-phase fluid density may induce further molecular interactions, which 

has resulted from strong intermolecular Coulombic interactions or dipole/quadruple 

interactions between CO2 and hydrocarbon molecules.[248] The CO2 molecules 

exhibit a significant quadrupole moment; however, it does not have a permanent diploe 

moment which differs from non-polar molecules such as ethane and propane that have 

neither a dipole nor a quadrupole moment. The strong quadrupole moment could 

results in a thermodynamic intermolecular interactions that have a significant effect on 

mixtures studied here. Several investigators have calculated and reported the 

thermodynamic effects of gas dissolution in the crude oil on the overall properties of 

the fluid system.[249-251] Generally, the CO2 dissolution in oil has more effect on the 

density of light oils than heavy oils.[252] Overall, the injection of the pure denser CO2 

phase into a reservoir containing light oil may result in gravity underride and early 

breakthrough.  

As can be seen from Figure 3.4, the addition of gases other than CO2 into the oil at 

reservoir conditions causes the oil density to decrease. However, as the CO2 

concentration in the AG increases, the amount of decrease in the oil density seems to 

become less pronounced. Such an effect is likely due to the fact that the densities of 

AG (without CO2) and NGL (286 kg.m-3 and 596 kg.m-3, respectively) are lower than 

that of the oil (641 kg.m-3) as opposed to the CO2 density (832 kg.m-3) which is greater 

than that of oil. A 40 mol% of gas dissolved in the oil at 55 MPa and 377 K lowers the 

oil density from 641 to 598 kg.m-3 (Figure 3.4).  
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Figure 3.4 The oil density changes with addition of different gas compositions into oil 

at 55MPa and 377 K. 

Overall, the presence of CO2 in the AG is expected to increase the injected gas 

density and cause a small decrease in the oil density, resulting in an insignificant 

difference between the densities of the injected gas and the displaced oil. Therefore, 

considering the effect of CO2 on the densities of the injected AG and oil in isolation, 

presence of CO2 can potentially suppress the gravity override effect in the reservoir 

and improved the oil recovery by slightly delaying the gas breakthrough in the 

unthickened gas flood.  

3.4.1.3 Oil Swelling Effects  

When the injected gas comes in contact with the oil in a low permeability zone (with 

low initial recovery) it causes the oil to swell and become less viscous, improving the 

oil mobility. The swelling would also improve the oil relative permeability by 

increasing its saturation in the pore space. Therefore, the swelling of the oil helps to 

displace the oil out of the pores and flow towards the production wells. The degree of 

the swelling depends on the injected gas compositions, oil composition, as well as the 

reservoir pressure and temperature.[16, 253] The swelling factor for different gas 

compositions dissolved into Field A’s light oil has been determined using numerical 

simulation at reservoir conditions. As shown in Figure 3.5, the injection of NGL and 

AG enriched with CO2 leads to a higher swelling factor than pure CO2. By the 

500

550

600

650

700

750

0 20 40 60 80 100

O
il

 D
en

si
ty

 k
g
/m

3

Dissolved Gas Content mol%

Pure CO2 NGL AG 2 AG 1 AG 3



  

76 

continuous dissolution of gas into oil, the swelling factor increases due to the relative 

volume increase (expansion) at high saturation pressure. It is observed that the CO2 

injection in Field A leads to a significant increase in the saturation pressure of the 

crude oil which may affect the EOR process (miscibility pressure). Therefore, the 

swelling factor for CO2 injection cannot be measured in the model as more CO2 is 

added into the oil. However, many studies have reported that CO2 injection leads to 

higher swelling factor and lower saturation pressure.[253-255] In this study, Field A 

oil shows different swelling effects for different gases which is consistent with the 

results obtained by Bon et al.[250, 256] This result is obtained due to the high 

solubility of the hydrocarbon gas mixture (alkane) in the light oil at high pressure, 

leading to the acceleration of the swelling and viscosity reduction process. Thus, the 

NGL and natural gas (AG) tend to have higher swelling and oil viscosity reduction 

effects. Such effects, if considered in isolation, may lead to a higher oil recovery in 

Field A. 

 

Figure 3.5 The swelling factor changes with addition of different gas compositions 

into oil at 55 MPa and 377 K. 

3.4.2 Unthickened Gas Flood 

Continuous gas flooding (not thickened) was simulated with different gas 

compositions using the GEM module of the CMG software. The model includes pure 
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CO2, NGL, and AG enriched with CO2. Figure 3.6 shows the oil recovery profiles for 

different gas injection scenarios. The simulation results indicate that NGL injection 

has the highest cumulative oil recovery among the gases examined, reaching 77.6% 

oil recovery in 20 years. Such an effect could be due to NGL’s large swelling effect 

(relative to CO2) and being more miscible than the other injectants. Figure 3.6 also 

shows that both cases of CO2-enriched AG injections yield the lowest ultimate oil 

recovery factors among all. During the early injection period (<10 years), the recovery 

factor for the CO2-enriched AG flood is higher than that of the pure CO2 flood. 

However, after the first 10 years, the three gases exhibit lower recovery curves, which 

occurs after a significant increase of production GOR (Figure 3.7).  

  

 

Figure 3.6 Oil recovery profiles for different unthickened gas floods. 

Figure 3.7 shows the evolution of the GOR for all five unthickened gas injection 

scenarios mentioned above. As can be seen, the oil recovery of all AG floods begins 

to slow down fast with earlier gas breakthrough and increase in the production GOR. 

As shown in Figure 3.7, after three years of AG flooding, the GOR increases 

significantly. This sharp increase is due to gas channeling dominating over the earlier 

discussed mechanisms of oil swelling and oil viscosity reduction. Such behaviour 
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causes the oil recovery for AG mixture to be lower than those of the pure CO2 and 

NGL. The gas breakthrough in the cases of the NGL and CO2 floods is delayed by 

about 1 and 2 years, respectively. Overall, as evident from the trends in Figure 3.7, the 

GOR values for these two gases are also lower than those of the AG floods due to 

higher viscosity of the NGL and pure CO2 (0.09 cP and 0.06 cP, respectively) 

compared with those of the AG mixtures which is well correlated with improved sweep 

efficiency during the gas flooding process.       

 

Figure 3.7 Oil recovery factor and GOR for different unthickened gas floods. 

3.4.3 Thickened Gas Floods 

In this part of the work, the benefits of adding polymers into the Field A’s AG and 

other gas mixtures were evaluated using compositional simulation. To do so, the 

impact of gas viscosity on oil recovery and gas breakthrough times was investigated 

by increasing the gas viscosity 2.5 to 6.25 fold. The effect of viscosity change was 

introduced into the GEM model by manipulating the viscosity of the gas mixtures in 

WinProp model. In CMG, the reservoir fluid viscosity can be computed during the 

simulation runs using different correlations such as Jossi, Stiel and Thodos, Herning-

Zipperer, Yoon-Thodos, Pedersen and Modified Pedersen. The injected gas viscosity 
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can be modified in the fluid PVT WinProp model without affecting the other fluid 

properties (oil and solution gas viscosities). The viscosities of injected AG mixtures 

and CO2 in WinProp model were matched at different level of gas viscosity increases 

(e.g. 0.1 cP, 0.16 cP and 0.25 cP) at pressures of 50-55 MPa and temperature of 377 

K. These viscosity data for each injected gas were increased individually by regressing 

the viscosity parameters for EOS sets. 

3.4.3.1 Effect of Thickening Level 

For simplicity, the effect of different levels of viscosity enhancement has been 

discussed for AG2 (Field A’s AG enriched with 25 mol% CO2) only. However, the 

same discussion and similar conclusions made can be presented for all other gases 

examined in this work. Figure 3.8 illustrates a visual comparison of the vertical sweep 

between unthickened (left) and thickened (right) gas floods 4 years after the 

commencement of AG2 (AG with 25% CO2) injection for the cases of 2.5, 4 and 6.25 

fold gas viscosity enhancement. As can be seen, for the case of the unthickened gas 

injection, severe viscous fingering and gas channeling occurs in the high permeability 

zones at the top and bottom sections of the model. This behaviour results in unstable 

displacement and early gas breakthrough. However, the viscous fingering is largely 

suppressed as the injected gas viscosity is increased, delaying the gas breakthrough 

and improving the sweep efficiency. Figure 3.9 shows the effect of viscosity 

enhancement (2.5, 4 and 6.25 fold increase in gas viscosity) on the oil recovery profile 

and production GOR development when AG2 is injected at an injection rate of 

1MMm3/day. The results show that, as one may expect, higher oil recovery and lower 

GOR can be achieved by the thickened gas injection. A comparison of the ultimate oil 

recovery factors shows that, depending on the level of viscosity enhancement, the 

thickened AG2 flood yields oil recovery factors from 72 to 79%, while the unthickened 

AG2 flood recovers about 58% of the OOIP. The improved recovery and suppressed 

GOR profiles are mainly due to the delayed gas breakthrough when a thickened gas is 

injected. The unthickened AG2 breakthrough occurs after around 3 years from the 

onset of gas injection, corresponding to an oil recovery of 18%. As the AG2 viscosity 

is increased, the gas breakthrough is delayed by 1 year for 2.5-fold (0.1 cP) and 2 years 

for 4-fold (0.16 cP) and 6.25-fold (0.25cP) corresponding to oil recoveries of 25% and 

30%, respectively. It is also worth noting that while a 2.5 fold gas viscosity 
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enhancement results in a relatively large incremental oil recovery, further viscosity 

enhancements (4 and 6.25 folds) result in smaller further incremental recovery. 

 

Figure 3.8 Effect of thickened AG2 mixture on the vertical oil sweep efficiency. 



  

81 

 

Figure 3.9 Effect of AG2 viscosity enhancement on the oil recovery profiles and 

production GOR development. 

3.4.3.2 Effect of Oil Viscosity Reduction and Swelling 

As mentioned earlier, the reduction of oil viscosity and oil swelling are two main 

factors which control oil recovery enhancement during MGI. Also, as discussed, the 

oil viscosity reduction and swelling factor vary with changing the amount and 

composition of the gas dissolved in the oil. Figures 3.10 to 3.12 show the oil recovery 

profiles and production GOR development for different AG mixtures enriched with 

CO2, pure CO2 and NGL for the cases of 0.1 cP, 0.16 cP and 0.25 cP increase in the 

injection gas viscosity, respectively. As expected, the oil recovery for the case of NGL 

injection is consistently higher than other thickened injected gases across all three 

thickening levels (0.1 cP, 0.16 cP and 0.25cP). This observation can be attributed to 

the fact that the thickened NGL has the greatest reducing effect on the oil viscosity 

and causes the highest oil swelling. At 0.16 cP viscosity increase (Figure 3.11), the 

ultimate oil recovery for the thickened NGL flood is 82.7%, while for the pure CO2 

flood is 72%. The lower recovery with pure CO2 is because CO2 is less effective at 

lowering oil viscosity and oil swelling. For the AG mixtures enriched with CO2, the 

oil recovery is high and comparable to the recoveries obtained from thickened pure 

CO2 flood. It is also evident from Figures 3.10 to 3.12 that oil recovery increases with 
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decreasing the CO2 content in the AG mixtures. For the AG enriched with 50 mol% 

CO2 the oil recovery is 73% compared to 76 % for the AG without CO2 content 

(Figure 3.11). Similar results have also been obtained by Bon et al.[250] They reported 

that oil recovery by the injection of methane enriched with C3+ was higher than that 

of pure CO2. 

As discussed earlier in details for the case of AG2 injection, gas breakthrough is 

delayed for all gas injection scenarios when they are thickened. This delay results in 

lower overall production GOR in the first 20 years of the gas injection. However, after 

8 years and once gas breakthrough occurs, the GOR increases significantly. The 

development of GOR versus time varies from one injection gas to another (Figures 

3.10 to 3.12). The thickened pure CO2 injection has the lowest overall GOR regardless 

of the level of thickening while the CO2-enriched AG floods exhibit the highest overall 

GOR values. This is because the continual dissolution capacity (CDC) of the gases in 

oil varies from one gas mixture to another. After breakthrough, the CDC of a gas in 

oil is reduced, leading to an increase in the production GOR. Pure CO2 has a higher 

CDC than the light hydrocarbon gases which results in an increase in the initial gas 

content of the oil. The CDC for the light hydrocarbon gases is lower which leads to 

higher GOR in the case of natural gas injection.[255] However, the effect described 

above does not affect the oil recovery because the oil viscosity reduction and oil 

swelling effects dominate the oil enhanced recovery process during the flooding. 
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Figure 3.10 Oil recovery profiles and production GOR for 0.1 cP viscosity thickened 

gas floods. 

 

Figure 3.11 Oil recovery profiles and production GOR for 0.16 cP viscosity thickened 

gas floods. 
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Figure 3.12 Oil recovery profiles and production GOR for 0.25 cP viscosity thickened 

gas floods. 

3.5 Summary and Conclusions  

The potential of different unthickened and thickened gas mixtures to enhance oil 

recovery under miscible conditions in Field A with a heterogeneous geological setting 

and a light oil was evaluated using a box model in the CMG-GEM simulator. The 

effect of different dissolution levels of various gas mixtures in the in-situ oil towards 

changing its properties were determined and taken into account using the CMG-

WinProp PVT module. The following specific conclusions can be drawn from the 

outcomes of this simulation work: 

 While a progressively higher reduction in oil viscosity can be obtained with an 

incremental increase in the dissolution of an injection gas in the oil, the 

presence of CO2 in the AG mixture lowers the ability of the gas mixture to 

reduce the oil viscosity. Also, the oil viscosity reduction with natural gas 

dissolution is much more pronounced than that of pure CO2. 

 The dissolution of the light hydrocarbon gases into the oil leads to a decrease 

in the oil density. However the presence of CO2 in the AG increases the injected 
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gas density and makes the gas mixture to be less effective in decreasing the oil 

density. Such an outcome results in a minimal difference between the densities 

of the injected gas and the light oil of Field A. 

 Injection of a light hydrocarbon gas (C1-C4) has a higher swelling factor than 

pure CO2 and methane enriched with CO2. 

 By adding viscosifying agents to the AG, NGL and CO2 used for miscible gas 

flooding in Field A, the ultimate oil recovery factor can be increased 

significantly. The gas breakthrough can also be delayed reducing production 

GOR. 

 The outcome of the simulation work demonstrate the advantages of thickening 

natural gas and NGL over CO2 for improving the gas flood efficiency in a light 

oil reservoir such as Field A. 
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*Reference: Al Hinai et al. (2017) in Energy & Fuels, 31(5): p. 4951-4965. 

 

Chapter 4. Experimental Study of Miscible Thickened 

Natural Gas Injection for Enhanced Oil 

Recovery* 

4.1 Introduction  

Enhanced oil recovery (EOR) is an important field development step when oil in a 

reservoir can no longer be produced by natural drive mechanisms of the reservoir 

(primary recovery) or by water or immiscible gas injection (secondary or improved 

recovery).[1, 10, 257, 258] The aim of EOR techniques is to stimulate oil flow by 

overcoming the physical, chemical, and/or geologic factors that inhibit the production 

of the remaining oil in the reservoir.[4] Hydrocarbon-miscible gas injection (MGI) is 

considered as a tertiary recovery process that can increase the oil recovery by 

achieving miscibility between the injected gas and reservoir oil. The resulting gas/oil 

mixture can then be displaced more easily through the reservoir rock and swept to 

producing wells resulting in improved recovery.[11] As with other EOR techniques, 

MGI can be challenging and expensive.[35] For instance, treating and handling the gas 

as part of a gas recycling scheme can be expensive due to the separation, dehydration, 

and compression costs; and further impacted by concentration and quantities of gas to 

be handled.  In addition, unfavourable mobility ratio (less viscous gas displacing more 

viscous oil) is a major subsurface factor that can reduce the sweep efficiency when 

applying this EOR technique. 

In the Middle East, a number of MGI projects are currently being undertaken in 

carbonate reservoirs in which the injected AG often contains acid gases.[7, 35, 259]  

Field A, located in the Harweel cluster in southern Oman, has been recognised as a 

viable MGI candidate. The MGI in this field has already commenced where the source 

of the injection gas is the field’s AG.[30] The AG mixture is reinjected into the 

reservoir at high pressure (up to 55 MPa) where it becomes miscible with the oil during 

the displacement at the relatively high reservoir temperature of up to 377 K. The  AG 

in Field A contains CH4 enriched with light and heavy hydrocarbon fractions found in 

natural gas and a significant amount of carbon dioxide at 10 – 25 mol%.[30] The 

reservoir contains a light crude oil with a gravity of 42° API and a viscosity of 0.23 cP 
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at reservoir conditions. With miscible AG injection, it is estimated that up to 47% of 

the original oil in place (OOIP) can be recovered.[32] However, even though the Field 

A oil is light and exhibits low viscosity, the viscosity and density contrast between the 

injection gas and reservoir oil presents technical challenges for the MGI process.  

The major challenges faced by MGI in  Field A may include gravity override caused 

by the density difference between the injected gas and the reservoir fluids and the 

unfavourable mobility ratio caused by the low in-situ viscosity of the injected gas (0.01 

to 0.03 cP) compared with that of the oil (0.23 cP). Gravity override and unfavourable 

mobility ratio can result in early breakthrough (BT) of the injection gas and poor 

volumetric sweep, reducing the overall efficiency of the MGI development and 

preventing it from realising its full potential.[260] In fact, early gas breakthrough has 

already been experienced in some production wells in Field A. These challenges can 

be overcome by the implementation of several approaches that have been proposed in 

the literature, mainly for CO2 flooding. The main objective of such approaches would 

be to effectively control the gas mobility and as a result increase the sweep efficiency 

of the gas flooding.[52] The most commonly used or proposed methods include water 

alternating gas flooding (WAG),[53, 54] entrainment of the gas into a foam during 

foam flooding,[57, 58, 61, 62] and increasing the gas viscosity by adding polymers as 

thickening agents to the gas.[52, 66] During the WAG process, the gas mobility is 

suppressed by alternating water and gas injection using a single to five cycles.[89, 247] 

In field applications, the CO2-WAG flooding has proven to be effective resulting in 

incremental oil recovery of 5-10% of the OOIP.[247] However, very often, a large 

amount of residual oil is still left behind after the completion of WAG injection 

because of operational difficulties and challenges associated with this method, such as 

gravity segregation and water blocking due to the excessive water injected into the oil 

reservoir.[54, 89, 178, 258] Therefore, the WAG strategy may not be the best choice 

for Field A where water saturation is already very low and facilities are not designed 

to inject or handle water. 

The application of foaming agents has also been studied as a way of conformance 

control in miscible flooding.[57] However, applying foams for mobility control has 

been shown to be technically and economically challenging because of the difficulties 

associated with controlling its propagation over large distances in the reservoir and 

that large volumes of a foam are required.[59] In addition, the majority of the foaming 
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agents are of no use in high salinity reservoirs due to the inability of the surfactants to 

reduce the interfacial tension (IFT) to the required ultralow values.[59] 

To overcome the above limitations associated with WAG and foam flooding, 

another technique has been introduced which brings together the advantages of both 

chemical and miscible gas EOR methods. Introduced for the first time about 45 years 

ago, the application of thickener agents, such as small/high molecular weight 

polymers, has been proposed to directly thicken the injection gas used during gas 

flooding.[66] By increasing the injected gas viscosity, the gas mobility can be 

suppressed. Hence, the severity of the viscous fingering (i.e. instability in the 

displacement front) and the chance of developing premature breakthrough can be 

reduced and the microscopic displacement efficiency would also be improved. Among 

the techniques used to improve the mobility ratio of a gas flood, a direct thickening of 

the AG mixture by using additive polymers may be the best method to increase sweep 

efficiency in Field A as the field has a high salinity formation water and low water 

saturation in the reservoir. The AG in Field A contains 25 mol% of CO2. The presence 

of CO2 is considered as a positive factor as it may make the identification of suitable 

soluble polymers in the AG mixture easier because a number of studies have focused 

on polymer and small molecule solubility in CO2.[158, 227, 228] Despite this, there 

are significant challenges in identifying soluble polymers because most polymers are 

insoluble in compressed fluids which have limited their widespread application. 

To date, most of the research works regarding gas thickening agents have almost 

exclusively focused on polymers for CO2 gas because it is widely used as the 

displacing fluid in EOR projects in the United States, Canada and elsewhere.[167] In 

addition, CO2 is a slightly more powerful solvent than alkane components (CH4 and 

C2H6) to dissolve polymers due to the quadrupole interactions relative to polymer-CO2 

segment.[158, 261] It is important to note that CO2 is still considered a poor solvent 

when compared to more conventional organic solvents. However, some materials 

(hydroxyaluminum disoaps, trisurea) show greater solubility in liquid propane and 

butane than do in pure CO2.[65, 227] There have been few attempts at identifying 

polymers which could thicken pure light hydrocarbon gases. In the late 1960s, initial 

attempts were made to thicken light alkanes as evident from several registered 

patents.[68, 69, 155] Henderson et al.[155] proposed some thickener polymers for 

buffer hydrocarbon. The identified polymers included poly methyl laurylate, 
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polybutadiene and poly alkyl styrene. These polymers at a concentration of 0.25 vol% 

are capable of increasing the viscosity of light hydrocarbon gases by about 0.1%.  

Additional patents were filed later by Dauben et al.[69] who also achieved a 2-3 fold 

viscosity enhancement for condensate mixtures contains 75% propane and 25% 

heptane-rich at 0.25 wt% of polyisobutylene. However, none of the patented work 

indicated the method(s) used to measure the viscosity enhancements of the solutions 

examined.[71] Heller et al.[64] successfully synthesised various α-olefin polymers (n-

decene, n-pentene and n-hexene) which could be dissolved in CO2 and LPG (n-butane 

and n-propane). Concentrations of 1-2.2 wt% of these polymers in liquid n-butane 

resulted in a 5 fold viscosity enhancement. Although, these polymers were found to be 

slightly soluble in CO2, none could effectively increase the CO2 viscosity.  

In an attempt to identify polymers with small molecular chains as thickener 

candidates for light hydrocarbon gases and CO2, Enick et al.[65] examined a series of 

hydroxylaluminum disoaps that could increase the viscosity of propane, pentane and 

hexane at diluted concentrations of 1 wt% without a co-solvent being required. Such 

findings proved that such small molecular chain polymers also may be capable of 

serving as thickener agents for miscible gas flooding. Dhuwe et. al and Lee et al.[71, 

231] also reported that the solubility of silicone polymers in compressed liquid propane 

and butane is quite high for high molecular weight of poly(dimethylsiloxane) (PDMS) 

at low temperature. However once the temperature increases, it needs a higher pressure 

to get the polymer dissolved in the solution due to large difference of free volume 

between the solvent and polymer at high temperature, leading to separation. PDMS in 

ethane required a higher pressure to dissolve because the difference between the 

solubility parameters value (14.9-15.5 MPa0.5) of PDMS and ethane (11.7 MPa0.5) is 

more than 2.05 MPa0.5.[231] Therefore, PDMS was an ineffective thickener in ethane 

and more effective in thickening propane and butane at 2 wt% and 62.05 MPa at 25 

℃. Doherty et al.[227] also found that branched benzene trisurea solubility increases 

the propane viscosity between 1.2 to 1.5 fold at temperatures from 25 to 80 ℃ and the 

concentration of 1.5 wt%. 

Recently, Dhuwe et al.[70] reported to have found small associative molecular 

thickeners for ethane, propane, and butane at the temperature range of 298-373 K and 

pressures of up to 62 MPa. They found tributyltin fluoride (TBTF) to dissolve in all 

above three gases without any heating/cooling cycle requirement. At 298 K the TBTF 
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was found to enhance the viscosity of all three light components by 70-100 fold at 1 

wt% concentration. However, as the temperature increased, the thickening ability of 

the polymer substantially decreased due to degradation. Dhuwe et al.[70] found 

hydroxyaluminum di-2ethylhexanoate (HAD2EH) to be soluble in liquid propane and 

butane, but insoluble in liquid ethane. Furthermore, this small molecule was shown to 

be a good viscosifier for butane, but not as effective for propane. Also, addition of  

phosphate ester and a cross-linker mixture to natural gas liquid,[259] improved the 

viscosity just slightly compared to those caused by TBTF and HAD2EH.[70] 

In the Dhuwe et al. study, the viscosity was measured using a falling ball viscometer. 

Another study evaluated the solubility and viscosity enhancing property of ultrahigh 

molecular weight drag reducing agent (DRA) poly-α-olefin, and high molecular 

weight PDMS (Mw 980,000) in NGL. At a concentration of 0.5 wt%, DRA polymer 

was found to be soluble in butane and propane above the vapour pressure for the 

temperature range of 298-333 K, and soluble in ethane above 20 MPa.[231] Above 3.5 

MPa, DRA polymer proved to be a better thickener for butane and propane, and an 

ineffective thickener for ethane for pressures of up to 62 MPa due to its low solubility. 

This means that an NGL with high concentration of ethane requires higher pressure to 

dissolve the DRA polymer. A high molecular weight PDMS was found to be an 

ineffective thickener in NGL application for EOR.[231]  

None of the above materials tested by other researchers have been used as a direct 

thickener specifically for an AG mixture containing primarily CH4, NGL components 

and CO2. In fact, the available data about the direct thickening of an AG mixture are 

very scarce in the literature. Therefore, in the case of Field A, none of the materials 

tested to date can be used as a thickener for the field’s AG mixture which is being used 

for miscible gas flooding.  There are similar fields around the globe containing a 

significant fraction of CO2 (15-80%)[262-264] which makes this research more 

relevant to other field scenarios.    

This study is to assess the solubility of a library of low/high molecular weight 

polymers in an AG mixture enriched with CO2 and then examine their effectiveness to 

control the gas mobility in miscible gas EOR. In order to achieve this objective, first, 

a library of polymers was chosen to be tested for their solubility. The polymers were 

chosen based on the existing available data in the literature covering the solubility of 
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commercially available polymers in CO2 and light hydrocarbons. Considering the 

composition of Field A  AG, the solubility of a total of 32 polymers in a gas mixture 

containing 60% methane, 6% ethane, 9% propane, and 25% CO2 was determined using 

a parallel gravimetric extraction method proposed by Bray et al.[265] The parallel 

gravimetric extraction is considered as a high throughput and effective technique for 

preliminary screening of polymers with regards to their solubility in a gas mixture. 

