The InternationalJournal of Tuberculosisand Lung Disease

Challenges and opportunities to prevent tuberculosis in people living with HIV in low income countries

	1
Journal:	The International Journal of Tuberculosis and Lung Disease
Manuscript ID	IJTLD-03-18-0207.R2
Manuscript Type:	State of the Art - standalone
Date Submitted by the Author:	18-Aug-2018
Complete List of Authors:	Harries, Tony; International Union Against Tuberculosis and Lung Disease, Research Schwoebel, Valerie; The Union, Tuberculosis Monedero-Recuero, Ignacio; The Union, TB and LH Aung, Thet; The Union, TBHIV Chadha, Sarabjit; International Union Against Tuberculosis and Lung Diseases (The Union), Operations Research Chiang, Chen-Yuan; International Union Against Tuberculosis and Lung Diseases, Lung Health; Conradie, Francesca; University of Witwatersrand, , Department of Medicine, Faculty of Health Sciences Dongo, John Paul; The International Union against Tuberculosis and Lung Disease , HIV Heldal, Einar; independent consultant, TB; Jensen, Paul; The Union, Tuberculosis Nyengele, Jean Pierre; The Union, TBHIV Koura, Kobto; International Union Against Tuberculosis and Lung Disease (The Union), Tuberculosis and VIH Kumar, Ajay; International Union Against Tuberculosis and Lung Disease (The Union), Monitoring and Evaluation Nakanwagi-Mukwaya, Anna; International Union Against Tuberculosis and Lung Disease (The Union), Monitoring and Evaluation Nakanwagi-Mukwaya, Anna; International Union Against Tuberculosis and Lung Disease, TBHIV Ncube, Ronald; International Union Against Tuberculosis and Lung Disease Zimbabwe Office, TB HIV Nyinoburyo, Rodrigo; The Mildmay Uganda, HIV Oo, Nay; International Union Against Tuberculosis and Lung Disease, TBHIV Patel, Leena; Vital Strategies, Research Division Piubello, Alberto; The Union, Tuberculosis; Sanda, Tatiana; International Union Against Tuberculosis and Lung Disease, TBHIV Patel, Leena; Vital Strategies, Research Division Piubello, Alberto; The Union, Tuberculosis Rusen, ID; The Union, Tuberculosis; Sanda, Tatiana; International Union Against Tuberculosis and Lung Disease, TBHIV Satyanarayana, Srinath; Center for Operational Research, International Union against Tuberculosis and Lung Disease, New Delhi, India, Tuberculosis Syed, Imran; The Union, Tuberculosis

	Thu, Aung Si; International Union Against Tuberculosis and Lung Disease (The Union), Mandalay, Myanmar, MDR-TB Tonsing, Jamhoih; International Union Against Tuberculosis and Lung Disease, The Union South-East Asia Office Trebucq, Arnaud; The Union, Tuberculosis Division; Zamora, Victor; International Union Against Tuberculosis and Lung Disease, TBHIV Zishiri, Christopher; International Union Against Tuberculosis and Lung Disease Zimbabwe Office, TB-HIV Hinderaker, Sven Gudmund; University of Bergen, Center for International Health Ait-Khaled, Nadia; The Union, Asthma; Roggi, Alberto; The Union, TBHIV Caminero, Jose; Hospital de Gran Canaria, Department of Respiratory Medicine; The Union, Tuberculosis Graham, Stephen; Centre for International Child Health, Department of Paediatrics Dlodlo, Riitta; The Union, Department of TB and HIV
	Fujiwara, Paula; The Union, TB and HIV;
Key Words:	HIV/AIDS, tuberculosis, antiretroviral therapy, isoniazid preventive treatment, infection control

SCHOLARONE[™] Manuscripts

1	Challenges and opportunities to prevent tuberculosis in people living with HIV
2	in low income countries
3	An invited "State of the Art" paper for IJTLD – R2
4	
5	Authors:
6	Anthony D Harries, ^{1, 2} Valerie Schwoebel, ¹ Ignacio Monedero, ¹ Thet Ko Aung, ^{1,3}
7	Sarabjit Chadha, ^{1,4} Chen-Yuan Chiang, ^{1,5} Francesca Conradie, ^{6,7}
8	John-Paul Dongo, ^{1,8} Einar Heldal, ¹ Paul Jensen, ¹ Jean Pierre Kabuayi Nyengele, ^{1,9}
9	Kobto Koura, ^{1,10} Ajay MV Kumar, ^{1,4} Yan Lin, ^{1,11} Nqobile Mlilo, ^{1,12} Anna
10	Nakanwagi-Mukwaya, ^{1,8} Ronald Ncube, ^{1,12} Rodrigo Nyinoburyo, ^{1,8} Nay Lynn Oo, ^{1,3}
11	Leena Patel, ⁷ Alberto Piubello, ^{1,13} ID Rusen, ^{1,7} Tatiana Sanda, ^{1,9} Srinath
12	Satyanarayana, ^{1,4} Imran Syed, ¹ Aung Si Thu, ^{1,3} Jamie Tonsing, ^{1,4} Arnaud Trébucq, ¹
13	Victor Zamora, ^{1,14} Christopher Zishiri, ^{1,12} Sven Gudmund Hideraker, ^{1,15} Nadia Aït-
14	Khaled, ¹ Alberto Roggi, ¹ Jose Caminero Luna, ^{1,16} Stephen M Graham, ^{1,17} Riitta A
15	Dlodlo, ^{1,12} Paula I. Fujiwara. ¹
16	
17	Author Institutions:
18	¹ International Union Against Tuberculosis and Lung Disease, Paris, France
19	² London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
20	³ International Union Against Tuberculosis and Lung Disease, Myanmar Office,
21	Mandalay, Myanmar
22	⁴ International Union Against Tuberculosis and Lung Disease, South-East Asia Office,
23	New Delhi, India
24	⁵ Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang
25	Hospital, Taipei Medical University, Taipei, Taiwan
26	⁶ University of Witwatersrand, Faculty of Health Sciences, South Africa

- 27 ⁷ Vital Strategies, New York, USA
- ⁸ International Union Against Tuberculosis and Lung Disease, Uganda Office,
- 29 Kampala, Uganda
- ⁹ International Union Against Tuberculosis and Lung Disease, DRC Office, Kinshasa,
- 31 Democratic Republic of Congo
- 32 ¹⁰ MERIT IRD, Université Paris 5, Sorbonne Paris Cité, Paris, France
- ³³ ¹¹ International Union Against Tuberculosis and Lung Disease, China Office, Beijing,
- 34 China
- ¹² International Union Against Tuberculosis and Lung Disease, Zimbabwe Office,
- 36 Harare, Zimbabwe
- ¹³ Damien Foundation, Brussels, Belgium
- ¹⁴ International Union Against Tuberculosis and Lung Disease, Peru Office, Lima,
- 39 Peru
- 40 ¹⁵ University of Bergen, Bergen, Norway
- 41 ¹⁶ Pneumology Department, General Hospital of Gran Canaria "Dr. Negrin", Las
- 42 Palmas, Spain
- 43 ¹⁷ Centre for International Child Health, University of Melbourne Department of
- 44 Paediatrics and Murdoch Children's Research Institute, Royal Children's Hospital,
- 45 Melbourne, Australia.
- 46
- 47
- 48
- 49
- 50
- 51

52 * Corresponding author:

- 53 Professor AD Harries, Old Inn Cottage, Vears Lane,
- 54 Colden Common, Winchester SO21 1TQ, UK
- 55 Phone: +44 (0) 1962 714 297
- 56 Email: <u>adharries@theunion.org</u>
- 57
- 58 <u>Paper Content:</u>
- 59 **Abstract word count = 250**
- 60 Narrative word count = 4500
- 61 **References = 88**
- 62 **Tables** = 4
- 63
- 64 **Short running title:**
- 65 Preventing TB in people living with HIV
- 66
- 67 Key words:
- 68 HIV/AIDS; tuberculosis; antiretroviral therapy; isoniazid preventive treatment;
- 69 infection control
- 70
- 71

72 ABSTRACT

73	People living with HIV (PLHIV) are at high risk for TB, and TB is a major cause of
74	death in PLHIV. Preventing TB in PLHIV is therefore a key priority. Early initiation
75	of antiretroviral therapy (ART) in asymptomatic PLHIV has a potent TB preventive
76	effect, with even more benefits in those with advanced immunodeficiency. Applying
77	the most recent WHO recommendations that all PLHIV initiate ART regardless of
78	clinical stage or CD4 cell count could provide a large TB preventive benefit at the
79	population level in high HIV-prevalence settings. Preventive therapy can treat TB
80	infection and prevent new infections during the course of treatment. It is now
81	established that isoniazid preventive therapy (IPT) combined with ART amongst
82	PLHIV significantly reduces the risk of TB and decreases mortality compared with
83	ART alone, and therefore has huge potential benefits for millions. However, despite
84	the evidence, this intervention is not implemented in most low-income countries with
85	high burdens of HIV-associated TB. HIV and TB programme commitment,
86	integration of services, proper screening procedures for excluding active TB, reliable
87	drug supplies, patient-centred support to ensure adherence and well-organized follow-
88	up and monitoring that includes drug safety are needed for successful implementation
89	of IPT, and these would also be needed for future shorter preventive regimens. A
90	holistic approach to TB prevention in PLHIV should also include other important
91	preventive measures such as detection and treatment of active TB particularly among
92	contacts of PLHIV and TB infection control measures in health facilities, homes of
93	index patients and congregate settings.
94	

