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Abstract. We prove that a Lie nilpotent one-sided ideal

of an associative ring R is contained in a Lie solvable two-sided

ideal of R. An estimation of derived length of such Lie solv-

able ideal is obtained depending on the class of Lie nilpotency

of the Lie nilpotent one-sided ideal of R. One-sided Lie nilpotent

ideals contained in ideals generated by commutators of the form

[. . . [[r1, r2], . . .], rn−1], rn] are also studied.

Introduction

It is well-known that if I is an one-sided nilpotent ideal of an associative
ring R then I is contained in a two-sided nilpotent ideal of R. Hence the
following question is of interest: for which one-sided ideal I of the ring R
there exists a two-sided ideal J such that J ⊇ I and J has properties like
properties of I. In [5] it was noted that for an one-sided commutative
ideal I of a ring R there exists a nilpotent-by-commutative two-sided
ideal J of the ring R such that J ⊇ I.

Note that Lie nilpotent and Lie solvable associative rings were in-
vestigated by many authors (see, for example [4], [6], [7], [1]) and the
structure of such rings is studied well enough.

In this paper we prove that a Lie nilpotent one-sided ideal I of an
associative ring R is contained in a Lie solvable two-sided ideal J of
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derived length.
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R. An estimation (rather rough) of Lie derived length of the ideal J
depending on Lie nilpotency class of I is also obtained (Theorem 1).

In case when the Lie nilpotent one-sided ideal I is contained in
the ideal Rn of the ring R generated by all commutators of the form
[. . . [[r1, r2], . . .], rn−1], rn] and the Lie derived length of I is less then n it
is proved that I is contained in a nilpotent two-sided ideal of R (Theorem
2).

The notations in the paper are standard. If S is a subset of an associa-
tive ring R then by Annl

R
(S) (Annr

R
(S)) we denote the left (respectively

right) annihilator of S in R. We also denote by R(−) the adjoint Lie ring

of the associative ring R. Further, by R
(−)
n we denote the n-th member of

the lower central series of the Lie ring R(−). Then Rn = R
(−)
n +R

(−)
n ·R =

= R
(−)
n + R ·R

(−)
n is a two-sided ideal of the (associative) ring R. In par-

ticular, R2 is a two-sided ideal of the ring R generated by all commutators
of the form [r1, r2] = r1r2 − r2r1, r1, r2 ∈ R. If R is a Lie solvable ring
(i.e. such that R(−) is a solvable Lie ring) then we denote by s(R) its Lie
derived length. Analogously, by c(R) we denote Lie nilpotency class of a
Lie nilpotent ring R.

1. Lie nilpotent one-sided ideals

Lemma 1. Let I be an one-sided ideal of an associative ring R and
Z = Z(I) be the center of I. Then there exists an ideal J in R such that
J2 = 0 and [Z, R] ⊆ J .

Proof. Let, for example, I be a right ideal from R. Take arbitrary ele-
ments z ∈ Z, i ∈ I, r ∈ R. Then it holds z(ir)− (ir)z = 0 (since ir ∈ I).
This implies the equality i(zr − rz) = 0 since z ∈ Z(I). As elements
z, i, r are arbitrarily chosen then we have I[Z, R] = 0. Consider the right
annihilator T = Annr

R
(I). It is clear that T is a two-sided ideal of the

ring R (since I is a right ideal of R) what implies that [Z, R] ⊆ T .

Further, for any element of the form zr − rz from [Z, R] and for any
t ∈ T it holds (zr − rz)t = z(rt) − r(zt). Since rt ∈ T then z(rt) = 0.
Besides, z ∈ I and therefore zt = 0 what brings the equality (zr− rz)t =
0. It means that [Z, R] · T = 0.

Consider the left annihilator J = Annl

T
(T ). It is easy to see that

J is a two-sided ideal of the ring R. From relations [Z, R] ⊆ T and
[Z, R] · T = 0 we have the inclusion [Z, R] ⊆ J . It is also clear that
J2 = 0. Analogously one can consider the case when I is a left ideal.

