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Theory of electron-acoustic single phonon scattering has been reconsidered. It is assumed that the non-dege-
nerate semiconductor has a spherical parabolic band structure. In the basis of the reconsideration there is a
phenomenon of the tilting of semiconductor bands by the perturbing potential of an electric field. In this case,
electron eigenfunctions are not plane waves or Bloch functions. In low-field regime, the expressions for elec-
tron intraband transition probability and scattering time are obtained under elastic collision approximation.
Dependencies of scattering time on electron energy and uniform electric field are analyzed. The results of cor-
responding numerical computations for n-Si at 300 K are presented. It is established that there is no fracture
on the curve of electron scattering time dependence on the electron energy.
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1. Introduction

Current carrier (electron) mobility p is an important parameter characterizing many transport phe-
nomena in semiconductors under electric field F. Electron mobility is determined as u = (etx/m) ,],
where 1y is the electron quasi-momentum relaxation time, e is the electron charge magnitude, m is the
electron effective mass, (:--) is the symbol of averaging over conduction zone quantum states. Relaxation
time 7y is determined by the electron scattering by various dynamic and static imperfections of a crys-
tall lattice such as lattice vibrations (optic and acoustic phonons), ionized and neutral impurity atom:s,
vacancies, etc. For theoretical consideration of scattering probability and relaxation time 7y, a flat-band
semiconductor model is used, as a rule IEI—@]. In this case, in low electric field region (F < F., where F; is a
characteristic field), the electron relaxation time 7y and, therefore, the mobility u are field-independent
quantities IEL BI, B]. Particularly, the relaxation time related to electron-acoustic single phonon elastic scat-
ﬁl_‘li]ng in non-degenerate n-type semiconductor with a spherical parabolic conduction band is given by

1
D2.2m)3 kg T

. 1
gV M

1/TKac =
Here, p; is areduced mass density of a crystal, D, is the acoustic deformation potential constant, kg is the
Boltzmann constant, T is temperature, vg is the long-wavelength longitudinal acoustic phonon velocity,
ex = h?k?/2m is the electron energy, boldface k is the electron wave vector (herein below, the magnitudes
of vector quantities are denoted by non-boldface symbols).

At high electric fields (F > F;), the time 7y and, therefore, the mobility u depend on the applied elec-
tric field [EI]. Thus, at electron scattering by an acoustic phonon, electron mobility decreases with an
increase of electric field above F. [E]. The magnitude of characteristic field F. depends on semiconductor
parameters such as crystallographic directions, impurity concentration, temperature, etc. It is of an or-
der of 103 V/cm at 300 K, e.g., for pure Si F = 10° V/cm, for pure Ge F. =~ 600 V/cm, for high purity GaAs
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F, =~2.8-10% V/cm IE]. The dependence u(F) is explained by the phenomenon of electron gas heating-up
under the effect of a high electric filed ,BI]. However, in recent work ], a new mechanism of electron
lattice scattering, referred to as electron-phonon FIT (field induced tunnel) scattering, is observed. In the
basis of the FIT scattering there lies a phenomenon of tilting of semiconductor bands by the perturbing
potential of an electric field. The effect of the electron-phonon FIT scattering is explained in terms of
penetration of an electron wave function into a semiconductor band gap in the presence of an electric
field. Contrary to a flat-band semiconductor, in a tilted-band semiconductor, a conduction electron tran-
sition in the band gap region is allowed. In [Ia], reconsidering the electron-phonon interaction theory, the
case of electron intraband FIT scattering by non-polar optical phonon is analyzed. In the present work,
electron-acoustic phonon FIT intraband scattering is considered. It is assumed that the non-degenerate
n-type semiconductor has a parabolic conduction band.

