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Abstract

Here main topic of discussion is on Linear and non-linear wave propagation and it’s

application. At first we discussed about some concept of quasi-linear hyperbolic PDE,

conservation law and their analysis. Then we used all those things on shallow water

theory.

Application:- Traffic Flow, Flood waves in rivers, Chemical exchange process,

Glaciers, Erosion, Dam break problem, Piston wave maker problem etc.

Here I also discussed about some different types of shallow water waves.
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Chapter 1

Derivation of the Wave Equation

In these notes we apply Newton’s law to an elastic string. Consider a tiny element of

the string.

The basic notation is

u(x, t)= vertical displacement of the string from the x axis at position x and time

t

θ(x, t) = angle between the string and a horizontal line at position x and time t

T(x, t) = tension in the string at position x and time t

ρ= mass density of the string at position x The forces acting on the tiny element

of string are

Figure 1.1
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(a) tension pulling to the right, which has magnitude T(x +∆x, t)and acts at an

angle θ(x +∆x, t) above horizontal,

(b) tension pulling to the left, which has magnitude T(x, t) and acts at an angle

θ(x, t) below horizontal and, possibly,

(c) various external forces, like gravity. We shall assume that all of the external

forces act vertically and we shall denote by F(x, t)∆x the net magnitude of the

external force acting on the element of string. The mass of the element of string is

essentially ρ(x)
√

(∆x)2 + (∆u)2 so the vertical component of Newton’s law says that

ρ(x)
√

(∆x)2 + (∆u)2
∂2u

∂t2
= T (x+∆x, t) sin(θ(x+∆x, t)−T (x, t) sin θ(x, t)+F (x, t)∆x

(1.1)

Dividing by ∆x and taking the limit as ∆x → 0 gives

ρ(x)
√

1 + (∂u
∂x

)2 ∂2u
∂t2

(x,t) = ∂
∂x

[T(x,t)sin(θ(x,t))]+F(x,t) = ∂T
∂x

(x,t)sin(θ(x,t))+ T(x,t)cos(θ(x,t)) ∂θ
∂x

(x,t)+F(x,t)

We can dispose of all the θ’s by observing from the figure that

tan(θ(x, t)) = lim∆x→0
∆u
∆x

= ∂u
∂x

(x,t)

which implies, using the figure on the right below, that

sin(θ(x,t)) =
∂u
∂x

(x,t)√
1+( ∂u

∂x
(x,t))2

cos(θ(x,t)) = 1√
1+( ∂u

∂x
(x,t))2

θ(x,t) = tan−1 ∂u
∂x

(x,t)

∂θ
∂x

(x,t) =
∂2u
∂x2

(x,t)

1+( ∂u
∂x

(x,t))2

Substituting these formulae into (1.1). However, we can get considerable simplifi-

cation by looking only at small vibrations. By a small vibration, we mean that

| θ(x, t) |<< 1

for all x and t. This implies that
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| tan θ(x, t) |<< 1

hence that

| ∂u
∂x

(x, t) |<< 1

and hence that



√
1 + (∂u

∂x
)2 ≈ 1

sinθ(x, t) ≈ ∂u
∂x

(x, t)

cos θ(x, t) ≈ 1

∂θ
∂x

(x, t) ≈ ∂2u
∂x2

(x, t)

(1.2)

substituting these into equation (1.1) give

ρ(x)
∂2u

∂t2
(x, t) =

∂T

∂x
(x, t)

∂u

∂x
(x, t) + T (x, t)

∂2u

∂x2
(x, t) + F (x, t) (1.3)

which is indeed relatively simple, but still exhibits a problem. This is one equation

in the two unknowns u and T.

Fortunately there is a second equation lurking in the background, that we haven’t

used. Namely, the horizontal component of Newton’s law of motion. As a second

simplification, we assume that there are only transverse vibrations. Our tiny string

element moves only vertically. Then the net horizontal force on it must be zero. That

is,

T (x+ ∆x, t) cos(x+ ∆x, t)− T (x, t) cos θ(x, t) = 0

Dividing by ∆x and taking the limit as ∆x tends to zero gives

∂

∂x
[T (x, t) cos θ(x, t)] = 0

3



For small amplitude vibrations, cos is very close to one and

∂T

∂x
(x, t)

is very close to zero. In other words T is a function of t only, which is determined by

how hard you are pulling on the ends of the string at time t. So for small, transverse

vibrations, (1.3) simplifies further to

ρ(x)
∂2u

∂t2
= T (t)

∂2u

∂x2
(x, t) + F (x, t) (1.4)

In the event that the string density is a constant, independent of x, the string

tension T(t) is a constant independent of t and there are no external forces F we end

up with

∂2u

∂t2
(x, t) = c2∂

2u

∂x2
(x, t)

where

c =

√
T

ρ

4



Chapter 2

Introduction Waves and First

Order Equation

We are starting the detailed discussion of hyperbolic waves with a study of first order

equations. The simplest wave equation is

ρt + c0ρx = 0, (2.1)

c0=constant. with initial curve Γ, ρ(x,0)=f(x)

When this equation arises, the dependent variable is usually the density of some-

thing so we now use the symbol.

Parametrize the initial curve Γ, i.e. write

x(0)=a;

t(0)=0;

z(0)=f(a);

the system of ODE initial value problems

dx
ds

=c0, x(0)=a;

dt
ds

=1, t(0)=0;

dz
ds

=0, z(0)=f(a);

Then the general solution is ρ = f(x − c0t) , where f(x) is an arbitrary function,

5



and the solution of any particular problem consists merely of matching the function

f to initial or boundary values. It clearly describes a wave motion since an initial

profile f(x) would be translated unchanged in shape a distance c0t to the right at time

t.

Although this linear case is almost trivial, the nonlinear counterpart

ρt + c(ρ)ρx = 0 (2.2)

where c(ρ) is a given function of ρ, is certainly not and a study of it leads to most of

the essential ideas for nonlinear hyperbolic waves.

2.1 Continuous Solution

One approach to the solution of (2.2) is to consider the function p(x,t) at each point

of the (x,t) plane and to note that ρt+c(ρ)ρx is the total derivative of ρ along a curve

which has slope

dx

dt
= c(ρ) (2.3)

at every point of it. For along any curve in the (x,t) plane, we may consider x and

ρ to be functions of t, and the total derivative of ρ is dρ
dt

= ∂ρ
∂t

+ dx
dt
∂ρ
∂x

. The total

derivative notation should be sufficient to indicate when x and ρ are being treated

as functions of t on a certain curve; the introduction of new symbols each time

this is done eventually becomes confusing. We now consider a curve { in the (x,t)

plane which satisfies (2.3). Of course such a curve cannot be determined explicitly

in advance since the defining equation (2.3) involves the unknown values of ρ on the

curve. However, its consideration will lead us to a simultaneous determination of a

possible curve {, and the solution ρ on it. On { we deduce from the total derivative

relation and from (2.2) that

dρ

dt
= 0,

dx

dt
= c(ρ). (2.4)

6



We first observe that ρ remains constant on {. It then follows that c(ρ) remains

constant on {, and therefore that the curve { must be a straight line in the (x,t) plane

with slope c(ρ). Thus the general solution of (2.2) depends on the construction of a

family of straight lines in the (x, t) plane, each line with slope c(ρ) corresponding to

the value of ρ on it. This is easily done in any specific problem.

Let us take for example the initial value problem

ρ=f(x), t=0, -∞ < x <∞

and refer to the (x,t) diagram in Fig. 2.1. If one of the curves { intersects t= 0 at

x =ξ then ρ = f(ξ) on the whole of that curve. The corresponding slope of the curve

is c (/(£)), which we will denote by F(£); it is a known function of ξ calculated from

the function c(ρ) in the equation and the given initial function f(ξ). The equation of

the curve then is

x=ξ + F (ξ)t , Here ξ is a parameter.

This detemines one typical curve and the value of ρ on it is f(ξ). Allowing ξ to

vary, we obtain the whole family:

ρ = f(ξ), c = F (ξ) = c(f(ξ)) (2.5)

on

x = ξ + F (ξ)t (2.6)

We may now change the property and use (2.5) and (2.6) as an analytic expression

for the solution, free of the particular construction. That is, ρ is given by (2.5) where

ξ(x, t) is defined implicitly by (2.6). Let us check that this gives the solution. From

(2.5),

ρt=
df(ξ)
dξ
ξt, ρx = df(ξ)

dξ
ξx

and from the t and x derivatives of (2.6)

0=F (ξ) + (1 + dF (ξ)
dξ

t)ξt

1 = (1 + dF (ξ)
dξ

)ξx

7



Figure 2.1: Characteristic diagram for nonlinear waves.

Therefore

ρt = −
F (ξ)df(ξ)

dξ

1 + dF (ξ)
dξ

t
, ρx =

df(xi)
dξ

1 + dF (ξ)
dξ

t
(2.7)

and we see that

ρt+c(ρ)ρx=0, since c(ρ) = F (ξ). The initial condition ρ = f(x) is satisfied because

ξ = x when t=0.

The curves used in the construction of the solution are the characteristic curves for

this special problem. Similar characteristics play an important role in all problems

involving hyperbolic differential equations. In general, characteristic curves do not

have the property that the solution remains constant along them. This happens to

8



be true in the special case of (2.2); it is not the defining property of characteristics.

The general definitions will be considered later, but it will be convenient now to refer

to the curves defined by (2.3) as characteristics.

The basic idea of wave propagation is that some recognizable feature of the dis-

turbance moves with a finite velocity.

Figure 2.2: Breaking wave: successive profiles corresponding to the times 0,t1, tB , t3in Fig. 2.1.

The mathematical statement in (2.4) may be given this type of property by saying

that different values of ρ ”propagate” with velocity c(ρ). Indeed, the solution at time

t can be constructed by moving each point on the initial curve ρ=f(x) a distance c(ρ)t

to the right; the distance moved is different for the different values of ρ. This is shown

in Fig. 2.2 for the case c′(ρ) >0; the corresponding time levels are indicated in Fig.

2.1.

The dependence of c on ρ produces the typical nonlinear distortion of the wave as

it propagates. When c′(ρ) > 0, higher values of ρ propagate faster than lower ones.

When c′(ρ) < 0, higher values of ρ propagate slower.

For the linear case(see fig 2.3), c is constant and the profile is translated through

a distance ct without any change of shape.

Any compressive part of the wave, where the propagation velocity is a decreasing

function of x(since, when velocity is decreasing, then c′(ρ) < 0), ultimately ”breaks”

to give a triple-valued solution for ρ(x,t). The breaking starts at the time indicated

9



Figure 2.3: Linear Water Wave

by t = tB in Fig. 2.2, when the profile of ρ first develops an infinite slope. The

analytic solution (2.7) confirms this and allows us to determine the breaking time tB.

On any characteristic for which F ′(ξ) < 0, Px and pt become infinite, i.e 1+F’(ξ)=0

⇒t=- 1
F ′(ξ)

Therefore breaking first occurs on the characteristic ξ = ξB for which F’(ξ) <0

and | F ′(ξ) | is a maximum; the time of first breaking is

tB = − 1

F ′(ξ)
(2.8)

0 < t < 1
max

F ′(ξ)<0
|F ′(ξ)|

This development can also be followed in the (x,t) plane. A compressive part of

the wave with F ′(ξ) <0 has converging characteristics; since the characteristics are

straight lines, they must eventually overlap to give a region where the solution is

multivalued, as in Fig. 2.1. This region may be considered as a fold in the (x,t)

plane made up of three sheets, with different values of ρ on each sheet. The family

of characteristics is given by (2.6) with ξ as parameter. The condition that two

neighboring characteristics ξ, ξ + δξ intersect at a point (x,t) is that

x=ξ + F (ξ)t,

10



and

x=ξ + δξ + F (ξ + δξ)t

hold simultaneously. In the limit δξ →0, these give

x=ξ + F (ξ)t,

And, x-x=ξ + δξ + tF (ξ + δξ)− (ξ + tF (ξ))

⇒ t(F (ξ + δξ)− F (ξ)) = −δξ

Taking limit at both side as δξ → 0

⇒limδξ→0 t
F (ξ+δξ)−F (ξ)

δξ
= −1

⇒ 1 + F ′(ξ)t= 0.

F Uniqueness

Let, ψ(x,t) and Ξ(x,t) are different solution of

φt + c(φ)φx = 0, t > 0,−∞ < x <∞

t = 0 : φ = f(x),−∞ < x <∞ Then on x = ξ + tF (ξ)

ψ(x, t) = ψ(ξ, 0) = f(ξ) = Ξ(ξ, 0) = Ξ(x, t) (From 2.5)

Hence ψ = Ξ

F Theorem

The initial value problem

φt + c(φ)φx = 0, t > 0,−∞ < x <∞

t = 0 : φ = f(x),−∞ < x <∞ has a unique solution in

0 < t < 1
max

F ′(ξ)<0
|F ′(ξ)|

if f ∈ C1(), c ∈C1()

where F (ξ) = c(f(ξ))

The solution is given in the parametric form:

x = ξ + tF (ξ)

ρ(x, t) = f(ξ)

F Remark

11



When c(ρ) = c0, apositive constant, equation(2.2) becomes a linear wave equation:

which is (2.1)

The characteristic curve are x = c0t+ ξ, and ρ is given by

ρ(x, t) = f(ξ) = f(x− c0t)

2.2 Expansion Wave

Consider the problem

φt + c(φ)φx = 0, on t > 0,−∞ < x <∞

t=0:φ = f(x),−∞ < x <∞

where

f(x) =


φ2, if x≤ 1,

monotonic increasing , if 0≤ x ≤ L,

φ1, ifx ≥ L

with φ1 > φ2 and c′(φ) > 0

We shall let c1 = c(φ1),c2 = c(φ2)

Figure 2.4: Expansion Wave

We recall the solution of the problem:

φ = f(ξ)

x = ξ + tF (ξ)

where

12



F (ξ) = c(f(ξ))

Let us consider the characteristics of this problem. For,ξ ≤ 0

F (ξ) = c(f(ξ)) = c(φ2) = c2

Therefore the charecteristic through ξ(≤ 0) are straight lines with constant slope

1
c2

For ξ ≥ L, F (ξ) = c(f(ξ)) = c(φ1) = c1 Hence, the characteristics through ξ(≥ L)

are also straight lines, with constant slope 1
c1

. For 0 ≤ ξ ≤ L, the characteristics

through ξ are straight lines having slopes 1
F (ξ)

with 1
c1
≤ 1

F (ξ)
≤ 1

c2

Since 0 ≤ ξ ≤ L

⇒ f(0) ≤ f(ξ) ≤ f(L), [f is m.i]

⇒ φ2 ≤ f(ξ) ≤ φ1, [C ′(φ) > 0]

⇒ c(φ2) ≤ c(f(ξ)) ≤ c(φ1)

⇒ c2 ≤ F (ξ) ≤ c1

⇒ 1
c1
≤ 1

F (ξ)
≤ 1

c2

Since the characteristics do not intersect, (and this corresponds 1 + tF ′(ξ) 6= 0)

we obtain as a single valued function. The behavior of the solution can be explained

geometrically as shown in the figures 1.3(a), 1.3(b).

Figure 2.5: Expansion Waves

Every point (ξ, φ(ξ)) at t = 0 will move parallel to the x-axis through a distance

ct1 in time t1. Since c′(φ) > 0, φ2 < φ1, the points (ξ, φ1)(ξ ≥ L) move faster than

the points (ξ, φ2)(ξ ≤ 0). Hence, the graph of φ at t = 0 is stretched as the time

13



increases.

The analytic details can be carried out most easily by working entirely with c as

the dependent variable.

FEquation for C:

Consider the equation

φt + c(φ)φx = 0, on t > 0,−∞ < x <∞

t=0:φ = f(x),−∞ < x <∞

We have found that c(φ) is the “propagation speed”, and in constructing solutions

we have to deal with two functions, namely, φ and c. But by multiplying the equation

by c′(φ) we obtain


Ct + CCx = 0, t > 0,−∞ < x <∞.

t = 0, C = F (x),−∞ < x <∞
(2.9)

where C(x,t)=c(φ(x, t)) and F (ξ) = c(f(ξ))

This equation involves only the unknown function C(x, t) = c (φ(x, t)); we can

recover φ from C afterwards. The solution of the problem in (2.9) is

C(x,0) =


c2, if x≤ 0,

c2 + c1−c2
L
x, if 0≤ x ≤ L,

c1, ifx ≥ L

In 0 ≤ x ≤ L the equation of the straight line is

C−c2
x−0

= c2−c1
0−L

The x-t diagram is shown below in fig 2.6
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Figure 2.6: Expansion Wave and Expansion fan

2.3 Centered Expansion Wave

We now consider the limiting case of the above problem, as L→0. In the limit the

interval [c2, c1] is associated with the origin. In the limit we will have the character-

istics

x = ξ + tc2, if ξ < 0

x = ξ + tc1, if ξ > 0

x=Ct, if ξ = 0, c2 ≤ C ≤ c1

The collection of characteristics x = Ct : C [c2, c1] through the origin is called a

‘Centred fan’ and we have C = x
t
. In this case the full solution is

C =


c2, ifx ≤ c2t

x
t
, ifc2t < x < c1t

c1, ifx ≥ c1t

(2.10)

We shall discuss later how to solve this type of wave equation in later.

FTheorem :

The intial value problem

Ct + CCx = 0, t > 0,−∞ < x <∞,
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t=0:C=


c2, if ξ < 0,

c1, if ξ > 0

and C conrtinuous for t > 0, has a unique solution given by (2.10)

Figure 2.7: Centred Expansion Wave and Centered Fan

2.4 Breaking

We consider again the geometrical intepretation of the solution of the equations

φt + c(φ)φx = 0, t > 0,−∞ < x <∞

t = 0 : φ = f(x),−∞ < x <∞

We assume that c′(φ) > 0. The graph of φ at time t = 0 is the graph of f . Since

φ(ξ + tF (ξ), t) = f(ξ),

we find that the point (ξ, f(ξ)) moves parallel to x-axis in the positive direction

through a distance tF(ξ) = ct. It is important to note that the distance moved

depends on ξ; this is typical of non-linear phenomena. (In the linear case the curve

moves parallel to x-axis with constant velocity c0).

After some time t =tB, the graph of the curve φ may become many valued as

shown in the below figure 2.8. This phenomenon is called “breaking”. It could at

least make physical sense in the case of water waves (although the equations are in

fact not valid), but in most cases a three valued solution would not make sense. We

16



have to reconsider our approximations and assumptions.

We have seen that if tF ′(ξ) + 1 6= 0 then breaking will not occur. A necessary and

sufficient condition for breaking to occur is that F ′(ξ) < 0 for some ξ. (We assume

c’(φ) > 0).

x=ξ + F (ξ)t,

1 + F ′(ξ)t= 0.

If we assume that F’(ξ) is minimum only at ξB and F ′(ξB) < 0, the first breaking

time will be

tB = 1
max|F ′(ξB)|

Figure 2.8

In the x, t, plane the breaking can be seen as follows: since F ′(ξB) < 0. F is a

decreasing function in a neighbourhood of ξB will have increasing slopes and therefore

will converge giving a multivalued region.

Figure 2.9

From the equations ρt = −F (ξ)
df(ξ)
dξ

1+
dF (ξ)
dξ

t
, ρx =

df(xi)
dξ

1+
dF (ξ)
dξ

t
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We see that φt, φx will become infinite at the time of breaking.

For physical meaning of breaking we have to look at specific physical problem.

Figure 2.10: Plunging breaker

Figure 2.11: Large wave breaking, from Menlo Park, USA

2.5 Gradient Catastrophes and Breaking Times

We know that the solution of a conservation law ut + φx= 0 could be constructed at

the point (x, t) by following a characteristic curve from (x,t) back to a point (x0,0).

