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Abstract

Most human languages have sophisticated morphological systems. In order to build success-

ful models of language processing, we need to focus on morphology, the internal structure of

words. In this thesis, we study two morphological processes: inflection (word change rules,

e.g. run→runs) and derivation (word formation rules, e.g. run→runner).

We first evaluate the ability of contemporary models that are trained using the distribu-

tional hypothesis, which states that a word’s meaning can be expressed by the context in

which it appears, to capture these types of morphology. Our study reveals that inflections

are predicted at high accuracy whereas derivations are more challenging due to irregularity

of meaning change. We then demonstrate that supplying the model with character-level

information improves predictions and makes usage of language resources more efficient,

especially in morphologically rich languages.

We then address the question of to what extent and which information about word proper-

ties (such as gender, case, number) can be predicted entirely from a word’s sentential content.

To this end, we introduce a novel task of contextual inflection prediction. Our experiments on

prediction of morphological features and a corresponding word form from sentential context

show that the task is challenging, and as morphological complexity increases, performance

significantly drops. We found that some morphological categories (e.g., verbal tense) are

inherent and typically cannot be predicted from context while others (e.g., adjective num-

ber and gender) are contextual and inferred from agreement. Compared to morphological

inflection tasks, where morphological features are explicitly provided, and the system has to

predict only the form, accuracy on this task is much lower.
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Finally, we turn to word formation, derivation. Experiments with derivations show that

they are less regular and systematic. We study how much a sentential context is indicative of

a meaning change type. Our results suggest that even though inflections are more productive

and regular than derivations, the latter also present cases of high regularity of meaning and

form change, but often require extra information such as etymology, word frequency and

more fine-grained annotation in order to be predicted at high accuracy.
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Chapter 1

Introduction

1.1 Context of the Study

Consider the following Russian sentence:1

(1) Glokaja

Glocky.F.SG.NOM

kouzdra

kouzdress.F.SG.NOM

šteko

steckly

budlanula

brut.PAST.3SG

bokra

bock.M.SG.ACC

i

and

kurdjačit

cudder.PRES.3SG

bokrënka.

bockling.M.SG.ACC

“The glocky kouzdress steckly brutted the bock and is cuddering the bockling.”

Although in this nonsense sentence the words have nonce stems, they have semantically

plausible suffixes. Even though we have never seen them before, the English grammar and,

in particular, our awareness of syntax and morphology of English allows us to reconstruct

its possible meaning. For instance, we may conclude that some creature, kouzdress, is

the subject of the sentence, and it has a characteristic of being glocky. The kouzdress

has done something in the past to another creature, the bock, and now is continuously

cuddering the bock’s offspring, the bockling.

In English, it is not evident that the bock is an animate object, but in the Russian version, it

1Example introduced in Russian by Lev Shcherba (Uspensky, 1956) and translated here. Suffixes are
underlined.
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is clear from a specific declension form that signifies that it is a single animate creature. In

addition, Russian morphology also marks gender on nouns, adjectives, and verbs. Therefore,

in the case of Russian, we will also infer the gender of all participants.

Now let’s turn to language production. Suppose there is a hypothetical English verb to

compsognate. For an English-speaker it is straightforward to conjugate the word into past,

future, or present tense. Most likely the corresponding forms will look like compsognated,

will compsognate, and compsognate. The speaker may even form a new lexeme,

compsognatable, to express the meaning of “ability to be compsognated”, and transform

it into a noun such as compsognatability. The speaker might be less confident about

the words to signify “someone who compsognates” which might be compsognater,

compsognator or even compsognatant.

The ability to generate new word forms and infer the meanings of derived forms is

essential, especially when dealing with morphologically rich and resource-poor languages,2

where most words will not have explicit labels. Therefore, in this thesis, we aim to take a

closer look at morphology, the study of the anatomy of words, by exploring various models

of morphology and how they can be used to improve general natural language processing

(“NLP”). One of the main research questions we are trying to answer in this thesis is how to

build a model that will be able to learn the inherent lexical structure and semantics implicitly

from a string input.

Most successful contemporary NLP models are so-called “deep learning models”, which

is a class of neural models with vast parameter space and advanced training algorithms. They

have achieved breakthrough performance improvements in various areas, such as image

and speech recognition (Hinton et al., 2012; Krizhevsky et al., 2012), language modelling

(Bengio et al., 2003; Mikolov et al., 2010; Mnih and Teh, 2012), and machine translation

(Bahdanau et al., 2015; Cho et al., 2014; Sutskever et al., 2014). In terms of NLP, one of the

downsides of these models is their application to words rather than sub-word units. Some

2We consider language to be “high-resource” if it has a large amount of annotated data such as parallel and
tagged corpora, e.g. as we have for English, German, or French. Many languages are less documented and
may only have a very limited amount of monolingual data or a small number of documented dictionary entries.
Such languages are referred to as “low-resource”.
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models such as word2vec (Mikolov et al., 2013a) and GloVE (Pennington et al., 2014) are

based on distributional semantics approach that goes back to Firth’s assumption, “you shall

know a word by the company it keeps” (Firth, 1957, p. 11). Although the idea of representing

a word’s meaning as a set of its possible contexts is quite useful, still the representation

could be enriched with information about the composition of the word itself. For instance,

awareness that reproducibility should be decomposed into [[re- + produce]

+ -able] + -ity that first takes the verb to produce then attaches to it a prefix re-

which, in this case, states that the action is repeated. Then the “ability” suffix -able is

added, and, finally, the suffix -ity transforms the adjective to its nominal form. The idea of

distributional semantics can be also applied to the inner structure of a word. This supports

better modelling of morpheme meanings and functions as well as enables the learning of

their productivity and regularity. For instance, potentially the model might also infer that

-able suffix attaches to verbs forming adjectives with “ability” meaning.

Morphology, the linguistic study of the internal structure of words, has two main goals:

(1) to describe the relationship between different words in the lexicon; and (2) to decompose

words into morphemes, the smallest linguistic units bearing meaning. Here we can identify

two key processes, inflection and derivation, corresponding to word change and word

formation, respectively.

The first one, inflection, primarily marks features that are necessary for syntax, e.g.

case, gender, tense, number. For example, the Russian form pribyvšemu (English “to

the arrived”) corresponds to a combination of features such as past participle, perfective

aspect, singular number, masculine/neuter gender, and the dative case. In most languages

inflection does not change the part of speech of the word3 and tends not to change its basic

meaning. The set of inflectional forms for a given lexeme is said to form a paradigm, e.g., the

full paradigm for the English verb to take is ⟨take, taking, takes, took, taken⟩.

Each entry in an inflectional paradigm is termed a slot and is indexed by a syntactic-semantic

category, e.g., the PAST form of take is took. We may reasonably expect that all English

3There are some cases in Australian Aboriginal languages (Evans, 1995) where POS changes (probably due
to their polysynthetism).
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Case Singular Plural
NOMINATIVE książka książki
GENITIVE książki książek
DATIVE książce książkom
ACCUSATIVE książkę książki
INSTRUMENTAL książką książkami
LOCATIVE książce książkach
VOCATIVE książko książki

Table 1.1 An example of inflectional paradigm. Declension of Polish word książka
(“book”).

verbs—including neologisms—have these five forms.4 Furthermore, there is typically a fairly

regular relationship between a paradigm slot and its form (e.g., add -s for the third person

singular form to the English verb in the present tense as in thinks, produces, writes).

The fact that English presents quite a limited inflectional system helps to explain why

morphology has received less attention in the computational linguistics and natural language

processing literature than it is arguably due, given the English-centrality of the field. Table 1.1

exemplifies a moderate-sized inflectional paradigm table for Polish noun declension for

comparison. Most languages of the world present rich morphological systems. The linguistic

typology database WALS shows that 80% of the world’s languages mark verb tense through

morphology while 65% mark grammatical case (Haspelmath et al., 2005).

To summarise, inflections are highly regular, productive, paradigmatic and mandatory, i.e.

they apply to every stem and have to be expressed.

The second process, derivation is one of the key processes by which new lemmata are

created. For example, the English verb corrode can be expressed as the noun corrosion,

the adjective corrodent or corrosive, and numerous other complex derived forms such

as anticorrosive, corrosiveness, corrosively, corrosivity. This con-

trasts with inflectional morphology which produces grammatical variants of the same core lex-

ical item (e.g., take 7→ takes). Derivational morphology is often highly productive, lead-

4Only a handful of irregular English verbs distinguish between the past tense and the past participle, e.g.,
took and taken, and thus have five unique forms in their verbal paradigms; most English verbs have four
unique forms. English copulas form a standalone paradigm that consists of am, is, are, were, was.
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ing to the ready creation of neologisms such as Kroneckerise and Kroneckerisation,

both originating from the Kronecker product.

Derivations present less regularity and therefore are not usually seen as paradigmatic.

Some of the derived words start being perceived as a complete meaning-bearing unit over

time and hence might be non-compositional, which makes derivation modelling an extremely

challenging topic. For instance, both growth and warmth originated at least from Middle

English and were initially formed from verbs and adjectives by attaching the -th suffix (or

its proto-versions *-þu,*-þ)5 which indicates abstract meaning. Although words with -th

are actively used in contemporary English, all of them are perceived as a single unit and

-th is seen as a part of the stem. The suffix itself has ultimately become non-productive,

i.e. is not used for neologism creation. Hence we refer to calmness and kindness,

but not calmth and kindth. Table 1.2 presents a partial attempt at a paradigmatic table

for English verbal nominalisations.6 The table illustrates irregularity in meaning and form:

some slots are unfilled for a given lexeme. This might be explained by restrictions on the

initial lexeme as in the case of “Patient”, or a blocking effect, i.e. a situation when for

the same concept there exists another lexeme already (e.g., marrier might be blocked

by fiancé, or in Russian svinënok (“piglet” originating from *svı̄nı̄) is blocked by

porosënok (“piglet” originating from *porsę)). As for the form, we might also notice a

greater variation in some slots (e.g., RESULT can be realised using different suffixes such

as -ion, -ation, -ment, -ence, etc.). Unlike in inflections, there are also often more

alternative, or competing forms, such as nominals move and movement. Note that the

second lexeme additionally expresses various specific meanings. Therefore, this makes

derivations more challenging to formalise than inflections.

To summarise, in this thesis we aim to create a model that will be suitable for predicting

inflectional as well as derivational forms from a word’s constituent parts, i.e. generating

their forms from their meaning description, e.g. a paradigm slot or a sentential context

corresponding to it. To do so, we utilise several contemporary neural architectures. The

5Based on Douglas Harper, Online Etymology Dictionary, 2001–2018
6The partial paradigm structure was motivated by linguistic studies and proposed in Cotterell et al. (2017b).
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Verb Base/Suffix -er/-or -ee -ment/-tion -ive/-ent -able/-ible
POS V7→NOUN V7→NOUN V7→NOUN V7→ADJ V7→ADJ
Semantic AGENT PATIENT RESULT CHARACTERISTIC POTENTIAL

animate animator -- animation -- animatable
advise adviser advisee advice -- advisable
educate educator educatee education educative educable
teach teacher -- teaching -- teachable
amputate -- amputatee amputation -- --
attract attractor attractee attraction attractive attractable
-- aggressor aggressee aggression aggressive --
employ employer employee employment -- employable
move mover -- movement -- movable
place placer -- placement -- placeable
escape escapee -- -- -- escapable
corrode corroder -- corrosion corrosive corrosible
derive deriver derivee derivation derivative derivable
marry -- -- marriage -- marriagable
eat eater -- -- -- edible
codify codifier -- codification -- codifiable
think thinker -- thought -- thinkable
prohibit prohibitor prohibitee prohibition prohibitive prohibitable
cook cook cooker cooking -- cookable
eat eater -- eating -- edible

Table 1.2 Possible partial derivational paradigm for several English verbs; semantic gaps are
indicated with --. Note that suffixes often significantly vary within a single slot.

proposed model should be a well-suited solution for the large lexicon problem that often

occurs in various tasks in morphologically rich languages.

1.2 Aim and Scope

Nearly every traditional NLP task (for example, machine translation, language modelling,

part of speech tagging) has to deal with out-of-vocabulary words, i.e. the words or forms

that the system did not observe or observed only a few times during training stage. A

large percentage of them are just morphological variations of known stems or related word

forms. This problem is highly important for synthetic languages, i.e. those presenting rich

morphology. Figure 1.3 illustrates the number of forms of the paradigm for čéška observed

given different sizes of corpus. For instance, the nominative case, as soon as it signifies a

subject of the sentence, is observed in all corpora sizes. The accusative case (marking an

object) is less likely to be present, but its form in this particular case matches the form of the
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Case Surface Form 50K 500K 5M 50M
NOMINATIVE čéšky • • • •
GENITIVE čéšek - • • •
DATIVE čéškám - - • •
ACCUSATIVE čéšky ◦ ◦ • •
VOCATIVE čéšky ◦ ◦ ◦ ◦
LOCATIVE čéškách - • • •
INSTRUMENTAL čéškami - - - •

Table 1.3 Morphological variants of the Czech lemma čéška for different corpus sizes.
Here • indicates that the variant occurs, and ◦ – that the same surface form appears but it
corresponds to another morphological feature combination (Huck et al., 2017).

nominative case, and, therefore, we observe it even in the smallest corpus. The instrumental

case is much less likely to be observed for every lemma, and for this reason models will have

to generalise in order to understand this novel form by seeing other lemmata that follow the

same paradigm.

It is also important to underline here that we focus on compositional cases, i.e. cases

where the meaning of the whole can be predicted or formed from the meaning of its parts.

Inflectional morphology is highly compositional by its nature. Derivations, on the other

hand, are more complex. As mentioned earlier, some derivational morphemes become

non-productive and the words themselves get lexicalised and typically processed as a single

unit by native speakers (e.g., action, actor, actual, active all originating from the

Latin “do, perform”, or thriller referring to “a thrilling, suspenseful book or movie”).

Therefore, their meanings are often completely different from what could be inferred from

their parts or might be associated with some semantic restriction that cannot be predicted

from a simple compositional model. In this way, they are close to multiword expressions

(Sag et al., 2002), which is out of scope of this work.

Bearing this in mind, for inflected and derived forms we aim to estimate a representation

given either their tags and lemma or base forms, respectively, or some contextual represen-

tation corresponding to a particular tag combination. The main question here is how well

we can perform such prediction and which compositionality function better combines the

parts and predicts syntactic and semantic features. In order to do so, we investigate various
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contemporary neural models. The task is decomposed into the following constituent parts,

framed by individual research questions:

RQ1: What information do models trained based on the distributional semantics hypothesis

capture?

Most contemporary language models’ objective functions are based on prediction

of words from their (often sentential) contexts. Here we investigate what types of

relations between words are captured by this training strategy. In particular, we look at

various types of binary relations such as hypernymy (lion→ animal) for lexical

semantics, nominal plurality (lion→ lions) as an example of morphosyntax, and

repetition (discover → rediscover) for morphosemantics. There are many

ways to express such relations using vector space models, and we focus on the vector

difference (lions− lion) approach, which has been shown to work well elsewhere

(Mikolov et al., 2013c).

RQ2: Do character-level models provide better representations of morphological similarity

than word-based? Which neural architecture better expresses morphological informa-

tion?

Human annotated features such as morphological boundaries are extremely valuable,

but cases when they are available are quite rare and usually limit the scope of languages

to well-documented cases only. Therefore, one possible solution to this problem is to

consider character-level representations. Here, we investigate how well various neural

architectures capture morphological information as well as whether character-level

segments could be compared to morphemes. We compare two popular contempo-

rary neural models, recurrent (Elman, 1990) and convolutional (LeCun and Bengio,

1995) and evaluate their morphology awareness across several typologically diverse

languages.

RQ3: How well can derived and inflected forms be predicted directly from a sentential

context?

Earlier studies of inflectional morphology presented in the shared task on morpholog-
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ical reinflection across over 50 languages (Cotterell et al., 2017a) showed that there

is a lot of regularity in inflectional processes, even in languages with highly complex

morphology; and the neural systems outperform non-neural ones and achieve high

accuracy results on most languages in data greedy conditions. In this task, researchers

relied on linguistic knowledge of paradigmatic slots. In a more realistic scenario,

however, the system has to predict the forms directly from the context. First, we test

how well the model is able to predict information about gender, case, and tense, and ask

the question: how coherent are the model’s predictions? This question has a linguistic

basis because little is known about the internal nature of case systems. In addition, we

study various languages and compare the models’ uncertainty. Do languages with rich

morphology such as Hungarian require more capacity and lead to higher entropy?

Second, we test the same idea on derivations. Derivations present semantic changes to

the base form. How well can we predict these semantic shifts at the token level based

on surrounding context? Here we propose an encoder-decoder model which is trained

to capture morphotactics to be able to produce surface forms and learn a mapping

from contextual information to suffix semantics. We also compare our results to those

obtained on inflections.

Finally, in terms of the thesis, we only look at contemporary state of language and leave a

diachronic perspective, i.e. its development over time, for future work.

1.3 Thesis Structure

The thesis is structured as follows. First, Chapter 2 provides linguistic information on the

nature of morphological processes and describes the key concepts that the thesis builds on.

Then we continue with a brief summary of traditional models of morphology proposed within

theoretical linguistics and computer science. We start with inflectional morphology and

present a description of various existing approaches to it. Then we move to derivational

morphology providing a detailed analysis of the relations which are typically expressed by

means of derivations. Then the chapter progresses to contemporary ideas of paradigmatic
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treatments of derivation, and theories that place both inflections and derivations on a single

continuous scale. At the end of the first part of the chapter we outline a number of tasks

existing in morphology modelling. The second part of the chapter discusses contemporary

approaches to distributional semantics. It provides a number of vector space models proposed

during the last two decades and lists a set of tasks which allow us to run a comparison of

the models. The final part of the chapter introduces the notion of compositionality and how

contemporary neural models such as recurrent (Elman, 1990), recursive (Socher et al., 2013b),

and convolutional (LeCun and Bengio, 1995) networks express compositional functions over

characters, morphemes, and words.

Chapter 3 is devoted to the analysis of distributed word representations. The chapter

addresses RQ1 and RQ2, i.e. investigates the word-level information captured by distributed

representations and compares various levels of representation. In particular, it provides an

analysis of word vectors obtained in two tasks: language modelling and machine translation.

We compare several word- and character-level models, including the effect of pre-trained and

learned end-to-end. Each model is evaluated in terms of how well it represents morphological

similarities as well as its ability to differentiate various relations (hypernyms, meronyms,

etc.). Our main finding is that morphosyntactic information is typically learned better than

morphosemantic and lexical.

Chapter 4 addresses RQ3. In particular, it investigates modelling of inflectional paradigms

and focuses on contextual inflection prediction, a less data intensive and more challenging

setting where the morphological tags are not explicitly provided, but rather have to be inferred

from a sentential context. We propose several models, namely an encoder-decoder model

and neural conditional random fields, and provide an analysis of each model’s performance.

We compare different languages in terms of their morphological complexity and language

model prediction accuracy. We also show that some grammar categories, such as verbal

gender and number, are contextual whereas others like verbal tense are inherent, and lead to

higher uncertainty. We additionally evaluate the models’ accuracy on agreement prediction.

The end of the chapter compares the setting with the contextual inflection subtask of the

SIGMORPHON 2018 shared task and discusses the results of this task.
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Chapter 5 continues with RQ3 and discusses derivational morphology. The first part

of the chapter is devoted to derivational paradigms. We first apply the task of inflectional

paradigm completion to derivations that aims at addressing one of the main research questions,

i.e. whether derivations can be viewed as paradigmatic. The results obtained with an

encoder-decoder model show that regular and productive derivational transformations can

be predicted with high accuracy, although less regular and productive transformations are

still very challenging. The second part of the chapter addresses the contextual prediction of

derivations. There, we try to generate derived forms from their sentential context and base

form and observe the same pattern as before, namely that regularity and productivity plays a

significant role. In order to address irregularities, we propose several treatments such as the

inclusion of etymological and frequency information to further improve the models.

Finally, we summarise the results and contributions of the previous chapters in Chapter

6, and outline possible future directions of research.





Chapter 2

Background

This chapter provides necessary background on language and, in particular, morphology. We

describe two types of morphology, inflectional and derivational, and how both of them are

addressed in linguistics and computational linguistics. We then provide a background on the

word- and character-level neural models we will further evaluate.

2.1 Language

Human language has always been at the centre of philosophical studies. A great volume of

philosophical works from Ancient Greeks and Romans to Wittgenstein had been devoted to

various aspects of language such as where the meaning comes from, how a word form relates

to its meaning, and how connections and dependencies between words within a sentence are

expressed.

What is special about Language? Surprisingly, the term Language does not have a

generally accepted definition. Typically, linguists refer to it as a communication system.

Therefore, in its very broad sense, in addition to humans, language also applies to animals

and plants. But in this thesis we will focus on human language, hence we first need to define

it. So, what is special about human language? According to Hockett (Hockett, 1958, 1977;

Hockett and Altmann, 1968; Hockett and Hockett, 1960) in the context of a comparative
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analysis of animal and human language, there are approximately 10 essential properties

unique to humans such as semanticity, productivity, displacement, recursion, discreteness,

duality of patterning, hierarchy, reflexiveness.

We take a closer at those relevant to morphology, the main focus of the current thesis.

First of all, semanticity is the property whereby some elements of language refer to

objects of the real world. For instance, potato refers to a particular type of vegetable. At

the same time, there are such elements that stand for a whole class of similar objects, such as

flower that signifies any flower. Some elements, such as morphemes, might not stand for

any real objects, but rather generalise to more abstract concepts. For instance, -s in cats is

a sign of plurality. As Burlak (2017) notes, it is essential that semanticity of communication

system requires the signals to be detached from the objects they refer to, and therefore it is

closely related to arbitrariness of sign.

Another important feature, productivity, refers to the ability to express and produce

an unlimited number of new utterances from a limited number of initial elements. Clearly,

children do not only memorise utterances but are able to generate new ones based on rules

and patterns they learn from adult speech. U-shaped language development (Ervin, 1964)

and Nicaraguan sign language (Senghas et al., 2004) emergence are good examples of human

productivity. In particular, in the first case children attempt to generalise over patterns

they see in the language and reconstruct the grammar, leading to over-generalisation and

production of regular forms in place of irregular ones (for instance, runned instead of ran).

Nicaraguan sign language evolved as a by-product of interaction between deaf children.

The children initially knew only gestures that they used at home (i.e. the gestures were

individual-specific and idiosyncratic), and after they all started school, the gestures became

more unified and year-by-year structure appeared.

Hauser et al. (2002) state that recursion is the main and unique component of human

language.1 The mechanism of recursion enables any sentence to be easily embedded

into a larger phrase, for instance, starting with I thought that .... This holds for

morphology as well, i.e. a stem could possibly serve as a base for a new word. For instance,

1This statement significantly differs from Chomsky’s earlier position with respect to language expressed in
Chomsky (1975).
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read→ re-read→ re-re-read. This could be easily extended further if there is a

pragmatical necessity to express such a meaning. Similarly, in some languages, we can form

a potentially infinite chain of diminutive derivations. For instance, in Slovak it is possible to

use suffix reduplication to form an adjective malilililinký meaning “very-very-very-

very small” (Körtvélyessy, 2014).2 Recursion presents in most, if not all, human languages.

There is an ongoing debate about Pirahã, a tribal language of the Amazon River region. One

of the main linguists studying this language, Everett, states (Everett, 2009; Everett et al.,

2005) that the people speaking this language do not use recursion, and this poses a serious

question for the statements mentioned above.

Pinker and Jackendoff (2005) presented a critical view of the ideas expressed in Hauser

et al. (2002). If we look at conceptual structure, many concepts are unique to humans

only. For instance, the notion of a week is entirely based on an ability to count and number

abstraction, and it is likely not possible to be learned without language. They also point

out that individual elements of language are not organised chaotically but rather form a

system. Moreover, the system presents a certain level of hierarchies, one for morphosyntax

(starting from morpheme→ grammatical word→ ... → sentence→ text) and another one

for phonetics (phoneme→ syllable→ phonetic word→ ... → phonetic sentence).3 Words

also relate to each other as hypernyms, synonyms, meronyms and other types of lexical

semantic relations on the one hand and morphologically on the other. For instance, we can

take all word forms for run such as run – runs – ran – running, or its derivations

runable – runner – run away – run out, or, alternatively, we can take all the words

ending with -er and expressing agentive meaning such as runner – jumper – mover.

Crucially, Pinker and Jackendoff also note that words’ meanings embed information about

their compatibility, e.g. as valence in verbs. Some verbs, such as run in the meaning of

“moving fast by foot”, require a single argument (a subject) whereas put requires three

arguments corresponding to “who?”, “what?”, and “where?” questions.

2English lengthenings such as coooooool are not relevant to recursion, as there is no notion of a discrete
morphological process being applied recursively so much as reflection of emphasis-based phonetics in the
lexical form.

3“A→ B” stands for “B is composed of A”, i.e. hierarchically A is lower than B.
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Therefore, a successful model should include all the aforementioned components, i.e.

be recursive and the concepts there expressed by words need to form a complex associative

network. In the following section, we provide a detailed description of different types of word

formation, their interplay, as well as existing theoretical approaches to model the underlying

processes.

2.2 Morphology

2.2.1 Linguistic approaches

In the traditional Saussurean view, a linguistic sign consists of two parts: a signified concept

(which includes sensory information of visual, auditory, or tactile kind) and a signifier, an

acoustic image for it. For instance, /kæt/ corresponds to a notion of “cat”. This unity

of the signifier and the signified is a fundamental element in Saussure’s semiotic theory.

For Saussure, it is uncontroversial that a mapping between them is arbitrary. Hence, a

feline creature is referred to in English as cat, in French as chat, and neko in Japanese.

Clearly, this statement does not hold true for morphologically complex words with transparent

meanings. On the one hand, the signifier is not motivated by the nature of the signified

concept, and, therefore, is arbitrary with respect to the concept. But, on the other hand,

language is a social phenomenon, so the sign is not purely subjective but rather appears as

a result of a consensus in the process of communication. Anderson (1992) exemplifies the

relationship between the form and the meaning with discontentedness as a “state of

being discontented ”. Discontented is related to “characterised by notable discontent”,

which could be decomposed into dis+content, i.e. opposite to content. Finally, the

noun content could be based on the adjective content (“satisfied”). Therefore, he

notes, “there are several layers of reference to meaning, rather than a single homogeneous

association of a spoken form with some semantic content” (Anderson, 1992, p. 10). Each time

a morphologically complex word is decomposed into its constituent parts, and, therefore, there

should be a systematic and regular mapping between subparts of the form and corresponding
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subparts of the meaning. Anderson provides a good example in order to illustrate the

decomposition of the form and the meaning:

NOUN

(“state-of-being”)-ness

ADJ

(“characterised-by”)-ed

NOUN

NOUN

/0

ADJ

content

(“opposite”)dis-

The example provides evidence that discontentedness is not a single sign, but

rather should be considered as a structured composition of some individual simple signs.

Structuralists, therefore, proposed a simple model that stated that a) every word is composed

of morphemes; b) every morpheme in a form is represented by exactly one allomorph, a

variant form of a morpheme; and c) morphemes are organised into hierarchical structures.

Further, the generativists’ view of word structure was based on these principles. They took

the notion of morpheme unchanged; but the generative approach did not specifically address

allomorphy (i.e. cases when a single morpheme has multiple surface realisations) instead

reducing it to phonological modelling. Similarly, they assumed that principles underlying

word-internal structure and morpheme combination could be accommodated by syntax.

A substantial part of recent morphological research has been focusing on the nature

of the form – meaning mapping: some morphologists proposed it is rule-based similar to

phonological rules, while others, as noted above, suggested the use of hierarchical struc-

tures analogous to syntax. American structuralists referred them as Item and Process (IP)

(Boas et al., 1947; Hockett, 1954; Steele, 1995) and Item and Arrangement (IA) (as in

Bloomfieldian (Bloomfield, 1933), Post-Bloomfieldian (Harris, 1942; Hockett, 1947, 1954),

and Generative (Lieber, 1992)) theories, respectively. In the latter case, complex words are

decomposed into morphemes, i.e. minimal meaning-bearing units. Therefore, words are

only seen as a composition of constituent morphemes (such as /kæts/ = /kæt/ + /s/).



18 Background

Item and Arrangement Item and Process
/kæt/ /s/ /kæt/→ /kæts/

[ root ] [ plural ] [ +N +plural ]

Table 2.1 Examples of /kæts/ representation in “Item and Process” and “Item and Arrange-
ment” theories.

This view faces difficulties in the case of irregular forms that could not be analysed in such

a way (e.g. /w@nt/ cannot be decomposed and represented as /go/ + /ed/) and have

to be recognised as a whole. The former one focuses on a lexical base and processes that

add, remove, or modify properties simultaneously affecting the form of the base. Hence, the

approach does not suffer from the problem of vowel alternations or irregular forms mentioned

earlier.4 Anderson (1992) and Stump (2001) note that these models are also suitable in order

to address derivational morphology, i.e. principles of new word formation.

So far, we briefly highlighted the idea that words can be further decomposed into more

basic units, and we also described two general linguistic approaches to word formation,

arrangement-based and process-based. In the following section, we provide a typological view

on morphology, i.e. we classify languages with respect to their morphological expressiveness.

2.2.2 Morphological Typology

Depending on the way the relations between words are expressed within a sentence, lin-

guists identify three main groups of languages, namely analytic, isolating and synthetic.

In analytic languages, such as Modern English, relations are mainly expressed by prepo-

4 Stump (2001) classifies morphological theories into two types: lexical and inferential. In inferential
systems, a systematic relation between a lexeme’s root and all inflected forms in its paradigm is expressed by a
set of rules or formulas. In lexical systems, on the other hand, the mapping between inflectional form marking
and a set of its corresponding morphosyntactic properties is similar to an association between a lexeme’s root
and its grammatical and semantic features. Therefore, in lexical theories a morpheme constitutes a unit of
structure, whereas in inferential ones it does not. Second, Stump also provides an extra dimension by identifying
theories as realisational or incremental. Both of them identify a connection between morphosyntactic properties
(such as noun plurality) and their inflectional exponents (such as endings -s/-es). In a realisational model,
“a word’s association with a particular set of morphosyntactic properties licenses the introduction of those
properties’ inflectional exponents”, while in an incremental model “words acquire morphosyntactic properties
only as a concomitant of acquiring the inflectional exponents of those properties” (Stump, 2001, p. 3). Further,
Stump argues that the inferential/realisational model best fits and describes inflectional morphology.
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sitions and particles, although some inflectional morphemes still remain from the declen-

sion system of Old English (such as pronoun forms I/me/mine, he/him/his, and

they/them/their).

(2) Chinese (Isolating)

wǒmen

I.PL.AN

xué

learn

le

.PAST

zhè

this

xiē

.PL

shēngcí.

new word.

“We learned these new words.”

(3) Russian (Synthetic)

My

We

vyučili

learn.PAST.PL

eti

this.ACC.PL

novyje

new.ACC.PL

slova.

word.ACC.PL

“We learned these new words.”

On the other hand, as we will demonstrate in Chapter 5, these languages often have a

comparatively rich derivational system. Isolating languages present an extreme case of that

and lack any inflectional morphology. Mandarin Chinese and Vietnamese are examples of

this type. In synthetic languages, words consist of many morphemes, i.e. multiple concepts

here are realised within a single word. For instance, as illustrated in (2), the past tense in

Chinese is expressed by a certain particle, le, whereas in Russian, since it is a synthetic

language, it is realised together with a plural marker in a single form of the corresponding

verb. An extreme case here is polysynthetism, i.e. the situation of a word being composed of

a large number of morphemes and conveying a sentence-level meaning. Here is an example

of West Greenlandic taken from Fortescue et al. (2017):

(4) West Greenlandic (Polysynthetic)

Nannu-n-niuti-kkuminar-tu-

Polar.bear-catch-instrument.for.achieving-something.good.for-PART-

rujussu-u-vuq.

big-be-3SG.INDIC

“It (a dog) is good for catching polar bears with.”
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Two extra classes are traditionally specified within synthetic languages: agglutinative and

fusional. In the first case, morphemes are concatenated without change or modification in

their form, whereas in the second type a single morpheme denotes a combination of grammar

tags. All Slavic languages, Sanskrit, Latin, Ancient Greek correspond to the fusional type.

Turkic and many Uralic languages, Japanese (with postpositions), and Korean are examples

of agglutinative languages.