2. Electron-acoustic phonon FIT transition probability

To theoretically characterize the carrier scattering, it is necessary to consider the scattering probabil-
ity and evaluate the relaxation time. The task of the transition probability calculation is solved based on
the perturbation theory (see, e.g. IEI—@]). According to this theory, the probability per unit time of quantum
system transition from A state to A’ state, to the first order in the perturbation, is determined as [EL ]

¢ 2
1d
W/L/l’z——f nande . 2
14,47 W2 dr ay,(1) 2
0
Here, a)s (1) is the perturbation matrix element:
ay (1) =de1//;(R, NDW®R, DYR, 1), 3

v

YR, 1) =) (R) exp(—iEy t/F), A is the set of quantum numbers characterizing different states of a non-
perturbed system, ¥, (R) and E, are the wave function and energy eigenvalues of stationary state of
a non-perturbed quantum system, respectively, W (R, ) is the perturbation operator, R is the set of the
quantum system coordinates, V is the volume, ‘*’ is the complex conjugate symbol.

Consideration of the electron scattering by phonons is based on @) and @) as well. In brief, the de-
scription of the probability calculation is as follows. In the present case, the quantum system consists of
a conduction electron in the crystall periodic field and lattice normal vibrations. Then, A should be re-
placed by an electron quasi-wave vector k and by the phonon occupation numbers of all possible states.
The electron-phonon interaction Hamiltonian Heph is taken as perturbation W (R, 1); the r radius vector
and the normal coordinates of lattice vibration are taken as a quantum system coordinate R. The wave
function of non-perturbed state of an electron-phonon system is expressed as a product of one-electron
wave function and harmonic oscillator wave functions.

In flat-band semiconductors, an electron state is described by Bloch functions. Therefore, for an
electron scattered from an initial state |k) to a final state |k’), the transition probability per unit time
W (k, k') is evaluated based on the Bloch functions @—@] To simplify the calculations, a plane wave
(1) = elkr/ V/LxLyL; (where Ly, L, and L, are the sizes of a semiconductor, V = LyL,L,) is used
sometimes as an electron wave function IEI—@] (nearly free electron approximation). Calculations of the
probability W (k, k') based on the Bloch function or plane wave are well known and reported in detail in
numerous publications (see, for example, ﬂ—@]). However, in the present work, a semiconductor, whose
bands are tilted by the perturbing potential of a uniform electric field, is of interest. In this case, electron
eigenfunctions are not plane waves or Bloch functions [EL E, E|]. Here, based on such an assumption, the
probability W (k, k') is recalculated following the above-mentioned general approach. It is assumed that
the perturbation Hamiltonian He_ph, which is a harmonic function of time (harmonic perturbation), is
determined using the deformation potential theory IEI—@] of electron-phonon interaction. The results of
our calculations show that:
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¢ the probability of electron transition with phonon absorption can be presented as follows:

t 2
D n, I | N .
W,k k) = 2pth o Z q‘/w—';fdtel g ”fdrwk,(r)elqrwk(l‘) , 4)
0 v

* the probability of electron transition with phonon emission can be presented as follows:

‘k’ ek+hwq 1qr
W, (k) = zp vnar fte B fdrwk,(r)e vi()| ®)

Here, y(r, t) = yi(r) exp(—iex t/h), wx (r) is the conduction electron wave function of stationary state k,
wq is the phonon angular frequency, nq is the occupation number of the equilibrium phonons, which is
given by the Bose-Einstein distribution:

ng=1/[exp(nwq/kgT)—1] . (6)

The summations in (@) and () should be carried out in the range of the first Brillouin zone (BZ).
After integration over ¢, @) and () are expressed as follows:

g1 —€ Fhog 2
D2h d q / L1 e
Waelk k)= —2— - f dry, (e Ty (r)| . (7
we 20y Vdt %‘ V/Wq 2 2 e —exFhog Y v

Here and bellow, upper and lower symbols of double signs refer to electron transitions with the q phonon
absorption and emission, respectively.

In the presence of a uniform electric field F (which is parallel to the z-axis), the electron wave-function
is determined by the stationary Schrédinger equation which in the effective mass approximation is ex-
pressed as follows:

+eFz—¢y

hz d2 d2
( Tzt () = ®

dy? iz
Here and below, the index k of ¢y is omitted to simplify the expressions, so we can substitute € — € and

£l — €' in further expressions.
The solution of @) is given by (see, e.g., IEL EL ])

wk(r) — ei(kxx+kyy)Xn(Z)- (9)

