
Algebra and Discrete Mathematics RESEARCH ARTICLE
Number 1. (2007). pp. 61 – 66

c© Journal “Algebra and Discrete Mathematics”

The structure of automorphism groups of

semigroup inflations

Ganna Kudryavtseva

Communicated by B. V. Novikov

Abstract. In this paper we prove that the automorphism

group of a semigroup being an inflation of its proper subsemigroup

decomposes into a semidirect product of two groups one of which

is a direct sum of full symmetric groups.

1. Introduction

In the study of a specific semigroup the description of all its automor-
phisms is one of the most important questions. The automorphism groups
of many important specific semigroups are described (see, for example, [7]
and references therein). It can be observed that for two types of semi-
groups of rather diverse nature the automorphism groups have similarities
in their structure: each of them decomposes into a semidirect product of
two groups one of which being a direct sum of full symmetric groups.
The mentioned two types of semigroups are variants of some semigroups
of mappings (see [4], [6]) and maximal nilpotent subsemigroups of some
transformation semigroups (see [2], [5]).

In the present paper we establish a general result, which, in particu-
lar, unifies all the above-mentioned examples. We deal with an abstract
semigroup being an inflation of its proper subsemigroup, constructed as
follows. Let S be a semigroup. First introduce an equivalence relation
h on S via (a, b) ∈ h if and only if ax = bx and xa = xb for all x ∈ S,
that is a and b are not distinguished by multiplication from either side.
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We would like to remark that the history of the study of h stems back at
least to [6], where it was considered for the variants of certain semigroups
of mappings. Set further

ψ = (h ∩ ((S \ S2) × (S \ S2))) ∪ {(a, a) : a ∈ S2}.

Denote by T any transversal of ψ. Then T is a subsemigroup of S, and
S is an inflation of T . An automorphism τ of T will be called extendable
provided that τ coincides with the restriction to T of a certain auto-
morphism of S. Clearly, all extendable automorphisms of T constitute a
subgroup, H, of the group AutT of all automorphisms of T .

We state our result as the following theorem.

Theorem 1. The group AutS is isomorphic to a semidirect product of
two groups one of which (the one which is normal) is the direct sum of
the full symmetric groups on the ψ-classes and the other one is the group
H consisting of all extendable automorphisms of T .

All the papers [2], [4], [5], [6] deal precisely with the "semigroup infla-
tion construction" introduced in this paper (though this construction is
not mentioned explicitly in any of these papers), and their main results
concerning automorphism groups can be deduced from our present gen-
eral result — Theorem 1. Recently Theorem 1 was applied to describe
automorphism groups of certain partition semigroups (see [3], Section 11
for details).

2. Construction

A semigroup S is called an inflation of its subsemigroup (see [1], Section
3.2) T provided that there is an onto map θ : S → T such that:

• θ2 = θ;

• aθbθ = ab for all a, b ∈ S.

In the described situation S is often referred to as an inflation of T with
an associated map θ (or just with a map θ).

It is immediate that if S is an inflation of T then T is a retract
of S (that is the image under an idempotent homomorphism) and that
S2 ⊂ T .

Lemma 2. Suppose that S is an inflation of T with the map θ. Then
kerθ ⊂ h.
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Proof. Let (a, b) ∈ kerθ and s ∈ S. Then

as = aθsθ = bθsθ = bs; sa = sθaθ = sθbθ = sb,

which implies that (a, b) ∈ h.

Lemma 3. The equivalence ψ, defined in the Introduction, is a congru-
ence on S.

Proof. Obviously, ψ is an equivalence relation. Prove that ψ is left and
right compatible. Let (a, b) ∈ ψ and a 6= b. Then (a, b) ∈ (h ∩ ((S \
S2) × (S \ S2))). Let c ∈ S. Since (a, b) ∈ h we have that ac = bc and
ca = cb for each c ∈ S. It follows that (ac, bc) ∈ ψ and (ca, cb) ∈ ψ as ψ
is reflexive.

Fix an arbitrary transversal of ψ and denote it by T .

Lemma 4. T is a subsemigroup of S, and S is an inflation of T .

Proof. T is a subsemigroup of S as T ⊃ S2. Let θ be the map S → T

which sends any element x from S to the unique element of the ψ-class
of x, belonging to T . The construction implies that S is an inflation of
T with the map θ.

Let S = ∪a∈TXa be a decomposition of S into the union of ψ-classes,
where Xa denotes the ψ-class of a. Set Ga to be the full symmetric group
acting on Xa and G = ⊕a∈TGa.

Lemma 5. π is an automorphism of S, for every π ∈ G.