Theorem 1. Let R be an associative ring and I be an one-sided ideal of
R. If the subring I is Lie nilpotent then I is contained in a Lie solvable
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two-sided ideal J of R such that s(J) ⊆ m(m+1)/2+m where m = c(I)
is Lie nilpotency class of the subring I.

Proof. Let for example I be a right ideal. We prove our proposition by the
induction on the class of Lie nilpotency n = c(I) of the subring I. If n = 1
then I is a commutative right ideal and by Lemma 1 the ring R contains
such an ideal T with zero square that it holds (I + T )/T ⊆ Z(R/T ) in
the quotient ring R/T where Z(R/T ) is the center of R/T . It means
that I + T is a two-sided ideal of the ring R and s(I + T ) 6 2. Clearly
2 = n+n(n+1)/2 if n = 1 and the statement of Theorem is true in case
n = 1. Assume that the statement is true in case c(I) 6 n− 1 and prove
it when c(I) = n. Denote by Z the center of the subring I. By Lemma 1
there exists an ideal T of R with T 2 = 0 such that [Z, R] ⊆ T . Consider
the quotient ring R = R/T . Then Z = (Z + T )/T lies in the center of
R and therefore Z + Z · R = Z + R · Z is a two-sided ideal of the ring
R. Since Z ⊆ I = (I + T )/T the ideal Z + Z · R is Lie nilpotent of and
its class of Lie nilpotency 6 m. Further, the quotient ring R/(Z + Z ·R)
contains the right Lie nilpotent ideal I + (Z + Z · R)/(Z + Z · R) which
is Lie nilpotent of class of Lie nilpotency 6 m − 1. By the induction
assumption the last right ideal is contained in some Lie solvable ideal of
the ring R/(Z + Z · R) of derived length 6

(m−1)m
2 + (m − 1). Since

Z + Z ·R is Lie solvable and its derived length 6 m (even 6 [log2m] + 1
but we take a rough estimation) and we consider the quotient ring R/T
where T is Lie solvable of derived length 1, one can easily see that I is
contained in some Lie solvable (two-sided) ideal of derived length which
does not exceed

(m − 1)m

2
+ (m − 1) + (m + 1) =

(m + 1)m

2
+ m.

Analogously one can consider the case when I is right ideal.

It seems to be unknown whether a sum of two Lie nilpotent associative
rings is Lie solvable. So the next statement can be of interest (see also
results about sums of PI-rings in [3]).

Corollary 1. Let R be an associative ring which can be decomposed into
a sum R = A+B of its Lie nilpotent subrings A and B. If at least one of
these subrings is an one-sided ideal of R then the ring R is Lie solvable.

Remark 1. The statements of Theorem 1 and its Corollary become false
when we replace Lie nilpotency of one-sided ideals by Lie solvability.
Really, consider full matrix ring R = M2(K) over an arbitrary field K of
characteristic 6= 2. It is clear that

I =

{(
x y
0 0

)∣
∣
∣
∣
x, y ∈ K

}
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is a right Lie solvable ideal of the ring R but I is not contained in any
Lie solvable ideal of R since R is a non-solvable Lie ring. It is also clear
that

R = I + J where J =

{(
0 0
z t

)∣
∣
∣
∣
z, t ∈ K

}

,

i.e. the simple associative ring R is a sum of two right Lie solvable ideals.

2. On embedding of Lie nilpotent ideals in rings

Lemma 2. Let R be an associative ring, A be a Lie nilpotent subring of R
of Lie nilpotency class < m. If Z0 is a subring of A such that Z0 ⊆ Z(R)
and Z0R ⊆ A then Zm

0 Rm = 0.

Proof. Consider the two-sided ideal J = Z0 + Z0R = Z0 + RZ0 of the
ring R. As J ⊆ A then [J, ..., J ]

︸ ︷︷ ︸

m

= 0 by the condition c(A) < m. Further,

it is easily to show that

[J, J ] = [Z0 + Z0R, Z0 + Z0R] = Z2
0 [R, R].