97 Introduction

98	Since the emergence of the HIV/AIDS epidemic in the 1980s, infection with
99	the human immunodeficiency virus (HIV) has remained the most important risk factor
100	for the development of tuberculosis (TB). HIV targets the host cell-mediated immune
101	response to Mycobacterium tuberculosis (MTB). ¹ The resulting immunosuppression
102	increases the risk of reactivation of TB infection, ² as well as the risk of rapid
103	progression of a recently acquired TB infection. ³ Without treatment, people living
104	with HIV (PLHIV) and with MTB infection have an annual risk of developing TB of
105	approximately 10% per year compared to an estimated 10% lifelong risk in non HIV-
106	infected individuals. ^{4,5} Both mechanisms (reactivation and new infection) lead to an
107	increase in TB incidence among PLHIV as well as increased MTB transmission in the
108	community.
109	One third of PLHIV with TB die annually. ⁶ The reasons include: i) failure to
110	suspect or diagnose TB, ⁷ ii) delays and challenges in diagnosing TB due to
111	immunodeficiency-related presentations with smear-negative pulmonary disease or
112	extra-pulmonary /disseminated disease, ^{8,9} iii) non-provision or delayed treatment with
113	antiretroviral therapy (ART) and cotrimoxazole preventive therapy in co-infected TB
114	patients, and iv) missed opportunities to prevent TB in PLHIV.
115	The epidemiological impact of this deadly association remains high. In 2016
116	alone, over 1.0 million PLHIV worldwide were estimated to develop TB (10% of the
117	total burden of incident TB), among whom 74% lived in Africa, and 374,000 PLHIV
118	were estimated to have died from TB (22% of total TB deaths). ⁶ The overall high
119	mortality in HIV-associated TB and the generally inadequate medical and
120	programmatic responses mean that it is far better to prevent TB than wait for it to

121 occur. TB prevention is now a vital component of the technical pillar of the World Health Organization (WHO) End TB Strategy.^{6,10} 122 123 In 2009, Aït-Khaled and colleagues discussed the important challenges and concerns regarding isoniazid preventive therapy (IPT).¹¹ A recent review of barriers to 124 125 IPT scale-up concluded that none should prove unsurmountable.¹² Yet, despite the 126 large consensus on the importance of TB prevention in PLHIV, worldwide 127 implementation appears heterogeneous and mainly restricted to countries with better resources.¹³ 128 129 After the Union World Lung Health Conference in Mexico in 2018, a group of 130 TB-HIV consultants at the International Union Against Tuberculosis and Lung 131 Disease (The Union) discussed key interventions that can be implemented by national 132 programmes to prevent TB among PLHIV in low income countries (LIC), based on 133 their field experience. This paper offers a review of the most important therapeutic 134 interventions: namely, ART (now recommended for all PLHIV regardless of their CD4 cell count or WHO clinical stage of disease¹⁴) and IPT (with updated WHO 135 guidelines recently published¹⁵), focusing on the programmatic challenges and 136 137 opportunities around their implementation and putting them in the context of other 138 preventive interventions. 139 140 The role of ART in TB prevention 141 Does ART reduce the individual risk of TB in people living with HIV?

ART is associated with rapid recovery of mycobacteria-specific immune responses resulting in increased capacity to limit mycobacterial growth.¹⁶ At the clinical level, this translates into a potent TB preventive effect and a reduction in individual risk of TB (**Table 1**).

Page 8 of 38

7

146	A systematic review and meta-analysis from 2002 to 2011 showed that ART
147	was associated with a 65% reduction in TB incidence across all baseline CD4 counts
148	in PLHIV. ¹⁷ Subsequent studies confirmed the preventive benefit of early ART
149	initiated at higher CD4 cell counts, and also showed that delays in ART initiation can
150	result in long-term immune dysfunction and persistent increased risk for TB. ^{18,19} Two
151	randomised controlled trials (RCTs) published in 2015 (INSIGHT START and
152	TEMPRANO) further strengthened the evidence. ^{20,21} The INSIGHT START trial
153	showed that early ART initiation in asymptomatic HIV-positive patients with CD4
154	counts > 500 cells/ μ L was associated with an almost 60% reduction in risk of death,
155	serious AIDS-related events or serious non-AIDS-related events, including
156	disseminated TB, compared with deferred initiation until the CD4 count had
157	decreased to 350 cells/ μ L. ²⁰ The 2-by-2 factorial design TEMPRANO trial, conducted
158	in Cote d'Ivoire, enrolled PLHIV with CD4 cell counts < 800 cells/ μ L and not
159	meeting criteria for starting ART according to the WHO guidelines available at the
160	time. ²¹ Patients were randomised to one of four groups: deferred ART (starting ART
161	according to the most recent WHO guideline criteria); deferred ART plus six-months
162	isoniazid preventive therapy (IPT); early ART – (starting ART immediately); and
163	early ART plus six-months IPT. Early ART was associated with a 44% lower risk of
164	death or severe HIV-related illness, including TB, compared with deferred ART, with
165	IPT adding significantly to the individual benefit. ²¹
166	

167 **Can ART reduce TB incidence at the programmatic level?**

168 At the programme level, despite PLHIV routinely initiating ART at low CD4 169 counts especially in sub-Saharan Africa,²² decreases in TB notification rates have 170 been observed in countries such as Malawi, Swaziland, Zimbabwe and Kenya where

ART coverage in the HIV-infected populations has reached a high level. 2^{23-27} 171 172 Significant declines in TB cases in Malawi and Swaziland were observed in patients 173 with smear-negative pulmonary TB and in patients with recurrent TB, both of which 174 are strongly associated with HIV. In Kenya and Malawi, declines in case notifications 175 were also seen in HIV-negative TB, which might be due to overall decreases in HIVassociated TB leading to reduced transmission of MTB in the community.^{23,27} It is 176 177 plausible that part of the decrease in TB incidence observed since 2008 in countries 178 mostly affected by the HIV epidemic could be attributable to the increase in ART 179 coverage, as evidenced by the parallel decrease in HIV prevalence in notified TB cases in these countries.⁶ 180 181 This positive news from the programmatic front is supported by mathematical 182 models predicting the enormous impact that immediate start of ART might have on TB prevention at the population level.²⁸ The application of the 2016 WHO 183 184 Consolidated Guidelines on the use of ART recommending that ART be offered to all PLHIV regardless of clinical stage or CD4 cell count¹⁴ opens the way for immediate 185 186 initiation of therapy for all those infected. It is crucial then to diagnose HIV early and 187 there are various initiatives now being implemented that facilitate this, including 188 community-based HIV testing, self-testing and partner notification services. 189 Randomised trials also point to better retention in care and decreased mortality in those initiating ART on the same day that HIV infection is diagnosed.²⁹ These 190 191 innovative approaches are likely to provide large public health benefits by reducing 192 the incidence of TB and other HIV-related diseases as well as reducing HIV transmission from infected to non-infected individuals.^{20, 21,30} Comprehensive and 193 194 timely linkage of newly diagnosed PLHIV to HIV care and treatment is an essential pre-requisite, however, if these benefits are to be realised.³¹ 195

1	96)

197 **Can ART alone optimally prevent TB?** 198 While these data on ART in preventing TB are encouraging, ART alone does not 199 do the job adequately. Long-term recovery of TB-specific immune function is incomplete on ART.¹⁶ In the clinic, the TB preventive effects of ART increase with 200 201 length of time on therapy and with ART-induced immune recovery, but the risk of TB 202 never decreases to levels seen in patients without HIV infection in the same community.³² Optimization of TB prevention therefore requires additional 203 204 interventions. 205 206 The role of treatment for TB infection 207 Until recently, IPT has been the most widely used treatment for the prevention of 208 TB. It is an intervention which is immediately appealing for controlling an infectious 209 disease such as TB. It is capable of eliminating *MTB* from the body by treating latent 210 TB infection (LTBI) and may additionally prevent new infections during the course of 211 treatment. 212 213 1. Did IPT reduce the individual risk of TB in the pre-ART era? 214 There have been three systematic reviews of the benefit of IPT in preventing TB in PLHIV, largely of studies from the pre-ART era.³³⁻³⁵ The last review, published in 215 216 2010 (Table 2), suggested that IPT at a daily dose of 300 mg for 6 months reduced 217 the overall risk of TB by 33%, with the protective effect increased to 64% when targeted at individuals with a positive tuberculin skin test (TST).³⁵ Because of no 218 219 demonstrable reduction in TB incidence or mortality when IPT was given to PLHIV