An implicit assumption in this method is that there is exactly one characteristic

extending from the x—axis to (x,t) in the xt—plane. In nonlinear conservation laws,

however, it is possible for two (or more) characteristics to intersect at (x,t):

Such an occurrence can cause the solution u(x,t) to break down with an event

called a gradient catastrophe. In this chapter we will describe the cause of gradient
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Figure 2.12

catastrophes and predict the time at which they occur. As will be discussed in the

next chapter, gradient catastrophes are a precursor to shock waves

Figure 2.13: Constant value of u(x,t) along a characteristic

2.5.1 Gradient catastrophe

We know that the characteristic curves of the initial value problem


ut + c(u)ux = 0,−∞ < x <∞, t > 0,

u(x, 0) = u0(x)

(2.11)

are lines x = c(u0(x0))t+x0 along which the value of u is constant. When viewed in

the xtu—diagram shown in Figure 2.13, each characteristic is a line in the xt—plane,

and the height of the surface represented by u(x,t) is constant along that line.

In the special case where cu) is constant (the advection equation), the characteristic
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lines x — ct + x0 are parallel. By following these characteristics, we see that an

initial profile u(x, 0) in the xu—plane has the appearance of being translated along

the characteristics as t increases, forming a traveling wave (Figure 2.14).

Figure 2.14: Parallel characteristics translate the initial profile in time.

Figure 2.15: Crossing characteristics can result in infinite slope ux

When c(u) is not constant, however, the characteristic lines x =c(u0(x0))t+x0 are

not necessarily parallel and may cross. The value of u nevertheless remains constant

along each individual characteristic line. As shown in Figure 2.15, if two characteristic

lines intersect and the value of u is different along each line, then the slope ux(x, t)

in the x—direction becomes infinite as t approaches the time corresponding to the

intersection of the lines. The formation of an infinite slope ux in the solution u is

called a Gradient Catastrophe.

The gradient catastrophe can also be seen in the animation of u(x,t). When

viewing Figure 2.13 facing the xu—plane, the point (x(t),t,u(x(t),t)) on the surface u

20



= u(x,t) above the characteristic curve is projected onto the xu—plane as the point

(x(t),u(x(t),t)). As t increases, this point appears to move in the xu—plane at a

constant height u, since (x(t),t) is following along a characteristic curve.

Figure 2.16: Horizontal velocity of a point on the profile of u(x, t) is c(u)

Figure 2.17: Top part of the profile of u(x, t) moves with greater speed than the lower part when
ut + uux = 0.

The velocity at which this point moves in the x direction is dx
dt

, which by construc-

tion of the characteristic curve is dx/dt=c(u(x,t)). Thus the function c(u) represents

the velocity at which a point at height u in the xu—plane animation moves horizon-

tally (Figure 2.16).

Now suppose that c(u) is an increasing function of u, such as c(u)= u. In this case,

larger values of u ≤ 0 give larger speeds c, and so the upper part of the profile of

u(x, t) (larger values of u) will appear to move to the right faster than the lower part

(smaller values of u). As shown in Figure 2.17, if the profile of u(x, t) at one time is

an increasing function of x, then at later times t the profile of u(x, t) will appear to

have ”thinned out” or rarefied.

21



Figure 2.18: Top part of the profile of u(x, t) can catch up to the lower part, forming a gradient
catastrophe.

On the other hand, if a profile of u(x, t) looks more like a pulse, then the top part

of the profile of u(x, t) catches up with the slower moving lower part of the profile

(Figure 2.18). This forms an infinite slope ux, creating a gradient catastrophe. If

time were to continue beyond this point, the top part of the profile would appear to

overtake the lower part and u(x, t) would fail to be a function.

2.5.2 Breaking Time

The earliest time tb ≥ 0 at which a gradient catastrophe occurs in a solution of a

conservation law is called the breaking time.

FExample

Consider the following initial value problem for the inviscid Burgers equation:


ut + uux = 0,−∞ < x <∞, t > 0,

u(x, 0) = e−x
2

(2.12)

With the speed c(u) = u and initial profile u0(x) = e−x
2

, the characteristic starting

at (x0,0) is

x = c(u0(x0))t+ x0 = e−x
2
0t+ x0

A diagram of characteristics with different starting points (x0,0) is displayed in

Figure 2.19 and shows that there are characteristics which intersect. From the figure,
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Figure 2.19: Characteristics x = e−x2
0t+ x0 of Equation 2.12

the earliest time at which characteristics cross appears to be at a breaking time of

approximately tb = 1.2.

we will discuss how the breaking time tb can be computed by calculating ux(x,t)

and finding the first time tb at which ux becomes infinite.

By the method of characteristics, the value of the solution u of


ut + c(u)ux = 0,−∞ < x <∞, t > 0,

u(x, 0) = u0(x)

(2.13)

at the point (x,t) is u(x,t) = u0(x0), where x0 = x0(x,t) determines the starting

point (x0,0) of the characteristic passing through (x,t).

The derivative ux is then

ux(x, t) = u′0(x0)
∂x0

∂x
(2.14)

by the chain rule.

The value of x0 which determines the starting point (x0, 0) of the characteristic

through (x, t) is defined implicitly by the equation

x = c(u0(x0))t+x0
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The derivative of x0 with respect to x can be found from this equation by implicit

differentiation. Taking the partial derivative of both sides with respect to x gives

∂
∂x

= ∂
∂x

[c(u0(x0))t+x0]

1 = t d
dx0

[c(u0(x0))]∂x0
∂x

+ ∂x0
∂x

Solving for ∂x0
∂x

then shows that

∂x0
∂x

= 1
1+t d

dx0
c(u0(x0))

Substituting this into (2.14) expresses the derivative of u(x,t) with respect to x as

ux(x, t) =
u′0(x0)

1 + t d
dx0
c(u0(x0))

(2.15)

The problem of determining when ux becomes infinite is now reduced to a problem

of determining when the denominator of (2.15) approaches zero.

If d
dx0
c(u0(x0)) geq0 for all initial points (x0,0), then the denominator in (2.15)

never approaches 0 as t increases from zero. In this case, no gradient catastrophe

occurs. On the other hand, if d
dx0
c(u0(x0)) is negative for some x0, then a gradient

catastrophe can occur since the denominator in (2.15) will approach 0 as t approaches

−1
d
dx0

c(u0(x0))
. The value of x0 which produces the earliest blowup time t is the value of

x0 which makes d
dx0
c(u0(x0)) the most negative.

Using this value of x0 , the breaking time is then

tb =
−1

d
dx0
c(u0(x0))

(2.16)

FExample

Returning to the initial value problem in previous Example, the expression (2.16)

will be used to compute the breaking time tb in Figure 2.19. With the speed c(u) = u

and initial profile u0(x) = e(− x2) from that example, the speed of the characteristic

starting at (x0,0) is

c(u0(x0)) = c(e−x
2
0) = e−x

2
0
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The breaking time tb in (2.16) requires finding the most negative value of

F (x0) = d
dx0
c(u0(x0) = d

dx0
e( − x2

0) = −2x0e
−x20

The derivative F ′(x0) = (−2 + 4x2
0)e−x

2
0 shows that F(x0) has critical points at x0

=± 1√
2

, with x0 = 1√
2

yielding the most negative value of F(x0). The breaking time

(2.16) with x0 = 1√
2

is then

tb=
−1

−2x0e
−x20

= 1√
2e−1/2 =

√
e
2

The value of tb =
√

e
2

is approximately 1.16 and is shown earlier in Figure 2.19

F F An extreme case of breaking arises when the initial distribution has a discon-

tinuous step with the value of c(φ) behind the discontinuity greater than that ahead.

If we have the initial functions

f(x)=


φ2, if, x > 0

φ1, if, x < 0

and

F(x)=


c1 = c(φ1), if x > 0

c2 = c(φ2), if x < 0

with c2 > c1, then the breaking occurs immediately. This is shown in fig.(2.13) for

the case c′(φ) > 0,(φ2 > φ1).

The characteristic lines will be

x=


tc1 + a, if a > 0

tc2 + a, if a < 0

The multivalued region starts right at the origin and is bounded by the character-

istics x = c1t and x = c2t. F and its derivatives are not continuous.

On the other hand, if the initial step function is expansive with c2 < c1 there is a

perfectly good continuous solution. Since The characteristic lines will be
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Figure 2.20: Initial Solution at t=0, Here φ = ρ, φ1 = ρ1, φ2 = ρ2

Figure 2.21: Centered compression wave with overlap

x=


tc1 + a, if a < 0

tc2 + a, if a > 0

It may be obtained as the limit of (2.5) and (2.6) in which all the values of F

between c2 and cl are taken on characteristics through the origin ξ=0 . This corre-

sponds to a fan of characteristics in the (x,t) plane as in Fig. 2.14. Each member of

the fan has a different slope F but the same ξ. The function F is a step function but

we use all the values of F between c2 and c1, on the face of the step and take them

all to correspond to ξ=0.
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Figure 2.22: Rarefaction Waves

Figure 2.23: Centered expansion wave

In the fan, the solution (2.5), (2.6) then reads

c=F, x=Ft, for c2 < F < c1

and by elimination of F we have the simple explicit solution for c:

c=x
t
, c2 <

x
t
< c1

The complete solution for c is

c=


c1, if c1 <

x
t

x
t
, if c2 <

x
t
< c1

c2, if x
t
< c2

The relation c = c(φ) can be solved to determine φ. For the compressive step,
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c2 > c1 the fan in the (x,t) plane is reversed to produce the overlap shown in Fig.

2.13.

We will discuss those problems in details in rarefraction Waves

28



Chapter 3

Conservation Laws

While the wave equation has many solutions which illustrate waves and their proper-

ties, wave behavior can be found in applications which are modeled by other partial

differential equations. In the following chapters we will look at a class of mathemat-

ical models which are derived from conservation laws. Later it will be shown that

many of these models possess solutions with wave behavior.

3.1 Derivation of a general scalar conservation law

A conservation law is an equation which accounts for all of the ways that the amount

of a particular quantity can change. This accounting is one of the basic princi-

ples of mathematical modeling and can be applied to a variety of quantities such as

mass, momentum, energy, and population. Suppose that a medium, essentially one-

dimensional and positioned along the x—axis, contains some substance which can

move or flow. This quantity could be, for example, cars moving along a section of

road, particles of pollutant in a narrow stream of water, or heat energy flowing along

a wire. For brevity, let Q represent this quantity (cars, particles, energy, etc.). In

this section we will derive a general conservation law which describes the amount of

Q in the medium at time t.

Let u(x, t) measure the density or concentration (amount per unit length) of Q at
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position x of the medium at time t (Figure 15.1). The value of u could indicate, for

example, the density of traffic (cars per mile) or concentration of pollutant (grams

per meter) at position x.

Figure 3.1: Centered expansion wave

Figure 3.2: Centered expansion wave

Let u(x,t) measure the density or concentration (amount per unit length) of Q at

position x of the medium at time t (Figure 3.1). The value of u could indicate, for

example, the density of traffic (cars per mile) or concentration of pollutant (grams per

meter) at position x. Now let S be any small segment of the medium with endpoints

located at x = a and x = b with a < b (Figure 3.2). It will be assumed that changes

in the amount of the quantity Q within this segment can occur in only two ways:

either Q enters or leaves S through its ends at x =a and x = b, or Q is somehow

being added (created) or removed (destroyed) from the medium within the segment.

By accounting for all of the ways in which the total amount of Q can change within

S,we are forming a general conservation law for Q:
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FThe net (time) rate of change of the total amount of Q in S = The

rate at which Q enters or leaves S through the left end x = a + which

Q enters or leaves S through the right end x = b + The rate at which

Q is created or removed within S (3.1)

The next step will be to quantify the different parts of this conservation principle.

Since u(x, t) is the amount of Q per unit length along the medium, the total amount

of Q in the segment S at time t is computed by the integral
∫ b
a
u(x, t)dx. As the

quantity Q flows through the medium, the amount of Q within S can change over

time; the rate at which this amount changes with respect to time is given by the

derivative

d

dt

∫ b

a

u(x, t)dx (3.2)

The rate at which Q enters S through either of its ends will be described by a Flux

Function. Let φ(x, t) denote the rate (amount per unit time) at which Q is flowing

past position x at time t. A positive value φ(x, t) > 0 indicates that the flow is in the

direction of increasing x, while φ(x, t) < 0 means the flow is in the opposite direction.

Such a function is called the Flux. The rate at which Q enters S through the end

x = a is then φ(a, t). If φ(a, t) is positive, then Q is flowing into S through the left

end at x = a, while φ(a, t) < 0 indicates Q is flowing out of S through the left end.

Similarly, the rate at which Q enters S through the right end at x = b is —φ(b, t).

The extra minus sign at x = b is needed since φ(b, t) > 0 indicates Q is flowing to

the right at x =b, which decreases (negative rate) the amount of Q in the segment S

(see Figure 3.2). The net rate at which Q enters S through its ends is then given by

φ(a, t)− φ(b, t) (3.3)
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The addition or removal of Q within the segment S will be represented by a source

function. Let f(x,t) be the rate (amount per unit time per unit length) at which Q

is being added to or removed from the medium at position x and time t. Such a

function f is called a Source Function. A positive value f(x, t) > 0 indicates that Q

is being created or added to the medium at position x, while f(x, t) < 0 means Q

is being destroyed or removed. The total rate (amount per unit time) at which Q is

being created within the segment S at time t is

∫ b

a

f(x, t)dx = SourceFunction (3.4)

Substituting the measurements (3.2), (3.3), and (3.4) into the conservation prin-

ciple (3.1) results in an equation called a conservation law in integral form:

d

dt

∫ b

a

u(x, t)dx = φ(a, t)− φ(b, t) +

∫ b

a

f(x, t)dx (3.5)

An alternative form of the integral conservation law can be derived when u and φ

are assumed to have continuous first derivatives. With this assumption (3.5) can be

rewritten as∫ b
a
ut(x, t)dx = -

∫ b
a
φx(x, t)dx +

∫ b
a
f(x, t)dx

So that

∫ b
a
(ut(x, t) + φx(x, t)− f(x, t))dx=0.

If ut, φx, and f are all continuous, then the fact that this integral is zero for every

a < b along the medium implies that the integrand ut + φx − f must be zero. This

results in a conservation law in differential equation form:

ut + φx = f (3.6)
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3.2 Constitutive equations

The conservation law (3.6) is a very general equation which relates three functions:

the density function u,the flux φ, and the source term f. It simply states that the

rate of change of the amount of Q at position x depends on the rate at which Q flows

past x (flux) and the rate at which Q is created at x (source). In order to determine

u(x, t), more must be known about the flux φ and the source term f.

The source term f is usually determined or specified from the particular physical

problem behind the conservation law. In many cases, it is zero.

Even when f=0, ut + φx=0 is still only one differential equation for two unknowns

u and φ. A second equation relating u and φ is often given, based on an assumption

about the physical process being modeled or on experimental evidence. Such an

equation is called a constitutive equation. In general, our models will consist of two

parts,

ut + φx = f Conservation Law(Fundamental law of nature)

Relation between u and φ =⇒ Constitutive Equation(approximation based on

experience).

The flux φ often depends on u. For example, if the rate (amount per time) at

which the quantity Q flows past a point depends on the concentration of Q, then the

flux is a function of density and forms an explicit constitutive law φ = φ(u). When

this is the case, the chain rule gives φx = φ′(u)ux, so that the conservation law (3.6)

can be written as

ut + φ′(u)ux = f (3.7)

The inviscid Burgers equation

ut+uux = 0 is an example of a conservation law in the form (3.7). In this equation

the source term f(x,t) is zero and the flux φ is a function of u for which φ′(u) = u.
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One possibility for the flux term is the constitutive equation φ = 1
2
u2

The inviscid Burgers equation can then be written in conservation law form,

ut + (1
2
u2)x=0

3.3 Example of Conservation Laws: Traffic Flow

Since its first developments in the mid 1950’s by M.J. Lighthill and G.B. Whitham

[LW] and P.I. Richards [R], the deterministic modeling of traffic flow has yielded sev-

eral examples of wave behavior. Here we will follow parts of the books by Haberman

[Habl] and Whitham [Whi] to form conservation laws which model traffic flow, and

later observe wave phenomena arising from these models. As a simplified example,

consider automobile traffic moving along a section of single lane road with no exits

or entrances. Let u(x, t) represent the density of cars (number of cars per mile) at

position x along the road at time t. The function u(x, t) in principle should be a

discrete valued function since cars are discrete objects; however, we will assume that

u(x,t) is a continuous representation of the traffic density such as the one shown in

Figure 3.3. As before, the basic conservation law for the traffic density u(x,t) is

ut + φx = f

In this conservation law, the source f(x,t) represents the rate (cars/hour per mile)

at which cars are added or removed from the road at position x. With the assumption

that there are no exits or entrances to the road and that cars do not appear or

disappear from the road for any other reason, the source function f(x,t) is zero. The

flux function φ(x,t) represents the rate (cars per hour) at which cars are passing

position x along the road at time t. To an observer standing along the side of a road,

the rate at which cars pass by depends not only on the traffic density u, but also on

the traffic velocity v. If v is measured in miles per hour, then the flux φ is the product

φ= u(cars/mile)x v(miles/hour)= uv (cars/hour).
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Traffic velocity v is generally not constant and is related to factors such as traffic

density, weather, and time of day. As a simple model, we will assume

Figure 3.3: Continuous representation of traffic density along a single lane road

Figure 3.4: Higher traffic density generally results in lower traffic speed.

that the velocity v of the cars depends only on the traffic density, and in particular,

denser traffic results in lower speeds. Suppose that drivers will travel at a maximum

speed of v1 miles per hour on a road which has little or no traffic (u = 0). We will

also assume that traffic is at its maximum density u1 cars per mile when the cars have

come to a complete stop (v = 0). A linear model of this connection between traffic

velocity and traffic density is shown in Figure 3.4 and is described by the equation

v = v1 − v1
u1
u, 0 ≤ u ≤ u1.
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The constitutive equation relating flux φ and traffic density u is then

φ = uv = v1(u− u2

u1

)(cars/hour) (3.8)

With the car flux and source function f(x,t) = 0, the conservation law ut +φx = f

modeling traffic density along the road becomes

ut + v1(1− 2u

u1

)ux = 0
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Chapter 4

Kinematic Waves

ρ(x, t) =Density per unit length; q(x, t) =Flux per unit length; v(x, t) =Flow velocity

(4.1)

In many problems of wave propagation there is a continuous distribution of either

material or some state of the medium, and (for a one dimensional problem) we can

define a density ρ(x, t) per unit length and a flux q(x,t) per unit time. We can then

define a flow velocity v(x,t) by

v =
q

ρ
(4.2)

Assuming that the material (or state) is conserved, we can stipulate that the rate

of change of the total amount of it in any section x1 > x > x2 must be balanced by

the net inflow across x1 and x2. That is,

d

dt

∫ x2

x1

ρ(x, t)dx+ q(x1, t)− q(x2, t) = 0 (4.3)

If p(x,t) has continuous derivatives, we may take the limit as xl-*x2 and obtain
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the conservation equation

∂ρ

∂t
+
∂q

∂x
= 0 (4.4)

The simplest wave problems arise when it is reasonable, on either theoretical or

experimental grounds, to postulate (in a first approximation!) a functional relation

between q and ρ. If this is written as

q = Q(ρ) (4.5)

(4.4) and (4.5) form a complete system. On substitution we have

ρt + c(ρ)ρx = 0 (4.6)

where

c(ρ) = Q′(ρ) (4.7)

This leads to our (2.2) and a typical solution is given by (2.5) to (2.6). The

breaking requires us to reconsider both the mathematical assumption that ρ and q

have derivatives and the physical assumption that q=Q(ρ) is a good approximation.

To fix ideas for the further development of the theory some specific examples are

noted briefly here.

F An amusing case (which is also important) concerns traffic flow. It is reasonable

to suppose that some essential features of fairly heavy traffic flow may be obtained by

treating a stream of traffic as a continuum with an observable density ρ(x,t), equal

to the number of cars per unit length, and a flow q(x,t), equal to the number of cars

crossing the position x per unit time. For a stretch of highway with no entries or
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exits, cars are conserved! So we stipulate (4.3). For traffic it also seems reasonable

to argue that the traffic flow q is determined primarily by the local density ρ and to

propose (4.5) as a first approximation. Such functional relations have been studied

and documented to some extent by traffic engineers. We can then apply the theory.