Consider the following example of agglutinative declension for Estonian:

(5) Estonian (Agglutinative)

ilus-a-te

beautiful.PL.GEN

raamat-u-te

book.PL.GEN

“of beautiful books (Genitive Case, Plural)”

Here, each morpheme expresses a particular grammar feature (the genitive case or plural

number).

An example of fusional declension (Russian) is:

(6) Russian (Fusional)

krasiv-yh

beautiful.PL.GEN

knig+0

book.PL.GEN

“of beautiful books (Genitive Case, Plural)”

Here, a single morpheme (e.g., adjectival -yh) simultaneously expresses a combination of

grammar features (both the genitive case and plural number).

Another example of fusional morphology is presented by Semitic languages:

(7) Hebrew (Templatic)

sfarim

book.PL.NOM

yafim

beautiful.PL.NOM

“beautiful books (Nominative Case, Plural)”
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Here, a pattern (template) is applied to a root (which typically consists of 3 consonants, e.g.

s.f.r in the case of “book”) in order to produce a word form (such as sefer for “a book”,

hasefer for “the book”, sfarim for “books”, or even sifriya for “library”).

2.2.3 Morphology-Syntax Interface: an example of grammatical case

The interplay between morphology and syntax can be best illustrated in terms of grammatical

case. Grammatical case is one of the most important but, at the same time, vaguely defined

grammatical categories that is usually expressed by means of morphology. A canonical case

stands for a prototype or an expression of syntactic or semantic role on a noun. Malchukov

and Spencer (2009) discuss bounds of the definition. A set of “classical” cases such as

the nominative, the accusative, the dative to mark an agent, a direct object and a recipient,

respectively, might be extended if different languages are considered. For instance, the

vocative is typically used to refer to an object being addressed and does not express a

syntactic or a semantic role, but is a means of referring to the addressee.

(8) Ukrainian (Slavic)

Hanno,

Hanna.VOC

jdy

come.IMP.SG

sjudy!

here!

“Hanna, come here!”

Another example comes from spatial cases. Peoples living in mountain areas might

express various spatial relations such as “up the hill” or “down the hill” morphologically

(Creissels, 2009). All these categories greatly extend the case definition bounds.

Still, the notion of grammatical case remains elusive since it is typically hard to assign a

particular set of roles to each case. Moreover, the precise number of cases in a language can

be controversial and significantly vary.5 For instance, in Russian it ranges from six to eleven

5Contemporary views on grammatical case have been influenced by Greeks who were one of the first to
describe the case system. Even our view on the nominative case as being primary and other cases falling out of
it comes from the Greeks. The Greeks described their case system, ptôsis, which looks quite close to what we
have now (Malchukov and Spencer, 2009). And currently the main definition of the case stands as follows,
“The grammatical category of the name, expressing its syntactic relations to other words of the utterance or
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NOMINATIVE kartr
¯

agent
ACCUSATIVE karman object

INSTRUMENTAL karan
¯
a instrument

DATIVE sam
¯

pradāna destination/recipient
ABLATIVE apādāna source
LOCATIVE adhikaran

¯
a locus

Table 2.2 Cases and Pān. ini’s kārakas

(Zaliznyak, 1967).6 A similar concept, kārakas, appeared in Pān. ini’s Sanskrit grammar from

600BC to 300BC. Kārakas described relations between nouns and their governing verb and

looked more like what we would call semantic roles nowadays: agent, object, instrument,

destination, and others. Table 2.2 illustrates the mapping between kārakas and modern cases.

The case category is typically seen as being expressed morphologically. Therefore,

Modern English is considered to be a case-poor language, since the grammatical case is

only left marked on pronouns (compared to Old English in which nouns had singular and

plural forms corresponding to five grammatical cases7). On the other hand, one can always

say that grammatical case roles in English are expressed via prepositions and word order.

For example, the utterance I saw him yesterday is grammatically correct while *I

saw yesterday him is not. That would be explained by a locality restriction on case

assignment, so the cases are assigned to the first nominal. Similar restrictions apply if

pronouns are replaced with nouns. This means that nouns also have syntactic case marking

that refers to syntactic structure. Such an interplay between morphological and syntactic case

is closely related to the problem of distinguishing case allomorphs (such as /s/, /iz/,/z/

all corresponding to the plural suffix in English nouns) and different cases. Moreover, in

many languages, a single grammatical case might be realised in the form of another case

for a specific subset of objects. For instance, the Russian accusative is formally identical

to the utterance as a whole, and also any grammeme of this category (the concrete case)” (Uspensky, 2002,
p. 299).

6Zaliznyak (1967) developed a mathematical definition of grammatical case as a set of classes of equivalence
that was initially proposed by Kolmogorov.

7According to Quirk and Wrenn (2002) and “King Alfred’s Grammar” available at http://www.csun.
edu/~sk36711/WWW/KAG/

http://www.csun.edu/~sk36711/WWW/KAG/
http://www.csun.edu/~sk36711/WWW/KAG/
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to either the Russian genitive for animate objects of masculine gender or to the Russian

nominative for inanimates, with only the exception of nouns ending with -a, -ja where

it has its own unique form.8 Many of these differences can be explained from a diachronic

perspective. Such variations often start from alternations in syntactic constructions and

then develop into the direction of non-canonical objects and subjects, and finally end up as

purely morphological matter. As Malchukov and Spencer (2009) also mention, the notion of

syntactic case should be motivated syntactically in the sense that it helps to generalise across

different declension classes.

2.2.4 Inflections

Inflectional morphology is a set of processes through which the word form outwardly displays

syntactic information, e.g., verb tense. It follows that an inflectional affix typically neither

changes the part-of-speech (POS) nor the semantics of the word. For example, the English

verb to run takes various forms: run, runs and ran, all of which convey the concept

“moving by foot quickly”.

2.2.4.1 Inflectional Paradigm

As mentioned in Section 2.1, concepts are not isolated of each other but rather are related

by a wide spectrum of relations. Saussure in his works (Saussure, 1959) referred to them as

associative relations. For instance, the Russian words letaju “fly.V.PRES.1SG”, letala

“fly.V.PAST.F.SG”, and letajuščij “fly.PART.M.1SG” all share the same lemma. At

the same time, we can look from a different perspective and observe regularities in letal

“fly.V.PAST.M.SG”, kričal “cry.V.PAST.M.SG”, mečtal “dream.PAST.M.SG”, i.e. a

common -al suffix that specifies the past tense masculine singular form. Alternatively, we

can also group the words by common semantics (hyponyms, synonyms, etc.), or any other

feature. One of the most typical views on paradigm relates to the groupings based on the

common lemma (inflections). So, what is an inflectional paradigm? First, as Pounder (2011)

notes, we can focus on patterns specific for a particular lexico-syntactic class. Second, we can

8Therefore, it is considered as a “weak” case.
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alternatively consider various forms of a single lexeme. For example, a typical English verb

may have slots in its inflectional paradigm corresponding to its lemma (write), past tense

(wrote), past participle (written), and third-person singular (writes) forms. These

forms are related by a consistent set of transformations such as suffixation. Traditionally,

there is no doubt about the paradigmatic nature of inflections since they present a high level

of regularity. Even though there are irregularities, generally all paradigmatic variants are

legal. Some of the irregularities can be explained if we look at them diachronically. Table 2.3

illustrates how verbal inflection changed over time. In Old English and Proto-Germanic

there were two classes of verbs: strong and weak, as the Grimm brothers referred to them

in Grimm (1890). In Old English, the strong verbs produced past forms by means of stem

vowel alternation (and their participle typically ended with -en), whereas the weak ones

attached a suffix. The weak verbs comprise regular verbal inflection (-ed suffix) in Modern

English. The strong ones correspond to irregular inflections. Another important observation

can be made with the strong verbs. Although in Proto-Germanic we see a high level of

paradigm regularity, it is not the case in Modern English. Some verbs still end with the

suffix -(e)n (stolen, broken) while others (won, come) lost this ending. A closer

look at their forms reveals that the -en disappeared in verbs having a nasal (n, ng, m)

preceded by a vowel in the stem. Although in Modern English the irregular verbs seem to be

disconnected, Proto-Germanic inflection was quite regular, but phonetic changes over time

made the connections less obvious.

Clearly, such irregular changes are less productive than regular ones in Modern English.

This is also supported by observations in child language acquisition when at some stage

children begin to over-generalise and apply regular patterns to irregular verbs (U-shaped

learning described in Section 2.1). As mentioned in Section 1.2, in this thesis we only focus

on the synchronic view on language and leave study of diachronic aspects for future work.

Now, if we look at Russian verbal inflection illustrated in Tables 2.4 and 2.5, we observe

that the forms conjugate in person, number, tense, and mood. Each individual paradigm also

corresponds to a particular aspect, and perfective and imperfective forms have two different

paradigms. Importantly, in the perfective paradigm we observe empty slots for some forms
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Language/Infinitive Present, 1SG Past, 3SG Past Participle

(S3) to win
Modern English win won won

Old English winne wann (ġe)wunnen
Proto-Germanic *winnō *wann *wunnanaz

(S4) to come
Modern English come came come

Old English cume cōm (ge)cumen
Proto-Germanic *kwemō *kwam *kumanaz

(S3) to find
Modern English find found found

Old English finde fand (ġe)funden
Proto-Germanic *finþō *fanþ *fundanaz

(S3) to rise
Modern English rise rose risen

Old English rı̄se rās (ġe)risen
Proto-Germanic *rı̄sō *rais *rizanaz

(S4) to steal
Modern English steal stole stolen

Old English stele stæl stolen
Proto-Germanic *stelō *stal *stulanaz

(W1) to keep
Modern English keep kept kept

Old English cēpe cēpte cēped
Proto-Germanic *kōpijō *kōpidē *kōpidaz

(W1) to send
Modern English send sent sent

Old English sende sende (ġe)sended
Proto-Germanic *sandijō *sandidē *sandidaz

(W2) to love
Modern English love loved loved

Old English lufie lufode (ġe)lufod
Proto-Germanic *lubō *lubōdē *lubōdaz

(W3) to like
Modern English like liked liked

Old English lı̄cie lı̄code (ġe)lı̄cod
Proto-Germanic *lı̄kijō *lı̄kdē *lı̄kdaz

Table 2.3 English verbal inflection classes explained diachronically. “*” stands for recon-
structed forms.

9
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Person, Number Future Present Past Imperative

1SG napišu –
M napisal

–
F napisala

2SG napišeš`
– M napisal

napiši
F napisala

3SG napišet
– M napisal –

F napisala
N napisalo

1PL napišem - napisali -
2PL napišete - napisali napišite
3PL napišut - napisali -
PARTICIPLE, PAST, ACT. napisavšij
PARTICIPLE, PAST, PASS. napisannyj
PARTICIPLE, PAST, ADV. napisav(ši)

Table 2.4 An example of inflectional paradigm. Conjugation of Russian word napisat`
“write (perfective)”.

such as present tense indicative and participle, present tense. Contrary to one of the most

common claims about inflectional paradigms, namely their completeness (non-defectiveness),

we indeed observe that here it does not hold true. Certainly, one could argue that they should

be treated as different paradigms. Now, if we compare future tense forms, we notice that

their formation processes differ as well. The imperfective forms are produced by applying

be.Person.Number + infinitive pattern. Finally, participle forms are considered

to be a part of the paradigm while 1) the part of speech changes; and 2) each of them has its

own distinct paradigm.10 This means that participles are behaving similar to derivation and

are, indeed, borderline cases as discussed later.

Adjective declension system might also present empty slots or variations in forms. As

Table 2.6 shows, the Russian instrumental case allows two different endings for feminine

forms. Also, the short form of the adjective allows variation in stress for feminine and

neuter. In addition, Russian grammar assigns restrictions to the short forms, i.e. only can

qualitative adjectives have short forms. For the rest of adjectives, such as derevjannyj

“wooden” or anglijskij “english”, the corresponding slots will be empty. Similar to

10Therefore, it is crucial for any NLP system to capture aspect well.
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Person, Number Future Present Past Imperative

1SG budu pisat` pišu
M pisal

-
F pisala

2SG budeš` pisat` pišeš`
M pisal

piši
F pisala

3SG budet pisat` pišet
M pisal

-F pisala
N pisalo

1PL budem pisat` pišem pisali -
2PL budete pisat` pišete pisali pišite
3PL budut pisat` pišut pisali -
PARTICIPLE, PRESENT, ACT. pišuščij
PARTICIPLE, PAST, ACT. pisavšij
PARTICIPLE, PAST, PASS. pisannyj
PARTICIPLE, PAST, ADV. pisav(ši)

Table 2.5 An example of inflectional paradigm. Conjugation of Russian word pisat`
“write (imperfective)”.

English, Russian adjectives have comparative forms that are expressed morphologically or

non-morphologically. Typically they are not included into the same paradigm.

Szymanek (2010) provides an example for declension of Polish adjective zły “bad,

evil” and noun zło “badness, evil”. Although they share the same stem zł, there are two

Case Masculine Neuter Feminine Plural
NOM krasnyj krasnoje krasnaja krasnyje
GEN krasnogo krasnoj krasnyx
DAT krasnomu krasnoj krasnym

ACC
AN krasnogo

krasnoje krasnuju
krasnyx

INAN krasnyj krasnyje
INS krasnym krasnoj(-oju) krasnymi

PREP krasnom krasnuju krasnyx
Short Form krasen krasno krasna krasny

Table 2.6 An example of inflectional paradigm. Declension of Russian word krasnyj
“red”.
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distinct sets of inflectional suffixes used, and therefore, the two words belong to two different

paradigms. Therefore, the change of paradigm typically yields the change of word-class.11

2.2.4.2 Theoretical approaches to Inflections

In this thesis, we discuss approaches to generation of word forms. Therefore, we provide a

brief summary of linguistic views that address the following questions. First, which forms

are likely to be memorised and serve as a basis for generating the others? Second, whether

we need to model processes underlying the word production (agnostic to morphemes) or we

actually need to identify and arrange morphemes.

Regarding the first question, as we mentioned earlier, people speaking languages such

as Latin or Sanskrit are unlikely to memorise all word forms. Some might argue that both

exhibit a modest number of possible forms, but cases of languages with higher degree of

synthetism add more counter-evidence of the memorisation hypothesis. In Archi, a Caucasian

language (Kibrik, 1998), the number of forms for every verb can reach 1.5 million. Another

counter-argument is humans’ ability to produce and comprehend forms they did not observe

before. Numerous experiments on child language acquisition (e.g. Ervin, 1964) provide

strong support for the idea that the forms are actually generated rather than memorised.

This is related to computation and storage problem. Various psycholinguistic studies such

as Jaeger et al. (1996) and Ullman (2001, 2004) claim that regular inflectional forms are

processed as rules rather than stored in memory while irregulars and derived words are part

of the mental lexicon and are retrieved as a whole. Although Baayen (2007) argues that

such a dichotomy is overly simplistic. There is also general agreement in linguistics that

frequently used complex words become part of the lexicon as wholes, while most other

words are likely to be constructed from constituents (Aronoff and Lindsay, 2014; Bauer,

2001).12 These words typically follow derivational patterns, or rules, such as adding -able

to express potential or ability or applying -ly to convert adjectives into adverbs. This idea

11The last argument could be easily questioned by a counter-example such as Russian nouns škola “school”
and škol‘nik “school boy” where we do not observe a change of word-class.

12Although some neuroscience studies such as Kireev et al. (2015) reported that (Russian) regular verbs
production does not involve Broca’s area while for irregulars it is required in order to choose the right paradigm
and rule of production.
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is also in agreement with Chomsky’s Universal Grammar principles, and has been realised

in the form of Dual Mechanism Theory.13 The theory allows mechanisms for extraction

of grammatical rules by the systematic analysis of inputs. Pinker and Prince (1988) call

them “symbol-manipulating processes”. The proponents of the Dual Mechanism rely on the

studies of aphasia and other language disorders. For instance, Marslen-Wilson and Tyler

(1997) witnessed a dissociation between regular and irregular English past tense production

in their study with aphasics whose native language is English. These differences has been

confirmed in further studies with children having Williams syndrome (Clahsen and Almazan,

1998). The difference also applies to processing of semantically and syntactically anomalous

constructions (Clahsen, 1999; Kutas and Hillyard, 1980). The two different approaches to

the language faculty led to the famous “The Past Tense Debate” that is described in more

detail in Section 2.3.5.1.

Hereafter, we base our models on the assumption that some word forms are actually

generated on the basis of others. Next, we need to identify which forms are prior to others.

Albright (2002) focuses on paradigms and investigates a hypothesis that speakers choose

a single form as the base one, and it should be a surface form. As he notes, the base form

should be “maximally informative”, i.e., the one “that suffers the least serious phonological

and morphological neutralizations” (Albright, 2002, p. 7). He further makes a stronger

claim that this choice is global, i.e. all lexical items are produced on the basis of the same

paradigmatic slot. Several models consider inflected form derivation from a single base

form which typically corresponds to lemma form (for instance, for nouns it could be the one

corresponding to the nominative singular).

In order to address the second question, recall two Hockett’s models discussed in Sec-

tion 2.2.1, “Item and Arrangement” and “Item and Process”. “Item and Arrangement”

requires knowledge of morphological rules and morpheme lists, although does not present

any hierarchy of the forms themselves. The morphological rules operate on underlying repre-

sentations of sub-parts of the words. The resulting representations are afterwards combined

and transformed into surface forms. Distributed Morphology (Halle and Marantz, 1994),

13It is also refferred as “Dual Route”.
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DATR (Evans and Gazdar, 1996), and Lieber’s syntactic approach to morphology (Lieber,

1992) belong to this class.

In “Item and Process” models (Hockett, 1954) new words are produced on the basis

of others by means of morphological rules that are applied directly to their surface forms

(sequentially). As Hockett notes, the past tense form baked is formed from bake by a

suffixation process. Importantly, under this model, one form becomes superior to others,

and this poses a question about the nature of the priority, whether it is historically motivated

or some other criteria such as information-based guide it. Aronoff’s word-based model

(Aronoff, 1976), extended word and paradigm model (Anderson, 1992), lexical relatedness

model (Bochner, 2011), and whole word morphology (Ford et al., 1997) represent this type

of model.

In Section 2.3 we will discuss contemporary models representing both classes and show

the superiority of process-level modelling. To summarise, in this section we discussed the

notion of inflectional paradigm and briefly summarised existing linguistic approaches to

morphology. The next section provides some background on the second type of morphology

that we aim to model in this thesis, derivational. We discuss its relationship to inflection, and

give a quick summary of linguistic views on it.

2.2.5 Derivations

The second major topic of the thesis relates to word formation, and, in particular, derivations.

Here we provide a brief summary of linguistic approaches to derivation and also make an

attempt to place inflections and derivations on a single scale of productivity and specificity.

Similarly to the example for inflections, we can identify several slots forming a derivational

paradigm. For instance, the verb to write has the agentive nominalisation (writer), the

result or process nominalisation (writing) and the “ability” adjectivisation (writable).

On the one hand, there are consistent patterns associated with each derivational slot, i.e.

agentives are often expressed by -er or -or suffixes. On the other hand, most of the

proposed paradigm tables appear to be very sparse. For instance, a significant number of

verbs do not have a derivational form corresponding to patient nominalisation (e.g., write or
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Case Masculine Neuter Feminine Plural
NOM udobočitaemyi udobočitaemoje udobočitaemaja udobočitaemyje
GEN udobočitaemogo udobočitaemoj udobočitaemyx
DAT udobočitaemomu udobočitaemoj udobočitaemym

ACC
AN udobočitaemogo

udobočitaemoje udobočitaemuju
udobočitaemyx

INAN udobočitaemyj udobočitaemyje
INS udobočitaemym udobočitaemoj(-oju) udobočitaemymi

PREP udobočitaemom udobočitaemuju udobočitaemyx
Short Form udobočitaem udobočitaemo udobočitaema udobočitaemy

Table 2.7 An example of inflectional paradigm. Declension of Russian word
udobočitaemyi “readable”. “Short form” stands for a short forms of the adjective
(when part of its ending can be truncated).

think). Moreover, the agentive nominalisation could also be expressed with less productive

suffixes such as -ee as in standee, or -ist in cyclist. The last suffix class, at the

same time, presents a whole set of other meanings sharing the concept person (compare

artist, violinist, Baptist, capitalist, Marxist). While most attempts at

morphological modelling have targeted inflectional morphology, derivational still remains

largely unstudied.

2.2.5.1 Derivation and inflection: a continuous scale or a dichotomy?

Paradigms and word class change. Historically, neither structuralism (Harris, 1946) nor

generative linguistics (Chomsky, 2014) made any clear distinction between inflection and

derivation. Bloomfield (1933) noted that there were no obvious criteria for separating the

two. Aronoff (1976) was one of the first to try to distinguish their characteristics.

Pairs such as sing – sings and read – readable differ in many ways, and, most

importantly, each word of the last pair stands for a different lexeme. Read, as a verb, follows

a particular conjugation scheme as well as readable, as an adjective, follows a particular

declension pattern (consider its translation into Russian, udobočitaemyi as illustrated

in Table 2.7). In this way, it seems to be quite clear that these pairs correspond to two

different phenomena. But what happens in adverbalisation cases such as interesting

– interestingly (or, in Russian, interesnyj – interesno)? In the case of adver-

balisation, the meaning is quite predictive and the surface form realisation is regular (in

English, it is usually just attachment of -ly suffix, in Russian it is also regularly expressed
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by -o suffix ). Unlike interesting, the form interestingly does not have its own

paradigm. Therefore, should we consider it to be a part of the paradigm for interesting?

Similar question raises towards adjective degrees. Should comparative and superlative forms

be parts of another paradigm? In addition, linguists often highlight that inflections do not

change word class (its part of speech) whereas derivations do. This does not hold true for

participle formation as in move – moving. Even though participles change part of speech,

they are usually considered as a part of a verb’s inflectional paradigm.

Still, the “paradigm” concept is mainly applied and used in inflectional morphology, and

is not specified outside of this domain. Historically, many language grammars were described

as paradigms where a table slot corresponded to a particular feature combination. But if we

face an undocumented polysynthetic language, it is troublesome to identify the features, and

there is no straightforward way to find out what should form the paradigm.

Productivity. The distinction between the two types of morphology is also a terminological

problem since no strict definition had been proposed in order to differentiate them. For

instance, a criterion proposed by Aronoff states, “Inflectional morphology tends to be more

productive than derivational morphology” (Aronoff and Fudeman, 2011, p. 169). This

formulation places derivation and inflection into a continuous scale rather than identifies a

binary criterion. The term productivity itself presents several senses, and, therefore, adds

more vagueness. One of the most common senses relates to the regularity and states that the

resulting word form is predictable both in its meaning and surface form. A good example

for that is the English plural noun ending /z/. First of all, the rule only applies to English

nouns with singular number property. Second, it is usually realised as adding -s or -es

ending to the lemma form.14 If we now look at derivational pattern -able/-ible with

the meaning of “which can be Verb-ed”, it attaches to almost all transitive verbs, i.e. it is

productive and applies to a broad range of base forms, similarly to inflection. As (Bauer,

14On the other hand, there are some exceptional cases such as mouse - mice, child - children,
or lemma - lemmata. Should these irregularities be considered as exceptions in inflections or attributed to
derivations? Many of such irregularities can be addressed if we consider etymological information and look
at the data diachronically rather than synchronically (as we presented in Section 2.2.4.1). Clearly, morpheme
productivity changes over time. Two first cases originate from Old English whereas the last one comes from
Ancient Greek, and, therefore, follows its plural formation pattern.
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1988, pp.79-80) notes, “derivation is more productive than is generally thought, ... inflection

is less productive than is frequently believed”.

In both derivations and inflections we also observe competitive forms and idiosyncrasy.

For instance, Booij (2006) gives an example of the English plural noun brethren that does

not just signify a plural form of brother but rather refers to more specific concept of male

members of a religious community. Derivations usually present more such idiosyncratic

cases. Mathews in “Word and Paradigm” (Matthews, 1965) model excludes suffix realisation

from productivity and only considers the meaning. We observe that inflections are indeed

more productive and form paradigms, while derivations do not typically behave like that.

Restrictedness. It is hard to discuss productivity without mentioning restrictedness. These

two concepts typically go side-by-side. Unlike inflections, many derivational patterns are

subject to semantic, pragmatic, morphological or phonological restrictions. Consider the

English patient suffix -ee, which cannot be attached to a base ending in /i(:)/, e.g., it

cannot be attached to the verb free to form *freeee. Restrictedness is closely related

to productivity, i.e., highly productive rules are less restricted. A parsimonious model of

derivational morphology would describe forms using productive rules when possible but may

store forms with highly restricted patterns directly as full lexical items.

Syntactic relevance. Addressing all these terminological issues with definition, in order

to distinguish inflectional morphology, Anderson (1982, 1992) proposes to focus on the

syntactic relevance of inflections, “Inflectional morphology is what is relevant to syntax”

(Anderson, 1982, pp.587). Note that the definition is too broad, i.e., although change of

part-of-speech is relevant to syntax, it is out of scope in Anderson’s model. Anderson makes

agreement the main focus of the distinction. If a language marks Subject–Verb agreement, a

verb specifies its subject’s properties (for instance, when it agrees in number and gender with

a corresponding noun/pronoun) rather than its own properties. For Anderson, this is the main

characteristic of inflections.
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Inflection Derivation
ASPECT Mode of Action
PASSIVE VOICE Derived intransitive verbs
PARTICIPLE Verbal Adjective
INFINITIVE Verbal Noun
CONCRETE CASE Denominal Adverb
GENDER OF ADJECTIVE Gender of Substantive
COMPARATIVE Nominal Intensive Forms

Table 2.8 An example of inflection – derivation mapping from Kuryłowicz (1964).

Parallels between inflections and derivations. Kuryłowicz (1964) draws parallels be-

tween inflectional and derivational morphology. He refers to a change from an inflectional

to a derivational category as lexicalisation, and the opposite process as grammaticalisation.

Table 2.8 demonstrates some examples of how inflectional and derivational categories can be

mapped. In order to illustrate this, Kuryłowicz gives the following examples, Apes are

intelligent animals. Here, the word apes carries two meanings, the meaning of

plural (which is expressed in its form and syntactic relations) and the notion of a collective

noun, because the sentence refers to the whole species rather than some of them. By numer-

ous examples, he shows that these transitions are continuous rather than binary and are clearly

seen if we look at languages diachronically. If we look at passivisation processes, for instance,

the transformation of the utterance John.NOM wrote the book.ACC from active to

passive voice, i.e. The book.NOM was written by John.INS, that differs from

the original sentence syntactically but not semantically, although the latter one also allows

us to omit the agent of the action, i.e. The book was written.15 Now, if we consider

the utterance the red light, we can apply an analogical transformation and get the

redness of the light. And in order to enable such a transformational process one

needs to allow abstract noun formation on the basis of adjectives. The relation between the

former and the latter sentences in this case is similar to active-to-passive transformation.16

15Kuryłowicz additionally argues that the binary construction initially (in Old Latin, Arabic) was primary
with respect to the tripartite expression and might have been the main function of the passive construction.

16Another example comes from deverbal abstracts such as The flower blossoms→The
blossoming of the flower.
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Relevance to stem and morpheme order. Finally, one of the Greenberg universals (Green-

berg, 1963) postulates that derivational suffixes typically occur closer to the stem than in-

flectional suffixes. And it is commonly accepted that inflections are more relevant to syntax,

and, therefore, appear closer to the word’s boundaries. As Baker points out, “morphological

derivations must directly reflect syntactic derivations (and vice versa)” (Baker, 1985, p. 375),

a statement known as the Mirror Principle. Rice (2000) questions this point by providing

some examples from Athapaskan languages, where inflections and derivations appear in less

fixed order. A similar problem raises if we look at the ordering of derivational suffixes. Why

are some particular combinations and orderings more accepted than others? As Saarinen

and Hay (2014) note, why is reddishness better than rednessish? Hay and Baayen

(2002) and Hay and Plag (2004) investigate possible restrictions on affix combinations in

English derivation and propose the “complexity based ordering” model which suggests that

suffixes that are less likely to be detached appear closer to the word stem than those that

can be easily removed. In other words, the suffixes that are more relevant to the word stem

appear closer to it (in accordance with Greenberg universals). In a more recent study, the

authors also test the model on a larger set of suffixes and find that the suffix proximity to

stem correlates inversely with its productivity (Plag and Baayen, 2009). By looking at Bantu

languages, Hyman (2003) demonstrates that affix systems vary, and there are always two

competing objectives: one forces the affix to be compositional and another one pushes it to

follow a fixed order.

In this thesis, we will model and discuss paradigmaticity of both inflections and deriva-

tions and attempt to map them on a continuous scale from more prototypical and composi-

tional instances to idiosyncratic ones (Booij, 2006; Bybee, 1985; Dressler, 1989; Scalise,

1988).

2.2.5.2 Problems in studies of derivations

There are general methodological issues researchers often face when attempting to study

derivations. Since derivation presents a less regular and systematic structure than inflection,

it leads to problems related to its productivity and transparency.
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Many researchers rely on analyses of data done by themselves based on their own

knowledge of a language. Such self-generated data has a range of flaws such as biases

towards more frequently used and familiar items, which might have lexicalised meanings,

and therefore lead to a conclusion that derivations present more idiosyncratic meanings than

they really do. One way to address such a problem is to focus on neologisms since they

are often more morphologically transparent. Neologisms, typically being low-frequency,

are less likely to come to mind. Some researchers generate neologisms themselves, and

afterwards assess the words as existing or non-existing based on their own intuition. But

personal intuition might not be a reliable source. Lieber (1980) stated that “Re- and un-

could only be attached to verbs invoving a change of state, and kill is not such a verb”.

Later, in Lieber and Štekauer (2014) she notes that corpus analysis (on the base of Corpus

of Contemporary American English) shows a few occurrences of rekill and unkill.

Although both of them are infrequent, they are still possible in appropriate contexts. As

Aronoff notes, “Though many things are possible in morphology, some are more possible

than others” (Aronoff, 1976, p.35). This leads to two main conclusions. First, we should not

rely on our own intuition but rather use large corpora. Second, possible words should not be

presented in isolation, they need an example of an appropriate context. Usage of corpora

statistics additionally allows for a better representation of derivational pattern distributions.

2.2.5.3 Derivational Paradigm

As Plank (1994) notes, inflections form a comparatively closed system (paradigms), while

derivations are not that well-organised in terms of form-sense regularities. Dressler (1989) ar-

gues that in both categories we observe more or less prototypical instances. This is supported

by Stump (1991) who suggests that arguments motivating inflectional paradigms could be

also applied to derivations and, therefore, allow the possibility of viewing derivations paradig-

matically. Derivational processes may be organised into paradigms, with slots corresponding

to more abstract lexico-semantic categories for an associated part of speech (Booij, 2008;

Corbin, 1987; Štekauer, 2014). Lieber (2004) presents one of the first theoretical frameworks

to enumerate a set of derivational paradigm slots, motivated by previous studies of semantic
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primitives by Wierzbicka (1988). Contrary to that, Marie (1994) says that derivations should

be regarded in a fundamentally different way than inflections.

A key difficulty comes from the fact that the mapping between semantics and suffixes is

not always clean; Lieber (2004) points out the category AGENT could be expressed by the suf-

fix -er (as in runner) or by -ee (as in escapee). However, both -er and -eemay have

the PATIENT role; consider burner “a cheap phone intended to be disposed of, i.e. burned”

and employee “one being employed”, respectively. Potential nominalisations correspond-

ing to the RESULT of a verb could be -ion, -al and -ment (Jackendoff, 1975). Although

typically an English verb employs only a single suffix realisation (refuse 7→refusal

blocks other candidates such as ∗refusion and ∗refusement), there are cases such as

deportation and deportment but here they signify two different concepts. It is still

unclear what the derivational paradigm should contain and which categories should fill the

slots. Comparatively little work has been done in this area.

Lexeme-Morpheme Based Morphology (LMBM) One promising theoretical framework

describing derivational relations, Lexeme-Morpheme Based Morphology (LMBM), was

proposed by Beard (1995). There, he separates lexical morphemes (noun, adjective, and verb

stems) from grammatical ones. The LMBM theory was largely inspired by earlier ideas of

parallels in lexical (semantic) and syntactic (inflectional) derivational processes expressed in

works by Jerzy Kuryłowicz and Aleksandar Belić.

