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Abstract- Experimental projection of transport properties of semiconductor devices faces a challenge 

nowadays. As devices scale to nanometre scale range, the classical transport equations used in current 

device simulators can no longer be applied. Conversely, the use of a more accurate and better non-

equilibrium green function (NEGF) is limited by the fact that it requires excessive quantum of memory 

and computational time, having quasi-separable matrices that are extremely convoluted to solve. This 

work exploits the Boltzmann Transport Equation (BTE) to assess the transport properties of carbon 

nanotubes. Previous works on solving the BTE have employed either a stochastic method or an 

approximate method, both of which do not possess the necessary properties for practical device 

applications. Therefore, this work represents the first direct theoretical solution of the BTE for one-

dimensional carbon nanotubes that can be utilized for practical device applications. The complete 

spectrum of transport in CNTs extending from ohmic to high-field through ballistic transmission is 

examined to delineate plethora of transport properties. The transport for arbitrary values of the electric 

field is based on the BTE applied to experimental data on CNTs. In the limit of low field, the mobility 

expressions are obtained in terms of the mean free path (mfp) that is distinctly shorter than the length 

of the sample. The ohmic resistance is quantized a value of 6.453k-ohms consistent with experimental 

findings with transmission approaching unity as channel length shrinks below the carrier mfp. The 

emission of a quantum was observed to lower the saturation velocity that is independent of scattering 

and hence ballistic. Transition to ballistic domain was found to occur when the channel length is scaled 

below the ballistic limit that is shown to be the extended version of the long-channel mfp modulated by 

injections from the contacts, yet the mobility degrades. The mobility degradation is shown to be the 

cause of resistance quantum in the low-channel length limit. These findings are important in predicting 

the transport properties of low-dimensional CNTs. 

 

Indexed Terms- Electron transport, carbon nanotubes, Boltzmann transport equation, quantum 

conductance.                                                                     
 

 

 

 

I. INTRODUCTION 
 

The last few decades have witnessed a phenomenal growth in nanotechnology research. One of the most 

exciting disciplines to emerge from this effort is nanoelectronics, where a plethora of possibilities are 

emerging in the form of sensors, actuators and field effect transistors (FETs), each characterized by 

feature size of the order of a few nanometres. This is propelled by the discovery of new materials and 
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creation of smart synthesis approaches that enable robust design and fabrication at such a tiny scale. 

Carbon nanotubes (CNTs) are at the core of these novel materials, revealing outstanding properties at 

the nanoscale.  

     There are two categories of carbon nanotubes (CNTs), namely single-wall carbon nanotubes 

(SWCNTs) and multi-wall carbon nanotubes (MWCNTs). SWCNTs can further be categorized into 

two, namely chiral and achiral carbon nanotubes. Carbon nanotubes whose mirror images are identical 

to their original structures are said to be achiral, and chiral otherwise. Achiral CNTs can further be 

categorized into two species, namely armchair and zigzag carbon nanotubes. Individual single-wall 

carbon nanotubes are the focus of interest in this research, and investigating their carrier transport 

properties is the main goal of this work.  

     Our aim to reduce the dimension of electronic devices and improve device performance has led us 

into the low-dimensional regime, where quantum mechanical effects predominate and thus require 

comprehensive investigation. The low-dimensionality of carbon based devices such as carbon 

nanotubes and quantum dots results in intriguing electronic transport properties that make them 

attractive candidates for future technological applications. The starting point of synthesizing nanoscale 

devices is to establish a fundamental understanding of their electronic transport properties. Essentially, 

a realistic and precise prediction of the electronic transport properties of these devices in low-field and 

high-field regimes is required to model efficient and high performance real devices. 

     A long standing issue in carbon nanotube devices is the nature of the electron transport traversing 

these devices when they are scaled below the scattering-limited threshold. The prediction of the 

transport properties of carbon nanotubes, that is, the response of roving carriers to the application of 

electric field, is perhaps a promising method to characterize materials properties at the nanoscale. In 

general, the nature of transport in nanoscale devices is a function of the active region of the device. An 

important characteristics of nanoscale contacts is the presence of schottky barriers [1] at the electrode-

nanoscale interface which significantly limits device conductance and dwarfs current delivery 

capability – a key factor in device application and performance.   

     Various groups have reported the transport properties of carbon nanotubes [2-4], and investigated 

conductance variations in CNTs when used in field effect transistor applications [5]. Furthermore, the 

charge transport properties of these materials have been investigated from both analytical and 

experimental perspectives [6]. However, the charge transport models of individual single-wall carbon 

nanotubes have not been fully represented. Moreso, the existing experimental techniques to study the 

charge transport in these devices do not come without enormous challenges owing to the presence of 

defect in the CNT lattice structure [7], prompting the need for simulation interventions.      

     Quantum effects play out in low-dimensional regimes, and modulates the operational performance 

of the various transport regimes, including low-field to high-field, transmission to drift diffusion, to 

ballistic regimes. This has particularly fuelled the relentless hunt for completely novel devices that 

function solely on the basis of these quantum effects, and the one-dimensional single-wall carbon 

nanotubes fit very well in this aspect. 

