On one-sided Lie nilpotent ideals of associative rings

Victoriya S. Luchko and Anatoliy P. Petravchuk

Dedicated to Professor V. V. Kirichenko
on the occasion of his 65th birthday

Abstract

We prove that a Lie nilpotent one-sided ideal of an associative ring R is contained in a Lie solvable two-sided ideal of R. An estimation of derived length of such Lie solvable ideal is obtained depending on the class of Lie nilpotency of the Lie nilpotent one-sided ideal of R. One-sided Lie nilpotent ideals contained in ideals generated by commutators of the form $\left.\left[\ldots\left[\left[r_{1}, r_{2}\right], \ldots\right], r_{n-1}\right], r_{n}\right]$ are also studied.

Introduction

It is well-known that if I is an one-sided nilpotent ideal of an associative ring R then I is contained in a two-sided nilpotent ideal of R. Hence the following question is of interest: for which one-sided ideal I of the ring R there exists a two-sided ideal J such that $J \supseteq I$ and J has properties like properties of I. In [5] it was noted that for an one-sided commutative ideal I of a ring R there exists a nilpotent-by-commutative two-sided ideal J of the ring R such that $J \supseteq I$.

Note that Lie nilpotent and Lie solvable associative rings were investigated by many authors (see, for example [4], [6], [7], [1]) and the structure of such rings is studied well enough.

In this paper we prove that a Lie nilpotent one-sided ideal I of an associative ring R is contained in a Lie solvable two-sided ideal J of

[^0]R. An estimation (rather rough) of Lie derived length of the ideal J depending on Lie nilpotency class of I is also obtained (Theorem 1).

In case when the Lie nilpotent one-sided ideal I is contained in the ideal R_{n} of the ring R generated by all commutators of the form $\left.\left[\ldots\left[\left[r_{1}, r_{2}\right], \ldots\right], r_{n-1}\right], r_{n}\right]$ and the Lie derived length of I is less then n it is proved that I is contained in a nilpotent two-sided ideal of R (Theorem $2)$.

The notations in the paper are standard. If S is a subset of an associative ring R then by $A n n_{R}^{l}(S)\left(A n n_{R}^{r}(S)\right)$ we denote the left (respectively right) annihilator of S in R. We also denote by $R^{(-)}$the adjoint Lie ring of the associative ring R. Further, by $R_{n}^{(-)}$we denote the n-th member of the lower central series of the Lie ring $R^{(-)}$. Then $R_{n}=R_{n}^{(-)}+R_{n}^{(-)} \cdot R=$ $=R_{n}^{(-)}+R \cdot R_{n}^{(-)}$is a two-sided ideal of the (associative) ring R. In particular, R_{2} is a two-sided ideal of the ring R generated by all commutators of the form $\left[r_{1}, r_{2}\right]=r_{1} r_{2}-r_{2} r_{1}, r_{1}, r_{2} \in R$. If R is a Lie solvable ring (i.e. such that $R^{(-)}$is a solvable Lie ring) then we denote by $s(R)$ its Lie derived length. Analogously, by $c(R)$ we denote Lie nilpotency class of a Lie nilpotent ring R.

1. Lie nilpotent one-sided ideals

Lemma 1. Let I be an one-sided ideal of an associative ring R and $Z=Z(I)$ be the center of I. Then there exists an ideal J in R such that $J^{2}=0$ and $[Z, R] \subseteq J$.

Proof. Let, for example, I be a right ideal from R. Take arbitrary elements $z \in Z, i \in I, r \in R$. Then it holds $z(i r)-(i r) z=0$ (since $i r \in I)$. This implies the equality $i(z r-r z)=0$ since $z \in Z(I)$. As elements z, i, r are arbitrarily chosen then we have $I[Z, R]=0$. Consider the right annihilator $T=A n n_{R}^{r}(I)$. It is clear that T is a two-sided ideal of the ring R (since I is a right ideal of R) what implies that $[Z, R] \subseteq T$.