Kuryłowicz (1936) discussed the functional distinction between lexical (semantic) and

syntactic derivations. The study was inspired by recent investigation on duality in parts of

speech by Slotty (1932). Slotty noted that nouns refer to objects and simultaneously play the

syntactic role of Subject or Object. Similarly, an adjective signifies some object’s quality

and plays a modifier role. A verb refers to an action or a state or a process and functions

as a predicate. On the other hand, this does not always hold true, and we can come up

with multiple counter-examples. Consider, the following sentences in Russian: Belaja

sobaka bejit “A white dog is running” and Sobaka bela “A dog is white”. Both

sentences contain an object’s quality (“white”), but in the first one it is clearly a modifier
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whereas in the second one it plays the role of predicate. Note that in the second sentence

the Russian form for “white” changed from the full form to the short one.17 Based on these

observations, Kuryłowicz identifies primary and secondary syntactic functions and suggests

a rule of formal transformation that states the following principle, “If changes in syntactic

function of word A lead to the change of its form from A to B; then the initial form should be

considered as a primary and the derived one as a secondary”. As an example, he compares

the Latin amat “love.V.PRES.3SG” and amans “Loving.PART.M.SG.NOM” that are only

different syntactically. Since amans is derived from amat, we conclude that for words

of action the predicate function is the primary one, and modifier is the secondary. So, he

formulates the notion of syntactic derivation as a form with the same lexical (semantic)

content as in the initial form, but different syntactic function. Contrary to that, lexical

(semantic) derivations do not change syntactic function. Functions of diminutive nouns are

the same as their base nouns, and transformation of a verb from imperfective to perfective

form does not affect its syntactic role. By extending the definition of derivation, we can also

re-define inflection. For instance, plurality is relevant to both syntactic (as it participates in

agreement) and lexical (as it refers to the number of objects) roles. The Russian example of

“white dog” also demonstrates that in Indo-European languages adjectives in the predicate

role are often marked by an auxiliary verb (“be” + adjective).

Beard’s LMBM theory stands on three hypotheses:

• The Separation Hypothesis distinguishing inflectional and derivational processes from

their phonological realisation (making the functions independent of their realisation).

The hypothesis addresses one-to-many and many-to-one mapping between a morpheme

and its function as well as allows realisation without any functional variation (empty

morphemes such as -al in dramatical, syntactical);

17Unlike the full form, the short does not inflect for the case. Short forms can only be formed from qualitative
adjectives, but (somewhat surprisingly) historically are superior to the full ones since initially the Proto-Slavic
language only had short adjective forms that were of the same nature as verbs.
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• The Unitary Grammatical Function Hypothesis proposing a one-to-one mapping

between inflectional and derivational categories (e.g. Agent, Patient, Location, Posses-

sion; 44 categories in total);

• The Base Rule Hypothesis that states that the universal categories of a word must

originate in a base component (contrary to a transformational component in the sense

of Chomsky (2014)).

Beard identified four groups depending on functions, inherent feature expression, ex-

pressivity, and part of speech change. In terms of the functional derivation system, he

proposed the idea of mapping derivational slots into a grammatical case: “It, therefore,

seems more likely that this type of derivation is based on case functions: (nominative

of) subject, (accusative of) object, (locative of) place (bakery, fishery), (genitive of)

possession (dirty, forested) and material (oaken, woolen), (ablative of) origin

(American, Brazilian), (dative of) purpose (roofing, siding), (instrumental of)

means (cutter, defoliant)” (Beard, 2017, p. 59).

Featural derivation does not change the part of speech of the base form and only affects

some inherent feature of the word such as gender. Jakobson (1932) (and more in Jakobson

(2011)) studied markedness of gender in Russian. He noted that most nouns attribute mascu-

line as the default one, and, therefore, it is not marked. Feminine forms are typically marked

by an extra suffix such as -k (student, “student.M”→ studentka, “student.F”), -sh

(kassir, “cashier.M”→kassirša, “cashier.F”), -ess (poet, “poet.M”→poetessa,

“poet.F”), and others. These examples can be opposed to the pure masculine cases like brat,

“brother.M” and otec, “father.M”.

Transposition is another axis of viewing derivations. It reflects a simple change of

category without any functional change. For instance, walk→ walking (V→ N) or new

→ newness (A→N).

Finally, expressive derivation expresses the speaker’s opinion about the object (e.g.,

diminutives). It neither changes the referential scope, nor the lexical category of the base.

As an example consider the three grades of the Russian word for “rain”: dožd` (“rain”),
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doždik (“little rain”), and doždiček (“very little rain”), all referring to the same concep-

tual category. One might also add doždišče (“strong rain”).

To conclude, we briefly summarised existing views in linguistics on inflectional and

derivational processes and outlined various parallels between them. The following two

sections (Sections 2.2.6 and 2.2.7) are devoted to the datasets that we use and tasks we target

in this thesis.

2.2.6 Resources

Here we list the resources that we use in experiments that are discussed in Chapters 3, 4 and

5.

NOMLEX NomLEX (Meyers et al., 2004) is a dictionary of nominalisations in English.

The database relates the nominal complements to the argument structure of the corresponding

base verb. In total there are about 1,000 entries. Note that the dataset mainly targets

syntactically motivated derivations and does not contain information on subtle semantic

differences such as diminutive or feminitive forms.

Figure 2.1 An example of the NOMLEX data entry for promotion.

CELEX CELEX (Baayen et al., 1993) is a database that contains inflectional and deriva-

tional morphology information for English, German, and Dutch. Derivational forms are pro-

vided as segmentation with POS specification, e.g. attract.VERB + -ion.NOUN→

attraction.NOUN. For English there are approximately 53,000 entries. In addition, it

provides approximately 161,000 inflected forms with patterns describing the word change

process.
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UniMorph: universal morphological annotation schema Most investigations on mor-

phology modelling focused on high-resource languages such as English, German, Russian,

or French. Such a view is biased towards languages with modest levels of morpholog-

ical complexity and a large amount of data available, including grammars and lexicons.

Luckily, during the last decade, a lot of information on languages has appeared in open

source resources such as Wiktionary. Although the information is represented in many

languages, the format of annotation is often quite inconsistent between languages, meaning

it has limitations as a parallel resource. These factors motivated the creation of a universal

language-independent schema for morphological annotation as well as a single repository

called UniMorph (Sylak-Glassman et al., 2015a,b) and the organisation of a series of shared

tasks to promote the development of systems for morphological analysis and inflection. The

UniMorph schema aims to encode inflectional morphological meanings across the world’s

languages. The morphological features are represented as key-value pairs. For instance,

“pojedu [lemma=pojehat`, POS=VERB, Mood=INDICATIVE,

Tense=FUTURE, Person=1, Number=SINGULAR]” (I will go).18 Here, each in-

flected form is provided with its lemma and a set of morphological features. The database

contains inflectional paradigms for over 100 languages as of 20/08/2018.

2.2.7 Tasks

Before starting to describe the models, we first list a number of established tasks in morphol-

ogy.

2.2.7.1 Inflectional Morphology

Lemmatisation is canonicalisation of the wordform, i.e. transformation of an inflected

form into its dictionary variant (=lemma). Typically it also involves prediction of the

morphological tags of the inflected form. For instance, the output of the lemmatisation of

the form created will be its lemma form create and a set of tags such as POS=VERB,

Tense=Past.
18The process of paradigm tables extraction from Wiktionary is described in Kirov et al. (2016).
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Morphological Inflection goes the other way around, i.e. given a lemma form and the

target tags the system has to predict the inflected one. Taking the previous example,

lemma=create, POS=VERB, Tense=Past → created. The task can be easily

generalised and formulated as reinflection, i.e. generation of one inflected form from another

one of the same lemma. Typically, the system is provided with a source inflected form

together with its tags and target form tags. For instance,

form=creates, srcPOS=VERB, srcTense=PRES, srcNumber=SINGULAR,

srcPerson=3, tgtPOS=VEBR, tgtTense=PAST→ created.

In more challenging scenario source tags might be omitted:

form=creates, srcPOS=VERB, srcTense=PRES, srcNumber=SINGULAR,

srcPerson=3→ created.

To some extent, it mimics an L1 language acquisition scenario. The reinflection task involves

analysis of an inflected form followed by synthesis of a different inflection of the same form.

This task supports a more realistic setting, wherein systems might not observe full paradigms.

Paradigm Completion Unlike the previous task on morphological reinflection, here the

systems must complete the inflectional paradigm, i.e. they are supplied with a lemma

and some of its inflected forms and asked to predict the remaining forms in the paradigm.

Table 2.9 illustrates the data setting. Importantly, during training the systems are provided

with complete paradigms. The task is also important in terms of measuring systems’ ability

to extrapolate. It reconstructs the condition of human learners when only a few complete

paradigms are observed, and the learner has to generalise them to unseen ones. Certainly,

such a task also assumes availability of dictionaries and mimics to some extent a typical

L2 (second language) learning setting. The task also simulates learning from a very limited

amount of data (restricted number of inflection tables).

2.2.7.2 Derivational Morphology

Due to the complications mentioned in Section 2.2.5.2, much less work has been done in

terms of derivational morphology.
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Lemma Inflections Inflection Tags Lemma Inflections
lĕto lĕta NOUN;NOM;PL śĕło –
lĕto lĕtow NOUN;GEN;PL śĕło –
lĕto lĕta NOUN;GEN;SG śĕło –
lĕto lĕto NOUN;ACC;SG śĕło –
lĕto lĕśe NOUN;ACC;DU śĕło –
lĕto lĕtami NOUN;INS;PL śĕło –
lĕto lĕtach NOUN;ESS;PL śĕło –
lĕto lĕśe NOUN;ESS;SG śĕło –
lĕto lĕtoma NOUN;DAT;DU śĕło śĕłoma
lĕto lĕto NOUN;NOM;SG śĕło śĕło
lĕto lĕtoma NOUN;ESS;DU śĕło –
lĕto lĕtom NOUN;INS;SG śĕło –
lĕto lĕtoju NOUN;DAT;SG śĕło –
lĕto lĕta NOUN;ACC;PL śĕło –
lĕto lĕśe NOUN;NOM;DU śĕło –
lĕto lĕtowu NOUN;GEN;DU śĕło –
lĕto lĕtoma NOUN;INS;DU śĕło –
lĕto lĕtam NOUN;DAT;PL śĕło śĕłam

Table 2.9 An example of training and test data for paradigm completion subtask of SIGMOR-
PHON 2017. For training, systems are provided with complete paradigms such as the one
for lĕto, and, at test phase, systems are required to predict the missing forms (marked here
by “–”) as illustrated for śĕło.
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Paradigm Completion Similarly to inflections, we can formulate a task of paradigm

completion for derivation. Here, provided with a possible derivational paradigm, we aim

to predict a form for a target slot such as base=run, POS=NOUN, Sense=Agent→

runner.

In addition, in the thesis we introduce contextual inflection and derivation which is a

more realistic setting, i.e. we replace a morphological tag with sentential context and train a

model to predict the word form that fits this context.

2.3 Modelling

Generally, we can identify three classes of morphological models, namely linguistically-

inspired, FSA-based, and neural ones. This section provides a history of computational

morphological models, starting from finite-state automata and finishing with state-of-the-art

neural approaches.

2.3.1 Finite-State Machines

Mathematical Background Earlier approaches to morphology modelling (to address

lemmatisation, inflection, and related tasks) used finite-state machines. In this section, we

provide some theoretical background on this topic. A deterministic finite-state machine

(acceptor, Figure 2.2a) is defined as a quintuple A = (Σ,Q,q0,E,F), where Σ is the input

alphabet, S is a finite set of states, q0 ∈ Q denotes the initial state, E : Q× (Σ∪ ε)→ Q is the

state-transition function; and F ⊆ Q is the (possibly empty) set of final states. A transition

t = (p[t], l[t],n[t]) ∈ E between p[t] as the previous state and n[t] as the next state is labelled

with l[t].

The unweighted FSA provides us with boolean values, and, therefore, we can say that

it is defined over the boolean semiring denoted as ({0,1},∨,∧,0,1). The resulting value

discriminates forms that are valid (accepted by FSA) from those that are not. In some cases

it might be useful to output a score (how valid is the form?). Therefore, following the
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notation used in Mohri et al. (2002)19, we define a weighted finite-state acceptor (WFSTA,

Figure 2.2b) by adding extra parameters to the quintuple, namely λ and ρ , as well as

enriching the transition t with transition weights w[t]: t = (p[t], l[t],w[t],n[t]). Importantly,

we define WFSTA over the semiring (K,⊕,⊗,0,1)20, usually the probability semiring

(R,+, ·,0,1). A sequence of consecutive transitions t1....tk such that n[ti] = p[ti+1] is called

a path in A. A successful path π = t1...tk is a path starting at the initial state q0 and ending at

a final state f ∈ F . A label of the path l[π] is a concatenation of individual arc’s labels on

this path. Its corresponding weight is evaluated as w[π] = λ ⊗w[t1]⊗ ...⊗w[tk]⊗ρ(n[tk]).

Finally, we say that a symbolic sequence x is recognised, or accepted by A, iff there exists a

successful path π such that l[π] = x. The final weight assigned to x by A is then ⊕-sum over

all successful paths π labelled with x.

A finite-state transducer (FST, Figure 2.2c) is an automaton whose transitions between

states are labelled with both input and output symbols. That is, a path maps an input sequence

to an output sequence. More specifically, we define the weighted FST (Figure 2.2d) as T =

(Σ,Ω,Q,q0,E,F) over the semi-ring K, where Ω is an output alphabet, E : Q×(Σ∪ε)×(Ω∪

ε)→Q. The transition t is enriched with an output label lo[t] : t = (p[t], li[t], lo[t],w[t],n[t])∈

E.

FST-based Morphology Figure 2.3 provides an example of FSA that recognises English

adjective forms such as cool, cooler, coolest, coolly or real, unreal,

really. The attentive reader might notice that it also accepts nonce words such as

unbigly and greenly. Therefore, Antworth (1991) proposed a modification as illustrated

on Figure 2.4. There, indices in adj_root signify different classes of adjectival stems. Note

that this is a form-based approach, i.e. the transitions between the states rely on surface

realisation rather than a semantic class. For instance, the negation prefix un- does not attach

to adjectives denoting colors such as red or blue. The closest corresponding meanings

19See also Chris Dyer’s notes on semirings from http://demo.clab.cs.cmu.edu/
fa2015-11711/images/6/63/Semirings.pdf

20Here, K is a set; ⊕ is an additive operator that is commutative and associative; ⊗ is a multiplication
operator that is associative; 0 ∈K is an additive identity element, i.e. 0⊕a = a, and an annihilator, 0⊗a = 0;
finally, 1 ∈K is a multiplicative identity element, i.e. 0⊗a = a

 http://demo.clab.cs.cmu.edu/fa2015-11711/images/6/63/Semirings.pdf
 http://demo.clab.cs.cmu.edu/fa2015-11711/images/6/63/Semirings.pdf
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Figure 2.2 Finite-State Machines

q0start q1 q2 q3

-un

ε adj-root

-est

-er

-ly

Figure 2.3 An FSA for English adjective morphology.

which denote absense of the color would more likely realised by means of -less suffix, i.e.

redless or blueless.

As illustrated in Figure 2.5, FSAs can also be used to model derivational transformations

in English. For instance, it shows the well-known fact that a verb ending with -ise can take
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Figure 2.4 An improved FSA for English adjective morphology proposed in Antworth (1991).
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Figure 2.5 An FSA for English derivational morphology proposed by (Bauer, 1983; Porter,
1980; Sproat and Fujimura, 1993).

the nominalising suffix -ation (Bauer, 1983; Sproat and Fujimura, 1993). Using this FSA

we can make predictions about the possible derived forms, e.g. memory→memorise→

((memorisation; memoriser); (memorisable → memorisability)), al-

though exceptions still apply, e.g. special → specialise→ ((specialisation;

*specialiser); *specialisable → *specialisability)).
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Figure 2.6 An FST describing regular English verbal inflection cases.

Two-Level Morphology FSTs and FSAs are the most popular and established methods for

modelling inflectional morphology. The main assumption is that morphology can be repre-

sented with a set of connected states. Figure 2.6 provides an example for inflection. But this

situation has not always been that optimistic. Until 1980s there was no established approach

in computational linguistics to deal with complex morphological rules. In 1981 Koskenniemi,

Karttunen, Kaplan and Kay started working on the morphological analysis problem. Kaplan

and Kay (1994) showed that traditional phonological grammars formalised in Chomsky and

Halle (1968) as ordered sequences of A→ B / [precontext _ postcontext] (a set of rewrite

rules transforming abstract phonological representations into surface forms) describe reg-

ular expressions, and, therefore, by definition, could be represented by FSTs.21 Earlier,

Schützenberger (1961) proved the important property that for any pair of transducers applied

sequentially there exists an equivalent single transducer. Given the aforementioned property,

a cascade of rules could be represented by a single transducer without any intermediate

representations. The idea is illustrated in Figures 2.7 and 2.8.

This important observation started an epoch of two-level morphology, the very first

general model in computational linguistics for the analysis and generation of morphologically

rich languages. The two levels, lexical and surface, are illustrated in Table 2.10.

There were many practical issues during two-level morphology development. First, the

implementation of a compiler for rewrite rules turned out to be a hard task, since it required

21Such a notation describing pronunciation changes in different phonological and morphological contexts is
usually referred to as an ordered set of context-sensitive rewriting rules.
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Rule 1  Rule 2  Rule n ...

Lexical Strings

Surface Strings

Lexical Strings

Surface Strings

Single  
FST 

Figure 2.7 A cascade of rules mapped into a single FST (taken from Karttunen and Beesley
(2001)).

Lexical  
Transducer 

Rule 1  Rule 2  Rule n &...

Source  
Lexicon 

&

Figure 2.8 A lexicon intersected and composed with two-level rules (taken from Karttunen
and Beesley (2001)).

m o v e + e d Lexical
m o v 0 0 e d Surface

Table 2.10 An example of two-level morphology.

implementation of basic finite-state operations such as intersection, union, composition and

complementation, which was quite challenging due to limited computational resources avail-

able at that time. Another problem was with morphological analysis. Rewrite rules describe

only a one-directional process, generation, i.e. a mapping from lexical to surface forms. In

this process, given that all operations are deterministic and obligatory, we are guaranteed to

expect a single surface form. On the other hand, if we consider the morphological analysis
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problem, the situation changes. There a single surface form might lead to various analyses,

the number of which increases exponentially with the number of rules. The problem of

analysis in Chomsky-Halle paradigms was challenging, and more difficult than the generation

one. In Karttunen and Beesley (1992) the authors proposed to address it by FST formalisation

of the lexicon as well, and composing the lexicon with the rules.

The two-level rules describe regular relations, similar to rewrite rules, and represent

equal-length relations. This supports mapping lexical to surface strings and simulates

an intersection of the automata. Unlike rewrite rules, the two-level rules are applied in

parallel. The two-level architecture together with constraints on the lexicon overcomes

the over-analysis issue. Importantly, the rules are symbol-to-symbol constraints rather than

string-to-string relations as in rewrite rules.

To conclude, two-level morphology is based on the following ideas. First, rules are

symbol-to-symbol constraints that are applied in parallel rather than sequentially as in rewrite

rules. Second, the constraints can apply to the surface, to the lexical context, or both at

the same time. Third, lexical lookup is performed in tandem with morphological analysis.

The approach significantly advanced morphological analysis and generation for languages

with concatenative morphology. A few years later, Beesley and Karttunen (2003); Cohen-

Sygal and Wintner (2006); Kiraz (2000) proposed several modifications to address non-

concatenation cases, such as root-and-pattern (templatic) morphology in Semitic languages.

2.3.2 Inflection as String-to-String Transduction and Automatic Learn-

ing of Edit Distances

As described in Section 2.2.7.1, in inflectional morphology we can identify two types of

tasks, namely, morphological inflection and lemmatisation. The former takes an inflected

form or a lemma together with morphological features of the target form and produces

an inflection. The latter does the opposite, i.e. it produces a lemma (sometimes supplied

with morphological feature values) from a given inflected form. Both belong to the task

of string-to-string transduction. More specifically, we aim to learn a systematic mapping
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between an input string x to an output string y. Such a task also comprises orthographic

mapping between pronunciation and spelling, as well as cognates and loanword translation.

In many cases, a string transduction task requires evaluation of edit distance between

strings x and y, i.e. the minimum number of insertions, deletions, substitutions needed to

transform one string into another (Levenshtein, 1966). The distance between two strings

xt ∈ AT and yv ∈ BV is defined as dc(xt ,yv) = min


c(xt ,yv)+dc(xt−1,yv−1),

c(xt ,ε)+dc(xt−1,yv),

c(ε,yv)+dc(xt ,yv−1)

 where

dc(ε,ε) = 0, and c(·, ·) corresponds to cost of edit operation. The distance is computed in

O(TV ) time using dynamic programming (Masek and Paterson, 1980). Bahl and Jelinek

(1975) proposed a stochastic interpretation of edit distance, and Ristad and Yianilos (1998)

introduced an algorithm to automatically learn the edit costs from a training corpus. The

authors proposed two models, Viterbi and stochastic edit distances. The Viterbi method

evaluates the most likely edit distance whereas the second one considers all possible ways

to generate a string pair evaluating a joint probability of xT ,yV .22 This work was the first

to show efficiency of the usage of stochastic models in pattern recognition. Cotterell et al.

(2014) generalised Ristad and Yianilos (1998)’s stochastic edit distance model by enriching

it with contextual features and expressing contextual probabilities by a conditional log-linear

model. They also proposed to model the conditional probability p(y|x) as a probabilistic

finite-state transducer (PFST) because, unlike weighted FST, it does not require a separate

calculation of normalizing constant Zx for every x.23 In addition, PFSTs are faster to compute

gradients. They tested the models on spelling correction tasks (i.e. not related to morphology)

without reliance on dictionaries or language models and presented an improvement over

vanilla stochastic edit distance model (Ristad and Yianilos, 1998) in terms of log-likelihood.

22The costs of edit distances were estimated as the parameter of a memoryless stochastic FST. In order to
solve this problem, the authors applied an expectation maximisation (EM) technique (Daum (1970); Dempster
et al. (1977))

23Generally, WFSTs perform better than PFSTs in linguistic tasks (Dreyer et al., 2008).
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2.3.3 Inflectional Paradigm Modelling

2.3.3.1 From FSTs to Neural Methods

Wicentowski and Yarowsky (2000) proposed a corpus-based algorithm for inducing rules

of inflectional transformations between a lemma and its forms that accounts for frequency,

contextual similarity, transduction probabilities and weighted string (Levenshtein) similarity.

Wicentowki’s model essentially learns and then applies replacement rules that are identified

by deterministic alignment and segmentation. They focused only on English past prediction

task and reported 99.2% accuracy on it (on both regular and irregular forms).

Dreyer et al. (2008) addressed (more general) morphological inflection and lemmatisation

tasks and presented a conditional log-linear model which adds to initial character-level

features two extra latent alignment ones. The authors propose to consider joint n-grams

instead of independent modelling of each (x,y) aligned pair, the approach that has been

shown to be useful before by Deligne and Bimbot (1995) and Bisani and Ney (2002).24

The task is stated as follows. Given two strings, an input x and an output y, we need to

estimate a probability of p(y|x). In order to do so, we estimate possible alignments between x

and y and introduce two latent variables. The first latent variable l1 encodes the word class, or

a particular paradigm. For instance, speak, break, steal could be assigned to the same

class since they follow the same form changing pattern. The second variable l2 identifies

numbered regions in the string pair in such a way that identity characters (s,s) belong to

even regions (match) whereas regions with character change such as (e,o) fall in odd ones

(deletion, insertion, substitution). This guides the model towards useful splits. Both latent

variables are learned using the gradient-based optimisation technique L-BFGS from Liu and

Nocedal (1989). Experiments using CELEX (Baayen et al., 1993) show that in most cases

the model outperforms a character level SMT model trained with Moses (Koehn et al., 2007),

and the major improvements come from latent variables. Most of the errors come from either

24Deligne and Bimbot (1995) attempted statistical language modelling task by jointly modelling a sentence
and its possible segmentations expressed by n-grams and variable-length multigrams (over words), and showed
superior perplexity results of the latter. Bisani and Ney (2002) used joint multigram models over sequences
of phonemes and graphemes in order to perform grapheme-to-phoneme conversion and achieved reduction in
error rates for English and German.
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wrongly copying input characters to the output or applying regular paradigms to irregular

forms (although the split on regular and irregular conjugation had been learned). For the

lemmatisation task, the model was compared to a set of Wicentowski and Yarowsky (2000)’s

models. The n-gram-based model augmented with latent variables performs substantially

better than the baseline and leads to error reduction over several languages.

Rastogi et al. (2016) proposed a hybrid model that enriches FST with neural contextual

representation. The paper addressed the problem of traditional FSTs which require manual

design of the states and the features. In particular, for two states, h and h′ connected with an

arc that corresponds to the edit s:t, we need to assign an arc weight. The weight depends on

the edit itself as well as the states. Essentially, h corresponds to the alignment of prefixes

of two strings (parts preceding the current edit) and h′ summarises the alignment of their

suffixes (parts following the edit). Therefore, the s:t edit weight depends on context only

through h and h′. The authors proposed to incorporate sequence-to-sequence neural model

in order to represent context. More specifically, they incorporated the log-bilinear model

from Salakhutdinov et al. (2007) to compute the edit function. The authors evaluated their

model on morphological re-inflection and lemmatisation tasks and compared them against

the Moses phrase-based MT (Koehn et al., 2007) and Dreyer et al. (2008)’s baselines. Using

the CELEX dataset (Baayen et al., 1993) they demonstrated that their approach surpasses the

Moses system and performs on par with the best setting from Dreyer et al. (2008).

Nicolai et al. (2015) studied morphological inflection task in paradigm-aware and agnostic

settings. The authors described an inflectional model as discriminative string transduction

where character-level operations are applied in order to transform a lemma with tags into

forms. The main motivation for such a model comes from statistical machine translation into

morphologically rich languages. In order to deal with data sparsity, Fraser et al. (2012) and

Clifton and Sarkar (2011) proposed to convert forms in the target language into lemmata, and

then during decoding make a prediction about their morphological tags and transform them

into a proper inflected form. Unlike Durrett and DeNero (2013) and Hulden et al. (2014) that

are discussed later in the section, Nicolai et al. (2015) do not aim to learn paradigm-wide

regularities by doing multiple string alignment but rather align each form to its lemma.
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Contrary to previous approaches, they do not concentrate on unchanged characters within a

paradigm, but rather extract regular small multi-character operations observed across multiple

paradigms.25 Then from the aligned sequences they extract rules in such a way that each

minimal multi-character transformation is assigned a separate rule. Once the rules are ready,

a discriminative semi-Markov model adapted from Zens and Ney (2004) is applied in order

to select a rule appropriate for a given lemma form. Experiments on the Wiktionary dataset

taken from Durrett and DeNero (2013) show that their model outperforms that of Durrett

and DeNero (2013) (discussed below) in the paradigm-agnostic setting, and performs on par

when the systems are provided with complete paradigms.26 Finally, error analysis shows that

many mispredictions involve circumfixation, irregularities (over-correction of the forms) and

are also related to difficulties in syllable and compound boundary identification in the case of

Finnish.

As we note in Section 2.2.4.2, inflected forms should be considered together as a complete

paradigm since they reinforce each other.27 Earlier approaches mainly focused on modelling

the probabilistic relationship between two strings. Dreyer and Eisner (2009) proposed

building up joint models of three or more strings (partial paradigms). In their work, the

authors introduced an undirected graphical model, in particular a Markov Random Field, in

which the factors are the weighted FSTs introduced earlier.

Durrett and DeNero (2013) further develop the idea of joint form modelling and attempt

to generate a complete paradigm table for a given lemma. First, they align the forms within a

single paradigm by means of edit distance. In particular, they used a version of a dynamic

(position-dependent) edit distance earlier proposed by Eisner (2002) and Oncina and Sebban

(2006). There, insertion, deletion, and substitution are assigned a weight of 0, and match

weight equals −ci, where i is an index in the lemma form, and ci is the number of forms for

which there exists a match at the position i. This scheme encourages a lemma form to be

aligned to all of its inflected forms. Next, they extract rules from aligned pairs by identifying

25In order to find the aligned pairs they use EM-based M2M aligner (Jiampojamarn et al., 2007)
26They additionally test the system’s performance in a low-resource setting when it is provided with 50 or

100 paradigm tables The accuracy of the models is comparable with established baselines from Durrett and
DeNero (2013) and Dreyer and Eisner (2011).

27The same motivation comes from cognate modelling and language re-construction.
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changed spans, i.e. each rule corresponds to a sequence of edit operations needed to transform

a lemma to an inflected form. At prediction time, the authors employ a semi-Markov model

(Sarawagi and Cohen, 2005) in order to choose an appropriate set of rules to be applied to

produce a paradigm for a given lemma. The model was compared to Dreyer and Eisner

(2011) on the CELEX dataset (Baayen et al., 1993) and shown to be superior. They were one

of the first to use Wiktionary data in order to get inflectional paradigm tables and construct a

language-independent model for morphological inflection. The model also outperforms a

factored modification of the model where the rules are extracted separately on both CELEX

and Wiktionary datasets.

Finally, some approaches such as Hulden et al. (2014) aim to capture variations within

paradigms and then generalise them rather than learn a mapping between paradigms. Consider

the following verbal inflections: ring–rang–rung and sing–sang–sung. We observe

a similar form-changing pattern, i.e. (x-i-y, x-a-y, x-u-y), where x and y stand for

variables that encode multiple possible forms. In order to capture such a pattern, the authors

first find the longest common substring over multiple strings (which is NP-hard Maier (1978))

by intersecting FSAs that correspond to all substrings of all words. As a result, two patterns,

rng and swm are extracted. Next, they fit them into a single table, replace each discontinuous

sequence with a variable (e.g., sw→x, m→y) and, finally, merge the identical paradigms

into a single one. Comparison with the approach of Durrett and DeNero (2013) shows that

the current model performs slightly worse on a per-form prediction task while outperforms

the earlier model on per-table predictions.

2.3.3.2 Large-scale Inflectional Paradigm Modeling

SIGMORPHON 2016 In the SIGMORPHON 2016 the participants were invited to submit

systems in three different morphological reinflection tasks of increasing complexity. In the

first task, the systems were provided with a lemma and the target tags, while in the second

task, the lemma was replaced with another inflected form of the same lemma and its tags. In

the last, the third task, the initial form tags were omitted, and the systems were only supplied

with an initial inflected form and target tags. All three settings are illustrated in Table 2.11.
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Task 1 Task 2 Task3
Lemma run – –

Source Tag – PAST –
Source Form – ran ran
Target Tag PART.PRES PART.PRES PART.PRES

Target Form running running running

Table 2.11 An example of three morphological reinflection tasks.

The systems produced either a single output string or a ranked list with maximum length

of 20 predicted strings. In order to evaluate the performance, exact string accuracy (for the

top predicted string), Levenshtein distance and reciprocal rank were measured.

The dataset comprised of 10 typologically diverse languages, including Arabic, Finnish,

Georgian, Navajo, Maltese, Russian, Turkish, and Hungarian.

As a baseline the authors used a non-neural system, in particular, an FST with a per-

ceptron classifier. Submitted systems can be classified into three groups. The first group,

align and transduce (Alegria and Etxeberria, 2016; King, 2016; Liu and Mao, 2016; Nicolai

et al., 2016), applied a pipeline approach. More specifically, they first trained an unsuper-

vised alignment algorithm on the source-target pairs and extracted edit operations. Then

they trained a discriminative model to apply the changes. Such an approach was initially

inspired by Durrett and DeNero (2013) who first extracted a set of edit operations and then

applied a semi-Markov CRF (Sarawagi and Cohen, 2005) to model the transformations. The

transduction models were limited to the monotonic alignment case and were encoded by

WFST (Mohri, 2002). The approaches from the second group, RNN-based (Aharoni et al.,

2016; Kann and Schütze, 2016; Östling, 2016), were based on neural sequence-to-sequence

models (Bahdanau et al., 2015; Sutskever et al., 2014) that have demonstrated great success

in various NLP tasks in recent years (for instance, Faruqui et al. (2016) was one of the first to

apply neural approaches to the morphological inflection task and show moderate success).

The best performing system from Kann and Schütze (2016) was based on the sequence-to-

sequence approach from Sutskever et al. (2014) with soft attention mechanism (Bahdanau

et al., 2015) and GRUs (Cho et al., 2014) as basic units. The input form along with source

and target tags was fed into the neural network as a single string (character-by-character),
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and the network generated the target form on the character level as well. Essentially, for a

paradigm with n elements the model reflects all possible n2 mappings. Finally, some teams

used linguistically-inspired approaches (Sorokin et al., 2017; Taji et al., 2016). The former

segmented the forms into prefixes, stems and suffixes. A set of actions was then selected to

be applied to stem to perform reinflection. The latter extracted a set of rules and then applied

multi-way classification to select a set for a particular reinflection.