But it is clear in this case that when breaking occurs there is no lack of possible

explanations for some breakdown in the formulation. Certainly the assumption q =

Q(ρ) is a very simplified view of a very complicated phenomenon. For example, if the

density is changing rapidly (as it is near breaking), one expects the drivers to react to

more than the local density and one also expects that there will be a time lag before

they respond adequately to the changing conditions. One might also question the

continuum assumption itself.

F Another example is flood waves in long rivers. Here ρ is replaced by the cross-

sectional area of the channel, A, and this varies with x and t as the level of the river

rises. If q is the volume flux across the section, then (4.3) between A and q expresses

the conservation of water. Although the fluid flow is extremely complicated, it seems

reasonable to start with a functional relation q = Q(A) as a first approximation to

express the increase in flow as the level rises. Such relations have been plotted from

empirical observations on various rivers. But it is again clear that this assumption

is an oversimplification which may well have to be corrected if troubles arise in the

theory.

F A similar example, proposed and studied extensively by Nye (1960), is the

example of glacier flow. The flow velocity is expected to increase with the thickness

of the ice, and it seems reasonable to assume a functional dependence between the

two.

F In chromatography(It is a laboratory technique for the separation of mixture)

and in similar exchange processes studied in problems of chemical engineering, the

same theory arises. The formulation is a little more complicated. The situation is

that a fluid carrying dissolved substances or particles or ions flows through a fixed
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bed and the material being carried is partially adsorbed on the fixed solid mate-

rial in the bed. The fluid flow is idealized to have a constant velocity V. Then if

ρf is the density of the material carried in the fluid, and ρs is the density deposited on the solid,

ρ = ρf + ρs, q = V ρf

Hence the conservation equation (4.4) reads

∂
∂t

(ρf + ρs) + ∂
∂x

(V ρf ) = 0

A second relation concerns the rate of deposition on the solid bed. The exchange

equation

∂ρs
∂t

=k1(A− ρs)ρf -k2ρs(B − ρf )

is apparently the simplest equation with the required properties.

The first term k1(A − ρs)ρf represents deposition from the fluid to the solid at a

rate proportional to the amount in the fluid, but limited by the amount already on

the solid up to a capacity A.

The second term k2ρs(B−ρf ) is the reverse transfer from the solid to the fluid. (In

some processes, the second term is just proportional to ρs; this is the limit B→∞,k2B

finite.)

In equilibrium, ∂ρs
∂t

is zero. i,e. the right hand side of the equation vanishes and ρs

is a definite function of ρf . In slowly varying conditions, with relatively large reaction

rates k1, and k2, we may take a first approximation in which the right hand side still

vanishes (”quasi-equilibrium”) and we have

ρs=A
k1ρf

k2B+(k1−k2)ρf

Thus ρs is a function of ρf ; since q=Vρf , hence q is a function of ρ. When changes

become rapid, just before breaking, the term ∂ρs
∂t

in the rate equation can no longer

be neglected. Since at breaking change of density deposited on the solid w.r.t to time

is not small.

F As a different type of example, the concept of group velocity can be fitted into
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this general scheme.

In linear dispersive waves, φ = a cos θ, there are oscillatory solutions with a local

wave number k(x,t) and a local frequency ω(x, t).

Thus k is the density of the waves— the number of wave crests per unit length—and

w is the flux—number of wave crests crossing the position x per unit time.

Let n=The number of wave crests; x=Length; t=Time. Then k=n
x

and ω=n
t
.

If we expect that wave crests will be conserved in the propagation, the conservation

equation

∂k
∂t

+∂ω
∂x

=0

In addition, k and ω are related by the dispersion relation

ω = ω(k)

Hence, ∂k
∂t

+ω′(k)∂k
∂x

= 0

We have a wave propagation for the variations of the local wave number of the

”carrier” wavetrain, and the propagation velocity is dω
dk

. This is the group velocity.

These ideas will be considered in full detail in the later discussion of dispersive

waves.

The wave problems listed here depend primarily on the conservation equation

(4.4), and for this reason they were given the name kinematic waves (Lighthill and

Whitham, 1955).
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Chapter 5

Shock Waves-I

The derivation of the differential equation form of a conservation law ut + φx = 0

assumes that the solution u has continuous first derivatives. The method of char-

acteristics can construct such a solution, but only up until the time of a gradient

catastrophe. In this chapter the solution u(x,t) will be extended beyond the breaking

time by permitting u(x, t) to be a piecewise smooth function. In doing so, we will have

to return to the original integral form of the conservation law at points (x,t) where

u(x,t) is discontinuous. The resulting discontinuous solution of the conservation law

is called a Shock Wave.

5.1 Piecewise smooth solutions of a conservation law

As we have seen, characteristic curves for the initial value problem


ut + c(u)ux = 0,−∞ < x <∞, t > 0,

u(x,0)=u0(x)

(5.1)

can be used to construct a solution u(x,t) starting at time t = 0, but ending at the

breaking time tb of a gradient catastrophe. In the following section we will modify

the method of characteristics to allow the profile u(x,t) to literally break at time t=tb

43



, forming a function which is only piecewise smooth for time tb (Figure 5.1).

To describe piecewise smooth functions, suppose (xs(t),t) is a curve in the xt—plane

which divides the upper half of the plane into two parts (Figure 5.2). Let R− represent

the region to the left of the curve and R+ the region

Figure 5.1: Profiles of a function u(x,t) which ”breaks” after a gradient catastrophe.

Figure 5.2: Curve (xs(t), t)

to the right of the curve. A function u(x,t) is called a piecewise smooth solution

of


ut + φx = 0,−∞ < x,∞, t > 0;

u(x, 0) = u0(x)

(5.2)

with jump discontinuity along xs if u(x,t) has the following properties:

(1)u(x,t) has continuous first derivatives ut and ux in R+ and R−, and satisfies the
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initial value problem in region R−


ut + φx = 0, for(x, t)inR−;

u(x, 0) = u0(x), forx < xs(0),

(5.3)

and in region R+


ut + φx = 0, for(x, t)inR+;

u(x, 0) = u0(x), forx > xs(0),

(5.4)

(2) At each point (x0, t0) on the curve (xs(t),t), the limit of u(x,t) as (x,t) →

(x0, t0) in R− and the limit of u(x,t) as (x,t)→ (x0, t0) in R+ both exist but are not

necessarily equal.

Figure 5.3: The graph of a piecewise smooth function u(x,t)

Figure 5.4: Profiles of a piecewise smooth function u(x,t) with discontinuity at xs(t)

The graph of such a function appears as two sections of surface with a jump along
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the curve (xs(t),t) in the xt—plane (Figure 5.3). The animation of a piecewise smooth

function, formed by taking slices of the surface at a sequence of increasing times, has

a profile with a moving jump discontinuity located at xs(t) (Figure 5.4).

5.2 Shock wave solutions of a conservation law

The construction of a solution of ut + φx = 0 by the method of characteristics tem-

porarily stops when a gradient catastrophe occurs. The physical process that the

conservation law models, however, does not necessarily end. In this section we will

describe how to extend the solution u(x,t) beyond the breaking time by permitting

u(x, t) to be only piecewise smooth, but in a way which continues to obey the un-

derlying conservation principle. The formation of a discontinuity after a gradient

catastrophe is a dramatic change in the nature of u(x,t). Such a function will be

called a shock wave solution of the conservation law.

Figure 5.5: Using a curve to divide a region of crossing characteristics.

Suppose that characteristics of


ut + φx = 0,−∞ < x,∞, t > 0;

u(x, 0) = u0(x)

(5.5)

begin intersecting at time tb, which we will assume is tb = 0 as shown in Figure

5.5. In order to proceed with the method of characteristics, a curve (xs(t),t) is
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drawn through the region of crossing characteristics to separate the characteristics

approaching from the left and right (Figure 5.5). While many curves can be drawn

to separate the crossing characteristics, it will now be shown that the underlying

conservation law selects out one choice of xs(t).

Suppose u(x, t) is a piecewise smooth solution of the initial value problem (5.5)

with jump discontinuity along xs(t). While u(x,t) satisfies ut + φx= 0 at each point

(x, t) in R− and R+ , the derivatives of u(x, t) do not necessarily exist at points (x, t)

on the curve. To see what happens at points (xs(t), t) on the curve, we have to return

to the original integral form of the conservation law (5.5). With no source term, the

integral form of the conservation law is

d

dt

∫ b

a

u(x, t)dx = φ(a, t)− φ(b, t) (5.6)

Figure 5.6

Fixing a point (xs(t), t) on the curve, pick a and b so that a ¡ xs(t) ¡ b as shown

in Figure 5.6. The integral in the conservation law (5.6) can then be split into two

parts as∫ b
a
u(x, t)dx =

∫ xs(t)−
a

u(x, t)dx+
∫ b
xs(t)+

u(x, t)dx

Substituting into the conservation law (5.6) and using the chain rule to compute

the derivative of these integrals with respect to t results in∫ xs(t)−
a

ut(x, t)dx+u(x−s , t)
dxs
dt

+
∫ b
xs(t)+

ut(x, t)dx-u(x+
s , t)

dxs
dt

=φ(a, t)− φ(b, t)

Letting a→ x−s and b→ x+
s reduces this to the equation

u(x−s , t)
dxs
dt

-u(x+
s , t)

dxs
dt

=φ(x−s , t)− φ(x+
s , t)
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from which we can solve for dxs
dt

to obtain the ordinary differential equation

dxs
dt

=
φ(x+

s , t)− φ(x−s , t)

u(x+
s , t)− u(x−s , t)

(5.7)

This derivation shows that in order for a piecewise smooth solution of the initial

value problem (5.5) to satisfy the integral form of the conservation law (5.6), the

curve along which u(x,t) has a jump discontinuity must be picked to satisfy (5.7).

The differential equation (5.7) is called the Rankine-Hugoniot jump condition for

u(x, t). The expressions φ(x+
s , t)−φ(x−s , t) and u(x+

s , t)−u(x−s , t) calculate the jump

in the values of φ and u as (x, t) crosses the curve (xs(t),t) from left to right. Using

the jump notation

[φ](x, t)=φ(x+
s , t)− φ(x−s , t) and [u](x, t)=u(x+

s , t)− u(x−s , t)

the Rankine-Hugoniot jump condition is written as

dxs
dt

=
[φ]

[u]
(5.8)

A piecewise smooth solution u(x,t) of ut + φx= 0 with a jump along a curve

xs(t) satisfying the Rankine-Hugoniot condition is called a shock wave solution of the

conservation law. The curve xs(t) is called a shock path.

FExample

Consider the following initial value problem for the inviscid Burgers equation


ut + uux = 0,−∞ < x <∞, t > 0,

u(x, 0) =


1, ifx ≤ 0

0, ifx > 0

(5.9)

The characteristics
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x=


0.t+x0,whenx0 > 0

1.t+ x0,whenx0 < 0

Based on the diagram of characteristics (Figure 5.7), it appears that the charac-

teristics begin crossing at (0, 0) with a breaking time of tb = 0. For this reason we

will look for a shock wave solution with shock path starting at (0, 0).

Figure 5.7: Characteristic diagram and a curve separating crossing characteristics for equation 5.9

Once (xs(t),t) is found to separate the crossing characteristics, the method of

characteristics can be used in the regions R− to the left and R+ to the right of the

path (Figure 5.7). If (x,t) is a point in R−, then there is one characteristic line

extending back from (x, t) to a point (x0, 0) on the negative x—axis. Since u is

constant along this line and the value of u(x0,0) = 1 for x0 ¡ 0 the value of u at

(x,t) is u(x,t)=(x0,0) = 1. Similarly, if (x,t) is a point in R+ , then the characteristic

through it extends back to a point (x0, 0) on the positive x—axis where u(x0,0) =

0. In this case, u(x,t) = u(x0,0) = 0. Once the shock path is found to separate the

regions R− and R+, the solution u will be given by

u(x, t) =


1, if(x, t) ∈ R−

0, if(x, t) ∈ R+

The curve (xs(t),t) separating the two regions will be found using the Rankine-

Hugoniot jump condition; starting the shock path at (0, 0) forms the initial value

problem

dxs
dt

= [φ]
[u]

, xs(0) = 0
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Figure 5.8: Shock path for Equation 5.9

Figure 5.9: Animation of the shock wave solution of Example 5.9

The flux φ for the Burgers equation ut + uux = 0 is φ = 1
2
u2, so

dxs
dt

=
[ 1
2
u2]

[u]
=

1
2

(u+)2− 1
2

(u−)2

u+−u− = u++u−

2

Since u=1 in R− and u = 0 in R+ , the value of was (x, t) approaches the curve

from the left is u− = 1, while the value from the right is u+ = 0. The jump condition

then simplifies to dxs
dt

= 1
2
, which together with the initial condition xs(0) = 0 implies

the shock path is the line xs = t
2
. An xt—diagram showing the shock path x = t

2

and characteristics (Figure 5.8) illustrates the resulting shock wave solution,

u(x,t)=


1, ifx < 1

2
t

0, ifx > 1
2
t

Four frames of animation of this function are shown in Figure 5.9. Note in partic-

ular the jump discontinuity moving to the right with speed 1
2
.
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5.3 Shock Wave Example: Traffic at a Red Light

Shock wave solutions for conservation laws are piecewise smooth solutions which sat-

isfy the Rankine-Hugoniot jump condition along curves of discontinuity. The resulting

moving discontinuity models an abrupt change propagating through a medium. In

this chapter a shock wave will be constructed to model traffic backing up at a red

light.

5.3.1 An initial value problem

Figure 5.10: Incoming cars encountering stopped traffic

Suppose that car traffic, moving uniformly along a single lane road, encounters the

end of a line of traffic which has stopped at a traffic light (Figure 5.10). The cars

which have already stopped are lined up with maximum density u1 cars per mile,

while the cars approaching the end of the line have a uniform density u0 cars per

mile. Since u1 is the maximum possible traffic density, the value of u0 will satisfy

0 < u0 < u1.

Returning to Section 3.3, let u(x, t) represent the density (cars per mile) of traffic

at position x along the road at time t. The flux φ(x, t) represents the rate (cars per

hour) at which traffic passes by position x and time t. Letting v1 denote maximum

traffic velocity, the linear model for traffic velocity v = v1(1 − u
u1

) results in the

constitutive equation (see Section 3.3).

φ = uv = v1(u− u2

u1

) (5.10)

Assuming that the road has no entrances or exits, the basic conservation law
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ut + φx = f with flux φ and sourse f=0 becomes

ut + v1(1− 2u
u1

)ux=0

Let x = 0 represent the location of the end of the stopped traffic at time t = 0. For

now, it will be assumed that the stopped traffic extends indefinitely in one direction

and the incoming traffic extends indefinitely in the other. In this case, the initial

value problem


ut + v1(1− 2u

u1
)ux,−∞ < x <∞, t > 0

u(x, 0) =


u0, ifx < 0

u1, ifx ≥ 0

(5.11)

models the profile of traffic density u(x,t) at later times t.

5.3.2 Shock wave solution

In this section we will use the method of characteristics to find a solution of the initial

value problem (5.11). Since the conservation law in (5.11) is of the form ut + c(u)ux

= 0, a solution u of (5.11) will be constant along the characteristic lines

x = c(u(x0, 0))t+ x0,

where u(x0, 0) is determined by the initial condition in (5.11), and c(u) is given by

c(u) = v1(1− 2u
u1

)

If x0 ≥ 0, then the characteristic starting at (x0,0) is

x = c(u1)t+ x0 = −v1t+ x0.

In an xt—diagram, this shows that characteristics starting at points(x0,0) on the

positive x—axis are parallel lines with negative slope −1
v1

.

On the other hand, if x0 ¡ 0, then the characteristic starting at (x0,0) is

x = c(u0)t+ x0 = v1(1− 2u0
u1

)t+ x0

Note that this line can have positive or negative slope 1
c

depending on whether

c =v1(1 − 2u0
u1

) is positive or negative, i.e., if u0 is smaller or larger than u1
2

(see
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Figure 5.11: Breaking time for the solution of the initial value problem (5.11) is tb = 0.

Figure 5.11). In either case, however, the slope 1
c

will be between −1
v1

and 1
v1

since the

incoming traffic density u0 satisfies 0 < u0 < u1.

As shown in Figure 5.11, the characteristics will begin crossing at the origin. For

this problem we will need to look for a shock wave solution whose shock path xs(t)

starts at xs(0) = 0 and extends upward to divide the region in which characteristics

intersect (Figure 5.12).

Figure 5.12: Setting up an xt—diagram for the initial value problem (5.9)

At a point (x, t) to the left of the shock path, the characteristic passing through

the point extends back to the negative x—axis where u(x0,0) = u0. Since u is constant

along characteristics, u(x,t) =u0. Similarly, a point (x,t) to the right of the shock

path lies on a characteristic which extends back to the positive x—axis where u(x0, 0)

=u1, so u(x,t) = u1. The traffic density function u(x,t) will then have the form

u(x,t)=


u0, ifx < xs(t)

u1, ifx > xs(t)

The Rankine-Hugoniot jump condition dxs
dt

= [φ]
[u]

will determine the shock path
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with the flux φ given by (5.10). At a point (x,t) on the shock path, we already

determined that the values of u from the right and left are u+ = u1 and u− = u0.

The jump condition

dxs
dt

= [φ]
u

= φ(u+)−φ(u−)
u+−u− = φ(u1)−φ(u0)

u1−u0

then simplifies to

dxs
dt

=
0−v1(u0−

u20
u1

)

u1−u0 = −v1
u0
u1

Integrating this differential equation with respect to t and using the starting point

xs(0) = 0 gives the only allowed shock path, the line

xs = −v1
u0
u1
t

The resulting shock wave solution to (5.11) is then

u(x, t) =


u0, ifx < −v1

u0
u1
t

u1, ifx ≥ −v1
u0
u1
t

(5.12)

with an xt—diagram shown in Figure 5.13. Note that this shock path indicates

that the end of the line of stopped traffic will back up at the rate of v1
u0
u1

miles per

hour.

Figure 5.13: Shock path xs=v1
u0

u1
t

F Example:

As a particular example, suppose that the stopped traffic is at a maximum density

u1 = 300 cars per mile, and the maximum velocity along this stretch of road is v1

= 45 miles per hour. If the incoming traffic is traveling at 30 miles per hour, then

the velocity model v = v1(1|
uu1)

predicts that the incoming traffic density u0 satisfies
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30 = 45(1 — u0
300

), so u0 = 100 cars per mile. With these values, the solution (5.11)

becomes

Figure 5.14: Traffic backing up at a rate of 15 miles per hour

u(x, t) =


100, ifx < −15t

300, ifx ≥ −15t

The resulting shock path, representing the location of the end of the line of stopped

traffic, is given by x = —v u0
u1
t = -15t, indicating that the end of the stopped traffic

is backing up at 15 miles per hour. Four frames of animation of this traffic flow are

shown in Figure 5.14.

55



Chapter 6

Rarefaction Waves

Earlier we saw how intersecting characteristics led to the construction of shock wave

solutions of a conservation law. In this chapter we will examine a problem at the other

extreme: in nonlinear conservation laws, it is possible to have regions in the xt—plane

which contain no characteristics. For these regions, the method of characteristics will

be modified to form rarefaction waves. Later in this chapter a rarefaction wave will

be constructed which models traffic flow after a red light turns green.

6.1 An example of a rarefaction wave

The characteristics x = c(u(x0, 0))t+ x0 for the initial value problem


ut + uux = 0,−∞ < x <∞, t > 0,

u(x, 0) =


0, ifx ≤ 0,

1, ifx > 0

(6.1)

constructed using the characteristic speed c(u)=u are

x =


0.t+ x0, ifx0 ≤ 0

1.t+ x0, ifx0 > 0

When drawn in the xt—plane (Figure 6.1), note that the characteristics do not
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enter the wedge-shaped region 0 < x < t < ∞ . In this section we will look at

rarefaction waves as one way of constructing a solution u(x, t) of the initial value

problem (6.1) in this region.