     Transport properties of individual carbon nanotubes is interesting because of their intriguing and 

unique electronic geometry. There have some research works on the experimental prediction of 

transport properties of carbon nanotube ropes [8] and bundles [9]. Transport measurements became 

possible for single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs). 

SWCNTs usually manifests large coulomb effects apparently due to the presence of nonideal contacts 

     In this new research, we develop a theoretical simulation model to investigate the charge transport 

properties of individual single-wall carbon nanotubes. The developed model exploits the well-

established Boltzmann Transport Equation (BTE) method but with an added feature to bypass the 

approximation phase – a major limitation of previous works on BTE. Section II discusses the literature 

of carrier transport in carbon nanotubes, including the concept of scattering as carriers traverse the 

length scales of the nanoscale devices. Section III presents the method and specific steps employed in 

linearizing and discretizing the BTE both in energy and momentum to achieve self-consistency when 

coupled to Poisson equation. Finally, section IV presents the results of our investigation.    
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II. LITERATURE REVIEW 
 

The literature is replete with research reports that focus heavily of three-dimensional (3-D) assumptions 

of twentieth century, not valid in one-dimensional (1-D) nanostructures. Carbon nanotubes [10], are 

distinctly one-dimensional in the sense that quasi-ballistic transport exists owing to the propagating 

electron waves across the length of the channel. The carriers are transmitted in one direction as high 

electric fields are encountered in contrast to anticipation of current and voltage saturation owing to 

increased scattering.  

     The dispersion relation for metallic single-wall carbon nanotubes (SWCNTs) within the 

neighbourhood of the Fermi energy is linear, with the energetic separation between the modes at Fk

in the orders of 100meV . It is this considerable energetic separation between the one-dimensional 

subbands that inhibits interband scattering to a large extent even at room temperature. The presence of 

subbands with positive and negative slopes at Fk  and Fk  (see figure 1) permits us to write the 

conductance for an ideal, ballistic carbon nanotubes as,  
22

2
e

G
h

             (1) 

where the spin degeneracy is evaluated by a factor of 2. 

 The probability of scattering by impurities for three-dimensional metallic carbon nanotubes is 

described classically by Rutherford scattering theory [11-12], 
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where Fv  represents the Fermi velocity. The term 
1

imp 
 is independent of temperature and is 

proportional to the concentration of the impurity. This is based on the assumption that the velocity of 

the charge carriers in the interval of 4.KB T  around the Fermi energy is equal to Fv  by a good 

approximation. This is, in general, a valid and universal assumption for three-dimensional metallic 

carbon nanotubes, where FE  is substantial comparative to BK T . This implies that eq. (2) is valid only 

if the dispersion relation is linear within the energy interval of 4.KB T , which is realistic for carbon 

nanotubes up to room temperature and above. The magnification of the dispersion relation of metallic 

SWCNTs in the vicinity of the Fermi inclination at Fk  is depicted in figure 1.  

     The arrows show the Fermi velocities of the charge carriers. Since impurity scattering is an example 

of elastic scattering phenomenon, a charge carrier can only be scattered in a separate state at identical 

energy of the CNT energy relation. The ultimate allowed states for a roving carrier in an initial state at 

orientation 1 are designated as 2 to 4 in figure 1. The changes in the electron momentum of the CNT 

can be attributed to the presence of impurities. Moreover, the miniscule angle scattering that is present 

in two-and three dimensional nanostructures are not present in SWCNTs apparently due to the one-

dimensionality of the nanostructures. While scattering from 1 to 3 represents a forwarding scattering 

mechanism, scattering from 1 to 2 or 4 is a backscattering phenomenon that grows device resistance. 

For SWCNTs with length L , the two-terminal resistance is given as, 

2
.

4
imp

imp

h L
R

e 
            (3) 

where imp  is the elastic mean free path (mfp) that can be loosely interpreted as the average distance 

between impurity centers. impR  will be independent of temperature in a good approximation. 

     For phonon scattering in SWCNTs, we need to differentiate scattering by optical and acoustic 

phonons. Using Ozdemir formalism [13], the energy of the linear dispersion of acoustic phonons can 

be expressed as, 
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p p pE C k h             (4) 

where 
410 /pC m s  denotes the velocity of sound in a carbon nanotube. Since 

pC  is approximately 

two orders of magnitude smaller than the Fermi velocity (
610: ), acoustic phonon results in a rather 

smaller energy changes. The final possible state 2 for an acoustic phonon scattering from an initial state 

1 is delineated in figure 1. The two states are integrated by a line whose gradient is much microscopic 

compared to the one with electron dispersion relation, confirming the aforementioned differential in 

velocity. On the other hand, scattering from the traversed dispersion region within the limit Fk  to 

Fk  is suppressed owing to the absence of the allowed, vacant states around Fk even at room 

temperature. To initialize scattering from Fk  to Fk , therefore, about two orders of Fk has to be 

supplied by the phonon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Schematic of elastic scattering processes on a metallic SWCNTs. Also shown is the dispersion 

relation within the boundary –kF to +kF. Position 1 depict the inceptive state of an electron, and position 2 to 4 

are the final states of the electrons after scattering events. 