The neural approaches clearly outperformed non-neural models by a large margin (with

a 13% gap between the best neural model and the best non-neural ones on average across

all language and tasks). The latter ones generally used a pipeline, and the alignments were

obtained independently of the transduction step, while neural systems jointly learned to

align and transduce. Second, neural models allowed parameter sharing across different

reinflections, which led to better generalisation. For the simple inflection task, the best

system got 95% exact matches on average, ranging from 89% for Maltese to 99% for

Hungarian. The results for ensemble, i.e. a setting when all systems’ predictions are

combined, demonstrate that non-neural approaches can still add some extra points to neural

ones, and there is some room for improvement.

SIGMORPHON 2017. In the SIGMORPHON 2017 shared task (Cotterell et al., 2017a)

the lemma form was always provided, and the systems were only required to perform

morphological inflection or paradigm completion. For the inflection task, the individual

forms were sparsely sampled from a large number of paradigms, and the systems did not

necessarily observe any complete paradigms. For paradigm completion, the systems were

trained on a few complete paradigms and filled gaps in the test paradigms. Monolingual

unannotated data (the Wikipedia dump) was additionally provided.

The SIGMORPHON 2017 shared task was organised for 52 typologically different

languages, including extremely low-resource such as Quechua, Haida, and Navajo.28

28Similar to the 2016 task, the data mainly comes from the Wiktionary. Data for Khaling, Kurmanji, Kurdish,
Sorani Kurdish come from the Alexina project, https://gforge.inria.fr/projects/alexina,
(Walther and Sagot, 2010; Walther et al., 2013), Haida was prepared by Jordan Lachler, and the Basque data
was extracted from manually designed morphological FST (Alegria et al., 2009)

https://gforge.inria.fr/projects/alexina
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Due to the success of neural approaches in the 2016 task, most teams developed models

based on neural architectures. Despite teams using similar architectures, the results varied

substantially. Below, we discuss main the characteristics that led to the differences.

First of all, most systems implemented neural parameterisation and used some kind of

a recurrent unit – either GRU (Chung et al., 2014), or LSTM (Hochreiter and Schmidhuber,

1997), and one team employed a convolutional neural network (CNN) (LeCun and Bengio,

1995). Generally, the neural networks had the target morphological tag and the source form

as an input. The tag was usually segmented into subtags, and each subtag was assigned its

own symbol.

Second, while most systems used soft attention mechanism (Bahdanau et al., 2015),

few of them relied on modelling monotonic alignment with hard attention. This idea was

introduced in the SIGMORPHON 2016 shared task by Aharoni et al. (2016). Indeed, the 2017

winning system used hard attention. Their system explicitly introduced a copy mechanism

that substantially improved the performance in the low-resource setting.

Third, two systems used reranking of the output of a weaker system. One team employed

a heuristically induced candidate set using the edit tree approach of Chrupała et al. (2008)

and then chose the best edit tree, the other did linear reranking of top-k best output of the

system.

The models were compared in high-(10,000 samples in the training data), medium-(1,000

samples), and low-resource (100 samples) settings. Neural systems excelled in the high

resource setting. In the medium- and low-resource settings, standard encoder–decoder

systems performed on par or even worse than the “align and transduce” baseline system of

Liu and Mao (2016) if only training data is available. The systems that outperformed the

baseline in these settings either successfully added some bias to their networks (such as a

copy operation which is a common operation in morphological inflection), or synthesised

extra data. The technique proved to be useful for languages with small and regular paradigms,

while more complex paradigms, as in Latin, still require more variation in the training data.

Similarly to the SIGMORPHON 2016, an ensemble of all systems’ predictions showed

a substantial gain of accuracy, especially in medium (10%) and low (15%) settings, which
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means that there was a lot of complementarity in their outputs, and possibly the generalisation

patterns were different due to different “biases” the systems used.

The results reinforced the conclusion of the SIGMORPHON 2016 shared task that neural

encoder–decoder models outperform other methods when a large amount of data is available.

A bit surprisingly, the neural systems also performed reasonably well in low-resource settings

under special training conditions mentioned above. The results obtained for the low-resource

setting showed that for some large and less regular paradigms, a certain amount of variation in

the training data is required. For instance, some cells of the paradigm are more informative.

SIGMORPHON 2018. The inflection subtask of SIGMORPHON 2018 shared task was

identical to the previous year. The number of languages was extended and reached 103

(including extremely low-resource languages such as Murrinhpatha, Australian language).

Similarly, the systems were evaluated in high-, medium-, and low-resource settings. Com-

pared to 2017 shared task, results on 80% languages improved. For low-resource settings

many systems either used additional artificial data, or attempted to learn sequences of edit

operations to transform one form into another, or used pointer generator networks (See et al.,

2017) which allow a copy mechanism. The second subtask focused on contextual reinflection

and is discussed in Section 4.1 in more detail.

2.3.4 Derivational Models

Although in the last few years many neural morphological models have been proposed, most

of them have focused on inflectional morphology (as shown in Section 2.3.3.2). Focusing

on derivational processes, there are three main directions of research. The first deals with

evaluation of word embeddings using a word analogy task (Gladkova et al., 2016). In

this context, it has been shown that, unlike inflectional morphology, most derivational

relations cannot be as easily captured using distributional methods. Researchers working

on the second type of task attempt to predict derived forms using the embedding of its

corresponding base form and a vector encoding a “derivational” shift. Guevara (2011) notes

that derivational affixes can be modelled as a geometrical function over the vectors of the
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base forms. On the other hand, Lazaridou et al. (2013) and Cotterell and Schütze (2018)

represent derivational affixes as vectors and investigate various functions to combine them

with base forms. Kisselew et al. (2015) and Padó et al. (2016) extend this line of research to

model derivational morphology in German. This work demonstrates that various factors such

as part of speech, semantic regularity and argument structure (Grimshaw, 1990) influence

the predictability of a derived word. The third area of research focuses on the analysis of

derivationally complex forms, which differs from this study in that we focus on generation.

The goal of this line of work is to produce a canonicalised segmentation of an input word,

e.g., unhappiness7→un-+happy+-ness (Cotterell et al., 2015, 2016b). Note that the

orthographic change y7→i has been reversed.

In Lazaridou et al. (2013) the authors also point out the problem of word embeddings’

quality which rapidly deteriorates with decrease of word frequency (as also shown in Bulli-

naria and Levy (2007)). In the paper, they specifically address a problem of sense prediction

for morphological derivations, since it is quite common even in English (55% of the lemmata

in CELEX database are morphologically complex, i.e are derived from other stems). They

study various linear functions to estimate a derived word’s vector such as multiplicative

(c = uv), weighted additive (c = αu+ βv where α,β are some scalars), fully additive

(c = Au+Bv where A,B are weight matrices) and lexical function (c = Uv where U is a

functor that corresponds to an affix). They evaluate base – derived word pairs for 18 English

affixes extracted from CELEX dataset (Baayen et al., 1993). The results demonstrated that

fully additive function leads to the best performance. Comparison of predictability of the

final form’s meaning depending on the affix attached showed that negation affixes (in-,

un-, -less) are less compositional and more problematic, and on average they received

lower base-relevance scores in human assessment. The highest scores were achieved by

-ness, -ity, -ist, -ion, -ness, -ful, i.e ones that typically do not affect semantics

but rather only change the part of speech.

The next section provides an overview of contemporary distributed (neural) models

trained using both word- and subword-levels.
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2.3.5 Distributed Representations and Distributional Semantics

2.3.5.1 Connectionism and Symbolism: On the Past Tense Debate

First, we start with some background and motivation for why we suggest connectionist

approaches to be appropriate for modelling morphology. In the 1980s there was an active

debate between connectionists and symbolists. Fodor and Pylyshyn (1988) provide a detailed

comparison of two approaches to a cognitive architecture: connectionist and classical. Turing

and von Neumann machines served as a basis for classical models of mind which operated

on symbolic expressions, whereas connectionists’ approach did not rely on storing, retrieving

and operating on symbols but was rather focused on states. Unlike symbolists, connectionists

studied states and, more essentially, what they represent. That is, they were (and are)

following representational realism. But the key difference comes from what they assign

semantic components to. Connectionists assign them to nodes, or groups of nodes, whereas

classicists assign them to expressions, “i.e. to the sorts of things that get written on the tapes

of Turing machines and stored at addresses in von Neumann machines” (Fodor and Pylyshyn,

1988, p. 12). Connectionists’ models only account for causal connectedness that comes from

activation propagation in the network. In addition to causal relations, classical models also

account for structural relations.

A long discussion on connestionism versus symbolism (“The past tense debate”) started

with Rumelhart and McClelland (1987) who proposed a neural network to simulate acqui-

sition of the past tense inflection in English. Unlike more traditional models of that time,

it did not rely on any symbolic rules, but rather was trained to mimic the rule-based be-

haviour. Based on these results, some researchers and philosophers (Bates and Elman, 1993;

Churchland, 1996; Elman et al., 1998) argued that connectionism is an appropriate view on

language knowledge representation and there is no need for explicit grammar. Elman (1993)

also showed the models succeeded on subject-verb agreement in English. Their opponents,

on the other hand, claimed that the connectionist models were incapable in realisation of

some syntactic phenomena (Fodor and Pylyshyn, 1988; Fodor et al., 1974; Marcus, 2003).

For instance, Marcus (2003) argued that the Elman’s agreement model did not generalise to
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the same extent as humans. A lot of criticism of Rumelhart and McClelland (1987)’s work

in terms of their argumentation and conclusions has been expressed in Pinker and Prince

(1988). For instance, they claim that the model does not learn many rules and is unable

to explain differences between regular and irregular verbs as well as morphological and

phonological regularities. In addition, it learns rules that do not exist in human language.

Later, several models that addressed these issues were introduced (such as Plunkett and

Marchman (1993) that imitated the U-shaped language acquisition in children). As Clahsen

(1999) and Marcus (1998) note, the fundamental deficiency of these models is their reliance

on particular statistical patterns in the data. Marcus additionally highlights that the models

tend to overproduce English irregular patterns.

Nowadays, connectionsists’ approaches have demonstrated a great success in many tasks,

and in the following section we provide a description of some popular models that we will

further use for our investigations.

2.3.5.2 Distributional Hypothesis

Many contemporary approaches in information retrieval, language modelling, or machine

translation, are built on the distributional hypothesis, that states that a word and its context

are similar, originates from Firth who stated that “a word is known by the company it keeps”

(Firth, 1957, p. 11).

Harris formulated a clearer definition of distributional hypothesis by “All elements in

a language can be grouped into classes whose relative occurrence can be stated exactly.

However, for the occurrence of a particular member of one class relative to a particular

member of another class, it would be necessary to speak in terms of probability, based on the

frequency of that occurrence in a sample” (Harris, 1981, p. 146) and “The restrictions on

relative occurrence of each element are described most simply by a network of interrelated

statements, certain of them being put in terms of the results of certain others, rather than by a

simple measure of the total restriction on each element separately” (Harris, 1981, p. 147).

Harrison has also added an additional hypothesis that co-occurrence of linguistic elements

covers all the knowledge for a language without other types of information. Contrary to
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that, psycholinguists generally differentiate two types of language, external, E-language, and

internal, I-language (De Deyne et al., 2016). E-language refers to linguistic knowledge stored

in datasets, corpora, i.e. externally. I-language corresponds to knowledge that is stored in

the brain (which is often expressed by word association networks (De Deyne and Storms,

2008)). NLP models are E-language models in this sense, and in this thesis we only focus on

E-language models.

2.3.5.3 Word-Level Models

Earlier approaches represented a word as a high-dimensional vector indicating whether or

not it occurred in a context of other words of the vocabulary. The word co-occurrence

matrix is defined as a Cartesian product over all words in the vocabulary. It consists of

either a frequency of word collocations, or some form of pointwise mutual information.

Since the matrix is large and sparse, various dimensionality reduction techniques (Singular

Value Decomposition (Golub and Reinsch, 1970), Principal Component Analysis (Wold

et al., 1987), Latent Semantic Analysis (Landauer et al., 1998)) were applied in order to

reduce the size and identify the most important dimensions. During the last decade, the focus

has changed to learning low-dimensional dense vectors, word embeddings, which we now

review.

Curran (2004) focused on lexical semantics (synonymy extraction, in particular) and was

one of the first to describe techniques of context learning and analyse how various types

of extracted context affect word similarity. The proposed new context-weighted similarity

metric significantly outperformed existing approaches.

Later Mnih and Hinton (2009) introduced HLBL, a log-bilinear formulation of an n-gram

language model, which predicts the i-th word based on context words (i−n, . . . , i−2, i−1).

This leads to the following training objective:

J =
1
T

T

∑
i=1

exp(w̃⊤i wi +bi)

∑
V
k=1 exp(w̃⊤k wk +bk)

,
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where w̃i = ∑
n−1
j=1 C jwi− j is the context embedding, C j is a scaling matrix, and b∗ is a bias

term.

Collobert et al. (2011) proposed one of the first models, SENNA, a multi-task model for

part of speech tagging, language modelling, chunking, and semantic role labelling. The

model was one of the first to learn the features without any prior manual preprocessing. Its

statistical language modelling component has a pairwise ranking objective to maximise the

relative score of each word in its local context:

J =
1
T

T

∑
i=1

V

∑
k=1

max
[
0,1− f (wi−c, . . . ,wi−1,wi)+ f (wi−c, . . . ,wi−1,wk)

]
,

where the last c−1 words are used as context, and f (x) is a non-linear function of the input,

defined as a multi-layer perceptron.

In 2013 Mikolov introduced another approach inspired by language modelling, w2v

(Mikolov et al., 2013a,b), that predicts a word from its context (the CBoW model) with the

objective:

J =
1
T

T

∑
i=1

log

exp

(
w⊤i ∑

j∈[−c,+c], j ̸=0
w̃i+ j

)

∑
V
k=1 exp

(
w⊤k ∑

j∈[−c,+c], j ̸=0
w̃i+ j

)
where wi and w̃i are the vector representations for the i-th word (as a focus or context word,

respectively), V is the vocabulary size, T is the number of tokens in the corpus, and c is the

context window size.29 A similar model, skip-gram, predicted a context from a word.

Another successful model, GloVe (Pennington et al., 2014), is based on a similar bilinear

formulation, framed as a low-rank decomposition of the matrix of corpus co-occurrence

frequencies:

J =
1
2

V

∑
i, j=1

f (Pi j)(w⊤i w̃ j− logPi j)
2 ,

where wi is a vector for the left context, w j is a vector for the right context, Pi j is the relative

frequency of word j in the context of word i, and f is a heuristic weighting function to

29In a slight abuse of notation, the subscripts of w do double duty, denoting either the embedding for the i-th
token, wi, or kth word type, wk.
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balance the influence of high versus low term frequencies. Unlike w2v, it is not trained to

predict words but rather learns to approximate the co-occurrence probability.

The SVD model (Levy et al., 2015a) uses positive pointwise mutual information (PMI)

matrix defined as:

PPMI(w,c) = max(log
P̂(w,c)

P̂(w)P̂(c)
,0) ,

where P̂(w,c) is the joint probability of word w and context c, and P̂(w) and P̂(c) are their

marginal probabilities. The matrix is factorised by singular value decomposition.

Another recent generation of neural approaches mainly utilises various forms of Recurrent

Neural Networks (RNNs) introduced in Elman (1990) and Jordan (1997). Luong et al. (2013);

Mikolov et al. (2010); Socher et al. (2011, 2012, 2013b) are examples of this type. This

stores the previous context and is essential for keeping track of the order of the words and

potential modelling of compositionality.

2.3.5.4 Subword Representations

Most neural models for NLP rely on words as their basic units, and consequently face

the problem of data sparsity, especially in morphologically rich languages. Both word co-

occurrence matrices used in count-based approaches and lookup tables in neural ones face

the problem of large size and inefficiency of memory usage. Typically, words are pruned

by their frequency, so rare terms are often assigned a special UNK token, which comes at

the expense of modelling accuracy. In order to address data sparsity and out-of-vocabulary

(OOV) problems, words are often represented by sub-word units, typically morphemes,

characters or ngrams.

Machine Translation and Language Modelling Decomposing a word into morphemes

might seem to be the best and linguistically-inspired solution, but at the same time it requires

a morphological analyser that might not be available for most languages. Therefore, often

morphological analysers are replaced with automatic word segmentation tools such as

Morfessor (Creutz and Lagus, 2007).
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Luong et al. (2013) were one of the first to successfully tackle the problem of rare

and unknown word representation in neural language models. They combined a recursive

neural network which expressed a word’s internal structure with a neural language model

to represent sentence-level contextual information. Importantly, they showed that such a

recursive architecture was appropriate for compositionality modelling. The idea behind

their approach is quite straightforward, i.e. they estimate the probability of a word as some

non-linearity f over a linear combination of its constituents: f (Wm[xstem;xa f f ix]+bm) where

Wm ∈ Rd×2d corresponds to parameters of morpheme representations. The stem and affix

vectors are applied recursively until the whole word embedding in eventually constructed.

Importantly, the authors used automatic word segmentations obtained from Morfessor rather

than linguistically motivated morphemes. Therefore, some of the segmentations were

misleading, such as de|fault|ed. But still their models demonstrated a significant

improvement over word-based ones on rare word similarity evaluation.

Botha and Blunsom (2014) modelled a complex word meaning as a linear combination

of its constituents. The authors extended a log-bilinear model (Mnih and Hinton, 2007)

to predict the next word as a linear function of its n preceding words, i.e. ∑
n−1
j=1 q jC j,

where C j ∈ Rdxd and q j ∈ Rd are context vectors. Each word vector they presented as a

compositional function of its parts, namely a sum. They additionally added the word vector

itself to account for non-compositional cases such as greenhouse. The word segmentation

was automatically obtained from Morfessor (Creutz and Lagus, 2007). The authors also

experimented on machine translation and showed consistent improvements in BLEU for

English into Czech, Russian, German, Spanish and French.

Unsupervised analysers such as Morfessor are prone to segmentation errors, particularly

on languages with fusional or non-concatenative morphology (e.g., templatic such as in

Hebrew or Arabic). In these settings, character-level word representations may be more

appropriate. One of the earliest solutions was presented by Schütze (1993) who proposed to

replaced word co-occurrence with ngram (in particular, four-gram) co-occurrence matrices.

The final representation of a word was calculated as a sum of representations of ngrams that
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appeared within a context window for all occurrences of the word in corpus. The model was

shown to achieve superior results on a word disambiguation task.

The transition from a word-level to character-level models was not straightforward. One

of the first character-level statistical machine translation models (Vilar et al., 2007) failed to

outperform word-based counterparts, and only a combined model outperformed the word-

level in terms of BLEU score. Similarly, Neubig et al. (2013) were not able to show superior

results to word-based models in a substring-level machine translation task.

Ling et al. (2015b) proposed the first successful character-level neural machine translation

model. Their model comprises several RNNs with LSTM units. The source language context

is obtained via bidirectional LSTMs (Hochreiter and Schmidhuber, 1997), consequently each

word is represented by a linear combination of hidden states at a corresponding position.

The target language context is represented as a forward LSTM (since the future context in

yet to be predicted). The mapping between source and target representations is done by

attentional mechanism as follows: zi = s tanh(Wt l
f
p−1 +Wsbi) and ai =

exp(zi)
∑ j∈[0,n] exp(z j)

where

l f
p−1 is a forward LSTM that encodes the target context translated up to p− 1 position,

bi is a source vector, and s is a score vector. These attention weights are applied to the

corresponding words in the source sentence and summed to get its representation. The

novelty of the work comes from word representations. Instead of using a softmax over

source and target vocabularies, the authors propose to compose the word representation from

character-level LSTMs. More specifically, they obtain a word vector as a linear combination

of the last hidden states of forward and backward LSTMs. On the target side, the word is

generated character-by-character using the initial representation comprised of the average

attention, current hidden state of the LSTM over the target sentence, and previously generated

characters. The results obtained for English-French and English-Portuguese do not show a

significant improvement over the word-based approach, but, as the authors mention, it is still

much better than previous character-based models. Importantly, the authors show that the

character-level model puts the orthographically similar words closer in space compared to

word-based. The model also learns parts of inflectional morphology quite well (it correctly

generates plural forms of nouns).
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Other tasks also benefit from character-level representations. For instance, Lample et al.

(2016) shows that incorporating biLSTM character-level word representations improves

accuracy in a named entity recognition task. Several authors have proposed convolutional

neural networks over character sequences as a part of models for part of speech tagging

(Santos and Zadrozny, 2014), named entity recognition (Chiu and Nichols, 2016; Ma and

Hovy, 2016), language (Kim et al., 2016) and machine translation (Belinkov et al., 2017;

Costa-Jussà and Fonollosa, 2016). The latter presents an in-depth analysis of representations

learned by neural MT models.

Sennrich et al. (2016) investigated various types of out-of-vocabulary words. Among

them are named entities that should be either copied or transliterated, cognates and loanwords

for which character-level translation rules might be sufficient, and, finally, morphologically

complex words. In order to address such types of words, the authors proposed an efficient

word segmentation method, Byte Pair Encoding (BPE), originating from Gage (1994). The

method evaluates character ngram frequencies, merges every frequent ngram, replacing it

with a new symbol. They applied the method to segment a whole sentence into such pieces

and evaluated it on English into German and Russian translation showing an improvement in

terms of BLEU scores.

Bojanowski et al. (2017) introduced the FastText skip-gram model where they enriched

the word2vec skip-gram model with subword representations obtained as a linear combination

of constituent ngrams. Inspired by early non-neural n-gram based approaches such as Schütze

(1993), the authors propose to instead a) extend it to a range from 1-grams to 6-grams; b)

learn their neural representations. The model outperformed traditional CBoW and skip-

gram models on word similarity tasks. The authors additionally demonstrated that the most

important ngrams in a word correspond to morphemes. Grave et al. (2018) proposed a

modification of the model, FastText CBoW, that uses the word2vec CBoW model with

positional weights.

Finally, Vania and Lopez (2017) compared various types of word segmentations such as

character n-grams, character-level models (CNN and BiLSTM), linguistically-inspired mor-

phemes, and BPE and Morfessor segmentations on language modelling task. They conclude
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that BiLSTMs composed of character trigrams outperform other character- and ngram-

level models, but none of the models achieves high accuracy of linguistically-motivated

morphological segmentation.

Many aforementioned models were shown to either perform similarly or even outperform

standard word-level approaches. With a few notable exceptions (Heigold et al., 2017; Vania

and Lopez, 2017; Yin et al., 2017), there was no systematic investigation of the various

modelling architectures. In this thesis, we address the question of what linguistic aspects are

best encoded in each type of architecture, and their efficacy as parts of a machine translation

model when translating from morphologically rich languages.

POS tagging Finally, we would like to discuss subword-level approaches in POS tagging

since the task is relevant to morphology learning. In POS tagging languages with largely

fixed word order such as English typically rely on neighboring tags, but once we move to

languages with flexible order, we would also need subword information to correctly guess

a word’s tag. Typically, in such languages word forms themselves are quite indicative of

parts of speech. Santos and Zadrozny (2014) were one of the first to successfully apply

character-level methods for POS tagging. In their approach, they used a concatenation

of character-level CNN word representation and its representation as a whole unit. They

followed Collobert et al. (2011) and used a context window approach assuming that a tag

of a word mainly depends on its neighbors. Each sentence was eventually assigned with a

tag path score, which has to be maximised. The authors showed that the model captured

surface-level morphological patterns quite well. On the other hand, even though the majority

of neighbours of unsteadiness followed the pattern un-[stem]-ness, some of them

such as business were not related which raises a question of compositionality of word’s

meaning.

Ling et al. (2015a) proposed BiLSTM-based approaches for language modelling and POS

tagging that further improved the results of Santos and Zadrozny (2014)’s CNN model as

well as word-based ones and RNNs. They experimented with five Indo-European languages,

namely English, Catalan, Portuguese, German, and Turkish. Their model considered compo-
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sitional character-level word representation, i.e. it combined the last hidden states of forward

and backward LSTMs running over word characters. The results showed that such a model

obtained better perplexity on a language modelling task compared to a 5-gram Kneser-Ney

and word-based model on all languages with significantly lower number of parameters.

Wang et al. (2015) proposed to use bidirectional LSTMs for sentential context representa-

tion achieving state-of-the-art accuracy for English (on WSJ data from Penn Treebank III

(Marcus et al., 1993)) showing that without usage of any morphological features the system

still can achieve good results.

Plank et al. (2016) compared a biLSTM tagger with CRF-based and TnT (Brants, 2000)

taggers on 22 languages. The results show that word-level representations outperform

character-level and combined word- and character-level representations. But on the other

hand, the model that combines word, character and pre-trained embeddings performs the best

and achieves higher accuracy compared to TnT and CRF. As expected, the most significant

gains are among languages with complex morphology.

Moreover, very little has been studied in terms of fine-grained, or morphological, tagging

evaluation. There, state-of-the-art results were achieved by a CRF tagger in Müller et al.

(2013) and Müller and Schütze (2015). Heigold et al. (2017) were one of the first to perform

a comparison of various character-level architectures on multiple (morphologically complex)

languages for this task. First, they compared two types of character-level word representations:

CNN-Highway (Kim et al., 2016) and forward LSTM. For sentential representations, they

used a single biLSTM architecture. Eventually, they showed that the LSTM-based model

consistently outperformed CNN-Highway as well as a non-neural CRF tagger, MarMot

(Müller et al., 2013). Interestingly, the only exception was Arabic, possibly due to the

templatic nature of morphology in Semitic languages. The authors also showed that the

two architectures provide complementary information, and their combination leads to slight

improvements of the accuracy.

Some work has been done on low-resource languages. Most low-resource languages

belong to language families, and therefore could be linked to related languages via methods

such as pre-training. Usually their morphology, word order and lexicon are quite similar
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and therefore could be mapped into one another to some extent. How much improvement

can we get this way? And how much data in low-resource languages do we need? These

are questions addressed in Cotterell and Heigold (2017). In the paper, the authors jointly

train the system for morphological prediction on the unified schema using the Universal

Dependencies dataset (Nivre et al., 2016). Their results provide evidence for the hypothesis

that relatedness plays a significant role and adds a strong extra signal for the morphological

tagging task. Moreover, even in extremely low-resource settings, joint modelling improves

accuracy in the case of closely related languages.

2.3.6 Learning of Compositionality

Finally, since we only deal with compositional morphology, we review compositionality

more broadly and provide a list of approaches to model it. Compositionality is an essential

concept for evaluation of a word, a sentence, a phrase, or a paragraph meaning. Its definition

stands quite close to the distributional hypothesis. Frege’s Principle of Compositionality

states that the meaning of a complex item is a function of the meanings of its constituent

expressions. Bach (1989) has added to the Principle an additional condition that the meaning

also depends on the operations performed over those parts. Partee has put syntax in place of

a set of operations, “The meaning of a complex expression is a function of the meaning of its

parts and of the syntactic rules by which they are combined” (Partee, 1990, p. 318). Lakoff

(1977) goes further and states that the whole meaning is greater than the parts’ meanings.

While considering compositionality, it is a common and reasonable approach to assign

an embedding vector of the same kind and dimension to the whole and its constituents. In

relation to this, we should choose (1) how to collect words to be included into a composition,

and (2) how the value of a composite vector is calculated. Note, that a large number of

the approaches we have introduced are generally usable for decomposition of a word into

morphemes (Botha and Blunsom, 2014) or even characters (Chen et al., 2015b; Ling et al.,

2015a).

Let us first consider pairwise composition. As the procedure of composite embedding

construction, one of the simplest approaches is merely a weighted sum of elements. Al-
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though the Compositional Principle implies an operation to combine meanings, it tells us

nothing about the operation itself; it remains arbitrary, and might differ radically from

sense superposition. Therefore, many alternative formulas such as matrix multiplication and

vector concatenation have been proposed. Smolensky (1990) proposed to use tensors, and

Plate (1991) suggested holographic representations. Mitchell and Lapata (2010) presented

a comprehensive study of various compositionality functions and showed superior results

for weighted additive and multiplicative functions. It should be mentioned that one may

attempt to discover non-compositional constructs like idioms by analysing the difference

between the compositional embedding expected for a given context and one calculated from

the component words with a trained composing function, similar to Salehi et al. (2014).

We have considered compositions of two components, but in real life we deal with longer

sequences (like sentences). The most natural way for a sentence to be decomposed is building

its parse tree and then following the structure of this tree while calculating compositional

embeddings. In this approach, the resulting vector is produced by recursive computation

of pairwise embeddings based on word embeddings as well as nested phrase embeddings

calculated at previous steps. To learn parameters during such a variable-depth recursive

procedure, one may employ Recursive Neural Networks (ReNNs).

It is common to rely on a parse tree provided by a separate pre-processing parsing stage.

However, it may be worth combining parsing and embedding learning into a single loop,

because not only does semantics depend on proper phrase detection, but also, vice versa, a

phrase structure may depend on sense composition (Socher et al., 2011). An example of such

an approach was proposed by Socher et al. (2010), Socher et al. (2011). In their algorithm,

a composite embedding vector and a probability score of sharing the same phrase are both

evaluated for each pair of adjacent words using a single neural network layer. Words and

phrases are connected into parent phrases recursively using either the right or left neighbour

according to their probability scores in order to build a predicted parse tree.

There are also approaches that are generally similar but rely less on parse trees, including

ones that group words merely based on POS tagging and/or WordNet clustering instead of full

parsing (Chen et al., 2015a). Word clustering also may be used in the compositional function
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in order to improve the performance, as a word-based approach requires normalisation against

a sum over the whole lexicon.

Parse tree based approaches may capture long-range dependencies, but their complexity

is high. There are also many techniques which do not rely on a parse tree at all and, in such

cases, are free of recursive branching, thus being faster and allowing a variety of common

machine learning algorithms to be used. A basic approach of such kind uses a contextual

window of a fixed length to select words so that all content fitting to the window around a

given position in a text is considered as a composition, with (possibly) distinct positions

for every component word. This technique yields fairly precise results at low cost but lacks

many aspects dependent on surrounding words (phrase structure, discourse, etc.). In order

to include more surrounding words into the scope of computation while avoiding recursive

variable-size frames, extra words beyond the context window may be treated as a bag-of-

words (Huang et al., 2012). In this case, a detailed consideration of parse tree structure with

respect to a given text position may be replaced by a combination of two context flavours, the

former being a fixed length sequence of words representing the local phrase structure while

the latter being a much larger bag-of-words representing the global context. This behaves

like a combination of a context-free grammar and RNN.30

Finally, Lake and Baroni (2018) systematically compared a number of RNNs on a new

compositionality modelling task. They presented a toy dataset consisting of samples such as

“jump→ JUMP”, “turn left twice→ LTURN LTURN”, “jump thrice→ JUMP JUMP JUMP”.

The objective is to translate the commands on the left to the set of actions on the right. The

task measures both generalisability and awareness of compositionality of the models. In

their experiments, the authors studied a number of RNN-based models such as simple RNNs

(Elman, 1990), LSTMs (Hochreiter and Schmidhuber, 1997), GRUs (Chung et al., 2014),

each with and without attention (Bahdanau et al., 2015). LSTMs without attention showed

overall the best results in a series of experiments. They find that the models are able to

30Note that the consideration of context window content is not a trivial task, and there are different approaches
to calculate its composition. It has been proposed to multiply a matrix (an “adjacency matrix” that needs to be
learnt) by the concatenation of word embedding vectors; in general, the problem is similar to one considered
above for two-component composition vector construction (however, learning is an extra challenge as it deals
with arbitrary window context, not necessarily with true word composition).
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do zero-shot generalisations when commands from training and test sets are similar. More

importantly, they conduct an experiment on generalisation of composition across primitive

actions, i.e. they train the models on commands such as “run”, “run twice”, “jump” and then

require the models to predict all presented compositions on the action that they only observed

in the primitive context (e.g., produce “jump twice”). They find that in this task RNNs fail.

They conclude that current models lack the ability to extract systematic rules from the data,

i.e. the ability to see a pattern such as “translate(x and y)=translate(x)translate(y)”.

2.4 Conclusion

In this chapter, we introduced two types of morphology, inflectional and derivational. We

discussed their similarities and differences, and several linguistic theories of treating mor-

phology: Item and Process and Item and Arrangement. We introduced the datasets and tasks

used in prior work and that we will be evaluating against and targeting in our experiments.

In the second part of the chapter, we introduced main tools and approaches used in NLP

for morphology modelling such as FSTs, rule-based and neural models, and provided a

comparison of them on morphological reinflection task studied in terms of SIGMORPHON

shared tasks. The final part of the chapter provided a summary of distributed models that are

based on distributional semantics principle and discussed approaches to compositionality

modelling.