Suppose the initial profile u(x,0) is modified to make a smooth transition from u

= 0 to u = 1 within an interval of length ∆x around x - 0. As shown in Figure 6.2,

the resulting characteristics then make a smooth transition from lines with speed c

= 0 (vertical) to lines with speed c = 1 (slope 1).

Figure 6.1: Characteristics which do not enter part of the xt—plane.

Figure 6.2: Smoothing the initial data u(x,0) to create a fan of characteristics, then letting x→ 0.

Letting the interval of transition ∆x shrink to 0 (Figure 6.2) suggests that we

might be able to find a solution of ut + uux = 0 in the region 0 ¡ x ¡ t by filling it

with a ”fan of characteristics”. This fan consists of lines x = ct, originating from the

origin, whose speeds vary from c = 0 (vertical line) to c = 1. A function u(x,t) which

is constant along each of these inserted ”characteristics” would be of the form u(x, t)
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=g(x
t
), a function of the speed (or slope) of the lines x = ct.

To search for a solution of ut + uux = 0 of the form u(x,t)=g(x
t
) first note that by

the chain rule, the derivatives ut and ux are

ut(x, t) = − x
t2
g′(x

t
), ux(x, t) = 1

t
g′(x

t
).

Substituting these derivatives into ut-uux = 0 produces the equation

− x
t2
g′(x

t
) + g(x

t
)1
t
g′(x

t
) = 0

from which it follows by factoring that

1
t
g′(x

t
)(g(x

t
)− x

t
) = 0

This shows that either g′ = 0 (g is constant) or g(x
t
) = x

t
. The following exercise

shows that we can discard the first possibility.

F Example

Consider the initial value problem given in (6.1). Use the method of characteristics

to show that u(x,t)= 0 in the region x≤ 0 and u(x,t)= 1 in the region x > t. Now

suppose that u(x, t) = g(x
t
) = A in the wedge-shaped region 0 < x < t, resulting in

the function

u(x, t) =


0, ifx ≤ 0;

A, if0 < x ≤ t;

1, ift < x

Figure 6.3: An xt—diagram using u(x,t) = x
t to fill the center wedge-shaped region.

Use the Rankine-Hugoniot jump condition along the lines x=0 and x = t to show

that u(x,t) cannot be a shock wave solution of (6.1). The other possibility for g
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Figure 6.4: Animation of the function u(x,t) in (6.2)

is g(x
t
) = x

t
. Figure 6.3 shows the resulting xt—diagram that is formed by taking

u(x,t)= g(x
t
) = x

t
in the wedge-shaped region 0¡x¡t, and using the method of char-

acteristics in the left (x < 0) and right (x > 1) regions. Thefunction u(x,t) is now

piecewise defined by


0, ifx≤ 0;

x
t
, if0 < x≤ t ;

1, ift < x

(6.2)

The four frames of animation displayed in Figure 6.4 show that the profile of the

solution ”thins out” or ”rarefies” as time increases. Such a function is an example

of a rarefaction wave. Note that although the function u(x, t) defined in (6.2) is

continuous for t > 0, the derivatives ut and ux do not exist along the lines x = 0 and

x = t and so u does not satisfy the differential equation ut + uux = 0 at these points.

This function, however, satisfies the conditions to be a weak solution of ut + uux = 0

, as we will describe later.

In general, a Rarefaction wave is a nonconstant function of the form u(x,t) =

g(x−a
t

). The lines x−a
t

= c in the xt—plane are often called characteristics since u is

constant along them; however, they are not constructed by the characteristic equation

dx
dt

= c(u) derived from ut + c(u)ux = 0. These lines are distinguished by their fan

shape originating from the point x = a on the x—axis (Figure 6.5).
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Figure 6.5: Characteristics for a rarefaction wave u(x, t) = g(x−a
t )

6.2 Stopped traffic at a green light

Suppose traffic is backed up indefinitely in one direction behind a red light. The

light, located at position x = 0, turns green at time t=0 and the traffic begins to

move forward. As shown in Figure 6.6, it will be assumed that prior to the changing

of the light, traffic behind the light is at its maximum density u1 and no traffic exists

ahead of the light.

Using the constitutive equation φ = v1(u − u2

u1
) derived from the linear velocity

model v = v1(1 − u
u1

), an initial value problem which describes the traffic density u

after the light turns green is


ut + v1(1− 2u

u1
)ux = 0,−∞ < x <∞, t > 0,

u(x, 0) =


u1, ifx ≤ 0;

0, ifx > 0

(6.3)

Figure 6.6: Traffic stopped at a red light.

The characteristic lines for this initial value problem are of the form x = c(u(x0, 0))t+

x0 with c given by c(u) = v1(1 — 2u
u1

). Characteristics which start at points (x0, 0)
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Figure 6.7: Characteristic lines of the initial value problem (6.3).

on the negative x—axis (x0 < 0) have speed

c(u(x0, 0)) = c(u1) = v1(1− 2u1
u1

) = −v1

while those starting at points on the positive x—axis have speed

c(u(x0, 0)) = c(0) = v1(1− 0) = −v1

The resulting characteristic lines are then

x=


-v1t+ x0, ifx0 ≤ 0

v1t+ x0, ifx0 > 0

The characteristic diagram shown in Figure 6.7 separates into three parts: x <

−v1t, −v1t < x < v1t, and x > v1t. No characteristics enter the middle region;

however, as shown in the following exercise, a rarefaction wave can be constructed to

fill this wedge-shaped area.

The resulting rarefaction wave solution is then

u(x, t) =


u1, ifx ≤ −v1t,

1
2
u1(1− 1

v1
x
t
), if—v1t < x < v1t

0, ifx ≥ v1t

(6.4)
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Chapter 7

An Important Example with

Rarefaction and Shock Waves

In general, nonlinear conservation laws may possess solutions which are constructed

using a combination of shock and rarefaction waves.

In this chapter we will construct an example of such a solution.

Consider the initial value problem for Burgers’ equation



ut + uux = 0, −∞ < x <∞, t > 0;

u(x, 0) =


0, ifx ≤ 0,

1, if0 < x < 1,

0, ifx ≥ 1

(7.1)

With c(u) = u, the characteristics x = c(u(x0, 0))t+ x0are

x =


0.t+ x0, ifx0 ≤ 0,

1.t+ x0, if0 < x0 < 1,

0.t+ x0, ifx0 ≥ 1

The characteristic diagram shown in Figure 7.1 has intersecting characteristics

as well as a wedge-shaped region with no characteristics. Since u is constant along
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characteristics lines, the initial condition and the characteristic diagram show that

u(x, t)= 0 for x < 0, u(x, t) = 1 for 0 < t < x < 1, and u(x, t) = 0 for 0 < t <

x− 1 < ∞ (see Figure 7.2). A piecewise smooth solution to (7.1) will be completed

using a combination of shock and rarefaction waves in the remaining regions of the

xt—plane.

Figure 7.1: Characteristics of the initial value problem (7.1).

Figure 7.2: The value of u is constant along characteristics in regions of single characteristics.

F Step 1: A rarefaction

We will begin by constructing a rarefaction wave to fill the wedge-shaped region in

the xt—plane that does not contain any characteristic lines. As shown in Section 6.1,

a rarefaction wave solution of ut+uux= 0 with a fan of characteristic lines originating

from (0,0) is

u(x, t) = x
t

Drawing a fan of characteristic lines for this rarefaction in the triangular wedge

results in the characteristic diagram shown in Figure 7.3 and the updated xt—diagram

in Figure 7.4.
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Figure 7.3: Characteristics of the rarefaction u(x,t) =x
t fill the wedge-shaped region originating from

the origin.

Figure 7.4: The xt—diagram of the solution including the rarefaction wave.

The characteristic diagram in Figure 7.3 shows a region of intersecting character-

istics near the x—axis. We shall sketch a possible shock path in Figure 7.3 starting

at the point (1,0).

F Step 2: A Shock

The diagram in Figure 7.3 shows intersecting characteristics with a breaking time

of tb = 0. The next step will be to construct a shock path, starting at the point (x,t)

= (1,0), which separates the characteristics x = t+ x0 from the vertical lines x = x0.

With the flux φu = 1
2
u2 from Burgers’ equation ut + uux = 0, the

Rankine-Hugoniot jump condition for the shock path becomes

dxs
dt

= [φ]
[u]

=
1
2

(u+)2− 1
2

(u−)2

u+−u− = u++u−

2

The characteristics left of the shock path extend back to points (x0, 0)on the

x—axis where 0 < x0 < 1. The value of u(x,t) along these lines will be u(x,t) =

u(x0, 0) = 1, so the value of u(x,t) as (x,t) approaches the shock path from the left
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Figure 7.5: Shock path xs(t) = 1
2 t + 1 for 0 ≤ t ≤ 2 separates a region where u(x,t) = 1 from a

region where u(x,t) = 0. The shock path will need to be extended beyond the point (2,2) into the
region of characteristics from the rarefaction wave.

is u− = 1. Similarly, the characteristics to the right of the shock path are vertical

lines which extend back to points (x0, 0) on the x—axis where x0 > 1. The value of

u(x, t) along these lines will be u(x, t) = u(x0, 0) = 0, so the value of u(x, t) as (x,

t) approaches the shock path from the right is u+ = 0.

The jump condition for the path then becomes

dxs
dt

= 1+0
2

= 1
2

which gives xs = 1
2
t + k. The constant k is found using the condition that the

shock starts at (xs, t) = (1, 0). In this case k = 1, and the resulting shock path is

xs = 1
2
t+ 1, 0 ≤ t ≤ 2

As shown in Figure 7.5, this part of the shock path ends at t = 2, where the vertical

characteristics begin intersecting the characteristics inserted for the rarefaction wave.

F Extension of the Shock

The shock path constructed in Step 2 separates the characteristics x = t + x0 from

the vertical lines x= x0. As a final step in the construction of w(x, t), the shock will

be extended from (x,t) = (2,2) into the region t > 2 where the vertical lines x = x0

intersect the fan of characteristics from the rarefaction wave (Figure 7.5).

As in Step 2, the jump condition for the shock path is

dxs
dt

= [φ]
[u]

=
1
2

(u+)2− 1
2

(u−)2

u+−u− = u++u−

2

The characteristics to the right of the shock are vertical lines which extend back
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to points (x0, 0) on the x—axis with x0 > 1. The value of u(x, t) along these lines

will be u(x, t) = u(x0, 0) = 0, so the value of u(x,t) as (x,t) approaches the shock

path from the right is u+ = 0. To the left of the path, we have already determined

that the value of u is u(x,t) = x
t

from the rarefaction wave, so the value of u(x,t) as

(x,t) approaches the path from the left is u− = x
t
. The jump condition for points on

the shock path is then

dxs
dt

=
0+xs

t

2
= xs

2t

This first order differential equation for xs is separable; rewriting the equation as

1
xs

dxs
dt

= 1
2t

and integrating shows that ln xs = ln
√
t+ k, and so xs = k1

√
t for some constant

k1. Since this part of the shock path starts at the point (x,t) = (2,2), the condition

xs(2) = 2determinesthatk1 =
√

2, and so the shock path here is

xs =
√

2t, t ≥ 2

As shown in Figure 7.6, this curve separates the region of rarefaction characteristics

from the vertical characteristics for time t ≥ 2.

The characteristic diagram in Figure 7.6 completes the construction of a piece-

wise smooth solution to the initial value problem (7.1); the final xt—diagram of the

solution is shown in Figure 7.7.

Figure 7.6: Extending the shock path by xs =
√

2t, t ≥ 2 to separate the region of rarefaction
characteristics from the vertical characteristics.
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Figure 7.7: An xt—diagram for a function u(x, t) consisting of a shock and a rarefaction

During the first two units of time, the profile of u(x, t) is given by

u(x, t) =



0, ifx < 0

x
t
, if0 < x < t

1, ift < x < 1
2
t+ 1

0, if1
2
t+ 1 < x

(7.2)

Once past time t = 2, the profile of u(x,t) is defined by


0, ifx < 0

x
t
, if0 < x <

√
2t

0, if
√

2t < x

(7.3)
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Chapter 8

Nonunique Solutions and the

Entropy Condition

Rarefaction and shock waves are special solutions of conservation laws that exhibit

wave behavior. In the process of constructing them, however, we have relaxed the

notion of ”solution” from a function u(x, t) which satisfies ut+φx = 0 for all (x, t), to

a piecewise smooth solution which satisfies the integral form of the conservation law

where u is not continuous. In this chapter, we will see that this more general notion

of solution makes it possible for an initial value problem to possess many different

solutions. The entropy condition will then be introduced as an example of a condition

which is used to select one solution over all others.

8.1 Nonuniqueness of piecewise smooth solutions

The rarefaction wave from Section 6.1 and equation 6.2

u(x, t) =


0, ifx ≤ 0;

x
t
, if0 < x < t;

1, ifx ≥ t

(8.1)
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was constructed as a piecewise smooth solution of the initial value problem


ut + uux = 0,−∞ < x <∞, t > 0,

u(x, 0) =


0, ifx ≤ 0,

1, ifx > 0,

(8.2)

It is also possible, however, to find other solutions of this problem using shocks

waves. In fact, if A is any number satisfying 0 < A < 1, then the function

Figure 8.1: A shock wave solution of the initial value problem (8.2) with two shock paths.

u(x, t) =


0, ifx ≤ 1

2
At;

A, if1
2
At < x < 1

2
(A+ 1)t;

1, ifx ≥ 1
2
(A+ 1)t

(8.3)

represented by the xt—diagram in Figure 24.1 is a shock wave solution with two

shock paths (see Exercise 24.1). Thus there are many solutions of the initial value

problem (24.2)—a rarefaction wave solution and an infinite number of shock wave

solutions.

F Consider the function u(x,t) given by (8.3).

(a) Verify that u(x,t) satisfies ut + uux = 0 in each of the three regions x <

1
2
At, 1

2
At < x < 1

2
(A+ 1)t, x > 1

2
(A+ 1)t

(b) Verify that the paths of discontinuity xs = 1
2
At and xs = 1

2
(A+ 1)t satisfy the
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Rankine-Hugoniot jump condition.

8.2 The Entropy Condition

When an initial value problem has more than one solution, additional information

must be specified if one particular solution is to be selected.In gas dynamics, for

example, the entropy condition is used to select a solution which is most physically

realistic.

A function u(x,t) satisfies the entropy condition if it is possible to find a positive

constant E so that

u(x+h,t)−u(x,t)
h

≤ E
t

for all t > 0, h > 0, and x. Graphically, this is a condition on the slope of the

profile of u(x,t) at each time t—the slope between any two points on the profile

(secant slope) at time t is less than E
t
:

Figure 8.2

Note that this condition restricts how large the positive secant slope can be, and

does not prohibit the curve from having steep negative slopes. Furthermore, the

bound E
t

restricting the size of positive slopes decreases to zero as t increases.

For the initial value problem (8.2) in the previous section, there are an infinite

number of shock wave solutions given by (8.3). Figure 8.2 shows the profile of these

solutions, and indicates that large positive secant slopes are possible by picking x and

x + h on opposite sides of the shock. The secant slope
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u(x+h,t)−u(x,t)
h

= 1−A
h

Figure 8.3: Large positive secant slopes occur in the profiles of the shock wave solutions (8.3).

grows arbitrarily large as x and x + h approach the location of the jump, so it is

not possible to find a constant E such that this secant slope is less than E/t for all x

and h > 0. The shock wave solutions (8.3) do not satisfy the entropy condition.

Figure 8.4: Maximum positive secant slope is 1
t in the profiles of the rarefaction wave (8.1).

The rarefaction wave (8.1), however, does satisfy the entropy condition. The profile

of this function at time t shown in Figure 8.3 indicates that a maximum positive secant

slope of 1
t

occurs when x and x + h are between 0 and t. For this function the entropy

condition is met by picking E=1 , since

u(x+h,t)−u(x,t)
h

= 1
t

The entropy condition would then select this rarefaction wave solution over the

shock waves solutions in the initial value problem (8.2).

The entropy condition plays an important role in the design of numerical methods
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for constructing approximations to solutions of conservation laws. Since a conserva-

tion law may possess several solutions, care must be taken to ensure that the numerical

method not only converges, but converges to the desired solution. For further reading

on the entropy condition, its variations, and its role in numerical algorithms.
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Chapter 9

Weak Solutions of Conservation

Laws

9.1 Classical Solutions

Constructing solutions of conservation laws by piecing together shocks and rarefac-

tions can become quite tedious if the initial condition is anything more than a very

simple function. Furthermore, constructing a particular solution is sometimes not as

important as determining more general properties of the conservation law. In this

chapter the weak form of a conservation law is introduced as an alternative to the

differential equation form ut + φx = 0. This view of the conservation law has several

mathematical advantages over the differential equation form.

The solutions of differential equations that we have focused on are often called

classical solutions in order to distinguish them from the weak solutions described in

the next section. Consider the general initial value problem

ut + φx = 0,−∞ < x <∞, t > 0

u(x, 0) = u0(x),

where φ(x, t) has continuous first derivatives and u0(x) is continuous. A function

u(x, t) is called a classical solution of this initial value problem if
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(a) u is continuous for all x and t > 0,

(b) ux and ut exist and are continuous for all x and t > 0,

(c) u satisfies ut + φx = 0 for all x and t > 0, and

(d) u(x,0) = u0(x) for all x.

The notion of weak solution will allow us to proceed directly to functions u(x, t)

which are not necessarily continuous or differentiable, but are solutions in a different

sense.

9.2 The weak form of a conservation law

The weak form of ut + φx = 0 is an alternative integral form of the conservation law.

The underlying idea is to use special functions of x and t, called test functions, to

examine the solution of ut+φx = 0 in regions of the xt—plane. A real valued function

T(x, t) is called a Test Function if

(a) Tt and Tx exist and are continuous for all (x,t), and

(b) there is some circle in the xt—plane such that T(x, t) = 0 for all (x,t) on or

outside the circle.

An example of a test function is

T (x, t) =


e

−1

1−x2−t2 , ifx2 + t2 < 1,

0, ifx2 + t2 ≥ 1,

whose graph is shown in Figure 9.1. The exponential decay of T(x, t) to zero

as(x,t) approaches the boundary of the circle x2 + t2 = 1 from the inside leads to this

function having continuous first derivatives Tt and Tx for all (x,t), even on the unit

circle.

To derive the weak form of a conservation law, begin by assuming that u is a

classical solution of

ut + φx = 0,−∞ < x <∞, t > 0 (9.1)
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Figure 9.1: A test function.

u(x, 0) = u0(x) (9.2)

Multiplying the differential equation (9.1) by T(x,t) and integrating over all pos-

sible x and all t ≥ 0gives

∫ ∞
0

∫ ∞
−∞

[ut(x, t)T (x, t) + φx(x, t)T (x, t)]dxdt = 0 (9.3)

The left side can be written as the sum of two integrals I1 and I2, where

I1 =
∫∞

0

∫∞
−∞[ut(x, t)T (x, t)dxdt

I2 =
∫∞

0

∫∞
−∞[φt(x, t)T (x, t)dxdt

Interchanging the order of integration in the double integral I1 and applying inte-

gration by parts to the resulting inside integral rewrites I2 as

I1 =
∫∞
−∞[

∫∞
0

[ut(x, t)T (x, t)dt]dx

=
∫∞
−∞[u(x, t)T (x, t)|t→∞t=0 −

∫∞
0
u(x, t)Tt(x, t)dt]dx
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The value of u(x, t)T(x, t) is zero as t → ∞ since T(x, t) is zero for all (x, t)

outside some circle in the xt—plane. The value of u(x, 0)T(x, 0) is u0(x)T (x, 0) by

the initial condition (9.2). The expression for I1 is then

I1 = −
∫ ∞
−∞

[u0(x)T (x, 0)dx−
∫ ∞

0

∫ ∞
−∞

u(x, t)Tt(x, t)dxdt (9.4)

A similar calculation can be carried out for I2. Applying integration by parts to

the inside integral of the double integral I2 results in

I2 =
∫∞

0
[
∫∞
−∞ φx(x, t)T (x, t)dx]dt

=
∫∞

0
[φ(x, t)T (x, t)|t→∞t→−∞ −

∫∞
−∞ φ(x, t)Tx(x, t)dx]dt

The value of u(x, t)T(x, t) is zero as x → ±∞ since T(x, t) is zero for all (x, t)

outside some circle in the xt—plane, so

I2 = −
∫ ∞

0

∫ ∞
−∞

φ(x, t)Tx(x, t)dxdt (9.5)

Using the two calculations (9.4) and (9.5) for I1 and I2, the integral of the conser-

vation law ut + φx = 0 in (9.3) can be rewritten as

∫ ∞
0

∫ ∞
−∞

(u(x, t)Tt(x, t) + φ(x, t)Tx(x, t))dxdt+

∫ ∞
−∞

[u0(x)T (x, 0)dx = 0 (9.6)

This is called the weak form of the initial value problem (9.1 and 9.2) for the

conservation law ut + φx = 0.