By induction on k one can also show that [J, ..., J ]
︸ ︷︷ ︸

k

= Zk
0 [R, ..., R]

︸ ︷︷ ︸

k

. Then

we have from the condition on J that [J, ..., J ]
︸ ︷︷ ︸

m

= Zm
0 [R, ..., R]

︸ ︷︷ ︸

m

= 0. This

implies the equality

Zm

0 Rm = Zm

0 ([R, ..., R]
︸ ︷︷ ︸

m

+ [R, ..., R]
︸ ︷︷ ︸

m

·R) = [J, ..., J ]
︸ ︷︷ ︸

m

+ [J, ..., J ]
︸ ︷︷ ︸

m

·R = 0.

Lemma 3. Let R be an associative ring, I be an ideal of R. Then
1) if J is a nilpotent ideal of the subring I then J lies in a nilpotent

ideal JI of the ring R such that JI ⊆ I;
2) if S = Annl

I
(I) (or Annr

I
(I)) then S is contained in a nilpotent

ideal of the ring R which is contained in I.

The proof of this Lemma immediately follows from Lemma 1.1.5 from
[2].

Theorem 2. Let R be an associative ring and I be a Lie nilpotent one-
sided ideal of R. If I ⊆ Rn and Lie nilpotency class of I is less than n
then I is contained in an (associative) nilpotent ideal of R.

Proof. Let for example I be a right ideal of the ring R and I ⊆ Rn. One
can assume that that n > 2 because the statement of Theorem is obvious
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in case n = 1. We fix n > 2 and prove the statement of Theorem by
induction on the class of Lie nilpotency c = c(I) of the subring I. If
c = 0 then I is the zero ideal and the proof is complete. Assume that the
statement is true for rings R with c(I) 6 c−1 and prove it in case c(I) = c.
Since I is Lie nilpotent then by Lemma 1 there exists a nilpotent ideal T
of the ring R such that in the quotient ring R = R/T it holds [Z0, R] = 0
where Z0 is the center of the subring I and Z0 = (Z0 + T )/T . Then by
Lemma 2 it holds the relation Zn

0 ·Rn = 0. If Zn
0 = 0 then Z0 + Z0R is a

nilpotent ideal of the ring R and then the subring Z0 is contained in the
nilpotent ideal J = Z0 + T of the ring R. Since in the quotient ring R/J
for the right ideal (I + J)/J it holds the inequality c((I + J)/J) 6 c− 1
then by the inductive assumption (I + J)/J is contained in a nilpotent
ideal S/J of the ring R/J . But then I ⊆ S where S is nilpotent ideal of
the ring R.

Let now Zn
0 6= 0. Then Zn

0 ⊆ Annl

Rn

(Rn) and since Z0 ⊆ Rn then

Zn
0 is contained in a nilpotent ideal M of the ring R by Lemma 3. It is

obvious that Z0 + Z0R is a nilpotent ideal of the ring R. Repeating the
above considerations we see that I ⊆ S where S is a nilpotent ideal of
the ring R.

Corollary 2. Let R be an associative ring with condition R = [R, R].
If I is a Lie nilpotent one-sided ideal of R then there exists a nilpotent
(two-sided) ideal J of the ring R such that I ⊆ J

Corollary 3. Let R be a semiprime ring. Then every Lie nilpotent one-
sided ideal is contained in the center Z(R) of the ring R and has trivial
intersection with the ideal R2.

Proof. Really since all nilpotent ideals of the ring R are zero then by
Lemma 1 every Lie nilpotent one-sided ideal I is contained in Z(R).
Since IR ⊆ Z then [IR, R] = I[R, R] = 0. Then from this equality we
have IR2 = I([R, R] + [R, R] ·R) = 0. Denote J = I ∩R2. It is easily to
show that J ⊆ Annl

R2
(R2) and by Lemma 3 the intersection J lies in a

nilpotent ideal of the ring R. Because the ring R is semiprime we have
J = 0.
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