Chapter 3

Evaluation of Word Embeddings and

Distributional Semantics Approach

A large part of the chapter appears in the following papers:

Ekaterina Vylomova, Laura Rimell, Trevor Cohn, and Timothy Baldwin. Take and took,

gaggle and goose, book and read: Evaluating the utility of vector differences for lexical

relation learning. In Proceedings of the 54th Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), pages 1671–1682, 2016.

Ekaterina Vylomova, Trevor Cohn, Xuanli He, and Gholamreza Haffari. Word rep-

resentation models for morphologically rich languages in neural machine translation. In

Proceedings of the First Workshop on Subword and Character Level Models in NLP, pages

103–108, 2017a.

3.1 Introduction

In this chapter, we evaluate word- and character-level word embeddings. In the first part

of the chapter, we provide a comparative analysis of the word embeddings from a num-

ber of models. We evaluate their performance at capturing lexical semantic (hypernymy,
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meronymy), morphosemantic (verb-to-noun nominalisation), and morphosyntactic (transfor-

mation of a verb from present tense to past tense) relations. We only focus on asymmetric

binary relations that are expressed as the difference between corresponding word vectors

which, as has been shown, is one of the best functions to model these relations. Our results

show that word-level models perform well at capturing morphosyntactic relations, while

lexical semantic and morphosemantic ones are more challenging in terms of generalisation

and require more specific training conditions. We also demonstrate a large gap between

the models’ performance in the setting when each word pair corresponds to a relation from

the initial set and a more realistic situation when the models are also provided with many

non-existent relations. In the latter one, the models perform poorly, and we suggest usage of

negative sampling technique similar to the one used for training of the models in order to

improve their generalisation ability.

In our comparison of word- and character-level models we show that character-level

models typically perform better, and the character-level models (fasttext, in particular)

trained on a smaller size corpus perform nearly as well as the word-level trained on a much

larger one.

Finally, we translate the initial dataset into Russian and compare the performance of

character-level models. Our observations are similar to those for English, although for

morphosyntatic relations the accuracy is quite close to 100%, which we ascribe to the

fact that Russian word forms are less ambiguous and more indicative of morphosyntactic

properties.

In the second part of the chapter, we evaluate word- and character-level models on a

machine translation task. We enrich word-level representations on the encoder part with two

types of character-level representations, CNN and biLSTM. We experiment on translation

from morphological rich languages (Russian and Estonian) into English and show that

character-level models improve the word representation for low-frequency tokens. We show

that CNN representations are more focused on the lemma (central) part, while biLSTM-based

representations are focused on the periphery of the word. We additionally demonstrate

that the biLSTM model is superior to the CNN for these languages in terms of capturing
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morphological similarities (which could be explained by the fact that they are both based on

concatenative word formation). In addition, we initialise the source word embeddings with

the pre-trained character-level ones used for evaluation in the previous part. We show that

the models achieve results close to the biLSTM model.

3.2 Language Modelling for English

Learning to identify lexical relations is a fundamental task in NLP, and can contribute to many

NLP applications including paraphrasing and generation, machine translation, and ontology

building (Banko et al., 2007; Hendrickx et al., 2010).

Recently, as discussed in Section 2.3.5, attention has been focused on identifying lexical

relations using word embeddings, which are dense, low-dimensional vectors obtained either

from a “predict-based” neural network trained to predict word contexts, or a “count-based”

traditional distributional similarity method combined with dimensionality reduction. The

skip-gram model of Mikolov et al. (2013a) and other similar language models have been

shown to perform well on an analogy completion task (Levy and Goldberg, 2014a; Mikolov

et al., 2013b,c), in the context of relational similarity prediction (Turney, 2006), where the

task is to predict the missing word in analogies such as A:B :: C: –?–. A well-known example

involves predicting the vector queen from the vector combination king−man+woman,

where linear operations on word vectors appear to capture the lexical relation governing the

analogy, in this case OPPOSITE-GENDER. The results extend to several semantic relations

such as CAPITAL-OF (paris− france+poland≈ warsaw)1 and morphosyntactic relations

such as PLURALISATION (cars− car+apple ≈ apples). Remarkably, since the model is

not trained for this task, the relational structure of the vector space appears to be an emergent

property.

The key operation in these models is vector difference, or vector offset. For example,

the paris− france vector appears to encode CAPITAL-OF, presumably by cancelling out

the features of paris that are France-specific, and retaining the features that distinguish a

1Case-folding is applied during pre-processing step.
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capital city (Levy and Goldberg, 2014a). The success of the simple offset method on analogy

completion suggests that the difference vectors (“DIFFVEC” hereafter) must themselves be

meaningful: their direction and/or magnitude encodes a lexical relation.

Previous analogy completion tasks used with word embeddings have limited coverage of

lexical relation types. Moreover, the task does not explore the full implications of DIFFVECs

as meaningful vector space objects in their own right, because it only looks for a one-best

answer to the particular lexical analogies in the test set. In this chapter, we introduce a

new, larger dataset covering many well-known lexical relation types from the linguistics and

cognitive science literature. We then apply DIFFVECs to two new tasks: unsupervised and

supervised relation extraction. First, we cluster the DIFFVECs to test whether the clusters

map onto true lexical relations. We find that the clustering works remarkably well, although

syntactic relations are captured better than semantic ones.

Second, we perform classification over the DIFFVECs and obtain remarkably high accu-

racy in a closed-world setting (over a predefined set of word pairs, each of which corresponds

to a lexical relation in the training data). When we move to an open-world setting including

random word pairs — many of which do not correspond to any lexical relation in the training

data — the results are poor. We then investigate methods for better attuning the learned class

representation to the lexical relations, focusing on methods for automatically synthesising

negative instances. We find that this improves the model performance substantially.

We also find that hyper-parameter optimised count-based methods are competitive with

predict-based methods under both clustering and supervised relation classification, in line

with the findings of Levy et al. (2015a).

3.2.1 Relation Learning

A lexical relation is a binary relation r holding between a word pair (wi,w j); for example,

the pair (cart,wheel) stands in the WHOLE-PART relation. Relation learning in NLP includes

relation extraction, relation classification, and relational similarity prediction. In relation

extraction, related word pairs in a corpus and the relevant relation are identified. Given a

word pair, the relation classification task involves assigning a word pair to the correct relation
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from a pre-defined set. In the Open Information Extraction paradigm (Banko et al., 2007;

Weikum and Theobald, 2010), also known as unsupervised relation extraction, the relations

themselves are also learned from the text (e.g. in the form of text labels). On the other hand,

relational similarity prediction involves assessing the degree to which a word pair (A,B)

stands in the same relation as another pair (C,D), or to complete an analogy A:B :: C: –?–.

Relation learning is an important and long-standing task in NLP and has been the focus of a

number of shared tasks (Girju et al., 2007; Hendrickx et al., 2010; Jurgens et al., 2012).

Recently, attention has turned to using vector space models of words for relation clas-

sification and relational similarity prediction. Distributional word vectors have been used

for detection of relations such as hypernymy (Geffet and Dagan, 2005; Kotlerman et al.,

2010; Lenci and Benotto, 2012; Rimell, 2014; Santus et al., 2014; Weeds et al., 2014) and

qualia structure (Yamada et al., 2009). An exciting development has been the demonstration

that vector difference over word embeddings (Mikolov et al., 2013c) can be used to model

word analogy tasks. This has given rise to a series of papers exploring the DIFFVEC idea

in different contexts. The original analogy dataset has been used to evaluate predict-based

language models by Mnih and Kavukcuoglu (2013) and also Zhila et al. (2013), who combine

a neural language model with a pattern-based classifier. Kim and de Marneffe (2013) use

word embeddings to derive representations of adjective scales, e.g. hot—warm—cool—cold.

Fu et al. (2014) similarly use embeddings to predict hypernym relations, in this case clus-

tering words by topic to show that hypernym DIFFVECs can be broken down into more

fine-grained relations. Neural networks have also been developed for joint learning of lexical

and relational similarity, making use of the WordNet relation hierarchy (Bordes et al., 2013;

Faruqui et al., 2015; Fried and Duh, 2015; Socher et al., 2013a; Xu et al., 2014; Yu and

Dredze, 2014).

Another strand of work corresponding to the vector difference approach has analysed the

structure of predict-based embedding models in order to help explain their success on the

analogy and other tasks (Arora et al., 2015; Levy and Goldberg, 2014a,b). However, there

has been no systematic investigation of the range of relations for which the vector difference

method is most effective, although there have been some smaller-scale investigations in this
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direction. Makrai et al. (2013) divide antonym pairs into semantic classes such as quality,

time, gender, and distance, finding that for about two-thirds of antonym classes, DIFFVECs

are significantly more correlated than random. Necşulescu et al. (2015) train a classifier

on word pairs, using word embeddings to predict coordinates, hypernyms, and meronyms.

Roller and Erk (2016) analyse the performance of vector concatenation and difference on

the task of predicting lexical entailment and show that vector concatenation overwhelmingly

learns to detect Hearst patterns (e.g., including, such as). Köper et al. (2015) undertake a

systematic study of morphosyntactic and semantic relations on word embeddings produced

with word2vec (“w2v” hereafter; see Section 3.2.2.1) for English and German. They

test a variety of relations including word similarity, antonyms, synonyms, hypernyms, and

meronyms, in a novel analogy task. Although the set of relations tested by Köper et al. (2015)

is somewhat more constrained than the set we use, there is a good deal of overlap. However,

their evaluation is performed in the context of relational similarity, and they do not perform

clustering or classification on the DIFFVECs.

Recently, Hakami et al. (2018) published an extensive study of DIFFVECs and their

mathematical basis. Here, we also provide our analysis why vector differences seem to be a

promising approach for binary relation classification of word vectors obtained by training

language models.

In a traditional language model, we estimate the probability of the next word given its

prior context, i.e. p(wi = w|w1:i−1) =
exp(w⊤c)

∑w′∈V exp(w′⊤c) , where V is a size of the lexicon and c

is a vector that represents a context. It could be a weighted sum of k previous words as in

a log-bilinear model, or a vector corresponding to the network’s hidden state (that, in turn,

depends on the weighted sum of its current input and the previous state) with some weight

as in RNNs. Contrary to that, w2v model predicts the center word from its surrounding

context of some fixed size. The context is expressed as a sum of word vectors. In general, we

see language modelling as a case of multinomial logistic regression over V possible classes.

Paraphrasing the task, we aim to solve V −1 binary regression tasks each of which could be

expressed as follows: log p(wi=w|c)
p(wi=w′|c) = c ·θw, where c is an input vector (in LMs it is usually
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context representation), θ ∈ RD×V are the model’s parameters and θw corresponds to the

parameters of the class w.

For the w2v CBoW we can rewrite it as follows:

log
p(wi = w|c)
p(wi = w′|c)

= log

exp

(
w⊤ ∑

j∈[−c,+c], j ̸=0
w̃i+ j

)

exp

(
w′⊤ ∑

j∈[−c,+c], j ̸=0
w̃i+ j

) =

=

(
w⊤ ∑

j∈[−c,+c], j ̸=0
w̃i+ j

)
−

(
w′⊤ ∑

j∈[−c,+c], j ̸=0
w̃i+ j

)

And, finally, we rewrite it as:

log
p(wi = w|c)
p(wi = w′|c)

= ∑
j∈[−c,+c], j ̸=0

w̃i+ j

(
w⊤−w′⊤

)

In the case of an RNN it changes to the following:

log
p(wi = w|c)
p(wi = w′|c)

= (βw ·ht +bw)− (βw′ ·ht +bw′)

As we see, in both cases log-odds ratio can be re-written as a vector difference.

3.2.2 General Approach and Resources

We define the task of lexical relation learning to take a set of (ordered) word pairs {(wi,w j)}

and a set of binary lexical relations R = {rk}, and map each word pair (wi,w j) as follows:

(a) (wi,w j) 7→ rk ∈ R, i.e. the “closed-world” setting, where we assume that all word pairs

can be uniquely classified according to a relation in R; or (b) (wi,w j) 7→ rk ∈ R ∪{φ} where

φ signifies the fact that none of the relations in R apply to the word pair in question, i.e. the

“open-world” setting.

Our starting point for lexical relation learning is the assumption that important information

about various types of relations is implicitly embedded in the offset vectors. While a range of
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methods have been proposed for composing word vectors (Baroni et al., 2012; Roller et al.,

2014; Weeds et al., 2014), in this research we focus exclusively on DIFFVEC (i.e. w2−w1).

A second assumption is that there exist dimensions, or directions, in the embedding vector

spaces responsible for a particular lexical relation. Such dimensions could be identified

and exploited as part of a clustering or classification method, in the context of identifying

relations between word pairs or classes of DIFFVECs.

In order to test the generalisability of the DIFFVEC method, we require: (1) word

embeddings, and (2) a set of lexical relations to evaluate against. As the focus of this chapter

is not the word embedding pre-training approaches so much as the utility of the DIFFVECs

for lexical relation learning, we take a selection of several pre-trained word embeddings

with strong currency in the literature, as detailed in Section 2.3.5. We also include the

state-of-the-art count-based approach of Levy et al. (2015a), to test the generalisability of

DIFFVECs to count-based word embeddings.

For the lexical relations, we want a range of relations that is representative of the types

of relational learning tasks targeted in the literature, and where there is availability of

annotated data. To this end, we construct a dataset from a variety of sources, focusing

on lexical semantic relations (which are less well represented in the analogy dataset of

Mikolov et al. (2013c)), but also including morphosyntactic and morphosemantic relations

(see Section 3.2.2.1).

3.2.2.1 Word Embeddings

We consider four highly successful word embedding models in our experiments: w2v

(Mikolov et al., 2013a,b), GloVe (Pennington et al., 2014), SENNA (Collobert and Weston,

2008), and HLBL (Mnih and Hinton, 2009). We also include SVD (Levy et al., 2015a),

a count-based model which factorises a positive PMI (PPMI) matrix. For consistency of

comparison, we train SVD as well as a version of w2v and GloVe (which we call w2vwiki

and GloVewiki, respectively) on a fixed English Wikipedia corpus (comparable in size to the

training data of SENNA and HLBL), and apply the preprocessing of Levy et al. (2015a). We
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Name Dimensions Training data
w2v 300 100×109

GloVe 200 6×109

SENNA 100 37×106

HLBL 200 37×106

FTsg 300 50×106

FTcbow 300 N/A
w2vwiki 300 50×106

GloVewiki 300 50×106

SVDwiki 300 50×106

Table 3.1 The pre-trained word embeddings used in our experiments, with the number of
dimensions and size of the training data (in word tokens). The models trained on English
Wikipedia (“wiki”) are in the lower half of the table.

additionally normalise the w2vwiki and SVDwiki vectors to unit length; GloVewiki is natively

normalised by column.2

For HLBL and SENNA, we use the pre-trained embeddings from Turian et al. (2010),

trained on the Reuters English newswire corpus. In both cases, the embeddings were scaled

by the global standard deviation over the word-embedding matrix, Wscaled = 0.1× W
σ(W ) .

For character-level models we use FastText embeddings, which are a modification of

w2v. In particular, we compare two pre-trained models, FTsg (Bojanowski et al., 2017) and

FTcbow (Grave et al., 2018), corresponding to skip-gram and positional CBoW, respectively.

For w2vwiki, GloVewiki and SVDwiki we used English Wikipedia. We followed the same

preprocessing procedure described in Levy et al. (2015a),3 i.e., lower-cased all words and

removed non-textual elements. During the training phase, for each model we set a word

frequency threshold of 5. For the SVD model, we followed the recommendations of Levy

et al. (2015a) in setting the context window size to 2, negative sampling parameter to 1,

eigenvalue weighting to 0.5, and context distribution smoothing to 0.75; other parameters

were assigned their default values. For the other models we used the following parameter

2We ran a series of experiments on normalised and unnormalised w2v models, and found that normalisation
tends to boost results over most of our relations (with the exception of LEXSEMEvent and NOUNColl). We leave
a more detailed investigation of normalisation to future work.

3Although the w2v model trained without preprocessing performed marginally better, we used preprocessing
throughout for consistency.
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Relation Description Example
LEXSEMHyper hypernym (animal,dog)
LEXSEMMero meronym (airplane,cockpit)
LEXSEMAttr characteristic quality, action (cloud,rain)
LEXSEMCause cause, purpose, or goal (cook,eat)
LEXSEMSpace location or time association (aquarium,fish)
LEXSEMRef expression or representation (song,emotion)
LEXSEMEvent object’s action (zip,coat)
NOUNSP plural form of a noun (year,years)
VERB3 V;1SG;PRES→ V;3SG;PRES (run,runs)
VERBPast V;1SG;PRES→V;PAST (run,ran)
VERB3Past V;3SG;Pres→ V;PAST (runs,ran)
LVC light verb construction (give,approval)
VERBNOUN nominalisation of a verb (approve,approval)
PREFIX prefixing with re morpheme (vote,revote)
NOUNColl collective noun (army,ants)

Table 3.2 Description of the 15 lexical relations (see continuation on Table 3.3).

values: for w2v, context window = 8, negative samples = 25, hs = 0, sample = 1e-4, and

iterations = 15; and for GloVe, context window = 15, x_max = 10, and iterations = 15.

Lexical Relations In order to evaluate the applicability of the DIFFVEC approach to rela-

tions of different types, we assembled a set of lexical relations in three broad categories: lexi-

cal semantic relations, morphosyntactic paradigm relations, and morphosemantic relations.

We constrained the relations to be binary and to have fixed directionality.4 Consequently we

excluded symmetric lexical relations such as synonymy. We additionally constrained the

dataset to the words occurring in all embedding sets. There is some overlap between our

relations and those included in the analogy task of Mikolov et al. (2013c), but we include a

much wider range of lexical semantic relations, especially those standardly evaluated in the

relation classification literature. We manually filtered the data to remove duplicates (e.g., as

part of merging the two sources of LEXSEMHyper intances), and normalise directionality.

4Word similarity is not included; it is not easily captured by DIFFVEC since there is no homogeneous
“content” to the lexical relation which could be captured by the direction and magnitude of a difference vector
(other than that it should be small).
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Relation Pairs Source
LEXSEMHyper 1173 SemEval’12 + BLESS
LEXSEMMero 2825 SemEval’12 + BLESS
LEXSEMAttr 71 SemEval’12
LEXSEMCause 249 SemEval’12
LEXSEMSpace 235 SemEval’12
LEXSEMRef 187 SemEval’12
LEXSEMEvent 3583 BLESS
NOUNSP 100 MSR
VERB3 99 MSR
VERBPast 100 MSR
VERB3Past 100 MSR
LVC 58 Tan et al. (2006b)
VERBNOUN 3303 WordNet
PREFIX 118 Wiktionary
NOUNColl 257 Web source

Table 3.3 Number of samples and sources of the 15 lexical relations.

The final dataset consists of 12,458 triples ⟨relation,word1,word2⟩, comprising 15 rela-

tion types, extracted from SemEval’12 (Jurgens et al., 2012), BLESS (Baroni and Lenci,

2011), the MSR analogy dataset (Mikolov et al., 2013c), the light verb dataset of Tan et al.

(2006a), Princeton WordNet (Fellbaum, 1998), Wiktionary,5 and a web lexicon of collective

nouns,6 as listed in Tables 3.2 and 3.3.7

3.2.3 Clustering

Assuming DIFFVECs are capable of capturing all lexical relations equally, we would expect

clustering to be able to identify sets of word pairs with high relational similarity, or equiva-

lently clusters of similar offset vectors. Under the additional assumption that a given word

pair corresponds to a unique lexical relation (in line with our definition of the lexical relation

learning task in Section 3.2.2), a hard clustering approach is appropriate. In order to test

these assumptions, we cluster our 15-relation closed-world dataset in the first instance, and

evaluate against the lexical resources in Section 3.2.2.1.
5http://en.wiktionary.org
6http://www.rinkworks.com/words/collective.shtml
7The dataset is available at http://github.com/ivri/DiffVec

http://en.wiktionary.org
http://www.rinkworks.com/words/collective.shtml
http://github.com/ivri/DiffVec
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LEXSEMAttr
LEXSEMCause
NOUNColl
LEXSEMEvent

LEXSEMHyper
LVC
LEXSEMMero
NOUNSP

PREFIX
LEXSEMRef
LEXSEMSpace
VERB3

VERB3Past
VERBPast
VERBNOUN

Figure 3.1 t-SNE projection (Van der Maaten and Hinton, 2008) of DIFFVECs for 10 sample
word pairs of each relation type, based on w2v. The intersection of the two axes identify the
projection of the zero vector. Best viewed in colour.

As further motivation, we projected the DIFFVEC space for a small number of samples

of each class using t-SNE (Van der Maaten and Hinton, 2008), and found that many of

the morphosyntactic relations (VERB3, VERBPast, VERB3Past, NOUNSP) form tight clusters

(Figure 3.1).

We cluster the DIFFVECs between all word pairs in our dataset using spectral clustering

Von Luxburg (2007). Spectral clustering has two hyperparameters: the number of clusters,

and the pairwise similarity measure for comparing DIFFVECs. We tune the hyperparameters

over development data, in the form of 15% of the data obtained by random sampling,

selecting the configuration that maximises the V-Measure (Rosenberg and Hirschberg, 2007).

Figure 3.2 presents V-Measure values over the test data for each of the four word embedding

models. We show results for different numbers of clusters, from N = 10 in steps of 10,

up to N = 80 (beyond which the clustering quality diminishes).8 Observe that w2v and

fasttext achieve the best results, with the highest V-Measure value for w2v of around

8Although 80 clusters≫ our 15 relation types, the SemEval’12 classes each contain numerous subclasses,
so the larger number may be more realistic.
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Figure 3.2 Spectral clustering results, comparing cluster quality (V-Measure) and the number
of clusters. DIFFVECs are clustered and compared to the known relation types. Each line
shows a different source of word embeddings.

0.36,9 which is relatively constant over varying numbers of clusters. GloVe and SVD mirror

this result, but are consistently below w2v at a V-Measure of around 0.31. HLBL and SENNA

performed very similarly, at a substantially lower V-Measure than w2v or GloVe, closer to

0.21. As a crude calibration for these results, over the related clustering task of word sense

induction, the best-performing systems in SemEval-2010 Task 4 (Manandhar et al., 2010)

achieved a V-Measure of under 0.2.

The lower V-measure for w2vwiki and GloVewiki (as compared to w2v and GloVe,

respectively) indicates that the volume of training data plays a role in the clustering results.

However, both methods still perform well above SENNA and HLBL, and w2v has a clear

empirical advantage over GloVe. We note that SVDwiki performs almost as well as w2vwiki,

consistent with the results of Levy et al. (2015a).

We additionally calculated the entropy for each lexical relation, based on the distribution

of instances belonging to a given relation across the different clusters (and simple MLE). For

9V-Measure returns a value in the range [0,1], with 1 indicating perfect homogeneity and completeness.
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w2v GloVe HLBL SENNA
LEXSEMAttr 0.49 0.54 0.62 0.63
LEXSEMCause 0.47 0.53 0.56 0.57
LEXSEMSpace 0.49 0.55 0.54 0.58
LEXSEMRef 0.44 0.50 0.54 0.56
LEXSEMHyper 0.44 0.50 0.43 0.45
LEXSEMEvent 0.46 0.47 0.47 0.48
LEXSEMMero 0.40 0.42 0.42 0.43
NOUNSP 0.07 0.14 0.22 0.29
VERB3 0.05 0.06 0.49 0.44
VERBPast 0.09 0.14 0.38 0.35
VERB3Past 0.07 0.05 0.49 0.52
LVC 0.28 0.55 0.32 0.30
VERBNOUN 0.31 0.33 0.35 0.36
PREFIX 0.32 0.30 0.55 0.58
NOUNColl 0.21 0.27 0.46 0.44

Table 3.4 The entropy for each lexical relation over the clustering output for each set of
pre-trained word embeddings.

each embedding method, we present the entropy for the cluster size where V-measure was

maximised over the development data. Since the samples are distributed nonuniformly, we

normalise entropy results for each method by log(n) where n is the number of samples in a

particular relation. The results are in Table 3.4, with the lowest entropy (purest clustering)

for each relation indicated in bold.

Looking across the different lexical relation types, the morphosyntactic paradigm relations

(NOUNSP and the three VERB relations) are by far the easiest to capture. The lexical semantic

relations, on the other hand, are the hardest to capture for all embeddings.

Considering w2v embeddings, for VERB3 there was a single cluster consisting of around

90% of VERB3 word pairs. Most errors resulted from POS ambiguity, leading to con-

fusion with VERBNOUN in particular. Example VERB3 pairs incorrectly clustered are:

(study,studies), (run,runs), and (like,likes). This polysemy results in the dis-

tance represented in the DIFFVEC for such pairs being above average for VERB3, and

consequently clustered with other cross-POS relations.
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For VERBPast, a single relatively pure cluster was generated, with minor contamination

due to pairs such as (hurt,saw), (utensil,saw), and (wipe,saw). Here, the noun saw

is ambiguous with a high-frequency past-tense verb; hurt and wipe also have ambigous

POS.

A related phenomenon was observed for NOUNColl, where the instances were assigned to

a large mixed cluster containing word pairs where the second word referred to an animal,

reflecting the fact that most of the collective nouns in our dataset relate to animals, e.g.

(stand,horse), (ambush,tigers), (antibiotics,bacteria). This is interesting

from a DIFFVEC point of view, since it shows that the lexical semantics of one word in

the pair can overwhelm the semantic content of the DIFFVEC (something that we return

to investigate in Section 3.2.4.4). LEXSEMMero was also split into multiple clusters along

topical lines, with separate clusters for weapons, dwellings, vehicles, etc.

Given the encouraging results from our clustering experiment, we next evaluate DIFF-

VECs in a supervised relation classification setting.

3.2.4 Classification

A natural question is whether we can accurately characterise lexical relations through su-

pervised learning over the DIFFVECs. For these experiments we use the w2v, w2vwiki,

FTcbow, FTsg and SVDwiki embeddings exclusively (based on their superior performance in

the clustering experiment), and a subset of the relations which is both representative of the

breadth of the full relation set, and for which we have sufficient data for supervised training

and evaluation, namely: NOUNColl, LEXSEMEvent, LEXSEMHyper, LEXSEMMero, NOUNSP,

PREFIX, VERB3, VERB3Past, and VERBPast (see Tables 3.2 and 3.3).

We consider two applications: (1) a CLOSED-WORLD setting similar to the unsupervised

evaluation, in which the classifier only encounters word pairs which correspond to one of the

nine relations; and (2) a more challenging OPEN-WORLD setting where random word pairs

— which may or may not correspond to one of our relations — are included in the evaluation.

For both settings, we further investigate whether there is a lexical memorisation effect for
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a broad range of relation types of the sort identified by Weeds et al. (2014) and Levy et al.

(2015b) for hypernyms, by experimenting with disjoint training and test vocabulary.

3.2.4.1 CLOSED-WORLD Classification

For the CLOSED-WORLD setting, we train and test a multiclass classifier on datasets compris-

ing ⟨DIFFVEC,r⟩ pairs, where r is one of our nine relation types, and DIFFVEC is based on

one of w2v, w2vwiki, FTcbow, FTsg and SVD. As a baseline, we cluster the data as described

in Section 3.2.3, running the clusterer several times over the 9-relation data to select the

optimal V-Measure value based on the development data, resulting in 50 clusters. We label

each cluster with the majority class based on the training instances, and evaluate the resultant

labelling for the test instances.

We use an SVM with a linear kernel, and report results from 10-fold cross-validation in

Table 3.5.

The SVM achieves a higher F-score than the baseline on almost every relation, particularly

on LEXSEMHyper, and the lower-frequency NOUNSP, NOUNColl, and PREFIX. Most of the

relations — even the most difficult ones from our clustering experiment such as LEXSEMHyper,

LEXSEMEvent, and LEXSEMMero— are classified with very high F-score. That is, with a

simple linear transformation of the embedding dimensions, we are able to achieve near-

perfect results. The PREFIX relation achieved markedly lower recall, resulting in a lower

F-score, due to large differences in the predominant usages associated with the respective

words (e.g., (union,reunion), where the vector for union is heavily biased by contexts

associated with trade unions, but reunion is heavily biased by contexts relating to social

get-togethers; and (entry,reentry), where entry is associated with competitions and

entrance to schools, while reentry is associated with space travel). Somewhat surprisingly,

given the small dimensionality of the input (vectors of size 300 for all three methods), we

found that the linear SVM slightly outperformed a non-linear SVM using an RBF kernel. We

observe no real difference between w2vwiki and SVDwiki, supporting the hypothesis of Levy

et al. (2015a) that under appropriate parameter settings, count-based methods achieve high

results. The impact of the training data volume for pre-training of the embeddings is also
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Relation Baseline w2v w2vwiki SVDwiki FTsg FTcbow
LEXSEMHyper 0.60 0.93 0.91 0.91 0.93 0.90
LEXSEMMero 0.90 0.97 0.96 0.96 0.97 0.97
LEXSEMEvent 0.87 0.98 0.97 0.97 0.98 0.98
NOUNSP 0.00 0.83 0.78 0.74 0.80 0.80
VERB3 0.99 0.98 0.96 0.97 0.99 0.97
VERBPast 0.78 0.98 0.98 0.95 0.98 0.97
VERB3Past 0.99 0.98 0.98 0.96 1.00 1.00
PREFIX 0.00 0.82 0.34 0.60 0.80 0.78
NOUNColl 0.19 0.95 0.91 0.92 0.93 0.91

Table 3.5 F-scores (F) for CLOSED-WORLD classification, for a baseline method based
on clustering + majority-class labelling, a multiclass linear SVM trained on w2v, w2vwiki,
SVDwiki, FTsg and FTcbow DIFFVEC inputs.

less pronounced than in the case of our clustering experiment. In addition, we also see that

FTcbow and FTsg achieve results close to w2v even thought they are trained on less amount

of data.

3.2.4.2 OPEN-WORLD Classification

We now turn to a more challenging evaluation setting: a test set including word pairs drawn

at random. This setting aims to illustrate whether a DIFFVEC-based classifier is capable of

differentiating related word pairs from noise, and can be applied to open data to learn new

related word pairs.10

For these experiments, we train a binary classifier for each relation type, using 2
3 of our

relation data for training and 1
3 for testing. The test data is augmented with an equal quantity

of random pairs, generated as follows:

(1) sample a seed lexicon by drawing words proportional to their frequency in Wikipedia;11

(2) take the Cartesian product over pairs of words from the seed lexicon;

(3) sample word pairs uniformly from this set.

This procedure generates word pairs that are representative of the frequency profile of our

corpus.

10Hereafter we provide results for w2v, FTcbow, and FTsg only.
11Filtered to consist of words for which we have embeddings.



92 Evaluation of Word Embeddings and Distributional Semantics Approach

Relation Orig +neg
P R F P R F

LEXSEMHyper 0.95 0.92 0.93 0.99 0.84 0.91
LEXSEMMero 0.13 0.96 0.24 0.95 0.84 0.89
LEXSEMEvent 0.44 0.98 0.61 0.93 0.90 0.91
NOUNSP 0.95 0.68 0.8 1.00 0.68 0.81
VERB3 0.75 1.00 0.86 0.93 0.93 0.93
VERBPast 0.94 0.86 0.90 0.97 0.84 0.90
VERB3Past 0.76 0.95 0.84 0.87 0.93 0.90
PREFIX 1.00 0.29 0.44 1.00 0.13 0.23
NOUNColl 0.43 0.74 0.55 0.97 0.41 0.57

Table 3.6 Precision (P) and recall (R) for OPEN-WORLD classification, using the binary
classifier without (“Orig”) and with (“+neg”) negative samples.

We train 9 binary RBF-kernel SVM classifiers on the training partition, and evaluate on

our randomly augmented test set.12 Fully annotating our random word pairs is prohibitively

expensive, so instead, we manually annotated only the word pairs which were positively clas-

sified by one of our models. The results of our experiments with wordvec and fasttext

models are presented in the left half of Tables 3.6, 3.7, 3.8, in which we report on results

over the combination of the original test data from Section 3.2.4.1 and the random word

pairs, noting that recall (R) for OPEN-WORLD takes the form of relative recall (Pantel et al.,

2004) over the positively-classified word pairs. The results are much lower than for the

closed-word setting (Table 3.5), most notably in terms of precision (P). For instance, the

random pairs (have,works), (turn,took), and (works,started) were incorrectly

classified as VERB3, VERBPast and VERB3Past, respectively. That is, the model captures

syntax, but lacks the ability to capture lexical paradigms, and tends to overgeneralise.