Further, for any element of the form $z r-r z$ from $[Z, R]$ and for any $t \in T$ it holds $(z r-r z) t=z(r t)-r(z t)$. Since $r t \in T$ then $z(r t)=0$. Besides, $z \in I$ and therefore $z t=0$ what brings the equality $(z r-r z) t=$ 0 . It means that $[Z, R] \cdot T=0$.

Consider the left annihilator $J=A n n_{T}^{l}(T)$. It is easy to see that J is a two-sided ideal of the ring R. From relations $[Z, R] \subseteq T$ and $[Z, R] \cdot T=0$ we have the inclusion $[Z, R] \subseteq J$. It is also clear that $J^{2}=0$. Analogously one can consider the case when I is a left ideal.

Theorem 1. Let R be an associative ring and I be an one-sided ideal of R. If the subring I is Lie nilpotent then I is contained in a Lie solvable
two-sided ideal J of R such that $s(J) \subseteq m(m+1) / 2+m$ where $m=c(I)$ is Lie nilpotency class of the subring I.
Proof. Let for example I be a right ideal. We prove our proposition by the induction on the class of Lie nilpotency $n=c(I)$ of the subring I. If $n=1$ then I is a commutative right ideal and by Lemma 1 the ring R contains such an ideal T with zero square that it holds $(I+T) / T \subseteq Z(R / T)$ in the quotient ring R / T where $Z(R / T)$ is the center of R / T. It means that $I+T$ is a two-sided ideal of the ring R and $s(I+T) \leqslant 2$. Clearly $2=n+n(n+1) / 2$ if $n=1$ and the statement of Theorem is true in case $n=1$. Assume that the statement is true in case $c(I) \leqslant n-1$ and prove it when $c(I)=n$. Denote by Z the center of the subring I. By Lemma 1 there exists an ideal T of R with $T^{2}=0$ such that $[Z, R] \subseteq T$. Consider the quotient ring $\bar{R}=R / T$. Then $\bar{Z}=(Z+T) / T$ lies in the center of \bar{R} and therefore $\bar{Z}+\bar{Z} \cdot \bar{R}=\bar{Z}+\bar{R} \cdot \bar{Z}$ is a two-sided ideal of the ring \bar{R}. Since $\bar{Z} \subseteq \bar{I}=(I+T) / T$ the ideal $\bar{Z}+\bar{Z} \cdot \bar{R}$ is Lie nilpotent of and its class of Lie nilpotency $\leqslant m$. Further, the quotient $\operatorname{ring} \bar{R} /(\bar{Z}+\bar{Z} \cdot \bar{R})$ contains the right Lie nilpotent ideal $\bar{I}+(\bar{Z}+\bar{Z} \cdot \bar{R}) /(\bar{Z}+\bar{Z} \cdot \bar{R})$ which is Lie nilpotent of class of Lie nilpotency $\leqslant m-1$. By the induction assumption the last right ideal is contained in some Lie solvable ideal of the ring $\bar{R} /(\bar{Z}+\bar{Z} \cdot \bar{R})$ of derived length $\leqslant \frac{(m-1) m}{2}+(m-1)$. Since $\bar{Z}+\bar{Z} \cdot \bar{R}$ is Lie solvable and its derived length $\leqslant m$ (even $\leqslant\left[\log _{2} m\right]+1$ but we take a rough estimation) and we consider the quotient ring R / T where T is Lie solvable of derived length 1 , one can easily see that I is contained in some Lie solvable (two-sided) ideal of derived length which does not exceed

$$
\frac{(m-1) m}{2}+(m-1)+(m+1)=\frac{(m+1) m}{2}+m
$$

Analogously one can consider the case when I is right ideal.
It seems to be unknown whether a sum of two Lie nilpotent associative rings is Lie solvable. So the next statement can be of interest (see also results about sums of $P I$-rings in [3]).
Corollary 1. Let R be an associative ring which can be decomposed into a sum $R=A+B$ of its Lie nilpotent subrings A and B. If at least one of these subrings is an one-sided ideal of R then the ring R is Lie solvable.