 

     Since the Debye length of SWCNTs is approximately equal to 2000K  [14], the condition for 

300T K  is elucidated by the Greneisen formalism [15-16]. For three-dimensional devices, the 

temperature dependence of the scattering rate is given by, 
1 5

p T                 (5) 

where the factor T  comes from the energy switch between the carrier and phonon, one of  
2T  

describes the miniscule angle in 3-D systems and the second
2T  comes from 3-D density of phonon 

states. For 1-D nanosystems such as SWCNTs, the two
2T  terms can be neglected because the density 

of states in I-D phonon manifests temperature independence, and the small angle scattering is blocked 

in 1-D. Accordingly, the resistance contribution due to the acoustic phonon is given by, 

2
.

4
p

p

h L
R

e 
             

   (6) 

where 
1

p T   and .p F pv   . p  has been found to be approximately equal to 1 m  [17]. 
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     For small extra energies of the carriers, scattering by optical phonons can be neglected since there 

are no vacant states. For substantial electric fields, however, electrons in the SWCNT become ‘‘hot’' 

after taking up energies well beyond the BK T  limit. Interestingly, ‘‘hot’’ in this sense does not imply 

an increase in electron velocity, instead carrier velocity remains unchanged while its energy increases 

due to the unusual state of the linear dispersion relation. In the case of ‘‘hot’’ electrons, optical phonon 

scattering may be the primary contribution to the overall resistance of the carbon nanotube. 

     Another mechanism with potential to contribute to the CNT resistance is the electron-electron 

scattering. This phenomenon is particularly pronounced in 1-D nanostructures. Interestingly, electron-

electron scattering does not result in any appreciable change in the resistance of a standard nanostructure. 

This is anticipated since energy and momentum conservation can only be achieved if the magnitude of 

the forward scattered and backscattered carriers are in equilibrium. The dispersion relation in the 

vicinity of Fk is shown in figure 2. 

 

 
Figure 2: Electron-electron scattering in a metallic SWCNT. Also shown is the dispersion relation in the 

vicinity of +kF. 

 

Due to mode crossing, the electrons in orientation1 and 1’ which contribute to forward transport, may 

get scattered into orientations 2 and 2’ respectively. In this process, the overall energy and momentum 

is conserved. The scattered carriers in orientations 2 and 2’ now populate states in opposition to current, 

leading to an increase in resistance. As temperature rises, the quantum of allowed initial and final states 

increases, and so does the scattering probability. Mathematically, the linear dependence of the electron-

electron scattering rate on temperature is given as [18],     

1

2
. ,

4
e e e e

e e

h L
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e





 



           (7) 

where e e   is the mean free path between the scattering processes, and e e   represents the inverse 

scattering rate. e e   increases with increasing electric excess energy, eV , of the carriers due to the 

increase in the number of the allowed states.  

     As we already know, the energy bands in metallic carbon nanotubes intersect the Fermi energy [19]. 

Figure 3 shows the energy bands at 2 / 3yk a  for a (10, 10) chiral metallic carbon nanotubes. The 

tube is theoretically contacted by two contact pads with quasi-Fermi levels of 1  and 2 1 appeV   . 
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An applied electric field will cause current to flow through a single level between 1 and 2 . A 

fascinating prediction for carbon nanotubes is that electron transport in these nanosystems may be 

ballistic [20]. In this sense, the computed conductance is a signature of a series of input and output 

contact pads integrated into a narrow constriction initiated by the carbon nanotube. Under this condition, 

the flow of current assumes a ‘‘conduction by transmission’’ characteristics, and the conductance 

becomes a characteristics of a particular system rather than the material device [21]. 
 

                 

  

  

  

  

  

   

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3: Schematic of transport through quantized energy level for a (10, 10) CNT. The applied bias of contact 

2 is lowered by the energy Evapp with respect to contact 1, allowing carriers to ballistically traverse the first 

unfilled nanotube energy levels. 

 

     This event is known as ballistic transport. Ballisticity implies that there is no scattering across the 

length of a carbon nanotube, and that carriers remain in local equilibrium as they traverse the contact 

pads. This is only possible when the length of the CNT sample is less than the scattering-limited mean 

free path (mfp). Further restriction requires that the diameter of the CNT D  be much less than the length 

of the sample, and comparable to the carrier wavelength at the Fermi energy F . 

     The quantum resistance represents a contrasting paradigm from the usual collision-dominated 

resistance, where carriers are taken as itinerant particles that encounter sustained collision with the 

lattice. These stochastic collisions were believed to give rise to collision-dominated resistance as 

enshrined in Ohm’s law. It follows that, in the absence of charge transport, carriers should be able to 

move freely across the length of the sample, and hence the resistance vanishes to zero or alternatively, 

the conductance becomes infinite. Is this really the case? To address this question, and gain a wealthy 

of knowledge regarding the primary root of conductance in a ballistic carbon nanotube, let us consider 

a ballistic wire connected to a reservoir of itinerant carriers as shown in figure 4. The current (E)I  

through scattering-free conductor from electron waves with energy E can be calculated from the flux 

equation as, 

 
 (E) q Eq l

I E
t l t

 
 

  
                        (8) 

where /q l   represents the charge density per unit length, and / (E)l t v     represents the velocity 

of the carrier with energy E .  If we represent the forward-moving carriers as q
 and the backward-
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moving carriers as
1q
, then the overall current from carriers with energies between E  and E dE  is 

expressed as, 

 
   

 
q E q E

I E dE v E dE
l l

   
  

  
           (9) 

where the plus (+) and minus (-) signs represents the forward-flowing current and backward-flowing 

current respectively. At equilibrium, the forward-flowing currents equals the backward-flowing current, 

leading to a vanishing current.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Band diagram of a ballistic channel coupled to source and drain reservoirs of carriers. The arrows 

show the direction of carrier flow from both reservoirs. 