After selecting the polymers with the highest weight extracted during the high 

throughput solubility experiments, a series of cloud point pressure measurements were 

performed at different temperatures. The cloud point pressures were measured using 

different enriched gas mixtures using a high pressure windowed cell. These 

experiments were to check the compatibility of the polymers with the range of 

pressures applicable to Field A. In the next stage of the work, the polymer that has a 

lower cloud point pressure in the AG mixture at Field A reservoir conditions was 

examined for possible viscosity enhancement in the AG mixture, this was 

accomplished by using a manufactured capillary viscometer at different temperatures 

and different concentrations. Lastly, the potential of the polymer thickener as an EOR 

agent was evaluated using reservoir condition core flooding experiments. The core-

flood experiments would reveal if a thickener can improve the sweep efficiency of the 

gas flood for Field A at lab scale. For these experiments representative carbonate core 

plugs and crude oil from the Field A were used.   

4.2 Experimental Methodology    

4.2.1 Materials  

A complete list of the polymers/oligomers chosen initially to be investigated in this 

study is provided in Table 4.1. The polymers/oligomers were sourced from a number 

of international commercial suppliers (i.e. Jiangsu Yinyang Gumbase Material, Fluka 

AG, BASF- ICIS, DOW Corning, and Sigma-Aldrich). The gas mixture chosen to 

represent the average of major components of injected gas in Field A included three 

hydrocarbon gas mixtures (CH4 60 mol%, C2H6 9 mol%, C3H8 6 mol%, and CO2 25 

mol%; CH4 75 mol%, C2H6 9 mol%, C3H8 6 mol%, and CO2 10 mol%; and CH4 40 

mol%, C2H6 7 mol%, C3H8 3 mol%, and CO2 50 mol%) purchase from BOC Gas, 

Australia. The CMG WinProp Module (Version 2011) was used to estimate the density 
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of the HC gas mixtures as needed at different pressure and temperature values using 

Robinson equation of state (EOS). 

The light crude oil was collected at the wellhead from the Field A, Oman. The 

density and viscosity of the dead crude oil were 0.81 g.cm-3 and 2.7 cP (377 K and 55 

MPa), respectively. Since this was a dead oil sample, most of the light fractions had 

been flashed out of the oil and, therefore, there was no light hydrocarbon under C5 in 

its composition (Table 4.2). The oil composition was obtained using gas 

chromatography with a flame ionization detector (GC-FID). Considering the available 

Field A brine composition, a synthetic brine was prepared in the laboratory using 

analytical grade salts and with a total dissolved solids of 275 g.L-1 (NaCl 220 g.L-1 and 

KCl 55 g.L-1). For the core flooding experiments, a number of relatively tight 

carbonate core plugs drilled from the Field A wells at reservoir depths of 4995 to 5000 

meters were used.   

Table 4.1 Library of polymers/oligomers used in parallel gravimetric extraction 

experiments. 

Sample 

number 

Polymer/oligomer/small 

molecule material name 

Molecular 

weight        

(g.mol-1) 

Degree of 

polymerization 

Supplier 

1 poly(vinyl acetate ) 250,000 2,903.9 Jiangsu  Yinyang 

Gumbase Material 

2 poly(vinyl acetate ) 150,000 1,742.3 Jiangsu  Yinyang 

Gumbase Material 

3 poly(vinyl acetate ) 80,000 929.2 Jiangsu  Yinyang 

Gumbase Material 

4 poly(vinyl acetate ) 55,000 639.8 Jiangsu  Yinyang 

Gumbase Material 

5 poly(vinyl acetate ) 16,000 185.8 Jiangsu  Yinyang 

Gumbase Material 

6 poly (vinyl acetate co-vinyl 

alcohol)-40% 

72,000 1,636.3 Fluka AG 

7 poly (vinyl acetate co-vinyl 

alcohol)-80% 

9,000 204.5 Fluka AG 

8 poly (vinyl acetate co-vinyl 

alcohol)-88% 

96,000 2,181.8 Fluka AG 

9 poly(ethylene glycol) 8,000 21 BASF- ICIS 

10 poly(dimethylsiloxane) 

PDMS SILANOL TERMI 

170,000 - DOW Corning 

11 poly(vinyl pyrrolidine) 10,000 4,000 BASF- ICIS 

12 poly(4-vinyl pyridine) 60,000 570.6 BASF- ICIS 

13 poly(4-vinyl pyridine) 50,000 475.5 BASF- ICIS 

14 poly(methyl methacrylate) 15,000 148.3 Sigma Aldrich 

15 hydroxyethyl-cellulose 140,000 - Sigma Aldrich 

16 poly (ethylene vinyl acetate) 55,000 481.8 Sigma Aldrich 
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17 cellulose acetate autyrate 70,000 - Sigma Aldrich 

18 poly(vinyl methyl ether) 60,500 1,041.6 Sigma Aldrich 

19 poly (vinyl ethyl ether) 4,337 52.7 Sigma Aldrich 

20 poly(dimethylsiloxane) 97,300 - Sigma Aldrich 

21 poly(butyl methacrylate) 337,000 2,369.9 Sigma Aldrich 

22 poly (ethylene succinate) 10,000 69.3 Sigma Aldrich 

23 poly(isobutylene) 200,000 3,564.6 Sigma Aldrich 

24 poly(butadiene) 3,000 55.4 Sigma Aldrich 

25 poly(propylene glycol) 

mono butyl ether 

1,000 11.1 Sigma Aldrich 

26 poly (propylene carbonate) 50,000 489.7 Sigma Aldrich 

27 methyl-β-cyclodextrin 1,310 1 Sigma Aldrich 

28 poly(methyl hydro siloxane) 3,200 - Sigma Aldrich 

29 poly(propylene glycol) 2,700 35.4 Sigma Aldrich 

30 1,4-di-tert-butylbezene 190 1 Sigma Aldrich 

31 poly(vinyl methyl ketone) 500,000 7,133.6 Sigma Aldrich 

32 poly(1-decene) 544 6.4 Sigma Aldrich 

 

Table 4.2 Compositional analysis results of Field A dead oil in mole percentage  

Component Mole % Component-cnt Mole % 

H2 0 C16 4.15 

H2S 0 C17 3.85 

CO2 0 C18 3.77 

N2 0 C19 3.97 

C1 0 C20 3.27 

C2 0 C21 2.99 

C3 0 C22 2.87 

iC4 0 C23 2.67 

nC4 0 C24 2.47 

C5 0 C25 2.19 

iC5 0.01 C26 2.1 

nC5 0.02 C27 1.99 

C6 0.33 C28 1.85 

C7 1.54 C29 1.85 

C8 3.71 C30 1.77 

C9 4.84 C31 1.64 

C10 5.54 C32 1.43 

C11 5.15 C33 1.35 

C12 4.72 C34 1.26 

C13 5.08 C35 1.2 

C14 4.63 C36+ 10.93 

C15 4.86 Total 100 
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4.2.2 Experimental Setup and Procedure 

4.2.2.1 Polymer Solubility Measurements  

4.2.2.1.1 High Throughput Gravimetric Extraction (HTGE) 

 In the literature, the HTGE screening method has been described as a rapid method 

to use when testing a large library of polymers for their solubility in gases and 

supercritical solvents (SCF). Figure 4.1 shows the schematic diagram of the 

gravimetric extraction experiment used in this research. The polymer extraction vessel 

is designed and built to hold 40 polymer samples at a time. To test every batch of 

polymers, first, an accurate weight balance was used to weigh the polymer samples. 

The polymer samples were weighed into open-ended Borosilicate glass tubes with a 

length of 60 mm and an ID of 6.6 mm.  A piece of quartz frit was placed into the 

bottom opening of every tube to retain the sample. The quartz frit would let the gas 

mixture into the tube from bottom during the extraction experiment but would prevent 

the polymer sample from being drained from the tube.  The top opening of every tube 

was then secured with a piece of tissue paper (KIMTECH science). The tissue would 

prevent any possible overflow of the polymer sample but would not prevent the gas 

mixture from freely flowing through the glass tube while extracting the polymer 

sample (if soluble). The tubes were secured in between specially designed slotted 

stainless steel disks before being placed inside the extractor shell (Figure 4.1). An AG 

mixture was introduced into the extraction vessel and pressurised to 55 MPa at 

constant flow rate (200 cc/min) using a gas compressor (Haskel, AGT-30/75). The gas 

was then flowed through the vessel under in-situ pressure and temperature for two 

hours at constant flow rate 80 cc/min. A dome-loaded back pressure regulator (BPR) 

connected to a syringe pump was used to control the gas pressure inside the vessel 

during the experiment. While the effluent gas from the extractor was vented into a 

fume cupboard, a water trap was used to catch the polymer material dropping out as 

the gas flashed to atmospheric pressure. After a predetermined period of the time, the 

gas injection was stopped and gas inside the extractor was slowly vented at 0.6 

MPa/min, controlled by regulating pilot pressure applied to the BPR. Upon reaching 

atmospheric pressure, the glass tubes were carefully removed and individually 

reweighed to determine any weight loss that they may have endured. Every batch of 

polymers were tested twice at the same conditions. By comparing the results of every 
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two replicate experiments, the weight loss results were found to be reproducible within 

±2 - 4% of the extracted weight. The gas mixture used in the extraction experiments 

contained 60 mol% methane, 9 mol% ethane, 6 mol% propane, and 25 mol% CO2. 

 

Figure 4.1 Schematic diagram of gravimetric extraction equipment used for rapid 

measurement of polymers solubility in AG mixture. 

4.2.2.1.2 Cloud Point Curve Measurements 

The cloud point pressure curves were determined using a standard technique set out 

in the literature involving isothermal compression and then slow decompression of 

binary mixtures of known compositions.[266] Cloud point pressure measurements 

were carried out for the three polymers/ oligomers that indicate a high level of 

extraction in the HTGE experiment to confirm its solubility in the AG mixture. Cloud 

point pressures were determined at a temperature range of 298 K-377 K for PDMS and 

poly(methyl hydro siloxane) (PMHS) (both at 1.5 wt%) in AG mixture. For poly(1-

decene) (P-1-D), the cloud point pressures were measured at the temperature range of 

358-377 K and at different P-1-D concentrations (1.5-9 wt%).      
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Figure 4.2 Schematic diagram of experimental setup used for cloud point pressure 

measurements. 

Prior to each cloud point pressure measurement for a polymer/oligomer with known 

solubility (determined by HTGE method), the windowed cell (Figure 4.2) was cleaned 

with acetone and toluene sequentially. In each test run, the entire high pressure cell 

was thoroughly cleaned with acetone and then with toluene. The combination of 

solvents would remove the polymers residues from the cell. The cell is cleaned at a 

temperature less than 323 K. Then, it was placed under vacuum for a few hours to dry. 

For every polymer/oligomer, depending on its solubility in the AG mixture, a small 

amount of it was accurately weighed and placed on a clean thin glass plate. The weight 

of the polymer or oligomer was needed to place the required amount of it on the glass 

plate and also be able to calculate the exact composition of the polymer/AG mixture 

(in wt%) during the experiment knowing the volume of the high pressure windowed 

cell (i.e. 20 cm3). Then the glass plate was transferred to the view cell and placed 

horizontally on a small stand in the cell. The cell was closed, sealed, and displaced 

slowly with low pressure AG mixture to purge any air from the system. Then the 

temperature was raised to the reservoir in-situ value. The cell pressure was increased 

by introducing the AG mixture slowly using a syringe pump with increments of each 

0.4 MPa until a single transparent phase of polymer/AG solution was achieved. This 

process was done under no stirring for the solution and monitored through the see 

through windows of the cell and using the instrument’s camera. At this stage, the 

polymer had completely dissolved in the AG solution. Then the cloud point pressure 
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of the mixture at the set temperature was determined by slowly lowering the pressure 

by increments of each 0.4 MPa until the AG solution became cloudy. The pressure at 

which it was no longer possible to see the back of the cell through the polymer/gas 

solution (90% reduction in transmitted light intensity) was recorded as the cloud point 

pressure.  For any given weight percent of every polymer/oligomer, this process was 

repeated three times. The results were found to be reproducible within ∓ 0.5 MPa. 

4.2.2.2    Viscosity Measurements  

The viscosity of the AG mixture and oligomer-thickened AG were measured in a 

capillary viscometer (CVL-1000, Core Laboratories Inc.) (Figure 4.3). It is specifically 

designed to measure the viscosity of single phase fluids at high pressure and high 

temperature within the range of 0.01 to 10,000 cP. It operates based on the Hagen-

Poiseuille law, measuring the exerted pressure drop across a capillary tube while 

flowing a fluid through the tube at a predetermined flowrate (0.01 to 1.5 ml.min-1). A 

principle of the Poiseuille equation is employed in this viscometer to measure the 

viscosity of the single-phase AG mixture  μAG or thickened AG solution μsol (cP): 

Where, Q m3.s-1 is the injection rate of thickened AG solution through the capillary 

tube, ∆P (bar) is the measured pressure drop across the capillary tube, reff (mm) and L 

(mm) are the effective radius and the length of capillary tubing. K is a factor that 

depends only on the parameters of the tubing: 

μsol =
π (reff)

4 ∆P

8 Q L
 

 

Eq 4. 1 

 

μsol = K
∆P

Q
 

 

Eq 4. 2 

 

K =
π (reff)

4 

8  L
 

 

Eq 4. 3 
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The K factor values for the capillary tubing mounted in the viscometer (5 m length and 

0.18 mm internal diameter) was calculated from determined linear slopes (∆P/Q) at 

two temperatures 298 K and 377 K and four different injection rates of (0.05, 0.08 , 

0.1 and 0.2 ) cm3.min-1 using  a known viscosity of water at temperature and pressure 

. The K values found from the calibration are equal 0.036 at 298K and 0.033 at 377 K. 

Then, Falcon software estimates the K values for measuring the fluid viscosity over 

temperatures ranges of 358 to 377 K to be equal 0.033. 

 

Figure 4.3 Schematic of Capillary Viscometer used for viscosity measurements (55 

MPa and 377 K). 

Due to the small ID of the coiled capillary tube (0.18 mm) in the viscometer, there 

was a concern that at the conclusion of every measurement, any leftover oligomer 

inside the tube could not be completely cleaned impacting the next measurement with 

the next AG/oligomer solution. Therefore, prior to re-measuring the viscosity of every 

solution, the coiled capillary tubing was replaced with a new one and the instrument 

was recalibrated. For every experiment, the instrument was heated to the desired 

temperature and then vacuumed before being filled and pressurised with the oligomer 
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thickened AG or the AG mixture on its own. After attaining stability in the viscometer, 

the solution was passed through the capillary tube at different injection rates. The flow 

rates were kept low enough to have laminar flow (Reynolds number less than 2000) in 

every viscosity measurement. Using the viscometer’s software, a range of suitable 

flow rates could be predicted. Such a range was found to be 0.1 to 0.3 cm3.min-1 for 

the oligomer/AG solutions and 0.05 to 0.1 cm3.min-1 for the AG mixture.  The viscosity 

of every solution was measured at least three times to ensure the reproducibility of the 

results. 

4.2.2.3 Core Flooding Experiments 

A schematic diagram of the core flooding setup used for the oligomer-thickened AG 

and AG mixture flooding is shown in Figure 4.4. The apparatus consisted of four 

modules: a core holder, injection system, heating system and production system. The 

core holder was of Core Laboratories’ HCH Series, Biaxial type. As can be seen from 

Figure 4.4, the injection system consisted of four one-liter fluid accumulators, one for 

each of the injection fluids. The syringe pumps were all of pulsation free, positive 

displacement type (Vinci Technology) providing constant pressure or constant 

injection flow rate with high precision. The fluid accumulators and the core-holder 

were heated to the desired temperature using heating jackets (SRH Etched foil, 

Watlow, USA) and the flow-lines and other fittings/connections carrying the 

injection/production fluids were heated using suitable heating tapes (Stretch-To-

Length, Watlow, USA). The temperature was also regulated during the experiments 

using a digital temperature controller (Standard-89000-00, Digi-Sense, USA). On the 

production side, the pore pressure was regulated using a dome-loaded back pressure 

regulator whose pilot pressure was provided by a syringe pump. Tall-form accurately 

graduated cylinders were also used to collect and measure the produced fluid at 

atmospheric conditions. In addition to analog pressure gauges installed at various spots 

to monitor the pressure within various components of the core-flood system, two 

digital pressure transducers (KELLER, K-107) were installed at the inlet and outlet of 

the core-holder to monitor and record the differential pressure across the core plug 

with an accuracy of ±1 psi.   

For every experiment a composite rock sample was constructed using two reservoir 

core plugs from Field A. Each composite core was about 14 cm long and 3.8 cm in 
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diameter. The core-plugs were initially cut in synthetic formation brine and then 

cleaned using toluene and methanol in a temperature controlled Dean- Stark extractor. 

Subsequently, they were dried in an oven at 358 K for about 24 h. Prior to being 

flooded, the porosity and gas permeability of each plug was measured using an 

automatic porosi-permeameter (AP-608 instrument, Coretest Systems Inc.). The 

composite sample was then wrapped in a combination sleeve made up of FEP heat 

shrink and Viton rubber and placed inside a horizontal core-holder. After applying the 

next effective pressure of 6.82 MPa as the overburden pressure, the sample was 

vacuumed for 24 hours. Then, the overburden pressure, temperature and pore pressure 

were raised gradually to their respective in-situ values. At all stages, the overburden 

pressure was maintained 6.82 MPa higher than pore pressure reaching a final value of 

62 MPa, eventually. 

After reaching the full in-situ pore pressure, to ensure that the sample was 

completely saturated with the formation brine, the sample was subjected to brine 

injection at a constant flow rate of 0.2 cm3.min-1 for two days. At the conclusion of the 

saturation process, the absolute permeability for the composite core was determined at 

three different flow rates (0.2, 0.4 and 0.8 cm3.min-1). The brine saturated core plugs 

were then exposed to the reservoir dead oil which was injected at a rate of 0.3 

cm3. min−1 for three to four days until reaching steady state conditions corresponding 

to irreducible water saturation. During this time, the volumes of the produced oil and 

brine were recorded. This preparation process was repeated at every test after the 

composite core plugs where cleaned from the previous test. After the irreducible water 

saturation was achieved in each test, the AG mixture and/or thickened AG solution 

were injected at a constant injection rate of 0.4 cm3.min-1 in all three flooding tests.  
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Figure 4.4 Schematic diagram of the core-flood setup. 

For the first test, only the P-1-D-thickened AG solution was employed as a 

secondary oil recovery. This P-1-D-thickened AG solution was injected at a constant 

injection rate until a total of 9 PV (pore volume) of thickened AG solution was injected 

and no more oil was produced. After successfully completing the first test, the core 

was thoroughly cleaned and prepared for the second test. In this test both the AG 

mixture and the P-1-D -thickened AG solution (P 1-D, 5 wt%) were introduced into 

the core. At first the AG mixture was injected at a rate of 0.4 cm3.min-1 until there was 

no more oil produced from the composite core plugs which was roughly 3.6 PV. The 

subsequent P-1-D-thickened AG solution was then introduced into the core to aid in 

the production of the remaining oil in the core plugs. 

The third test was mainly focused around the breakthrough of the AG mixture, in 

this particular test the core plugs were flooded with the AG mixture at the same 

injection rate until breakthrough is detected. As soon as breakthrough was observed, 

the P-1-D thickened AG solution was commenced to produce the residual oil and the 

solution injection was continued until a total of 9 PV was injected. 

In each test, the cumulative produced oil volume inside the graduated cylinder was 

recorded and the gas was released into the atmosphere through the fume cupboard 
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(Johndec, M 1.5). At the end of each test, an oil recovery factor versus injected 

gas/oligomer pore volume plot was generated from the production and injection data. 

It should also be mentioned that, there was no brine production during all three tests. 

4.3 Results and Discussions  

4.3.1 Polymers/Oligomers Solubility in the AG Mixture 

In general, solubility of polymers/oligomers in gas mixtures containing mainly CH4 

is very low as the light alkanes are very weak supercritical solvents (SCF) unless the 

system pressure and temperature are and/or the density of the components are 

considerably high.[158] In addition, it is difficult to perform molecular dynamic 

simulation studies for gas mixtures containing more than one component to determine 

the solubility of polymers in them at any given pressure and temperature. Therefore, 

as the only viable option, the previously described high- throughput extraction method 

was used to screen the solubility of the selected 32 polymers/oligomers in supercritical 

hydrocarbon gas mixture (CH4 60 mol%, C2H6 9 mol%, C3H8 6 mol% and CO2 25 

mol%).  Figure 4.5 shows the percentage of the original weight of every polymer or 

oligomer extracted by the AG mixture. As pointed out before, the 32 

polymers/oligomers examined were commercially available materials which had been 

tested by other researchers to be soluble in pure CO2 at high and/or low pressures. 

Based on the solubility data presented in this graph, the polymers/oligomers may be 

divided into four categories. The first category are those with high level of extraction 

(> 96%) under the conditions explored in this work. This category contains three 

oligomers and one polymer namely P-1-D (Mw 544), 1,4-di-tert-butylbenzene (Mw 

190), PMHS (Mw 3,200) and PDMS (Mw 97,300). The second category contains the 

polymers/oligomers with a moderate level of extraction (45-85%). This category 

covers another three polymers and one oligomer namely PDMS (Mw 170,000), poly 

(vinyl methyl ether) (Mw 60,500), poly(vinyl ethyl ether) (Mw 4,337), and 

poly(propylene glycol) (Mw 2,700). These materials would need more pressure and/or 

more volume of gas passing through the extraction vessel so they may dissolve 

completely in the AG mixture.  The third category includes those with a low level of 

extraction (5-20%). The materials in this category include poly(ethylene glycol) (Mw 

8,000), poly(ethylene succinate) (Mw 10,000), polybutadiene (Mw, 3000) and 

poly(propylene glycol) mono butyl ether (Mw 1,000). From the second and third 



  

103 

category, it can be seen that the polymer backbone and molecular weight architectures 

affect the polymer solubility in the AG mixture. For instance, the weight extraction of 

poly(vinyl alkyl ether) increases with increase in the length of the alkyl tail from 

methyl to ethyl (45-85%). As the length of alkyl tail on this polymer increases, the free 

volume of this polymer is expected to increase, which makes this polymer easier to 

dissolve in the AG mixture if the alkyl tail increases to propyl or butyl. For the 

molecular weight effects, the PDMS (Mw 170,000) in category two was much less 

soluble in the AG mixture than PDMS (Mw 97,000) in category one due to the entropic 

effects associated with the higher molecular weight of PDMS. The final category 

includes those polymers with negligible, < 5% extraction. These polymers belong to 

the carbonated and hydroxyl end groups such as poly vinyl acetate (PVAc) and poly 

(vinyl acetate co-vinyl alcohol) (PVA-coVA). These end groups enhanced the 

solubility of low/high molecular weight polymers in pure CO2 under high 

pressure,[267] but unfortunately, that did not occur in the case of the AG mixture even 

when enriched with CO2.  

 

Figure 4.5 Extracted weight % in the AG mixture for a library the 32 

polymers/oligomers at 55 MPa and 337 K. The name of the polymers/oligomers whose 

numbers are presented on the horizontal axis can be found in Table 4.1. 

The polymer/oligomer concentration in the AG mixture is determined using the 

following equation: 
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Where ρp (g.cm-3) and mp(g) are the density and mass of the polymer that is dissolved 

into the AG mixture. 𝑉𝑐𝑒𝑙𝑙  is the volume of the windowed cell which is equal to 20 

cm3. ρAG (g.cm-3) is the density of the AG mixture at reservoir pressure and 

temperature which is estimated using the CMG WinProp model. 

The solubility of those polymers/oligomers with high extraction percentages 

(Category 1 from above) was further verified using conventional cloud point pressure 

measurements conducted over a range of temperatures (concentration was 1.5 wt%). 

A 1,3-di-tert-butylbenzene substance has been excluded from the cloud point pressures 

measurements because it has a low molecular weight (190 g.mol-1) and is expected to 

have an insignificant effect on the results. However, it is included in the previous test 

to validate the high soluble polymers results from the HTGE experiment, as this is also 

proved by Miller, M.B., et al.(2012) that 2,4-di-tert-butylbenzene was soluble in CO2 

and CO2/H2 mixture.[268] Figure 4.6 shows the measured cloud point pressures for 

PDMS, PMHS and P-1-D at different temperatures. As can be seen, PDMS and PMHS 

were found to be completely soluble in the AG mixture over the whole range of 

temperatures investigated (298-383 K) while for P-1-D, that was found to be the case 

only at temperatures above 358 K. These measurements indicate that P-1-D and PMHS 

can be adequately dissolved into the AG mixture under Field A reservoir conditions. 

Under the Field A temperature, PDMS has a much higher cloud point pressure than 

other two oligomers due to the energetic and entropic effects.[269] In general, most of 

the polymers and oligomers exhibit LCST (Lower critical solution temperature) trends 

in the volatile hydrocarbon components and CO2.[158] As the temperature increases, 

a higher pressure is required to dissolve the polymer or oligomer in a mixture. As 

apparent from Figure 4.6 PMHS exhibits similar trend to the PDMS in the light 

hydrocarbon gases and CO2 mixture. The solubility of both additives have a strong 

dependency on temperature as their molecular weights are less than 100,000 g.mol-1. 

In a previous study, Zeman et al.[270] found that PDMS has a high solubility in light 

hydrocarbon gases (C2H6 – C4H10) because of the large thermal expansion coefficient 

for the PDMS and low reduced temperature values for the solvents. However, this 

χ
sol=

mp 

mp+ ρAG.(Vcell−
mp

ρp
)

 
 

Eq 4. 4 
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solubility reduces with reducing the molecule size of alkane, similar to earlier 

described work that Dhuwe et al. found PDMS to be less soluble in ethane than 

propane and butane.[231] Therefore, in this study, PDMS becomes less soluble in the 

AG mixture as CH4 is the main constituent of the gas mixture. In addition, due to the 

entropic effects, the density of PDMS decreases and its free volume increases at high 

temperature, making PDMS to be less soluble in the AG mixture as the temperature is 

increased. Therefore, it needs a higher pressure to dissolve completely in the gas 

mixture at high temperatures. 

The observed solubility for silicone polymer/oligomer (PMDS and PHMS) and poly 

alfa-olefin (PAO) oligomer (P-1-D) in the gas mixture is probably due to partial 

presence of CO2 in the mixture and the influence of high temperature and pressure. 