220	whose TST was negative, TST before IPT was considered an essential component of
221	this policy.
222	However, the challenge of obtaining and storing tuberculin, then performing,
223	reading and interpreting the skin tests which may be falsely negative in anergic
224	PLHIV and finally implementing this screening in the context of busy HIV clinics
225	was one of the important limiting factors responsible for poor implementation of IPT
226	as recommended by the WHO and the joint United Nations Programme on HIV and
227	AIDS (UNAIDS) in 1998. ³⁶
228	
229	2. What is the expected benefit of IPT in the ART era?
230	In the current situation where ART is recommended for all PLHIV regardless of
231	the level of immunity, ¹⁴ the important question is whether or not IPT provides
232	additional benefit to ART. Several recent studies highlighted in Table 2 confirm an
233	affirmative response, further strengthened by observational data from Botswana, ^{37, 38}
234	Brazil, ³⁹ South Africa, ⁴⁰ and Ethiopia ⁴¹ showing lower incidence rates of TB in those
235	on ART plus IPT compared with those on ART alone (Table 3).
236	Two major RCTs provide strong evidence for the additional benefit of IPT. The
237	first, conducted in South Africa, showed that IPT given for 12 months to PLHIV on
238	ART significantly reduced the risk of active TB by 37%, with the greatest benefit
239	being observed in the first year. ⁴² The effect of IPT was not significantly different
240	according to whether patients had a positive or a negative TST or interferon-gamma
241	release assay (IGRA). The second (TEMPRANO study) showed that 6 months of IPT

- given in addition to ART resulted in a 35% reduction in HIV-related death or severe
- 243 illness, of which 42% was due to TB, at whatever CD4 cell count ART was
- 244 initiated.²¹

Page 12 of 38

11

245	Long-term follow-up of patients enrolled in TEMPRANO showed that 6 months
246	of IPT resulted in a 37% reduction in death that was independent of ART over an
247	average of 4.9 years of follow-up. ⁴³ This evidence from Cote d'Ivoire on reduced
248	mortality with IPT was also confirmed in two previous studies -an observational
249	design in South Africa and a stepped wedge, cluster-randomised design in Brazil. ^{44,45}
250	In summary, ART plus IPT is more effective than ART alone in reducing
251	mortality as the addition of IPT to ART further reduces the risk of TB in high TB
252	endemic settings. Therefore, WHO now recommends that IPT should be given in
253	combination with ART at the time HIV is diagnosed. ¹⁴
254	

255

3. Which PLHIV benefit more from IPT in the ART era?

256 The South African and TEMPRANO long-term follow-up studies showed that the 257 benefits of IPT in reducing TB risk and mortality also occurred in patients with negative TST or IGRA results, but to a lesser extent.^{42,43} Because of this demonstrated 258 259 benefit and given the difficulties and obstacles that TST poses for IPT scale-up, WHO 260 revised guidelines in 2011 and again in 2018 recommending that IPT should be given 261 to PLHIV with an unknown or positive TST who are unlikely to have active TB in 262 resource-constrained settings.¹⁵ 263 However, giving IPT to all PLHIV without prior TST or IGRA will result in an 264 impact at the population level that will differ according to the level of TB

transmission in the country. The impact is likely to be greater in high TB transmission

settings, but lower in settings with moderate to low risk of TB infection because the

- 267 number of PLHIV with prior TB infection will be fewer. WHO recommends that
- 268 PLHIV be screened for LTBI, if resources permit, since those with a positive TST

269

270

272

4. What is the role of IPT in children?

274 The evidence of benefit of preventive therapy for all children living with HIV is 275 not as clear as with adults. While an early study in a high TB endemic setting in the 276 pre-ART era found that IPT improved early survival and reduced TB incidence in children,⁴⁷ recent systematic reviews found no benefit of IPT in reducing TB 277 278 incidence and no additional benefit when isoniazid was given to children on ART.^{48,49}. As the prevalence of TB infection among children in close contact with a 279 280 TB case is high and as children living with HIV are at high risk of developing TB 281 disease following infection, IPT is always recommended for children living with HIV of any age who are TB contacts provided they do not have active TB.^{15,50} By contrast, 282 283 young children who are not TB contacts have a low probability of being infected by 284 *MTB* – for example, this is less than 5% in children under 5 years of age where the 285 annual risk of TB infection is <1%, a situation observed in several LIC.⁵¹ 286 While WHO recommends that all adults and adolescents living with HIV receive 287 preventive therapy, in children living with HIV who are considered unlikely to have 288 TB disease, there is a strong recommendation for 6 months of IPT for those aged ≥ 12 289 months only if living in settings with a high TB prevalence and for infants (<12 months) only if they are in contact with a case of TB.¹⁵ 290 291

292 **5.** For how long should IPT be given?

Page 14 of 38

293	The WHO recommends that the duration of IPT be at least 6 months with 36
294	months (as a surrogate for life-long treatment) conditionally recommended in areas
295	with high TB incidence and transmission. ¹⁵ The question of how long to give IPT is
296	context-specific. The TEMPRANO study in Cote d'Ivoire, West Africa, where TB
297	incidence rates are estimated at about 160 per 100,000 people, ⁶ suggested that 6-
298	months IPT + ART has a durable effect on mortality for almost five years,
299	presumably by combining the two complementary mechanisms of IPT (curing LTBI
300	and preventing new infections during the course of the treatment) and ART (leading
301	to immune recovery that decreases the risk of both new TB infection and
302	reactivation). ^{21, 43}
303	In high TB exposure environments, such as Botswana and South Africa where
304	incidence rates are estimated to be about 350 and 830 per 100,000 respectively, ⁶ six
305	months of IPT may be insufficient. In Botswana, 36 months of IPT given to PLHIV,
306	who were mostly on ART, reduced TB incidence by 43% compared with 6 months of
307	IPT. ³⁷ However, after cessation of IPT, TB incidence rebounded even in the presence
308	of ART. ³⁸ This suggests that in settings with a high TB burden and transmission,
309	continuous IPT probably acts not only to cure LTBI but also to prevent new
310	infections. ⁵² In high transmission settings, continuous IPT may therefore be
311	necessary. A systematic review and meta-analysis suggests that in high TB and HIV
312	prevalence settings, continuous IPT in PLHIV for at least 36 months is beneficial and
313	probably outweighs the risk of increased adverse effects as compared with IPT for 6
314	months. ⁵³ Based on the available evidence, this recommendation is now endorsed by
315	the WHO in the 2018 guidelines. ¹⁵ Thus, the choice of regimen duration should be
316	based on the epidemiological situation, with long duration of IPT to be considered for
317	countries with high TB transmission, such as in Southern and Eastern Africa, while

- the 6-month regimen could be considered for other low and medium prevalence
- 319 countries.
- 320

321 6. What are the conditions to consider for the programmatic 322 implementation of IPT in the context of ART? 323 As with any public health strategy, programmatic implementation of IPT 324 needs to meet acceptable conditions to guarantee effectiveness while limiting 325 potential risks and simultaneously considering resource constraints. First, the level of 326 TB transmission in the country should be assessed to determine the required duration 327 of IPT, the expected benefit to PLHIV if given without prior testing for TB infection, 328 and the respective benefits if given to adults and to children. Second, the expected 329 impact at a population level may be estimated by considering the prevalence of HIV 330 infection together with the level of TB transmission in the community. Third, 331 activities that are necessary to adequately apply the strategy must be considered and 332 resources required to conduct them should be evaluated. All these steps involve both 333 national HIV-AIDS and TB programmes: HIV programmes will be the implementers, 334 as management of PLHIV is mainly conducted in HIV clinics, and TB programmes 335 will play a crucial role in supporting the activity. Guidance for this evaluation is 336 proposed and presented in Table 4. 337 338 7. How should programmes organize the initiation of IPT? 339 A crucial principle is that IPT must not be given to PLHIV who may have 340 active TB, and IPT must be discontinued in any PLHIV who develops symptoms and 341 signs of active TB. If active TB is unrecognized, there is not only a risk of delayed

342 diagnosis and death for the patient, but also a risk of promoting isoniazid-resistant