 

     The ballistic or scattering-limited limit which reflects a length-independent conductance (or 

resistance) applies when the dimensions of the carbon nanotube are much less than the mfp of the 

carriers. This implies that, in a carbon nanotube with length l , much greater than the mfp, transport 

carriers will encounter frequent scattering with the lattice, resulting in a universal expression for 

conductance quantum,  
22 ch

q

e N
G T

h
            (10) 

whereT  is the transmission coefficient or the probability of carriers propagating through the nanotube, 

and satisfies the boundary condition, 0 1T  . 1T   is a special case of perfect transmission through 

the device. Scaling the nanotube from 1-D to 3-D increases the number of the propagating subbands 

which leads to a state of vanishing resistance. Moreover, the inclusion of the influence of carrier 

scattering by the lattice will definitely result in a length-dependent resistance, and subsequent recovery 

of ohm’s law.   

     The perfect transmission 1T   is also an ambiguous issue that remains unresolved. This 

transmission is often confused with the tunnelling coefficient that is not applicable to micron length 

channels. The puzzle of a dramatic rise in resistance even for a few millivolts across the length of a 

scattering-free channel still remains. This surge in resistance is in direct contrast to the perception of 

resistance vanishing due to the elimination of scattering as the channel length of the nanotubes goes 

below the scattering-limited mfp. The reason for the non-ballistic transport is usually hinged on the 

contact resistance. This is in spite of the fact that extraordinarily long mfps have been identified in 

carbon nanotubes.  
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     In metallic CNTs with finite temperatures and low energies with length much less than the mean 

free path, the exponential term of the Fermi Dirac distribution function in the second subband results in 

negligible contribution of quantum conductance from the second subband compared to the first subband. 

This implies that quantum conductance is determined only by the first subband with negligible 

temperature dependence. As a result, the measurement of conductance quantum is a useful technique 

for characterizing the nature of the contacts to the carbon nanotubes under different synthesis methods. 

The mobility not only degrades, but experimental results on mobility span a wide range depending on 

the length of the sample. 

     The CNT mobility  can be deduced from the Boltzmann Transport Equation (BTE) in the 

stationary regime. With the application of unvarying applied bias F , the distribution function in the 

state ,k b  is expressed to the first order in F by, 
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      (11) 

where L  is the length of the carbon nanotube and 
1

,( ) /b k bv k E k  h  is the ensemble velocity along 

the applied electric field. The mobility is then given by, 

   

 ,

b bb

o

k bb

g k v k dk
e

f E dk
  

 
 

          (12) 

Eqs. (11) and (12) are valid and applicable to two-dimensional devices only within the limits 
2 'dk d k  and 2 / 4 /L S   where S is the carbon nanotube surface. 

     Now, let us consider some variants of carbon nanotubes, say chiral, achiral, armchair and zigzag 

carbon nanotubes. By default, armchair and achiral carbon nanotubes are metallic. However, zigzag and 

chiral nanotubes are metallic only when the chiral index n  is a multiple of 3, and semiconducting 

otherwise. Since we know that carbon nanotubes can be synthesized from graphene through the roll-up 

process [22], their electronic bandstructures can well be related to those of graphene. In graphene k-

space, the allowed 1-D k-vectors of the carbon nanotubes form a hierarchical bundle of parallel edges 

along the nanotube direction, the separation between the directions being inversely proportional to the 

diameter of the carbon nanotube. This results in the carbon nanotube bandstructure aligning in 

successive subbands, one for each direction. Since these conditions promote carrier transport within the 

energy window of a few Fermi energy around the Fermi surface, we anticipate that the carrier transport 

properties of carbon nanotubes can match those of graphene in three ways; by increasing a) the carrier 

density, b) the nanotube diameter or c) the operating temperature. In any case, the quantum of subbands 

in the transport energy will increase in such a way that the 1-D transport progressively coalesce into the 

2-D transport so that the differentiation in the transport properties of both 1-D and 2-D nanoscale 

devices becomes immaterial.    