Generally, the solubility of polymers in a mixture consisting of low molecular weight 

components increases at elevated temperature due to the dominance of dispersion 

interactions.[158] In the experiments conducted here, P-1-D behaves as a single phase 

liquid in the AG mixture only at temperature above 358 K, unlike PDMS and PMHS, 

which start behaving as single-phase liquids in the gas mixture at 298 K as can be seen 

in Figure 4.6. Thermodynamically, the heat of mixing depends on the difference 

between the cohesive energy of a solution, as the temperature rises, the cohesive 

energy of the mixture becomes greater than the total cohesive energies of the 

component liquids.[271] The temperature and pressure needed to obtain the solubility 

of the polymers in SCF depend on the intermolecular interaction between solvent-

polymers segment and polymer-polymer and solvent-solvent in solution.[272] A P-1-

D has flexible alkyl branching groups on each other carbon of their backbone chain. 

These flexible alkyl groups can shape themselves in numerous conformations, forming 

random oligomer coil. These conformations impact on the accessibly of light gas to 

the oligomer coil. As the temperature increases, the solvent becomes more effective 

and the oligomer coil expands which causes a lower contact surface area between 

molecules and decreases the intermolecular interactions.[273] If the temperature is 

high enough as is in Field A, the energetic interaction between the oligomers and 

solvents outweigh the oligomers segment-segment and solvent–solvent interaction. In 

Figure 4.6, above 358 K the P-1-D becomes completely soluble in the mixture which 

can obtain a single phase solution at suitable pressure. Therefore, given these solubility 

conditions, P-1-D is expected to dissolve in the AG mixture at Field A conditions. 
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Figure 4.6 Measured cloud point pressures for three polymers at 1.5wt% in the AG 

mixture at different temperatures. 

CO2 is a weak solvent for many polymers. Several studies have reported that silicone 

polymer and PAO oligomer are soluble in CO2 under supercritical conditions.[64, 66, 

274-277] Partial presence of CO2 in a hydrocarbon gas mixture can have a large 

influence on the cloud point pressure of the polymer/oligomer- gas mixture as evident 

from Figures 4.7 and 4.8. The cloud point pressures were measured for PMHS and P-

1-D at a concentration of 1.5 wt% in  three AG mixtures containing different CO2 

weight fractions (CH4 75 mol%, C2H6 9 mol%, C3H8 6 mol%, and CO2 10 mol%; CH4 

60 mol%, C2H6 9 mol%, C3H8 6 mol%, and CO2 25 mol%; and CH4 40 mol%, C2H67 

mol%, C3H8 3 mol%, and CO2 50 mol%). It is found that as the CO2 content in the AG 

mixture increases, the cloud point pressure decreases across all temperatures. As can 

be seen from the two figures, a 15% increase in the CO2 content (from 10 to 25 mol%) 

in the gas mixture causes a reduction in could point pressure of around 3 MPa for both 

oligomers. These results may indicate that the presence of CO2 in the AG mixture can 

possibly facilitate the dissolution of silicone and POA oligomers in the gas mixture.  

In comparison to the silicone oligomer in pure CO2, Lee et al.[278] found the cloud 

point pressures of low molecular weight (Mw 3,780) PDMS (10 MPa, 14 MPa) at the 

concentration 2 wt% and different temperatures (296 K and 313 K) to be 4.7-3.4 times 

less than that of the AG enriched by CO2. That is because PDMS molecules are more 

CO2 -philic than light hydrocarbon. 
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Figure 4.7 Measured cloud point pressures for PMHS at 1.5 wt% in the AG mixture 

containing different percentages of CO2 at different temperatures. 

 

Figure 4.8 Measured cloud point pressures for P-1-D at 1.5 wt% in the AG mixture 

containing different percentages of CO2 at different temperatures. 

Based on the earlier presented solubility results (Figure 4.6), among the three 

materials examined, P-1-D has a lower cloud point pressure in the AG mixture at Field 

A reservoir conditions. Lower cloud point pressure may also make it possible to 

increase its concentration in the gas mixture to values higher than 1.5 wt% to further 

increase the AG mixture viscosity.  In comparison, the cloud point pressures of both 
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PDMS and PMHS are considerably higher even exceeding the reservoir pressure limit 

(55 MPa). Therefore, the concentrations for both additives cannot be increased to more 

than 1.5 wt%. Furthermore, according to the data reported in the literature, at 298 K, 

the miscibility pressures of PDMS (2 wt%) with  pure CO2, ethane, propane and butane 

(23 MPa, 12 MPa, 1.07 MPa and 0.31 MPa, respectively) are much less than the 

miscibility pressure of PDMS and PMHS in the AG mixture (47 MPa and 43 MPa, 

respectively).[231, 278] This is because CH4 is the main component in the mixture 

making PDMS less soluble. A 1- 2 wt% solution of  PDMS in CO2 or NGL enhanced 

the viscosity to only 1.5 to 2 fold only at 298 K. [231] Hence, PDMS and PMHS may 

not be expected to be suitable thickeners at higher temperature. Therefore, the focus 

of any further assessments has been placed solely on P-1-D.  

The cloud point pressure for P-1-D was measured in the AG mixture containing CH4 

60 mol%, C2H6 9 mol%, C3H8 6 mol%, and CO2 25 mol%, at three temperatures of 

358 K, 368 K and 377 K and for a range of concentrations. The results of the 

measurements are plotted in Figure 4.9. As can be seen from the figure, at all three 

temperatures, the measured cloud point pressure increases linearly with P-1-D 

concentration. As expected, with increasing temperature, a higher pressure is needed 

to dissolve the P-1-D /AG mixture in a single phase. At 9 wt% of P-1-D in the mixture, 

the required pressure has to be 51.4 MPa at 377 K which is still below the reservoir 

pressure of 55 MPa. Hence, P-1-D oligomer can be adequately dissolved into this 

mixture at reservoir conditions even for concentrations higher than 9 wt%. This 

behaviour is because of the solvent entropy effect on the oligomer solubility as 

described earlier. At high temperature, changes in the cloud point pressure are very 

subtle, as can be seen in Figure 4.8. The reason behind such a behaviour can be 

explained as follows. Generally, as the temperature increases the free volume 

difference between the solvent and the polymer would increase leading to the system 

phase separation which then requires elevated pressures for the solution to remain a 

signal phase.[158] However, at high pressure, the molar volume of the solvents 

reduces and the difference in free volume decreases between the polymer and the 

solvent which leads to the enthalpy of mixing dominating over the entropic of 

mixing.[158] That can be attributed to the cloud point pressure curve being relatively 

constant with increasing temperature. Figure 4.9 shows the results of cloud point 

pressure measured for P-1-D at different known solubilities and temperatures. At all 
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three temperatures, the measured cloud point pressures increase linearly with P-1-D 

solubility weight.  

 

Figure 4.9 Measured cloud point pressures for P-1-D at different concentrations and 

temperatures. 

4.3.2 P-1-D-Thickened AG Viscosity 

The viscosity of the P-1-D- thickened AG mixture was measured at two pressures 

of 52  and 55 MPa (both are above its cloud point), three temperatures of 358 K, 368 

and 377 K and varying the oligomer concentration between 0  and 9 wt%. The results 

of the measurements are presented in Figures 4.10 and 4.11 in the form of the actual 

measured viscosities and relatives viscosities(
μsol

μAG
), respectively. As can be seen from 

these two figures, there is a significant increase in P-1-D-thickened AG mixture 

viscosity (2-7.4 fold) with increase in the P-1-D concentration. Overall, the 

relationship between viscosity and P-1-D concentration seems to be linear. The 

temperature also tends to have a moderate effect on the measured data with viscosity 

of the solution decreasing almost linearly with increase in temperature. In general, the 

thermal degradation of any polymeric additives at 373 K is very unlikely to occur much 

less affect their rheological properties. Such a loss can cause a significant reduction of 

viscosity in most polymers due to the weakness of intermolecular association of 

polymer-polymer segments. However, in this study, P-1-D has been found to be an 

effective thickener for the AG mixture tested even above 373 K at high pressure. It 

seems that this oligomer is thermally stable at high temperatures as demonstrated by 
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other studies too where it was dissolved in 1- hexane and 1-octane mixture at high 

temperature and high pressure.[279, 280] In general, poly-α olefins, such as P-1-D, 

have excellent thermal and oxidative stability, high viscosity index (VI) and low pour 

point due to the lower branching ratio (0.19).[281] A high VI means the rate of 

viscosity drop is low as the fluid temperature increases due to expansion of the 

oligomer coil with increasing temperature.[282] As previously shown in the P-1-D-

AG mixture, the AG mixture solvents become more effective as the temperature 

increases which leads to the P-1-D dissolving through the expansions of the P-1-D 

molecules. Conversely, as the temperature decreases, AG solvents become less 

effective as the macromolecules contract leading to the precipitation of the P-1-D. In 

addition, this oligomer is stable at high temperature due to the flexible alkyl branching 

group on the C-C backbone chain and that its synthesis process takes place at high 

temperature (398 K) in the isomerization reaction resulting in a better thermal 

stability.[283, 284] Hence, P-1-D does not tend to affect it rheological properties at 

high temperature and maintains its ability to enhance the AG mixture tested here.  

 

Figure 4.10 Measured P-1-D-thickened AG gas viscosity at different P-1-D 

concentrations, temperatures, and pressures. 
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Figure 4.11 Relative viscosity (
μsol

μAG
) at different P-1-D concentrations, temperatures, 

and pressures. 

As reported by Heller et al.,[64] dissolution of poly-1-hexenes at concentration 1-

2.2 wt% resulted in significant increases in the viscosity of n-butane and n-hexane (5 

fold ). In a recent publication, Zhang et al.[178] also found the viscosity of CO2 to 

increase significantly by 13 fold using less than 1 wt% of P-1-D at 329 K. However, 

Zhang et al. findings do not correlate and are inconsistent with the results of other 

previous research work[52] as well as the present study. In most studies reported in 

the literature, low/high molecular weight polymers and small molecules that have been 

reported to thicken CO2 used concentrations 1.5-7 wt%.[52] This experimental result 

demonstrates that the HC gas mixture can be thickened using P-1-D which is consistent 

with previous research reported with gas thickener. 

As can be seen from Figures 4.10 and 4.11, with increase in pressure, there is a slight 

increase in the viscosity of the oligomer/AG solution at all the temperatures and 

oligomer concentrations explored. Dhuwe et al have reported a similar effect where 

they thickened the light alkanes using an ultrahigh molecular weight poly α-olefin drag 

reducing agent.[70, 231] The above-described behaviour is because the strength of 

alkanes increases with density and pressure, which can be reflected on the swelling 

and overlapping between the polymer or oligomer chains. With temperature increase, 

there is also a slight viscosity reduction of the oligomers/AG solution at all the 

oligomer concentrations tested. For instance, at 5 wt% oligomer concentration, a 0.38 
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fold reduction can be seen between temperatures of 368 and 377 K. Overall, there is a 

linear relationship between the temperature and viscosity reduction of the 

oligomer/AG solution.  

The P-1-D viscosity enhancement results achieved are indeed very promising. Such 

data open up the potential of thickened AG injection in Field A and other similar fields 

toward enhancing the oil recovery beyond original estimates. The results of this study 

can be extended to reservoirs other than Field A, but in doing so two important factors 

that may require attention are the availability of sour gases (H2S and CO2) in a field’s 

AG mixture and possibility of having ultra high in-situ temperature. As the results of 

this study indicate, the presence of sour gases (H2S and CO2) in the AG mixture can 

possibly facilitate the dissolution of POA oligomers in the gas mixture. If a low amount 

of CO2 is present in the mixture, it may be difficulte to obtaine polymer solubility in 

it. In the case of ultra high temperatures (e.g 423 K), the ability of a polymer to increase 

the gas viscosity would be a concerns as such an ulta high temperature would suppress 

any viscosity enhancement achievable at lower temperatures. 

4.3.3 Core-Flood Experiments 

Three core-flood experiments were conducted under secondary and tertiary modes 

to investigate the effectiveness of the thickened AG mixture (5 wt% P-1-D) in 

enhancing the recovery from the Field A, and related fields. All three experiments were 

performed under the reservoir conditions of 377 K and 55 MPa. At this P-1-D 

concentration, the injected AG viscosity is enhanced from 0.0299 to 0.131 cP (4.38 

fold) under reservoir conditions. The pore pressure applied during the core flooding 

was higher than the minimum miscibility pressure (MMP) for the AG mixture used. 

The MMP for the AG mixture in the Field A dead oil was estimated from the CMG 

WinProp module to be 40 MPa.  Table 4.3 presents the petrophysical properties of the 

carbonate composite core plugs, the experimental conditions and the ultimate oil 

recovery factor for the flooding tests using the AG mixture as well as the thickened 

mixture. In all three flooding experiments, the residual water saturation was found to 

be very low because the oil and water viscosities (2.7 and 0.4 cP, respectively) are 

close enough at reservoir conditions and also the high pore pressure applied in the 

system. The irreducible water saturation in a laboratory scale depends on the capillary 

properties of the rock or the viscous forces between the oil and water.[285] In addition, 
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the results that we have obtained in the experiment are in line with those obtained by 

Larsen et al. as he has stated that water saturation can be reduced to zero if a high 

capillary pressure is applied and if the water in the core has a continuous phase which 

leads to an escape route for the water.[286]  

 

 

Table 4.3 Summary of the Core-Flooding Experiment Data (377 K and 55MPa). 

K: permeability; ϕ: porosity; Swirr: irreducible water saturation; Soi: oil 

saturation; RFAG: AG recovery factor; RFthick’d AG: thickened AG recovery factor; 

and RFtotal : total recovery factor. 

Test No. EOR 

mode 
Κ ϕ Swirr Soi RFAG  RFthick′d AG RFtotal 

 mD     %   %   %    %        %     % 

1 secondary 8.2 14.20 2.5 97.5 ----- 96.75 96.75 

2 tertiary 5.2 14.59

2 

2 98 84.2 10.2 94.5 

3 tertiary 2.9 15.15

3 

1.8 98.2 20 77.5 96.66 

The oil recovery profiles for all three tests are plotted in Figure 4.12 until 3.6 PV 

and in Figure 4.13 until 9 PV of thickened gas injected. In the first test, the thickened 

AG injection was conducted under secondary recovery mode. As such the thickened 

gas injection commenced at injection rate 0.4 cm3.min-1 when water saturation was at 

residual corresponding to maximum possible oil saturation in the core sample. In this 

test, the gas breakthrough occurred after 0.29 PV of thickened gas injection 

corresponding to an oil recovery of 30%. After the breakthrough, the oil recovery 

factor continued to increase steadily up until 64% or 0.85 PV of thickened gas 

injection. After that, the oil recovery continued at lower rates until the end of the 

experiment corresponding to 9 PV of gas injection and a final recovery of 96.75% of 

the OOIP. In the second test the thickened AG gas was injected to recover oil under 

tertiary mode after injecting the unthickened gas on its own under secondary mode.  

Initially, the AG mixture was injected at 0.4 cm3.min-1 and the breakthrough occurred 

at just 0.163 PV of gas injection which is much earlier than the first test. This early 

breakthrough time is due to the large viscosity contrast between the oil and 

unthickened AG mixture. As can be seen from Figure 4.12, in test 2, the oil recovery 

at breakthrough is about 20%, which is lower than that of test 1 by about 33%. In 

summary, addition of the oligomer (P-1-D) to the injected AG mixture helped to 
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improve the displacement efficiency by reducing the viscosity contrast and delaying 

the breakthrough. The viscosity contrast can be further reduced resulting in better 

displacement performance by dissolving more than 5% of P-1-D in the AG mixture.  

In the second test, at 3 PV gas injection, the oil almost stopped from being produced 

but the injection continued until 3.6 PV of gas injection at which point the oil recovered 

had reached 84.2% corresponding to a residual oil saturation of 13.8%. Subsequently, 

the injection of the P-1-D-thickened AG solution was commenced. After the injection 

of 5.4 PV of the thickened gas, owing to 4.38 fold increase in the viscosity of the 

injected gas, the oil recovery factor increased by 10% to a final value of 94.2% but 

still less than the final value achieved in test 1 by more than 2.5%.  

The third core-flooding test was conducted with P-1-D-thickend AG solution 

injected immediately after the breakthrough of the unthickened AG mixture. As can 

be seen in Figure 4.12, the AG mixture breakthrough occurred after 0.168 PV were 

injected which corresponds to an oil recovery of 21%. As may be expected, the 

breakthrough properties (injected volume and recovery factor) of these test are much 

closer to those of the second test.  In test 3, during the early times of the post-

breakthrough thickened gas injection, the oil recovery profile shows values slightly 

less than those achieved in test 1 for the same values of recovery (Figure 4.12). 

However, with further injection the two curves seem to overlap resulting in almost 

identical final recovery factors for the two floods. Given the current condition of Field 

A where gas breakthrough has already been experienced in some production wells, the 

results of the third test may be the most relevant if the thickened gas injection is to be 

implemented in this field.   
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Figure 4.12 Measured oil recovery factor versus 3.6 of total injected pore volume of 

AG mixture or P-1-D-thickend AG solution at flow rate 0.4 cm3.min-1, reservoir 

temperature 377 K, and pressure 55 MPa. 
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Figure 4.13 Measured total oil recovery factor versus 9 of total injected pore volume 

of AG mixture or P-1-D-thickend AG solution at flow rate 0.4 cm3.min-1, reservoir 

temperature 377 K, and pressure 55 MPa. 

4.4 Summary and Conclusions  

The solubility of 32 commercial polymers/oligomers was assessed in an AG mixture 

using a rapid screening method (gravimetric extraction method) and was reinforced 

using conventional cloud point testing. These methods examined a number of 

commercial polymers/oligomers that were found to be soluble in a hydrocarbon gas 

mixture as the solvent. In particular, a polymer and two oligomers were discovered to 

be soluble in the AG mixture. The solubility profiles of these three additives were 

further studied by measuring the cloud point pressures using a high-pressure cell 

equipped with a see through window. P-1-D and PMHS oligomers were found to be 

soluble in AG mixture under actual reservoir conditions. The oligomer-thickened AG 
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solution viscosity was measured using a standard capillary viscometer. The measured 

thickened AG solution viscosities show that only P-1-D has the ability to enhance the 

AG mixture viscosity between 2 to 7.4 fold at high pressure and high temperature, 

while PMHS cannot increase the AG mixture viscosity at low concentrations. It is 

found that a 5 wt% concentration of P-1-D in AG mixture can effectively increase AG 

mixture viscosity by 4.38 fold at 377 K and 55 MPa. Three composite core flooding 

tests were conducted for AG mixture and thickened AG solution flooding to assess the 

effect of 4.38 fold viscosity increase on oil recovery and gas breakthrough in secondary 

and tertiary mode recoveries. In secondary mode recovery, the P-1-D- thickened AG 

solution achieved a higher oil recovery factor than AG mixture injection and delayed 

the breakthrough to 0.29 PV. In tertiary mode recovery, the subsequent injection of 

the P-1-D-thickened AG solution showed the ability to mobilise and produce some of 

the residual oil left after AG mixture flooding completed. In summary, a direct 

thickening of AG mixture by P-1-D at high pressure and high temperature can improve 

gas mobility and sweep efficiency resulting in enhanced ultimate oil recovery
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*Reference: Al Hinai et al. (2018) in Energy & Fuels, 32(2): p. 1600-1611. 

 

Chapter 5. Experimental Evaluations of Polymeric 

Solubility and Thickeners for Supercritical 

CO2 at High Temperature for Enhanced Oil 

Recovery* 

5.1 Introduction  

Miscible gas injection (MGI) is one of the most-effective tertiary recovery methods 

used in the petroleum industry for improving oil recovery.[10] The MGI is an effective 

method in which the injected gas (i.e. CO2, associated gas (AG), or natural gas liquids) 

alters the in-situ oil properties such as viscosity and density, allowing the otherwise 

trapped oil to become mobile and easily displaced.[11, 12] Although, this technique 

has the potential to improve the microscopic sweep efficiency, it suffers from 

numerous challenges at the macroscopic level.[35] An unfavourable mobility ratio in 

which the less-viscous gas displaces the more-viscous oil in the subsurface is one of 

the major causes leading to a reduced overall sweep efficiency. In addition, 

pronounced reservoir heterogeneity makes the situation worse by further promoting 

gas channelling through high permeability streaks, leading to a low overall oil recovery 

factor.[49, 260] 

Field A is located in the Harweel cluster in southern Oman and is recognised as a 

viable candidate for miscible gas injection. It is believed that with the implementation 

of MGI, an estimated 47% of the original oil in place (OOIP) could be recovered.[32] 

In fact, the MGI process is already being implemented in which the field’s AG mixture 

is the main gas source.[30] The injection process has been carried out by reinjecting 

the AG mixture into the reservoir at high pressures (up to 55 MPa) and due to the high 

reservoir temperatures (up to 377 K) the gas becomes miscible with the oil. However, 

even though the oil in Field A is light (42° API), the significant viscosity contrast 

between the injected gas (0.1-0.03 cP) and oil (0.23 cP) leads to viscous fingering, 

early breakthrough, and high gas-to-oil ratio, which would compromise the 

macroscopic sweep efficiency of the field. Therefore, MGI presents significant 

technical challenges in terms of implementation. For example, early gas breakthrough 
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(BT) has resulted in poor volumetric sweep reducing the overall efficiency of the MGI 

process. 

To overcome the above mentioned challenges associated with the MGI flooding, 

serval solutions have been proposed in the literature include water alternating gas 

flooding (WAG),[53, 54, 89] foam flooding,[57, 58, 61, 62] and the use of thickening 

agents to increase the injection gas viscosity.[66] In field applications, CO2-WAG 

flooding can result in an incremental oil recovery of 5-10% of OOIP.[75] However, 

operational difficulties and challenges (e.g. excessive water production, corrosion, 

gravity segregation, and water blocking) prevent WAG technique from reaching its 

full potential to improve oil recovery. In addition, the WAG approach would not be 

applicable to Field A. As a closed system with very low initial water saturation, the 

surface facilities available in this area have not been designed to handling large 

quantities of water. 

An alternate approach to decreasing the injection gas mobility is the use of foaming 

agents. However, this technique suffers from various conceptual, operational, and 

economical challenges that limit its use in the oil fields in the Middle East.[56, 60] In 

general, the major challenges associated with the foam flooding process are controlling 

the propagation of the foam over long distances in the reservoir and the need for large 

volumes of the foam.[52] In addition, surfactant micelle stability (required for foam 

effectiveness) is difficult to achieve in the harsh reservoir conditions (i.e. high 

formation brine salinity and high temperatures).[56] As such, the effectiveness of foam 

flooding in Field A is significantly impaired because the formation brine salinity is 

275,000 ppm and the reservoir temperature is 377 K.  

A conformance and mobility control technique that does not suffer from the 

limitations associated with WAG and foam flooding processes is the use of gas 

thickening agents in the injection gas. Numerical approximations for mixtures 

generally predict that the overall viscosity will increase with the component viscosity 

and mole fraction of the more viscous component.[287]  Over the past few decades, 

many researchers have tested polymer, oligomer, and small molecule additives that 

can dissolve into CO2, NGL, and AG and increase the injection gas viscosity, which 

would lead to improved performance for the MGI process.[52, 70, 71, 157, 167, 227, 

231, 288] The major limitation is the limited solubility of the polymer/oligomer in the 
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injected gas mixtures thus limiting its ability to increase viscosity and ultimately 

improve oil recovery. In this context, compared to CO2, it is more challenging to 

identify soluble polymers for hydrocarbon compressed fluids (e.g. AG and NGL). In 

our previous work, three additives (PDMS, PMHS and P-1-D) were identified to be 

soluble in AG of Field A at 55 MPa and 377 K. P-1-D was found to be an effective 

AG thickener at high concentrations (5-9 wt%), which may make the AG thickening 

process uneconomical.[288] Therefore, to improve this approach this study is focused 

on CO2 whose viscosity enhancement would be easier to achieve for two primary 

reasons. First, compared to AG, many more low and high molecular weight polymers 

are soluble in CO2. Second, in general a lower polymer/oligomer concentration is 

required to enhance the CO2 viscosity to the required level as the initial viscosity of 

pure CO2 is higher than the AG at the reservoir conditions of interest.[288] For 

example, less than 3 wt% of oligomer (e.g. P-1-D) in scCO2 is required to reach a 

target viscosity of 0.13 cP, as opposed to 5 wt% needed to achieve the same viscosity 

for the AG.[288] A simulation study performed for Field A in chapter 3 indicates that 

if the viscosity of CO2 was increased by 0.1 to 0.16 cP, a high ultimate oil recovery 

(68 to 72% OOIP) would be achieved with the thickened CO2 flooding compared to 

the 63% recovery achieved from pure CO2 flooding.[34] A dilute concentration (1.5-

3 wt%) of polymer in CO2 is expected to be enough to increase the CO2 viscosity to 

this level. 

 Enick et al. have provided a comprehensive review of the studies that have 

attempted to thicken CO2 using various chemical additives over the past 40 years.[52] 

This review states that a high molecular weight fluoroacrylate−styrene copolymer 

(polyFAST) identified as the best CO2 thickener. A 1.5 wt% of poly FAST in CO2 

increased the viscosity by a factor of 19 at 298 K and 34.48 MPa. The fluorinated 

acrylate polymer poly(1,1-dihydroperfluorooctyl acrylate) or PFOA has been shown 

to slightly increase the viscosity of CO2  by 2.5 fold at 323 K and 31 MPa. 

Polyperfluoroacrylates have been considered to be among the most CO2-philic 

material; however, this class of polymers are expensive and are coming under 

increasing environmental scrutiny. A group of researchers at Chevron and The New 

Mexico Petroleum Recovery Research Centre attempted to thicken CO2 using a high-

molecular-weight polydimethylsiloxane (PDMS) at a diluted concentration of 0.03 

wt%. However,  with the limited solubility of PDMS in CO2, there was no significant 
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viscosity change reported at 298 K and 18.96 MPa.[66] It was also shown that the 

addition of 20 wt% toluene co-solvent enables up to 4 wt% of PDMS polymer material 

to dissolve in CO2 resulting in fluid viscosity increase of 30 fold.[63] However, the 

high concentration of co-solvent makes the field application of this solution mixture 

impractical.[52, 157] In a recent work, aromatic amide based groups were incorporated 

into the PDMS polymer backbone to promote the formation of supramolecular 

structures in solution ultimately enhancing the viscosity of scCO2.[167] They observed 

that amide-terminated-PDMS oligomers with simple aromatic groups and attachments 

of electron-deficient aromatic groups onto these amides (4-nitrobenzamide and 

biphenyl-4-carboxamide anthraquinone-2-carboxamide) were not effective thickeners 

for pure CO2. However, other compounds (4-nitrophenyl, biphenyl, anthraquinone, 

and branched anthraquinone amides) were found to be effective thickeners of hexane. 