343	disease which may be more difficult to treat, is associated with worse treatment
344	outcomes, ⁵⁴ and may be transmitted to others. A systematic review in the pre-ART era
345	assessing the effect of IPT on the risk for isoniazid-resistant TB reported a summary
346	relative risk of 1.45 (95% confidence interval $0.85 - 2.47$). ⁵⁵ While this result did not
347	reach statistical significance, an increased risk for isoniazid-resistant TB after use of
348	IPT could not be excluded. In a more recent study, the prevalence of isoniazid-
349	resistance in patients diagnosed with TB during or after IPT was 16%. ⁵⁶ In Botswana,
350	after IPT implementation at the national level the overall prevalence of isoniazid-
351	resistance increased from 1.7% in 1995 to 7.6% in 2007-2008. ⁵⁷ Based on these
352	observations, it is critical that i) active TB is excluded before starting IPT and ii) TB
353	is diagnosed during IPT.
354	Symptomatic PLHIV who initiate ART may present with a constellation of
355	weight loss, fever, night sweats and respiratory symptoms, due either to HIV-related
356	disease or HIV-associated TB. Making the correct diagnosis is both difficult and
356 357	disease or HIV-associated TB. Making the correct diagnosis is both difficult and prone to error. ⁵⁸ Simple and clear diagnostic procedures accompanied by adequate
357	prone to error. ⁵⁸ Simple and clear diagnostic procedures accompanied by adequate
357 358	prone to error. ⁵⁸ Simple and clear diagnostic procedures accompanied by adequate training and supervision are needed, particularly since staff at HIV clinics are usually
357 358 359	prone to error. ⁵⁸ Simple and clear diagnostic procedures accompanied by adequate training and supervision are needed, particularly since staff at HIV clinics are usually not fully trained to diagnose TB. The use of Xpert® MTB/RIF should be encouraged
357 358 359 360	prone to error. ⁵⁸ Simple and clear diagnostic procedures accompanied by adequate training and supervision are needed, particularly since staff at HIV clinics are usually not fully trained to diagnose TB. The use of Xpert® MTB/RIF should be encouraged because of its increased sensitivity compared with sputum smear microscopy. ⁵⁹ This is
 357 358 359 360 361 	prone to error. ⁵⁸ Simple and clear diagnostic procedures accompanied by adequate training and supervision are needed, particularly since staff at HIV clinics are usually not fully trained to diagnose TB. The use of Xpert® MTB/RIF should be encouraged because of its increased sensitivity compared with sputum smear microscopy. ⁵⁹ This is especially the case for immunosuppressed patients who present with non-specific
 357 358 359 360 361 362 	prone to error. ⁵⁸ Simple and clear diagnostic procedures accompanied by adequate training and supervision are needed, particularly since staff at HIV clinics are usually not fully trained to diagnose TB. The use of Xpert® MTB/RIF should be encouraged because of its increased sensitivity compared with sputum smear microscopy. ⁵⁹ This is especially the case for immunosuppressed patients who present with non-specific symptoms of disseminated disease in whom the sputum smears can be negative and
 357 358 359 360 361 362 363 	prone to error. ⁵⁸ Simple and clear diagnostic procedures accompanied by adequate training and supervision are needed, particularly since staff at HIV clinics are usually not fully trained to diagnose TB. The use of Xpert® MTB/RIF should be encouraged because of its increased sensitivity compared with sputum smear microscopy. ⁵⁹ This is especially the case for immunosuppressed patients who present with non-specific symptoms of disseminated disease in whom the sputum smears can be negative and chest radiography normal. However, it is essential that there is stable and regular

367	The costs and organizational problems associated with chest x-ray led to the
368	abandonment of this diagnostic modality in providing IPT in Botswana, ⁶¹ and the
369	systematic use of chest x-ray is currently not considered mandatory in resource-
370	limited settings with high HIV prevalence. ¹⁵ However, if resources permit it is worth
371	considering. Indeed, WHO states that the combination of absence of any chest x-ray
372	abnormality and absence of symptoms suggestive of TB offers the highest sensitivity
373	and negative predictive value for ruling out TB.62
374	Given these screening and diagnostic challenges, a prudent course of action is
375	to initiate ART and wait for the patient to stabilise and gain weight before starting IPT
376	so that patients with undiagnosed prevalent TB are not mistakenly placed on isoniazid
377	monotherapy. In the TEMPRANO study during a one-month waiting period before
378	initiating IPT, 1.6% of participants were diagnosed with active TB, ⁶³ and in another
379	operational study amongst PLHIV starting ART in Malawi, TB was diagnosed
380	between 20-50 days after enrolment in about 10% of those with TB. ⁶⁴ An intermediate
381	waiting period of up to 3 months after ART initiation, during which PLHIV are under
382	close surveillance would thus be sensible in the routine setting.
383	While in theory, asymptomatic PLHIV could be safely started on IPT much
384	earlier, a fixed waiting period would enable standardization across programmes and
385	would allow for the early "unmasking" of TB from immune reconstitution

inflammatory disease during the first few months of ART.^{65,66} Starting PLHIV on IPT
who are stable and asymptomatic allows for easier monitoring during ART follow-up.
Any individual who develops new symptoms or signs or starts to lose weight must be
suspected as having TB. IPT must be stopped and the patient investigated for TB and
other HIV-related disease.

391

Page 18 of 38

17

2	02
Э	92

8. How should Programmes ensure safety and adherence?

393 The most serious adverse event is isoniazid-induced hepatitis, which if 394 unrecognised and unattended can lead to acute liver failure and death. The estimated 395 rate of symptomatic isoniazid-related hepatitis can range from one to three per 1,000 396 persons, with established risk factors being increasing age, pre-existing liver disease, 397 chronic hepatitis C infection, concomitant use of other hepatotoxic medications such 398 as ART non-nucleoside reverse transcriptase inhibitors and regular alcohol consumption.⁶⁷ In the Botswana studies, isoniazid-induced hepatitis was the main 399 adverse effect, occurring in about 1% of patients and usually during the first nine 400 months of treatment.^{37,38} 401 402 Given the absence of laboratory monitoring in most decentralised ART 403 programmes, the approach should be to exclude anyone at higher risk of hepatitis 404 (older people and those with a known history of liver disease or alcohol abuse). 405 Patients and health care workers must all be educated about the importance of 406 stopping IPT in the event of nausea, vomiting, confusion or jaundice with immediate 407 reporting to a health facility for assessment. Isoniazid may also cause peripheral 408 neuropathy although the addition of vitamin B 6 (pyridoxine) may provide some protection.¹⁵ 409

An important prerequisite, frequently overlooked, is that a safe, secure and robust supply of isoniazid is ensured: drug shortages were the commonest reason for discontinuing IPT in an Ethiopian community-based study.⁶⁸ Adherence to medication is then critical for ensuring effectiveness of IPT, and it is well recognized that adherence to preventive treatment is more difficult to achieve than adherence to curative therapy. Many studies on IPT among PLHIV have reported low rates of treatment completion (e.g., 53% in Uganda in the pre-ART era and 64% in Ethiopia

417	more recently), ^{69,70} and completion rates under programmatic rather than study
418	conditions are likely to be even lower. PLHIV already receive a high number of pills.
419	Thus, it is crucial to deliver proper information about the action of the drug, potential
420	side effects and the benefits of taking the full course of treatment. Programmes
421	implementing IPT should therefore ensure that health care workers are adequately
422	trained on how to educate patients, to follow-up the treatment, and to monitor and
423	manage any adverse events as well as completion or discontinuation of therapy. This
424	will require strong collaboration between HIV and TB programmes.
425	
426	9. Should other treatment regimens to prevent TB be considered?
427	WHO has recently recommended alternative options to IPT for TB preventive
428	therapy in high TB incidence countries that include i) rifampicin and isoniazid daily
429	for 3 months (3HR) in children and adolescents aged<15 years and ii) rifapentine and
430	isoniazid weekly for 3 months (3HP) for both adults and children. ¹⁵
431	The 3HR regimen has demonstrated at least equivalent effectiveness, better
432	adherence and fewer side effects than IPT (or 6H) among children, and its application
433	is facilitated by the availability of dispersible paediatric fixed-dose formulations
434	offering the right drug dosage. ⁷¹ Much attention has been paid to weekly 3HP, which
435	appears to be effective in low- and high-incidence TB settings and is associated with
436	less hepatotoxicity and higher treatment completion rates than daily IPT given for at
437	least 6 months. ⁷²⁻⁷⁷ In addition, a recently completed trial showed non-inferiority of
438	one month of daily isoniazid and rifapentine (1HP) compared with 9 months of IPT. ⁷⁸
439	The problem with using rifamycin-containing regimens such as RH or HP in
440	PLHIV is the potential for drug-drug interactions with ART. Based on recent
441	evidence, rifamycins can be used effectively with efavirenz at 600 mg daily, but may

442	be problematic for PLHIV on ART regimens that include efavirenz 400 mg daily,
443	protease inhibitors or dolutegravir (an integrase inhibitor) for first-line therapy. ⁷⁹
444	Nonetheless, these shorter regimens of one to three months make these potentially
445	useful TB preventive therapy options for PLHIV in resource-limited settings in the
446	future, provided the costs of rifapentine can be reduced. Shorter regimens could also
447	encourage countries to pursue the necessary TB preventive approaches. Despite their
448	inherent advantages for patients, physicians and programs, however, shorter regimens
449	will not completely offset the challenges for programmatic implementation, and a
450	coordinated network and strengthening of programmes will still be needed. In the near
451	foreseeable future, both IPT and shorter regimens will probably co-exist in national
452	policies of preventive therapy.

454 Other measures for preventing TB in PLHIV

455 Other interventions are capable of contributing significantly to TB prevention 456 in PLHIV. Early detection and treatment of active TB among contacts of PLHIV is 457 important.⁸⁰ PLHIV should thus be informed about the necessity to report on 458 signs/symptoms of TB in their close contacts, and HIV clinic staff should be trained 459 to regularly monitor and link such persons to TB diagnosis, treatment and contact 460 investigation.