Remark 1. The statements of Theorem 1 and its Corollary become false when we replace Lie nilpotency of one-sided ideals by Lie solvability. Really, consider full matrix ring $R=M_{2}(\mathbb{K})$ over an arbitrary field \mathbb{K} of characteristic $\neq 2$. It is clear that

$$
I=\left\{\left.\left(\begin{array}{ll}
x & y \\
0 & 0
\end{array}\right) \right\rvert\, x, y \in \mathbb{K}\right\}
$$

is a right Lie solvable ideal of the ring R but I is not contained in any Lie solvable ideal of R since R is a non-solvable Lie ring. It is also clear that

$$
R=I+J \text { where } J=\left\{\left.\left(\begin{array}{cc}
0 & 0 \\
z & t
\end{array}\right) \right\rvert\, z, t \in \mathbb{K}\right\}
$$

i.e. the simple associative ring R is a sum of two right Lie solvable ideals.

2. On embedding of Lie nilpotent ideals in rings

Lemma 2. Let R be an associative ring, A be a Lie nilpotent subring of R of Lie nilpotency class $<m$. If Z_{0} is a subring of A such that $Z_{0} \subseteq Z(R)$ and $Z_{0} R \subseteq A$ then $Z_{0}^{m} R_{m}=0$.

Proof. Consider the two-sided ideal $J=Z_{0}+Z_{0} R=Z_{0}+R Z_{0}$ of the ring R. As $J \subseteq A$ then $\underbrace{[J, \ldots, J]}_{m}=0$ by the condition $c(A)<m$. Further, it is easily to show that

$$
[J, J]=\left[Z_{0}+Z_{0} R, Z_{0}+Z_{0} R\right]=Z_{0}^{2}[R, R]
$$

By induction on k one can also show that $\underbrace{[J, \ldots, J]}_{k}=Z_{0}^{k} \underbrace{[R, \ldots, R]}_{k}$. Then we have from the condition on J that $\underbrace{[J, \ldots, J]}_{m}=Z_{0}^{m} \underbrace{[R, \ldots, R]}_{m}=0$. This implies the equality

$$
Z_{0}^{m} R_{m}=Z_{0}^{m}(\underbrace{[R, \ldots, R]}_{m}+\underbrace{[R, \ldots, R]}_{m} \cdot R)=\underbrace{[J, \ldots, J]}_{m}+\underbrace{[J, \ldots, J]}_{m} \cdot R=0
$$

Lemma 3. Let R be an associative ring, I be an ideal of R. Then

1) if J is a nilpotent ideal of the subring I then J lies in a nilpotent ideal J_{I} of the ring R such that $J_{I} \subseteq I$;
2) if $S=A n n_{I}^{l}(I)$ (or $\left.A n n_{I}^{r}(I)\right)$ then S is contained in a nilpotent ideal of the ring R which is contained in I.

The proof of this Lemma immediately follows from Lemma 1.1.5 from [2].

Theorem 2. Let R be an associative ring and I be a Lie nilpotent onesided ideal of R. If $I \subseteq R_{n}$ and Lie nilpotency class of I is less than n then I is contained in an (associative) nilpotent ideal of R.

Proof. Let for example I be a right ideal of the ring R and $I \subseteq R_{n}$. One can assume that that $n \geqslant 2$ because the statement of Theorem is obvious
in case $n=1$. We fix $n \geqslant 2$ and prove the statement of Theorem by induction on the class of Lie nilpotency $c=c(I)$ of the subring I. If $c=0$ then I is the zero ideal and the proof is complete. Assume that the statement is true for rings R with $c(I) \leqslant c-1$ and prove it in case $c(I)=c$. Since I is Lie nilpotent then by Lemma 1 there exists a nilpotent ideal T of the ring R such that in the quotient ring $\bar{R}=R / T$ it holds $\left[\overline{Z_{0}}, \bar{R}\right]=0$ where Z_{0} is the center of the subring I and $\overline{Z_{0}}=\left(Z_{0}+T\right) / T$. Then by Lemma 2 it holds the relation $\overline{Z_{0}^{n}} \cdot \overline{R_{n}}=0$. If $\overline{Z_{0}^{n}}=0$ then $\overline{Z_{0}}+\overline{Z_{0} R}$ is a nilpotent ideal of the ring \bar{R} and then the subring Z_{0} is contained in the nilpotent ideal $J=Z_{0}+T$ of the ring R. Since in the quotient ring R / J for the right ideal $(I+J) / J$ it holds the inequality $c((I+J) / J) \leqslant c-1$ then by the inductive assumption $(I+J) / J$ is contained in a nilpotent ideal S / J of the ring R / J. But then $I \subseteq S$ where S is nilpotent ideal of the ring R.