Note that the weak form (9.6) does not involve any derivatives of u(x,t). A weak

solution of the initial value problem (9.1 and 9.2) is a function u(x,t) which satisfies

(9.6) for every test function T(x,t). For a weak solution there is no requirement that

ut or ux even exist. Furthermore, the partial differential equation and the initial
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condition in (9.1 and 9.2) are both accounted for in this single equation.

FExample

Consider the initial value problem

ut + u2ux = 0,−∞ < x <∞, t > 0

u(x, 0) = 1
1+x2

The flux for this conservation law is φ(u) = u3

3
. Taking this flux and the initial

function u0(x) = 1
1+x2

in (9.6) gives the weak form of the initial value problem as∫∞
0

∫∞
−∞(u(x, t)Tt(x, t) + 1

3
u3(x, t)Tx(x, t))dxdt+

∫∞
−∞

T (x,0)
1+x2

dx = 0

for all test functions T(x,t).
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Chapter 10

Shock Wave-II

WE OBTAINED THE solution of the equation

ρt + qx = 0

on the assumptions

(1) ρ and q are continuously differentiable.

(2) There exists a functional relation between q and ρ; that is q = Q(ρ).

In our discussions we found the phenomena of breaking in some cases. At the time

of breaking we have to reconsider our assumptions.

We will approach this in two directions.

(i) We still assume a functional relation between q and ρ i.e. q = Q(ρ), but allow

jump discontinuities for ρ and q.

(ii) We assume ρ and q are continuously differentiable and q is a function of ρ and

x. For simplicity we take this in the form

q = Q(ρ)− vρx , where v¿0.

We already discussed (i) in Shock Wave-I part.

10.1 Equal Area Rule

The general question of fitting in a discontinuous shock to replace a multivalued

region can be answered elegantly by the following argument. The integrated form of
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the conservation equation, i.e. ,

d
dt

∫ x1
x2
ρdx+ q1 − q2 = 0

Figure 10.1

holds for both the multivalued solution and the discontinuous solution. If we take

the case of a single hump disturbance as shown in the figure 10.1(a), with ρ = ρ0 on

both sides of the disturbance, and if we take x1, x2 far away from the disturbance

with q1 = q2 = Q(ρ0), then

∫ x1
x2
ρdx= Constant in time

This is so for both the multivalued solution in figure 10.1(b) and the discontinuous

solution in figure 10.1(c). Hence the position of the shock must be chosen to give

equal areas A = B for the two lobes as shown in figure 10.1(d).
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10.2 Shock Fitting

10.2.1 Quadratic Q(ρ)

This determination, although quite general, is not in a convenient form for analytic

work. The general case gets complicated and it is worthwhile to do a special case

first. The special case is again a quadratic expression for Q(ρ). This includes the case

of weak disturbances about a value ρ = ρ0, since Q(ρ) can then be approximated by

Q = Q(ρ0) +Q′(ρ0)(ρ− ρ0) + 1
2
Q′′(ρ0)(ρ− ρ0)2

and for this reason it has considerable generality.

We consider

Q(ρ) = αρ2 + βρ+ γ

Then

c(ρ) = Q′(ρ) = 2αρ+ β

and the shock velocity

U = Q(ρ2)−Q(ρ1)
ρ2−ρ1 becomes

U = 1
2
(c1 + c2)

where c1 = c(ρ1), c− 2 = c(ρ2).

10.2.2 Asymptotic Behavior

We are interested in finding out what happens to the solution as tt → ∞, and this

can be obtained directly without going through the previous construction in detail.

We first study a special Q(ρ) which simplifies the results.

The equation is,

ρt + qx = 0 (10.1)

with the shock condition

−U [ρ] + [q] = 0 (10.2)
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If q = Q(ρ) and c(ρ) = Q′(ρ) then, as noted already, (10.1) can be written as

Ct + CCx = 0, or Ct + (1
2
C2)x = 0

where C(x, t) = c(ρ(x, t)). From the second form of the equation for C, we may

be tempted to write the shock condition (10.2) as

−U [C] + [
1

2
C2] = 0 (10.3)

But this is not always true,(It depends on the physical problem and integral terms)

i.e. conservation of ρ does not imply the conservation of C. However, when Q is

quadratic, say,

Q(ρ) = αρ2 + βρ+ γ

then conservation of ρ implies the conservation of C, since C is linear in ρ.

This can be easily checked as follows: We have

c(ρ) = Q′(ρ) = 2αρ+ β

by equation (10.2)

−U [ρ] + [αρ2 + βρ+ γ] = 0 (10.4)

Now from (10.3)

−U [C] + [1
2
C2] = 0

⇒ −U [2αρ+ β] + [1
2
(2αρ+ β)2] = 0

⇒ −2αU [ρ] + 1
2
[4α2ρ2 + 4αβρ] = 0

⇒ 2α(−U [ρ] + [αρ+ βρ+ γ]) = 0

where, [β] = [1
2
β2] = [γ] = 0 since β and γ are constants.

In this case we can work with C alone and the shock condition is

U = c1+c2
2
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The initial value problem is


Ct + CCx = 0, t > 0,−∞ < x <∞

C = F (x), t = 0 : −∞ < x <∞.
(10.5)

We will now consider the asymptotic behavior of a single hump, i.e

F(ξ)=


c0, inx ≤ a;

g(x), in[a, L];

c0, inx ≥ L.

where g is continuous in [a, L] with g(a) = g(L) = c0, as shown in figure 10.1(a).

In this case breaking will occur at the front and we fit a shock to remove multi-

valuedness. As time increases, much of the initial detail is lost. As this process is

continued, it is plausible to reason that the remaining disturbance becomes linear in

x. In any event, there is such a simple solution with C =x
t
. We propose, therefore,

that the solution is

C =


c0, x ≤ c0a;

x
t
, c0t ≤ x ≤ s(t);

c0, s(t) < x.

(10.6)

where x=s(t) is the position of the shock still to be determined.

The shock condition is U = c1+c2
2

; therefore, since c1 = c0, c2 = s(t)
t

, we have

ds

dt
=

1

2
(c0 +

s

t
) (10.7)

The solution of this is easily found to be

S = c0t+ bt
1
2

where b is a constant. So we have a triangular wave for C as shown in figure 10.2.

The area of the triangle is 1
2
b2 and this must remain equal to the area A under the

initial hump. Hence b = (2A)1/2. Only the area of the initial wave appears in this
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final asymptotic solution; all other details are lost. It shold be remarked that this

behavior is completely different from linear theory.

Figure 10.2

FTriangularWave:- A triangular wave is a non-sinusoidal wave form named for

it’s triangle shape. It is periodic, peicewise linear, continuous real function.

The wave fig of sine, square, Triangle and sawtooth waves are given below. .

Figure 10.3

10.3 Shock structure

In the first approach to resolve breaking we have assumed a functional relation in and

q with appropriate shock conditions. Now we consider the second approach, namely

that q and ρ are continuously differentiable but that q is a function of ρ and ρx. For
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simplicity we take

q = Q(ρ)− vρx (10.8)

where > 0. (Here the sign of is important). When ρx is small, q = Q(ρ) is

a good approximation; but near breaking where ρx is large, (10.8) gives a better

approximation. A motivation for (10.8) can be seen from traffic flow. In traffic flow,

the density ρ is the number of cars per unit length. When the density is increasing

ahead,then the number of cars is increasing in a fixed length, so ρx > 0. For that

q1 = Q(ρ)-(+ve term), i.e, q1 < q(where q=Q(ρ) is equilibrium condition). So a little

below equilibrium.

Similarly, when density is decreasing then, ρx < 0. For that q2 = Q(ρ)-(-ve term),

i.e, q2 > q. So a little above equilibrium. This is represented by the extra term ρx in

(10.8). The other examples in chapter have similar correction terms in an improved

description.

The conservation equation is

d
dt

∫ x1
x2
ρdx+ q1 − q2 = 0

and for differentiable ρ, q we have the differential equation

ρt + qx = 0 (10.9)

as before. Using (10.8), (10.9) becomes

ρt + c(ρ)ρx = vρxx (10.10)

where c(ρ) = Q′(ρ)′. Before considering the solution of (10.10) in detail, we note

the general qualitative effects of the terms c(ρ)ρx and ρxx. To see this we take the
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initial function to be a step function.

t = 0 : ρ =


ρ2, ifx < 0;

ρ1, ifx > 0

(10.11)

with ρ2 > ρ1. Omitting the term c(ρ).ρx, the equation (10.10) becomes the heat

equation,

ρt = vρxx (10.12)

The solution to (10.12) with the initial conditions (10.11) is

ρ = ρ2 −
ρ2 − ρ1√

π

∫ x√
4vt

−∞
e−ξ

2

dξ (10.13)

This shows that the effect of the term ρxx is to smooth out the initial distribution

like (t)−
1
2 . Neglecting the term ρxx in (10.10) we have the immediate breaking dis-

cussed earlier. Thus our equation (10.10) will have both the effects, namely stretching

and steepening, and it seems reasonable that there will be solutions having the bal-

ance between the two. We will now look for simple solutions to test the idea. Let us

assume that

We now look within the framework of this more accurate theory . One obvious

idea is to look for a steady profile solution in which

ρ = ρ(X), X = x− Ut (10.14)

where U is constant.
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is a solution of (10.10). We also assume that


ρ→ ρ1, asx→∞

ρ→ ρ2, asx→ −∞

ρx → 0, asx→ ±∞

(10.15)

Now (10.10) becomes

c(ρ)ρX − UρX = vρXX (10.16)

Using c(ρ) = Q(ρ) and integrating (10.16) with reference to X we obtain

Q(ρ)− Uρ+ A = vρx (10.17)

where A is the constant of integration. Equations (10.17) and (10.15) imply

U = Q(ρ2)−Q(ρ1)
ρ2−ρ1

which is exactly the same as the shock velocity in the discontinuity theory. Equa-

tion (10.17) can be written as

1
v

= 1
Q(ρ)−Uρ+A

dρ
dX

Integrating this with reference to X we get

X

v
=

∫
dρ

Q(ρ)− Uρ+ A
(10.18)

Since ρ1, ρ2 are zeroes of Q(ρ)Uρ+A the integrals taken over the neighbourhoods of

ρ1, ρ2 diverge; so X → ±∞ as ρ→ ρ1 or ρ2. This is consistent with our assumptions

(10.15).

The values ρ1, ρ2 are zeros of Q(ρ)−Uρ+A, and in general they are simple zeros.

As p → ρ1 or ρ2 in (10.18), the integral diverges and X → ±∞ as required. If

Q(ρ)− Uρ + A < 0 between the two zeros, and if v is positive, we have ρX < 0 and

the solution is as shown in Fig. 10.4 with ρ increasing monotonically from ρ1, at +∞
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to ρ2 at −∞. If Q(ρ)−Uρ+A > 0 and v > 0, the solution increases from ρ2 at —∞

to ρ1 at +∞.

Figure 10.4: Shock Structure

It is clear from (3.22) that if ρ1,ρ2 are kept fixed (so that U,A are fixed), a change

in v can be absorbed by a change in the X scale. As v → 0, the profile in Fig. 10.4 is

compressed in the X direction and tends in the limit to a step function increasing ρ

from ρ1, to ρ2 and traveling with the velocity given by Rankine-Hugoniot condition.

For small nonzero v the shock is a rapid but continuous increase taking place over a

narrow region. The breaking due to the nonlinearity is balanced by the diffusion in

this narrow region to give a steady profile.

One very important point is the sign of the change in rho. A continuous wave

carrying an increase of ρ will break forward and require a shock with ρ2 > ρ1 if

c′(ρ) > 0; it will break backward and require a shock with ρ2 < ρ1 if c′(ρ) < 0. The

shock structure given by (3.22) must agree. As remarked above, v is always positive

for stability, so the direction of increase of ρ depends on the sign of Q(ρ) − Uρ + A

between the two zeros ρ1, and ρ2.

But c′(ρ)=Q′′(ρ). Hence when c′(ρ) > 0, Q(ρ) − Uρ + A < 0 between zeros and

the solution is as seen in Fig.10.4 with ρ2 > ρ1 as required. If c′(ρ) < 0, the step is

reversed and ρ2 < ρ1. The breaking argument and the shock structure agree.

An explicit solution for (10.10) and (10.11) can be obtained when Q is the quadratic

Q = αρ2 + βρ+ γ
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Then

Q(ρ)− Uρ+ A = −α(ρ− ρ1)(ρ2 − ρ)

and by 10.18

X
v

= −
∫

dρ
α(ρ−ρ1)(ρ2−ρ)

= 1
α(ρ2−ρ1)

log(ρ2−ρ
ρ−ρ1 )

Hence we obtain a solution

ρ = ρ1 + (ρ2 − ρ1)
e−

(ρ2−ρ1)αX
v

1 + e−
(ρ2−ρ1)αX

v

(10.19)

when v is small, the transition region between ρ1 to ρ2 is very thin.
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Chapter 11

Applications

Here we shall discuss some example in short which are the applicaion of our previous

theories. We shall discuss those topic precisely in next.

Our problems which lead to the non-linear equation φt + c(φ)φx = 0.

In most of the problems we relate two quantities:

ρ(x, t)= the density of something per unit length;

q(x, t)= the flow per unit time.

If the ‘something’ is conserved, then for a section x2 ≤ x ≤ x1 we have the

conservation equation

d

dt

∫ x1

x2

ρdx+ q(x1, t)− q(x2, t) = 0 (11.1)

Figure 11.1

If ρ and q are continuously differentiable then in the limit x1 → x2, equation (10.1)
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becomes

∂ρ

∂t
+
∂q

∂x
= 0 (11.2)

If there exists also a functional relation ρ = Q(ρ) (this is so to a first approximation

in many cases) then (10.2) can be written as

ρt + c(ρ)ρx = 0, (11.3)

where c(ρ) = Q′(ρ).

We will now give some specific examples.

11.1 Traffic Flow

We consider the flow of cars on a long highway. Here,

• ρ= The number of cars per unit length.

• V=The average local velocity of the cars.

• q= The flow per unit time, is given by q = ρv.

For a long section of highway with no exits or entrances the cars are conserved

so that (10.1) holds. It also seems reasonable to assume that on the average v is a

function of ρ to a first approximation. Hence ρ satisfies (10.3). The velocity v will

be a decreasing function V(ρ), and Q(ρ) = ρ V(ρ). When the density is small the

velocity will be some upper limiting value, and when the density is maximum the

velocity will be zero. Therefore the graph of V will take a form as shown in the figure

10.2.

Since q = Q(ρ) = ρV , there will be no flow when the velocity is maximum (i.e. ρ

= 0) and when ρ is maximum (i.e. V = 0). Hence the graph of Q(ρ) will look like

the figure 10.3.

It was found in one set of observations on U.S. highways that the maximum density

is approximately 225 vehicles per mile (per traffic lane), and the maximum flow is
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Figure 11.2

approximately 1500 vehicles per hour. When the flow q is maximum the density is

found to be around 80 vehicles per mile.

Figure 11.3

The propagation speed for the wave is c(ρ) = Q′(ρ)=V (ρ)+ dV
dρ
ρ.

Since V is a decreasing function of ρ,dV
dρ
< 0. Thus c(ρ) < V (ρ) i.e. the propagation

velocity is less than the average velocity. Relative to individual cars the waves arrive

from ahead.

Referring to the Q(ρ) diagram decreasing in [ρM , ρj], Q attains a maximum at ρM .

Therefore c(ρ) = Q(ρ) is positive in [0, ρM), zero at ρM and negative in (ρM , ρj].

That is waves move forward relative to the highway in [0, ρM), are stationary at ρM

and move backward in (ρM , ρj].

Greenberg in 1959, found a good fit with data for the Lincoln Tunnel in New York
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by taking

Q(ρ) = aρ log(
ρj
ρ

) (11.4)

with a = 17.2 mph and ρj = 228 vpm. For this formula,

V (ρ) =
Q(ρ)

ρ
= a log(

ρj
ρ

) (11.5)

and c(ρ) = Q(ρ) = a(log(
ρj
ρ

)1) = V (ρ) a. Hence the relative propagation velocity

is equal to the constant ‘a’ at all densities and this relative speed is about 17 mph.

The values of ρM and qmax are:

ρM=83 vpm and qmax = 1430vph

(Since, ρM =
ρj
e

and qmax =
aρj
e

)

Figure 11.4

Let f be the initial distribution function as shown in the figure 11.4(a). Since

c′(ρ) = V ′(ρ) < 0, breaking occurs on the left. The solution of the problem is

ρ = ρ(ξ)

x = tF (ξ) + ξ, where F (ξ) = c(f(ξ))

Breaking occurs when F ′(ξ) < 0.

But F ′(ξ) = c′(f(ξ)).f ′(ξ) < 0 iff f ′(ξ) > 0.

i.e. when f is increasing.

In most other examples c(ρ) > 0, so that a wave of increasing density breaks at
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the front.

11.2 Flood waves in rivers

Another example comes from an approximate theory for flood waves in rivers. For

simplicity we take a rectangular channel of constant breadth, and assume that the

disturbance is roughly the same across the breadth. Then the height h(x, t) plays

the role of ‘density’. Let ρ be the flow per unit breadth, per unit time. Then from

the conservation law we have

d

dt

∫ x1

x2

hdx+ q1 − q2 = 0 (11.6)

Taking the limit x2 → x1, we obtain

ht + qx = 0 (11.7)

A functional relation q = Q(h) is a good first approximation when the river is

flooding. Therefore the governing equation is

ht + c(h)hx = 0 (11.8)

where c(h)=dQ
dh

This formula for the wave speed was first proposed by Kleitz and Seddon. The

function Q(h) is determined from a balance between gravitational acceleration down

the sloping bed and frictional effects. When the function is given by the Chezy

formula V ∝ h
1
2 . i.e. V = kh

1
2 , where V is the velocity of the flow, we have

Q(h) = V h = kh
3
2 , c(h) =

3

2
kh

1
2 =

3

2
V (11.9)

According to this, flood waves move roughly half as fast again as the stream.

F Friction is a force that resists motion of sliding or rolling of one object moving
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relative to another.