Infection control is likely to play an important role, particularly in high HIV
prevalence areas where PLHIV comprise a large proportion of hospital admissions
and out-patient consultations and where the presence of patients with unrecognized
TB can result in intense TB transmission.⁸¹⁻⁸³ Given the global rise in drug-resistant
TB and the greater mortality observed in those co-infected with HIV,^{84,85} preventive
interventions assume even greater importance. They should be given high priority in

467 health facilities, as well as in other high TB transmission settings such as homes of
468 index patients, prisons or refugee camps.⁸⁶

The TB and HIV-associated TB epidemic, however, will only be ended if the
other important social and behavioural determinants of the disease, such as poverty,
overcrowding, undernutrition, migration, tobacco and alcohol abuse,⁸⁷ are addressed
in parallel with these clinical and programmatic interventions.

- 473
- 474 Conclusion

475 TB can be significantly reduced in PLHIV by ensuring that all persons at risk 476 know their HIV status and those diagnosed with HIV infection are immediately 477 initiated and sustained on effective ART. Because the effectiveness of IPT combined with early ART to prevent TB and reduce mortality is now well demonstrated,⁸⁸ LIC 478 479 must give serious thought to implementation and scale up. 480 Strong collaboration between HIV and TB programmes will be necessary. 481 Elements to consider for IPT implementation include i) the choice of treatment 482 duration, ii) a clear and applicable procedure to exclude active TB before starting IPT 483 using the best diagnostic tools that are available and including a three month waiting 484 period before IPT initiation, iii) a robust drug supply so that there are no drug 485 interruptions, iv) adequate patient support and well-organized patient follow-up to 486 ensure safety and adherence, and v) proper monitoring of this activity. Shorter 487 regimens are promising and may replace IPT in the future, although these will require 488 the same organizational elements for effective implementation. Other practical 489 interventions such as TB detection among close contacts and infection control should 490 also be seriously addressed.

491	TB prevention in PLHIV has been a neglected part of TB control, and while it
492	has huge potential benefit the challenges of implementation must be addressed. Yet,
493	since countries with the highest prevalence of both HIV and TB infection are also
494	those with the most under-funded programmes, additional resources will be needed.

to Review only

REFERENCES

497	1.	Lawn SD, Butera ST, Shinnick TM. Tuberculosis unleashed: the impact of
498		human immunodeficiency virus infection on the host granulomatous response to
499		Mycobacterium tuberculosis. Microbes Infect 2002; 4: 635-646.
500	2.	Selwyn P A, Hartel D, Lewis V A, et al. A prospective study of the risk of
501		tuberculosis among intravenous drug users with human immunodeficiency
502		virus infection. N Engl J Med 1989; 320: 545–550.
503	3.	Daley C L, Small P M, Schecter G F, et al. An outbreak of tuberculosis with
504		accelerated progression among persons infected with the human
505		immunodeficiency virus. N Engl J Med 1992; 326: 231–235.
506	4.	Lawn SD, Harries AD, Williams BG, et al. Antiretroviral therapy and the control
507		of HIV-associated tuberculosis. Will ART do it? Int J Tuberc Lung Dis 2011; 15:
508		571 – 581.
509	5.	Corbett EL, Watt CJ, Walker N, et al. The growing burden of tuberculosis:
510		global trends and interactions with the HIV epidemic. Arch Intern Med 2003;
511		163: 1009-1021.
512	6.	World Health Organization. Global Tuberculosis Report 2017. WHO, Geneva,
513		Switzerland. WHO/HTM/TB/2017.23
514	7.	Gupta RK, Lucas SB, Fielding KL, Lawn SD. Prevalence of tuberculosis in post-
515		mortem studies of HIV-infected adults and children in resource-limited settings:
516		a systematic review and meta-analysis. AIDS 2015; 29: 1987-2002.
517	8.	Chamie D, Abizaid A, Costa JR, et al. Significant variation in presentation of
518		pulmonary tuberculosis across a high resolution of CD4 strata. Int J Tuberc Lung
519		Dis 2010; 14: 1295-1302.

520	9.	Guirado E, Schlesinger LS. Modeling the Mycobacterium tuberculosis
521		Granuloma – the critical Battlefield in Host Immunity and Disease. Front
522		Immunol 2013; 4: 98.
523	10.	World Health Organization. The End TB Strategy. 2015. WHO, Geneva,
524		Switzerland. Available: http://www.who.int/tb/post2015_TBstrategy.pdf
525		(Accessed 27th June 2017).
526	11.	Ait-Khaled N, Alarcon E, Bissell K, et al. Isoniazid preventive therapy for
527		people living with HIV: public health challenges and implementation issues.
528		Int J Tuberc Lung Dis 2009; 13: 927-935.
529	12.	Pathmanathan I, Ahmedov S, Pevzner E, et al. TB preventive therapy for
530		people living with HIV: key considerations for scale-up in resource-limited
531		settings. Int J Tuberc Lung Dis 2018; 22: 596-605.
532	13.	Gupta S, Granich R, Date A, et al. Review of policy and status of
533		implementation of collaborative HIV-TB activities in 23 high-burden
534		countries. Int J Tuberc Lung Dis 2014; 18: 1149-1158.
535	14.	World Health Organization. Consolidated Guidelines on the Use of
536		Antiretroviral drugs for treating and preventing HIV infection:
537		Recommendations for a Public Health Approach. 2016. Second Edition.
538		WHO, Geneva, Switzerland.
539	15.	World Health Organization. Latent tuberculosis infection. Updated and
540		consolidated guidelines for programmatic management. 2018. WHO, Geneva,
541		Switzerland. WHO/CDS/TB/2018.4.
542	16.	Lawn SD, Bekker LG, Wood R. How effectively does HAART restore immune
543		responses to Mycobacterium tuberculosis? Implications for tuberculosis control.
544		AIDS 2005; 19: 1113 – 1124.

545	17.	Suthar AB, Lawn SD, del Amo J, et al. Antiretroviral therapy for prevention of
546		tuberculosis in adults with HIV: a systematic review and meta-analysis. PLoS
547		Med 2012; 9: e1001270.
548	18.	Grinsztejn B, Hosseinipour MC, Ribaudo HJ, et al, and the NPTN 052-ACTG
549		Study Team. Effects of early versus delayed initiation of antiretroviral
550		treatment on clinical outcomes of HIV-1 infection: results from the phase 3
551		HPTN 052 randomised controlled trial. Lancet Infect Dis 2014; 14: 281 – 290.
552	19.	Collins SE, Jean Juste MA, Koenig SP, et al. CD4 deficit and tuberculosis risk
553		persist with delayed antiretroviral therapy: 5-year data from CIPRA HT-001.
554		Int J Tuberc Lung Dis 2015; 19: 50 – 57.
555	20.	The INSIGHT START Study Group. Initiation of antiretroviral therapy in early
556		asymptomatic HIV infection. N Engl J Med 2015; 373: 795 – 807.
557	21.	The TEMPRANO ANRS 12136 Study Group. A trial of early antiretrovirals and
558		isoniazid preventive therapy in Africa. N Engl J Med 2015; 373: 808-822.
559	22.	Siedner MJ, Ng CK, Bassett IV, Katz IT, Bangsberg DR, Tsai AC. Trends in
560		CD4 count at presentation to care and treatment initiation in sub-Saharan Africa,
561		2002 – 2013: a meta-analysis. Clin Infect Dis 2015; 60: 1120 – 1127.
562	23.	Yuen CM, Weyenga HO, Kim AA, et al. Comparison of trends in tuberculosis
563		incidence among adults living with HIV and adults without HIV – Kenya,
564		1998 – 2012. PLoS ONE 2014; 9: e99880.
565	24.	Haumba S, Dlamini T, Calnan M, et al. Declining tuberculosis notification
566		trend associated with strengthened and expanded HIV care in Swaziland.
567		Public Health Action 2015; 5: 103-105.

- 568 25. Kanyerere H, Harries AD, Tayler-Smith K, et al. The rise and fall of
- 569tuberculosis in Malawi: associations with HIV infection and antiretroviral
- 570 therapy. Trop Med Int Health 2016; 21: 101 107.
- 571 26. Takarinda KC, Harries AD, Sandy C, Mutasa-Apolo T, Zishiri C. Declining
- 572 tuberculosis case notification rates with the scale-up of antiretroviral therapy
- 573 in Zimbabwe. Public Health Action 2016; 6: 164-168.
- 574 27. Kanyerere H, Girma B, Mpunga J, et al. Scale-up of ART in Malawi has
- 575 reduced case notification rates in HIV-positive and HIV-negative tuberculosis.
- 576 Public Health Action 2016; 6: 247 251.
- 577 28. Williams BG, Granich R, De Cock KM, Glaziou P, Sharma A, Dye C.
- 578 Antiretroviral therapy for tuberculosis control in nine African countries. Proc
- 579 Nat Acad Sci USA 2010; 107: 19485-19489.
- 580 29. Ford N, Migone C, Calmy A, et al. Benefits and risks of rapid initiation of
- 581antiretroviral therapy. AIDS 2018; 32: 17-23.
- S82 30. Cohen MS, Chen YQ, McCauley M, et al. Prevention of HIV-1 infection with
 early antiretroviral therapy. N Engl J Med 2011; 365: 493-505.
- 584 31. Iwuji CC, Orne-Gliemann J, Larmarange J, et al. Universal test and treat and
- 585the HIV epidemic in rural South Africa: a phase 4, open-label, community
- 586 cluster randomized trial. Lancet HIV 2018; 5: e116-e125.
- 587 32. Gupta A, Wood R, Kaplan R, Bekker L-G, Lawn SD. Tuberculosis incidence
 588 rates during 8 years of follow-up of an antiretroviral treatment cohort in South
- 589 Africa: comparison with rates in the community. PLoS ONE 2012; 7: e34156.
- 590 33. Wilkinson D, Squire SB, Garner P. Effect of preventive treatment for
- 591 tuberculosis in adults infected with HIV: systematic review of randomised
- 592 placebo controlled trials. BMJ 1998; 317: 625-629.