     An intriguing effect arises when we include the electron-electron interaction in an otherwise ballistic 

channel that is connected to reservoirs of self-updating carriers. In a perfect 1-D nanostructure where 

electron-electron interactions are viewed as Luttinger liquid [23], Maslov and Stone [24] have shown 

that the conductance quantum is unaffected by such interactions. Interestingly, this can be elucidated 

without employing complex mathematical models. This is because, as earlier established, the quantum 

conductance is due primarily to the dynamics of carriers emanating from the reservoir and propagating 

into the 1-D nanosystem. Since the carriers from the contact are self-updating, the conductance and 

carrier transport are due to the propagation of self-updating carriers. 
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     So far we have isolated the reservoir contacts to the nanosystem as being responsible for the 

conductance quantum. However, the role of the contacts to the nanosystem is somewhat ambiguous and 

is indeed not explicit in the calculation of quantum conductance. Therefore, attributing the quantum 

conductance to the coupling between the carbon nanotubes and the contacts is somewhat of an academic 

argument. Conceivably, if we carefully examine the expression for quantum conductance, it might be 

possible to integrate the coupling of the nanotube-contacts directly into the expression and indeed 

demonstrate that it is this coupling that is responsible for conductance quantum. 

     The ballistic transport in CNTs is limited to the low applied field regime, for which the propagating 

carriers can only be coupled to low-energy acoustic phonon modes [25]. By increasing the applied 

electric field across the CNT, the contribution of the electron-phonon initiated backscattering is 

progressively enhanced until saturation is reached in the current-voltage (I-V) characteristics of the 

device [26]. This not only triggers substantial performance limitations in the CNT current-carrying 

capacity, but also raises serious questions about the nature of inelastic carrier transport in these devices. 

     In the high-bias regime, the inelastic scattering length is predicted to be in the orders of a few tens 

of nanometres. Park et al. [27] predict the inelastic mfp l hl  in both low and high electric field according 

to, 
22 l he

G
h L


l

                        (13) 

     In the limit of low-bias, their data show that 1.6l h m l  which can be attributed to acoustic 

modes, whereas 10l h nm l  is assessed for applied bias of the order of 1.0 V which can be attributed 

to zone-boundary ( zbl ) or optical ( optl ) phonons. Other computations deduced by fitting the 

experimental data with semi-classical Monte Carlo models [28] led to 15opt nml  and 300ac nml   

for optical and acoustic modes respectively. On the other hand, within the framework of deformation 

potential and effective mass approximation [29], a primitive theoretical approximation of the acoustic-

electron phonon scattering yields 24ac ml in the low-bias domain, whereas 37zb nml and 

180opt nml  were deduced in the high-bias regime. By applying Mathiessen principle, a scattering 

length of 30l nm  was assessed. To reconcile experiment from theory, a hot carrier phenomenon was 

proposed [30]. While some progress has been made [31], many questions regarding the nature of 

electron-phonon interaction in these systems remain unanswered. Table 1 is a summary of the recent 

literature on carbon nanotubes in regard their transport properties. 

     In addition to the afore-mentioned studies, the electron-phonon interaction in CNTs has been 

extensively investigated from theoretical perspectives in the context of temperature-dependent 

conductivity in metallic CNTs [32] and temperature dependence of the band gap of semiconducting 

nanotubes [33]. The influence of electron-phonon interaction on the carrier properties of CNTs is thus 

of great importance in deepening the exceptional transport properties of CNTs. 

 

 

Table 1: Summary of recent literature on carbon nanotubes 

 

Author (s) Research work Reference 

Sharma and Jaggi, 2016 Band structure of CNT from roll-up of 

graphene 

[34] 

Abdullah, 2016 Chirality-induced channel breakdown [35] 

Evarestov et al., 2017 Phonon dispersion in CNT                                                      [36] 

Xu et al., 2017; Milovanovic et al., 

2017 

Experimental transport in CNT, zone-

folding 

[3,6] 
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Davoody et al., 2017 Electron transport, half-inter hall-effect [37] 

Park et al., 2017 Semi-classical BTE [38] 

Dasgupta and Chauhan., 2017 Ballistic transport in CNT-FETs [39] 

Zhang et al., 2016 Quantum transport in CNTs [40] 

Zhou et al., 2018 Computational nanoelectronics [41] 

III. METHODOLOGY  

 
Semiconductor device modelling has witnessed tremendous progress in the past few years, evolving 

from early theoretical work into advanced kits that can simulate the electronic properties of a wide range 

of semiconductor devices.  There is no doubt that such device simulation methods has advanced the 

semiconductor industry through predictive investigation and even troubleshooting of device design and 

fabrication [42]. As devices continue to increase in complexity and density, the underlying circuits 

continue to get smaller, faster and complicated. Therefore, it is anticipated that device simulation will 

continue to be the most realistic mechanism to design and fabricate devices with desirable features for 

practical applications. 

     The models employed to simulate these properties are basically a set of partial differential equations 

(PDEs) that describe the transport of itinerant carriers through the nanostructure. The solution of these 

set of PDEs is a function of the structure of the device and the applied electric field. Figure 5 delineates 

the hierarchy of these simulation models arranged in decreasing complexity. In this section, we 

implement a straight-forward technique to compute ( , )f x v for single-wall carbon nanotubes by solving 

the Boltzmann Transport Equation (BTE) self-consistently with Poisson solver.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Flowchart of transport properties arranged in order of decreasing complexity.  
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The Boltzmann Transport Equation describes the carrier transport dynamics of the distribution function,

( , , )f r v t  under the influence of varying scattering processes, as well as magnetic and electric fields. 