11.3 Chemical exchange processes

In chemical engineering various processes concern a flow of fluid carrying some sub-

stances or particles through a solid bed. In the process some part of the material in

the fluid will be deposited on the solid bed. In a simple formulation we assume that

the fluid has constant velocity V. We take density to be ρ = ρf + ρs , where ρf is the

density of the substance concerned in the fluid and ρs is the density of the material

deposited on solid bed. The total flow of material across any section is

q = ρfV (11.10)

The conservation equation becomes

∂

∂t
(ρf + ρs) + V

∂ρf
∂x

= 0 (11.11)

To complete the system we require more equations. When the changes are slow

we can assume to a first approximation that is a quasi - equilibrium between the

amounts in the fluid and on the solid and that this balance leads to a functional

relation ρs = R(ρf ). Then (11.11) becomes

∂

∂t
ρf + c(ρf )

∂

∂x
ρf = 0 (11.12)

where

c(ρf ) = V
1+R′(ρf )

The relation between ρf and ρs is discussed in more detail later.
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11.4 Glaciers

Nye (1960, 1963) has pointed out that the ideas on flood waves apply equally to

the study of waves on glaciers and has developed the particular aspects that are

most important there. He refers to Finsterwalder (1907) for the first studies of wave

motion on glaciers and to independent formulations by Weertman (1958). For order

of magnitude purposes, one may take

Q(h) ∝ hN (11.13)

with N roughly in the range 3 to 5.

The propagation speed is

c =
dQ

dh
= Nv, (11.14)

where v is the average velocity Q
h

. Thus the waves move about three to five times

faster than the average flow velocity. Typical velocities are of the order of 10 to 100

metres per year.

An interesting question considered by Nye is the effect of periodic accumulation

and evaporation of the ice; depending on the period, this may refer either to seasonal

or climatic changes. To do this, a prescribed source term f(x, t) is added to the

continuity equation; that is one takes

ht + qx = f(x, t), q = Q(h, x). (11.15)

The consequences are determined from integration of the characteristic equations

dh

dt
= f(x, t)−Qx(h, x),

dx

dt
= Qh(h, x). (11.16)

The main results in that parts of the glacier may be very sensitive, and relatively

rapid local changes can be triggered by the source term.
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11.5 Erosion

Erosion in mountains was studied by Luke. Let h(x, t) be the height of the mountain

from the ground level. It is reasonable to assume a functional relation between ht

and hx as:

ht = −Q(hx) (11.17)

(When the slope of the mountain is greater, it is more vulnerable to erosion).

Let

s = hx (11.18)

Then differentiating (11.18) with respect to x we obtain

htx = −Q′(hx)hxx. (11.19)

i.e, ∂s
∂t

+ Q′(s) ∂s
∂x

=0, which is our one dimensional non-linear wave equation with

c(s) = Q(s). When breaking occurs we introduce discontinuities in s, which is hx, and

h remains continuous but with a sharp corner.
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Chapter 12

Shallow Water Waves( Second

Order System)

The extension of the ideas presented so far to higher order systems can be adequately

explained on a typical example. We shall use the so called shallow water wave theory

for this purpose, although the pioneering work was originally done in gas dynamics.

• Basic Concept

FQuestion:- What happens when waves enter shallow water?

Answer:- Shoaling and refraction of waves occur when the waves are in shallow

water. If the water depth less than half the wave length, then the wave is considered

to be in shallow water.

λ= Wave Length;

h= Water Depth;

Then h < λ
2

(More accurately it’s h < λ
20

)(But here we shall consider first inequal-

ity).

For deep water waves h ≥ λ
2
.

When the waves move into shallow water, they begin feel the bottom of the ocean.

FQuestion:- Do waves move faster in shallow or deep water?
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Answer:- Briefly, the deeper water, the faster a surface wave will travel and the

lower the height will be. As waves comes ashore on the ocean, they slow down and get

taller, preserving the amount of energy in the wave. The wave speed and variation

with depth also depends on the wavelength.

Figure 12.1: Shallow and Deep Water

FQuestion:- Why are waves slower in shallow water?

Answer:- In shallow water near the coast, waves slow down because of the force

exerted on them by the sea-bed. If a wave is approaching the coast at an angle, the

near shore part of the wave slows more than the off shore part of the wave(Because

it’s shallow water).

In shallow water wave height is more than normal. And waves are slower is shallow

water wave.

FQuestion:- Are Tsunami’s shallow water wave?

Answer:- Tides and tsunamis shallow water waves, even in the deep ocean. The

deep ocean is shallow with respect to wave with a wavelength longer them twice the

ocean’s depth.

Next we are providing some pictures which will make sense about the behaviour

of Shallow water, Deep water and some different type of water waves.
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(a)

(b)

Figure 12.2: Capillary Waves and Gravity Waves
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(a)

Figure 12.3: Wave period vs Wave height graph of different types of Waves

(a)

Figure 12.4: Shallow and Deep water waves
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(a)

(b)

(c)

(d)

Figure 12.5: Period, Tsunami speed and Normal ocean water wave speed
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(a)

Figure 12.6: Shallow and Deep ocean waves

(a)

Figure 12.7: Data of Normal Wave vs. Tsunami Waves
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(a)

Figure 12.8: Tsunami Waves moving to the shore

(a)

Figure 12.9: Normal Wave vs. Tsunami Waves
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(a)

Figure 12.10: How a Tsunami Waves occures

(a)

Figure 12.11: Example of two plates which causes Tsunami in Indian Ocean
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12.1 The equations of shallow water theory

Here let us take,

• The bottom to be horizontal and neglect friction.(F) • The density of the water

be normalized to unity and let the width be one unit.(F)

Some notations,

• u(x,t)=Velocity,

• p0= Atmospheric pressure,

• p0 + p′(x, t)= Pressure in the fluid.

Next go to the page no 97.

In every section x2 ≤ x ≤ x1 the mass is conserved, i.e.

d
dt

∫ x1
x2
h(x, t)dx+ q1 − q2 = 0, where q=uh

• q=Flux of flow,

• h= Height,

• u=Velocity.

Figure 12.12

Taking the limit x2 → x1, we obtain

ht + qx = 0

i.e,

ht + (uh)x = 0 (12.1)

This time a second relation between u and h is obtained from the conservation of
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the momentum in the x-direction. If we consider a section x2 ≤ x ≤ x1, as shown

in figure 12.12, a constant pressure p0 acting all around the boundary, including

free surface and bottom, is self-equilibrating. Therefore, only the excess pressure p

contributes to the momentum balance. If P(x, t) denotes the total excess pressure,

P =

∫ h

0

p′dy (12.2)

acting across a vertical section, the momentum equation is then

d

dt

∫ x1

x2

hudx = hu2|x2 − hu2|x1 + P2 − P1 (12.3)

where Pi = P (xi, t), i = 1, 2.

•NOTE : −Newton′s2ndLaw

F=m×a,

where • F= Force,

• m=Mass,

• a= Acceleration.

⇒ F=m×dv
dt

⇒ F = d
dt

(m× v)=Rate of change of momentum.

The term in the left hand side of (12.3) is the total rate of change of momentum in

the section x2 ≤ x ≤ x1, and hu2|x=xi , on the right, denotes the momentum transport

across the surface through x = xi, (i = 1, 2).

The basic assumption is shallow water theory is that the pressure is hydrostatic,

i.e.

∂p

∂y
= −g (12.4)

where, g=Acceleration due to gravity.

Integrating (12.4) and assuming the condition p = p0 at the top y = h,
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∫ p
p0
∂p = −

∫ y
h
g∂y

⇒ p− p0 = −g(y − h)

⇒ p = p0 + g(h− y)

Hence from (12.2) the total excess pressure is

P =

∫ h

0

g(h− y)dy = gh2 − gh2

2
=

1

2
gh2 (12.5)

Equations (12.3) and (12.5) yield

d

dt

∫ x1

x2

hudx+ [hu2 +
1

2
gh2]x1x2 = 0 (12.6)

The conservation form should be noted.

In the case of river flow discussed earlier, there would also be further terms on the

right hand side of (12.6) due to the slope effect and friction; the slope is now omitted

and frictional effects are neglected.

In the limit x2 → x1, (12.6) becomes

(hu)t + (hu2 +
1

2
gh2)x = 0 (12.7)

Equations (12.1) and (12.7) provide the system for the determination of u and h.

If h and u have jump discontinuities, the shock conditions corresponding to (12.1)

and (12.7) (but deduced basically from the original integrated form) are

−U [h] + [uh] = 0 (12.8)

−U [uh] + [hu2 +
1

2
gh2] = 0 (12.9)

respectively, where U is the shock velocity.

Using equations (12.1) in (12.7) we obtain

htu+ hut + (uh)xu+ (uh)ux + ghhx = 0, (Spliting 12.7)
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⇒ htu+ hUt − htu+ (uh)ux + ghhx = 0, ((uh)x = −ht)

ut + uux + ghx = 0 (12.10)

equation (12.1) can be written as

ht + uhx + hux = 0 (12.11)

(12.10) and (12.11) together is a hyperbolic system of equation.

12.2 Simple Wave

Each of the conservation equations

ht + (uh)x = 0 and

(hu)t + (hu2 + 1
2
gh2)x = 0

which are earlier form ρt + qx = 0

In those earlier cases, a relation q = Q(ρ) was provided in the basic formulation.

In the present case, we might ask in relation to (12.1) whether there are solutions in

which q = uh is a function of h, where the appropriate functional relation is provided

not from outside observations but from the second equation (12.7). We might equally

well ask with respect to (12.7) whether there are solutions in which hu2 + 1
2
gh2 is

a function of hu, where the functional relation is provided by (12.1). The two are

equivalent and come down to the question of whether there are solutions in which,

say, h is a function of u. We try

h = H(u) (12.12)

and consider the consistancy of the two equations. We use the simplified equa-

tions (12.10) and (12.11) for the actual substitution. (This approach is equivalent to

109



Earnshaw’s approach in gas dynamics). After the substitution h = H(u), we have

ut + uux + gH ′(u)ux = 0 (12.13)

And

H ′(u)ut + uH ′(u)ux +H(u)ux = 0

⇒ ut + uux +
H(u)

H ′(u)
ux (12.14)

For consistancy we require (12.14)

gH ′(u) = H(u)
H′(u)

which implies

√
gH ′(u) = ±

√
H (12.15)

• CASE − 1 :
√
gH ′(u) = +

√
H

⇒ √g
∫ k=u

k=0
d(H(k))√
H(k)

=
∫ k=u

k=0
dk

2
√
gH − 2

√
gH0 = u (12.16)

where H0 = H(0). Then (12.13) becomes

ut + uux +
√
gHux = 0

⇒ ut + (u+
√
gH)ux = 0 (12.17)

Thus u+
√
gH is the velocity of propagation.
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If we use (12.16) 2
√
gH − 2

√
gH0 = u and set c0 =

√
gH0 , equation (12.17) can

be written as

ut + (c0 +
3u

2
)ux = 0 (12.18)

We now have exactly the form discussed in the earlier chapters and can take

over the results from there. Equation (12.16) is the functional relation equivalent to

q = Q(ρ).

2
√
gH − 2

√
gH0 = u

⇒
√
gH = u

2
+
√
gH0

⇒ H(u) = ( u
2
√
g

+
√
H0)2

• CASE − 2 :
√
gH ′(u) = −

√
H(u)

Then similarly the equation becomes

2
√
gH − 2

√
gH0 = −u;whereH0 = H(0) (12.19)

And similarly the hyperbolic equation becomes

ut + (u−
√
gH)ux = 0 (12.20)

Each of these equations represents a so called ‘simple wave’. The choice of signs in

(12.16) and (12.18) correspond to wave moving to the right, the other signs correspond

to one moving to the left.

•Example : −

We consider a piston ‘wave maker’ moving parallel to the x-axis in the negative

direction with given velocity. Initially when the piston is at rest, the water is at rest.
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Figure 12.13

The movement of the piston is represented in the x, t plane by the curve

x = X(t), u = X ′(t), (12.21)

where X(t) is given function.

Figure 12.14

The flow of water is governed by the equation

ut + (c0 +
3u

2
)ux = 0 (12.22)

since the wave moving to the right is produced.

Characteristic curve on which

dx

dt
= c0 +

3u

2
, u(x, 0) = 0 (12.23)

On this characteristic dx
dt

= 0; therefore, u=constant=X ′(τ), , if the characteristic
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is passing through (X(τ), τ).

Therefore

dx
dt

= c0 + 3
2
X ′(τ)

∫ x(t)

x(τ)
dx =

∫ t
τ
(c0 + 3

2
X ′(τ))dt

x = x(τ) + (c0 + 3
2
X ′(τ))(t− τ)

Hence the solution of the piston problem is


x = x(τ) + (c0 + 3

2
X ′(τ))(t− τ),

u = X ′(τ),

(12.24)

where τ is the characteristic parameter. As in the previous cases, expansion waves

(in this case X ′′(t) ≤ 0) do not break and the solution is valid for all t. On the other

hand, moving the piston forward or providing a positive acceleration, will produce a

breaking wave. The inclusion of discontinuities based on the jump conditions (noted

after equation (12.7), i.e, U [] + [] = 0) is similar in spirit to the discussion of chapter

11, but is somewhat more complicated than before. The relation (12.16), 2
√
gH −

2
√
gH0 = u is not strictly valid across discontinuities (note it was deduced from

the differential equations), Since at discontinuity H ′(u) does not exist, so our main

equation (12.13) and (12.14) are useless.

And approximations have to be made if the simple wave solutions are still used.

(See for details in the equivalent gas dynamics case).

12.3 Method of characteristics for a system

The above simple wave solutions provide an interesting approach and tie the discus-

sion closely to the earlier material on a single equation. However, they are limited to

waves moving in one direction only. We want to consider questions of waves moving
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in both directions and interacting with each other. We shall also find via Riemann’s

arguments a further understanding of the role of the simple waves.

Figure 12.15: Square Waves moving in two different direction

Since we already know that c =
√
gh is a useful quantity here, we shall introduce

it at the outset to simplify the expressions but it is in no way crucial. The equations

(12.10) and (12.11) then become

ut + uux + 2ccx = 0 (12.25)

ct + ucx +
1

2
cux = 0 (12.26)

Since, c =
√
gh,⇒ gh = c2,⇒ ghx = 2ccx and ght = 2cct.

Now we note that each equation relates the directional derivatives of u and c for

different directions. If the directions were the same we might make progress as in

Chapter 2. But we can try linear combinations of (12.25) and (12.26) that have

the desired property. Accordingly, we consider (12.25) +m × (12.26), where m is a

quantity to be determined. We have

(ut + uux + 2ccx) +m(ct + ucx +
1

2
cux) = 0 (12.27)

⇒ ut + (u+ mc
2

)ux + (mu+ 2c)cx +mct = 0

⇒ (ut + vux) +m(ct + vcx) = 0

⇒ (ux, ut).(v, 1) +m(cx, ct).(v, 1) = 0

Hence they have the same direction (v,1), provided

u+ m
2
c = u+ 2c

m
= v(For this condition the directional derivatives are identical ).

⇒ m2 = 4
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⇒ m = ±2

•Case− I:- Take m=2 in (12.27) we have ut +uux + 2ccx + 2(ct +ucx + 1
2
cux) = 0

⇒ (u+ 2c)t + (u+ c)(u+ 2c)x = 0 (12.28)

We choose the ς+ characteristic to be

ς+:dx
dt

= u+ c

On ς+, (12.28) becomes, d
dt

(u+ 2c) = 0

⇒ u+2c= Constant on ς+

•Case− II:- Take m=-2 in (12.27) we have ut+uux+2ccx−2(ct+ucx+ 1
2
cux) = 0

⇒ (u− 2c)t + (u− c)(u− 2c)x = 0 (12.29)

We choose the ς− characteristic to be

ς+:dx
dt

= u− c

On ς−, (12.29) becomes, d
dt

(u− 2c) = 0

⇒ u-2c= Constant on ς−

Thus we obtain


u+ 2c = Constant, ondx

dt
= u+ c;

u− 2c = Constant, ondx
dt

= u− c
(12.30)

The constants may differ from characteristic to characteristic.

This is the method of characteristics for higher order systems. For an nth order

system of first order equations for u1, ..., un, one looks for a linear combination of the

equations so that the directional derivatives of each ui is the same. If there are n real

different combinations with the characteristic property the system is hyperbolic.
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In the present case the characteristic equations will be useful in various ways. We

first reconsider the simple wave solutions.

Figure 12.16

12.4 Riemann’s argument for simple waves

We focus on the piston problem to show how the argument goes through and refer to

figure 12.15.

Figure 12.17

Using the fact that u − c ≤ u we can show that the ς− characteristics cover the

whole region (x, t) : t ≥ 0, x ≥ X(t). On each ς− we have u - 2c = Constant; from the

initial condition

t = 0 : u = 0, c = c0

we find that u − 2c = −2c0. But this is true for each ς− with the same constant.
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Therefore

u− 2c = −2c0 (12.31)

everywhere. This is exactly the relation (2
√
gH − 2

√
gH0 = u....(12.16)): We

could now refer to the previous discussion to complete the solution. To complete the

solution in the present context, we use the ς+ relation

u+2c= Constant on dx
dt

= u+ c

From (4.18) this becomes

u= Constant on dx
dt

= c0 + 3
2
u

exactly the information contained in ([ut + (c0 + 3
2
u)ux = 0]......(12.18)). We

conclude that


u = X ′(τ)

x = X(τ) + (c0 + 3
2
X ′(τ))(t− τ)

(12.32)

as before.

Problem:- Dam break

In an idealization, the flow of water out of a dam is governed by the equations

ut + uux + 2ccx = 0

ct + ucx + 1
2
cux = 0

with the initial conditions

t = 0 :


u = 0,−∞ < x <∞,

h =


h1,∞ < x <∞

0, 0 < x <∞

117



From the above system

ut + uux + 2ccx +m(ct + ucx +
1

2
cux) = 0 (12.33)

⇒ ut + (u+ mc
2

)ux + (mu+ 2c)cx +mct = 0

⇒ (ut + vux) +m(ct + vcx) = 0

⇒ (ux, ut).(v, 1) +m(cx, ct).(v, 1) = 0

Hence they have the same direction (v,1), provided

u+ m
2
c = u+ 2c

m
= v (For this condition the directional derivatives are identical ).

⇒ m2 = 4

⇒ m = ±2

•Case− I:- Take m=2 in (12.33) we have ut +uux + 2ccx + 2(ct +ucx + 1
2
cux) = 0

⇒ (u+ 2c)t + (u+ c)(u+ 2c)x = 0 (12.34)

We choose the ς+ characteristic to be

ς+:dx
dt

= u+ c

On ς+, (12.34) becomes, d
dt

(u+ 2c) = 0

⇒ u+2c= Constant on ς+

•Case− II:- Take m=-2 in (12.33) we have ut+uux+2ccx−2(ct+ucx+ 1
2
cux) = 0

⇒ (u− 2c)t + (u− c)(u− 2c)x = 0 (12.35)

We choose the ς− characteristic to be

ς−:dx
dt

= u− c
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On ς−, (12.35) becomes, d
dt

(u− 2c) = 0

⇒ u-2c= Constant on ς−

Thus we obtain


u+ 2c = Constant, ondx

dt
= u+ c;

u− 2c = Constant, ondx
dt

= u− c
(12.36)

The constants may differ from characteristic to characteristic.

On each ς− we have u-2c=Constant; from the initial conditions

At 
t=0: u=0, -∞ < x <∞

h =


h1,−∞ < x < 0

0, 0 < x <∞

c=


√
gh1,−∞ < x < 0

0, 0 < x <∞

•Case− I:- For t=0,

0-2


√
gh1

0

=Constant

i.e,

Constant=


-2
√
gh1,∞ < x < 0

0, 0 < x <∞

Then

u-2c=


-2
√
gh1,−∞ < x < 0

0, 0 < x <∞
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This is exactly the relation

2
√
gH − 2

√
gH0 = u

where h=H(u)

•Case− II:- Use the same concept for u+2c= Constant on dx
dt

= u+ c.

This the solution of the Dam Break.

12.5 Hodograph transformation

In the interaction of waves, where both families of characteristics carry nontrivial

disturbances (i.e. (12.31) does not hold), solutions are much more difficult, and

numerical methods are often used.

However, one alternative analytic method for studying the interaction of waves,

or the two interacting families of waves produced by general initial conditions, is the

‘hodograph’ method. The equations are


ct + ucx + 1

2
cux = 0

ut + uux + 2ccx = 0

(12.37)

and we note that the coefficients are functions of the dependent variables only. We

try to make use of that fact by interchanging the role of dependent and independent

variables.