Page 27 of 38

593	34.	Woldehanna S, Volmink J. Treatment of latent tuberculosis infection in HIV
594		infected persons. Cochrane Database Syst Rev 2004; (1): CD000171.
595	35.	Akolo C, Adetifa I, Shepperd S, Volmink J. Treatment of latent tuberculosis
596		infection in HIV-infected persons. Cochrane Database Syst Rev 2010; (1):
597		CD000171.
598	36.	WHO and UNAIDS. Policy statement on preventive therapy against
599		tuberculosis in people living with HIV. WHO/TB/98.255. UNAIDS/98.34.
600		Geneva, Switzerland: WHO, 1998.
601	37.	Samandari T, Agizew TB, Nyirenda S, et al. 6-month versus 36-month
602		isoniazid preventive treatment for tuberculosis in adults with HIV infection in
603		Botswana: a randomised, double-blind, placebo-controlled trial. Lancet 2011;
604		377: 1588 – 98.
605	38.	Samandari T, Agizew T, Nyirenda S, et al. Tuberculosis incidence after 36
606		months' isoniazid prophylaxis in HIV-infected adults in Botswana: a posttrial
607		observational analysis. AIDS 2015; 29: 351 – 359.
(00	39.	Golub JE, Saraceni V, Cavalcante SC, et al. The impact of antiretroviral
608		therapy and isoniazid preventive therapy on tuberculosis incidence in HIV-
608 609		therapy and isomazia preventive therapy on taberearbits meraence in the
		infected patients in Rio de Janeiro, Brazil. AIDS 2007; 21: 1441 – 1448.
609	40.	
609 610	40.	infected patients in Rio de Janeiro, Brazil. AIDS 2007; 21: 1441 – 1448.
609 610 611	40.	infected patients in Rio de Janeiro, Brazil. AIDS 2007; 21: 1441 – 1448. Golub JE, Pronyk P, Mohapi L, et al. Isoniazid preventive therapy, HAART
609610611612	40. 41.	infected patients in Rio de Janeiro, Brazil. AIDS 2007; 21: 1441 – 1448. Golub JE, Pronyk P, Mohapi L, et al. Isoniazid preventive therapy, HAART and tuberculosis risk in HIV-infected adults in South Africa: a prospective
 609 610 611 612 613 		infected patients in Rio de Janeiro, Brazil. AIDS 2007; 21: 1441 – 1448. Golub JE, Pronyk P, Mohapi L, et al. Isoniazid preventive therapy, HAART and tuberculosis risk in HIV-infected adults in South Africa: a prospective cohort. AIDS 2009; 23: 631 – 636.
 609 610 611 612 613 614 		 infected patients in Rio de Janeiro, Brazil. AIDS 2007; 21: 1441 – 1448. Golub JE, Pronyk P, Mohapi L, et al. Isoniazid preventive therapy, HAART and tuberculosis risk in HIV-infected adults in South Africa: a prospective cohort. AIDS 2009; 23: 631 – 636. Yirdaw KD, Jerene D, Gashu Z, et al. Beneficial effect of isoniazid preventive

Page 28 of 38

- 617 42. Rangaka MX, Wilkinson RJ, Boulle A, et al. Isoniazid plus antiretroviral 618 therapy to prevent tuberculosis: a randomised double-blind, placebo-controlled 619 trial. Lancet 2014; 384: 682 - 690. 620 43. Badje A, Moh R, Gabillard D, et al. Effect of isoniazid preventive therapy on 621 risk of death in west African, HIV-infected adults with high CD4 cell counts: 622 long-term follow-up of the TEMPRANO ANRS 12136 trial. Lancet Glob 623 Health 2017; 5: e1080-1089. 624 44. Charalambous S, Grant AD, Innes C, et al. Association of isoniazid preventive 625 therapy with lower early mortality in individuals on antiretroviral therapy in a 626 workplace programme. AIDS 2010; 24 (suppl 5): S5 – S13. 627 45. Durovni B, Saraceni V, Moulton LH, et al. Effect of improved tuberculosis 628 screening and isoniazid preventive therapy on incidence of tuberculosis and 629 death in patients with HIV in clinics in Rio de Janiero, Brazil: a stepped 630 wedge, cluster-randomised trial. Lancet Infect Dis 2013; 13: 852-858. 631 46. U.S. Department of Health and Human Services. Guidelines for the prevention 632 and treatment of opportunistic infections in HIV-infected adults and 633 adolescents. Mycobacterium tuberculosis infection and disease. September 634 2017. Available: https://aidsinfo.nih.gov/guidelines/html/4/adult-and-635 adolescent-oi-prevention-and-treatment-guidelines/325/tb (accessed 27th June 636 2018). 637 47. Zar HJ, Cotton MF, Strauss S, et al. Effect of isoniazid prophylaxis on 638 mortality and incidence of tuberculosis in children with HIV: randomised 639 controlled trial. BMJ 2007; 334: 136-139. 640 48. Charan J, Goyal JP, Reljic T, Emmanuel P, Patel A, Kumar A. Isoniazid for
- 641 the prevention of tuberculosis in HIV-infected children: a systematic review

642		and meta-analysis. Pediatr Infect Dis 2017; Dec 26: doi: 10.1097/INF.
643		0000000001879.
644	49.	Zunza M, Gray DM, Young T, Cotton M, Zar HJ. Isoniazid for preventing
645		tuberculosis in HIV-infected children. Cochrane Database Syst Rev 2017; 8:
646		CD006418.
647	50.	World Health Organization. Guidance for National Tuberculosis Programmes
648		on the management of tuberculosis in children – Second edition. 2014. WHO,
649		Geneva, Switzerland. WHO/HTM/TB/2014.03.
650	51.	Houben RM, Dodd PJ. The global burden of latent tuberculosis infection: a re-
651		estimation using mathematical modelling. PLoS Med 2016; 13: e1002152.
652	52.	Ferebee SH. Controlled chemoprophylaxis trials in tuberculosis. A general
653		review. Adv Tuberc Res 1970; 17: 28-106.
654	53.	Den Boon S, Matteelli A, Ford N, Getahun H. Continuous isoniazid for the
655		treatment of latent tuberculosis infection in people living with HIV: a
656		systematic review and meta-analysis. AIDS 2016; 30: 797-801.
657	54.	Van der Hiejden YF, Karim F, Mufamadi G, et al. Isoniazid-monoresistant
658		tuberculosis is associated with poorer treatment outcomes in Durban, South
659		Africa. Int J Tuberc Lung Dis 2017; 21: 670 – 676.
660	55.	Balcells ME, Thomas SL, Godfrey-Faussett P, Grant AD. Isoniazid preventive
661		therapy and risk for resistant tuberculosis. Emerg Infect Dis 2006; 12: 744-
662		751.
663	56.	SibandaT, Tedla Z, Nyirenda S et al. Anti-tuberculosis treatment outcomes in
664		HIV-infected adults exposed to isoniazid preventive therapy in Botswana. Int J
665		Tuberc Lung Dis 2013; 17:178-185.

- 666 57. Menzies HJ, Moalosi G, Anisimova V et al. Increase in anti-tuberculosis drug
- 667 resistance in Botswana: results from the fourth National Drug Resistance
- 668 Survey. Int J Tuberc Lung Dis 2014; 18: 1026-1033.
- 669 58. Harries AD, Zachariah R, Corbett EL, et al. The HIV-associated tuberculosis
 670 epidemic when will we act? Lancet 2010; 375: 1906 1919.
- 671 59. World Health Organization. Xpert MTB/RIF assay for diagnosis of pulmonary
- and extra-pulmonary TB in adults and children. 2013. Policy update.
- 673 WHO/HTM/TB/2013.16. WHO, Geneva, Switzerland.
- 674 60. Trébucq A, Enarson DA, Chiang CY, et al. Xpert® MTB/RIF for national
- tuberculosis programmes in low-income countries: when, where and how? Int
- 676 J Tuberc Lung Dis 2011; 15: 1567-1072.
- 677 61. Samandari T, Bishai D, Lutejin M, et al. Costs and consequences of additional
- 678 chest X-ray in a tuberculosis prevention program in Botswana. Am J Respir
- 679 Crit Care Med 2011; 183: 1103-1111
- 680 62. World Health Organization. Chest radiography in tuberculosis detection. 2016.
- 681 WHO, Geneva, Switzerland. WHO/HTM/TB/2016.20
- 682 63. Moh R, Badjé A, N'takpé J-B, et al. Screening for active tuberculosis before
- isoniazid preventive therapy among HIV-infected West African adults. Int J
 Tuberc Lung Dis 2017; 21: 1237–1244.
- 685 64. Van Lettow M, Akesson A, Martiniuk ALC, et al. Six-month mortality among
- 686 HIV-infected adults presenting for antiretroviral therapy with unexplained
- 687 weight loss, chronic fever or chronic diarrhea in Malawi. PLoS ONE 2012; 7:
- 688 e48856.