1
VI,

Inserting (3 into (8D, the following equation is obtained IEL EL ]

n? @
[ Zmd - +eFz—¢€p|yn(2) = (10)
The solution of this equation is [H] as follows:
z
Xn(2) = Cutti] 5 = (kaD?) an

where C,, is the normalization constant, [ = (2/2eFm)/3, Aiis the Airy function [g]:

3

1 u
Ai(s) =— | ducos|— + us|. 12)
T 3
Electron energy eigenvalues ¢ are determined as follows:
272
B ek
£= +é&n, (13)
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where &, = i°k;;/2m, the index n identifies the electron energy eigenvalues, k7 = k% + k3, ky_ is the
electron wave-vector perpendicular to the electric field. Energy eigenvalues ¢, (or kj) are determined
from the boundary conditions (see below) for the wave function y ,(z).

For a semiconductor of length L, in z-direction (i.e., —L,/2 < z< L,/2) from and relation IEL E]

L./2

1 ‘
— f dzell@e-mz =5, . 14)
L, '
—L./2
it follows
L2
fdrsw;,(r)u/k(r)ei‘qr:6kk,kxiqx6k/y'kyiqy f dzxfl,(z)xn(z)eﬂqzz. (15)
—L./2
Inserting into (@ yields
D2.h d 1_1
Wk K) = —2<— Z—”’ R
20:V dt |G /g 2" 2
RS ) L./2 2
e n — )
X S f dzy? (2)xn(2)e =% . (16
e — e T hwg KokxzaxOkykyay X (2 Xn(2) (16)

—L./2

The Kronecker ¢ in this equation expresses the laws of conservation of perpendicular to the electric
field quasi-momentum x, y components of the scattered particles. Here, only the normal N-processes of
scattering are considered.

After summation with respect to g, and g, with the help of the Kronecker 8, (I6) becomes as follows:

ek/ Lk+hwq

D2.h d / T e |
WaelK) = _—1y I ng+t-F;—————
200V dr |7 | /Ooq 2 2 ew—exFhoq | 4_vw iy,
qy = (k) — ky)
L2 2
x f dzyk (2)xn(2)e 97| . an
—L,/2

Taking into account that wq is an even function on q (and particularly on q.), from {2 one obtains

2D%h d T T ™
o -
Woelek) = “22 2|5 | T s og ol —
,DI'V dr q:=0 \/(»U_q 2 2 ek/_€k+hwq Qx:i(k;*kx)v
dy = +(ky —ky)
L,/2 2
xRe f dzx % (2)xn(2)e %] . (18)
~L;/2
Using the following formal transformations
2 o(0)
37 |2 Ca® =d Y. cq(t)cq, (1) =2Re Z cq, (1), (19)
q .9q: .91
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(I8) may be written as follows:

4D}, i 1T 1 1 1
Waelk) = —2 )  Re ﬂ\/nq+_$_\/ﬂq1+—¢—
=1 NGrors 22 22
q,z =
el(Foqtog)r _ eiw t
X
e — € F g, g = (K~ ko),
qy = (k) —ky)
Lgl2 L,12
x Re f dZ)(Z/(Z))(n(Z)eiiqzzRe f dz1x;/(zl)xn(zl)eiiquzl. (20)
—L;/2 —L,/2

For a sufficiently long time ¢, when the relation tlim sin(at)/a=mné(a) can be used [EL ], (20) is expressed
—00
as follows:

4D? 1_1 1_1
WaelK) = —2 % ﬂ\/nq+—:_\/nql+_¢_
’ eV 3o Wqlq, 2 2 2 2

q1,2=0

H(iwqiwa)é‘(wq—wa) £ — € F hwg

X

+ 76 (e — € F wg)

EK — €k ?I’Llwa EK —ek$hwq1 :fii%—ﬁx;
y ==(ky —ky
L;/2 L;/2
x Re f dzxfl,(z)xn(z)eiiqzzRe f dz, XZ:(Zl))(n(Zl)eiiq]'ZZI- 21)
—L;/2 —L;/2

In this expression, the summation with respect to ¢;,; is non-zero only when g, = ¢, .. Then, electron
transition probability can be written as follows:

2

4nD? q 1_1
WoelkK) = ——a y 4 nq+—¥—)6(ek/—ek$hwq)
prVo 4iq, @q 2 2
qz =20
Ly/2 2
Xk kytax Ok kyray | RE f dzy,, (D) xn(2)e™ | . 22)
—L;/2

Here, the Dirac §-function indicates the energy conservation law.