....................................................................................................................................................

Implicit Function Theorem:-

Let

(i) f = (f1, f2, ..., fn) be a vector valued function defined on an open set S in Rn+k

with values in Rn.

i.e, f : S(⊂ Rn+k)→ Rn

(ii) f ∈ C1 on S,
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(iii) (x0; t0) be a point in S for which f(x0; t0) = 0 for which det[Djfi(x0; t0)]n×n 6= 0

Then,

∃ a k- dimension open set T0 containing t0 and one and only one vector valued

function g, defined on T0 and having values in Rn.

i.e, g : T0(⊂ Rk)→ Rn, t0 ∈ T0

such that

(i) g ∈ C1 on T0,

(ii) g(t0) = x0,

(iii)f(g(t); t) = 0, ∀t ∈ T0,

(iv) g′(b) = −(Ax)
−1Ay.

• The function g is implicitly defined by f(g(t);t)=0.

....................................................................................................................................................

We have u = u(x, t), c = c(x, t) and consider the inverse functions

x = x(u, c), t = t(u, c).

Then using the implicit function theorem we shall get

g′ = −(Ax)
−1Ayux ut

cx ct

=-1
g

 tc −xc

−tu xu


where g=det(Ax).

The term ‘hodograph’ is used when the velocities u and c are considered as inde-

pendent variables. We have the relations

ux = − tc
g
, ut = xc

g
, cx = tu

g
, ct = −xu

g

where g = (c,t)
(u,c)

= xutc − xctu.

For the system (12.37), the highly non-linear factor g cancels through and we have


xu = utu − 1

2
ctc

xc = utc − 2ctu

(12.38)
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Notice g would not cancel if there were undifferentiated terms. Equations (12.38)

are now linear and this offers considerable simplification.

Differentiating the first equation in (12.38) with respect to c, partially, and the

second one with respect to u and subtracting, we find

4tuu = tcc +
3

c
tc. (12.39)

This is a linear equation for t(u, c) which can be solved by standard methods.

However, the difficulties in this method are:

(1) The transformed boundary conditions in the u-c plane will sometimes be awk-

ward.

(2) When breaking occurs g = 0, corresponding to the multivaluedness, and fitting

in shocks may sometimes be difficult in this plane.

For these reasons a numerical method is often preferred. However, in the case

of waves on a sloping beach an analogous method has led to an extremely valuable

solution; it will be described in chapter 5(Nonlinear waves on a sloping beach).

In that connection, a particularly elegant form of the transformation is useful and

we note it here for the case of the horizontal bottom. We 56 use the characteristic

form

p=u+2c=constant on dx
dt

= u+ c

q = u - 2c = constant on dx
dt

= u− c

If p, q are used as variables, we can write

dx
dt

= u+ c

as xq = (u+ c)tq

since p is a constant on that characteristic and q can be used as parameter. Simi-

larly
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xp = (u− c)tp

We then substitute for u and c in terms of p and q to obtain

xq = 3p+q
4
tq, xp = p+3q

4
tp

These are the linear hodograph equations equivalent to (12.38) . Eliminating x,

we have

2(p− q)tpq − 3(tq − tp) = 0

which is equivalent to (12.39).

123



Chapter 13

Basic concept of Hyperbolic

Partial Differential Equation

13.1 Hyperbolic PDE:- Hyperbolic System

13.1.1 Overview of Hyperbolic Partial Differential Equations

• The One-Way Wave Equation:-

The prototype for all hyperbolic partial differential equations is the one-way wave

equation:

ut + aux = 0, (13.1)

where,

• a is a constant,

• t represents time,

• x represents the spatial variable.

The subscript denotes differentiation, i.e., ut = ∂u
∂t

.

We give u(t, x) at the initial time, which we always take to be 0. i.e., u(0, x) is

required to be equal to a given function u0(x) for all real numbers x —and we wish to
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determine the values of u(t, x) for positive values of t. This is called an initial value

problem. By inspection we observe that the solution of (13.1) is

u(t, x) = u0(x− at). (13.2)

The formula (13.2) tells us several things. First, the solution at any time t0 is a

copy of the original function, but shifted to the right, if a is positive, or to the left, if

a is negative, by an amount |a|t0. Another way to say this is that the solution at (t,

x) depends only on the value of ξ = x− at. The lines in the (t, x) plane on which x -

at is constant are called characteristics. The parameter a has dimensions of distance

divided by time and is called the speed of propagation along the characteristic. Thus

the solution of the one-way wave equation (13.1) can be regarded as a wave that

propagates with speed a without change of shape, as illustrated in Figure 13.1

Figure 13.1: The solution of the one-way wave equation is a shift.

Second, whereas equation (13.1) appears to make sense only if u is differentiable,

the solution formula (13.2) requires no differentiability of u0. In general, we allow

for discontinuous solutions for hyperbolic problems. An example of a discontinuous

solution is a shock wave, which is a feature of solutions of nonlinear hyperbolic equa-

tions. To illustrate further the concept of characteristics, consider the more general

hyperbolic equation

ut + aux + bu = f(t, x), u(0, x) = u0(x), (13.3)
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where a and b are constants. Based on our preceding observations we change

variables from (t, x) to (τ, ξ), where τ and ξ are defined by

τ = t, ξ = x− at.

The inverse transformation is then

t = τ, x = ξ + aτ.

and we define u(τ, ξ) = u(t, x), where (τ, ξ) and (t, x) are related by the preceding

relations. (Both u and u represent the same function, but the tilde is needed to

distinguish

between the two coordinate systems for the independent variables.) Equation

(13.3) then becomes

∂u
∂τ

= ∂u
∂t

∂t
∂τ

+ ∂u
∂x

∂x
∂τ

= ut + aux = −bu+ f(τ, ξ + aτ)

∂u
∂τ

= −bu+ f(τ, ξ + aτ)

∂u
∂τ

+ bu = f(τ, ξ + aτ). This is an ordinary differential equation in τ

d
dt

(uebτ ) = ebτ = f(τ, ξ + aτ)∫ τ
0
d(uebτ ) =

∫ τ
0
f(σ, ξ + aσ)ebσdσ

The solution is

u(τ, ξ) = u0(ξ)e−bτ +
∫ τ

0
f(σ, ξ + aσ)e−b(τ−σ)dσ

Returning to the original variables, we obtain the representation for the solution

of equation (13.3) as

u(t, x) = u0(x− at)e−bt +

∫ t

0

f(s, x− a(t− s))e−b(t−s)ds (13.4)

We see from (13.4) that u(t, x) depends only on values of (t′, x′) such that x′− at′

= x - at, i.e., only on the values of u and f on the characteristic through (t, x) for

0 ≤ t′ ≤ t
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This method of solution of (13.3) is easily extended to nonlinear equations of the

form

ut + aux = f(t, x, u) (13.5)

13.1.2 Systems of Hyperbolic Equations

We now examine systems of hyperbolic equations with constant coefficients in one

space dimension. The variable u is now a vector of dimension d.

Definition:- A system of the form

ut + Aux +Bu = F (t, x) (13.6)

is hyperbolic if the matrix A is diagonalizable with real eigenvalues.

By saying that the matrix A is diagonalizable, we mean that there is a nonsingular

matrix P such that PAP−1 is a diagonal matrix, that is,

PAP−1=

a1 0 · · · 0

0 a2 · · · 0

...
...

. . .
...

0 0 · · · ad


=Λ

The eigenvalues ai of A are the characteristic speeds of the system. Under the

change of variables w = P u we have, in the case B = 0,

wt + Λwx = PF (t, x) = F (t, x)

or

wit + aiw
i
x = f

i
(t, x)
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which is the form of equation (13.3). Thus, when matrix B is zero, the one-

dimensional hyperbolic system (13.6) reduces to a set of independent scalar hyperbolic

equations. If B is not zero, then in general the resulting system of equations is coupled

together, but only in the undifferentiated terms. The effect of the lower order term,

Bu, is to cause growth, decay, or oscillations in the solution, but it does not alter the

primary feature of the propagation of the solution along the characteristics.

Example:-

As an example of a hyperbolic system, we consider the system

ut + 2ux + vx = 0

vt + ux + 2vx = 0

which can be written asut
vt


t +

2 1

1 2


ux
vx



As initial data we take

u(0, x) = u0(x) =


1 if —x—≤ 1,

0if|x| > 1

; v(0, x) = 0.

By adding and subtracting the two equations, the system can be rewritten as

(u+ v)t + 3(u+ v)x = 0,

(u− v)t + (u− v)x = 0

or

w1
t + 3w1

x = 0, w1(0, x) = u0(x),
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w2
t + 3w2

x = 0, w2(0, x) = u0(x),

The matrix P is 1 1

1 −1


for this transformation. The solution is, therefore,

w1(t, x) = w1
0(x− 3t),

w2(t, x) = w20(x− t)

or

u(t, x) = 1
2
(w1 + w2) = 1

2
[u0(x− 3t) + u0(x− t)],

v(t, x) = 1
2
(w1−2) = 1

2
[u0(x− 3t)− u0(x− t)]

These formulas show that the solution consists of two independent parts, one

propagating with speed 3 and one with speed 1, which are the the eigen values of A.

13.1.3 Equations with Variable Coefficients

We now examine equations for which the characteristic speed is a function of t and

x. Consider the equation

ut + a(t, x)ux = 0 (13.7)

with initial condition u(0, x) = u0(x), which has the variable speed of propagation

a(t, x). If, as we did after equation (13.3), we change variables to τ and ξ , where τ

= t and ξ is as yet undetermined, we have

∂u
∂τ

= ∂t
∂τ
ut + ∂x

∂τ
ux = ut + ∂x

∂τ
ux

In analogy with the constant coefficient case, we set

dx
dτ

= a(t, x) = a(τ, x).
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This is an ordinary differential equation for x giving the speed along the character-

istic through the point (τ , x) as a(τ , x). We set the initial value for the characteristic

curve through (τ , x) to be ξ. Thus the equation (13.7) is equivalent to the system of

ordinary differential equations


du
dτ

= 0, u(0, ξ) = u0(ξ)

dx
dt

= a(τ, x), x(0) = ξ

(13.8)

As we see from the first equation in (13.8), u is constant along each characteristic

curve, but the characteristic determined by the second equation need not be a straight

line. We now present an example to illustrate these ideas.

Example:-Consider the equation

ut + xux = 0,

u(0,x)=


1, if0 ≤ x ≤ 1,

0, otherwise.

Corresponding to the system (13.8) we have the equations

du
dτ

= 0, dx
dτ

= x, x(0) = ξ

The general solution of the differential equation for x(τ ) is x(τ ) = ceτ . Because

we specify that ξ is defined by x(0) =ξ , we have x(τ) = ξ eτ , or ξ = xe−t . The

equation for u shows that u is independent of τ , so by the condition at τ equal to

zero we have that

u(τ, ξ) = u0(ξ).

Thus

u(t, x) = u(τ, ξ) = u0(ξ) = u0(xe−t).

So we have, for t ¿ 0
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u(t, x) =


1if0 ≤ x ≤ et,

0, otherwise

As for equations with constant coefficients, these methods apply to nonlinear equa-

tions of the form

ut + a(t, x)ux = f(t, x, u), (13.9)

as shown in Exercise 13.9. Equations for which the characteristic speeds depend on

u, i.e., with characteristic speed a(t, x, u), require special care, since the characteristic

curves may intersect.

13.1.4 Systems with Variable Coefficients

For systems of hyperbolic equations in one space variable with variable coefficients,

we require uniform diagonalizability.

Definition:- The system

ut + A(t, x)ux +B(t, x)u = F (t, x) (13.10)

with

u(0, x) = u0(x)

is hyperbolic if there is a matrix function P (t, x) such that

P(t,x)A(t,x)P−1(t, x) =



a1(t, x) 0 · · · 0

0 a2(t, x) · · · 0

...
...

. . .
...

0 0 · · · ad(t, x)


=Λ(t, x)

is diagonal with real eigenvalues and the matrix norms of P (t, x) and P−1(t, x)

are bounded in x and t for x R, t ≥ 0.
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The characteristic curves for system (13.10) are the solutions to the differential

equations

dxi

dt
= ai(t, x), xi(0) = ξi

Setting v = P (t, x)u, we obtain the system for v:

vt + Λvx = P (t, x)F (t, x) +G(t, x)v,

where

G = (Pt + ΛPxPB)P−1

In terms of directional derivatives this system is equivalent to

dvi

dt
|alongxi = f(t, x) +

∑d
j=1 g

i
j(t, x)vj

This formula is not a practical method of solution for most problems because the

ordinary differential equations are often quite difficult to solve, but the formula does

show the importance of characteristics for these systems.
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Chapter 14

Waves on a Sloping Beach; Shallow

Water Theory

In the last chapter we considered flow over a horizontal level surface. In the case of

a non-uniform bottom, we will get an additional term in the horizontal momentum

equation due to the force acting on the bottom surface.

14.1 Shallow water equations

We choose a coordinate system x, y such that y = −h0(x) denotes the bottom and

y = η(x, t) the water surface. Hence the total depth h(x, t) is

h(x, t) = h0(x) + η(x, t)

The equation of conservation of mass is

d

dt

∫ x1

x2

h(x, t)dx+ [uh]x1x2 = 0 (14.1)

as before, and if u and h are continuously differentiable, then

ht + (uh)x = 0 (14.2)
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Figure 14.1

Let us now consider the momentum balance in the x-direction. Let p′ be the excess

pressure as before. When the bottom is not horizontal, the contribution of p′ from

the bottom surface will have a non-zero horizontal component. Let us consider a thin

section of thickness dx and let ds be the line element along the bottom y = −h0(x).

Let α be the inclination of ds to the x-axis. Then

ds = dx
cosα

Hence the momentum balance in the horizontal direction is

d

dt

∫ x1

x2

hudx+ [hu2 +
1

2
gh2]x1x2 = −

∫ x1

x2

(p′
dx

cosα
)snα (14.3)

In the shallow water theory we have p′ = g(η−y). At y = −h0, p′ = g(η+h0) = gh.

Therefore (14.3) becomes

d

dt

∫ x1

x2

hudx+ [hu2 +
1

2
gh2]x1x2 =

∫ x1

x2

gh
dh0

dx
dx (14.4)

since dh0
dx

= tanα. If all the quantities are smooth, in the limit x2 → x1, we obtain

(ht)t + (hu2 +
1

2
gh2)x = gh

dh0

dx
(14.5)

When there are discontinuities, the shock condition derived from (14.4) is
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−U [hu] + [hu2 + 1
2
gh2] = 0

since the right hand side of (14.4) becomes zero in the limit x2 → x1. Thus,

the shock conditions are unaffected by the extra term ghdh0
dx

due to the non-uniform

bottom.

Using the mass conservation equation (14.2) the momentum equation (14.5) can

be written as

(ht)t + (hu2 + 1
2
gh2)x = ghdh0

dx

split the equation and separate like that

⇒ u(ht + uxh+ uhx) + h(ut + uux + gηx) = 0(Since, h(x, t) = ho(x) + η(x, t)).

⇒ ut + uux + gηx = 0(By, 14.2)

Hence the system of equations for the flow of shallow water over a non-uniform

bottom is


ht + uxh+ uhx = 0

ut + uux + gηx

h = h0 + η.

(14.6)

14.2 Linearized equations

We assume that the disturbances are small of order ε << 1 i.e. η
h0

= O(ε) and

u√
gh0

= o(ε) where, u=Velocity of the fluid and
√
gh0=Propagation Velocity. We also

assume that the derivative are also of the same order.

Since h = η(x, t) + h0(x), equations (14.6) can be written down as

ηt + uh′0 + h0ux + uηx + ηux = 0 (14.7)

ut + uux + gηx = 0 (14.8)
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The first three terms of (14.7) are of order O(ε) whereas the last two terms are of

order O(ε2). In the equation (14.8) uux = O(ε2) and the other terms are of order o.

Hence to a first order approximation(i.e avoid 2nd order and higher order terms of ε.

We have


ηt + h0ux + h′0u = 0

ut + gηx = 0

(14.9)

Equations (14.9) are the linearized versions of equations (14.6). Differentiating the

first equation of (14.9) partially w.r.t. t and using the second equation, we obtain

ηtt = gh0ηxx + gh′0ηx (14.10)

This is the wave equation with an additional term. If h0 were constant then

ηtt = gh0ηxx

and the general solution of this is

η1(x−
√
gh0t) + f2(x−

√
gh0t)

The velocity of propagation is
√
gh0.

14.3 Linear theory for waves on a sloping beach

We now consider a sloping beach with inclination β to the horizontal. We assume β

to be small so that linearized shallow water theory can be applied. However there

will be some questions about validity to be considered later. These are

(i) The question of using the shallow water theory as x → ∞, when the water

becomes deep.

(ii) The question of the assumption η
h0
<< 1 near x = 0 where h0 → 0.
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We have to solve equation (14.10) with h0 = xtanβ and we take h0 ' βx since β

is very small. Hence the equation can be written as

ηtt = gβxηxx + gβηx. (14.11)

Let η = N(x)e−iωt be a solution of equation (14.11). Then we obtain an ordinary

differential equation for N as follows:

N(−iω)2e−iωt = gβxN ′′(x)e−iωt + gβN ′(x)e−iωt

N ′′ +
1

x
N ′ +

ω2

gβ

1

x
N = 0 (14.12)

This is to be solved in 0 < x <∞.

....................................................................................................

Regular Singular Point:-

Let y′′ + p1(x)y′ + p2(x)y = 0. If p1 and p2 are not analytic at x = x0 then x = x0

is called singular point.

If (x−x0)p1(x) and (x−x0)2p2 are both analytic at x = x0 then x0 is called regular

singular point.

If any one of (x−x0)p1(x) and (x−x0)2p2 or both are not analytic at x = x0 then

x0 is called irregular singular point.

....................................................................................................

The point x = 0 is a regular point of equation (14.12), and x = ∞ is an irregular

point. This suggests a transformation to Bessel’s equation or some other confluent

hypergeometric equation. In fact the transformation

x = gβ
ω2

X2

4

Then

N ′(x) = dN
dx

= dN
dX

dX
dx

= dN
dX

2ω2

gβX
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And

N ′′(x) = d2N
dx2

= d
dX

(dN
dx

)dX
dx

= 2ω2

gβ
d
dX

( 1
X
dN
dX

) 2ω2

gβX
= 4ω4

(gβ)2
1
X

d
dX

( 1
X
dN
dX

)

x = gβ
ω2

X2

4
converts (14.12) into the Bessel equation of order zero.

..................................................................................................

Bessel Equation:- x2y′′ + xy′ + (x2 − p2)y = 0 is the Bessel’s equation of order p.

Bessel equation of order zero is y′′ + 1
x
y′ + y = 0 and it’s two linearly independent

solutions are

J0(X) =
∞∑
n=0

(−1)n

(n!)2
(
X

2
)2n

and

Y0(X) =
2

π
[(ln

X

2
+ γ)J0(X) +

∞∑
n=1

(−1)n+1X2n

22n(n!)2
(1 +

1

2
+ ...+

1

n
)]

where

γ = lim
x→∞

((1 +
1

2
+ ...+

1

n
)− lnn) ∼= 0.5772.

..................................................................................................

d2N

dX2
+

1

X

dN

dX
+N = 0 (14.13)

The Bessel functions J0(X), Y0(X) are two linearly independent solutions of the

equation (14.13). Hence a general solution of (14.12) is

N = AJ0(2ω
√

x
gβ

)− iBY0(2ω
√

x
gβ

)

where A and B are constants. Since the power series for J0(X) contains only even

powers of X, J0(2ω
√

x
gβ

) is an integer power series in x and is regular at the beach x

= 0. We note that Y0 has a logarithmic singularity at x = 0.
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The complete solution of (14.11) is

η(x, t) = [AJ0(2ω

√
x

gβ
)− iBY0(2ω

√
x

gβ
)]e−iωt (14.14)

As x→∞ the asymptotic formula for η is

η ∼ 1√
π

(
gβ

ω2x
)
1
4
A+B

2
e
−2iω
√

x
gβ
−iωt+πi

4 +
A−B

2
e

2iω
√

x
gβ
−iωt−πi

4 (14.15)

The first term in the bracket corresponds to an incoming wave and the second one

to an outgoing wave. In a uniform medium an outgoing periodic wave is given by

aeikx−iωt

where

• k=Wave number

•ω=Frequency

• a=Amplitude.