689	65.	Lawn SD, Wilkinson RJ, Lipman MC, Wood R. Immune reconstitution and
690		"unmasking" of tuberculosis during antiretroviral therapy. Am J Respir Crt
691		Care Med 2008; 177: 680-685.
692	66.	Manabe YC, Breen RA, Perti T, Girardi E, Sterling TR. Unmasked
693		tuberculosis and tuberculosis immune reconstitution inflammatory disease: a
694		disease spectrum after highly active antiretroviral therapy initiation. J Infect
695		Dis 2009; 199: 437 – 444.
696	67.	Landry J, Menzies D. Preventive chemotherapy. Where has it got us? Where
697		to go next? Int J Tuberc Lung Dis 2008; 12: 1352 – 1364.
698	68.	Datiko DG, Yassin MA, Theobald SJ, Cuevas LE. A community-based
699		isoniazid preventive therapy for the prevention of childhood tuberculosis in
700		Ethiopia. Int J Tuberc Lung Dis 2017; 21: 1002-1007.
701	69.	Aisu T, Raviglione MC, van Praag E, et al. Preventive chemotherapy for HIV-
702		associated tuberculosis in Uganda: an operational assessment at a voluntary
703		counselling and testing centre. AIDS 1995; 9: 267-273.
704	70.	Ayele HT, van Mourik MSM, Bonten MJM et al. Predictors of adherence to
705		isoniazid preventive therapy in people living with HIV in Ethiopia. Int J
706		Tuberc Lung Dis. 2016; 20: 1342-1347.
707	71.	Graham SM. Mycobacterium tuberculosis in young children post-2015: an
708		opportunity to close the policy-practice gap. Exp Rev Resp Med 2017; 11:
709		41-49.
710	72.	Bliven-Sizemore EE, Sterling TR, Shang N, et al. Three months of weekly
711		rifapentine plus isoniazid is less hepatotoxic than nine months of daily
712		isoniazid for LTBI. Int J Tuberc Lung Dis 2015; 19: 1039-1044.

Page 32 of 38

713	73.	Sterling TR, Scott NA, Miro JM, et al. Three months of weekly rifapentine
714		plus isoniazid for treatment of <i>M. tuberculosis</i> infection in HIV Co-infected
715		persons. AIDS 2016; 30: 1607-1615.
716	74.	McClintock AH, Eastment M, McKinney CM, et al. Treatment completion for
717		latent tuberculosis infection: a retrospective cohort study comparing 9 monhts
718		of isoniazid, 4 months of rifampin and 3 months of isoniazid and rifapentine.
719		BMC Infect Dis 2017; 17: 146.
720	75.	Sandul AL, Nwana N, Holcombe JM, et al. High rate of treatment completion
721		in program settings with 12-dose weekly isoniazid and rifapentine (3HP) for
722		latent Myobacterium tuberculosis infection. Clin Infect Dis 2017; 65: 1085-
723		1093.
724	76.	Belknap R, Holland D, Feng PJ, et al. Self-administered versus directly
725		observed once-weekly isoniazid and rifapentine treatment of latent
726		tuberculosis infection: a randomized trial. Ann Intern Med 2017; 167: 689-
727		697.
728	77.	Johnson KT, Churchyard GJ, Sohn H, Dowdy DW. Cost-effectiveness of
729		preventive therapy for tuberculosis with isoniazid and rifapentine versus
730		isoniazid alone in high-burden settings. Clin Infect Dis 2018; doi.org/
731		10.1093/cid/ciy230.
732	78.	Swindells S, Ramchandani R, Gupta A, et al. One month of
733		rifapentine/isoniazid to prevent TB in people with HIV:BRIEF-TB/A5279.
734		Conference on Retroviruses and Opportunistic Infections, 4-7 March 2018;
735		Boston, MA, USA. [Abstract number 37LB].

736	79.	World Health Organization. HIV Treatment. Transition to new antiretrovirals in
737		HIV programmes. July 2017. Policy Brief. WHO, Geneva, Switzerland.
738		WHO/HIV/2017.20.
739	80.	World Health Organization. Recommendations for investigating contacts of
740		persons with infectious tuberculosis in low- and middle-income countries.
741		WHO, Geneva, Switzerland. 2012. WHO/HTM/TB/2012.9.
742	81.	Bock NN, Jensen PA, Miller B, Nardell E. Tuberculous infection control in
743		resource-limited settings in the era of expanding HIV care and treatment. J
744		Infect Dis 2007; 196 (Suppl 1): S108-S113.
745	82.	Dheda K, Gumbo T, Maartens G, et al. The epidemiology, pathogenesis,
746		transmission, diagnosis, and management of multidrug-resistant, extensively
747		drug-resistant, and incurable tuberculosis. Lancet Respir Med 2017; 5: 291 -
748		360.
749	83.	Shah NS, Auld SC, Brust JCM, et al. Transmission of extensively drug-
750		resistant tuberculosis in South Africa. N Eng J Med 2017; 376: 243-253.
751	84.	Isaakidis PI, Casas EC, Das M, Tseretopoulou X, Ntzani EE, Ford N.
752		Treatment outcomes for HIV and MDR-TB co-infected adults and children:
753		systematic review and meta-analysis. Int J Tuberc Lung Dis 2015; 19: 969-

- 754 978.
- 755 85. Isaakidis PI, Das M, Kumar AMV, et al. Alarming levels of drug-resistant
 756 tuberculosis is HIV-infected patients in metropolitan Mumbai, India. PLoS ONE
 757 2014; 9: e110461.
- 86. World Health Organization. WHO policy on TB infection control in health
 facilities, congregate settings and households. 2009. WHO, Geneva,
 Switzerland. WHO/HTM/TB/2009.419.

- 761 87. Duarte R, Lonnroth K, Carvalho C, et al. Tuberculosis, social determinants
 762 and co-morbidities (including HIV). Pulmonol 2018; 24: 115-119.
- 763 88. Chaisson RE, Golub JE. Preventing tuberculosis in people living with HIV no

764 more excuses. Lancet Global Health 2017; 5: e1048-1049.

765

to Review Only

First Author / Study Name / Year of Publication	Type of study and country	Key findings
Suthar AB (2012) ¹⁷	Systematic review and meta-analysis Multiple countries	ART was associated with a 65% reduction in TB incidence across all baseline CD4 counts in PLHIV.
Grinsztejn B HPTN 052 (2014) ¹⁸	RCT Multiple countries	Early ART (started at median CD4 count of 442 cells per uL) was associated with a 51% reduction of TB compared with deferred ART (started at median CD4 count of 230 cells per uL).
Collins SE CIPRA HT-001 (2015) ¹⁹	RCT Haiti	Deferred ART (started at CD4 count < 200 cells /uL) was associated with higher TB risk (hazard ratio 2.41) compared with early ART (started between 200-350 cells per uL) during five years of follow-up.
The INSIGHT START Study Group (2015) ²⁰	RCT Multiple countries	Early ART start in asymptomatic HIV-positive patients with a CD4 count > 500 cells/ μ L was associated with a 57% reduction in any serious AIDS-related event (including TB), serious non-AIDS-related event or death from any cause compared with deferred ART (CD4 count < 350 cells per uL or the development of AIDS)
TEMPRANO ANRS 12136 Study Group (2015) ²¹	RCT Cote d'Ivoire	Early ART (CD4 count <800 cells per uL and no WHO criteria for starting ART) was associated with a 44% lower risk of death or severe HIV-related illness, including TB, compared with deferred ART (ART started according to WHO criteria), with IPT adding significantly to the individual benefit

Table 1: Key ART intervention studies with direct implications for preventing TB

AIDS: acquired immunodeficiency syndrome; ART: antiretroviral therapy; IPT: isoniazid preventive
therapy; RCT: randomized controlled trial; PLHIV: people living with HIV; WHO: World Health
Organization