Note, if in the plane wave (y,(z) = elk=z ) v/Ly) or Bloch function is taken as an electron wave
function, then the well-known classical expression of probability W, . (k k') IEI—@] (Fermi Golden rule)
is derived. In the common case, the calculation of the integral and sum in (22) is complicated. On the
other hand, the expression [ for 7y o is derived (within the framework of the flat-band semiconductor
model) by using the approximation of elasticity of electron-acoustic phonon scattering (elastic collision
approximation, fiwq < €) with the assumption that

ksT kT
hwg  hvoq

ng+1=ng= > 1. 23)
Here, wq = voq dispersion law of the long wavelength longitudinal acoustic phonon is used.

To reveal the difference between the results of flat and titled band approaches it is reasonable that
these assumptions should be used here as well. Then, after simple summing with respect to gy and gy,
takes the following simpler form:

L./2 2
an D2 kg T .
W K) = naicié\(gk’_gk) Y |Re f dzy) (D xn(2)e™ 7| . (29)
prVhvg >0 _p .,
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In what follows, we use the transformation
L.12 2

Z Re f dzxz,(z))(n(z)eiiqzz
=20

L./2
1

= Z 5 f dz
=017 [
Lo/2 L2
1

ZEREZ f fdzdzl

a=>0_1 15112

X (XD + 0 (2) 1 ()97

+iq,zFiq; 21

X @D xn(2) ) (21) ¥y, (21)€

X (D An(D ) (21) yn(21) et 19551021 (25)

and the relation IE] ‘
Y el = [ 5 (z - z1). (26)
qz

The result is as follows:

L2 L./2

nD? kg TL
Waek k) = %&q«—ekmef fdde1[x;,(z)Xn(z)xn/(zl)xfl(zl)(S(z—zl)
Pr¥itve LI2—L12

+ X0 (2 Xn(2) x5 (21) xn(21)6 (2 + 21)) . @7
Delta-integration over z; yields:

D2 kg TL
WaeleK) = T2 2500, gy
pthvo

L./2

x Re f az{|xw @ |1a D + 1 @U@ X~ D (=2} 28)
—L,/2

Electron energy eigenvalues &, are determined from boundary conditions to (I0). Note, there is some
difference between the peculiarities of the movement of an electron under electric field in vacuum and an
electron in a semiconductor. Conduction band gap AE. of a semiconductor is a finite quantity. Contrary
to the vacuum, the movement of a conduction electron in a semiconductor with perfect lattice has an
oscillation character, as it is shown in figure [l

Electron ‘el.1’ oscillates between the bottom of the conduction band and semiconductor edge; electron
‘el.2’ periodically reflects from the conduction band top and bottom edges. The behavior of an ‘el.2’ is
well-known as a Bloch oscillation. Boundary conditions for Schrodinger equation and, therefore,
electron energy eigenvalues in case of Bloch oscillations have been reported, for example, in ]. Here, for
definiteness, neglecting the Bloch oscillations, the case of ‘el.1’ is considered only, i.e., it is assumed that
the electric field is low and the magnitude of AE. is very large. In other words, the model of a triangular
quantum well with finite sizes is considered.

Here, we are interested in a large length semiconductor, particularly, in z-direction. Then, the allowed
values of k; (or €,) are computed from the boundary condition ¥, (z = —=L;/2) = 0 as (see, [ﬂ] and
figure[D

L
2—; +(kpD)? = —ay, 29

where a;, are the zeros of the Airy function which are located in the negative part of the real axis ].
They are well approximated as a, = —(3r[4n—1]/ 8)2/ 3 wheren=1,2,.... Inserting this relation into
we obtain

37 1112/3

il

7 (3]

L, -
o +UkaD)? = 30)
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Figure 1. Semiconductor energy-band diagram in the presence of a uniform electric field F (parallel to
the z-axis); el.2 — Bloch oscillations.

Solving for k, and inserting the result into (13), one obtains energy eigenvalues [71:

2, L 1[3n 23
oMt E[Z] .