The terms in (14.15) are generalizations to the form

a(x, t)eiθ(x,t)

....................................................................................................

Period:- The time taken (T) for any particle to complete one vibration is called

Period.

Amplitude:- The maximum displacement of any particle from it’s mean position

is called amplitude(A) of the wave.

Frequency:- The number of vibration per second by particle is called frequency(N)

of the waves, where N = L
T

.

Wave Length:-The between two consecutive particles of the medium which are in

the same phase or which differ in phase by twice of radian(2π) is called wave-length(Y)

of the wave.

139



Figure 14.2

Figure 14.3: High and Low frequency radio wave

....................................................................................................

A generalized wave number and frequency can be defined in terms of the phase

function θ(x, t) by

k(x, t) = θx, ν(x, t) = −θt; (14.16)

Figure 14.4: Extreme and Mean position
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the generalized phase velocity is

c(x, t) =
ν

k
= − θt

θx
(14.17)

The function a(x, t) is the amplitude.

In our particular case the outgoing wave has

θ(x, t) = 2ω
√

x
gβ
− ωt− π

4

Hence the wave number, frequency and phase velocity are

k(x, t) = θx = ω√
gβx

ν(x, t) = −θt = ω

c(x, t) =
√
gβx

We note that the waves get shorter as x→ 0(since k →∞), and that c =
√
gh0(x)

is the generalization of the result for constant depth. The incoming wave is similar

with the opposite sign of propagation.

Behavior as x →∞:-

We note that the amplitude a varies proportional to x−1/4. As x→∞, a→ 0. This

means that, within shallow water, we cannot pose the natural problem of a prescribed

incoming wave at infinity with a given nonzero amplitude. This is due to the failure

of the shallow water assumptions at ∞, one of the questions noted at the beginning

of this section. It it found from the full theory , (for the solution corresponding to

J0) that the ratio of amplitude at infinity a∞ to amplitude at shoreline a0 is in fact

(2β
π

)
1
2 . Therefore, a∞

a0
→ 0 as β → 0, and the x− 1

4
behavior is the shallow water

theory’s somewhat inadequate attempt to cope with this. However, the full solution

does show that the shallow water theory is a good approximation near the shore. And

it is valuable there since, for example, the corresponding nonlinear solution can be

found in the shallow water theory but not in the full theory.
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Behavior as x →∞ and breaking:-

We see from (14.15) that the ratio of B to A, which controls the amount of J0 and

Y0 in the solution, also determines the proportion of incoming wave that is reflected

back to infinity.

For B = 0, we have perfect reflection with

η = AJ0(2ω

√
x

gβ
)e−iωt (14.18)

and the solution is bounded and regular at the shoreline x = 0.

In the other extreme, A = B, there is no reflection, we have a purely incoming

wave

η = A(J0 − iY0)e−iωt (14.19)

but it is now singular at the shoreline. The interpretation of the singularity is

that it is the linear theory’s crude attempt to represent the breaking of waves and

the associated loss of energy. As B increases, more energy goes into the singularity

(breaking) and less is reflected.

Although breaking is the most obvious phenomenon we observe at the seashore, a

number of long wave phenomena (long swells, edge waves, tsunamis) are in the range

where breaking does not occur so that the J0 solution (B = 0) with perfect reflection

is relevant. This is fortunate since practical use of the Y0 solution would be limited,

although the situation is mathematically interesting.

The singular solution is related also to the second question noted at the beginning

of this section: The breakdown of the linearizing assumption η
h0

<< 1 as h0 → 0

at the shoreline. On this we can say that the nonlinear solution corresponding to

J0 can be found without this assumption (next section), and it endorses the linear

approximation. The Y0 solution with its crucial ties to complicated nonlinear breaking
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is clearly a different matter.

Tidal estuary problem:-

In a channel where the breadth b(x) varies, as well as the depth h0(x), the shallow

water equations are modified to

∂
∂t

[(h0 + η)b] + ∂
∂x

[(h0 + η)ub] (By ht + (uh)x = 0)

∂u
∂t

+ u∂u
∂x

+ g ∂η
∂x

= 0

For the case h0(x) = βx, b(x) = αx the linearized equation for η can again be solved

in Bessel functions. G.I. Taylor used this solution to study the large tidal variations

in the Bristol channel. In this application to extremely long waves, breaking is not

an issue and only the Jn solution is accepted.

14.4 Nonlinear waves on a sloping beach

In Section 14.3 we considered the linear approximation of the equations for waves

on a sloping beach. Carrier and Greenspan in 1958 gave an exact solution of the

nonlinear equations using a modified type of hodograph transformation applied to

characteristic variables. We recall that the governing equations are

ht + uhx + hux = 0

ut + uux + ghx − gβ = 0 where h = βx+ η(x, t).

Introducing the variable c =
√
gh= velocity of propagation, which we know to be

significant, the above equations become


2ct + 2ucx + cux = 0

ut + uux + 2ccx − gβ = 0

(14.20)
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Due to the presence of the term gβ, the straight forward hodograph transformation

(u, c)→ (x, t) will not simplify the equations, since this time the Jacobian g would not

cancel through. However, Carrier and Greenspan introduced new variables suggested

by the characteristic forms and applied a hodograph transformation to these.

Use Hodograph Transformation as x=x(u,c) and t=t(u,c).

Then, ct = −xu
%
, cx = tu

%
, ut = xc

%
, ux = − tc

%
. Here % is the Jacobian which we

denoted by g in Hodograph Transformation(Chapter 12). For the presence of g=

Gravity notation we are defining % as Jacobian.

The characteristic forms of the equations (14.20) are
ct + ucx + 1

2
cux = 0

ut + uux + 2ccx − gβ = 0

Each equation relates the directional derivatives of u and c for difference direction.

Take linear combination of above two,

ut + uux + 2ccx − gβ +m(ct + ucx + 1
2
cux) = 0

[ut + (u+ m
2
c)ux] + [ct + (u+ 2c

m
)cx]− gβ = 0

Provided, u+ m
2
c = u+ 2c

m
= v(say)

m = ±2

For m = ±2 the characteristic forms of the equations (14.20) are


(u+ 2c)t + (u+ c)(u+ 2c)x − gβ = 0,

(u− 2c)t + (u− c)(u− 2c)x − gβ = 0.

(14.21)

These can be written as


(u+ 2c− gβt)t + (u+ c)(u+ 2c− gβt)x = 0,

(u− 2c− gβt)t + (u− c)(u− 2c− gβt)x = 0.

(14.22)
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The ς+ and ς− characteristic curves are defined by


ς+ : dx

dt
= u+ c, u+ 2c− gβt = Constant

ς− : dx
dt

= u− c, u− 2c− gβt = Constant

(14.23)

We define the characteristic variables p, q by

p = u+ 2c− gβt, (14.24)

q = u− 2c− gβt. (14.25)

Then equations (14.23) can be written

xq = (u+ c)tq,

xp = (u− c)tp,

which introduces the hodograph transformation (p, q) → (x, t). Solving (14.24),

(14.25) for u, c and inserting them in the above equations we obtain


xq = (3p+q

4
+ gβt)tq,

xp = (p+3q
4

+ gβt)tp,

(14.26)

Equations (14.26) are still nonlinear, but by good fortune the nonlinear terms are

in the form (1
2
gβt2)q, (1

2
gβt2)p )p so that when we take cross derivatives and subtract

to obtain an equation for t, these terms cancel each other. This was the remarkable

fact observed by Carrier and Greenspan. Differentiating the first equation in (14.26)

partially with respect to p and the second equation with respect to q and subtracting

we obtain

2(p− q)tpq + 3(tq − tp) = 0. (14.27)
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Equation (14.27) is a linear equation which can ve solved by standard methods.

This is the main step, but further transformations can be used to convert (14.27)

into the cylindrical wave equation whose solutions are already well documented. First,

by the transformation


σ = p− q,

λ = −(p+ q)

(14.28)

Then

tp = ∂t
∂σ

∂σ
∂p

+ ∂t
∂λ

∂λ
∂p

= ∂t
∂σ
− ∂t

∂λ

Similarly determine tpq and tq and equation (14.27) becomes

tλλ = tσσ +
3

σ
tσ (14.29)

This can be further simplified by introducing the transformation

gβt =
λ

2
− φσ

σ
; (14.30)

the term −φσ
σ

is for transforming (14.29) into the cylindrical wave equation and

the term λ
2

is included to give a simple final form for u. Thus we obtain cylindrical

wave equation

φλλ = φσσ +
1

σ
φσ (14.31)

Equations (14.24), (14.25) give u, c in terms of p, q. From the transformation

(14.28) we obtain p, q in terms of σ, λ. These together with equation (14.30) lead to

c =
σ

4
(14.32)
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u = −φσ
σ

(14.33)

gβt =
λ

2
− φσ

σ
(14.34)

It can be shown from (14.26), with a use of (14.31), that

(gβx)σ = (−1
4
φλ + 1

2
φσ

2

σ2 + σ2

16
)σ

(gβx)λ = (−1
4
φλ + 1

2
φσ

2

σ2 )λ

After some big calculation we shall get this above two equations.

From these we obtain

gβx = −1

4
φλ +

1

2

φσ
2

σ2
+
σ2

16
(14.35)

The final set of transformations (14.32)-(14.35) is sufficiently involved that it seems

inconceivable that anyone would discover them directly. One can note that

u− gβt = −λ
2

and 1
2
u2 + c2 − gβx = 1

4
φλ

take simple forms and these combinations appear in two alternative ways of ab-

sorbing gβ in conservation forms for the second of (14.20), i.e.

(u− gβt)t + (1
2
u2 + c2)x = 0

ut + (1
2
u2 + c2 − gβx)x = 0

But this comment does not appear to lead any further.

Almost equally important as the linearity of (14.31) is the fact that the moving

shoreline c = 0 is now fixed at σ = 0 in the new independent variables. We can now

work in a fixed domain. The simplest separable solution of (14.31) is

φ = N(σ) cosαλ (14.36)
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where α is an arbitrary separation constant. The equation for N(σ) is then the

Bessel equation of order zero.

N ′′ +
1

σ
N ′ + α2N = 0 (14.37)

The solution bounded at the shoreline σ = 0 is

N = AJ0(ασ)

where A is a constant. Hence

φ = AJ0(ασ) cosαλ (14.38)

Equation (14.38) together with the above transformations and relations give an

exact solution for the non linear equation (14.20).

Linear approximation :-

It will be useful to note how the linearized approximation is obtained from (14.38).

In the linear theory u is small which implies φ is small. Hence to a first order

approximation we obtain from (14.34), (14.35) that


gβt ' λ

2
,

gβx ' σ2

16

(14.39)

Thus

φ ' AJ0(4α
√
gβx) cos 2αgβt

Taking α = ω
2gβ

we obtain

φ ' AJ0(2ω
√

x
gβ

) cosωt

which is in agreement with our result obtained in section 14.3. To relate φ to the

particle velocity u and elevation η, we first note that
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u = −φσ
σ

= −α2A
J ′0(ασ)

ασ
cosαλ ' 2ωa0

β

J ′0(2ω
√

x
gβ

)

2ω
√

x
gβ

cosωt

where

a0 =
β

2ω
α2A =

ω

8gβ2
A (14.40)

Then rather than trying to improve on the approximation for σ and hence c to

find η, we rather note that the above linearized approximation for u goes along in

linear theory with

η = −a0J0(2ω

√
x

gβ
) sinωt (14.41)

These approximations provide a rough way to interpret the variables in the non-

linear form (14.38). In particular we see it as the nonlinear counterpart of the wave

with perfect reflection at the beach.

Run-up:-

Perhaps the most important quantity among the results is the range of x at the

shoreline σ = 0, since this provides the amplitude of the run-up.

If x = F (λ, σ) then the range of x at σ = 0 is [minλ F (λ, 0),maxλ F (λ, 0)].

Using (14.35), (14.38) and the fact that

lim
z→0

J ′0(z)

z
= −1

2

we obtain:

at the shore σ = 0, gβx = 1
4
αA sinαλ+ 1

8
α4A2 cos2 αλ

At maximum or minimum run-up, u = -φσ
σ

= 0. Therefore, from (14.38),

cosαλ = 0 and hence sinαλ = ±1

Therefore at the maximum run up: gβx = 1
4
αA, at the minimum run up: gβx =

−1
4
αA. Hence the range of x is

− αA
4gβ
≤ x ≤ αA

4gβ
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If a0 is the vertical amplitude, we have

a0 =
αA

4g
(14.42)

This agrees with (14.40) when the linearized relation α = ω
2gβ

is used. The latter

will not be quite accurate in the nonlinear theory for the relation of α to the frequency

ω, but it is probably a good enough approximation; the exact relation could, of course,

be calculated.

Breaking condition:-

In finding a solution for equations (14.20) we made use of many transformations

and got a solution which is single valued, bounded and smooth in terms of the variables

λ, σ. When the Jacobian of the transformation (λ, σ) → (x, t) becomes zero the

solution in the xt-plane will be multivalued i.e. breaking will occur. We will find the

condition for breaking to occur. By (14.26) and (14.28),

% = xλtσ − xσtλ = (utλ + ctσ)tσ − (ctλ + utσ)tλ = c(t2σ − t2λ)[Use equations

(14.32),(14.33),(14.34) and (14.35)]

Differentiating (14.34) partially with respect to σ and λ and using (14.38), we

obtain

gβtσ = Aα3

z
(J0 + 2

z
J ′0) cosαλ

gβtλ = 1
2

+ Aα3

z
J ′0 sinαλ

where z = ασ. Using the relations

J ′0 = −J1; J0 + 2
z
J ′0 = −J2,

We obtain

gβ(tλ − tσ) =
1

2
− Aα3(

J1 sinαλ− J2 cosαλ

z
) (14.43)
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gβ(tλ + tσ) =
1

2
− Aα3(

J1 sinαλ+ J2 cosαλ

z
) (14.44)

Now

J1 sinαλ±J2 cosαλ
z

=

√
J2
1+J2

2

z
sin (αλ± η)

where η = tan−1(J2
J1

). Hence, the maximum values of these expressions are
√
J2
1+J2

2

z

It can be shown that

d
dz

(
J2
1+J2

2

z2
)

Hence for positive z,
J2
1+J2

2

z2
is a decreasing function and its maximum value is

attained at z = 0, where it is equal to 1
4
.Therefore the factors in (14.43), (14.44) first

vanish when Aα3 = 1, and breaking first occurs at the shoreline.

If we again use the approximate relation α = ω
2gβ

, together with (14.42) a necessary

and sufficient condition for breaking to occur is

ω2a0

gβ2
≥ 1 (14.45)

This is a very fruitful result obtained from the nonlinear theory. Breaking is

obviously a complicated phenomenon with wide variations in type and conditions.

But (14.45) gives a valuable result on the significant combination of parameters.

From observations also it is found that the quantity P = ω2a0
gβ2 plays an important

role. Galvin’s experiments and observations group breaking phenomena into different

ranges of P. He distinguishes the ranges (although with some overlap).

P Type

≤ 0.045 Surging; No breaking

0.045-0.81 Collapsing; Fig. 14.5

0.28 19 Plunging; Fig. 14.6

14 64 Spilling; Fig. 14.7
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Figure 14.5: Collapsing

Figure 14.6: Plunging

Carrier and Greenspan give other solutions and include the analysis for solving the

general initial value problem.

14.5 Bore on beach

When breaking occurs, a discontinuous ”bore”, corresponding to the shocks discussed

earlier would be fitted in. The appropriate jump conditions were noted in Section

12.1. This has not been carried through in the Carrier-Greenspan solutions. However

the simpler problem of what happens when a bore initially moving with constant

speed and strength in an offshore region of constant depth impinges on a sloping

beach has been studied by approximate and numerical methods.

Figure 14.7: Spilling
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14.6 Edge Waves

In the previous section we have considered only normal incidence with dependence

only on distance x normal to the shore. We now turn to phenomena that include

longshore dependence. If x1 is normal to and x2 is along the shore, the linearized

equation for the surface elevation η(x1, x2, t) is modified from (14.11) to

ηtt = gβx1(ηx1x1) + gβηx1 (14.46)

The modification is slight and we do not give the derivation. We use separation of

variables and let

η = N(x1)e±ikx2±iωt (14.47)

Then N(x1) satisfies

N ′′ +
1

x1

N ′ + (
ω2

gβx1

− k2)N = 0 (14.48)

The interval of interest is 0 < x1 < ∞. The origin x1 = 0 is a regular singular

point; one solution is analytic and the other has a logarithmic singularity. At ∞, the

equation is roughly

N ′′ − k2N ' 0 (14.49)

with solutions

N ' e−kx1 , ekx1 (14.50)

In this case only the solutions bounded at both x1 = 0 and appear to be of interest.

We shall see that the solutions represent waves running along the beach, and no-one

seems to have interpreted the logarithmic solution in any sense such as breaking. So
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we choose the analytic solution near x1 = 0. Then, in general, this solution will be a

linear combination of both e−kx1 and e+kx1 at∞. For an acceptable physical solution

the term in ekx1 should be absent. This is possible only for special values of ω2

gβ
. We

have a singular eigenvalue problem. If we set

N = e−kx1F (X), X = 2kx1, k > 0 (14.51)

it becomes a standard one. We have

XFXX + (1−X)FX +
1

2
(
ω2

gβk
− 1)F = 0 (14.52)

and the required solutions are Laguerre polynomials

Ln(X) =
eX

n!

dn

dxn
(Xne−X) (14.53)

with

ω2 = gk(2n+ 1)β, n = Positive integer (14.54)

The solution for N(x1) is

N(x1) = e−kx1Ln(2kx1) (14.55)

The final solutions for η are

η = e−|k|x1Ln(2|k|x1)e±ikx2±iωt (14.56)

where |k| is appropriate if negative values of k are used.

These solutions all decay away from the shoreline and have crests perpendicular

to the shoreline. For this reason they are known as ‘edge waves’. The lowest mode n

= 0 has
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N(x1) = e−kx1 , ω2 = gkβ, k > 0

and one might take for example

η = e−kx1 cos (KX2 − ωt). (14.57)

This corresponds to a solution first found by Stokes. It is interesting to note how

the different terms in (14.57) are balanced by this solution. One might note the

propagation speed is
√
gβx1 and expect the waves to swing round to the beach due

to the increase of speed with x1. The final result avoids this and we see from (14.57)

that the balance is

ηx1x1 + ηx2x2 = 0, η = gβηx1 (14.58)

The propagation speed argument applies directly when ηtt balances the second

derivatives in (x1, x2); the balance in (14.58) avoids this.

The equation is hyperbolic but these particular solutions avoid the hyperbolic

character and appear as ‘dispersive waves’ with dispersion relations given in (14.54).

(See Chapter 2 for a discussion of the distinctions, and Chapter 11 for the main

properties of dispersive waves). We also note there is no possibility of an oblique

wave at ∞. This would require

η ∼ e±iιx1±ikx2±iωt

with real ι and k. We have only the wave of normal incidence found in Section

14.5,

η = J0(2ω

√
x

gβ
)e±iωt (14.59)

or the edge waves travelling along the beach. As noted earlier, (14.59) does not

have a finite nonzero amplitude at∞, but it does at least represent a normal wave. For

the oblique case there is not even a corresponding solution. This again is a breakdown
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of the shallow water assumption in deep water. We can interpret the result roughly

by remarking that oblique deep water waves would in reality swing around towards

the shore when they feel the depth decrease. They do this completely, and achieve

normal incidence as in (14.59), by the time the shallow water theory applies. In the

linear theory, edge waves are not stimulated directly by incoming waves at infinity.

We check these explanations from the full linear theory.
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