In addition, these compounds were found to be useful thickeners in the presence of 

substantial amount of hexane as co-solvent into a CO2 solution. For example, at the 

temperature and pressure of 348 K and 34.5 MPa, respectively, a transparent solution 

composed of 13.3% branched anthraquinone amides, 26.7% hexane and 60% CO2, 

was found to have a viscosity 3 times greater than that of a CO2/hexane mixture 

without a thickener. Furthermore, in another recent study, Doherty et al. examined a 

series of cyclic amide and urea compounds as small molecule thickeners for light 

hydrocarbon solvents and scCO2.[227] They found that 

propyltris(trimethylsiloxy)silane-functionalised benzene trisurea and trisurea 

compounds functionalised with varying proportions of 

propyltris(trimethylsiloxy)silane and propyl-poly(dimethylsiloxane)-butyl groups 

were capable of thickening scCO2 (3-300 fold) at remarkably low concentrations (0.5-

2 wt%) in the presence of hexane as a co-solvent at high concentrations (18-48 

wt%).[227] However, due to the high concentration of the required co-solvent, the 

associated relatively high cost and environmental concerns severely limit the 

applicability of this approach.[52, 157, 289] 

To avoid the aforementioned concerns of either high cost or environment issues 

associated with silicone or fluorous materials, many researchers have focused on the 

synthesis and design of alternative CO2 soluble oligomers and polymers. To date, these 

include polymers/oligomers such as poly(vinyl acetate) (PVAc), poly(propylene 

glycol), poly(vinyl ethyl ether) (PVEE) and poly(1-decene) (P-1-D) have been studied 
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as CO2-philic materials.[66, 165, 178, 196, 290] PVAc is known as the second most 

CO2 soluble polymer among the non-fluorous polymers with PDMS being the most 

soluble.[162] Tapriyal et al. observed no viscosity increase with 1-2 wt% of PVAc 

(MW 11000) in  CO2 at 298 K and 64 MPa.[162] The dissolution of a high molecular 

weight PVAc in CO2 required very high pressure to achieve a transparent solution 

which indicated solubilisation of the polymer.[197] In many instances, there is a strong 

correlation between solubility and scCO2 density. A higher density (corresponding to 

a higher pressure or lower temperature) generally improves solubility. Heller et al.[64, 

66] found that certain poly α-olefins (PAO) (i.e. P-1-D, poly (1-hexane) and PVEE) to 

be slightly soluble in CO2 at 298-331 K and 17.1-20 MPa. However, none of these 

materials increased the viscosity of CO2.  

 A recent study[178] examined the solubility of low molecular weight polymers 

PVEE (MW 3,800) and P-1-D (MW 910) in scCO2.  These compounds had been 

studied previously;[66] however, in this later study an in-house constructed capillary 

viscometer was also used to measure the viscosity of polymer-thickened CO2 across 

14.6-20 MPa pressure at a temperature of 329 K. They reported that at concentrations 

of less than 1 wt%, these two oligomers increased the viscosity of scCO2 by 13-14 

fold. However, many researchers have disputed these results[52, 157, 172] arguing 

that to thicken CO2 significantly to the reported levels concentrations in the range of 

1.5-7 wt% would be required for high molecular weight polymers (which are more 

viscous) and that at 1 wt% concentration low molecular weight  polymers are not 

capable of thickening CO2 to the reported levels. In addition, the CO2 thickening ability 

of low molecular weight  P-1-D and PVEE have been studied using the high-pressure 

falling cylinder or the rolling ball viscometry tests.[172] They reported that neither of 

these oligomers was capable of increasing scCO2 viscosity by more than 5% at 

concentrations of 0.5 wt%.[172] It is worth noting that these results have not been 

validated yet using a commercially constructed capillary viscometer. 

As revealed by the literature review presented so far, many studies have attempted 

to evaluate the suitability of a number of polymer/oligomer additives to viscosify CO2. 

However, none of these were conducted at high temperatures (>373 K). High 

temperatures are particularly challenging because the scCO2 density decreases with 

temperature leading to a lower solvation potential.[291] At high temperatures, the 

lower potential to dissolved polymers necessary to increase viscosity is further 
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complicated by the tendency for the viscosity of fluid mixtures to decrease with 

increasing temperature.[292] In fact, to our knowledge, all the relevant available data 

in the literature have been obtained at moderate temperatures of less than 331 K. There 

are many oil fields around the globe with high in-situ temperatures (e.g. Field A in the 

southern Oman) and none of the material tested to date may be of use for possible CO2 

flooding in those fields.[293] 

To cover the above identified gap in the knowledge and help with further recovery 

from Field A, this work has assessed the properties of a library of low- and high-

molecular weight non-fluorous polymers in scCO2 at high temperatures for their ability 

to control the gas mobility in miscible CO2-EOR processes. To achieve this objective, 

first, a number of polymers and oligomers were selected for solubility tests. These 

particular polymers and oligomers were selected on the basis of the existing available 

data in the literature related to solubility and viscosity in scCO2. In total, the solubility 

of 26 polymers/oligomers in scCO2 was determined using a high-throughput parallel 

gravimetric extraction method.[265] This method is very effective and efficient in that 

it allows for rapid preliminary screening of polymers/oligomers as solubility in CO2 is 

an absolute requirement for an effective viscosifier. After the polymers/oligomers with 

the highest solubility during the high-throughput experiments were selected, a series 

of cloud point pressure measurements were performed on them at different 

temperatures. The purpose of these experiments was to determine the compatibility of 

the polymers or oligomers with the range of pressures applicable to Field A. In the last 

stage of the work, additives displaying low enough cloud point pressures at Field A’s 

reservoir temperature of 377 K were examined for their viscosity enhancement 

potential in scCO2 using a commercially manufactured capillary viscometer at 

different pressure, temperature and oligomer concentration conditions. 

5.2 Experimental Methodology  

5.2.1 Materials  

A complete list of the polymers and oligomers chosen initially to be investigated in 

this study is provided in Table 5.1. The polymers and oligomers were sourced from a 

number of international commercial suppliers (i.e. Jiangsu Yinyang Gumbase 

Material, Fluka AG, BASF- ICIS, DOW Corning, China Skyrun Industrial Co., and 
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Sigma-Aldrich). The CO2 density was calculated using the National Institute of 

Standards and Technology (NIST) webbook correlation.[294] The density was needed 

at different pressure and temperature values for mixture concentration calculations. 

5.2.2 Experimental Setup and Procedure 

5.2.2.1 Polymer Solubility Measurements  

5.2.2.1.1 High-Throughput Gravimetric Extraction (HTGE) 

   The high-throughput gravimetric extraction (HTGE) screening method has been 

described in the literature, as a rapid method to use when testing a large library of 

polymers for their solubility in supercritical solvents (SCF).[265, 267] Figure 5.1 

shows the schematic diagram of the gravimetric extraction setup used in this study. 

The detailed procedure that was followed for conducting the experiments is explained 

in chapter 4 but is covered here again in brief. The polymer/oligomer samples were 

accurately weighed (100 mg) into open-ended borosilicate glass tubes with a length of 

60 mm and an ID of 6.6 mm. Each tube was prepared with a piece of quartz frit in its 

bottom opening and wrapped with a piece of tissue paper over its top opening. This 

configuration would allow the CO2 to freely flow through the glass tubes while 

extracting the polymer samples. Also, any insoluble polymer sample or the unextracted 

residues would be retained inside the tube for further evaluation. The tubes were 

loaded into a specially designed holder in parallel and then placed inside the extractor 

vessel (Figure 5.1). The CO2 was then passed through the vessel under in-situ pressure 

(55 MPa) and temperature (377 K) for two hours at the constant flow rate of 80 cc/min. 

The cell pressure was controlled using a dome-loaded back pressure regulator whose 

pilot pressure was regulated using a syringe pump. Subsequently, the CO2 injection 

was stopped and the CO2 inside the extractor was slowly vented at the rate of 0.6 

MPa.min-1.  Upon reaching atmospheric pressure, the sample holder removed from the 

vessel and the glass tubes were carefully removed and individually reweighed to 

determine any weight loss under the extraction conditions applied. The procedures was 

repeated twice at the same conditions for every batch of polymers tested. By 

comparing the results of every two replicate experiments, the weight loss results were 

found to be reproducible within ±2-4% of the extracted weight. 
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Table 5.1 The library of polymers and oligomers used in parallel gravimetric extraction experiments.  

Sample 

No 

Polymer, oligomer and 

small molecules Name 

Molecular 

weight (g.mol-1) 

Glass transition 

temperature    

Tg (K) 

Melting 

temperature Tm 

(K) 

Crystallinity 

exhibits Supplier 

1 poly(vinyl acetate) 250,000 301-318 333-338 No; refs [295, 296] 

Jiangsu  Yinyang 

Gumbase Material 

2 poly(vinyl acetate) 150,000 301-318 333-338 No; refs [295, 296] 

Jiangsu  Yinyang 

Gumbase Material 

3 poly(vinyl acetate) 116,000 301-318 333-338 No; refs [295, 296] 

Jiangsu  Yinyang 

Gumbase Material 

4 poly(vinyl acetate) 80,000 301-318 333-338 No; refs [295, 296] 

Jiangsu  Yinyang 

Gumbase Material 

5 

poly (vinyl acetate co-

vinyl alcohol)-40% 72,000 350-358 433 Yes; refs [295, 297] Fluka AG 

6 

poly (vinyl acetate co-

vinyl alcohol)-80% 9,000 350-358 445 Yes; refs [295, 297] Fluka AG 

7 

poly (vinyl acetate co-

vinyl alcohol)-88% 96,000 350-358 453 Yes; refs [295, 297] Fluka AG 

8 poly(ethylene glycol) 8,000 213 339 Yes; refs [298] BASF- ICIS 

9 poly(vinyl pyrrolidine) 10,000 403 423 Yes; refs [299] BASF- ICIS 

10 poly(4-vinyl pyridine) 60,000 415 533 Yes; refs [300] BASF- ICIS 

11 poly(4-vinyl pyridine) 50,000 415 533 Yes; refs [300] BASF- ICIS 

12 

poly(methyl 

methacrylate) 15,000 378 433 Yes; refs [301, 302] Sigma-Aldrich 
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13 hydroxyethyl-cellulose 14,0000 393 413 Yes; refs [303] Sigma-Aldrich 

14 

poly(ethylene vinyl 

acetate) 55,000 233 333 Yes; refs [304] Sigma-Aldrich 

15 

cellulose acetate 

Butyrate 70,000 369-434 444-473 Yes; refs [305] Sigma-Aldrich 

16 poly(vinyl methyl ether) 60,500 242 - No; refs [306, 307] Sigma-Aldrich 

17 poly(vinyl ethyl ether) 4,337 213 - No; refs [307] Sigma-Aldrich 

18 

poly(isobutyl vinyl 

ether) 4,000 250 438 Yes; refs [308, 309] 

China Skyrun 

Industrial Co 

19 poly(dimethylsiloxane) 5,180 183 233-243 Yes; refs [310-312] Sigma-Aldrich 

20 

poly(butyl 

methacrylate) 33,7000 295-308 - Yes; refs [302] Sigma-Aldrich 

21 

poly(ethylene 

succinate) 10,000 272 376-379 Yes; refs [313-315] Sigma-Aldrich 

22 poly(isobutylene) 500,000 209 460 Yes; refs [316-318] Sigma-Aldrich 

23 

poly(propylene 

carbonate) 50,000 295-318 423 Yes; refs [319] Sigma-Aldrich 

24 methyl-β-cyclodextrin 1,310 317 453-455 - Sigma-Aldrich 

25 

poly(vinyl methyl 

ketone) 500,000 301 433 Yes; refs [302] Sigma-Aldrich 

26 poly(1-decene) 544 208 257 No, refs [320] Sigma-Aldrich 
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Figure 5.1 Schematic diagram of gravimetric extraction equipment used for rapid 

measurement of polymers/oligomers solubility in AG mixture. 

5.2.2.1.2 Cloud Point Measurements 

The cloud point pressure versus temperature curves were determined in a high 

pressure-high temperature windowed cell (Figure 5.2, IFT700, Vinci Technologies) 

using a standard technique set out in the literature involving isothermal compression 

and then slow decompression of binary mixtures of known compositions.[266] These 

measurements were carried out for three polymers/oligomers with high level of 

extraction in the HTGE experiments (i.e. PVEE, Piso-BVE, and P-1-D) to confirm 

their solubility in scCO2. Cloud point pressures were determined for range of 

concentrations for PVEE (0.81 to 2 wt%) and Piso-BVE (0.81 to 3 wt%) in the 

temperature range of 329-377 K. For P-1-D, the cloud point pressures were measured 

for the concentration and temperature ranges of 1 to 5 wt% and 358-377 K, 

respectively. 
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Figure 5.2 Schematic diagram of experimental setup used for cloud point pressure 

measurements. 

To ensure the integrity of our experimental results, the high pressure windowed cell 

and all of its components were thoroughly cleaned with acetone followed by toluene 

at 323 K before each measurement to remove any trace of contaminants including 

residual polymers that may compromise our results. The high pressure cell was then 

vacuumed for few hours to dry. Knowing the solubility of our polymers and oligomers 

in CO2 from the HTGE experiments, for each measurement, a precise amount of a 

polymer or oligomer was weighed and placed on a clean glass plate. Doing so allowed 

us to determine the polymer/oligomers concentration (wt%) in CO2 in the pressure cell 

whose internal volume was known (20 cm3). The glass plate was then placed on the 

turntable inside the pressure cell before it was tightly sealed. The system was then 

purged with low-pressure CO2 to remove any trapped air. Subsequently, we increased 

the temperature of the system to the desired value and allowed sufficient time for the 

temperature to stabilise. Then CO2 was slowly injected into the cell using a syringe 

pump to increase the cell pressure at 0.4 MPa increments until a single transparent 

phase of the polymer/CO2 solution was formed. It is worth noting that no stirring was 

required during the experiment, and a high-definition camera provided a visual 

confirmation as whether the polymer/oligomer was completely dissolved in CO2. 

Then, to determine the cloud point pressure of the polymer/oligomer thickened CO2 

solution at a given temperature, the pressure of the system was decreased at 0.4 MPa 

increments until the solution began to appear cloudy in the cell. This process continued 
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until it was no longer possible to see the other side of the cell through the 

polymer/oligomer gas solution (90% reduction in transmitted light intensity), at which 

point the cell pressure was recorded as the cloud point pressure for the test temperature. 

For any combination of polymer/oligomer concentration and temperature, the 

process of cloud point pressure measurement was repeated three times to ensure the 

reproducibility of our result. We found the cloud point pressures to be reproducible 

within ± 0.2-0.5 MPa. 

5.2.2.2 Viscosity Measurements  

A high-pressure high-temperature capillary viscometer (Figure 5.3, CVL-1000, 

Core Laboratories Inc.) was used to measure the viscosity of pure CO2 (μC𝑂2
) as well 

as the polymer/oligomer thickened solution (μsol). Operating on the basis of Hagen-

Poiseuille Law, the viscometer measures the pressure drop created across a long 

capillary tube when a fluid is flowed through the tube at a known flow rate.  

Prior to each experiment, a polymer/oligomer thickened CO2 solution was prepared 

inside a fluid accumulator at a predetermined polymer/oligomer concentration using 

the following procedure. First, the accumulator was cleaned with acetone and toluene 

to remove any residual polymer from the previous test and then dried with compressed 

air under a fume cupboard. Then a precise amount of a polymer or oligomer was 

weighed (to give a predetermined concentration value) and placed inside the 

accumulator whose storage volume had already been adjusted to 30 cm3 using its 

floating piston. The accumulator was then vacuumed to remove any trapped air. The 

accumulator as well as the flow-lines and fittings/connections carrying the solution 

into the viscometer were heated to a predetermined temperature using suitable heating 

tapes and heating jackets (SRH etched foil jacket and stretch-to-length heating tape, 

Watlow). Subsequently, pure CO2 was injected into the accumulator and pressurised 

to the desired pressure (above the cloud point pressure). After that, the setup was left 

for 3 to 4 hours to ensure the polymer or oligomer would completely dissolved into 

CO2.  Then, the viscometer was also heated to the desired temperature and vacuumed 

before being filled and pressurised with the polymer/oligomer thickened CO2 so its 

viscosity could be measured.  In order to ensure the reproducibility of our results, for 

every pressure- temperature-concentration combination, the viscosity measurement 
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was repeated three times. In doing so, we found our measurements to be reproducible 

within ±0.1%. 

It is worth noting that cleaning the viscometer after each experimental run was an 

area of concern, as there was a possibility that flushing the extremely narrow capillary 

tubes (ID = 0.18 mm) with solvent (toluene) might not clean residual polymer from 

the system , which would impact on the viscosity result of the next measurement. To 

address this concern, we used a new capillary tube and the instrument was recalibrated 

each time. 

 

Figure 5.3 Schematic of the capillary viscometer used for viscosity measurements (50-

55 MPa and 329-377 K). 

5.3 Results and Discussions 

5.3.1 Polymers/Oligomers Solubility in the CO2 

5.3.1.1 High-Throughput Gravimetric Extraction (HTGE) Screening Method 
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Figure 5.4 shows the percentage of the original weight extracted by CO2 for each of 

the 26 different polymers/oligomers during the HTGE experiments measured at 377 K 

for three different pressures (i.e. 41, 48, and 55 MPa). Larger extraction indicates a 

higher solubility in scCO2. As pointed out before, all 26 polymers/oligomers examined 

were commercially available and their solubility in pure CO2 at lower temperature 

conditions had already been confirmed by other researchers. Based on the solubility 

data presented in Figure 5.2, the polymers and oligomers are divided into four 

categories in Table 5.2.  

Table 5.2 Classification of polymers/oligomers based on extraction ability in 

scCO2. 

category 1 high level of 

extraction (> 96%) 

P-1-D (Mw 544, PVEE (Mw 4,337), Piso-

BVE (Mw 4,000)W and PDMS (Mw 

5,180) 

category 2 moderate level of 

extraction (45-85%) 

PVAc (Mw 80,000), PVAc (Mw 

116,000), PVME and Poly (ethylene 

succinate)* 

category 3 low level of 

extraction (5 −

20%) 

poly(vinyl pyrrolidone), P4V pyrdine, 

methyl-β-cyclodextrin and hydroxyethyl-

cellulose 

category 4 negligible (< 5%) 

extraction 

high molecular weight polymers and 

copolymers containing carboxyl or 

hydroxyl functional groups such as poly 

vinyl acetate (PVAc) and poly(vinyl 

acetate-co-vinyl alcohol) (PVAc co-VA) 

*These polymers require more pressure or more volume of the gas passed through the 

extraction vessel so they may completely dissolve in scCO2.  

Figure 5.4 also reveals the effect of pressure on CO2 solubility of the polymers and 

oligomers with appreciable amount of weight extraction. For category 1 polymers, 

including PVEE and PDMS, the pressure change has a minor effect on the solubility, 

which is consistent with previous studies at lower temperatures.[64, 66, 178] For 

polymers, the solubility decreases slightly at 48 MPa and sharply at 41 MPa. This is 

consistent with a lower solvation ability at lower scCO2 densities.[291] Notably, at 41 

MPa, the carboxyl functionalised polymer (i.e. PVAc) did not indicate any weight 
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extraction because this polymer requires very high pressures (43–69 MPa) to become 

soluble in scCO2.[188] Furthermore, it can be seen from Table 5.1 that the non-

crystalline polymers/oligomers or polymers/oligomers with a low melting points are 

soluble in scCO2, whereas the crystalline polymers with high melting points are more 

difficult to dissolve in scCO2. This is in line with previous reports in which the 

dissolution of crystalline polymer with weak polymer-solvent interactions was found 

to be impossible below the melting temperature.[321] For the dissolution of the 

crystalline compounds, the melting temperature must be surpassed.  In this work, only 

the polymers and oligomers with melting points below 377 K were soluble in scCO2 

and above that were non-soluble. As a major conclusion drawn from Figure 5.4, based 

on their solubility, the four additives of PVEE, P-isoBVE, PDMS and P-1-D can be 

considered as viable candidates for application in Field A.  The rest of the polymers 

are rejected on the basis of insufficient solubility under the pressure/temperature 

conditions used in this study. 

 

Figure 5.4 Extracted weight % in scCO2 for the library of the 26 polymers/oligomers 

at 41, 48 and 55 MPa and 337 K. The name of the polymers/oligomers whose numbers 

are presented on the horizontal axis are defined provided in Table 5.1. 

5.3.1.2 Cloud Point Pressure Determinations  

The solubility of those polymers/oligomers with high extraction percentages (i.e. 

category 1 and 2 from Table 5.2) were further verified using the conventional cloud 

point pressure measurements conducted over a range of temperatures and polymer 

concentrations. Cloud point pressure experiments confirmed that the PVAc and PVME 



   

133 

included in category 2 only partially dissolved in scCO2 at pressures of 41 to 55 MPa 

and temperature of 377 K. This observation is consistent with the results obtained from 

the HTGE measurements. Due to their only partial dissolution in scCO2 under the 

study conditions, these were not considered for viscosity measurement studies. PDMS 

was excluded from the cloud point pressure measurements because the phase 

behaviour in scCO2 at high temperatures has already been well studied.[63, 66, 167, 

189, 278, 322-324]  Furthermore, PDMS was shown to be an ineffective CO2 thickener 

at high temperatures. PDMS has also been tested for its solubility in NGL and shown 

to be an ineffective NGL thickener.[231] However, in this work, PDMS was used in 

the extraction tests to validate our methods as PDMS has proved to be more CO2-philic 

than other hydrocarbon-based polymers.[52] 

The phase behaviour of polymers in scCO2 containing functional groups with 

oxygen within the polymer backbone has been assessed by Kilic et al.[165] These 

researchers found that the presence of ether oxygen in a polymer exhibits induces a 

lower miscibility pressure in scCO2 due to the strong interaction forces between CO2 

and the ether group (Lewis acid and Lewis base interactions) as well as their high chain 

flexibility (low glass transition temperature and low surface tension).[165] Figure 5.5 

shows the measured cloud point pressures for ether containing polymers, which 

include PVEE and Piso-BVE, over the temperature range of 329-377 K and 

concentrations of 0.81-3 wt%. These results show that both polymers exhibit LCST 

(lower critical solution temperature) behaviour in CO2 in which cloud point pressure 

increases with temperature. This is caused by the reduction in the solubility power of 

CO2 toward PVEE and Piso-BVE due to a decrease in fluid density with increasing 

temperature leading to an entropic effect (i.e. a reduction in the free volume difference 

between CO2 and polymers). Compared to Piso-BVE, the cloud point curves for PVEE 

are more sensitive to changes in temperature at all polymer weight loadings. In general, 

the LCST curve behaviour is controlled by the free volume difference between the 

solvent and polymer in addition to the polymer expansion coefficient.[158, 325] 

Therefore, Piso-BVE gains more free volume than PVEE due to the steric bulkiness 

of the iso-butyl functional group and the increase in the side chain length of Piso-BVE. 

It becomes easier to dissolve the polymers in CO2 if the free volume of a polymer is 

increased.[326] Previous studies have found that at a low temperature (295 K), PVEE 

has better miscibility than PVME because the increase in the side chain length 
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enhances the free volume, which results in CO2 becoming more accessible to the 

polymer with the longer side-chain branches for better solute–solvent 

interactions.[165] In this work, we observed similar effects for Piso-BVE and PVEE 

solubility in CO2 at high temperatures. Piso-BVE has a lower cloud point pressure 

curve compared to PVEE and appears to be more CO2-philic than PVEE. However, at 

moderate temperatures (< 346 K), PVEE has a lower miscibility pressure than Piso-

BVE. It is likely that the thermal expansion of free volume in the PVEE structure is 

higher than Piso-BVE below this temperature. With increasing temperature, the 

polymer chain mobility is greatly increased, providing the motional space 

corresponding to an increase in polymer free volume.[290] Hence, as the temperature 

increases, the cloud point pressure difference between both polymers in CO2 becomes 

larger.  

The temperature dependency of the solubility of P-1-D in CO2 was also studied and 

the results are presented in Figure 5.6. In contrast to PVEE and Piso-BVE, the cloud 

point pressure decreases with temperature increase implying that the P-1-D solubility 

in CO2 increases with temperature. It is evident then that P-1-D exhibits UCST (upper 

critical solution temperature) phase behaviour in scCO2.  However, its solubility is 

relatively insensitive to temperature change compared to PVEE and Piso-BVE. This 

is due to the fact that the enthalpic interaction between CO2 and P-1-D in the solution 

increases slightly with increasing temperature. Previous work showed that P-1-D 

exhibited solubility value of 10.3 g/L at 19.9 MPa and 298 K.[64, 66] Terry et al. also 

found P-1-D to be partially soluble in CO2 at 11.7 MPa and 344 K.[67] In a recent 

study, P-1-D  had a solubility 0.081 wt% in CO2 at 20.1 MPa  and 329 K.[178] 

However, in our work we found this oligomer completely dissolves up to 5 wt% in 

CO2 only at temperatures above 358 K. Below this temperature, P-1-D was only 

partially soluble even at the pressure of 55 MPa. Although, the solubility increased 

significantly with temperature. This characteristic enables P-1-D to be used at 

concentrations higher than 1 wt% to increase CO2 viscosity at high temperatures, 

indicating that P-1-D could be an effective thickener for deep reservoirs such as Field 

A.  
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Figure 5.5 Compare cloud point pressures between PVEE and Piso-BVE at different 

concentrations and temperatures.  

Based on the cloud point pressure measurement results presented above, the three 

polymers/oligomers (PVEE, Piso-BVE, and P-1-D) have high or adequate level of 

solubility in scCO2 under the in-situ conditions encountered in Field A. P-1-D has a 

lower cloud point than PVEE and Piso-BVE at comparable concentrations. This could 

be due to the difference in molecular weight between the polymers and oligomer or 

different solubility phase behaviours (LCST versus UCST). The lower cloud point 

pressure of P-1-D in scCO2 makes it possible to increase its concentration in CO2 to 

values higher than 5 wt% to further increase the CO2 viscosity. At 5 wt% of P-1-D in 

CO2, the minimum required pressure to have it fully soluble is 45.3 MPa at 377 K, 

which is still below the reservoir pressure of 55 MPa. In comparison, the cloud point 

pressures for both PVEE and Piso-BVE are considerably higher at high temperatures. 