3.2.4.3 OPEN-WORLD Training with Negative Sampling

To address the problem of incorrectly classifying random word pairs as valid relations, we

retrain the classifier on a dataset comprising both valid and automatically-generated negative

distractor samples. The basic intuition behind this approach is to construct samples which

12The gamma parameter of the RBF-kernel was optimised by doing a grid-search.
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Relation Orig +neg
P R F P R F

LEXSEMHyper 0.96 0.65 0.78 0.96 0.78 0.86
LEXSEMMero 0.23 0.95 0.38 0.94 0.80 0.86
LEXSEMEvent 0.87 0.96 0.91 0.93 0.86 0.89
NOUNSP 0.71 0.60 0.65 0.79 0.60 0.68
VERB3 0.87 0.87 0.87 0.97 0.78 0.86
VERBPast 0.89 0.89 0.89 0.96 0.89 0.93
VERB3Past 0.75 0.94 0.83 0.86 0.78 0.81
PREFIX 1.00 0.50 0.67 1.00 0.43 0.60
NOUNColl 0.40 0.83 0.54 0.82 0.51 0.63

Table 3.7 Precision (P) and recall (R) for OPEN-WORLD classification, using the binary
classifier without (“Orig”) and with (“+neg”) negative samples, FastText SG.

Relation Orig +neg
P R F P R F

LEXSEMHyper 0.56 0.74 0.64 0.93 0.63 0.75
LEXSEMMero 0.19 0.94 0.33 0.73 0.77 0.75
LEXSEMEvent 0.50 0.96 0.66 0.78 0.80 0.79
NOUNSP 0.31 0.80 0.45 0.53 0.64 0.58
VERB3 0.50 0.87 0.63 0.96 0.76 0.85
VERBPast 0.92 0.86 0.89 0.96 0.78 0.86
VERB3Past 0.42 0.91 0.57 0.72 0.72 0.72
PREFIX 0.62 0.50 0.55 – – –
NOUNColl 0.54 0.69 0.61 0.84 0.47 0.60

Table 3.8 Precision (P) and recall (R) for OPEN-WORLD classification, using the binary
classifier without (“Orig”) and with (“+neg”) negative samples, FastText CBoW.

will force the model to learn decision boundaries that more tightly capture the true scope of a

given relation. To this end, we automatically generated two types of negative distractors:

opposite pairs: generated by switching the order of word pairs, Opposw1,w2 = word1−

word2. This ensures the classifier adequately captures the asymmetry in the relations.

shuffled pairs: generated by replacing w2 with a random word w′2 from the same relation,

Shuffw1,w2 = word′2−word1. This is targeted at relations that take specific word classes

in particular positions, e.g., (VB,VBD) word pairs, so that the model learns to encode

the relation rather than simply learning the properties of the word classes.
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Both types of distractors are added to the training set, such that there are equal numbers of

valid relations, opposite pairs and shuffled pairs.

After training our classifier, we evaluate its predictions in the same way as in Sec-

tion 3.2.4.2, using the same test set combining related and random word pairs.13 The results

are shown in the right half of Tables 3.6, 3.7, 3.8 (as “+neg”). Observe that the precision is

much higher and recall somewhat lower compared to the classifier trained with only positive

samples. This follows from the adversarial training scenario: using negative distractors

results in a more conservative classifier, that correctly classifies the vast majority of the

random word pairs as not corresponding to a given relation, resulting in higher precision

at the expense of a small drop in recall. Overall this leads to higher F-scores, as shown in

Figure 3.3, other than for hypernyms (LEXSEMHyper) and prefixes (PREFIX). For exam-

ple, the standard classifier for NOUNColl learned to match word pairs including an animal

name (e.g., (plague,rats)), while training with negative samples resulted in much more

conservative predictions and consequently much lower recall. The classifier was able to cap-

ture (herd,horses) but not (run,salmon), (party,jays) or (singular,boar) as

instances of NOUNColl, possibly because of polysemy. The most striking difference in per-

formance was for LEXSEMMero, where the standard classifier generated many false positive

noun pairs (e.g. (series,radio)), but the false positive rate was considerably reduced

with negative sampling.

3.2.4.4 Lexical Memorisation

Weeds et al. (2014) and Levy et al. (2015b) showed that supervised methods using DIFFVECs

achieve artificially high results as a result of “lexical memorisation” over frequent words

associated with the hypernym relation. For example, (animal,cat), (animal,dog), and

(animal,pig) all share the superclass animal, and the model thus learns to classify as

positive any word pair with animal as the first word.

13But noting that relative recall for the random word pairs is based on the pool of positive predictions from
both models.
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Figure 3.3 F-score for w2v OPEN-WORLD classification, comparing models trained with
and without negative samples.

To address this effect, we follow Levy et al. (2015b) in splitting our vocabulary into

training and test partitions, to ensure there is no overlap between training and test vocabulary.

We then train classifiers with and without negative sampling (Section 3.2.4.3), incrementally

adding the random word pairs from Section 3.2.4.2 to the test data (from no random word

pairs to five times the original size of the test data) to investigate the interaction of negative

sampling with greater diversity in the test set when there is a split vocabulary. The results are

shown in Figure 3.4.

Observe that the precision for the standard classifier decreases rapidly as more random

word pairs are added to the test data. In comparison, the precision when negative sampling is

used shows only a small drop-off, indicating that negative sampling is effective at maintaining

precision in an OPEN-WORLD setting even when the training and test vocabulary are disjoint.

This benefit comes at the expense of recall, which is much lower when negative sampling is

used (note that recall stays relatively constant as random word pairs are added, as the vast

majority of them do not correspond to any relation). At the maximum level of random word
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Figure 3.4 Evaluation of the OPEN-WORLD model when trained on split vocabulary, for
varying numbers of random word pairs in the test dataset (expressed as a multiplier relative
to the number of CLOSED-WORLD test instances).

pairs in the test data, the F-score for the negative sampling classifier is higher than for the

standard classifier.

3.3 Language Modelling for Russian

We now turn to experiments with Russian, a more morphologically rich language. In order

to evaluate the models, we first manually translate part of the initial dataset (the relations

that were used in the classification task) and augment it with extra morphosyntactic relation

types. The morphosyntactic pairs were automatically sampled from the UniMorph database.

Tables 3.9 and 3.10 provide a more detailed information on the resulting dataset.

In there experiments, we only use fasttext embeddings since they demonstrated a

superior performance in our experiments with English.
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Relation Description Example
LEXSEMHyper hypernym (jivotnoje,sobaka)
LEXSEMMero meronym (samolet,kokpit)
LEXSEMEvent object’s action (zastegnut`,pal`to)
NOUNSP NOUN;SG→NOUN;PL (god,gody)
VERB1SgPrs INF→ V;1SG;PRES (begat`,begaju)
VERB1PlPrs INF→ V;1PL;PRES (begat`,begajem)
VERB2SgPrs INF→ V;2SG;PRES (begat`,begaješ`)
VERB2PlPrs INF→ V;2PL;PRES (begat`,begajete)
VERB3SgPrs INF→ V;SG;PRES (begat`,begajet)
VERB3PlPrs INF→ V;3PL;PRES (begat`,begajut)
VERBPlPast INF→ V;PL;PAST (begat`,begali)
VERBMascSgPast INF→ V;M;SG;PAST (begat`,begal)
VERBFemSgPast INF→ V;F;SG;PAST (begat`,begala)
VERBNeurSgPast INF→ V;N;SG;PAST (begat`,begalo)
PREFIX prefixing with re morpheme (izbrat`,pereizbrat`)
NOUNColl collective noun (kolonija,murav`i)

Table 3.9 Description of the 16 lexical relations for Russian language. Examples are transla-
tions of corresponding English instances (see continuation on Table 3.10).

3.3.1 Closed-World Classification

First, similar to the experiments with English, we test the models’ ability to differentiate

these relations in the CLOSED-WORLD classification setting.

The model’s performance is quite high for morphosyntactic relations. Compared to

English, Russian word forms are more indicative of morphosyntactic properties of the form

and less ambiguous. Another possible cause might be a large overlap in the train and test

lexicons, because many of the forms share the same lemma. In order to test the models’

ability to generalise across multipe lemmata, we do an extra experiment where all word

pairs in morphosyntatic relations are sampled from different lemmata (see Section 3.3.3).

Generally, similar to English, we observe that in such a setting the model achieves good

results on most types of relations. Higher accuracy on NOUNColl is explained by the fact that

Russian does not present such a fine-grained distinction of animal groups, assigning all of

them to roughly five large categories.
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Relation Pairs Source
LEXSEMHyper 1008 Translation of SemEval’12 + BLESS
LEXSEMMero 2520 Translation of SemEval’12 + BLESS
LEXSEMEvent 3282 Translation of BLESS
NOUNSP 100 Translation of MSR
VERB1SgPrs 100 UniMorph
VERB1PlPrs 100 UniMorph
VERB2SgPrs 100 UniMorph
VERB2PlPrs 100 UniMorph
VERB3SgPrs 100 UniMorph
VERB3PlPrs 100 UniMorph
VERBPlPast 100 UniMorph
VERBMascSgPast 100 UniMorph
VERBFemSgPast 100 UniMorph
VERBNeurSgPast 100 UniMorph
PREFIX 113 Translation of English Wiktionary
NOUNColl 131 Russian Web source

Table 3.10 Number of samples and sources of the 16 lexical relations for Russian language.

Relation FTsg FTcbow
LEXSEMHyper 0.92 0.92
LEXSEMMero 0.96 0.96
LEXSEMEvent 0.99 0.99
NOUNSP 0.69 0.85
VERB1SgPrs 0.97 1.0
VERB1PlPrs 1.0 1.0
VERB2SgPrs 1.0 1.0
VERB2PlPrs 1.0 1.0
VERB3SgPrs 0.96 1.0
VERB3PlPrs 0.98 1.0
VERBPlPast 1.0 1.0
VERBMascSgPast 1.0 1.0
VERBFemSgPast 1.0 1.0
VERBNeurSgPast 1.0 1.0
PREFIX 0.72 0.83
NOUNColl 0.97 0.98

Table 3.11 F-scores (F) for CLOSED-WORLD classification a multiclass linear SVM trained
on FTsg and FTcbow DIFFVEC inputs for Russian language.
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3.3.2 Open-World Classification

Now we check the models’ performance in a more realistic setting. Following our experiments

with English data, we add noisy samples (i.e. pairs of unrelated words) to the dataset. As

shown on Tables 3.12 and 3.13, the performance drops, especially in the case of lexical

semantic relations. Similarly to English, LEXSEMMero are affected the most. We also observe

that FTsg in most cases outperforms FTcbow, especially in the case of PREFIX.

Relation Orig +neg
P R F P R F

LEXSEMHyper 0.45 0.88 0.59 0.89 0.78 0.83
LEXSEMMero 0.12 0.97 0.22 0.92 0.86 0.89
LEXSEMEvent 0.63 0.99 0.77 0.91 0.96 0.94
NOUNSP 0.96 0.71 0.82 0.96 0.66 0.78
VERB1SgPrs 1.0 0.86 0.92 1.0 0.86 0.92
VERB1PlPrs 1.0 1.0 1.0 1.0 1.0 1.0
VERB2SgPrs 1.0 1.0 1.0 1.0 1.0 1.0
VERB2PlPrs 0.70 1.0 0.83 0.95 0.95 0.95
VERB3SgPrs 0.96 0.92 0.94 1.0 0.96 0.98
VERB3PlPrs 1.0 0.93 0.96 1.0 0.93 0.96
VERBPlPast 1.0 1.0 1.0 1.0 0.96 0.98
VERBMascSgPast 1.0 0.96 0.98 1.0 0.96 0.98
VERBFemSgPast 0.95 0.90 0.93 1.0 0.86 0.92
VERBNeurSgPast 1.0 1.0 1.0 1.0 0.82 0.90
PREFIX 1.0 0.68 0.81 1.0 0.47 0.64
NOUNColl 1.0 0.88 0.94 1.0 0.74 0.85

Table 3.12 Precision (P) and recall (R) for OPEN-WORLD FastText SG classification in
Russian, using the binary classifier without (“Orig”) and with (“+neg”) negative samples.

As presented on Tables 3.12 and 3.13, negative sampling improves the results for lex-

ical relations such as hypernymy, meronymy, and events, although morphosyntactic ones

generally do not need it. This support are findings for English. For PREFIX and NOUNColl

it actually has a negative affect. In the case of collective nouns, we can address it to the

fact that word shuffling within a single relation leads to many positive rather than negative

examples (due to the specificity of Russian, mentioned earlier).
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Relation Orig +neg
P R F P R F

LEXSEMHyper 0.19 0.86 0.31 0.84 0.69 0.76
LEXSEMMero 0.16 0.97 0.27 0.77 0.76 0.77
LEXSEMEvent 0.55 0.99 0.71 0.88 0.92 0.90
NOUNSP 0.32 0.88 0.47 1.00 0.67 0.80
VERB1SgPrs 1.00 0.90 0.95 1.00 0.80 0.89
VERB1PlPrs 1.00 0.93 0.97 1.00 0.83 0.91
VERB2SgPrs 1.00 0.94 0.97 1.00 0.94 0.97
VERB2PlPrs 1.00 0.58 0.73 0.60 0.95 0.73
VERB3SgPrs 0.5 0.82 0.62 0.91 0.88 0.89
VERB3PlPrs 1.00 1.00 1.00 1.00 0.96 0.98
VERBPlPast 0.93 1.00 0.96 1.00 1.00 1.00
VERBMascSgPast 0.97 0.91 0.93 1.00 0.91 0.95
VERBFemSgPast 0.39 0.97 0.56 1.00 0.93 0.97
VERBNeurSgPast 1.00 0.82 0.90 1.00 0.82 0.90
PREFIX 1.00 0.21 0.35 1.00 0.08 0.15
NOUNColl 1.00 0.90 0.95 1.00 0.73 0.84

Table 3.13 Precision (P) and recall (R) for OPEN-WORLD FastText CBoW classification in
Russian, using the binary classifier without (“Orig”) and with (“+neg”) negative samples.

3.3.3 Split Volcabulary for Morphology

We additionally measure the models’ ability to generalise across unseen lemmata for mor-

phosyntactic relations and run extra experiments where the training and test lexicon for

morphosyntactic relations do not overlap.14 We report the performance in OPEN-WORLD

settings and only for this type of relation (although we train on all training data). Tables 3.14

and 3.15 do not show a substantial drop of performance.

To summarise, we observe that morphosyntatic relations are captured better compared

to other relaton types, and character-level models learn them more efficiently and need less

amount of data. Accuracy for Russian is higher than for English which we addressed to more

transparent form–meaning relation there. In the next section, we will further compare various

character-level architectures in their ability to present morphological awareness in a machine

translation task.

14The lexicons are the same for both models.
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Relation Orig +neg
P R F P R F

NOUNSP 1.00 0.74 0.85 1.00 0.74 0.85
VERB1SgPrs 1.0 0.67 0.81 1.0 0.64 0.78
VERB1PlPrs 1.0 0.91 0.96 1.0 0.92 0.96
VERB2SgPrs 1.0 0.97 0.99 1.0 0.92 0.95
VERB2PlPrs 1.0 0.88 0.94 1.00 0.88 0.94
VERB3SgPrs 1.0 0.88 0.94 1.0 0.88 0.94
VERB3PlPrs 1.0 0.86 0.93 1.0 0.86 0.93
VERBPlPast 1.0 0.92 0.96 1.0 0.87 0.93
VERBMascSgPast 1.0 0.96 0.98 1.0 0.96 0.98
VERBFemSgPast 0.95 0.78 0.86 0.95 0.75 0.84
VERBNeurSgPast 1.0 0.97 0.98 1.0 0.94 0.96

Table 3.14 Precision (P) and recall (R) for OPEN-WORLD FastText SG classification in
Russian with split lexicon, using the binary classifier without (“Orig”) and with (“+neg”)
negative samples.

Relation Orig +neg
P R F P R F

NOUNSP 0.41 0.71 0.52 0.88 0.74 0.80
VERB1SgPrs 1.00 0.72 0.84 1.00 0.72 0.84
VERB1PlPrs 1.00 0.93 0.97 1.00 0.87 0.93
VERB2SgPrs 1.00 0.96 0.98 1.00 0.96 0.98
VERB2PlPrs 0.96 0.73 0.83 0.84 0.94 0.89
VERB3SgPrs 0.52 0.96 0.67 0.82 0.93 0.87
VERB3PlPrs 1.00 0.95 0.97 1.00 0.92 0.96
VERBPlPast 0.91 1.00 0.95 1.00 0.96 0.98
VERBMascSgPast 1.00 0.73 0.84 0.88 0.84 0.86
VERBFemSgPast 0.81 0.93 0.87 0.90 0.87 0.89
VERBNeurSgPast 1.00 0.93 0.97 1.00 0.87 0.93

Table 3.15 Precision (P) and recall (R) for OPEN-WORLD FastText CBoW classification in
Russian, using the binary classifier without (“Orig”) and with (“+neg”) negative samples.

3.4 Machine Translation

Models of end-to-end machine translation based on neural networks can produce excellent

translations, rivalling or surpassing traditional statistical machine translation systems (Bah-

danau et al., 2015; Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014). A central

challenge in neural MT is handling rare and uncommon words. Conventional neural MT
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models use a fixed modest-size vocabulary, such that the identity of rare words is lost, which

makes their translation exceedingly difficult. Accordingly, sentences containing rare words

tend to be translated much more poorly than those containing only common words (Bahdanau

et al., 2015; Sutskever et al., 2014). The rare word problem is exacerbated when translating

from morphologically rich languages, where the large number of morphological variants of

words result in a huge vocabulary with a heavy tail. For example in Russian, there are at least

70 word forms for dog, encoding case, gender, age, number, sentiment and other semantic

connotations. Many of them share a common lemma, and contain regular morphological

affixation; consequently much of the information required for translation is present, but not

in an accessible form for models of neural MT.

In many cases, the OOV problem is addressed by incorporating character-level word

representations largely belonging to one of two classes, namely convolutional neural networks

(CNNs) and recurrent neural networks based on long-short term memory (LSTM) units

(Hochreiter and Schmidhuber, 1997). But there has been no investigation of what each

of the models captures and how well they can model morphology in particular. In this

section, we fill this gap by evaluating encoder-level representations of OOV words. To get

the representations, we incorporate LSTM and CNN word representation models into two

types of attentional machine translation models. Our evaluation includes both intrinsic and

extrinsic metrics, where we compare these approaches based on their translation performance

as well as their ability to recover synonyms for the rare words. Intrinsic analysis shows that

there are only minor differences in translation performance, although detailed analysis shows

that the character-based LSTM is overal best at capturing morphological regularities.

3.4.1 Models

Now we turn to the problem of learning word representations. We consider character-level

encoding methods which we compare to the baseline word embedding approach. We test

three types of character representations: recurrent neural networks (RNNs) with LSTM units,

convolutional neural networks (CNNs), and initialising source-level word embedding with

pre-trained FastText embeddings.
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Figure 3.5 Model architecture for the several approaches to learning word representations,
showing from left: BiLSTM over characters and the character convolution.

For CNN and RNN character encoders, we learn two word representations: one esti-

mated from the characters, and a word embedding.15 Then we run max pooling over both

embeddings to obtain the word representation, rw = mw ⊘ ew, where mw is the embedding

of word w and ew is the sub-word encoding. The max pooling operation ⊘ captures non-

compositionality in the semantic meaning of a word relative to its sub-parts. We hypothesise

that the model will favour unit-based embeddings for rare words and word-based for more

common ones.

Each word is expressed with its constituent units as follows. Let U be the vocabulary

of sub-word units, i.e., characters, Eu be the dimensionality of unit embeddings, and M ∈

REu×|U | be the matrix of unit embeddings. Suppose that a word w from the source dictionary

is made up of a sequence of units Uw := [u1, . . . ,u|w|], where |w| stands for the number

of constituent units in the word. The resulting word representations are then fed to both

attentional models as the source word embeddings.

Bidirectional LSTM Encoder The encoding of the word is formulated using a pair of

LSTMs (denoted biLSTM) one operating left-to-right over the input sequence and another

operating right-to-left, h→j = LSTM(h→j−1,mu j) and h←j = LSTM(h←j+1,mu j) where h→j and

15We only include word embeddings for common words; rare words share an UNK embedding.
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h←j are the LSTM hidden states.16 These are fed into a perceptron with a single hidden layer

and a tanh activation function to form the word representation, ew = MLP
(

h→|Uw|,h
←
1

)
.

Convolutional Encoder Another word encoder we consider is a convolutional neural

network, inspired by a similar approach in language modelling (Kim et al., 2016). Let

Uw ∈ REu×|U |w denote the unit-level representation of w, where the j-th column corresponds

to the unit embedding of u j. The idea of unit-level CNN is to apply a kernel Ql ∈REu×kl with

width kl to Uw to obtain a feature map fl ∈ R|Uw|−kl+1. More formally, for the j-th element

of the feature map the convolutional representation is

fl( j) = tanh(⟨Uw, j,Ql⟩+b)

where Uw, j ∈ REu×kl is a slice from Uw which spans the representations of the j-th unit and

its preceding kl−1 units, and

⟨A,B⟩= ∑
i, j

Ai jBi j = Tr
(
ABT)

denotes the Frobenius inner product. For example, suppose that the input has size [4×9],

and a kernel has size [4×3] with a sliding step being 1. Then, we obtain a [1×7] feature

map. This process implements a character n-gram, where n is equal to the width of the filter.

The word representation is then derived by max pooling the feature maps of the kernels:

∀l : rw(l) = max
j

fl( j)

In order to capture interactions between the character n-grams obtained by the filters, a

highway network (Srivastava et al., 2015) is applied after the max pooling layer,

ew = t⊙MLP(rw)+(1− t)⊙ rw,

16The memory cells are computed as part of the recurrence, suppressed here for clarity.
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Set Ru-En Et-En

Train
Tokens 1,639K-1,809K 1,411K-1,857K
Types 145K-65K 90K-25K

Development
Tokens 150K-168K 141K-188K
Types 35K-18K 21K-9K

Test
Tokens 150K-167K 142K-189K
Types 35K-18K 21K-8K

OOV Types 45% 45%

Table 3.16 Corpus statistics for parallel data between Russian/Estonian and English. The
OOV rate are the fraction of word types in the source language that are in the test set but are
below the frequency cut-off or unseen in training.

where t = MLPσ (rw) is a sigmoid gating function which modulates between a tanh MLP

transformation of the input (left component) and preserving the input as is (right component).

In addition, we also run an experiment with pre-trained fasttext embeddings

FTcbow. We initialise source language embeddings and keep them constant during the

training phrase, leaving everything else unchanged.

3.4.2 Experiments

Datasets. We use parallel bilingual data from Europarl for Estonian-English (Koehn, 2005),

and web-crawled parallel data for Russian-English (Antonova and Misyurev, 2011). For

preprocessing, we tokenise, lower-case, and filter out sentences longer than 30 words. We

apply a frequency threshold of 5, replacing low-frequency words with a special UNK token.

Table 3.16 presents the corpus statistics.

Extrinsic Evaluation: MT We apply the character-level models in the encoder of the

neural attentional (Bahdanau et al., 2015) (“AM”, soft-attentional) and neural operation

sequence (Vylomova et al., 2016, v.1) (“OSM”, hard-attentional) models, replacing the source

word embedding component with either BiLSTM or CNN over characters, or fasttext pre-

trained embeddings. To evaluate translations, we re-ranked the 100-best output translations

from Moses17 using the attentional models. The re-ranker includes standard features from

17https://github.com/moses-smt.

https://github.com/moses-smt
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Language \ Model Ru-En Et-En
Phrase-based baseline 15.02 24.40
CHAR BILSTMam 16.01 26.34
FASTTEXTam 15.94 26.34
CHAR BILSTMosm 15.81 26.14
CHAR CNNam 15.90 26.14
CHAR CNNosm 15.94 25.97
WORDam 15.93 26.33
WORDosm 15.70 26.03

Table 3.17 BLEU scores for re-ranking the test sets.

Moses plus extra feature(s) for each of the models. For AM we supply the log probability

of the candidate translation, and for OSM we add two extra features corresponding to the

generated alignment and the translation probabilities. The weights of the re-ranker are then

trained using MERT (Och, 2003) with 100 restarts to optimise BLEU.

Table 3.17 presents BLEU score results. As seen, re-ranking based on the neural model

scores outperforms the phrase-based baseline. However, the translation quality of the neural

models are not significantly different. We assume that this is due to re-ranking of Moses

translations rather than decoding. Also note that here we do not address the problem of OOV

on the decoding side. Also, we observe that usage of pre-trained source embeddings does not

lead to a significant improvement in such a setting.

Intrinsic Evaluation We now take a closer look at the embeddings learned by the models,

based on how well they capture the semantic and morphological information in the nearest

neighbour words. Learning representations for low frequency words is harder than that

for high-frequency words, since low frequency words cannot capitalise as reliably on their

contexts. Therefore, we split the test lexicon into 6 parts according to their frequency in the

training set. Since we set the word frequency threshold to 5 for the training set, all words

appearing in the lowest frequency band [0,4] are OOVs for the test set. For each word of the

test set, we take its top-20 nearest neighbours from the whole training lexicon using cosine

similarity.
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Semantic Evaluation. We investigate how well the nearest neighbours are interchangeable

with a query word in the translation process. So we formalise the notion of semantics of the

source words based on their translations in the target language. We use pivoting to define

the probability of a candidate word e′ to be the synonym of the query word e, p(e′|e) =

∑ f p( f |e)p(e′| f ), where f is a target language word, and the translation probabilities inside

the summation are estimated using a word-based translation model trained on the entire

initial bilingual corpora. We then take the top-5 most probable words as the gold synonyms

for each query word of the test set.18

We measure the quality of predicted nearest neighbours using multi-label accuracy19

1
|S|∑w∈S 1[G(w)∩N(w)̸=∅] where G(w) and N(w) are the sets of gold standard synonyms and

nearest neighbors for w respectively; the function 1[C] evaluates to one if the condition C

is true, and zero otherwise. In other words, it is the fraction of words in S whose nearest

neighbours and gold standard synonyms have non-empty overlap.

Table 3.18 presents the semantic evaluation results. As seen, for the vanilla (soft)

attentional, model word- and character-level representations perform quite similar. In the

case of the hard attentional model, CHAR CNNosm outperforms other representations by a

large margin.

Morphological Evaluation. We now turn to evaluating the morphological component. We

only focus on Russian since it has notoriously hard morphology. We run another morpholog-

ical analyser, mystem (Segalovich, 2003), to generate linguistically tagged morphological

analyses for a word, e.g. POS tags, case, person, plurality, etc. We represent each mor-

phological analysis with a bit vector, where each 1 bit indicates the presence of a specific

grammatical feature. Each word is then assigned a set of bit vectors corresponding to the set

of its morphological analyses. As the morphology similarity between two words, we take

the maximum of Hamming similarity20 between the corresponding two sets of bit vectors.

18We remove query words whose frequency is less than a threshold in the initial bilingual corpora, since
pivoting may not result in high quality synonyms for such words.

19We evaluated using mean reciprocal rank (MRR) measure as well, and obtained results consistent with the
multi-label accuracy

20The Hamming similarity is the number of bits having the same value in two given bit vectors.
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Model \ Freq. 0-4 5-9 10-14 15-19 20-50 50+
Russian

WORDam – 0.32 0.52 0.65 0.81 0.95
WORDosm – 0.36 0.49 0.61 0.76 0.91
CHAR BILSTMam 0.21 0.33 0.49 0.58 0.71 0.85
CHAR BILSTMosm 0.16 0.34 0.48 0.59 0.71 0.85
CHAR CNNam 0.13 0.23 0.38 0.47 0.61 0.84
CHAR CNNosm 0.43 0.71 0.77 0.77 0.81 0.81

Estonian
WORDam – 0.39 0.53 0.63 0.72 0.88
WORDosm – 0.48 0.62 0.70 0.79 0.90
CHAR BILSTMam 0.12 0.30 0.37 0.45 0.52 0.70
CHAR BILSTMosm 0.13 0.39 0.48 0.55 0.63 0.78
CHAR CNNam 0.12 0.25 0.33 0.42 0.52 0.75
CHAR CNNosm 0.48 0.70 0.75 0.76 0.78 0.78

Table 3.18 Semantic evaluation of nearest neighbours using multi-label accuracy on words in
different frequency bands.

Table 3.19(a) shows the average morphology similarity between the words and their nearest

neighbours across the frequency bands. Likewise, we represent the words based on their

lemma features; Table 3.19(b) shows the average lemma similarity.

Table 3.20 lists the top five nearest neighbours for OOV words produced by the OSM

models. BiLSTMs better capture morphological similarities expressed in suffixes and prefixes.

We assume this is due to the fact that they are naturally biased towards the most recent inputs.

CNNs, on the other hand, are more invariant of character positions and provide whole-word

similarity.

3.5 Conclusion

We first evaluated embeddings obtained from language modelling and tested the generalis-

ability of the vector difference approach across a broad range of lexical relations (in raw

number and also variety) in English and Russian. Using clustering we showed that many

types of morphosyntactic and morphosemantic differences are captured by DIFFVECs, but

that lexical semantic relations are captured less well, a finding which is consistent with
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Model \ Freq. 0-4 5-9 10-14 15-19 20-50 50+
WORDam - 0.70 0.73 075 0.78 0.82
WORDosm - 0.74 0.77 0.78 0.81 0.84
CHAR BILSTMam 0.90 0.82 0.83 0.83 0.84 0.82
CHAR BILSTMosm 0.91 0.84 0.85 0.85 0.86 0.86
CHAR CNNam 0.82 0.76 0.77 0.78 0.79 0.81
CHAR CNNosm 0.79 0.80 0.79 0.79 0.79 0.79

(a)

Model \ Freq. 0-4 5-9 10-14 15-19 20-50 50+
WORDam - 0.02 0.04 0.07 0.11 0.18
WORDosm - 0.03 0.05 0.06 0.09 0.15
CHAR BILSTMam 0.08 0.06 0.10 0.11 0.12 0.21
CHAR BILSTMosm 0.05 0.05 0.08 0.10 0.13 0.18
CHAR CNNam 0.04 0.02 0.05 0.06 0.1 0.15
CHAR CNNosm 0.20 0.37 0.41 0.42 0.44 0.41

(b)
Table 3.19 Morphology analysis for nearest neighbours based on (a) Grammar tag features,
and (b) Lemma features, evaluated on Russian.

previous work (Köper et al., 2015). In contrast, classification over the DIFFVECs works ex-

tremely well in a closed-world setting, showing that dimensions of DIFFVECs encode lexical

relations. Classification performs less well over open data, although with the introduction

of automatically-generated negative samples, the results improve substantially. Negative

sampling also improves classification when the training and test vocabulary are split to

minimise lexical memorisation. Our comparison of word- and character-level models showed

that the latter are able to achieve higher accuracy with less data using it more efficiently. We

contrasted two character-level models, FTsg and FTcbow, showing a superior performance

of FTsg on this task in both English and Russian. Overall, we conclude that the DIFFVEC

approach has impressive utility over a broad range of lexical relations, especially under

supervised classification and morphosyntatic relations, presenting more regularity in general,

are captured better than morphosemantic and lexical semantic, especially when we apply

character-level models to morphologically rich languages.