Proof. It is enough to show that (xy)π = xπyπ whenever x, y ∈ S. Sup-
pose first that x, y ∈ S \ S2. Since xy ∈ S2 it follows that π stabilizes
xy, so that (xy)π = xy. Now, the inclusions (x, xπ) ∈ h and (y, yπ) ∈ h

imply xπyπ = xπy = xy. This yields xyπ = xπyπ, and the proof is
complete.

The following proposition gives a characterization of extendable au-
tomorphisms of T .

Proposition 6. An automorphism τ of T is extendable if and only if the
following condition holds:

(∀a, b ∈ T ) aτ = b ⇒ |Xa| = |Xb|. (1)
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Proof. Suppose τ ∈ AutT is extendable and a ∈ T . In the case when
a ∈ S \ S2 we have

Xa = {b ∈ S | (a, b) ∈ h and b ∈ S \ S2}.

Clearly, (a, b) ∈ h ⇐⇒ (aτ, bτ) ∈ h and b ∈ S \ S2 ⇐⇒ bτ ∈ S \ S2 for
all a, b ∈ S. It follows that

Xaτ = {bτ | b ∈ Xa},

which implies (1). The inclusion a ∈ S2 is equivalent to aτ ∈ S2. But
then |Xa| = |Xaτ | = 1, which also implies (1).

Suppose now that (1) holds for certain τ ∈ AutT . Then one can
extend τ to τ ∈ AutS as follows.

Fix a collection of sets Ia, a ∈ T , and bijections fa : Ia → Xa, a ∈ T ,
satisfying the following conditions:

• |Ia| = |Xa|;

• Ia = Ib whenever |Xa| = |Xb|;

• Ia ∩ Ib = ∅ whenever |Xa| 6= |Xb|;

• if a, b ∈ T and |Xa| = |Xb| then af−1

a = bf−1

b
.

It is straightforward that such collections Ia, a ∈ T , and fa, a ∈ T , exist.
Consider x ∈ S \ T . Since T is a transversal of ψ, there is a ∈ T

such that x ∈ Xa. By the hypothesis we have |Xa| = |Xaτ |. Set τ on
Xa to be the map from Xa to Xaτ defined via x 7→ xf−1

a faτ . In this way
we define a permutation τ of S such that τ |T = τ . It will be called an
extension of τ to S. To complete the proof, we are left to show that τ is
a homomorphism. Let x, y ∈ S, x ∈ Xa, y ∈ Xb. Then

(xy)τ = (ab)τ = aτbτ = xτyτ ,

as required.

Let τ ∈ H. Of course, τ , constructed in the proof of Proposition 6,
depends not only on τ , but also on the sets Ia and the maps fa, so that
τ may have several extentions to S. Fix any extention τ of τ .

Lemma 7. τ 7→ τ is an embedding of H into AutS.

Proof. Proof is immediate by the construction of τ .

Denote by H the image of H under the embedding of H into AutS
from Lemma 7.
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3. Proof of Theorem 1

Proposition 8. H acts on G by automorphisms via πτ = τ−1πτ , τ ∈
H,π ∈ G.

Proof. Let π ∈ G and τ ∈ H. Show first that πτ ∈ G. Take any
x ∈ S. Let Xa be the block which contains x. We consequently have
xτ−1 ∈ Xaτ−1 , xτ−1π ∈ Xaτ−1 and xτ−1πτ ∈ Xaτ−1τ = Xa. Hence
xπτ ∈ Xa. It follows that πτ ∈ G.

That π 7→ πτ is one-to-one, onto and homomorphic immediately fol-
lows from its definition. We are left to show that the map sending τ ∈ H

to π 7→ πτ ∈ AutG is homomorphic. The latter follows from the equalities
πτ1τ2 = (τ1τ2)

−1π(τ1τ2) = (πτ1)τ2 . The proof is complete.

In the following two lemmas we show that G and H intersect by the
identity automorphism and generate AutS.

Lemma 9. G ∩H = {id}, where id is the identity automorphism of S.

Proof. The proof follows from the observation that the decomposition
S = ∪a∈TXa is fixed by each element of G, while only by the identity
element of H.

Lemma 10. AutS = H ·G.

Proof. Let ϕ ∈ AutS. The definition of ψ implies that ϕ maps each ψ-
class onto some other ψ-class. Define a bijection τ : T → T via aτ = b

provided that Xaϕ = Xb. Show that τ is an extendable automorphism of
T . The definition of τ assures that (1) holds, and thereby τ is extendable
in view of Proposition 6. Let τ ∈ AutS be an extension of τ . The
construction implies that ϕ(τ)−1 ∈ G.

Now the proof of Theorem 1 follows from Proposition 8 and Lemmas 9
and 10.
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