The values ¢ in (ZI) are obtained as a function of the electron state quantum numbers. The quantities ky,
ky (or k) and n (or k) are a set of quantum numbers which determine the conduction electron state in
the presence of an electric field.

Normalization constant C,, in (T1) is determined as follows:

L,/2 ,
o f az [ai (2 - u?)| (32)
—L,/2
It is known [B, ] that
f ds Ai%(s) = sAi®(s) — Ai'%(s), (33)

where Ai’ is the derivative of the Airy function.
Consequently, normalization constant C, can be presented as follows:

L;/l+ay,

Cp2 =1 [sAiP(s) - A (9] | ™. (34)
For a semiconductor with large length L, one has
C,? = A" (ay). (35)

Here, we used the fact that Ai(a,,) = 0; functions Ai(s) and Ai’(s) exponentially vanish for positive large
argument s ]. On the other hand, the value Ai’(a,,) is well approximated as [8]

1
Ai'(ap) = ()" —=(=ay) . (36)
(an) = (-1 \/7_1( n)
Insertion of into (39 yields:
C2i=mnlly/=ay. (37)
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Thus, using (T, and taking into account that y,(z) is the real function [see, (TT), (IZ)] the expression
can be presented as follows:

L./21
D3.kpTL!
Waelok) = TP 220500 g2 C2 fdu|Ai(u—(kn:l)2)|2|Ai(u—(knl)2)|2
prVhvg
—L,/21
L;/21
+ f du [Ai (u— (kyy D?)Ai (—u— (kpy D?) A (u— (knD?) Al (~u— (k,D?)] ¢, (38)
—L;/21

where u = z/1 is the dimensionless variable of integration. (38) describes electron transition probability
in the presence of an electric field. Transition probability depends on the electric field and it is a symmet-
ric function: W . (k k') = W, . (K, k).

3. Electron-acoustic phonon FIT scattering time

The scattering time is defined by [B]:

Tk sc Z Wik, K) (39)

shows that in the present case, the probabilities of phonon absorption and emission by electron are
the same: W, (K',k) = W, (k,k'). Then, can be written as follows:

Those = 2% We (k, K). (40)

In the common case, the scattering time (the inverse of the scattering rate) differs from the relaxation
time although sometimes both of them are equivalent (for example, the above-mentioned case of (1)) [B].
To calculate 7, . in @), we replace the sums over k) and ki, by integrals over ki and k), respectively.

The transition from the sum to integral with the help of the relation dk/, dk;, = ﬂdkf can be presented as

follows:
ZLXLJ/ ! ! xLy 12
/—~ o) fdk iy, o fdkl - A1)

Here, coefficient 2 in the numerator is related to the electron spin.

From it follows that k?,, — k4 ~ 1/1. The distance between k, and k.1 depends on n and it is
small for large I. Therefore, at low-field regime, one can change the summation over n’ by an integral
over k;,:

dn’
— | dk, ——. 42)
; " dky
The derivative dn'/dk,, can be evaluated based on (30). The solution of for n is given the following
expression for n':

L 3/2 1
o gl 4. (43)

dn’ 2%k, LZ )
= \ / D2, 44
ak, - + (k1) (44)

Based on (29), the derivative dn'/dk,, can be presented as follows:

Therefore,

dn’ B 212k,
dknr a T

Ne=rws 45)
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Thus, transition (&I can be presented as follows:

2 2
1,max  n/,max
LxLylz 2372
y — 2 f f dk'2dk;, /= a . (46)
n
k/2 2

L,min ~p/ min

Inserting into (0), simultaneously taking into account (37) and transition (6), for the scattering time
one obtains:

D2 b TC2 K s Shhax L,/21
il = LGf dk'2ds'S (e — ex) fdu|Ai(u—s’)|2|Ai(u—(knl)2)|2
’ privg
k’ﬁmin Sl’nin —L;/21
L,/21
+ f duAi(u—s) Ai(—u—s") Ai(—u — (k,D?) Ai(u— (k, D) } . )
—L,/21

Here, s' = (I knr)2 is the dimensionless variable of integration, Brillouin zone is replaced by the infinite
range: 0 < k’f < 0o. The limits of integration over s’ are determined by the §-function