- 772
 773
 774
 775
 776
 777
 778
 779
 780

First Author / Study Name / Year of Publication	Type of study and country	Key findings
IPT in the pre ART era		
Akolo C et al. / Cochrane Database Systematic Review (2010) ³⁵	Systematic review and meta-analysis Multiple countries	IPT given at a daily dose of 300 mg for 6 months reduced the overall risk of TB by 32%. Protective effect increased to 62% when targeted at those with a positive tuberculin skin test (TST), and was only 11% and not significant among those with a negative TST
IPT in the ART era (using	g both IPT and ART in	nterventions)
Golub JE / THRio (2007) ³⁹	Prospective cohort Brazil	Concurrent use of ART and IPT (for 6 months) showed 76% reduction in TB risk compared with no treatment
Golub JE (2009) ⁴⁰	Prospective cohort South Africa	Concurrent use of ART and IPT (for 6 months) showed 89% reduction in TB risk compared with no treatment
Samandari T (2011) ³⁷	RCT Botswana	Concurrent use of ART and IPT (for 6 months or 36 months) resulted in additive effects in reducing the risk of active TB
Yirdaw K. (2014) ⁴¹	Retrospective cohort Ethiopia	Concurrent use of ART and IPT (for 6 month either simultaneously or with IPT after ART) showed 65% and 78% reduction in TB risk compared with no treatment
Rangaka MX (2014) ⁴²	RCT South Africa	Concurrent use of ART and IPT (for 12 months) showed 37% reduction in risk of TB, irrespective of TST or IGRA
Charalambous S (2010) ⁴⁴	Prospective cohort South Africa	Concurrent use of ART and IPT (for 6 months) showed 49% reduction in risk of death after adjusting for key characteristics
Durovni B / THRio (2013) ⁴⁵	Stepped wedge, cluster- randomized trial Brazil	IPT for 6 months showed 31% reduction in risk of TB or death after adjusting for key characteristics and use of ART
The TEMPRANO ANRS 12136 Study Group (2015) ²¹	RCT Cote d'Ivoire	6-month IPT given in addition to ART resulted in a 35% reduction in HIV-related death or severe illness, of which 42% was due to TB, at whatever CD4 cell count the ART was started. Reduction in TB incidence in IPT-treated vs non IPT-treated patients was only significant among those with a positive IGRA test.
Badje A / TEMPRANO ANRS 12136 (2017) ⁴³	RCT long-term follow up Cote d'Ivoire	Concurrent use of ART and IPT (for 6 months) showed 37% reduction in risk of death after adjusting for early or deferred ART and other key characteristics
/83		

Table 2: Key studies showing impact of IPT interventions in the pre-ART and ART era

784 ART: antiretroviral therapy; IGRA: interferon gamma release assay; IPT: isoniazid preventive

therapy; RCT: randomized controlled trial; TST: tuberculin skin test

- 786 787 Table 3: TB incidence rates per 100 person years for people living with HIV on ART alone or
 - on ART plus isoniazid preventive therapy (IPT)

First Author / Study Name / Year of Publication	Type of Study and Country	Key Findings: TB incidence rate per 100 person-years (95% CI)	
		ART alone	ART plus IPT
Golub JE / THRio	Prospective cohort	1.9	0.8
(2007) ³⁹	Brazil	(1.7-2.2)	(0.4-1.5)
Golub JE	Prospective cohort	4.6	1.1
$(2009)^{40}$	South Africa	(3.4-6.2)	(0.02-7.6)
Yirdaw K. (2014) ⁴¹	Retrospective cohort Ethiopia	0.74 ^a	0.36 ^a
Rangaka MX	RCT	3.6	2.3
(2014) 42	South Africa	(2.8 - 4.7)	(1.6-3.1)

789

790 ^a 95% Confidence intervals not provided

05% CI = 05% confidence 702 niazid pro onting the nala ...,

192	isoniazid preventive therapy; $95\% CI = 95\%$ confidence intervals
793	
794	
795	
796	
797	
798	
799	
800	
801	
802	
803	
804	
805	
806	
807	
808	
809	
810	
811	
812	
813	
814	
815	
816	
817	
818	
819	

820 **Table 4:** Issues to be considered by countries prior to the introduction of isoniazid preventive

821 therapy alongside antiretroviral therapy as a national intervention policy

	Question	Answer	Considerations, prerequisites and challenges
1	What benefit for PLHIV will be expected?	The benefit for PLHIV is expected to be highest in countries with the highest levels of TB transmission.	Estimates of TB incidence rates can be used to evaluate TB transmission levels. Level is considered to be high if TB incidence rate is greater than 150 and very high if greater than 300 per 100 000. ⁶
	expected?		In settings with high TB transmission, applying IPT to treat LTBI in PLHIV without prior screening is warranted. ¹⁵ Screening with TST or IGRA* should be considered in lower TB transmission settings, but will necessitate considerable resources and organization.
			Provision of IPT to PLHIV who are contacts of patients with active TB and are not considered to have active TB is recommended without prior screening for LTBI whatever the level of TB transmission, particularly for HIV-infected child contacts of any age. ^{15,80}
			Duration of IPT should be 36 months or lifelong in settings with very high TB transmission.
2	What impact will be expected at the community level?	The impact of a nationwide implementation of this preventive intervention is expected to be the highest in countries with highest TB burden associated with HIV.	The burden of HIV-associated TB in the general population will depend on both TB incidence and HIV prevalence. It can be evaluated with the estimated HIV-positive TB incidence rate per 100,000.** It may be considered high if >30 and very high if >100 per 100,000. Because estimates of HIV-positive TB incidence rates are provided
		High impact may be expected only if intervention is of high quality	 with a considerable uncertainty, the burden of HIV-associated TB can also be evaluated through the combination of the two following indicators: TB notification rate per 100,000 (high if > 80 per 100 000); HIV prevalence among TB patients (high if > 20%).
2	Are countries prepared?	Very few countries are currently implementing IPT to scale under field conditions.	 Hit provactice among TB patients (high H > 20/0). High quality implementation requires: 1. <i>Political commitment</i> : national policy, effective collaboration between HIV and TB programs, social mobilization
		Countries with a high burden of HIV-associated TB are often low- and middle- income countries, not always prepared for IPT implementation.	 2. Capacity to screen for and rule out active TB disease Symptoms: clinical algorithm Chest x-ray wherever possible Sputum smear microscopy Xpert MTB/RIF wherever possible Waiting period (3 months on ART) before IPT initiation ***
		Engaging in implementation of nationwide IPT requires a good level of preparation to maximize the effectiveness and minimize the risks. Stepwise introduction may be considered.	 3. Robust and uninterrupted supply of isoniazid 4. Human resources In sufficient number (the capacity to carry out other clinical or public health tasks should not be decreased) Trained to provide patient-centered care and follow-up Adequately supervised
		Additional resources will be needed. By no means should IPT implementation divert resources and staff from the priority activity of detection and treatment of TB patients.	 5. Monitoring and evaluation of the intervention Simple standardized tools (registers and information system) Real time data analysis activities Consider technical assistance

- 822 ART: antiretroviral therapy; IGRA: interferon gamma release assay; IPT: isoniazid preventive
- 823 therapy; LTBI: latent tuberculosis infection; TST: tuberculin skin test
- 824 * Supply and storage of tuberculin along with performance and interpretation of TST in PLHIV are
- 825 challenging, especially in the context of busy HIV clinics. The high price of IGRA and the need for 826 laboratory performance limit the capacity for it to be decentralized
- 827
- 828 ** Estimates of TB incidence rate per 100,000 PLHIV are provided annually in the WHO Global TB 829 report.
- 830 ***A waiting period of 3 months after ART initiation will allow the unmasking of TB from immune
- 831 reconstitution inflammatory disease during the first few months of ART. Close clinical surveillance of
- 832 the PLHIV should be conducted during this period in order to conduct all necessary examinations to
- 833 eliminate active TB and to ensure that they are stable and asymptomatic for the initiation of IPT.

isure that i.

University Library

A gateway to Melbourne's research publications

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Harries, AD; Schwoebel, V; Monedero-Recuero, I; Aung, TK; Chadha, S; Chiang, C-Y; Conradie, F; Dongo, J-P; Heldal, E; Jensen, P; Nyengele, JPK; Koura, KG; Kumar, AMV; Lin, Y; Mlilo, N; Nakanwagi-Mukwaya, A; Ncube, RT; Nyinoburyo, R; Oo, NL; Patel, LN; Piubello, A; Rusen, ID; Sanda, T; Satyanarayana, S; Syed, I; Thu, AS; Tonsing, J; Trebucq, A; Zamora, V; Zishiri, C; Hinderaker, SG; Ait-Khaled, N; Roggi, A; Luna, JC; Graham, SM; Dlodlo, RA; Fujiwara, PI

Title:

Challenges and opportunities to prevent tuberculosis in people living with HIV in low-income countries

Date:

2019-02-01

Citation:

Harries, A. D., Schwoebel, V., Monedero-Recuero, I., Aung, T. K., Chadha, S., Chiang, C. -Y., Conradie, F., Dongo, J. -P., Heldal, E., Jensen, P., Nyengele, J. P. K., Koura, K. G., Kumar, A. M. V., Lin, Y., Mlilo, N., Nakanwagi-Mukwaya, A., Ncube, R. T., Nyinoburyo, R., Oo, N. L. ,... Fujiwara, P. I. (2019). Challenges and opportunities to prevent tuberculosis in people living with HIV in low-income countries. INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 23 (2), pp.241-+. https://doi.org/10.5588/ijtld.18.0207.

Persistent Link:

http://hdl.handle.net/11343/224183

File Description: Accepted version