As a result, at 377 K, the concentration of PVEE and Piso-BVE cannot increase to 

more than 2 and 3 wt%, respectively, because above these concentrations the cloud 

point pressure would exceed the reservoir pressure of 55 MPa. However, at the above 

concentrations, both polymers can be considered adequately soluble in CO2 at the Field 

A’s reservoir conditions. 
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Figure 5.6 Measured cloud point pressures for P-1-D at different concentrations and 

temperatures. 

5.3.2 CO2 Viscosity Enhancement Measurements 

The viscosity of solutions prepared by dissolving the three different 

polymers/oligomers (either P-1-D, PVEE, or Piso-BVE) separately into scCO2 at 

different pressures (50, 53, and 55 MPa) and temperatures (329-377 K).  For the 

measurements, the polymer and oligomer concentrations varied between 0.81 to 5 wt% 

for P-1-D, 1.2 to 2 wt% for PVEE and 1.5 to 3 wt% for Piso-BVE. The measured 

results are presented in Figure 5.7-5.9 in the form of relative viscosity (i.e. μsol/μCO2
) 

 , and in Table 5.3 in the form of actual measured viscosity values for all three additives 

at 377 K. As evident from the figures and the table, for all three polymers/oligomers, 

there were a considerable increase in the viscosity of CO2 can be achieved at a range 

of temperatures and pressures. Although, as expected, the viscosity of the polymer or 

oligomer-thickened CO2 exhibits a decreasing trend as the temperature increases.[292] 

There is also a slight increase in relative viscosity with increasing pressure at all 

temperatures and concentrations due to the polymer/oligomer coil expansion caused 

by an increase in solvent strength with increasing density. The same effect has also 

been observed with PDMS and DRA polymer in NGL.[231] 
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5.3.2.1 PVEE and Piso-BVE Results 

Figure 5.7 shows the thickening ability of PVEE in CO2 for the concentrations of 

1.2 to 2 wt% over a range of temperatures (329-377 K) and two pressures of 53 and 

55 MPa. As can be seen, for all temperatures, the viscosity of the thickened CO2 

increases significantly with increase in the PVEE concentration. Also, the data follow 

a similar trend across all temperatures examined as the pressure and polymer 

concentration change. The relative viscosity decreases almost linearly with increase in 

temperature. However, the reduction rate is slightly higher above 348 K because the 

intramolecular associations between the polymer and CO2 molecules are reduced as 

the temperature increases.  For example, at 53 MPa, the relative viscosity of 1.5 wt% 

PVEE in CO2 decreases by 1-5% over 329-348 K, whereas at the same concentration, 

the relative viscosity decrease by 6.8-10% over 348-377 K. Not surprising, the 

enhancement in CO2 viscosity by PVEE is the lowest at Field A’s high in situ 

temperature of 377 K. For example, as revealed by Figure 5.7, at 2 wt% concentration, 

55 MPa and 377 K, the relative viscosity is close to 1.7 while it is about 2.1 at 329 K 

for the same concentration and pressure. Furthermore, as revealed by the cloud point 

pressure measurements, 2 wt% is the highest achievable concentration of this polymer 

under the in-situ conditions of Field A. 

 

Figure 5.7 Relative viscosity (μsol/μCO2
) at different PVEE concentrations, 

temperatures and pressures. 
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The level of viscosity enhancement attained by dissolution of Piso-BVE in scCO2 

at the two concentrations of 1.5 and 3 wt% and pressures of 50, 53, and 55 MPa over 

temperatures ranging 329 to 377 K is given in Figure 5.8. As can be seen, compared 

to PVEE, the relative viscosities for Piso-BVE are substantially less under the same or 

similar conditions. For example, over the temperature range of 329-377 K, 1.5 wt% of 

Piso-BVE, resulted in 1 to 1.23 fold increase in the CO2 viscosity, while the same 

concentration of PVEE improved the viscosity by 1.36 to 1.9 fold over the same 

temperature range. This indicates that the CO2 viscosity enhancement capacity of alkyl 

vinyl ether polymers decreases with increase in their backbone length. At the lower 

Piso-BVE concentration of 1.5 wt%, the CO2 viscosity enhancement is negligible 

relative to just supercritical CO2 at temperatures above 368 K and over the pressure 

range 50 to 55 MPa. The viscosity increases modestly with an increase in the polymer 

concentration to 3 wt%. For example, at 377 K, 3 wt% of Piso-BVE produces a relative 

viscosity of 1.2. Overall, the poly alkyl vinyl ether may result in subtle viscosity 

enhancement when dissolved in CO2 at elevated temperatures. Also, the steric effect 

and increase in the alkyl arm length have a negative effect on their ability to increase 

viscosity.     

 

Figure 5.8 Relative viscosity (μsol/μCO2
)  at different Piso-BVE concentrations, 

temperatures and pressures. 
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The CO2 viscosity enhancement capacity of P-1-D over the concentration, pressure 

and temperature ranges of 0.81 to 5 wt%, 50 to 55 MPa and 358 to 377 K, respectively, 

is illustrated in Figure 5.9. As can be seen, despite P-1-D having a low molecular 

weight, a considerable increase in the CO2 viscosity (1.2-2.77 fold) could be achieved 

at concentrations of 1.5 wt% and above. In comparison, Zheng et al.[178] found that 

the same polymer, initially tested by Heller et al.[66], could thicken CO2 by 15 fold at 

the concentration of 0.81 wt%. Our results significantly differ from those reported by 

Zheng et al. In our first measurements, we found the oligomer or polymers to 

precipitate inside the capillary tube of our viscometer upon depressurisation. 

Therefore, to avoid any undesirable effects, as mentioned in our experimental 

procedure section, we decided to replace the capillary tube from one measurement to 

the next. We found hot toluene to be insufficient at completely dissolving and 

removing the residual polymer/oligomer deposited in such a small diameter tube.   

After all three polymers/oligomers were tested, despite the significant difference in 

their molecular weights, P-1-D was found to be a promising CO2 thickening agent 

under the high temperature conditions of Field A (i.e. 377 K). Other research work 

have also demonstrated the thermal stability of P-1-D at high temperatures.[288] For 

example, at 377 K, 55 MPa and 1.5 wt% concentration, P-1-D improved the CO2 

viscosity by 1.7 fold while under the same conditions, PVEE and Piso-BVE yielded 

1.39 and 1 fold increases in the viscosity, respectively.    

 

Figure 5.9 Relative viscosity (μsol/μCO2
)  at different P-1-D concentrations, 

temperatures and pressures. 
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Table 5.3 The measured viscosities for pure CO2 and CO2 thickened using 

different concentrations of PVEE, Piso-BVE and P-1-D at different pressures  

and temprature (377 K).  

 

5.4 Summary and Conclusions  

The solubility of 26 commercial polymers/oligomers in scCO2 at reservoir 

conditions was examined using a fast and efficient gravimetric extraction method. 

Then, a series of cloud point pressure measurements at 377 K was used to validate the 

solubility of polymer/oligomer candidates with high extraction weights. A total of 

three polymers/oligomers (PVEE, Piso-BVE, and P-1-D) were found to be adequately 

soluble in scCO2 under the Field A’s in-situ reservoir conditions. Subsequently, these 

polymers/oligomers were assessed at diluted concentrations (0.81-5 wt%) for their 

CO2 viscosification capacity at different pressures and high temperatures. In general, 

it is known that increasing the temperature results in a decrease in the viscosification 

capacity of polymers while increasing pressure causes a slight improvement at all 

temperatures and concentrations.  

Our results show that P-1-D and PVEE could be considered as effective CO2 

thickeners at Field A’s conditions. P-1-D increases the CO2 viscosity by 1.2-2.77 fold 

Polymer  Concn Pure CO2 

viscosity, cP 

 Polymer/thickened CO2 

viscosity, cP 

  wt% 55 

MPa 

53 

MPa 

50 

MPa 

55 

MPa 

53 

MPa 

50 

MPa 

P-1-D 0.81 0.077 0.076 0.074 0.094 0.09 0.088 

  1.5 0.077 0.076 0.074 0.125 0.119 0.102 

  3 0.077 0.076 0.074 0.147 0.142 0.133 

  5 0.077 0.076 0.074 0.183 0.175 0.16 

Piso-VBE 1.5 0.077 0.076 0.074 0.078 0.076 0.074 

  3 0.077 0.076 0.074 0.094 0.09 0.088 

PVEE 1.2 0.077 0.076 0.074 0.094 0.087 - 

  1.5 0.077 0.076 0.074 0.112 0.104 - 

  2 0.077 0.076 0.074 0.133 - - 



   

141 

over the concentration and temperature ranges of 0.81-5 wt% and 358 -377 K, 

respectively, while 1.2-2 wt% of PVEE improves CO2 viscosity by 1.2-2.1 fold over 

the temperature range of 329-377 K. The enhancements in CO2 viscosities reported 

above are significantly less than those (13-14 fold) reported by Zhang et al. at 

comparable compositions and temperatures. 

Our results indicate that change in the alkyl arm and steric effect on the alkyl vinyl 

ether have great influence on the solubility of polymers in CO2 but are ineffective in 

changing the CO2 viscosity. Piso-BVE exhibits a higher solubility in CO2 than PVEE 

at high temperatures, but its viscosity enhancement capacity is lower than PVEE at 

comparable concentrations and molecular weights. For example, PVEE increases the 

viscosity of scCO2 by 43% at the concentration of 1.5 wt% and temperature of 377 K, 

while the same concentration of Piso-BVE cannot increase CO2 viscosity noticeably 

at 377 K. Piso-BVE is required at high concentrations to change the CO2 viscosity at 

high temperatures.  This research concludes that P-1-D has a better CO2 viscosity 

enhancement ability than PVEE and Piso-BVE, making it a suitable candidate for 

improving gas mobility in Field A and, under high temperatures in general, during CO2 

flooding. 
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*Reference: Al Hinai et al. (2019) in Industrial & Engineering Chemistry Research, 2018. 57(43): p. 

14637-14647. 

Chapter 6. A New Approach of Alternating Thickened-

Unthickened Gas Flooding for Enhanced oil 

Recovery*    

6.1 Introduction 

Miscible gas injection (MGI) is an effective enhanced oil recovery method used 

worldwide in the petroleum industry especially for the recovery of light oil[10, 257, 

327] as the miscible conditions are more easily achieved for lighter oils.[328]  Many 

MGI processes involve the injection of the associated gas (AG) or CO2, which have 

both been recognised as excellent candidates for miscible gas flooding.[7, 22, 329] 

However, under reservoir conditions, injected gas typically has a significantly lower 

viscosity than the in-situ oil leading to an unfavourable mobility ratio that results in 

viscous fingering and gas channelling that eventually leads to premature breakthrough 

and low volumetric sweep efficiency.[330] To overcome this, one approach is the 

direct thickening of the injected gas with additives that increase the viscosity and help 

to effectively control gas mobility and improve sweep efficiency.[52, 66, 69, 155, 208, 

331] In our previous studies, we identified poly (1-decene) (P-1-D) as a viable gas 

thickener for both AG mixture and CO2 over a range of concentrations (1.5 to 5 wt% 

and 1.5 to 9 wt% for CO2 and AG, respectively).[288, 332] 

For many years, direct gas thickening has been recognised as a game changing 

technology to increase oil recovery in MGI processes.[52] This technique owes its 

progress to thermal stability and chemical inertness (with no or minimal interaction 

with reservoir sediment) of the chemical additives making them ideal for application 

in harsh reservoir conditions (i.e. high formation salinity and temperature).[52] Unlike 

foam injection and water alternating gas (WAG) flooding, the application of gas 

thickeners is not dependent on the reservoir rock petrophysical properties and fluid 

saturations.[52] Field A in southern Oman has suffered from early gas breakthrough 

due to the high mobility of the AG mixture injected as part of an MGI process.[32, 

288] The field has a harsh reservoir environment with a formation brine salinity of 

275,000 ppm TDS (total dissolved solids) and a reservoir temperature of 377 K with 

low in-situ water saturation.[30, 31]  It has been shown that both foam and WAG 

flooding are not applicable in this field as means of mobility control.[288] Hence, with 
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Field A, it is believed that AG mixture thickening may be the only viable approach to 

counteract unfavourable mobility conditions and improve sweep efficiency. 

Over the past 40 years, several polymer and oligomer additives that are soluble in 

CO2 and hydrocarbon gas mixture have been tested to examine their potential to raise 

injected gas viscosity (ideally to the reservoir oil viscosity).[52, 64, 66, 69-72, 164, 

231, 333] To date, high molecular weight (Mw 540,000) fluoroacrylate−styrene 

copolymer (polyFAST) has been identified as the most effective CO2 thickener in 

terms of improving CO2 viscosity.[170, 191] However, the cost ($132/kg)associated 

with this copolymer has prevented its application outside the laboratory.[167] In 

addition, polymers of this type containing large amounts of fluorine, are 

environmentally and biologically persistent.[188] Polydimethylsiloxane (PDMS) is 

also a polymer that is soluble in CO2 at high molecular weight and has been shown to 

thicken CO2 and hydrocarbon gas thickeners.[52, 63, 71, 157, 164, 227] In particular, 

it has been found that extremely high molecular weight PDMS (MW 197,000) with the 

addition of a large amount of a co-solvent (20 wt% toluene) is an effective thickener 

for CO2 enhanced oil recovery (CO2-EOR).[63] Furthermore, application of high 

molecular weight PDMS results in a modest increase in natural gas liquid (NGL) 

viscosity at 298 K and 7 MPa.[231] However, with elevated temperatures, PDMS 

requires higher pressures for dissolution into CO2, NGL, or AG.[71, 172, 231, 288] 

Further, the high cost of high Mw PDMS polymer (($9/g) and high concentration of 

co-solvent required make the field application for this polymer impractical.[52, 72, 

157] In addition, it has been found that PVAc (Mw 11,000) is also soluble and is 

considered a non-fluorous polymers with PDMS (MW 13,000) that is most soluble in 

CO2; PDMS is more soluble than PVAc.[189, 197] Therefore, the dissolution of the 

high Mw of PVAc in CO2 requires a very high pressure to obtain a single phase fluid. 

It was also determined that the viscosity did not increase with 1-2 wt% of PVAc (Mw 

11000) in CO2 at 298 K and 64 MPa.[162] For non-fluorous oligomer additives,  Heller 

et al.[66] showed that due to low solubility in CO2, PVEE (Mw 3800) and P-1-D that 

only a very slight increase in viscosity (7-25%) at 298 and 306 K is observed. Further, 

they found that low molecular weight poly 𝛼-olefins (P-1-D, poly(1-pentene) and 

poly(1-hexane) can induce the butane viscosity by 5 fold at a concentration of 2.2 

wt%.[64] In our previous studies,[288] P-1-D (Mw 544) was found to have sufficient 

solubility in both CO2 and AG mixtures (at temperatures above 358 K and pressures 
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of 50-55 MPa) to significantly increase gas viscosity. The viscosity enhancement of 

P-1-D in AG mixture (25 mol% CO2) and CO2 was measured in a capillary viscometer 

at different pressures (50-55 MPa), a temperature of 377 K,  and varying P-1-D 

concentrations (1.5-9 wt%).[288, 332] Figure 6.1 shows the viscosity measured for P-

1-D-thickened CO2 (1.5-5 wt%) and P-1-D thickened AG mixture (1.5-9 wt%) at 377 

K for over 50-55 MPa pressure range. As can be seen from this figure, in both 

solutions, there is a significant and almost linear increase in the viscosity of both 

thickened solutions with increases in the P-1-D concentration. However, P-1-D-

thickened CO2 has much higher viscosity than the P-1-D- thickened AG mixture at all 

measured concentrations. For example, at 5 wt% P-1-D, the CO2 viscosity falls in the 

range of 0.14-0.18 cP over the pressure range of 50-55 MPa, while over the same 

pressure range, the AG mixture viscosity is in the range of 0.126-0.131 cP.  This is due 

to the difference in viscosity of the pure AG mixture and CO2 at these pressures (i.e. 

0.074-0.077 cP for CO2 and 0.029-0.03 cP for the AG mixture). Therefore, for the two 

solutions to have comparable viscosities, the AG mixture requires higher 

concentrations of oligomer. For example, in order to enhance the viscosity to 0.13 cP, 

5 wt% of P-1-D is needed for the AG mixture while CO2 would only require a 

concentration of 3 wt% only.   

In a reservoir simulation study (chapter 3), it was determined that in Field A, due to 

its low in-situ oil viscosity, an increase of 0.1 to 0.16 cP (3.3 to 5.3 fold) in the viscosity 

of the injected gas (AG mixture or CO2) would be  adequate to improve the gas 

mobility favourably and enhance the sweep efficiency.[34] To achieve this, thickener 

concentrations in the range of 3-5 wt% would be required rendering application in the 

field infeasible due to the large quantity of polymers/oligomers that would be required. 

This has precluded the use of thickeners in any oil field around the world.  Overall, 

given the results of the viscosity measurements, P-1-D may be regarded as a suitable 

thickener for both CO2 and AG mixtures at high temperatures and high pressure such 

as those found in Field A. However, the amounts of P-1-D needed to reach the target 

injection gas viscosity for Field A (0.13-0.16 cP) is quite high if the injection is to be 

performed using a continuous thickened gas injection scheme.          
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Figure 6.1 Measured P-1-D-thickend AG and CO2 solution viscosities at different P-

1-D concentrations, temperatures (377 K), and pressures (50-55MPa) from a capillary 

viscometer (0.01-15,000 cP).[288, 332] 

To address this issue, this study investigates a new approach that can lower the 

volume of thickeners utilised during field-scale applications. WAG flooding has been 

studied and applied in the field for enhanced oil recovery (EOR) applications for many 

years. Herein, we proposed an injection scheme similar to WAG in which thickened 

gas (CO2 or AG) would be injected in alternation with an unthickened AG mixture. 

Compared with the case of continuous thickened gas injection, the alternating injection 

scheme would be technically and economically beneficial for application in the MGI 

process as it would require lower amounts of the thickening agents. For this study, P-

1-D was used to evaluate the potential of the above mentioned alternating injection 

scheme, and a total of 12 core-flooding tests were conducted on fractured and non-

fractured composite rock samples. The tests followed four different injection schemes: 

(1) continuous unthickened AG flooding, (2) continuous thickened AG flooding, (3) 

thickened AG alternating AG flooding (TAG-A-AG), and (4) thickened CO2 

alternating AG flooding (TCO2-A-AG)). The core-flooding experiments were all 

conducted at constant pressure (53 MPa) and temperature (377 K) using carbonate core 

plugs and crude oil sourced from Field A. 
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6.2 Experimental Methodology  

6.2.1 Materials  

For this study, low molecular weight P-1-D was purchased from Sigma-Aldrich. 

The molecular weight of P-1-D was determined in GPC to be equal 544 g.mol-1(Mn is 

473 g.mol-1, and poly dispersity is 1.15). CO2 gas (99.999 mol%) and AG mixture 

(CH4 60 mol%, C2H6 9 mol%, C3H8 6 mol%, and CO2 25 mol%) were purchased from 

BOC Gas, Australia. Both gas cylinders are provided in G-size cylinders for each at 

pressure 5.5 and 4.14 MPa, respectively. CMG WinProp Module (version 2016) was 

used to estimate the density of the AG mixture and CO2 for solution concentration 

calculations. 

The original light oil sample was collected at the wellhead from Field A, Oman. For 

this study, the light gas components under C5 were flushed out at ambient pressure and 

temperature to achieve a dead oil. The density and viscosity of the dead oil were 

measured to be 0.81 g.cm-3 and 2.7 cP (377 K and 53 MPa), respectively. The 

composition of the dead oil sample is given in Table 6.1 as obtained using gas 

chromatography with a flame ionization detector (GC-FID). For the core-flooding 

experiments, synthetic brine was prepared by dissolving analytical grade NaCl and 

KCl into deionised water. The solution was prepared according to Field A’s formation 

brine composition (total dissolved solid concentration of 275 g.L-1 consisting of 220 

g.L-1 NaCl and 55 g.L-1 KCl). A number of relatively tight carbonate core plugs were 

collected from Field A wells at reservoir depths of 4995-5000 m. The permeability and 

porosity of non-fractured plugs were in the range of 2-30 mD and 13-14.26%, 

respectively. The fractured plugs had substantially higher permeability but almost the 

same porosity as the non-fractured plugs falling in the range of 156-265 mD and 13.8-

15.8%, respectively.   

Table 6.1 Compositional analysis results of Field A dead oil in mole percentage  

Component Mole % Component-cnt Mole % 

H2 0 C16 4.15 

H2S 0 C17 3.85 

CO2 0 C18 3.77 

N2 0 C19 3.97 

C1 0 C20 3.27 

C2 0 C21 2.99 
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C3 0 C22 2.87 

iC4 0 C23 2.67 

nC4 0 C24 2.47 

C5 0 C25 2.19 

iC5 0.01 C26 2.1 

nC5 0.02 C27 1.99 

C6 0.33 C28 1.85 

C7 1.54 C29 1.85 

C8 3.71 C30 1.77 

C9 4.84 C31 1.64 

C10 5.54 C32 1.43 

C11 5.15 C33 1.35 

C12 4.72 C34 1.26 

C13 5.08 C35 1.2 

C14 4.63 C36+ 10.93 

C15 4.86 Total 100 

 

6.2.2 Core Flooding Experimental Setup and Procedure 

In this study, a total of twelve reservoir condition core-flooding tests were conducted 

using the experimental setup shown in Figure 6.2. Extensive details about the setup is 

mentioned in chapter4. The flooding tests were performed on two non-fractured and 

two fractured core plugs which were stacked together to form two longer (𝐿~14𝑐𝑚) 

composite cores. Each core plug was about 7 cm long and 3.85 cm in diameter. 

Figure 6.3 is a photo and X-ray image of the composite core that included two plugs 

with a microfracture along their length. The presence of the microfracture is clearly 

visible in the X-ray image. Each composite core underwent all four injection schemes 

of miscible gas flooding outlined earlier (i.e. continuous unthickened AG flooding, 

continuous thickened AG flooding (TAG) (5 wt% of P-1-D), thickened AG alternating 

AG flooding (TAG-A-AG) (ratio, 1:2; 5 wt% of P-1-D)) and, thickened CO2 

alternating AG flooding (TCO2-A-AG) (ratio, 1:2; 3 wt% of P-1-D). In addition, two 

more thickened AG alternating AG flooding (TAG-A-AG) ratios of 1:3 and 1:5 were 

also evaluated on each composite core. Table 6.2 provides further details about the 

core-flooding tests performed on each of the two composite cores. To achieve 

miscibility, all experiments were conducted using a back pressure of 53 MPa which is 

higher than the MMP of either the crude oil or dead oil from Field A ( 38 and 33 MPa, 



  

149 

respectively[32]). A brief description of the procedure followed for each flooding test 

is presented below.  

 

       Figure 6.2 Schematic diagram of the core-flood setup. 

 

Figure 6.3 Fracture visualisation in composite core plugs sample and CT scan.   
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Table 6.2 Details of the 6 core-flooding test performed in each composite core 

plugs setups.  

Test 

number 

Injection schemes  

TAGR 

Thickened gas 

injected time in 

each cycle 

Unthickened gas 

injected time in 

each cycle 

test #1 continuous 

unthickened  AG 

- - - 

test #2 continuous TAG - - - 

test #3 TAG-A-AG 1:2 30 minutes 1 hour 

test #4 TAG-A-AG 1:3 20 minutes 1 hour 

test #5 TAG-A-AG 1:5 12 minutes 1 hour 

test #6 TCO2-A-AG 1:2 30 minutes 1 hour 

Each core plugs was placed in a temperature controlled Dean-Stark extractor and 

cleaned with toluene and methanol in turn to remove any hydrocarbon and salt 

residues. Subsequently, they were dried in an oven at 358 K for 24 h or until their 

weights stabilised indicating no more loss of solvent. Subsequently, the porosity and 

permeability of each plug was measured using an automatic porosi-permeameter (AP-

608 instrument, Coretest Systems Inc.). The composite sample was then assembled 

and wrapped in a combination sleeve made up of aluminium foil, FEP heat shrink and 

Viton rubber[334] and placed inside a horizontal core-holder and vacuumed for 24 h 

while applying an effective overburden pressure of 2.75 MPa. Synthetic formation 

brine was then injected to raise the pore pressure gradually while simultaneously 

increasing the overburden pressure and temperature to their respective in-situ values. 

During this process, the overburden pressure was always maintained 6.89 MPa higher 

than the pore pressure until reaching the final in-situ value of 62 MPa. After achieving 

pressure and temperature stability in the system, synthetic brine was injected 

continuously at the flow rate of 0.15-0.3 cm3.min-1 for 48 h to ensure that the plugs 

was completely saturated with the brine. Full saturation was verified by a constant and 

stable differential pressure across the sample. Afterwards, the brine was injected at 

several flow rates (0.08, 0.16, and 0.32 cm3.min-1 for non-fractured plugs and 0.5, 1 
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and 2 cm3.min-1 for the fractured plugs) to measure the absolute permeability. Next, 

the brine saturated sample was displaced by reservoir dead oil which was injected at 

0.3 cm3.min-1 for three to four days until there no more brine was produced, indicating 

that irreducible water saturation was achieved. During this time, the produced brine 

and oil volumes were recorded. The preceding steps (i.e. sample preparation, brine 

saturation, and displacement with dead oil flooding) were repeated before the 

commencement of every new test. Once the connate water saturation was achieved in 

each of the twelve tests, unthickened AG mixture, TAG (5 wt% of P-1-D), TAG-A-

AG (5 wt% of P-1-D), and/or TCO2-A-AG (3 wt% of P-1-D), were injected at the 

constant injection rate of 0.4 cm3.min-1.  For this step, the volume of any produced oil 

during the gas injection stage was recorded against time. For all the flooding tests, 

injection was terminated at 8.3 total pore volume (PV) of either unthickened AG, 

thickened AG, or thickened CO2 injected.  