In the MT task, we studied two types of attentional models augmented by CNN, LSTM and

fasttext word embeddings. Our experiments on translation from Russian and Estonian
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Ras+po+lag+a+jušč+ej
Disposing (inpraes,dat,sg,partcp,plen,f,ipf,intr)

CHAR CNNosm CHAR BILSTMosm
ras+po+lag+a+jušč+iy
disposing (inpraes,nom,sg,partcp,plen,m,ipf,inan,intr)

ras+slab+l+ja+ušč+ej
relaxing (inpraes,dat,sg,partcp,plen,f,ipf)

ras+po+lag+a+jušč+im
disposing (inpraes,ins,sg,partcp,plen,m,ipf,intrn)

so+pro+voj+d+a+jušč+ej
accompanying (inpraes,dat,sg,partcp,plen,f,ipf,tran)

ras+po+lag+a+jušč+ije
disposing (inpraes,nom,pl,partcp,plen,ipf,intr)

ras+slab+l+ja+ušč+uju
relaxing (inpraes,acc,sg,partcp,plen,f,ipf)

ras+po+lag+a+jušč+ix
disposing (inpraes,gen,pl,partcp,plen,ipf,intr)

ras+po+lag+a+jušč+iy
disposing (inpraes,nom,sg,partcp,plen,m,ipf,inan,intr)

ras+po+lag+a+jušč+i+e+sja
disposing (inpraes,nom,pl,partcp,plen,ipf,act)

pro+dvig+a+jušč+ej
promoting (inpraes,dat,sg,partcp,plen,f,ipf,act)

S+konfigur+ir+ova+t`
Configure (v,pf,tran,inf)

CHAR CNNosm CHAR BILSTMosm
s+konfigur+ir+ui+te
configure (v,pf,tran,pl,imper,2p)

konfigur+ir+ova+t`
configure (v,ipf,tran,inf)

s+konfigur+ova+li
configured (v,pf,tran,praet,pl,indic)

s+korrekt+ir+ova+t`
adjust (v,pf,tran,inf)

s+konfigur+ova+n
configured (v,pf,tran,praet,sg,partcp,brev,m,pass)

s+koordin+ir+ova+t`
coordinate (v,pf,tran,inf)

s+konstru+ir+ova+t`
construct (v,pf,tran,inf)

s+fokus+ir+ova+t`
focus (v,pf,tran,in)

s+kompil+ir+ova+t`
compile (v,pf,tran,inf)

s+kompil+ir+ova+t`
compile (v,pf,tran,inf)

Table 3.20 Analysis of the five most similar Russian words (initial word is OOV), under
the CHAR CNNosm and CHAR BILSTMosm word encodings based on cosine similarity. The
diacritic ´ indicates softness. POS tags: s-noun, a-adjective, v-verb; Gender: m-masculine,
f -feminine, n-neuter; Number: sg-singular, pl-plural; Case: nom-nominative, gen-genitive,
dat-dative, acc-accusative, ins-instrumental, abl-prepositional, loc-locative; Tense: praes-
present, inpraes-continuous, praet-past, pf -perfect, ipf -imperfect; indic-indicative; Transi-
tivity: trans-transitive, intr-intransitive; Adjective form: br-brevity, plen-full form, poss-
possessive; Comparative: supr-superlative, comp-comparative; Noun person: 1p-first,
2p-second, 3p-third;

into English demonstrated that representation of out-of-vocabulary words with their sub-word

units on the source side did not lead to a significant improvement in overall quality of machine

translation. However, LSTMs applied to character sequences are more capable of learning

morphological patterns in Russian and Estonian. Moreover, a hard attention mechanism

leads to better capturing semantic and morphological regularities.



Chapter 4

Inflectional Morphology Models

4.1 Introduction

In this section, we focus on evaluation of neural models in terms of their grammar and syntax

awareness. First, we aim to understand how much information about a word’s morphosyntatic

properties can be inferred directly from its sentential context and to what extent we are able

to predict them. Second, we also evaluate morphosyntactic categories themselves in terms of

their contextual predictability.

The primary evaluation for most contemporary language and translation modelling

research is perplexity (Jelinek et al., 1977), BLEU (Papineni et al., 2002) or METEOR

(Banerjee and Lavie, 2005). Undoubtedly, such metrics are necessary for extrinsic evaluation

and comparison. However, relatively few studies have focused on intrinsic evaluation of

grammaticality. Recently, Linzen et al. (2016) investigated the ability of an LSTM language

model to capture sentential structure, by evaluating subject–verb agreement with respect

to number. They show that under strong supervision, the LSTM is able to approximate

structure-sensitive dependencies and achieves a surprisingly low error rate. In the same

spirit, Belinkov et al. (2017) conduct an extensive analysis of neural machine translation

models. The authors evaluate word representations at each layer, comparing those in both

the encoder and decoder. Although the authors do not directly assess grammaticality, they
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provide significant insights on what type of information is captured at each layer and how

the target language might affect the source-side representation quality.

NLP systems are often required to generate grammatical text—for example, in machine

translation, summarisation, dialogue, or grammar correction. Much work has been done on

grammatical error correction: the study of systems that help non-native speakers correct their

errors and provide them with feedback (Chodorow and Leacock, 2000; Dale and Kilgarriff,

2011; Leacock et al., 2014). For example, Sakaguchi et al. (2017) propose a dependency

parsing scheme to repair ungrammatical sentences. Much work has also focused on the task

of joint dependency parsing and disfluency detection (Honnibal and Johnson, 2014; Rasooli

and Tetreault, 2014; Wu et al., 2015; Yoshikawa et al., 2016). Dahlmeier and Ng (2012)

proposed a correction decoder that assigns a probability to a token as being ungrammatical,

and then applied an error-type specific classifier to the ones with the highest values to make

corrections. Ng et al. (2014) extended the task to whole-sentence correction, i.e. correcting

all types of errors within a sentence. Another strand of work is solely devoted to parsing

of ungrammatical sentences by adapting a parser to a specific domain (Berzak et al., 2016;

Cahill, 2015; Nagata and Sakaguchi, 2016; Petrov and McDonald, 2012).

One component of grammaticality is the deployment of contextually appropriate closed-

class morphemes. Here we introduce a novel self-contained task, contextual inflection,

where a system must morphologically tag and inflect lemma tokens in sentential context.

For example, in English, the system must reconstruct the correct word sequence Moira

proudly teaches two subjects from the lemma sequence Moira proudly

teach two subject. Among other things, this requires: (1) identifying teach as

a verb in this context, (2) recognizing that teach should be inflected as 3rd-person singular

to agree with the nearby noun, and (3) realising this inflection as the suffix -es. Similar, for

subject the system has to infer that it should be inflected as plural number and realise it as

the suffix -s. Note that we only focus on derivations, therefore, proudly, although being

relevant to syntax, is not affected in this case. Taking it from the other perspective, this is

also similar to the problem of generating text from tectogrammatical structure that has been

studied for a long time (Hajic et al., 2002; Ptáček and Žabokrtský, 2006). There, the model
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is provided with a dependency tree of content words. Our task differs in the way that we: (1)

provide the tokens in their original order; and (2) use lemmatisation, therefore the categories

that are realised non-morphologically are left unaffected. More recent work has also focused

on abstract meaning representation (AMR) to text generation (Song et al., 2017).

Past work in supervised computational morphology—including the recent SIGMOR-

PHON shared tasks on morphological reinflection (Cotterell et al., 2016a, 2017a) that was

discussed in Section 2.3.3.2—has focused mainly on step (3) above. There, most neural

models achieve high accuracy on many languages at type-level prediction of the form from

its lemma and slot.

Our task amounts to a highly constrained version of language modelling. Language

modelling predicts all words of a sentence from scratch, so the usual training and evaluation

metric—perplexity—is dominated by the language model’s ability to predict content, which

is where most of the uncertainty lies. Our task focuses on just the ability to reconstruct certain

missing parts of the sentence—inflectional morphemes and their orthographic realisation.

This refocuses the modelling effort from semantic coherence to morphosyntactic coherence,

an aspect of language that may take a back seat in current language models (see Belinkov

et al., 2017; Linzen et al., 2016). Our task loosely resembles the C-test that is widely used

to assess the competence of human second-language learners (Eckes and Grotjahn, 2006;

Klein-Braley and Raatz, 1984) by requiring them to fill in the missing second halves of

selected words throughout the occurring text.

Contextual inflection does not perfectly separate grammaticality modelling from content

modelling. Mapping Moira teach the student to write to Moira taught

the students to write does not require full knowledge of English grammar—the

system does not have to predict the required word order nor the required infinitive marker to,

as these are supplied in the input. Conversely, this example does still need to predict some

content—the semantic choices of past tense and plural object are not given by the input and

must be predicted by the system. A truer measure of grammatical competence would be a

task of mapping a meaning representation to text, where the meaning representation specifies

all necessary semantic content—content lemmata, dependency relations, and “inherent”
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closed-class morphemes (semantic features such as noun number, noun definiteness, and verb

tense)—and the system is to realise this content according to the morphosyntactic conventions

of a language, which means choosing word order, agreement morphemes, function words,

and the surface forms of all words.

Although our task is not perfectly matched to grammaticality modelling, the upside is

that it is a “lightweight” task that works directly on text. No meaning representation is

required. Thus, training and test data in any language can be prepared simply by lemmatising

a naturally occurring corpus. Models for our task could be used to help detect and fix

grammar errors in text for which no meaning representation is available, such as student

writing or the output of neural machine translation.

Although few resources are required to construct the training and test data, additional

annotated resources may still help to build a better system. Here we construct a system that

is trained using fine-grained morphological tags—as well as a system that predicts forms

directly without using any such morphological resources. We evaluate trained systems on 18

languages; examples from Polish are given in Table 4.1.

4.2 Predicting Inflectional Morphology

4.2.1 Task Notation

Given a language, let M be a language-specific set of morphological tags. Each m ∈M has

the form m = ⟨t,σ⟩, where t is a part of speech, and the slot σ is a set of attribute-value pairs

that represent morphosyntactic information, such as those discussed in Section 4.2.2 below.

We take t ∈T , the set of universal parts of speech described by Petrov et al. (2012).

Let Σ be the set of orthographic characters in the language. A word form w ∈ Σ+ is a

string of characters. When discussing the individual orthographic characters in a word w, we

will also refer to the word by its sequence of such characters c = c1 · · ·c|w|.

A sentence consists of a finite word sequence w (we use boldface for sequence variables).

For every word wi in the sequence, there is a corresponding analysis in terms of a morpholog-

ical tag mi ∈M and a lemma ℓi. A lemma is itself a word—essentially a version of w with
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(1) Jenia daje Maszy ciekawą książkę
John.M.SG.NOM give.PRES.3SG Mary.F.SG.DAT interesting.F.SG.ACC book.F.SG.ACC

(2) Książkę ciekawą Jenia Maszy daje
Book.F.SG.ACC interesting.F.SG.ACC John.M.SG.NOM Mary.F.SG.DAT give.PRES.3SG

(3) Jenia Maszy daje ciekawą książkę
John.M.SG.NOM Mary.F.SG.DAT give.PRES.3SG interesting.F.SG.ACC book.F.SG.ACC

(4) Jenie Masza daje ciekawą książkę
John.M.SG.DAT Mary.F.SG.NOM give.PRES.3SG interesting.F.SG.ACC book.F.SG.ACC

Table 4.1 Example sentences in Polish. While sentences (1), (2), and (3) use different word
order, they are semantically equivalent and thus use the same inflected words. Given the
lemma sequence from sentence (3), our system would have to guess semantically that it is
inflected as (3), rather than as (4), which has a different meaning.

minimal inflectional marking. For example, the lemma of an English verb is conventionally

taken to be its bare infinitive form, so teach, teaches, and taught all share the lemma

teach. In general, wi is determined by the pair ⟨ℓi,mi⟩. Although wi can sometimes be

computed by concatenating ℓi with mi-specific affixes, it may sometimes be irregular. We

adopt a “word-based morphology” approach (Aronoff, 1976; Spencer, 1991) that does not

make assumptions about the relationship between wi and ⟨ℓi,mi⟩ and, therefore, does not

need any explicit decomposition of the forms; in our experiments, we will use a recurrent

neural network to model this relationship.

Our proposed task is to predict a sentence w from its lemmatised form ℓℓℓ, sometimes

inferring m as an intermediate latent variable. Our dataset (Section 4.5.1) provides all three

sequences for each sentence.

4.2.2 Morphological Attributes

The following morphological attributes are of particular interest for our task and will figure

into our error analysis later. They are encoded in our dataset (Section 4.5.1) according to the

Universal Dependencies scheme. The attributes below are common across languages and

tend to be realised by inflectional morphemes. We omit attributes such as mood and voice, as

these are typically expressed instead by separate words or syntactic configurations.
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• Aspect (Binnick, 2012) describes whether an action or event is continuing or has finished. In

many Germanic languages it is combined with the tense category, while in Slavic, Basque,

and Latin it is more autonomous. Unlike in Slavic, where aspect is typically expressed by

derivation from the base (imperfective) form, Basque and Latin use inflection.

• Case (Blake, 2001; Butt, 2006; Malchukov and Spencer, 2009) marks a grammatical function,

or role (subject, object, recipient, destination, possession, etc.) of a noun, pronoun, adjective,

numeral and participle within a clause or a sentence. English presents a relatively simple

case system, where only pronouns are marked morphologically. In this respect, the Uralic,

Slavic and Romance languages are richer in their declension system.

• Degree is a feature specific to adjectives and adverbs. Mostly it is expressed either morpho-

logically (as in English comparative -er or syntactically (as in English comparative more.

Some languages such as Finnish or Basque mainly mark it morphologically and the same

syntactic frames apply to all degrees, making the category harder to predict.

• Definiteness (Lyons, 1999) is presented in English, although it is realised outside of the

word’s morphology. This is the case in many Indo-European (“IE”) languages. But in

Bulgarian, it is realised as a definite article postfixed to nouns and adjectives, making its

prediction more problematic. In Swedish, noun definiteness is expressed by means of articles

and suffixes, and highly affects their declension.

• Gender (Corbett, 1991) initiates from nouns, and participates in their agreement with adjec-

tives, verbs, articles and pronouns. Most IE languages exhibit gender to some extent, as either

a binary or ternary system. Some Germanic languages, such as Danish, do not differentiate

masculine and feminine. Basque only presents animacy, but not gender differences.

• Number (Corbett, 2000) is one of the most common grammar features, and present in most

languages. Usually a language distinguishes either singular–plural or singular–dual–plural.

• Person (Siewierska, 2004) refers to the action participants. It is explicitly marked on

pronouns in most languages, while verbs and auxiliaries require agreement in this category.

• Tense (Comrie, 1985) provides information about the time of the event in regards to the

moment of speaking. Usually past and present forms are more likely to be expressed
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morphologically, whereas the future form is often realised with auxiliaries. Tense categories

are closely related to aspect, and in some languages, such as Basque, only aspect is specified.

Note that some of the above-mentioned features may be expressed through word order

or periphrastic constructions in certain languages. For instance, English (and most other

Germanic languages) mark the future tense through a periphastic construction: Moira

will proudly teach two subjects. Spanish, on the other hand, would inflect

the verb itself.1

4.3 An Encoder–Decoder Model

First we propose an encoder–decoder model that takes sentential (lemmata) context ℓℓℓ,

combines it with a target form lemma representation ℓi and then decodes it into a word form

conditioned on predicted history w<i, i.e. without morphological feature prediction:

p(w | ℓℓℓ) =

(
n

∏
i=1

p(wi | ℓi,w<i, ℓℓℓ)

)
(4.1)

The encoder performs an affine transformation on a concatenation of the lemmata together

with predicted contexts and a character-level lemma form representations obtained as a last

hidden states of corresponding BiLSTMs (Hochreiter and Schmidhuber, 1997).

The resulting representation oi is fed into the decoder that produces the inflected target

form character-by-character:

p(c j | c< j,oi) = softmax
(
R · c< j +max(B ·oi,S · ℓ j)+b

)
(4.2)

so the conditionals are then multiplied in order to get the sequence probability:

p(c | oi) =
|wi|

∏
j=1

p(c j | c< j,oi) (4.3)

1This means that a subset of the above features will be captured in the reinflection task, depending on the
language.
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where c j is the j-th character of the infected form, ℓ j is the corresponding lemma character,

B,S,R are weight matrices, and b is a bias term.

We now elaborate on the design choices behind the model architecture which have been

tailored to our task. We supply the model with the ℓ j character prefix of the lemma form

to enable a copying mechanism, to bias the model to generate an inflected form that is

morphologically-related to the lemma. In many cases, the inflected form is longer than its

stem, and accordingly, when we reach the end of the lemma form, we continue to input an

end-of-word symbol. We provide the model with the context vector o at each decoding step.

It has been previously shown (Hoang et al., 2016) that this yields better results than other

means of incorporation.2 Finally, we use max pooling to enable the model to switch between

copying of a lemma or producing a new character.

4.4 A Structured Neural Model3

We now introduce a more sophisticated model that also relies on morphological tags. In order

to generate sequences of inflected forms from lemmata, we define the probability model:

p(w,m | ℓℓℓ) =

(
n

∏
i=1

p(wi | ℓi,mi)

)
p(m | ℓℓℓ) (4.4)

In other words, the distribution is over interleaved sequences of one-to-one aligned inflected

words and morphological tags, conditioned on a sequence of lemmata—all of length n. This

distribution is drawn as a hybrid (directed-undirected) graphical model (Koller and Friedman,

2009) as illustrated on Figure 4.2. We define the two conditional distributions in the model in

Section 4.4.1 and Section 4.4.2, respectively. As argued above, this model serves as a useful

tool for studying natural language generation in morphologically complex languages.

2We tried to feed the context information at the initial step only, and this led to worse prediction in terms of
context-aware suffixes.

3The model was developed in collaboration with Jason Eisner and Ryan Cotterell
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4.4.1 A Neural Conditional Random Field

The distribution p(m | ℓℓℓ) is defined to be a conditional random field (CRF). CRFs were first

introduced by Lafferty et al. (2001) as a generalisation of classical maximum entropy models

(Berger et al., 1996) to globally normalised distributions over structured objects. In this work,

our CRF is a conditional distribution over morphological taggings of a sequence of lemmata.

We define this conditional distribution as

p(m | ℓℓℓ) = 1
Z(ℓℓℓ)

n

∏
i=1

ψ (mi,mi−1, ℓℓℓ) ,

where ψ(·, ·, ·)≥ 0 is an arbitrary potential4 and Z(ℓℓℓ) normalises the distribution. Recall that

Z(ℓℓℓ) may be computed in linear time with the forward algorithm.

In this work, we opt for a recurrent neural potential. Specifically, we adopt a parame-

terisation similar to the one given in Lample et al. (2016), but we remark that neural CRFs

have a much longer history in the literature (Artieres et al., 2010; Collobert et al., 2011; Fujii

et al., 2012; Peng et al., 2009; Vinel et al., 2011; Wang and Manning, 2013). Our potential

ψ is computed as follows. First, the sentence of lemmata is encoded into a sequence of

word vectors using the strategy described by Ling et al. (2015a): a unidirectional LSTM is

folded over the character sequence (each character is encoded as a one-hot vector) and the

final hidden state of this LSTM is taken as the word vector. Then, these character-infused

word vectors are passed to a bidirectional LSTM (Graves et al., 2005), which consists of two

unidirectional LSTMs, one run left-to-right and the other right-to-left, with the corresponding

hidden states concatenated at each time step. Notationally, we will simply refer to the hidden

state hi ∈ Rd as the result of said concatenation at the i-th step. Using hi, we can define the

potential function as

ψ (mi,mi−1) = exp
(

ami,mi−1 +o⊤mi
hi

)
, (4.5)

where ami,mi−1 is a transition weight, identical to those found in linear-chain CRFs and

omi ∈ Rd is a morphological tag embedding; both to be learned.

4We slightly abuse notation and use m0 as a distinguished beginning-of-sentence symbol.
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ℓ1 ℓ2 ℓ3 ℓ4

m1 m2 m3 m4

w1 w2 w3 w4

Figure 4.1 Our structured neural model shown as a hybrid (directed-undirected) graphical
model.

ℓ1 ℓ2 ℓ3 ℓ4

w1 w2 w3 w4

Figure 4.2 Neural encoder-decoder model shown as a graphical model.
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4.4.2 The Morphological Inflector

The conditional distribution p(wi | ℓi,mi) is parameterised by a neural sequence-to-sequence

model (Sutskever et al., 2014) with attention (Bahdanau et al., 2015). The model is an

encoder-decoder, where the input sequence is encoded into a sequence of fixed-length

vectors using a bidirectional LSTM, and then the output sequence is decoded character-by-

character. Suppose we denote the k-th hidden state as output of our bidirectional LSTM,

with h(enc)
k . Bahdanau attention dictates we take a convex combination of all the hidden

states a j−1 = ∑
|wi|
k=1 αk( j− 1) ·h(enc)

k , where the αk( j− 1) themselves are determined by a

multi-layer perceptron; we predict the j-th character from

p(c j | c< j,mi) = softmax
(
W ·a j−1 +b

)
(4.6)

where, recall, wi = c = c1 · · ·c|wi|. The distribution in Eq. (4.6), strung together with the other

conditionals, yields a joint distribution over the entire character sequence:

p(c | ℓi,mi) =
|wi|

∏
j=1

p(c j | c< j,mi) (4.7)

To condition the model on mi, we adopt the encoding of Kann and Schütze (2016), who

input the actual character string c prepended with its morphological tag into the network.

For instance, to map the lemma talk to its gerund talking, we feed in <w> V GERUND t

a l k </w> and train the network to output <w> t a l k i n g </w>, where we

have augmented the orthographic character alphabet Σ with the feature-attribute pairs that

constitute the morphological tag mi.

4.4.3 Parameter Estimation and Decoding

We optimise the log-likelihood of the training data with respect to all model parameters. As

Eq. (4.4) is differentiable, this may be achieved with standard gradient-based methods, such

as backpropagation (Rumelhart et al., 1986). The exact details are found in Section 4.5.3.

Note that since we estimate the parameters in the fully supervised case, the directedness
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Language UD Family Type Order Slots Tokens

Basque eu Isolated A SOV 845 73k
Bulgarian bg Slavic (IE) F Free 447 125k
Czech cs Slavic (IE) F Free 1552 183k
Danish da Germanic (IE) F SVO 160 89k
Dutch nl Germanic (IE) F SVO 325 188k
English en Germanic (IE) F SVO 118 205k
Finnish fi Uralic A SVO 1310 127k
Hindi hi Indic (IE) F SOV 921 281k
Hungarian hu Uralic A Free 424 21k
Irish ga Celtic (IE) F VSO 371 17k
Italian it Romance (IE) F SVO 269 249k
Latin la Romance (IE) F Free 910 246k
Norwegian no Germanic (IE) F SVO 169 245k
Polish pl Slavic (IE) F Free 613 70k
Portuguese pt Romance (IE) F Free 492 202k
Spanish es Romance (IE) F SVO 389 382k
Slovenian sl Slavic (IE) F Free 1180 112k
Swedish sv Germanic (IE) F SVO 131 67k

Table 4.2 A list of languages used for the experiments. Here F and A stand for fusional and
agglutinative language, respectively. Also note that for Slavic languages SVO order is more
natural and used more often than others.

allows independent estimation of the CRF (described in Section 4.4.1) and the inflector

(described in Section 4.4.2) independently.

Decoding, on the other hand, is a bit more complicated. We opt for a greedy strategy

where we first decode the CRF, that is, we solve the problem

m⋆ = argmax
m

log p(m | ℓℓℓ), (4.8)

for which Viterbi (1967) provides us with a linear-time (in |ℓℓℓ|) exact algorithm. We then use

this decoded m⋆ to generate forms from the inflector using beam search, as is common in

other generation tasks performed with a neural sequence-to-sequence model, such as machine

translation.
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Figure 4.3 Number of possible values per morphological attributes for each language; the
darker colors correspond to more possible values. The numbers indicate the maximum values
for an attribute in the UD schema.

4.5 Experiments

4.5.1 Dataset

We use the Universal Dependencies v1.2 dataset (Nivre et al., 2016) for our experiments.

We include all the languages with information on their lemmata and fine-grained grammar

tag annotation that also have fasttext embeddings described in Section 2.3.5, which

are used for word embedding initialisation.5 Table 4.2 lists the languages along with their

corresponding sizes of the training data and their slot sets. Figures 4.3 and 4.4 illustrate how

many values each morphological attribute can take, ranging from 118 to 1552. Importantly,

although being almost complete, it is not an exhaustive list of unseen slots.

We additionally note that some inconsistency and ambiguity still remain in the data in

cases of syncretism. For instance, there is a difference in annotation when multiple genders

or cases share the same form: some languages specify all the possibilities whereas others

provide a single one.

5We also choose mainly non-Wikipedia datasets to reduce any possible intersection with the data used for
the FastText model training
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Figure 4.4 Related Languages: number of possible values per morphological attribute for
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4.5.2 Evaluation

We evaluate our model’s ability to predict: (i) the correct morphological tags from the lemma

context, and (ii) the correct inflected forms. As our evaluation metrics, we report 1-best

accuracy for both the tags and form prediction.

Skyline: The Morphological Cloze. Here we present a skyline: a point of comparison we

expect to lose out to. Many of the tags and forms we wish to predict from the sequence of

lemmata are not easily guessed without additional information, as discussed in Section 4.1.

To compare our model against a second system, we consider a related task, which we term

the morphological cloze task. Here, we use the same model as described in Eq. (4.4), but

provide a sentential gold context. That is, we give the model the actual observed forms

except for the lemma, whose tag and inflection we seek to predict. Naturally, the closer our

model is to this skyline, the better it does.

Direct Form Prediction Baseline with Neural Model. As a baseline for the form predic-

tion, we additionally adopt a more lightweight setting that does not rely on morphological

tags. More specifically, we train a neural encoder-decoder model as described in Section 4.3

to predict inflected forms directly from a sequence of lemmata (the contextual inflection task)
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or an inflected context (the skyline). Note that the model is similar to the morphological

inflector described above with two essential differences: (i) we use sentence-level contextual

representation instead of explicit morphological tagset mi; and (ii) we do not use an attention

mechanism.

Agreement Evaluation We consider the relations that typically require agreement, such

as: (1) verb-subject (noun and pronoun) nsubj; and (2) adjective-noun amod and do not

evaluate polypersonal agreement. Here, we merely expect a match in a corresponding

morphological category in both predicted forms if there is such a match in their initial

annotation. We empirically evaluate the categories that should be in agreement from the

training data. We only consider the cases when the part of speech is guessed correctly (which

is mostly predicted at 95–98% accuracy).

4.5.3 Hyperparameters and Other Minutiae

We use a word and character embedding dimensionality of 300 and 100, respectively. The

hidden state dimensionality is set to 100 and 200 for the both encoder–decoders and CRF,

respectively. For both models we choose LSTMs as RNN units. Models are trained with

Adam (Kingma and Ba, 2014) with a learning rate of 0.001 for 20 epochs.

4.6 Results, Error Analysis, and Discussion

Table 4.3 presents the accuracy of our best model across all languages. Given that our task

is novel, we cannot readily benchmark against the work of others. So, what has contextual

inflection taught us about natural language generation, especially in morphologically rich

languages? We highlight five lessons from our error analysis that apply to a wider range of

generation tasks, e.g., machine translation and dialogue systems.

1 Neural Networks Learn Agreement. In all the languages under consideration, the

inflection of the adjective with respect to its gender depends on the noun. Noun gender
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L Family tag tag form form form form
(s) (c) (g) (s) (c) (direct)

eu Isolated 66.634.19 64.974.77 82.19 61.05 59.91 58.28
ga Celtic 68.334.16 66.654.68 84.50 69.53 67.78 64.48
da Germanic 86.261.67 82.071.80 97.31 87.16 83.15 79.46
en Germanic 89.581.50 88.381.53 95.57 90.41 89.49 86.75
nl Germanic 82.702.30 80.052.96 88.29 81.30 79.17 76.68
no Germanic 87.161.66 83.481.71 91.59 82.40 78.70 83.10
sv Germanic 81.861.99 76.352.45 96.02 82.47 77.61 74.75
hi Indic 85.331.82 82.392.00 87.49 81.43 79.73 89.71
es Romance 85.891.81 78.592.22 95.17 87.95 81.07 78.49
it Romance 92.281.39 84.481.68 85.13 80.39 73.94 82.49
la Romance 82.572.19 71.652.95 89.69 75.68 66.31 68.39
pt Romance 88.221.58 80.751.90 98.21 91.25 84.25 82.75
bg Slavic 81.552.07 76.072.38 91.89 78.81 73.75 71.45
cs Slavic 76.393.30 68.074.23 97.38 80.56 73.04 64.12
pl Slavic 71.943.34 63.254.17 96.14 74.83 66.65 58.90
sl Slavic 78.822.38 67.793.21 97.71 81.79 71.10 62.78
hu Uralic 68.224.57 67.745.07 86.31 62.45 61.35 68.29
fi Uralic 65.995.10 58.206.57 86.53 59.34 52.05 49.99

Table 4.3 Accuracy of the models for various prediction settings. The column header tag
refers to the tag prediction accuracy and form refers to the form prediction accuracy. We
mark the contextual inflection setting with (c) and the skyline with (s). We additionally
report accuracy achieved in form prediction only from the gold tags (g). Blue superscripts
correspond to perplexity values (lower is better).
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Figure 4.5 Contextual inflection agreement results. The x-axis shows three morphological
attributes: gender, number and person. The y-axis shows the language names.
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Figure 4.6 Related Languages: contextual inflection agreement results for subject-verb
(nsubj) and adjective-noun (amod). The x-axis shows morphological attributes. The y-axis
shows the language names.

is often marked on the lemma itself, and, as Table 4.7a shows, the network easily learns

the proper concord—properly declining adjectives to match the gender of the head. Verbal

gender, which appears in the past tense of many Slavic languages, seems to be harder to

predict. Given that the linear distance between the subject and the verb may be longer, we

suspect the network struggles to learn the longer-distance dependencies, consistent with

the findings of Linzen et al. (2016). Like noun gender, pronoun person is not lost during

lemmatisation and our networks, likewise, achieve high accuracy in predicting the proper

concord with the verb on most languages with the exception of Bulgarian. Interestingly,

we note that performance of the purely lemma-based prediction task is similar to the cloze

skyline: see Table 4.7c. Now, we turn to number, which is often expressed morphologically,

and, which we find is harder to predict. Often, the context is simply not enough to tell us

what number we need to predict. For this reason, Table 4.7c shows that we are often 10–20

points lower than the skyline for number prediction.

2 Morphological Complexity Matters. In the previous paragraph, we observed that our

model learns gender agreement quite well in many cases—matching the skyline at times.

However, there is a notable exception: for languages with rich case systems, e.g., the Slavic

languages (which exhibit a lot of fusion) and the agglutinative Uralic languages, performance
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Figure 4.7 We display heatmaps that show how often morphological value was correctly
predicted. The x-axis is the morphological value and the y-axis is the language name. The top
two figures provide tag prediction results (from lemmata) organised by language family. The
bottom two figures show the differences in morphological tag prediction between contextual
inflection and the skyline. In the bottom two figures, positive numbers indicate how many
points the skyline wins by.

is much worse, as evidenced in Table 4.5. This suggests that generation in languages with

more morphological complexity will be a harder problem for NLP to solve. Indeed, this

problem is under-explored, as the field of NLP tends to fixate on generating English text,

e.g., in machine translation or dialogue system research. We suggest expanding the focus of

generation research to morphologically rich languages.

3 Predictability of Inherent Categories. As Booij (1996) mentions, tense is an inherent

category and, in the languages where it is mainly expressed morphologically, it becomes

hard to predict correctly (unless there is no strong signal within a sentence such as occurs

with yesterday, tomorrow, or ago). And, indeed, for most languages, with the exception

of Hindi and Slovenian, it is still challenging to achieve good accuracy. On the other
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Figure 4.8 Related Languages. We display heatmaps that show how often morphological
value was correctly predicted. The x-axis is the morphological value and the y-axis is the
language name. Note that the white cells mean the given language does not express that given
morphological attribute. The top two figures provide tag prediction results (from lemmata)
organised by language family. In the bottom two figures, positive numbers indicate how
many points the skyline wins by.

hand, aspect, although being closely related to tense, is well-predicted since it is mainly

expressed as a separate lexeme. But, in general, it is still problematic to make a prediction

in languages where it is morphologically marked or highly mixed with tense, as in Basque.

We suggest that correct prediction of tense will require document-level context, when

translating from a language that does overtly mark it, e.g., Mandarin Chinese, or in dialogue

systems. Future iterations of our model will exploit such document-level signals. Definiteness,

another inherent category, is well predicted in the languages where it has non-morphological

expression since it is not affected by lemmatisation. For example, if we look at Bulgarian, we

see that it is, indeed, extremely problematic, because it is highly dependent on the speaker’s

intention.

4 Prediction of Grammatical Case. As illustrated in Figures 4.7b, 4.7d, 4.8b, and 4.8d,

our model finds prediction of case to be extremely challenging in morphologically complex
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languages such as Hungarian, Finnish or Basque. For the languages that allow free word

order, we observe a substantial improvement in the skyline setting. A closer look shows

that the models are able to predict the subject of the sentence, which is typically marked

by nominative case, although the object, marked by accusative or dative, seems to be a lot

harder to capture, especially in the contextual inflection setting. Interestingly, genitive case

marking possession or absence (typically expressed by a modifier in English) yields high

accuracy. Locative case is often accompanied by a post/preposition, providing a strong signal

and leading to better prediction, close to the skyline.