In the absence of the magnetic field component, the 2-D phase-space, steady-state BTE for ( , )f x v    

can be written as, 

   
 *

,eE x f fLE x vf f
v

m v x  

 
  

 
         (14) 

where (x,v)LEf denotes the local equilibrium distribution function appropriate for the applied electric 

field, density and equilibrium lattice temperature oT , to which the function ( , )f x v relaxes at a 

relaxation rate
1( )  

. We also normalized the local density ( )n x using the Maxwell-Boltzmann 

distribution at oT  as, 

   

* 21/2
*

2, .
2

B o

m v

k T

LE

o

m
f x v n x e

kT

 
  

 
         (15) 

The varying electric field ( )E x in the BTE emerging from the spatially-dependent doping density and 

carrier concentration, (x)DN and ( )n x is instantiated from the Poisson equation as, 

   
 

2

2

0

DN x n xd dE
e x

dx dx





     


             (16) 

where  is the non-dynamic dielectric constant. The BTE and Poisson equations constitute a set of 

coupled, non-linear models, requiring eqs. (14-17) to be solved self-consistently since the electron 

density can be related to the distribution function as, 

   ,n x f x v dv



            (17)            

     The simulation process is carried out self-consistently with the Poisson equation. Figure 5 shows the 

model of the carbon nanotube that gives a theoretically best control over the nanoscale channel. The 

model can be applied straightforwardly to a two-dimensional graphene provided that an additional gate 

(dual-gated) channel is created in order to form an ultra-thin graphene (see figure 5). The source and 

drain electrodes are heavily doped, and the gates modulates the conductance of the channel, akin to the 

conventional semiconductor materials. 

     The current-voltage characteristics of one-dimensional devices is strongly influenced by their 

quantum transport and electrostatics, so we implemented a self-consistent iteration between the BTE 

and Poisson equation. The general procedure is as follows; For a given carrier density, the Poisson 

equation is solved to obtain the electrostatic potential in the CNT channel. Next, the computed 

electrostatic potential is used as an input to the BTE, and an improved guess for the carrier density is 

obtained. The iteration process between the BTE and Poisson equation is repeated until self-consistency 

is achieved. Finally, the current for the self-consistent electrostatic potential is calculated.  

     For the model of figure 6, it is convenient to solve the Poisson equation in cylindrical coordinates. 

Since the electrostatic potential and the carrier density are invariant around the carbon nanotube, the 

Poisson equation is essentially a 2-D problem in the channel trajectory (x-direction) and radial to the 

channel (r-direction) as indicated in figure 6. Under this boundary, the Poisson equation can be 

expressed as, 

 2 ,m

e
E r z 


                           (18) 

where   represents the carrier density, which could be relaxed to zero for grid points on the nanotube 

surface and non-zero otherwise, mE  represents the energy level (state) minus the work function of the 
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nanotube and is indeed the mid-point energy for the grid points on the nanotube surface. The electric 

field is relaxed to zero at 0r   for convenience [43].   Consequently,  

0 0r r                           (19) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: General model of the coaxially gated CNT with semi-infinite, heavily doped channel as the 

source/drain contacts. Also shown are the simulation grid, simulated area and a volume element assumed to be 

in cylindrical coordinate arrangement used for solving the Poisson equation. The dashed rectangular structure 

delineates the element adopted to linearize the Poisson equation at position (xi, rj). 

 

     Since we can predict the electrostatic potential at the gate channel, exploiting the Fermi level of the 

grounded channel as zero energy will lead to a gate channel electrostatic potential equivalent to, 

 gatem G msE eV              (20) 

where GV  is the applied bias, and m  is the difference in the work function between the gate electrode 

and the nanotube. By simulating a significantly massive area (see figure 6), the remaining boundaries 

can be subjected to the Neumann boundary conditions where the applied bias perpendicular to the 

boundary is relaxed to zero. 

     The continuous form of eq. (18) is then discretised for computer simulation. It is convenient to take 

a volume element near the grid point as shown in  figure 6, and then subject it to the integral form of 

the Poisson equation, which is a ring around the nanotube axis with a rectangular cross section,    

.d ijD S q
 

Ñ             (21) 

where ijq  is the charge in the volume element. The discretised equation for an element positioned at 

the point  ,i jx r  in space is given by, 
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     (22) 
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     Eq. (22) is linear and mathematically simple to solve, however, the convergence of the Poisson 

equation and carrier transport is poor. Therefore, a non-linear Poisson equation which associates the 

electrostatic potential through a non-linear dummy function to the charge carrier density is employed 

to improve the convergence of the BTE-Poisson loop. The non-linear dummy function correlating the 

carrier density to the electrostatic potential should be as comparable to the physical correlation provided 

by the carrier transport as possible for enhanced convergence. In most cases, a semi-classical, 

equilibrium carrier transport with a dummy quasi-Fermi level is employed as the dummy function. The 

non-linear Poisson portion is then solved for its electrostatic potential profile using Gummel iteration 

procedure. Details of the non-linear Poisson solver can be found in [44].  The coupling between the 

BTE and Poisson equation is stable if the differential between the old and new potential profiles 

decreases monotonically with successive iteration loops for all applied electric fields. 