2m
Slew —e) =76 (K2+K2 -k - k2), (48)
as: sl =—ay— L2, sho, = (K3 — k3) I, where a; = —(971/8)/3 is the first zero of the Airy function 181.

d-integration over s' in @7) yields

2D2 mksTC2 [ b
Tl = “TBz”fdsi fdu|Ai(u+s’l—A)|2|Ai(u—(knl)2)|2
PritVo 4 —1,021
L,/21
+ f duAi(u+s|, —A) Ai(-u+s| —A) Ai(-u— (k,D)*) Ai(u— (k,D?) } . (49)
—L,/21

Here, s/ = k'21? is the dimensionless variable of integration, A = k7 I* + k31> = 2mel®/1? is the dimen-
sionless energy of an electron.

In @9), evaluations of the first and second the integrals over s'l can be carried out based on and
following the integral of the product of two Airy functions IE], respectively,

f dsAi(b+ ) Ai(c+s) = ﬁ [Ai(D) A’ () — AT’ (D) Ai(0)] . (50)
0

The result is as follows:
1 DimksTC?

Thoee = orli? (I + D, (51)
where
L;/21
I = f du {(A— w AP (u—A) + A (u— M)} [Ai(u— (k, D), (52)
—L;/21
L./21
L = f dui[Ai(u—A)Ai’(—u—A)—Ai’(u—A)Ai(—u—A)]Ai(—u—(knl)Z)Ai(u—(knl)z). (53)
—L; /21
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The functional analyses of the sub-integral expression show that the main contribution in integrals
and is given by the range near u ~ 0. An approximate estimation of the integral is carried out
with the help of L'Hopital’s rule. The result is as follows:

h+bh= % [AAZ(-A) +Ai?(-A)]. (54)

n

Therefore, the electron scattering time can be presented as follows:

_1 _ DimksT

= AAZ(-A) + A% (-A)]. 55
Kse prnsvgz[ (=A) +Ai"(-A)] (55)

4. Summary

The electron-acoustic phonon scattering theory has been reconsidered. In semiconductors, whose
bands are tilted under uniform electric field, the time of electron scattering by acoustic phonon is deter-
mined by (53). Scattering time depends on the electron energy ¢. It depends on the electric field as well,
because A ~ €1%; I ~ F~!/3, Those dependencies are determined by the Airy function properties ]. Thus,
for negative arguments, the Airy function oscillates. From the asymptotic series of the Airy function Ai(A)
and of their derivative Ai’(A) it follows that for large negative argument IIE]

IA|AIZ(=|A]) + Ai% (= |A]) = |A]V2 7. (56)

The Airy function decays exponentially for positive arguments. The first terms of asymptotic series of the
Airy function and of their derivative for positive arguments are as follows:

. 1 3/2 ./ |A|1/4 3/2
Ai(|A]) = ——=———exp|-2|A]""“/3), Al (JA]) = - exp (—2|A7"“/3). (57)
||2ﬁ|A|1,4p(|| ) Al 2ﬁp(u )
Then, from (G3), and (7 it follows:
+ for positive large A
_,  D2.mkpT|AIM?
Tksc = 3.,2 (58)
’ wprhivgl
« for negative large A
D2 mky TIAIY? 1
b = Daclo TIAL "1 o (—a1al2/3). (59)

mpch3ViL 2

Insertion A and [ into yields:
1
leiczTEchexp(% VvV 2mlel3/h? /3eF). (60)

General expression for the electron-acoustic phonon scattering time can be modified by inserting A
into (G5). Then, one has

_1  DimksT

Tk,sc -

(61)

2mel? [ 2mel? . 2mel?
- +AI? |-
h? h? h?