Let now $\overline{Z_{0}^{n}} \neq 0$. Then $\overline{Z_{0}^{n}} \subseteq A n n \frac{l}{\overline{R_{n}}}\left(\overline{R_{n}}\right)$ and since $\overline{Z_{0}} \subseteq \overline{R_{n}}$ then $\overline{Z_{0}^{n}}$ is contained in a nilpotent ideal \bar{M} of the ring \bar{R} by Lemma 3. It is obvious that $\overline{Z_{0}}+\overline{Z_{0} R}$ is a nilpotent ideal of the ring \bar{R}. Repeating the above considerations we see that $I \subseteq S$ where S is a nilpotent ideal of the ring R.

Corollary 2. Let R be an associative ring with condition $R=[R, R]$. If I is a Lie nilpotent one-sided ideal of R then there exists a nilpotent (two-sided) ideal J of the ring R such that $I \subseteq J$

Corollary 3. Let R be a semiprime ring. Then every Lie nilpotent onesided ideal is contained in the center $Z(R)$ of the ring R and has trivial intersection with the ideal R_{2}.

Proof. Really since all nilpotent ideals of the ring R are zero then by Lemma 1 every Lie nilpotent one-sided ideal I is contained in $Z(R)$. Since $I R \subseteq Z$ then $[I R, R]=I[R, R]=0$. Then from this equality we have $I R_{2}=I([R, R]+[R, R] \cdot R)=0$. Denote $J=I \cap R_{2}$. It is easily to show that $J \subseteq A n n_{R_{2}}^{l}\left(R_{2}\right)$ and by Lemma 3 the intersection J lies in a nilpotent ideal of the ring R. Because the ring R is semiprime we have $J=0$.

References

[1] B.Amberg and Ya.P.Sysak, Associative rings with metabelian adjoint group, Journal of Algebra, 277 (2004), 456-473.
[2] V.A.Andrunakievich and Yu.M.Ryabukhin, Radicals of algebras and structure theory, Nauka, Moscow, 1979. (in Russian).
[3] B.Felzenszwalb, A.Giambruno and G.Leal, On rings which are sums of two PIsubrings: a combinatorial approach, Pacific Journal of Math., 209, no. 1 (2003), 17-30.
[4] S.A.Jennigs, On rings whose associated Lie rings are nilpotent, Bull. Amer. Math. Soc., 53 (1947), 593-597.
[5] A.P.Petravchuk, On associative algebras which are sum of two almost commutative subalgebras, Publicationes Mathematicae (Debrecen). 53, no.1-2, (1998), 191-206.
[6] R.K.Sharma and I.B.Srivastava, Lie solvable rings, Proc. Amer. Math. Soc., 94, no. 1 (1985), 1-8.
[7] W.Streb, Ueber Ringe mit aufloesbaren assoziirten Lie-Ringen, Rendiconti del Seminario Matematico dell'Università di Padova, 50, (1973), 127-142.

Contact information

Victoriya S. Luchko Kiev Taras Shevchenko University, Faculty of Mechanics and Mathematics, 64, Volodymyrska street, 01033 Kyiv, Ukraine
E-Mail: vsluchko@gmail.com

Anatoliy P. Pe-	Kiev Taras Shevchenko University, travchuk Faculty of Mechanics and Mathematics,
	64, Volodymyrska street,
	01033 Kyiv, Ukraine
E-Mail: aptr@univ. kiev.ua	

Received by the editors: 04.02.2008
and in final form 10.04.2008.

[^0]: 2000 Mathematics Subject Classification: 16D70.
 Key words and phrases: associative ring, one-sided ideal, Lie nilpotent ideal, derived length.