6.3 Results and Discussions  

6.3.1 Core-Flood Experiments 

The absolute permeability of the composite sample determined by varying the brine 

injection rate as previously described above is given in Tables 6.3 and 6.4. For this 

study, 12 core-flooding experiments were conducted using four different flooding 

schemes to study the effect of thickened/unthickened AG mixture in two composite 

samples. For all the flooding experiments, a very low irreducible water saturation was 

attained at the end of the initial oil injection stage. This is believed to be due to the low 

viscosity difference between the oil (2.7 cP) and water (0.4 cP) at reservoir conditions 

and the high pore pressure used for the test.[288] 

6.3.1.1 Oil Recovery in Non-Fractured Core Plugs  

6.3.1.1.1 Effect of Injection Scheme 

For the non-fractured core plugs, the measured oil recovery profiles for tests #1-4 

(which were continued until reaching 8.3 PV of total gas injection) are plotted in 

Figure 6.4. In test#1, the unthickened AG mixture flood was conducted under 

secondary recovery mode and the gas breakthrough (BT) occurred after 0.092 PV of 

AG mixture injection corresponding to an oil recovery of 14.5%. After BT, the oil 
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production rate was reduced gradually reaching an almost zero value at the end of the 

injection resulting in the ultimate oil recovery of 90.3%. In test#2, a continuous 

thickened AG mixture (5 wt% of P-1-D) was injected at 0.4 cm3.min-1; as expected, 

the gas BT was delayed compared to that in test#1. BT occurred at 0.142 PV of TAG 

injection corresponding to an oil recovery of 40.4%. This delayed BT is due to the 

lower viscosity contrast between the oil (2.7 cP) and the TAG mixture (0.13 cP). After 

BT, the oil recovery gradually increased until the end of the experiment corresponding 

to 8.3 PV of TAG injection resulting in the final oil recovery of 97.14%, which is 

almost 7% higher compared to that of test#1. In general, the increased oil recovery 

factor may be mainly attributed to the improved viscosity contrast of the thickened gas 

flood, reducing the injection gas mobility and subsequently delaying gas BT. However, 

the delay in BT allows the injected gas to come in contact with more oil in the sample’s 

pore volume further enhancing other miscible injection recovery mechanisms such as 

oil viscosity reduction, oil swelling, and extraction of hydrocarbon fractions by CO2 

available in the AG mixture. In summary, the addition of oligomer to the injected AG 

mixture enhances the overall injection gas utilisation and the conformance of the flood 

which improves the volumetric sweep efficiency and the oil recovery factor.  

Table 6.3 Summary of the core-flooding experiments conducted on non-

fractured core plugs (377 K and 53 MPa). K, Permeability; ϕ, Porosity; Soil,max, 

oil saturation upon the achievement of irreducible water; Injected TAGR, 

injected thickened ratio; BT, breakthrough in pore volume; and RFtotal, ultimate 

oil recovery factor. 

Test 

No. 

Injection scheme ∅     

% 

K   

mD 
Soil,max      

% 

Injected 

TAGR 

BT  

P.V 
RFtotal     

(%) 

1 unthicken AG 14.26 19.08 94.5 --- 0.092 90.33 

2 continuous 

thickened AG 

13.73 11.1 93.4 --- 0.142 97.14 

3 thickened CO2 

alter  AG 

13.73 12.58 97.5 1:2 0.108 96.96 

4 thickened AG 

alter  AG 

14.26 30.53 96.3 1:2 0.108 96.52 

5 thickened AG 

alter AG 

14.85 27.26 95.8 1:3 0.091 95.06 

6 thickened AG 

alter AG 

14.26 35.24 94.18 1:5 0.096 91.7 

As observed from the above results, a moderate viscosity enhancement (4.38 fold) 

can result in reasonable improvement in the displacement efficiency and oil recovery 

factor. However, as mentioned earlier, the large quantity (5 wt%) of  polymer or 
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oligomer required to reach this level of viscosity enhancement for the AG mixture 

makes continuous TAG injection uneconomical for Field A. In this study, the potential 

of the alternating injection scheme has been tested (tests #3 and #4) using the two 

thickened gases of TCO2 (3 wt% of P-1-D) and TAG (5 wt% of P-1-D) using the same 

TAGR of 1:2 for both gases. As can be seen in Figures 6.4 and 6.5, the oil recoveries 

for both floods are higher than that of the continuous unthickened AG flood and close 

to the ultimate oil recovery of the continuous TAG flood. During the early injection 

times (until 2.2 PV of gas injection), TCO2-A-AG flooding results in higher recovery 

than TAG-A-AG flooding. However, with further injection the two recovery profiles 

coalesce, resulting in almost identical final recovery factors (96.9% and 96.5%, 

respectively). As may be expected since the unthickened AG mixture is injected first, 

the BT times of these tests are similar to that of the unthickened AG mixture flooding 

test.  
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Figure 6.4 Measured oil recovery profiles for the four injection schemes of continuous 

unthickened AG flooding, continuous thickened AG flooding, thickened AG 

alternating AG flooding (TAG-A-AG) (ratio: 1:2), and thickened CO2 alternating AG 

flooding (TCO2-A-AG) (ratio: 1:2) in non-fractured composite sample, all conducted 

at 377 K and 53 MPa. 

 

Figure 6.5 Graphical representation of the injection patterns and measured ultimate oil 

recovery factors for different injection schemes and different TAGR in non-fractured 

core plugs. 

6.3.1.1.2 TAGR Effect on the Performance of TAG-A-AG Injection  

In addition to the four core-flooding experiments discussed earlier, two additional 

TAG-A-AG flooding experiments were carried out on the non-fractured plugs to 

investigate the effect of variation in the TAGR on the performance of the alternating 

injection scheme. The new tests were performed with two different alternating TAGRs 

of 1:3 and 1:5 (tests #5 and #6). For comparison purposes, the measured oil recovery 

profiles of three TAG-A-AG tests (ratios of 1:2, 1:3 and 1:5) along with those 
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belonging to the continuous TAG and unthickened AG flooding experiments are 

plotted in Figures 6.5 and 6.6. As can be seen from both figures, the TAGRs of 1:2 

and 1:3 resulted in distinctly higher oil recoveries (96.52% and 95.06%, respectively) 

compared to those in the unthickened AG flooding and only slightly less than that 

obtained for continuous TAG flooding whereas the recovery factor of the ratio 1:5 

(91.7%) is noticeably lower and is almost identical to that of the unthickened AG 

flooding. During the alternating TAG process, when the thickened AG reaches the core 

plugs, the conformance control and gas retention inside the plugs improve, providing 

the AG mixture with better opportunity to further penetrate more of the pore volume 

of the cores and mobilise further oil from the core plugs. However, such an effect 

seems to diminish when TAGR reaches 1:5 as the positive effects of the TAG on 

recovery are diluted by large amounts of unthickened AG injected. Overall, given the 

negligible difference between the recoveries obtained from TAGRs of 1:2 and 1:3 and 

the downside from using more thickened gas than necessary, the optimum TAGR for 

flooding the non-fractured cores would be 1:3 as it requires significantly less oligomer 

compared with a TAGR of 1:2.  
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Figure 6.6 Measured oil recovery profiles for the four injection schemes of continuous 

unthicken AG flooding, continuous thickened AG flooding and thickened AG 

alternating AG flooding (TAG-A-AG) (ratios: 1:2, 1:3 and 1:5) in non-fractured 

composite sample, all conducted at 377 K and 53 MPa. 

6.3.1.2 Oil Recovery in Fractured Core Plugs 

As indicated earlier, the second composite sample included two fractured core plugs 

(Figure 6.3). An identical set of core-flooding experiments as that conducted on the 

non-fractured composite sample (tests #1-6) were also conducted on the fractured 

sample (tests #7-12). A short summary of all six experiments (tests 7-12) along with 

some of their main outcomes are presented in Table 6.4. 

6.3.1.2.1 Effect of Injection Scheme 

The primary objective of tests #7-10 conducted on the fractured plugs was to 

investigate the effect of injection scheme on the performance of miscible gas flood. 

The measured oil recovery profiles for the above experiments are plotted in Figure 6.7. 

Similar to the results obtained for the non-fractured plugs, the oil recovery factor of 

the continuous TAG flood (test #8) is similar to that obtained by the alternating TCO2-

A-AG (TAGR 1:2) flood (test #9) (95.3% and 95.2%, respectively) and significantly 

higher than those of the unthickened AG (80.3%) (test #7) and alternating TAG 

(93.2%) (test #10). The mechanism for the high recovery of the TAG flood is similar 

to that of the non-fractured sample and is attributed to the lower viscosity contrast 

between the injected gas and the displaced oil. As can be seen in Figures 6.7 and 6.8, 

unthickened AG flood (test #7) shows the lowest ultimate recovery (even lower than 

test #1 which is identical except that a non-fractured core is used) due to both the 

unfavourable mobility ratio of the flood and the channeling of the AG mixture through 

the microfracture resulting in a low volumetric sweep efficiency.  

Compared with the continuous unthickened AG flood, the two alternating injection 

schemes result in significant additional oil (13-15%) being produced. Unlike the 

results obtained for the non-fractured plugs (by comparing with Figure 6.4), during 

early to intermediate flood times, Figure 6.7 indicates that TAG-A-AG injection seems 

to have a higher microscopic displacement efficiency than TCO2-A-AG injection. 

Notably, around 5.3 PV of TCO2-A-AG injected, the oil production rate increases 

significantly leading to a higher ultimate oil recovery factor for this flood. This 



  

157 

phenomenon may be explained using the expected interactions between the in-situ oil 

and either AG or CO2. After BT, the injected gas would increasingly lose contact with 

any residual oil left inside the plugs resulting in less mass transfer (or mutual 

interactions) to occur between the injected gas and the residual oil. However, as the 

thickened gas is injected alternatingly into the core plugs, the mobility of the flood 

would improve enabling the gas to reach the residual oil left behind in the unswept 

regions of the plugs. Eventually, either CO2 or the AG mixture undergo progressive 

multiple contact with the residual oil and the oil becomes diluted and mobilised. 

Nonetheless, in the case of the alternating TCO2 injection, the expected mutual 

interactions between the oil and TCO2 take a longer time to occur delaying the dilution 

and mobilisation of the oil.[80] Visual indications of the above process was observed 

in the last stage of the oil production in the related core flooding experiments. As can 

be seen in Figure 6.9, the produced oil by TAG-A-AG flooding seems more diluted 

early on (indicated by a yellow-shift in the fluorescence color) compared to the oil 

produced by alternating TCO2-A-AG which looks less diluted further along in the 

recovery process. According to Bourdet et al.[335], while the light alkane fractions 

from the AG (i.e. methane and ethane) dissolve into the light crude oil used here, 

molecular transfer from the oil to the AG phase also occurs, resulting in a change in 

the fluorescence color of the oil from blueish to yellowish. As can be seen from 

Figure 6.9, a more pronounced change in the fluorescence color was observed with 

alternating TAG flood. In this case, the loss of low molecular weight aromatic 

molecules into the vapour phase is more pronounced with the injection of the AG 

mixture. The dilution of oil by gas solvents causes a further reduction of the residual 

oil viscosity[336] and subsequently the viscosity contrast. Hence, the oil dilution effect 

in combination with improved mobility control impacts on the oil recovery process.  

Overall, it may be concluded that the addition of the oligomer or polymer into the 

gas (either AG mixture or CO2) and injecting it continuously or alternatingly can 

improve the oil recovery in the fractured core plugs as was the case for non-fractured 

plugs. The thickened gas injection leads to better mobility control and an increase in 

the contact time between the oil and injected gas contributing to a higher oil recovery. 

However, the presence of the fracture gives rise to gas channeling counteracting the 

positive effect of improved mobility to some extent.  
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Figure 6.7 Measured oil recovery profiles for the four injection schemes of continuous 

unthicken AG flooding, continuous thickened AG flooding, thickened AG alternating 

AG flooding (TAG-A-AG) (ratio: 1:2), and thickened CO2 alternating AG flooding 

(TCO2-A-AG) (ratio: 1:2) in a fractured composite sample, all conducted at 377 K and 

53 MPa. 
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Figure 6.8 Comparison of measured ultimate oil recovery factors at different injection 

schemes and different TAGR in fractured core plugs. 

  A B 

Figure 6.9 Collected oil produced in graduated cylinders from core-flooding tests in 

fractured core plugs: A, TCO2-A-AG (1:2); and B, TAG-A-AG (1:2).  The 

fluorescence color changes of residual oil in the last cylinder is dark brown in 

alternating TCO2 flooding and yellow color in TAG alternating flooding. 

6.3.1.2.2 TAGR Effect on the Performance of TAG-A-AG Injection  

Similar to the study for non-fractured cores, test #11 and #12 (TAG-A-AG floods 

with TAGR values of 1:3 and 1:5, respectively) were conducted in the fractured core 

plugs to investigate the effect of TAGR on the oil recovery process.  Various details 

of these two experiments are provided in Table 6.4. Figure 6.10 provides a comparison 

between the measured oil recovery profiles of experiments with different TAGRs (1:2, 
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1:3 and 1:5) and those of the continuous TAG and unthickened AG floods. As can be 

seen in Figure 6.8 and table 6.4, the three experiments with different TAGRs resulted 

in distinctly different ultimate oil recoveries. The TAGR values of 1:2 and 1:5 have 

recoveries very close to those of the continuous TAG and continuous unthickened AG 

floods, respectively. Figure 6.10 reveals that initially, the recovery profiles for TAGRs 

1:2 and 1:3 are almost identical; however, with further injection, TAGR 1:2 deviates 

toward higher recovery. Such an effect may be attributed to the positive effects of 

larger TAGR resulting in better recovery. For the TAGR of 1:5, initially reasonable 

increases in the oil production rate are achieved; however, with further injection the 

presence of oligomer in the small thickened AG slugs fails to remain effective. At the 

end, unthicken AG and thickened AG alter AG (TAGR 1:5) exhibit the similar 

flooding performance. A similar behaviour can be observed for TAGR of 1:3; 

however, larger slugs of the thickened AG results in higher recovery compared with 

TAGR of 1:5. Therefore, the optimum TAGR for the alternating flooding in the 

fractured composite sample is 1:2, which unlike the non-fractured core has a 

significantly higher recovery factor than that with the 1:3 ratio.   

Overall, the alternating flooding scheme utilising slugs of either TAG or TCO2 was 

found to be capable of improving the oil sweep efficiency resulting in further 

enhancement in the oil recovery. With the TAGR of 1:2, the alternating scheme was 

even found to be as effective as the continuous TAG flood while consuming 

considerably less amounts of the oligomer making it economically more attractive. 

Table 6.4 Summary of the core-flooding experiment conducted on fractured core 

plugs (377 K and 53 MPa) for fractured core plugs. K, Permeability; ϕ, Porosity; 

Soil,max, Oil saturation upon the achievement of irreducible water; injected 

TAGR, injected thickened ratio; BT, breakthrough in pore volume;  and RFtotal, 

ultimate oil recovery Factor. 

Test 

No 

Injection scheme ∅         

% 

k                 

mD      

S𝒐𝒊𝒍,𝒎𝒂𝒙     

% 

Injected 

TAGR 

BT     

P.V 
RFtotal 

(%) 

7 unthicken AG 14.0 187 85.0  - 0.069 80.0 

8 continuous 

thickened AG 

13.8 156 92.2  - 0.108 95.3 

9 thickened CO2 

alter AG 

15.3 230 91.2 1:2 0.092 95.2 

10 thickened AG alter 

AG 

14.5 155 92.2 1:2 0.092 93.2 

11 thickened AG alter 

AG 

15.8 265 86.3 1:3 0.076 87.6 
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12 thickened AG alter 

AG 

15.3 203 87.2 1:5 0.076 80.2 

 

 

Figure 6.10 Measured oil recovery profiles for the four injection schemes of 

continuous unthickened AG flooding, continuous thickened AG flooding, and 

thickened AG alternating AG flooding (TAG-A-AG) (ratios: 1:2, 1:3 and 1:5) in a 

fractured composite sample, all conducted at 377 K and 53 MPa. 

6.3.1.3 Comparison of the Oil Recovery Factor in Fractured and Non-fractured 

Core Plugs 

The oil recovery profiles for continuous TAG and continuous unthickened AG 

flooding in both non-fractured and fractured core plugs are plotted and compared in 

Figure 6.11. As expected, the recovery factors for both floods are higher in the non-

fractured plugs. This is because the displacementt effeciency in the fractured core 

plugs is lowered by gas channeling through the microfractures. Naturally, continous 

TAG flooding achieved a higher recovery factor than unthickened AG injection in both 

sample types. However, the difference between the two recovery factors is 
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substantially higher for the fractured plugs: a difference of 15.3% for the fractured 

plugs compared with a more subtle 6.81% difference for the non-fractured plugs. This 

comparison demonstrates the outstanding capability of the thickened gas injection in 

improving the flood conformance in the presence of the microfracture thus 

counteracting its negative effects on recovery. Therefore, it may be concluded that 

thickened gas injection relative to unthickened gas injection is more effective in 

improving the oil recvery process in hetrogeneous reservoirs such as Field A. 

 

Figure 6.11 Measured oil recovery profiles for continuous TAG and continuous 

unthickened AG floods in non-fractured and fractured core plugs, all conducted at 377 

K and 53 MPa. 

The measured oil recovery profiles for TAG-A-AG and TCO2-A-AG (ratio of 1:2 

for both) in both non-fractured and fractured cores are in Figure 6.12.  For early 

injection times with the non-fractured plugs, TCO2-A-AG flood gives a higher 
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recovery factor than that of  the TAG-A-AG flood. However, with further injection, 

the two recovery curves seem to overlap, reasulting in almost identical ultimate 

recovery factors for both floods. Whereas in the fractured plugs, the TCO2-A-AG flood 

gives lower oil recovery than the TAG-A-AG flood until about 5.3 PV of gas injection 

beyond which the TCO2-A-AG flood seems to achieve a better diplacment sweep 

efficiency, attaining a higher oil recovery at the later stages of the recovery process. 

The reason behind this behaviour has been discussed in previous sections of this 

chapter.  Unlike the previous comparison between continuous TAG and unthickened 

TAG, the difference in performance between fractured and non-fractured cores is less 

significant. 

 

Figure 6.12 Measured total oil recovery factor versus 8.3 of total injected pore volume 

of TAG-A-AG and TCO2-A-AG in non-fractured and fractured core plugs at a flow 

rate of 0.4 cm3.min-1, reservoir temperature of 377 K, and pressure of 53 MPa. 
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6.3.2 Additives Cost Analysis  

This section is devoted to a rough cost analysis for using P-1-D in CO2 or AG 

mixture injection. According to PAO supplier, the price of the P-1-D is about USD 

$3/kg. The concentrations used in the core flooding experiments were 5 wt% of P-1-

D in AG mixture and 3 wt% in CO2. A 5 wt% of P-1-D in the AG mixture would result 

in around $70/m3 of AG mixture, which needs to be added to the initial cost of AG 

mixture which is approximately $0.23/m3. 3 wt% of P-1-D in CO2 would cost $74/m3 

of CO2, which is in addition to the initial cost of CO2 ($0.026/m3). Although the 

concentration of P-1-D in CO2 is lower than that in the AG mixture, a higher cost 

resulted from adding P-1-D to CO2, because the density of CO2 is higher than that of 

the AG mixture, which impacts directly the amount of oligomer required. Continuous 

thickened gas at these concentrations would be expensive and result in a negative cash 

flow. An alternating injection of the thickened gas might be economically possible if 

it works at the reservoir scale. According to the core flooding experiments conducted 

here, the optimum ratio is 1:2. With this ratio, the P-1-D amount required would be 

reduced to 1/3. This is equivalent to 1.7 wt% of oligomer/AG continuous injection and 

1 wt% of P-1-D/CO2 injection. Therefore, the amount of oligomer in both solvents is 

substantially reduced, thus potentially influencing project economics. 

6.4 Summary and Conclusion 

In this study, a total of twelve core flood tests were conducted using four different 

injection schemes (continuous unthickened AG, continuous TAG, TAG-A-AG, and 

TCO2-A-AG) on non-fractured and fractured composite samples from Field A located 

in the south of Oman. It is found that the continuous TAG injection and alternating 

injection of TAG or TCO2 with unthickened AG are all capable of mobilising high 

proportions of the in-situ oil and achieving higher oil recovery factors. In TAG-A-AG 

flooding, different TAGRs were also utilised to optimise the injection ratio during 

alternating TAG injection. According to the results, the optimum TAGR is 

approximately 1:3 in non-fractured plugs and 1:2 in fractured plugs. These optimum 

TAGRs achieved considerably higher oil recovery factors than that of the unthickened 

AG flooding but marginally less than that of the continuous TAG flooding. However, 

during alternating injections less polymer/oligomer is required. Hence, the alternating 
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injection of TAG or TCO2 with unthickened AG seems to create a balance between 

improving the sweep efficiency and the use of costly polymer or oligomer additives.  

Overall, the core-flooding experiments verified the performance of alternating 

thickened gas (CO2 or AG) injection at the laboratory-scale to be close to that of the 

continuous thickened AG but with considerable reduction of polymer amounts used. 

However, further work is required to investigate the feasibility of this injection scheme 

for field application. One approach to adequately address this uncertainty is to conduct 

a field-scale numerical simulation incorporating the laboratory results using 

appropriate upscaling techniques. 
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Chapter 7. Effects of Oligomers Dissolved in CO2 or 

Associated Gas on IFT and Miscibility 

Pressure with a Gas-light Crude Oil System* 

7.1 Introduction 

Miscible gas injection (MGI) is widely considered as an effective enhanced oil 

recovery (EOR) process that can increase recovery by achieving miscibility between 

the injected gas (CO2, associated gas (AG), etc.) and reservoir oil. The MGI process 

proceeds via a number of well-known mechanisms such as oil viscosity reduction, 

decrease in the interfacial tension (IFT) and oil swelling.[15, 16, 20, 337] These 

mechanisms play important roles of varying degrees depending primarily on in-situ 

reservoir conditions, type of the gas injected and composition of the in-situ oil.[338] 

During MGI, the injected gas starts to become miscible with the reservoir oil at and 

above the minimum miscibility pressure (MMP). In other words, at and above the 

MMP, the gas (typically existing in a supercritical state) acts as a solvent when comes 

in contact with the reservoir oil and can effectively reduce the remaining volume of 

oil to near zero under ideal conditions.[4] The injected gas can either gradually develop 

dynamic miscibility with the reservoir oil through multiple-contact miscibility or can 

become miscible with oil immediately when the two fluids are brought contact through 

first contact miscibility.[260] As the two fluids  become completely miscible and form 

a single phase in the reservoir, the displacement efficiency improves, while maintaing 

the reservoir pressure, resulting in higher oil recovery. As an essential MGI 

mechanisms, with miscibility, the interfacial tension between the fluids is decreased 

to essentially zero giving rise to elimination or a significant reduction in the capillary 

pressure between the fluids and improvement in the displacement efficiency and oil 

recovery.[49]  

Field A is located in the Harweel cluster in southern Oman and is recognised as a 

viable candidate for an MGI campaign.[31, 339] It is found that with the 

implementation of MGI, an estimated 47% of the original oil in place (OOIP) could 

be recovered.[32] As part of the gas injection development, produced AG is re-injected 

at high pressure (up to 55MPa) into this high temperature reservoir (up to 377 K). This 
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creates conditions where the gas becomes miscible with the oil.[31] The MMP for the 

live oil-AG system in Field A was measured by slim tube technique to be 38.3 

MPa.[32] However, the implementation of an MGI process in Field A faces technical 

challenges including viscous fingering, early gas breakthrough and a high gas-to-oil 

ratio (GOR). These difficulties are caused by a number of factoring including a high 

viscosity contrast between the injected AG (0.01- 0.03 cP) and the in-situ oil (0.24 cP) 

as well as reservoir heterogeneity which compromise macroscopic sweep 

efficiency.[32, 288] In fact, early breakthrough has already been observed in some of 

the production wells in Field A, resulting in a high production GOR. Furthermore, the 

in-situ environment in Field A is very harsh with a high salinity of 275,000 ppm and a 

high temperature of 377 K.[30] Based on our previous studies,[288, 332] a direct 

thickening agent could be a viable technique to reduce the viscosity contrast which 

would mitigate some of the technical challenges allowing the advantages of both the 

chemical and miscible gas EOR methods to come to fruition.  