     The convergence is smooth and stable down to a miniscule approximation error of
510 V

, which is 

analogous to the convergence of self-consistent drift-diffusion simulations. This is in conspicuous 

contrast to Monte Carlo simulation approach which exhibits noise in its convergence and thus makes it 

difficult to decrease the error rate below /B Lk T e  threshold. It should be noted that every time the 

iteration loop returns back to solve the BTE, the default solution of the BTE is employed as starting 

guess. This shortens the number of iterations required to solve the BTE in successive loops. Hence, 

there is substantial savings in the time required for self-consistent iterations because the BTE is the 

most time-consuming path of the loop.  Next, we discuss the direct implementation of this procedure 

on a 50 nm single-wall carbon nanotube.    

     It has been reported that present-day microelectronic devices operate at approximately 50 percent of 

the ballistic threshold [45], and that after scaling to nanometer scale range, they operate at over 80 

percent of the ballistic limit [46]. This is not surprising given that carriers in these nanosystems have 

finite mobilities and mean free paths. The reason for this is that there exists a critical region of the 

channel near the source, where carrier motion becomes nearly ballistic. This is called quasi-ballistic 

transport [47-49]. Although this effect has been studied before, with approximate solutions to the BTE 

[50], this work is the first attempt to investigate the quasi-ballistic transport in one-dimensional carbon 

nanotubes by solving the BTE without passing through the approximation stage. The solutions from the 

BTE are then compared with the solutions from the ballistic BTE as well as solutions from standard 

macroscopic models. 

     The standard macroscopic models used in this study are the electron transport (ET), hydrodynamic 

(HD) and drift diffusion (DD). These models are adjusted to low-field velocity, symmetric velocity 

versus field curve, and in the case of ET and HD, energy versus field curve of bulk carbon nanotube. 

This adjustment guarantees that the transport models represent homogeneous physical problems but 

takes varying implementation assumptions. The electron transport and hydrodynamic models are solved 

using the non-oscillatory method and the drift diffusion model is solved using the well-known 

Scharfetter-Gummel formalism [51]. 

 

IV. RESULTS AND DISCUSSION 

 
The current-voltage characteristics for the BTE, ballistic BTE, drift diffusion, hydrodynamics and 

electron transport models is shown in figure 7. Surprisingly, the current from the DD is found to be very 

close to the current from the BTE, even though the DD is not an ideal representation of carrier transport 

at these length scales. The ET and HD models exhibit increased currents with the ET model even 

exhibiting more current than the current from the ballistic BTE. This can be attributed to the ensemble 

average velocities inside the carbon nanosystems.  
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Figure 7: The current-voltage (I-V) characteristics of the ballistic, BTE, DD, HD and ET models. 

 

 

     The ensemble velocity average from the BTE solution for increasing applied electric field is shown 

in figure 8. It is conspicuous that, although there is significant velocity overshoot in the system, the 

velocity at the source-drain interface approximates the thermal velocity of the sample, 
71 10 /cm s .This is a signature feature of quasi-ballistic transport. 

     The comparison of the average ensemble velocity for the represented transport models for 0.6V  

applied bias is shown in figure 9. The velocity from the DD model is found to be highly unphysical 

because it clipped to the saturation velocity inside the nanodevice. At the same time, the thermal 

velocity from the BTE turns out to be numerically comparable to the saturation velocity from the DD 

model. Accordingly, the quantum of currents from the BTE and DD turns out be nearly the same. In 

addition, the velocity from the BTE is found to be smaller than the velocities from the ET and HD. The 

HD model was found to exhibit spurious velocity overshoot near the drain channel which is unphysical 

but a mathematical relic of the HD model. On the contrary, although the ET model does not exhibit any 

spurious velocity overshoot, it does promote higher velocity near the source-drain interface than the 

thermal velocity, which is also unphysical. However, the ballistic BTE is found to be limited by the 

thermal velocity, although it exhibits unreasonably high velocity.      

     From the forgoing results, it is conspicuous that ET, HD and DD failed to regenerate the 

characteristics of one-dimensional nanotubes. While the argument against the DD model is 

unambiguous, the argument against the ET and HD is ambiguous because the implementation variables 

in ET and HD models are typically unphysical constants, and as such can be modulated to match the 

features of a wide variety of devices. However, our goal is not to propose a preferable tuning of variables 

but to demonstrate that macroscopic models cannot not be used to describe quasi-ballistic transport in 

one-dimensional single-wall carbon nanotubes. 
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Figure 8: Ensemble velocity average from BTE solution at high bias 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Ensemble velocity average for the ballistic, BTE, DD, HD and ET solutions at high bias 
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     The current-voltage characteristics of the carbon nanotube benchmarked on an experimental 

investigation is shown in figure 10. Also shown is the plot of the experimental data [26]. The different 

temperatures were extracted from degenerate statistics [52] as nondegeneracy is impractical in this 

regime. The simulation is implemented from 5v  to 5v . Ordinarily, the negative applied bias does 

not influence the outcome as symmetry is assumed. Surprisingly, the current-voltage characteristics was 

found to overlap at the simulated temperatures, suggesting that the current-voltage characteristics is 

independent of temperature. From the result, it is obvious that three regimes of nanoscale operation are 

possible – ohmic region, non-ohmic region and saturation region. The current-voltage characteristics is 

found to be linear in the low-bias regime, consistent with ohm’s law for microelectronic devices. 