5 Use of Latent Morphology. Finally, the comparison of our structured model with

latent morphological tags (at test time) to the direct form generation baseline suggests

that we should be including linguistically motivated latent variables into models of natural

language generation. We observe in Table 4.3 that predicting the tag together with the form

often improves performance. While some recent work in neural machine translation (Klein

et al., 2017; Tamchyna et al., 2017) has made use of target-side morphology, this is still not

standard.

4.7 SIGMORPHON 2018 – SubTask 2

The contextual inflection task described here motivated the SIGMORPHON 2018 shared task

organisers to run a related sub-task (Cotterell et al., 2018). Unlike the task stated above, they

did not aim to infect all lemmata in the sentence but rather provided inflected context and

only predicted a few (1-3) forms.6 The task comprised of two tracks. In the first track lem-

mata and morphosyntactic descriptions of all contextual words are both additionally provided:

(1) The/the+DT ___(dog) are/be+AUX;IND;PRS;FIN barking/bark+V;PTCP,

and the systems were required to predict the target form. The second track only provides

contextual forms and, therefore, is more challenging:

(2) The ___(dog) are barking.

6Therefore, the task is more similar to the Skyline setting.
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In both tracks systems need to predict dogs. Both tracks are run in three different data

settings depending on the number of tokens available to train on: high (105), medium (104),

and low (103).

The data for the task was sampled from the Universal Dependencies v.2 treebanks (Nivre

et al., 2017), and morphological annotations were converted into the UniMorph format. The

submitted systems were evaluated in terms of their ability to predict: (1) the original word

form; and (2) a contextually plausible word form even if it’s different from the original (as

in We ___(see) the dog. where both see and saw fit the context). The latter one

requires each test sample to be annotated manually (whether it is grammatically correct),

and, therefore, limits the number of languages for this task. In total, the task covers seven

languages: English, Finnish, French, German, Russian, Spanish, and Swedish. The sentences

that contained a token found in UniMorph (i.e. its lemma and morphological tags presented

there) were sampled from the UD dataset.

Submitted systems were evaluated based on accuracy and average Levenshtein distance

between the prediction and the truth. The baseline was inspired by an encoder–decoder

with attention mechanism used for the re-inflection task (Kann and Schütze, 2016). More

specifically, it is conditioned on left and and right context words augmented by left and

right context lemmas and a character-level representation of the target lemma. The decoder

using an attention mechanism generates the output form character-by-character.7 The second

baseline system just copied lemmas to the output.

All teams submitted neural systems, of which all but one (which was a neural transition-

based transducer with a copy action) were derived from Kann and Schütze (2016). This

task appeared to be more challenging than the re-inflection one. The “copy” baseline

achieved on average 36.62% accuracy for original and 42% for plausible forms. The neural

baseline got 62.41% accuracy in predicting original forms in the high-resource setting of

track 1 and 1.85% in low-resource. For plausible forms it received 69.53% and 2.63%,

respectively. In the high-resource setting of track 2 the accuracy of the neural system dropped

to 54.48% for original and 60.79% for plausible forms, while in the low-resource setting

7The hyperparameters were set as follows: all dimensionality was set to 100 for both encoder and decoder,
the number of layers set to two. The system was trained for 20 epochs with Adam (Kingma and Ba, 2014).
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it was 2.19% and 3.11%, respectively. The best performer for track 1 (Kementchedjhieva

et al., 2018) outperformed the neural baseline by 6% in high-resource original and plausible

form prediction. The system: (1) used an RNN over a sentence to predict morphological

tags; and (2) combined all training data for all languages available for this task (therefore, it

can be seen as multilingual). The system from Makarov and Clematide (2018) was the best

performer in all low-resource settings. For track 1 it achieved 42.42% and 48.49% in original

and plausible forms, respectively. In particular, Makarov and Clematide (2018) implemented

a neural transition-based transducer enriched with a copy mechanism that was applied to

transform a lemma to an output form. In addition, it also used beam search for decoding.

The best performer in the track 1 high-resource setting also got highest accuracy in track 2 in

the original form prediction setting, but the value dropped by 13% compared to track 1. In

the low-resource setting it reduced to 38.60%. In the high-resource plausible form prediction

setting none of the submitted systems outperformed the neural baseline; for the low-resource

setting, the best accuracy dropped by 3 points.

4.8 Conclusion

We introduced the novel task of contextual inflection, whereby a sequence of correctly

inflected forms is to be generated from a sequence of uninflected lemmata—we treat the

morphological tag as a latent variable. Our goal is to provide a more intrinsic analysis

of contemporary neural models and their ability to generate correctly inflected text. We

developed a hybrid graphical model with a recurrent neural parameterisation and evaluated

it on 18 languages. Our analysis showed that some morphological tags could be easily

predicted from sentential context, as they participate in agreement. Others such as noun

gender or verbal aspect are typically inherent, but still captured well based on more global

sentential context. While the task is self-contained, we have highlighted several key points

that will be crucial for many natural language generation systems in the years to come,

especially when NLP practitioners attempt to develop systems for the generation of text in

morphologically complex languages. In addition, we organised a shared task on contextual
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inflection where the systems competed in the setting similar to the cloze task. We evaluated

the performance of the systems in various settings by calibrating the amount of data available

for training (low, medium, and high) and providing them with morphosyntactic tags. The

results show that there is a significant gap between accuracies obtained with and without

morphosyntactic annotation. We also observe a performance drop when the amount of data is

reduced. This suggests that there is still a lot of room for improvement in the models’ ability

for generalisation.





Chapter 5

Derivational Morphology Models

A large part of the chapter appears in the following paper:

Ekaterina Vylomova, Ryan Cotterell, Timothy Baldwin, and Trevor Cohn. Context-

aware prediction of derivational word-forms. In Proceedings of the 15th Conference of

the European Chapter of the Association for Computational Linguistics: (Volume 2 : Short

Papers), pages 118–124, 2017b.

5.1 Introduction

In chapters 3 and 4 we mainly focused on studying of morphological inflection and showed

that regularities existing in word changing processes are captured quite well by contemporary

neural models. In this chapter, we turn to analysis of derivational processes. Understanding

how new words are formed is a fundamental task in linguistics and language modelling,

with significant implications for tasks with a generation component, such as abstractive

summarisation and machine translation. In Section 3.2 we evaluated various types of

lexical relations and showed that morphosyntatic relations are captured well compared to

morphosemantic. In Section 2.3.3.2 we discussed a shared task on morphological reinflection.

The results of the task demonstrated a superior performance of neural approaches and

ability to achieve high accuracy even in low-resource conditions. Further, in Section 4.2
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we introduced a new task of contextual inflection that aims to measure a model’s ability to

infer morphological features and generate inflected forms directly from sentential context.

The experiments and results obtained in our experiments as well as SIGMORPHON 2018

sub-task 2 illustrated that the task is a lot more challenging than vanilla morphological

reinflection with gold tags. This chapter aims at evaluation of derivational models on these

two tasks.

Unlike in inflectional morphology modelling, there were quite a few works in the direc-

tion of computational derivational morphology, especially attempts at paradigmatic treatment

of it. In Cotterell et al. (2017b) the authors1 studied various English verbal nominalisations

(AGENT (employ→ employer), PATIENT (employ→ employee), RESULT (employ

→ employment), adjective adverbalisations (interesting→ interestingly) and

nominalisations (evident → evidence)). They experimented with English deriva-

tional triples extracted from NomBank (Meyers et al., 2004) (e.g. employ+AGENT →

employment) excluding zero-derivations (such as rent → rent), resulting in 6,029

derivational samples. The task was stated similarly to morphological inflection, i.e. given

a base form together with target tags a model had to generate a derived form. The model

for the form prediction was derived from the model used in the morphological infection

task. In particular, the authors used the best performing model of the 2016 shared task on

inflection described in Section 2.3.3.2, an encoder-decoder gated recurrent neural network

(Bahdanau et al., 2015). The model was evaluated and compared against the same baseline

system used for the reinflection task (see Section 2.3.3.2) in terms of accuracy and the

Levenshtein distance between predicted and gold output strings. The neural encoder took

a character-level representation of the base form and the target tag such as a m e l i

o r a t e RESULT and then the decoder generated the target string a m e l i o

r a t i o n. The results showed: 1) the superior performance of the neural model; 2)

lower accuracy compared to inflectional morphology prediction; and 3) different levels of

derivational slot regularity. Regarding the latter, adverbalisation appeared to be almost as

productive and regular as inflection (it’s mainly realised as the -ly suffix), it achieves 90%

1I am one of the co-authors, although, for the purpose of the thesis, this is not treated as a novel contribution.
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accuracy in both neural and non-neural models (in 1-best prediction). The RESULT category,

on the other hand, is more vague and less regular, leading to accuracy of 40% for FST-based

and 53% for neural approaches (although raising to 70% for 10-best prediction). Agentives

are a bit more regular leading to 52% and 65% (82% for 10-best), respectively. Indeed, the

category does not differentiate between male and female agentives as well as -er;-or

from -ist. An error analysis showed that many cases require additional information for

prediction such as etymology (as in *containee and content), more specific meanings

(as in the distinction between complexity and complexness), gender (as in waiter

and waitress), and regularity (as in *advancely and in-advance).

To conclude, the authors showed that derivations are more challenging due to less

regularity and more opaque meanings. At the same time, we can place derivations and

inflections on a continuous scale of productivity and specificity, where inflections present

more productive (and compositional) forms and meanings and can be applied to a wider range

of lemmas. Derivations, on the other hand, often are less productive and more restrictive

but still we can identify cases that behave almost like inflections such as adverbalisation by

attaching a -ly suffix.

Similar to inflections, in the next section we study contextual prediction of derivations.

5.2 Context-Aware Prediction

In this part, we focus on modelling derivational morphology to learn, e.g., that the appropriate

derivational form of the verb succeed is succession given the context As third

in the line of ..., but is success in The play was a great .

Derivational paradigm completion task that was discussed earlier requires to specify paradigm

slots, i.e. identify a paradigm structure. As mentioned in Section 2.2.5, derivations are less

studied, present more problems in identifying regularities, and there is no agreement on

paradigmatic treatment of derivational morphology. Therefore, here we consider replacing

derivational slots with contextual representations. More specifically, we study predictability

of derived forms from their sentential contexts.
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As we discuss in Section 2.2.2, English is broadly considered to be a morphologically

impoverished language, but there are certainly many regularities in morphological patterns,

e.g., the common usage of -able to transform a verb into an adjective, or -ly to form an

adverb from an adjective. However, there is considerable subtlety in English derivational mor-

phology, in the form of: (a) idiosyncratic derivations; e.g. picturesque vs. beautiful

vs. splendid as adjectival forms of the nouns picture, beauty and splendour, re-

spectively; (b) derivational generation in context, which requires the automatic determination

of the part-of-speech (POS) of the stem and the likely POS of the word in context, and

POS-specific derivational rules; and (c) multiple derivational forms often exist for a given

stem, and these must be selected based on the context (e.g. success and succession

as nominal forms of success, as seen above). As such, there are many aspects that affect

the choice of derivational transformation, including morphotactics, phonology, semantics

or even etymological characteristics. Earlier works (Thorndike, 1941) analysed ambiguity

of derivational suffixes themselves when the same suffix might present different semantics

depending on the base form it is attached to (cf. beautiful vs. cupful). Furthermore,

as Richardson (1977) previously noted, even words with quite similar semantics and or-

thography such as horror and terror might have non-overlapping patterns: although

we observe regularity in some common forms, for example, horrify and terrify, and

horrible and terrible, nothing tells us why we observe terrorize and no instances

of horrorize, or horrid but not terrid.

In this part, we propose the new task of predicting a derived form from its context and

a base form. Our motivation in this research is primarily linguistic, i.e. we measure the

degree to which it is possible to predict particular derivation forms from context. A similar

task has been proposed in the context of studying how children master derivations (Singson

et al., 2000). In their work, children were asked to complete a sentence by choosing one of

four possible derivations. Each derivation corresponded either to a noun, verb, adjective,

or adverbial form. Singson et al. (2000) showed that childrens’ ability to recognise the

correct form correlates with their reading ability. This observation confirms an earlier idea

that orthographical regularities provide a clearer clues to morphological transformations
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compared to phonological rules (Moskowitz, 1973; Templeton, 1980), especially in languages

such as English where grapheme-phoneme correspondences are opaque. For this reason we

consider orthographic rather than phonological representations.

In our approach, we test how well models incorporating distributional semantics can

capture derivational transformations. In this work, we deal with the formation of deverbal

nouns, i.e., nouns that are formed from verbs. Common examples of this in English include

agentives (e.g., explain 7→ explainer), gerunds (e.g., explain 7→ explaining),

as well as other nominalisations (e.g., explain 7→ explanation). Nominalisations

have varyingly different meanings from their base verbs, and a key focus of this study is the

prediction of which form is most appropriate depending on the context, in terms of syntactic

and semantic concordance. Our model is highly flexible and easily applicable to other related

lexical problems.

5.2.1 Dataset

As the starting point for the construction of our dataset, we used the CELEX English dataset

(Baayen et al., 1993). We extracted verb–noun lemma pairs from CELEX, covering 24

different nominalisational suffixes and 1,456 base lemmas. Suffixes only occurring in 5 or

fewer lemma pairs mainly corresponded to loan words and consequently were filtered out.

We augmented this dataset with verb–verb pairs, one for each verb present in the verb–noun

pairs, to capture the case of a verbal form being appropriate for the given context.2 For each

noun and verb lemma, we generated all their inflections, and searched for sentential contexts

of each inflected token in a pre-tokenised dump of English Wikipedia.3 To dampen the effect

of high-frequency words, we applied a heuristic log function threshold which is basically a

weighted logarithm of the number of the contexts. The final dataset contains 3,079 unique

lemma pairs represented in 107,041 contextual instances.4

2We also experimented without verb–verb pairs and didn’t observe much difference in the results.
3Based on a 2008/03/12 dump. Sentences shorter than 3 words or longer than 50 words were removed from

the dataset.
4The code and the dataset are available at https://github.com/ivri/dmorph

https://github.com/ivri/dmorph
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Figure 5.1 The encoder–decoder model, showing the stem devastate in context producing
the form devastation. Coloured arrows indicate shared parameters.

5.2.2 Experiments

Here we model derivational morphology as a prediction task, formulated as follows. We take

sentences containing a derivational form of a given lemma, then obscure the derivational

form by replacing it with its base form lemma. The system must then predict the original

(derivational) form, which may make use of the sentential context. System predictions are

judged correct if they exactly match the original derived form.

5.2.2.1 Baseline

As a baseline we considered a trigram model with modified Kneser-Ney smoothing, trained

on the training dataset. Each sentence in the testing data was augmented with a set of

confabulated sentences, where we replaced a target word with other its derivations or a base

form. Unlike the general task, where we generate word forms as character sequences, here

we use a set of known inflected forms for each lemma (from the training data). We then use

the language model to score the collections of test sentences, and selected the variant with

the highest language model score, and evaluate accuracy of selecting the original word form.
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5.2.2.2 Encoder–Decoder Model

Here we incorporate the encoder–decoder model that has been introduced in Section 4.3.

We replace lemma representations with base form ones and aim to predict their particular

context-relevant derived forms.

5.2.2.3 Settings

We used a 3-layer bidirectional LSTM network, with hidden dimensionality h for both context

and lemma form states of 100, and character embedding c j of 100.5 We used pre-trained

300-dimensional Google News word embeddings (Mikolov et al., 2013a,b). During the

training of the model, we keep the word embeddings fixed, for greater applicability to unseen

test instances. All tokens that didn’t appear in this set were replaced with UNK sentinel

tokens. The network was trained using SGD with momentum until convergence.

5.2.2.4 Results and Error Analysis

We experimented with the encoder–decoder as described in Section 4.3 ( “biLSTM+CTX+BS”),

as well as several variations, namely: excluding context information (“biLSTM+BS”), and

excluding the bidirectional stem (“biLSTM+CTX”). We also investigated how much im-

provement we can get from knowing the POS tag of the derived form, by presenting it

explicitly to the model as extra conditioning context (“biLSTM+CTX+BS+POS”). The

main motivation for this relates to gerunds, where without the POS, the model often overgen-

erates nominalisations. We then tried a single-directional context representation, by using

only the last hidden states, i.e., h→left and h←right, corresponding to the words to the immediate

left and right of the wordform to be predicted (“LSTM+CTX+BS+POS”).

We ran two experiments: first, a shared lexicon experiment, where every target base form

in the test data was present in the training data; and second, using a split lexicon, where it

was unseen in the training data. The results are presented in Table 5.1, and show that: (1)

context has a strong impact on results, particularly in the shared lexicon case; (2) there is

5We also experimented with 15 dimensions, but found this model to perform worse.
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Shared Split
baseline 0.63 —
biLSTM+BS 0.58 0.36
biLSTM+CTX 0.80 0.45
biLSTM+CTX+BS 0.83 0.52
biLSTM+CTX+BS+POS 0.89 0.63
LSTM+CTX+BS+POS 0.90 0.66

Table 5.1 Accuracy for predicted lemmas (bases and derivations) on shared and split lexicons.

strong complementarity between the context and character representations, particularly in the

split lexicon case; and (3) POS information is particularly helpful in the split lexicon case.

Note that most of the models significantly outperform our baseline under the shared lexicon

setting. The baseline model doesn’t support the split lexicon setting (as the derivational forms

of interest, by definition, don’t occur in the training data), so we cannot generate results in

this setting.

We carried out error analysis over the produced forms of the LSTM+CTX+BS+POS

model. First, the model sometimes struggles to differentiate between nominal suffixes:

in some cases it puts an agentive suffix (-er or -or) in contexts where a non-agentive

nominalisation (e.g. -ation or -ment) is appropriate. As an illustration of this, Figure 5.2

is a t-SNE projection of the context representations for simulate vs. simulator vs.

simulation, showing that the different nominal forms have strong overlap. Secondly,

although the model learns whether to copy or produce a new symbol well, some forms are

spelled incorrectly. Examples of this are studint, studion or even studyant rather

than student as the agentive nominalisation of study. Here, the issue is opaqueness

in the etymology, with student being borrowed from the Old French estudiant. For

transformations which are native to English, for example, -ate 7→ -ation, the model is

much more accurate. Table 5.2 shows recall values achieved for various suffix types. We

do not present precision since it could not be reliably estimated without extensive manual

analysis. In the split lexicon setting, the model sometimes misses double consonants at the end

of words, producing wraper and winer and is biased towards generating mostly productive

suffixes. An example of the last case might be stoption in place of stoppage. We also
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Figure 5.2 An example of t-SNE projection Maaten and Hinton (2008) of context representa-
tions for simulate.

Affix R 1 Affix R 1 Affix R 1 Affix R 1

-age .93 -al .95 -ance .75 -ant .65
-ation .93 -ator .77 -ee .52 -ence .82
-ent .65 -er .87 -ery .84 -ion .93
-ist .80 -ition .89 -ment .90 -or .64
-th .95 -ure .77 -y .83 NULL .98

Table 5.2 Recall for various suffix types. Here “NULL” corresponds to verb–verb cases.

studied how much the training size affects the model’s accuracy by reducing the amount of

data. Interestingly, we didn’t observe a significant reduction in accuracy. Finally, note that

under the split lexicon setting, the model is agnostic of existing derivations, sometimes over-

generating possible forms. A nice illustration of that is trailation, trailment and

trailer all being produced in the contexts of trailer. In other cases, the model might

miss some of the derivations, for instance, predicting only government in the contexts

of governance and government. We hypothesise that it is either due to very subtle

differences in their contexts, or the higher productivity of -ment.
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Original Target Lemma

transcribe laptify fape crimmle beteive
transcribe laptify fape crimmle beterve
transcription laptification fapery crimmler betention
transcription laptification fapication crimmler beteption
transcription laptification fapionment crimmler betention
transcription laptification fapist crimmler betention
transcription laptification fapist crimmler beteption
transcript laptification fapery crimmler betention
transcript laptification fapist crimmler beteption

Table 5.3 An experiment with nonsense “target” base forms generated in sentence contexts
of the “original” word transcribe

Finally, we experimented with some nonsense stems, overwriting sentential instances

of transcribe to generate context-sensitive derivational forms. Table 5.3 presents the

nonsense stems, the correct form of transcribe for a given context, and the predicted

derivational form of the nonsense word. Note that the base form is used correctly (top row)

for three of the four nonsense words, and that despite the wide variety of output forms,

they resemble plausible words in English. By looking at a larger slice of the data, we

observed some regularities. For instance, fapery was mainly produced in the contexts of

transcript whereas fapication was more related to transcription. Table 5.3

also shows that some of the stems appear to be more productive than others.

5.2.3 Discussion

We investigated the novel task of context-sensitive derivation prediction for English, and

proposed an encoder–decoder model to generate nominalisations. Our best model achieved

an accuracy of 90% on a shared lexicon, and 66% on a split lexicon. This suggests that there

is regularity in derivational processes and, indeed, in many cases the context is indicative. As

we mentioned earlier, there are still many open questions which we leave for future work.

Further, we plan to scale to other languages and augment our dataset with Wiktionary data,

to realise much greater coverage and variety of derivational forms.
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5.3 Conclusion

To conclude, we studied and modelled various classes of English derivations. Our results for

contextual modelling confirm observations made by Cotterell et al. (2017b) and suggest that

some derivations such as agentivisation are more prototypical and productive than others.

Indeed, some derivational suffixes behave similarly to inflectional, i.e., they are widely

attached and very few irregularities are observed for them. Our results support the hypothesis

that inflections and derivations might belong to a single continuum scale of productivity

and restrictedness. Moreover, in the experiments with nonce stems we observe different

stem productivity. We do not make attempts to study it in the current thesis, leaving it

for future work. Comparison of the results on paradigm-based and contextual derivation

suggests that sentential contexts might be more indicative of the form, because NOMLEX

categories are more syntactically motivated rather than semantically, therefore, some slots

are ambiguous. Finally, we conclude that often derivations require extra information such as

base frequency, etymology (if it’s not neologism formation) and more fine-grained annotation

(making distinctions between RESULT and PROCESS, gender forms, etc.). This motivates

construction of new datasets and should also be addressed in future work.





Chapter 6

Conclusions and Future Work

In this thesis, we studied and evaluated various NLP models from a morphological perspective.

Specifically, we focused on two types of morphology, inflection and derivation. In terms of

the scope of the thesis, the following three questions were addressed:

RQ1: What information do models trained based on the distributional semantics hypothesis

capture?

RQ2: Do character-level models provide better representations of morphological similarity

than word-based? Which neural architecture better expresses morphological informa-

tion?

RQ3: How well can derived and inflected forms be predicted directly from a sentential

context?

In Chapter 2 we first provided some background on approaches to morphology modelling

existing in linguistics and machine learning. In particular, we discussed the two types of

morphology we targeted to model, inflectional and derivational, as well as approaches to their

paradigmatic treatment which was further addressed in the thesis. We then continued with a

discussion of contemporary distributed models and the distributional semantics principle for

learning meaning representations. We outlined that there exists a gap in the evaluation of

morphological awareness of the models and very few studies have focused on comparison of

various character-level architectures.
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Chapter 3 addressed the first two research questions and focused on analysis and evalua-

tion of contemporary neural models. In the first part of the chapter we performed comparison

of embeddings obtained in a language modelling task. We assessed a range of word-level and

character (n-gram)-level neural models in terms of their ability at capturing lexical semantic,

morphosyntactic, and morphosemantic binary relations (each relation was represented by

means of word vector differences). Evaluating on relations in English and Russian we showed

that: (1) models achieved high accuracy in a CLOSED-WORLD setting where each pair repre-

sents a relation from our set; while performance significantly dropped in an OPEN-WORLD

setting when we augmented the dataset with noisy pairs; (2) character-level models are able

to achieve results on par with word-level when provided with less data; (3) morphosyntatic

relations are captured much better than morphosemantic and semantic relations; and the gap

in performance is even greater in Russian which can be attributed to more transparent word

form–meaning relations in this language.

The second part of the chapter focused on machine translation. We compared the perfor-

mance of word-level and character-level models (character CNN-Highway and BiLSTMs) in

encoding the source language linguistic information in Russian→ English and Estonian→

English tasks. Our results demonstrated that character-level models improve representation

of rare and OOV words. We also observed that BiLSTMs are more focused on word endings,

and therefore, they provide more useful information on morphosyntactic similarities (for

languages with non-templatic morphology), while CNNs, on the other hand, are better at

capturing lemmata. To summarise, we showed that character-level models are superior for

low-frequent words. Our results also demonstrate that inflections are more regular in form

and meaning than derivations, and character-level models provide a strong signal on types of

inflection.

In Chapter 4 we focused on inflections and partially addressed the third research question,

i.e. we studied contextual predictability of inflectional categories. We first formulated a new

task of contextual inflection. Unlike traditional morphological inflection, here we aimed at

predicting a target word’s morphological tags and form from its sentential context and lemma

that can be also seen as a special case of a language modelling task. We ran experiments on
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18 languages and evaluated several types of models: those that performed direct prediction of

the word form, and models that first predicted the target word’s tags and then form. We also

proposed two settings, inflection of the whole sentence (when only lemmata are provided)

and inferring a single word from inflected context. Our results showed that the task is more

challenging than morphological inflection, especially for languages with rich morphology.

Second, we also achieved lower accuracy in direct form prediction, and models supplied

with morphological tags of contextual words performed better. From the perspective of

linguistics, some morphological categories such as verbal tense are inherent and are less

likely to be predicted from context, while others such as adjective number, case and gender

can be inferred from agreement. Finally, we observed that grammatical cases that appear

more frequently and at more fixed positions in the sentence are predicted better.1 This work

and results inspired the SIGMORPHON shared task organizing team to run a related sub-task

in 2018. The conclusions there were similar, i.e. the task is challenging, and systems perform

better when they are presented with morphological tags, although increasing the amount of

data, joint training on multiple languages, and more advanced architectures might help to

improve the results.

Finally, we continued addressing the third research question in Chapter 5 focusing

on derivations. We additionally discussed paradigmaticity of derivations. We started by

describing paradigmatic treatment of derivations (similarly to inflectional paradigms) and

continued with contextual prediction. Our study showed that: (1) derivations can be treated

paradigmatically; (2) often they present more ambiguous form–meaning mappings and less

productivity; (3) there are derivations that are as regular and productive as inflections; (4)

results on contextual prediction seem to be better than paradigm-level ones; and (5) finally,

we can map both inflections and derivations on a single continuous scale of productivity and

specificity. Unlike inflections, much less data exists for derivations, especially cross-lingual,

and our results motivate construction of more fine-grained datasets in order to achieve higher

accuracies.

1Such as the nominative case marking a subject often occurs at the beginning of the sentence in SVO/SOV
languages.
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6.1 Future work

This part outlines other possible directions of research: diachronic language modelling, usage

of morphology models to improve accuracy in low-resource languages, and incorporation of

morphology models into the decoder in MT tasks.

6.1.1 Joint Modelling of Etymology and Derivation for English

In terms of the thesis, we only focused on the synchronic view of language but often,

especially in derivational modelling, many ambiguous, non-compositional cases can be

addressed if we look at language diachronically.

The English lexicon has both Germanic and Latinate origins. For instance, consider the

words student and learner. At their core, both words signify “an agent who seeks

knowledge”, but their agentive nature is expressed by means of two different suffixes. Can

we create a model that will be able to explain the history of derivational morphology as well

as predict which of the forms is more likely to appear in a particular time period? To address

this question, we need to look back in time and recover the process of their formation.

According to the Merriam-Webster dictionary, the word learn appeared before the 12th

century (Old English). In contrast, the first entry for student dates to the 15th century

(Middle English), much after the Norman conquest of England, an important event in the

history of the English language. As a direct result of the Norman invasion, a substantial

portion of the Middle English lexicon was enriched with words of Latinate stock.

Importantly, the forms might change very significantly over time. For instance, (French)

chaud “hot”← (Latin) calidus ([kálidum]→ [káldum]→ [kald]→ [čald]

→ [čaud]→ [šaud]→ [šod]→ [šo] (chaud)), or (English) lord← (Old English)

hlāfweard “bread keeper”. The main principle of historical linguistics postulates that

there are no arbitrary and single-word changes, i.e. the change (mainly phonetic) affects all

the words of this particular period of time. It is, indeed, a process of phonetic transitions that

covers all the words having a corresponding phoneme or combination of phonemes.
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We propose to jointly model the processes of diachronic word changes and formation

(by means of borrowing and derivation). The goal is to reconstruct the phylogenetic trees

and find common patterns and regularities (paradigms) in the transformational processes.

More specifically, the probabilistic model should jointly learn possible explanations on how

ancient and modern language words are related and evaluate the entire posterior distribution

over them.

Such a multilingual diachronic model should find its place in machine translation and

other related tasks for resource-poor languages in which current models work less well due

to a lack of data. Additional information about related languages and correct identification of

cognates should lead to boosts in overall performance.

6.1.2 Low-Resource Language Modelling

Recent technological progress has yielded a significant improvement in machine performance

quality in various fields of artificial intelligence such as speech and image recognition,

machine translation, dialogue systems, and many others. Part of this success could be

attributed to the increase of the power of modern computers and better data availability. In the

case of tasks that involve natural language, the success mainly comes from a comparatively

small group of well-documented languages such as English, French, German, Russian,

Spanish, Italian, and Chinese. A large fraction of less documented languages, although they

are widely spoken, is often left out of the scope of current studies. An analysis of re-inflection

in 52 languages performed in the context of the SIGMORPHON 2017 shared task (Cotterell

et al., 2017a) showed that the accuracy of neural systems drops in low-resource settings

(when the number of forms is as low as 100–1000 samples). Synthesising training samples,

adding priors to the models as well as the use of data from related languages are possible

future directions to address this issue.

Typically, for many languages there is a sufficient amount of unannotated monolingual

data, therefore the models are often trained in an unsupervised manner. Availability of

annotated data in related languages allows learning the mapping between them. For instance,

joint training of high- and low-resource related languages allows knowledge transfer and can
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significantly improve the results for the latter in POS tagging (Cotterell and Heigold, 2017).

We propose to further investigate this direction with a focus on morphology (and grammar)

learning.

Note that many languages do not have their own writing systems, and Duong et al. (2016),

Adams et al. (2016a), and Adams et al. (2016b) presented systems of automatic transcription

and direct translation of an audio signal, which can certainly be further enriched by models

of morphology. Elsewhere Johnson (2008); Johnson et al. (2010) showed that joint modelling

of word segmentation and word–object mapping improves the overall performance. The

authors also attempted to enrich the model with verbal morphological segmentation but it

did not lead to a significant improvement in English. These results could be attributed to

the fact that English is a morphologically poor language. The situation should be different

in morphologically rich languages where a system has to learn many agreement cases. For

instance, in Russian, adjectives should agree with their head nouns. Generally, the system

has to segment the utterance, assign the words to adjective and noun classes, infer in which

grammatical categories the classes must agree, and how a particular combination of these

categories’ values is realised in each case. It also has to learn a relative order in which

morphemes should be stacked, typically depending on their relevance to the stem morpheme

(the more relevant are the closer). We believe enriching the model with morpheme boundaries

prediction should improve overall performance. Of course, a successful system would require

a generalisation ability and an inference mechanism to be strong enough to capture abstract

categories such as grammatical case.

Finally, phonotactic models of extremely low-resource languages (Shcherbakov et al.,

2016) that are currently used by field linguists to predict possible lexicon entries will certainly

benefit from having a morphological component.

6.1.3 Morphological models for Machine Translation

Another avenue for extension is incorporation of morphology models into the neural decoder

of a neural MT system. Generally, we can describe the decoder decision space as translation,

transliteration, and copying. And in the case when the sizes of the lexicon and word form set
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present in the training data are very limited, word-level translation becomes hard for most

languages (especially morphologically rich and resource-poor ones, with polysynthetic as an

extreme case of that). Basically, the model has to produce many unseen words itself. But

at the very first step the model should choose between utilisation of an existing form and

generation of a new one (in many cases by means of deriving it from some other existing

form). The decision block initially receives a representation of the meaning to be translated,

which is essentially a point in multidimensional space. Many factors, such as sparsity of

the corresponding point’s neighborhood, could influence its translation decision. Currently

these factors are largely unstudied. Our studies on derivational form prediction showed

that this is, indeed, very challenging to guess the number of correct possible forms and not

over-generate them. Furthermore, in the case of inflection, the produced forms should agree

with each other in terms of grammatical case, gender, number, etc. Therefore, the decoder

also has to keep track of syntactically connected units (capture hierarchical dependencies)

and spread morphological information among them. Having a good model that both captures

compositionality and sentence- and word-level hierarchical structures is crucial for many

natural language processing tasks if we want to improve open-ended inference and get better

generalisation.
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