For over 40 years, direct gas thickening has been recognised as a potential game-

changing technology with the potential to increase the oil recovery associated with an 

MGI program.[52] This technique is considered to be one of the most promising 

approaches where the chemical and thermal stability of many viable additives is ideal 

for harsh reservoir environments such as that of Field A.[52] Several 

polymer/oligomer additives into CO2 and hydrocarbon mixtures have been tested and 

shown to increase the injected gas viscosity to levels close to that of the reservoir oil 

viscosity.[52, 64, 66, 69-72, 164, 231, 333] To date, a high molecular weight 

fluoroacrylate−styrene copolymer (polyFAST) (Mw 540,000) has been identified in 

other research work as the best CO2 thickener in terms of viscosity enhancement.[170, 

191] However, the cost and environmental issues with this polymer has prevented its 

use in the field.[167] Non-fluorinated polymers and oligomers (i.e. poly 

dimethylsiloxane (PDMS, MW 197,000), poly vinyl ethyl ether (PVEE, Mw 3800-

4,337) and poly (1-decene) (P-1-D, Mw 544-900)) have also been identified as CO2 

and hydrocarbon solvents thickeners.[52, 66, 71, 157, 162, 164, 178, 227] All of these 

polymers are known as being among the most CO2 soluble polymers among the non-

fluorous polymers with poly(vinyl acetate) (PVAc) being the second most soluble 

(which is not used due to its tendency to hydrolyse).[162] High molecular weight 

PDMS (Mw 197,000) with the addition of a 20 wt% toluene as a co-solvent was also 
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found to be an effective thickener for improved the oil recovery in CO2-EOR.[63] 

Furthermore, at 298 K and 7 MPa, high Mw PDMS increases the viscosity of natural 

gas liquid (NGL) modestly.[231] Generally, with increase in temperature, a higher 

pressure is required for polymer dissolution in CO2, NGL, and AG because increased 

temperature causes a significant difference in the free volume between the polymer 

and solvent at high temperature, leading to phase separation.[71, 172, 231, 288] Heller 

et al.[66] determined that both PVEE and P-1-D only slightly increase CO2 viscosity 

at 298 K and 306 K and this is attributed primarily to its low solubility. In our previous 

studies,[288, 332] P-1-D exhibited adequate solubility in CO2 and AG mixture to 

enhance viscosity significantly at temperatures above 358 K over the 50-55 MPa 

pressure range. Below this temperature, P-1-D oligomer was only partially soluble in 

both solvents. It was found that P-1-D can change the viscosity of CO2 by 2-2.7 fold 

at concentrations of 1.5-5 wt%[332] and enhance AG mixture viscosity by 2-7.4 fold 

at concentrations of 1.5-9 wt%.[288] In addition, 1.2-2 wt% of PVEE  improves CO2 

viscosity by 1.2-1.8 fold at 377 K.[332] Although, P-1-D has a low molecular weight, 

the viscosity increase can be explained as followes. The flexible alkyl branching 

groups on the C-C backbone available in the P-1-D may have effect on the viscosity 

increase because these side chain groups can shape themselves in numerous 

conformations forming a random coil in solution. In addition, the branch chains close 

to each other in this oligomer contribute to increasing the attractive intermolecular 

forces between the oligomers chains which could in principle increase the effective 

molecular weight.[235, 340, 341]  In recent  publications, Sun et al.[342]  and Xue et 

al.[343] have also found in molecular dynamic simulation studies that low molecular 

weight poly(vinyl acetate-co-vinyl ether) (PVAEE, Mw ~ 4300) can  increase the 

viscosity of CO2 by 2-4 fold  at concentration of 1.19 wt% and 2.35 wt% at 308 K[343] 

and copolymer of Heptadecafluorodecyl acrylate (HFDA) and CO2-phobic monomer 

vinyl n-Octanoate (VOc), vinyl acetate (VAc), vinyl pivalate (VPi) (Mw ~3000-3500) 

increase the viscosity of CO2 by 62 times at 5 wt%.[342] This is attributed to stronger 

intermolecular aggregation, binding effect and decreasing diffusion coefficient which 

means the polymer chains have the ability to reduce the movement of CO2 molecules, 

which demonstrate thickening ability of a low molecular weight polymer.[342, 343] 

Numerical simulations show that a viscosity increase of 1.5-5 fold of the injected gas 

(AG or CO2) in Field A is adequate to improve gas mobility and sweep efficiency to 

an acceptable level.[34]  
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The main parameters required to design a polymer/oligomer-thickened gas flooding 

process is the cloud point pressure and MMP between the crude oil and 

polymer/oligomer-thickened gas. To the best of our knowledge, there has been no 

study conducted to date to evaluate the effects of a dissolved thickener on the 

equilibrium IFT and miscibility pressures (MMP and Pmax) for an oligomer-thickened 

AG-crude oil system where Pmax is referred to as the first contact miscibility pressure 

(FCM). Gu et al.[178, 344] found at 329 K that the equilibrium IFT of either PVEE or 

P-1-D thickened CO2 with crude oil are much lower than that of the pure CO2/crude 

oil system. These results indicate, for the case investigated by these researchers, that 

the thickening of CO2 lowers the miscibility pressures. However, at high temperature 

(e.g. 377 K in Field A) the effects of these oligomers on IFT might be different, 

especially because P-1-D is more soluble in CO2 and AG at high temperature. 

Therefore, in this study, we investigate the effect of dissolved P-1-D in CO2 and AG 

mixture and dissolved PVEE in CO2 on the equilibrium IFTs and miscibility pressures 

(MMP and Pmax) at the temperature of 377 K using the vanishing interfacial tension 

(VIT) technique. The MMP and Pmax are obtained through the reduction of the 

equilibrium IFT achieved by increasing the pressure and then extrapolating to an 

equilibrium IFT of zero.[345] In this work, we compare the solubility of P-1-D in Field 

A’s AG mixture and CO2 as well as the solubility of PVEE in CO2 at 377 K and 50-

55 MPa (i.e. Field A’s in-situ conditions) to provide guidance on the design of the 

thickened gas flooding.[288, 332] The equilibrium IFTs for the light oil/unthickened 

gas (AG and CO2) systems and light oil/oligomer thickened gas (i.e. oligomer-

thickened AG and oligomer-thickened CO2 ) systems are measured at equilibrium 

conditions using the axisymmetric drop shape analysis (ADSA) technique for the 

pendant drop.[346] Finally, the effect of the dissolved oligomers in the thickened 

gas/light oil system on miscibility pressures (MMP and Pmax) was determined under 

partial oligomer dissolution in the gas phase at reservoir conditions.  

7.2 Experimental Methodology   

7.2.1 Materials  

In this study, low molecular weight oligomers (P-1-D, 544 g.mol-1 and PVEE, 4,337 

g.mol-1) were purchased from Sigma-Aldrich Corporation. The molecular weight of 

both oligomers was measured using gel permeation chromatography (GPC). Carbon 
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dioxide (99.999 mol%) and AG mixture (CH4 60 mol%, C2H6 9 mol%, C3H8 6 mol% 

and CO2 25 mol %) purchased from BOC Gas, Australia. The CMG WinProp Module 

(version 2016) and the National Institute of Standards and Technology’s (NIST)[294] 

online correlations were used to estimate the density of the AG mixture and CO2, 

respectively. The light oil sample used here was collected at the wellhead from Field 

A, southern Oman. The light gas components under C5 were flushed out at ambient 

pressure and temperature to achieve a dead oil. The density and viscosity of the light 

oil were measured in a high pressure densitometer and capillary viscometer to be 0.81 

g.cm3 and 2.7 cP (377K and 55 MPa), respectively. The composition of the light oil is 

given in Table 7.1 as determined by gas chromatography with a flame ionization 

detector (GC-FID). The density of the light oil used for IFTs measurements is plotted 

in Figure 7.1. 

Table 7.1 Compositional analysis results of Field A dead oil in mole percentage  

Component Mole % Component-cnt Mole % 

H2 0 C16 4.15 

H2S 0 C17 3.85 

CO2 0 C18 3.77 

N2 0 C19 3.97 

C1 0 C20 3.27 

C2 0 C21 2.99 

C3 0 C22 2.87 

iC4 0 C23 2.67 

nC4 0 C24 2.47 

C5 0 C25 2.19 

iC5 0.01 C26 2.1 

nC5 0.02 C27 1.99 

C6 0.33 C28 1.85 

C7 1.54 C29 1.85 

C8 3.71 C30 1.77 

C9 4.84 C31 1.64 

C10 5.54 C32 1.43 

C11 5.15 C33 1.35 

C12 4.72 C34 1.26 

C13 5.08 C35 1.2 

C14 4.63 C36+ 10.93 

C15 4.86 Total 100 
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Figure 7.1 Light oil measured density at 377K and different pressures.  

7.2.2 Experimental Setup and Procedure 

7.2.2.1 Equilibrium IFTs and Miscibility Pressures Measurements   

The minimum miscibility pressure (MMP) and first contact pressure (Pmax) were 

determined using the VIT technique involving the measurements of equilibrium IFTs 

between the crude oil and gas  samples (CO2 or AG mixture) with increase in 

pressure.[347]  The IFT 700 (Vinci-Technologies, France) was used to measure the 

equilibrium IFT of the light oil-(unthickned or thickned) gas systems at 377 K.  The 

schematic diagram of the experimental apparatus for measuring the equilibrium IFT is 

given in Figure 7.2. This instrument is designed to conduct IFT measurements by 

applying the axisymmetric drop shape analysis (ADSA) technique[346] for the 

pendant drop formed inside a high-pressure view cell of 20 cm3 inner volume at 

elevated pressures and temperatures.  
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Prior to each IFT measurement, the windowed cell (Figure 7.2) was cleaned at a 

temperature of approximately 323 K with acetone and toluene sequentially. This 

protocol and the combination of solvents removes any tracers of oil and oligomer. 

After cleaning, the cell was placed under vacuum for a few hours to dry.  Then, it was 

preheated to reservoir temperature (377 K) using an internal heater within the setup.  

After reaching a stable temperature value, the gas samples were introduced slowly into 

the IFT cell. The cell pressure was increased slowly using a syringe pump until 

reaching the desired value. At this stage, the required experimental parameters (such 

as fluid density and needle diameter) were entered into the software to be use later in 

calculating the IFT. An initial pressure of 4.28 MPa was used to determine the 

equilibrium IFT for both the light oil/gas system and light oil/oligomer thickened gas 

system. After achieving pressure and temperature stability, light oil was injected 

through a needle from the crude oil storage cylinder to form a pendent drop. Once a 

pendent drop was well-shaped inside the cell, the dynamic equilibrium IFT 

measurement was started by the ADSA software. Sequential digital images of the 

dynamic pendent oil drop were acquired and stored automatically. The IFTs were 

determined after a sufficient time (approximately 30 minutes) to reach an equilibrium 

state, where the IFT did not change with the time. The IFT measurements were 

repeated with two to three different pendent oil drops to assess experimental 

repeatability at every pressure. The average value of the three IFTs measurements is 

reported in this study. We found our measurements to be reproducible within ± 0.3-

0.5 mN.m-1.   

For the light oil/oligomer-thickened gas (CO2 or AG mixture) systems, equilibrium 

IFT measurements at lower pressures were determined under partial oligomer 

dissolution conditions due to the high cloud point pressure for both gas samples. The 

above described experimental procedures were repeated at each pressure (with the 

additional steps required to add the oligomer into the gas solution). For instances where 

oligomer-thickened gas was used, a known weight of the oligomer was placed in a 

metal plate inside the cell after cleaning. Then, it was placed under vacuum for a few 

hours to dry.  The cell was then preheated to 377 K and pressurised to the desired 

pressure using a syringe pump. Below the cloud point pressure, the oligomer was only 

partially soluble in the gas phase. A sufficient time (3-4 hours) was given before 

introducing a pendent oil drop at each pre-specified pressure to ensure the system 
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reached an equilibrium state. It should be noted that with the low concentrations used 

in this study, the effect of oligomer dissolution in the gas on its density was assumed 

to be negligible. 

 

Figure 7.2 Schematic diagram of the experimental setup used for IFT measurements. 

7.3 Results and Discussions  

7.3.1 P-1-D Behaviour in CO2 and AG mixture 

The solubility testing for 26 polymers/oligomers in CO2 and 32 polymers/oligomers 

in AG mixture at high temperature and high pressure have been discussed in our 

previous studies.[288, 332] In those studies, P-1-D was found to be highly soluble in 

both CO2 and AG mixture at temperatures of 358 to 377 K as two supercritical 

solvents.  As can be seen in Figures 7.3 and 7.4, the solubility of P-1-D in pure CO2 

follows an UCST (upper critical solution temperature) type behaviour while it lies 

close to the  LCST (lower critical solution temperature) trend for AG mixture (which 

contains 25 mol% CO2). It is worth noting typical UCST and LCST curves exhibit 

much, much steeper slopes on a P-T diagram which is not apparent here but the 

observations support these assumptions. This difference in behaviour indicates that at 

high temperature the mechanism responsible for the solubility of P-1-D in the AG 

mixture is different than that for pure CO2. At high temperature, the interchange energy 
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in the CO2-oilgomer system is dominated by CO2-oilgomer segment dispersion 

interactions. For the AG mixture-oligomer system, the induction cross interactions for 

the mixture containing alkanes do not have solvent-solvent quadrupole self-

interactions (as they do not contain double bonds) and the solvent-solvent quadrupole 

interactions derived from CO2 are diminished.[326] In general, the oligomer would 

dissolve if the oligomer-solvent interaction outweighs the solvent-solvent and 

oligomer-oligomer interactions. The characteristics of P-1-D-CO2 phase behaviour are 

attributed to enthalpic interactions between the P-1-D and CO2 since the cloud point 

pressure curve exhibits silimar USCT characteristics as can be seen in Figure 7.3. As 

the system temperature increases, the P-1-D-CO2 cloud point pressure decreases and 

the quadrupole CO2-CO2 interactions diminish. CO2 density is not a major driver for 

this sytem of behaviour since CO2 and P-1-D have similar densities at high pressure 

and temprature. Therefore the enthalpic intreactions are dominant in this system. For 

the AG mixture, it is likely that the free volume between the P-1-D and AG mixture 

solvents are the main driving factor for solubility of the oligomer in the AG mixture. 

With increasing temperature, the density of the AG mixture decreases causing an 

increase in the free volume between the P-1-D segments and the AG mixture solvent 

molecules which is consistent with the cloud point pressure curve for P-1-D-AG 

mixture system exhibiting LSCT characteristics as can be seen in Figure 7.4. However, 

the cloud point pressure curves are not as steep as often observed with LCST curves 

due the low molecular weight of P-1-D. In addition, at high pressure the solvent is 

highly compressed and the change of molar volume is smaller with increasing 

temperature. As result, the changes of cloud point pressure at high temperature are 

subtle, leading the cloud point pressure curve being less steep with increasing 

temperature. In comparison to the literature, the phase behaviour of polyolefin exhibits 

an LCST trend in hydrocarbon solvents[348] and UCST trend in CO2[349] due to the 

presence of quadrupole interaction for the CO2 molecule (which contain double 

bonds).   
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Figure 7.3 Measured cloud point pressures for P-1-D at different concentrations and 

temperatures in CO2.[332] 

 

Figure 7.4 Measured cloud point pressures for P-1-D at different concentrations and 

temperatures in AG mixture.[288] 

Figure 7.5 shows the cloud point pressure trends of 1.5 wt% P-1-D in pure CO2 and 

AG mixtures with differing mol % of CO2 contents (10 mol%, 25 mol%, 50 mol% and 

100 mol%). As the CO2 content in the AG mixture increases, there is a monotonic 

35

37

39

41

43

45

47

49

355 360 365 370 375 380

C
lo

u
d
 P

o
in

t 
p

P
re

ss
u

re
 (

M
P

a
)

Temperature (K)

CO2 (1.5 wt%) CO2 (3 wt%) CO2 (5 wt%)

45

46

47

48

49

50

355 360 365 370 375 380

C
lo

u
d
 P

o
in

t 
P

re
ss

u
re

 (
M

P
a
)

Temperature (K)

AG (1.5wt %) AG (3 wt%) AG (5 wt%)



  

176 

decrease (continuing to the case of pure CO2) in the pressure required to obtain a single 

phase. In AG mixture, the density drives the solvation power of the supercritical fluid. 

When the temperature increases, the density of the AG mixture decreases, resulting in 

a higher molar volume and a larger free volume. This results in reduced entropic 

interactions between the oligomer and AG mixture and a low degree of solvation. As 

the amount of CO2 increases, CO2-CO2 quadrupole interactions become more 

important and are overcome through enthalpic interactions.  Under these conditions, a 

temperature increase results in improved solvation of the oligomer.  By varying the 

concentration of CO2 in the AG mixture, the balance of these opposing effects is 

varied. In summary, the solubility of P-1-D in CO2 is a function of enthalpy and in AG 

mixture is a function of entropy (molar volume) at high temperature and pressure. 

Hence, solubility of P-1-D in both solvents is governed primarily by oligomer-solvent 

interactions.     

 

Figure 7.5 Measured cloud point pressures for P-1-D at 1.5wt% concentration in the 

AG mixture containing different percentages of CO2 at different temperatures.[288, 

332] 

7.3.2 PVEE Behaviour in CO2  

According to the screening method used in our previous studies,[288, 332] PVEE 

has a high solubility in CO2 but exhibits partial dissolution in AG mixture at 377 K 

and 55 MPa. These results are consistent with results obtained through in our 
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conventional cloud point pressure measurements over a range of temperatures and 

polymer concentrations. Cloud point pressure experiments confirmed PVEE to be fully 

soluble in CO2 at the pressure range of 48.3 -54.4 MPa and temperature of 377 K and 

only partially soluble in AG mixture at the pressure of 55 MPa and temperature of 377 

K.[288, 332] For the dissolution of PVEE (which contains alkene functional groups) 

in CO2, the intermolecular quadrupolar interactions between CO2 and PVEE are 

important. According to Kilic et al.[165], the presence of ether oxygens in the chain of 

the polymer is responsible for the lower miscibility pressure as a result of potential 

interactions between CO2 and the ether groups (i.e. a Lewis acid/base interaction). 

However, the accessible position of ether group in the side chain of PVEE, make the 

CO2 less accessible to ether oxygen.[196] The primary reason for the limited solubility 

of PVEE in the AG mixture can be attributed to the diminished levels of CO2 and more 

limited intermolecular interactions between the alkanes in the AG mixture and PVEE. 

Furthermore, the solubility of PVEE is relatively sensitive to the temperature and 

concentration as they change. This is due to the fact the entropic interactions between 

PVEE and CO2 in the solution are the main drive for miscibility of PVEE in CO2 and 

these interactions decrease significantly with increase in temperature. To overcome 

this limitation, a high pressure is required to dissolve PVEE in CO2. In comparison to 

P-1-D solubility in CO2, PVEE has relatively higher cloud point pressure under the in 

situ conditions encountered for Field A at the same concentration. Therefore, the 

higher cloud point pressure for PVEE in CO2 makes it difficult to increase its 

concentration above 2 wt%. The lower cloud point pressure of P-1-D allows its use at 

concentrations up to and beyond 5 wt%. Both PVEE and P-1-D were considered 

adequately soluble in CO2 at a dilute concentration at Field A’s reservoir conditions 

while only P-1-D is adequately soluble in the Field’s AG mixture.           

7.3.3 Equilibrium IFT and MMP Measurements 

7.3.3.1 Gas Compositions Effects  

For both of the light oil/CO2 and light oil/AG mixture systems, IFT was measured 

at a constant temperature of 377 K with increasing pressure starting at 4.8 MPa until 

miscibility was achieved. This serves as a baseline for comparison when the oligomer 

would be introduced into the system at a later stage. The measured equilibrium IFT 

data for both systems (Figure 7.6) indicate that there are two distinct pressure ranges 
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where the equilibrium IFTs are reduced linearly with pressure. Based on the VIT 

technique, the measured equilibrium IFT is extrapolated to zero using linear regression 

in the first and second ranges to determine MMP and Pmax, respectively.[347] For CO2, 

it is common that a higher pressure is required to achieve MCM and FCM as the 

temperature increases.[18] Over the whole pressure range studied, the measured 

equilibrium IFTs for the light oil/AG mixture system were higher than those for the 

light oil/CO2 system.  Consequently, MMP and Pmax were significantly higher with the 

light oil/AG mixture system. The higher miscibility pressures for the AG mixture are 

cause by the fact that for this gas the lightest hydrocarbon gases (particularly CH4) 

dissolve into the crude oil from the gas phase but the extraction of light to intermediate 

hydrocarbon components from the crude oil into the gas is much lower compared to 

that into pure CO2. The reduction in the equilibrium IFT with increasing pressure is 

mainly caused by two physical and one chemical processes that occur simultaneously 

when the gas comes in contact with crude oil.[17, 337] The two physical processes are 

gas dissolution into crude oil and light hydrocarbon components extraction from the 

crude oil into the gas.[17, 350] It is well known that CO2 is very soluble into light oil 

and has a strong ability to extract light to intermediate components from the crude 

oil.[17] These two processes significantly contribute to the light oil/CO2 system having 

a lower IFT and miscibility pressure. Yang et al.[351] found that the reduction in IFT 

between the gas phase and the crude oil is affected by the intermolecular forces (i.e. 

attractive forces) and distances operating within the gas/crude oil system. At constant 

temperature, as pressure increases, the intermolecular distance between the gas phase 

(CO2 or light HC) molecules or crude oil molecules decreases resulting in an increase 

in the intermolecular force operating within the gas and crude oil molecules.[351] 

Meanwhile, the intermolecular forces between crude oil molecules is much larger than 

those between the gas molecules.[352] However, the intermolecular forces between 

the gas molecules increase much faster with pressure than those between the crude oil 

molecules as the gas phase is considerably more compressible. Therefore, at a higher 

pressure, the strength of the intermolecular forces associated with the gas molecules 

approach that of the forces between the crude oil molecules resulting in a reduced IFT 

between the two phases.  In summary, a smaller difference in the intermolecular forces 

acting within the two phases results in lower interfacial tensions and eventually with 

increasing pressure the interfacial tension reaches zero and miscibility between two 

phases is observed.[351] 
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Figure 7.6 Measured IFTs and miscibility pressures (MMP and Pmax) for light oil/AG 

mixture system and light oil/CO2 system at different equilibrium pressures at constant 

temperature (377 K).   

With regards to the interactions of the AG mixture (containing both CO2 and light 

hydrocarbons) with the light oil, the main intermolecular forces operating within the 

AG mixture are dispersion forces (while the CO2 also exhibits quadrupole-quadrupole 

interactions with itself). While the intermolecular forces operating within the crude oil 

is a combination of dispersion and dipole-dipole forces.[351] In comparison with crude 

oil, the intermolecular force operating within gas molecules is much weaker than that 

operating within crude oil molecules.[351] Comparatively, for the AG mixture, a 

higher pressure is required to achieve comparable intermolecular forces relative to 

those within the crude oil components. The intermolecular attraction forces between 

the molecules of a gas are directly related to its critical temperature.[353] CO2 has a 

higher critical temperature (304 K) than methane (190 K) and slightly lower than 

ethane (305 K).[354] In addition, the distance between the CO2 molecules is shorter 

compared with methane and ethane.[354] The shorter intermolecular distance and 

higher critical temperature results in an increase in the intermolecular force. As the 

AG mixture mainly contains methane (60 mol%), the intermolecular interaction 

difference between the AG mixture and the light oil is higher compared to the 

difference between CO2 and light oil. Therefore, the larger difference in intermolecular 

force strength within the individual phases (i.e. AG mixture and light oil) leads to an 

increase in the IFT. Consequently, the miscibility pressures of light crude oil and AG 
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mixture system is larger than the CO2 and light crude oil system as can be seen in 

Figure 7.6. In fact, the MMP and Pmax  increase linearly with CH4 content in the AG 

gas mixture.[17] Therefore, the increase in the MMP and Pmax for AG mixture 

containing a 60 mol% CH4 content is consistent with prior studies whose results are 

reported in the literature. However, as the pressure conditions are high in Field A, the 

AG mixture can still be miscible with the light crude oil. Meanwhile, the CO2 content 

in the produced gas may to some extent have a considerable effect on the miscibility 

development due to its ability to extract intermediate hydrocarbons.  

7.3.3.2 Oligomer-Thickened Gas Effects  

7.3.3.2.1 Light Crude Oil and Oligomer-Thickened CO2 System 

Unfortunately, the cloud point pressures of both P-1-D and PVEE in both solvents 

(i.e. CO2 and AG mixture) are high making it difficult to measure the equilibrium IFTs; 

all the measurements completed here start from low pressure and increase to the 

miscibility pressure. However, the cloud point pressure of both of these oligomers is 

marginally located above the MCM pressure and just below the FCM pressure. 

Therefore, the measured equilibrium IFTs were performed below the cloud point 

pressures where both oligomers are partially soluble in CO2 and AG mixture. The 

equilibrium IFTs for the light oil/P-1-D thickened CO2 and light oil/PVEE thickened 

CO2 systems were measured at 377 K and pressure ranges from 4.8 MPa up to the 

miscible conditions. Therefore, the oligomer concentrations in the solution are 

qualitative, and the effects on IFTs and miscibility pressures were measured with this 

assumption. As shown in Figures 7.7 and 7.8, the measured equilibrium IFTs between 

the light oil and each oligomer-thickened CO2 system is slightly lower than that for 

the light oil/pure CO2 system. A slight decrease of IFT values in the first linear is 

attributed to the small amount of oligomer dissolution into the CO2 phase. This results 

in only a slight reduction of MMP with the oligomer-thickened CO2 system. Using the 

VIT technique, the MMPs for light oil/pure CO2, light oil/P-1-D-thickened CO2 and 

light oil/PVEE-thickened CO2 systems are determined to be 22.1, 21.5 MPa and 21.6 

MPa, respectively. 

Moreover, with increasing pressure (i.e. in the second linear regime), more oligomer 

dissolves into the CO2 phase and the effect of each oligomer on the equilibrium IFT is 
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more obvious as it can be seen in Figures 7.7 and 7.8. The measured equilibrium IFT 

values for both light oil/oligomer-thickened CO2 systems are much lower than the 

equilibrium IFT values with the light oil/pure CO2 system. Accordingly, the first 

contact miscibility pressure (Pmax) of both light oil/oligomers-thickened CO2 systems 

(39 MPa for P-1-D-thickened and 38.7 MPa for PVEE-thickened) are lower than that 

for the pure CO2/light oil system (at 44 MPa). These differences are substantially larger 

than the differences in the MMP values of these systems.  Nevertheless, we can 

conclude in general that more dissolution of oligomers (P-1-D and PVEE) into the CO2 

result in a lower IFT and consequently a lower MMP and Pmax.   

The mechanism for the above abserved reduction is attributed to the intermolecular 

forces between the oligomer molecules and CO2 molecules due to intermolecular 

distance between their molecules is reduced and in particular the effect of the ether 

group (PVEE) on further enhancing the intermolecular interactions between CO2 and 

PVEE. Therefore, the differences between the intermolecular forces within the 

oligomer-thickened CO2 and crude oil phases diminish with increasing pressure and 

the thickened CO2 becomes more soluble in light crude oil. Consequently, the IFTs 

between light crude oil and oligomer-thickened CO2 are lower.  Hence, a slightly lower 

operating/injection pressure is required to achieve MMP and Pmax with oligomers-

thickened CO2 flooding. The cloud point pressure at 377 K for P-1-D (1.5-5 wt%)-

thickened CO2 is below the FCM pressure (Pmax); whereas, the cloud point pressure 

for PVEE (1.2-2 wt%) is higher than Pmax. Gu et al.[344] found for both oligomers at 

the lower temperature of 329 K that a low concentration (0.15 wt%) of dissolved 

oligomer in CO2 leads to a lower equilibrium IFT and miscibility pressure. Therefore, 

we can conclude that at both low[344] (at 329 K) and high temperatures (this study at 

377 K) the dissolution of PVEE and P-1-D in CO2 can lower the miscibility pressure. 

These effects could positively contribute to achieving miscibility development at 

lower pressure and enhance recovery efficiency from depleted oil reservoirs. 
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Figure 7.7 Measured IFTs for the light oil/P-1-D-thickened CO2 system and light 

oil/CO2 system at different equilibrium pressures and constant temperature (377 K). 

 

Figure 7.8 Measured IFTs for the light oil/PVEE-CO2 system and light oil-CO2 system 

at different equilibrium pressures and constant temperature (377 K).   