However, as the applied voltage increases, the current-voltage characteristics declines suggesting a 

trend of decreasing conductance. This is the nonohmic regime because ohm’s law cannot apply in this 

regime. Further increase in the applied electric field eventually causes the current-voltage 

characteristics to saturate to its saturation current satI . This is called the saturation region. 

 

Figure 10: Current-voltage characteristics of a single-wall carbon nanotube. Also simulated is the experimental 

Data [26]. 

 

     The saturation of current with increasing electric field can be explained from the perspective of 

electronic bandstructure of carbon nanotubes. It is known that the current in metallic one-dimensional 

carbon nanotubes is fetched by the two propagating 1-D subbands. Under ballistic conditions, the 

applied electric field of the left and right moving states differs by eV . At moderate applied bias, this 

results in ohmic response. However, when the applied bias exceeds the Fermi energy of the 1-D 

subbands, the left moving states will be completely depleted, and the current will saturate to its 

saturation value satI .   

     As the current-voltage characteristics no longer keeps faith with ohm’s law in the sublinear regime, 

defining the actual resistance of the carbon nanotube becomes challenging. This requires us to 

distinguish between direct resistance, /R V I   (due to ohm’s law) and indirect resistance otherwise 

called differential or incremental resistance, / dIr dV . Applying David et al. [53] principle, the 

current I flowing through a carbon nanotube is given by, 

           tanh / / tanh / / tanh / / /sat cn cn o cn o cn cnI I V V V R V V V R V V V V                 (23) 
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where satI  is the saturation current and tanh is the hyperbolic tan function. The indirect resistance is 

given by the differential coefficient of the applied bias  n p
V  with respect to the applied current  n p

I , 

thus    / dI
n p n p

r dV . The actual resistance associated with the signal propagation through the 

nanotube is determined by the dc bias. Thus, the direct R and incremental r  resistances in the sublinear 

region can be expressed as,         

         

        
 1/

/ 1 / / 1 /
n p

n p
n p

cn p n p on p on p n p satn p
R V I R V V R I I

       
    

               (24) 

         
  1 1/

/ d 1 /
n p

n p

cn p n p on p
r dV I R V V

 
   
 

                   (25) 

     The direct and differential resistances as a function of the applied electric field, and the direct and 

differential resistances as a function of the length of the nanotube for cV V  are shown in figures 11 

and 12 respectively. Surprisingly, the resistance is found to be limited to its ohmic value when the ratio 

of the applied bias to the critical voltage is less than unity  / 1cV V  , but rises dramatically when the 

applied voltage towers over its critical value, such that / 1cV V  . In addition, the differential resistance 

is found to rise faster than the direct resistance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11: Direct and incremental resistance as a function of applied voltage. Also shown is the hyberbilc tanh. 

 

     These findings have practical implications in device design and performance. To distil new insights 

from these implications, we need to further probe the fundamental laws of electrical circuit design. 

Ohm’s law is at the heart of circuit theory both for analogue and digital electronic circuit designs. 

Basically, Ohm’s law describes the linear current response to the applied bias across the length of a 

conductor.  The inverse gradient of the current-voltage characteristics or resistance is a constant that is 

extensively discussed in the literature. However, the linear response to the electric field changes to a 

non-linear response with current eventually saturating to a finite value satI , which leads to the 
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breakdown of ohm’s law. The aforementioned breakdown in ohm’s law substantially affects the flow 

of transport carriers in the carbon nanotube. Furthermore, the surge in direct and incremental resistance 

changes the current and voltage division laws, time constants and power consumption, all of which play 

essential roles in device design and performance. Additionally, the transient resistance-capacitance 

 RC  switching delay is also severely affected by the surge in resistance due to the aforementioned 

breakdown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12: Direct and incremental resistance as a function of channel lengths for V=Vc 

 

V. CONCLUSION 

 
Following the first demonstration of carbon-based devices, the understanding of 1-D carbon nanotubes 

(CNTs) is evolving, and their performance in device applications is improving rather rapidly. Leading 

this improvement is the understanding of carrier transport in these devise when they are under the 

influence of varying electric fields. 

     This work has demonstrated the first ever direct solution of the Boltzmann Transport Equation (BTE) 

for single-wall carbon nanotubes that can be employed for practical device simulations. This was 

achieved by leveraging powerful theoretical models to discretize the BTE both in energy and 

momentum without passing through the approximation phase. This approach is not only fast but also 

has low computational and memory requirements. The approach reported in this work was found to be 

appropriate for self-consistent device simulations because it exhibited smooth and stable convergence 

when coupled to Poisson model. Finally, this approach was implemented on a 50nm  single-wall carbon 

nanotube. This implementation demonstrated that one-dimensional nanoscale single-wall carbon 

nanotubes operate in ballistic and quasi-ballistic regimes where carrier transport is ballistic or near 

ballistic across a nanoscale region of the device near the source channel. Standard macroscopic models 

were found not to hold in this regime because their transport is predicated on classical assumptions.  
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