prh3vil

It is easy to establish that and (@ are the same. As equation shows, the scattering time of low
energy electron depends on the electric field. The dependence has exponential character. This effect has
been explained in terms of the penetration of the electron wave function into a band gap of a semicon-
ductor [6]. As a result, for low energy electrons, which are located near the bottom edge of the conduction
band, the transition with phonon emission becomes allowable in the region below the conduction band
edge. Note, at flat-bands approach, there is a threshold of a phonon emission by a low energy electron,
for detailes see ]. All these peculiarities are well displayed in figure 2] where the dependencies of TI;LC
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and Tk on electron dimensionless energy €/kgT are plotted for n-Si at T = 300 K with the following
parameters IE] m=0.32my, pr = 2329 kg/m vy =8.43- 103 m/s, Dyc =9 eV. The dependence Ty -1 (e/kB T)
(curve ‘@’) is calculated at F = 800 V/cm based on (61). The dependence r‘l (s/ kg T) (curve ‘b) is cal-
culated based on (@). As shown in figure[2] the curve ‘a’ has a character of hght oscillations around the
curve ‘b’. At a low field regime F <~ 400 V/cm, the curves ‘@’ and ‘b’ practically coincide in the range
of positive energy. Other important peculiarities are as follows: on the curve ‘b’ there is a fracture, i.e.,

drk }ic/ ds| o = oo [see, equation (I)]; on the curve ‘@’ there is no fracture [see, G1D].

z-k ,sC

8.1011 B
6.101 | “b’
4101 |

2.1011

-0.05 00 005 01 015 g/k,T

Figure 2. (Color online) The dependencies of T_l (curve ‘@’ - F =800 V/cm) and T_l (curve b’ - F=0)
on electron dimensionless energy €/ kg T for n- Sl at T =300 K.

Taking into acount the problem solution reported in 6] it can be stated that the results of the present
study can have a principial effect on the mobility fluctuation theory, especially. It should be noted that in
the above-presented electron-acoustic phonon FIT scattering study, the electron quasi-momentum relax-
ation time and its relation to the scattering time is not included. It requires a separate consideration.
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IHAyKOBaHe eNeKTPOHHOAKYCTUYHUM GOHOHHUM nosem
TYHe/ibHe PO3CisIHHSA

C.B. MenkoHsH, A.J1. XapaTioHsH, T.A. 3aniHsaH

®akynbTeT Gi3nkM HaniBMPOBIAHMKIB i MikpOENeKTPOHIKK, EpeBaHCbKMI AepxaBHUIA yHiBepcuTeT, 0025
EpesaH, BipmeHis

Y cTatTi NojaHo HOBWIA NOrAA/A Ha TEOPito eNeKTPOHHOAaKYCTUYHOro PO3CitoBaHHA 04HOr0 poHoHa. Mpu Lbomy
NPUMYCKAETbCA, LLLO HEBUPOKEHWUA HaNiBNPOBIAHNK Mae chepunyHy napaboniuHy 30HHY CTPYKTypy. B ocHoBy
nepernsgy Teopii noknageHo epekT Haxuay HaniBNPOBIAHMKOBYX 30H NPV HakNajaHHi 36yproroYoro NoTeHL,-
any enekTpMYHOro nonst. Y LboMy BUNaAKy BAACHi GpyHKLIT enekTpoHa BXe He € NAOCKUMU XBUASMU Ui yH-
Kuismu bnoxa. B pexxumi cnabkyx nonis 0TpYMaHo BUPa3wn 415 AIMOBIPHOCTI @1eKTPOHHMX BHYTPILLIHbO30HHNX
nepexoAiB i At Hacy PO3CiHHA B HAGNMXKEHHI MPYXHiX 3iTKHeHb. Takox NpoaHanizoBaHo 3aneXHiTb Yacy pos-
CiSIHHS Bifl eHeprii eekTpoHa Ta Hanpy>eHOCTi OAHOPIAHOro enekTpu4Horo nons. MpejcraBneHo pesyabTaTn
BiANOBIAHMX YNCNOBMX 064UMCAeHb 415 N-Si npy TemnepaTypi 300 K. BcTaHOBNEHO BiACYTHICTb 3n1aMy Ha KpWBIiA
3a/1€XKHOCTi Yacy pPO3CiiHHA eNeKTPOHa Bifl eHeprii enekTpoHa.

KntouvoBi cnoBsa: HaniBnpoBigHVIK 3 HAXVNIEHOK 30HOK, eNeKTPOHHOAKYCTUYHE POHOHHE PO3CISHHS,
VIMOBIPHICTb Mepexo4y, 4ac Po3CiaHHSA
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