7.3.3.2.2 Light Crude Oil and P-1-D-Thickened AG Mixture System 

 Equilibrium IFTs for the light crude oil/P-1-D-thickened AG mixture system were 

also measured at 377 K under partial dissolution conditions to determine the effects on 

IFT and miscibility pressures (MMP and Pmax) of this system. As can be seen from 
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Figure 7.9, these measurements resulted in 34 MPa and 68 MPa as the MMP and Pmax 

for the above system, respectively, which are considerably higher (by approximately 

3.5-4 MPa) than those for the light oil/AG mixture system (30.5 MPa and 64 MPa, 

respectively). Similar to the results observed for the pure CO2 system, it can be seen 

in Figure 7.9 that the measured equilibrium IFTs with light oil/P-1-D-thickened AG 

mixture system exhibit two distinct linear regimes. However, unlike the CO2 system 

where oligomer dissolution causes a decrease in the IFT and miscibility pressure, the 

IFT and miscibility pressures are increased with the AG mixture.   

In the first regime, the AG mixture solubility in light crude oil and P-1-D 

presumably causes a reduction in the equilibrium IFT as pressure increases. Even 

though only a small amount of P-1-D dissolves into the AG mixture at low pressure, 

the intermediate components (ethane and propane) and CO2 would dissolve in P-1-D 

making the AG mixture more lean causing a noticeable increase in the equilibrium 

IFTs and miscibility pressure values. While in the second linear regime, the dissolution 

of P-1-D in AG mixture increases substantially as the pressure approaches the cloud 

point pressure. This has slight effects on the measured equilibrium IFT. For this 

regime, the equilibrium IFTs with oligomer-thickened AG are still higher than those 

for AG mixture without oligomer, but the IFT increase is less than that in the first 

regime due to the further oligomer dissolution. Obviously, the rate of the equilibrium 

IFT reduction with light oil/P-1-D-thickened AG mixture system is much slower 

compared to the equilibrium IFT reduction with light oil/AG mixture system, 

especially at high pressure (above 28 MPa), where the solubility of the P-1-D in the 

AG mixture increases with pressure.  Overall, the AG mixture composition change 

(where components of the AG dissolve into P-1-D as a plasticizer) increase the 

equilibrium IFT values with the P-1-D- AG and light crude oil system.  
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Figure 7.9 Measured IFTs for light crude oil/P-1-D-AG system and light crude oil-AG 

mixture system at different equilibrium pressures, different P-1-D concentrations (and 

constant temperature (377 K). 

In general, equilibrium IFT is determined through the dynamic interactions between 

the two fluid phases through mass transfer of components (due to mutual solubility of 

components in both phases) and changes in the thermodynamic equilibrium state (i.e. 

enthalpic and entropic interactions).[355, 356] The molecules in each phase are 

attracted to each other through dispersion and dipole (for polar molecules), quadrupole 

(for CO2) intermolecular forces.[351, 355, 356] When it comes to the P-1-D-thickened 

AG impact on the IFT at high pressure, the dominant factors are the entropy change 

and AG solubility. At high pressure and high temperature, dispersion forces between 

AG and P-1-D are nearly identical as suggested by the observation that the cloud point 

pressure does not change significantly with P-1-D concentration in the AG mixture. 

Therefore, the dispersion force does not a play major role in increasing the IFT with 

light oil/P-1-D-thickened AG system.  

Based on the discussion presented in Appendix A, the difference in the solubility 

parameters for light crude oil, AG, CO2 and P-1-D  can be used as a criterion for the 

solubility and hence the interfacial tension between oil and other mixtures. Figure 7.10 

shows the solubility parameters for light oil, P-1-D, CO2, AG (ranging from lean to 

rich), methane, ethane and propane and methane at 377 K. The solubility parameters 

for CO2 are calculated as a function of temperature and pressure.[357] For methane, 
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the pressure and temperature dependency of the solubility parameters are calculated 

too.[358] The solubility parameters for P-1-D in the range 16.1 to 16.9 MPa are 

obtained from the literature.[359] For the AG mixtures and crude oil the solubility 

parameter are calculated based on the Peng-Robinson equation of state.[360] Lean AG 

is formed by reducing the C2H6 and C3H8 composition in the AG mixture while rich 

AG is formed by a relative increase in C2H6 and C3H8 composition.  

At 377 K, the difference in the solubility parameters for CO2 and crude oil over the 

whole pressure range is less than the difference between those for the AG and crude 

oil. This implies that CO2 and crude oil tend to have a lower IFT at these pressures and 

temperatures compared to the AG and oil (Figure 7.6). Dissolving P-1-D in CO2 at 

pressures above the cloud point pressure of the mixture (36 MPa at 377K) results in 

an increase in the solubility parameter and therefore the solubility parameter difference 

between oil and the CO2/P-1-D system would decrease. This results in a decrease in 

the IFT between oil and CO2 when P-1-D is dissolved in it as confirmed experimentally 

(see Figure 7.7).   

To explain the increase in IFT when P-1-D is added to the AG/crude oil system, we 

can consider the selective partitioning of certain components in the AG mixture into 

the liquid P-1-D phase. The measured cloud point pressure of P-1-D in the AG is 

approximately 47 MPa at 377 K. Dissolving the oligomer in the AG at pressures lower 

than the cloud point pressure results in a two phase system where one phase is rich in 

AG and the other rich in the oligomer. The increase in IFT can be explained with the 

intermediate components transferring into the oligomer phase from the AG phase 

during the dissolution process; in other words, the oligomer would extract C2H6 and 

C3H8 components from the AG mixture. This results in a leaner AG mixture that has 

a lower solubility parameter compared with the original AG. Solubility parameter 

reduction due to the dissolution of the oligomer would lead to increase in the difference 

between the solubility parameters of the oil and AG (lean AG) resulting in an increase 

in the IFT between the two phases. Experimentally, we have observed the evolution of 

the dissolved gas from P-1-D in the high pressure view cell at three pressures (3.44 

MPa, 6.89 MPa and 20.68 MPa) using the rapid expansion technique.[361-365] Our 

experimental observations confirm that plasticization phenomenon of the dissolved 

gas would occur in the P-1-D/AG system below the cloud point pressure. Photos from 

the actual visual cell showing the evolution of the dissolved AG mixture and resulting 
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expansion in the P-1-D are included in Figure 7.11. The released dissolved gas from 

P-1-D creates large individual bubbles at 3.44 MPa but exhibits a foaming effect at 

6.89 and 20.68 MPa. Such a change in the behaviour is because the solubility of the 

gas in the oligomer is a function of pressure and temperature (i.e. higher solubility at 

higher pressures). Although these experiments do not necessarily confirm which gas 

components (i.e. light or intermediate) have dissolved in the oligomer, the intermediate 

hydrocarbon gas components and CO2 are more soluble in the oligomer than methane. 

[269, 366-368] Shah et al.[368] found that propane and CO2 were more soluble in all 

silicone polymers compared with methane at any given temperature and pressure. 

Hence, the dissolved gas in P-1-D, as detected in our experiments, most probably is 

ethane, propane and CO2.  Therefore, we conclude that for P-1-D/AG system, below 

cloud point pressure, the plasticization effects results in AG mixture becoming lean 

noticeably affecting the IFT values of the system.        

 

Figure 7.10 Solubility parameters of light oil, P-1-D, CO2, AG rich, AG, AG lean, 

methane, ethane and Propane at different pressures and temperature of 377 K. 
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A B C 

 

Figure 7.11 Photographs showing the evolution of the dissolved gas from P-1-D during 

pressure release after its exposure to the AG mixture at temperature of 377 K and three 

pressures of 3.44 MPa (A), 6.89 MPa (B) and 20.68 MPa (C).  

7.4 Summary and Conclusion  

In this study, firstly, a comparison between the phase behaviours of poly (1-decene) 

(P-1-D) and poly vinyl ethyl ether (PVEE) solubilities in different solvents (CO2 and 

AG mixtures) is made using cloud point pressure measurements. Then, a qualitative 

assessment of the effect of dissolved oligomers (P-1-D and PVEE) in AG mixture and 

CO2 on the equilibrium IFTs and miscibility pressures (MMP and Pmax) when these 

two gases are in contact with a light oil are determined using the VIT technique. A 

comparison between the measured cloud point pressures shows that the phase 

behaviour of P-1-D-thickened AG mixture system differs from that of the P-1-D-

thickened CO2 system. The P-1-D- thickened AG mixture system exhibits an LCST 

(Lower Critical Solution Temperature) trend, while a UCST (Upper Critical Solution 

Temperature) trends is observed for the P-1-D-thickened CO2 and PVEE-thickened 

CO2 systems. In addition, the solubility of P-1-D in CO2 is a function of enthalpy and 

in AG mixture is a function of entropy (molar volume) at high temperature and 

pressure. Meanwhile, the solubility of PVEE is entropically driven through the 

molecular interactions between ether oxygen in the side chain of PVEE and electron-

acceptor in the carbon atom of CO2.  At the same conditions and concentrations, P-1-

D has a much higher solubility in pure CO2 than PVEE.  

The measured equilibrium IFTs for the light oil/AG mixture system at all pressures 

were found to be higher than those for the light oil/CO2 system. Consequently, the 



  

188 

miscibility pressures (MMP and Pmax) of the light oil/AG mixture system (30.5 MPa 

and 64 MPa) were found to be higher than those of the light oil/CO2 system (22.3MPa 

and 44 MPa). Thus, the light hydrocarbon gases (CH4 and C2H6) have weak effects on 

miscibility development compared to pure CO2 with the CO2 content in the AG 

mixture having a considerable effect in lowering the miscibility pressure. Furthermore, 

the measured equilibrium IFTs of the light oil/P-1-D-thickened CO2 and the light 

oil/PVEE-thickened CO2 systems were found to be slightly lower than those of the 

light oil/CO2 system. Consequently, both additives of P-1-D and PVEE can slightly 

reduce MMP and considerably reduce the Pmax. In contrast, the plasticization effects 

of dissolved gas in P-1-D and dissolved P-1-D in AG mixture cause an increase in the 

IFTs and miscibility pressures of the light oil/AG mixture system at reservoir 

conditions. Overall, the cloud point pressure of P-1-D-thickened CO2 and P-1-D-

thickened AG mixture systems are located within multi-contact miscibility threshold, 

while that of the PVEE-thickened CO2 is located above first contact miscibility 

pressure.   
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Chapter 8.  Conclusions and Recommendations 

8.1 Conclusions  

Direct thickening using chemical additives is one of the techniques proposed to reduce the 

mobility of the injected gas in the reservoir during an MGI process. The reduced gas mobility 

then would effectively increase the sweep efficiency and enhance oil recovery. This thesis 

presents for the first time, the details and outcomes of numerical simulation and experimental 

evaluations of the effectiveness of thickened AG mixture and thickened CO2 injections at high 

temperature for MGI process with the specific focus on Field A located in the southern Oman. 

In the numerical work, different thickened and unthickened gas injections were simulated using 

a box model under Field A’s in-situ conditions to evaluate the potential of thickened gas 

injection in this field. In addition, the simulation study evaluated the direct effect of different 

gas compositions on the oil properties and incremental impact on oil recovery during the floods. 

In the laboratory measurements, the solubility of a large library of polymers/oligomers (26 

commercial products for CO2 and 32 for the AG mixture) in the AG mixture and supercritical 

CO2 were determined using a rapid screening method (gravimetric extraction method) whose 

results were then validated using conventional cloud point pressure testing. Subsequently, 

based on the measured solubility of each polymer/oligomer in either the AG mixture or CO2, 

any additive that had a lower cloud point pressure in these gas solvents at Field A reservoir 

conditions was examined for possible viscosity enhancement in both gases at different 

pressures and temperatures. The effectiveness of the attained viscosity improvements to 

enhance oil recovery during the MGI process were then examined using core flooding 

experiments. In addition, during this study, a new approach was invented for gas mobility 

control that can considerably lower the volume of thickeners utilised during a field-scale 

application. The advantage of this approach was demonstrated under laboratory conditions 

where it effectively reduced the consumption of thickening agents during the core flooding 

experiments. The final stage of the experimental work was conducted to evaluate the effect of 

the dissolution of the final selected oligomers (P-1-D and PVEE) in CO2 and Filed A’s AG 

mixture on the equilibrium IFTs and miscibility pressures using the VIT technique and also to 

examine the phase behaviour of the solutions obtained by dissolving these oligomers in both 

gases.  
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In general, the results of the study reveal that the final selected additives have different phase 

behaviours in different gases used and also were capable of increasing the gas viscosity at high 

temperatures (377 K) when used at high concentrations (1.5-9 wt%). Furthermore, the 

alternating thickened-unthickened gas injection could improve the sweep efficiency of the gas 

flood for Field A at the laboratory scale to levels similar to that obtainable by continuous 

thickened gas injection while reducing the amount of additives needed. The most significant 

findings of this work are summarised below as sorted according to the way various chapters 

are presented in this thesis:  

8.1.1 Numerical Study of Using Polymer to Improve the Gas Flooding in the Harweel 

Cluster 

 This part of the study revealed a progressive oil viscosity reduction with incremental 

increase in the dissolution of an injection gas into the oil. It was found that the presence of 

CO2 in the AG mixture lowers the ability of the gas mixture to reduce the oil viscosity. In 

other words, the oil viscosity reduction by the dissolution of hydrocarbon gases was found 

to be much more pronounced than that of pure CO2. 

 The dissolution of light hydrocarbon gases into the oil leads to a decrease in the oil density, 

while the opposite takes place with pure CO2 dissolution. Therefore, the presence of CO2 

in the AG mixture not only leads to an increase in the density of the AG mixture but also 

makes the AG mixture to be less effective in decreasing the oil density. This results in a 

minimal difference between the densities of the injected gas and the light oil of Field A. 

 Injection of NGL (C2-C4) has a higher swelling factor after dissolution in Field A’s oil than 

pure CO2 and AG mixture. 

 Adding a thickener to the AG, NGL and CO2 for miscible gas injection in Field A results 

in a significant increase in the ultimate oil recovery factor (7-20%) as caused by improved 

sweep efficiency, delayed gas breakthrough and reduced production GOR. 

 The simulation work demonstrated the potentials of thickening AG and NGL over CO2 for 

improving the gas mobility and sweep efficiency in a light oil reservoir such as Field A. 
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8.1.2 Experimental Study of Miscible Thickened Natural Gas Injection for Enhanced 

Oil Recovery 

 This part of the study found three additives (oligomer/polymer) that were completely or 

partially soluble in Field A’s AG mixture at the pressure of 55MPa and temperature of 

377K, including P-1-D, PMHS, and PDMS. The P-1-D oligomer was found to be 

adequately soluble in the AG mixture under actual reservoir conditions while PMHS and 

PDMS needed a higher pressure to dissolve completely at high temperature due to the 

entropic effects and mainly the presence of methane in the AG mixture. In addition, it was 

found that the presence of CO2 and propane in the gas mixture could possibly facilitate the 

dissolution of these additives in the AG mixture. 

 The measured viscosity of the oligomer-thickened AG mixture showed that only P-1-D 

was capable of increasing the viscosity of the AG mixture while PMHS could not improve 

the viscosity at low concentration (1.5 wt%). The viscosity of the P-1-D-thickened AG 

mixture could be increased between 2 to 7.4 fold at the concentration range of 1.5-9 wt%. 

Hence, the P-1-D can be considered as an effective thickener for AG mixture at high 

pressure and temperature. 

 The core-flooding experiments examined the effect of increasing the viscosity of the AG 

mixture by 4.38 fold (0.13 cP) using P-1-D on oil recovery and gas breakthrough under 

the secondary and tertiary recovery modes. The thickened AG mixture injection resulted 

in delayed gas breakthrough leading to additional oil recoveries between 10 and 12%. 

 In summary, the injection of a directly thickened AG mixture has the potential to improve 

the gas mobility and sweep efficiencies, resulting in increased ultimate oil recovery.         

8.1.3 Experimental Evaluations of Polymeric Solubility and Thickeners for 

Supercritical CO2 at High Temperature for Enhanced Oil Recovery 

 A total of three additives (polymer/oligomer) were found to be adequately soluble in CO2 

under the Field A’s in-situ reservoir conditions, including PVEE, Piso-BVE, and P-1-D.  

 The viscosity measurements for oligomer-thickened CO2 solution showed P-1-D and 

PVEE to be able to improve the viscosity of CO2 at Field A’s condition. The concentration 

range of 0.81-5 wt% of P-1-D in CO2 could considerably increase the CO2 viscosity by 

1.2-2.77 fold over the temperature range of 358 -377 K, while 1.2-2 wt% of PVEE could 

enhance the CO2 viscosity by 1.2-2.1 fold over the temperature range of 329-377 K. 
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Therefore, P-1-D and PVEE could be considered as effective CO2 thickeners at Field A’s 

conditions. 

 Piso-BVE exhibited a higher solubility in CO2 than PVEE at high temperatures. This is 

attributed to the change of the alkyl arm and steric effect on the alkyl vinyl ether. However, 

the viscosity enhancement capacity of Piso-BVE was found to be lower than PVEE at 

comparable concentrations and molecular weights. 

 In summary, P-1-D has a much better CO2 viscosity enhancement ability than PVEE and 

Piso-BVE, making it a suitable candidate for improving gas mobility in Field A, and under 

high temperatures in general, during CO2 flooding. 

8.1.4 New Approach of Alternating Thickened-Unthickened Gas Flooding for Enhanced 

oil Recovery  

 This part of the study included twelve core floods conducted using different injection 

schemes and different thickened AG injection ratios (TAGR). The experiments 

demonstrated that the both injection schemes of continuous thickened AG (TAG) flooding 

and alternating injection of TAG or thickened CO2 (TCO2) with unthickened AG (TAG-

A-AG or TCO2-A-AG) are capable of mobilising high proportions of the in-situ oil and 

achieving higher oil recovery factors. 

 The optimum TAGR was found to be approximately 1:3 in non-fractured plugs and 1:2 in 

fractured plugs. These optimum TAGRs achieved considerably higher oil recovery factors 

than that of the continuous unthickened AG flooding but marginally less than that of the 

continuous TAG flooding. 

 Although the optimum TAGRs achieved slightly less oil recovery than that of the 

continuous TAG flooding, the alternating injection scheme creates a balance between 

improving the sweep efficiency and the amount of additives required, which can bring the 

economic viability of the direct gas thickening approach within reach. 

 Overall, the core-flooding experiments verified the performance of alternating thickened 

gas (CO2 or AG) injection at the laboratory-scale to be close to that of the continuous 

thickened AG but with considerable reduction of polymer amounts used.  
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8.1.5 Effects of Oligomers Dissolved in CO2 or Associated Gas on IFT and Miscibility 

Pressure with a Gas-light Crude Oil System 

 The cloud point pressure measurements indicated that the phase behaviour of P-1-D-

thickened AG mixture system differs from that of the P-1-D-thickened CO2 system. The 

latter system follows a UCST trend while the behaviour of the former lies close to the 

LCST trend. Such an outcome indicates that the solubility of P-1-D in CO2 is a function 

of enthalpy and in AG mixture is a function of entropy. 

 P-1-D has a much higher solubility in pure CO2 than PVEE at the same conditions and 

concentrations. The solubility of PVEE in CO2 is entropically driven through the molecular 

interactions between ether oxygen atom in the PVEE and the carbon atom in CO2. 

 The dissolution of P-1-D and/or PVEE in CO2 results in a slight reduction in the IFTs and 

miscibility pressures of the light oil/CO2 system.  

 The plasticization effects of the dissolved hydrocarbon gases in P-1-D and the dissolution 

of P-1-D in the AG mixture causes an increase in the IFT and miscibility pressure of the 

light oil/AG mixture. 

 Overall, the cloud point pressure of P-1-D-thickened CO2 and P-1-D-thickened AG 

mixture systems are located within multi-contact miscibility threshold, while that of the 

PVEE-thickened CO2 is located above the first contact miscibility pressure. 

8.2 Recommendations for future work 

This study has succeeded in achieving a number of important outcomes related to the direct 

gas thickening and alternating thickened-unthickened gas flooding under high pressure-

temperature conditions. It has also managed to uncover several other aspects of this process 

that may require further in depth investigation but due to time constraints could not be 

addressed in this study. What follows is an outline of recommended further work that could 

complement this study and potentially improve the industry’s confidence in employing the 

direct gas thickening approach at the filed-scale.  

 In this study, the required concentrations of the final selected thickener (i.e. P-1-D) for 

both the AG mixture and CO2 are too high (3-9 wt%) which would make the use of this 

additive for continuous thickened gas injection impractical at the field-scale. However, as 

seen in Chapter 6, the new suggested approach of alternating injection of TAG or TCO2 
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with unthickened AG demonstrated that this injection scheme is capable of mobilising 

considerable incremental oil and achieve high oil recoveries while lowering the volume of 

thickeners utilised at the laboratory-scale to 1/3. Given the above encouraging laboratory-

scale outcome, further work at the larger field-scale using numerical simulation followed 

by economic analysis are required to investigate and verify the feasibility of this technique 

for field applications.  

 Despite many efforts made to date to identify a viable thickener for the CO2 or hydrocarbon 

gases, a non-fluorous additive material that could lead to adequate increase in the viscosity 

of CO2 or hydrocarbon gases at concentrations of less than 1 wt% without the requirement 

of a co-solvent is yet to be identified. As revealed by the literature review presented in 

Chapter 2, only two non-fluorous high Mw polymers (PDMS, DRA) are capable of 

increasing the viscosity of CO2 or NGL components at concentrations of less than 1 wt%, 

but, unfortunately, they required a co-solvent to attain solubility. In addition, these high 

Mw additives do not have the ability to enhance the viscosity of these gases at high 

temperatures (e.g. 373 K) when used at the concentrations of less than 1 wt%. In general, 

the current study indicates that P-1-D has a better viscosity enhancement ability when 

dissolved in CO2 and AG mixture at high temperatures but only at high concentrations. 

Considering the results reported in the literature and those obtained in this work, another 

possible way may exist to adequately and viably increase the viscosity of CO2 or AG 

mixture at high temperatures. The new proposed approach is based on taking advantage of 

the high temperature conditions to create a macro/micro-emulsion solution as a way of 

improving the viscosity of an injected gas that may need lower concentration of the 

additive with the presence of water. 

 Another promising route would be to control the gas mobility using nanoparticles which 

can stabilise an emulsion or a foaming agent in CO2 flooding. There have been serval 

studies evaluating low cost, commercially available nanoparticles for stabilising CO2 

foams such as bare-silica and fly ash nanoparticles.[369, 370]  However, as reported in the 

literature, the negative effect of particles retention on the core permeability and porosity is 

the main problem in applying such a technique. 

 The only type of heterogeneity whose effect on the recovery process was experimentally 

investigated in this work was the presence of a fracture. Therefore, another aspect that is 

worth investigating is the effect of other heterogeneity types on the results obtained from 

core-flooding experiments. This may be achieved by creating different controlled core-
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scale heterogeneity arrangements (i.e. permeability sequence in vertical and horizontal 

direction) and employing X-ray CT scanning to visualise their effect on multiphase flow 

at the core-scale. 

 There are a number of ongoing immiscible gas flooding projects around the world. These 

fields normally contain oils that have high molecular weight and therefore the miscibility 

pressure is much higher than the injection/reservoir pressure. This study demonstrated that 

the minimum miscibility pressure can be lowered by the dissolution of chemical additive 

in the injection gas. As indicated in Chapter 2, there are several polymer and small 

molecules additives that can be dissolved in CO2 or hydrocarbon gases. The effect of these 

additives on the equilibrium IFT and MMP of such crude oils may be worth investigating.  

 

 

  



  

196 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 



  

197 

Appendix A  

A.1 Gas/liquid IFT and miscibility-Background   

Interfacial tension (IFT) is a property of the interface between two fluid phases and 

is strongly dependent on mass transfer interactions occurring between the two phases. 

The two thermodynamic properties, solubility and miscibility, are strongly correlated 

to interfacial tension in that solubility is typically linearly correlated to the reciprocal 

of interfacial tension and the condition of zero interfacial tension between the fluid 

phases implies miscibility.[371] 

Attempts to calculate surface tension or surface energy from the knowledge of 

intermolecular potentials have been made since Laplace in the early 19th century. 

Surface tensions or energies of many simple liquids have been calculated in terms of 

intermolecular forces from theories which are based on simplified assumptions such 

as the cell model of liquid structure. Nevertheless, the results are in good agreement 

with experimental results.[372] 

Since the heat of vaporisation arises from intermolecular forces, it can be shown that 

there is a close relation between surface energy and heat of vaporisation.[372] It has 

been shown that the work necessary to bring a molecule from the interior of the liquid 

to the surface is half the work necessary to take the molecule out of the liquid.[372] If 

q and v are the heat of vaporisation and the volume per molecule, respectively, the 

following relation holds:  

𝜆 ≡
𝑞

𝑈𝑣
2
3

⁄ = 2 

Where the λ is Stephan's constantand U is surface energy. The cohesive energy density 

and the solubility parameter (δ) are derived from the heat of vaporisation (ΔEν) and 

liquid molar volume (ν)[373, 374]: 
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𝛿 = (𝐶𝑜ℎ𝑒𝑠𝑖𝑣𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑛𝑠𝑖𝑡𝑦)1/2 = √
∆𝐸𝑣

𝑣
 

The solubility parameter (𝛿) is an important quantity in predicting solubility 

relations[373, 374] Thermodynamics requires that the free energy of mixing must be 

zero or negative for the solution process to occur spontaneously. The free energy 

change for the dissolution process is given by the relation: 

∆𝐺𝑀 = ∆𝐻𝑀 − 𝑇∆𝑆𝑀  

Where ∆GM is the free energy of mixing, ∆HM is the heat of mixing, T is the absolute 

temperature and ∆SM is the entropy change in the mixing process. The heat of mixing 

(∆HM) is given by Hildebrand and Scott as [357]: 

∆𝐻𝑀 ≈ ∆𝐸𝑀 = ∅1∅2𝑣𝑚(𝛿1 − 𝛿2)2 

Where the ∅1and ∅2 are volume fractions of solvent and solute (Polymer Science) and 

vm is the average molar volume of the solvent.  

It is important to note that the solubility parameter, or rather the difference in 

solubility parameters (𝛿1 − 𝛿2) for the solvent-solute combination, is important in 

determining the solubility in a system.[357, 373] It has been definitively shown that 

solubility parameters can be used to predict both positive and negative heats of 

mixing.[357] Interfacial tension between two phases can be correlated by the mutual 

solubility such that a higher solubility implies a lower interfacial tension between the 

phases. In other words, complete solubility or total miscibility is equivalent to a 

scenario with no interfacial tension.[371, 375]  
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