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g r a p h i c a l a b s t r a c t
� LC� IM-TOFMS used for finger-
printing of traditional wines from the
Republic of Macedonia.

� Metabolite collision cross sections
reported based on consensus values
from a standardized and reproduc-
ible procedure.

� Fingerprinting approach used to
produce lists of statistically charac-
teristic putative metabolites for
varieties.

� Up to seven identification points can
be generated for a single metabolite
across two measurement modes.
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The characterization of wine via MS-based metabolic fingerprinting techniques remains a challenging
undertaking due to the large number of phenolic compounds that cannot be confidently annotated and
identified within analytical workflows. The combination of high performance liquid chromatography
with low-field drift tube ion mobility time-of-flight mass spectrometry (HPLC� IMS-TOFMS) offers
potential for the confident characterization and fingerprinting of wine using a metabolomics-type
workflow. In particular, the use of collision cross section values from low-field drift tube IMS using ni-
trogen as drift gas (DTCCSN2) in addition to retention time and a high resolution mass spectrum for
putative compounds allows rugged statistical assessment and identity confirmation using CCS libraries
(<0.5% error) to be performed. In the present work, an HPLC� IMS-TOFMS platform has been utilized for
the fingerprinting of 42 traditionally produced red wines emanating from the Republic of Macedonia.
After establishing the reliability of DTCCSN2 as an identification point for wine metabolomics in both
ionization modes, fingerprinting of wines according to grape variety was undertaken and a full dataset
containing retention, accurate mass and DTCCSN2 values used to derive lists of compounds found to be
statistically characteristic for each variety. Putative compounds were further assessed by assignment of
in-source and post-drift mass fragments aligned according to retention time, drift time, and accurate
istry, Department of Chem-
s (BOKU Vienna), Austria.
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mass providing up to seven identification points for a single compound when data from both positive
and negative mode measurements are combined.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

The analytical characterization of wine via targeted and non-
targeted metabolomics strategies has proven to be valuable for
improving understanding of wine chemistry and establishment of
reliable varietal and geographic fingerprints [1e3]. The economic
reasons for development of analytical workflows dedicated to
wine analysis center strongly on goals such as establishment of
food provenance, detection of fraud/adulteration, and detailed
studies to understand of the roles of attributes such as variety,
geographic origin, terrior, vintage and wine making style on the
quality of the final product. While targeted analysis is recognized
to provide a rugged means to facilitate wine differentiation via
relative and absolute quantification strategies, some of the de-
mands of the aforementioned goals render this approach rather
limited as the scope of compounds assayed is restricted and
retrospective data-mining is not possible. Therefore, to tackle non-
targeted analytical strategies focusing on goals such as wine
fingerprinting, high resolution mass spectrometry (HRMS) mea-
surements rely particularly on metabolomics approaches for data
assessment [4e7] for which time-of-flight MS (TOFMS) analyzers
have been frequently used [8]. Higher resolution mass analysers
including orbital ion traps and Fourier transform ion cyclotron
resonance (FT-ICR) for providing higher-level confidence in sum
formula annotation have also been employed for such in-
vestigations and their value for identity confirmation of wine
metabolites demonstrated in several studies, particularly in com-
bination with LC-TOFMS where the timescale of the indispensable
chromatographic separation is a good match for the speed of the
mass analyzer [9e12].

As the range of non-volatile metabolites and related compounds
present in wine encompasses a broad range of molecular classes
including carbohydrates, amino acids, organic acids, and (poly)
phenolic classes including flavonoids, stilbenoids and tannins,
liquid chromatographic separation using either reversed-phase
(RPLC) or hydrophilic interaction (HILIC) mechanisms is needed
to assess the moderately polar and polar metabolite fractions,
respectively. For this reason, some groups have extended their
focus to two-dimensional LC strategies to approach more
comprehensive coverage of these classes [13,14]. Such approaches
provide unparalleled analytical selectivity particularly when MS is
used to support identity confirmation alongside the retention
characteristics from both dimensions. Despite these advantages,
such strategies are not yet practically feasibly for assessing large
cohorts of samples as analysis time and method ruggedness are
critical considerations. For this reason, LC-HRMS is considered to be
a more pragmatic option for such undertakings. While several
different LC-HRMS platforms are now commercially available and
supported with suitable software packages, non-targeted charac-
terization of wine remains a nevertheless challenging undertaking
for molecular identity confirmation as a significant number of un-
known compounds determined via high-resolution MS-based
methods have not been described in wine literature [1]. Moreover,
focusing primarily on the analysis of the phenolic and polyphenolic
compounds in wine is difficult due to the enormous structural di-
versity of phenols, the large range of possible isomeric structures,
the limited number of commercially available standards, and the
lack of comprehensive LC-HRMS libraries for confident compound
identity confirmation [15]. Thus, optimization of separation and
identity confirmation strategies requires development to improve
the study of compound-level differences for purposes such as
detecting wine adulteration, determination of origin, production
and aging processes [1,13,14,16].

One area of emerging analytical interest for non-targeted
metabolomics workflows is the use of a generic ion mobility
separation nested between the chromatographic and mass spec-
trometric modules [17e21]. In order to provide unbiased IM-MS
coverage of all compounds ionized at the source, this IM separa-
tion must be generic (i.e. all compounds must be subject to the IM
separation) and provide constant resolution across a wide mass
range [22]. IM provides a rapid (millisecond scale) separation of
ions according to their mobilities in a gas-filled cell under the
influence of a weak electric field. This separation is based on the
size, charge and shape of the ion, as well as their ionic interaction
with the buffer gas. In this regard, IM can provide additional
structural information not determined using LC-HRMS alone,
which can be of particular value for the characterization of un-
known isomeric compounds. Importantly, a number of inter-
laboratory comparisons have begun to assess the precision of IM
separations under conditions of reproducibility [23,24]. In this
regard, of most interest as an identification point is the mobility-
derived collision cross section (CCS) calculated for a given ion in a
particular neutral drift gas (e.g. nitrogen or helium) via the Mason-
Schamp extension of the fundamental zero field equation [25].
With a view of the emergence of standardized CCS values to
support identity confirmation in metabolomics, this study aimed
to assess a broad cohort of traditionally produced wines in a non-
targeted workflow and provide an extensive dataset containing LC
retention information, accurate mass spectra, and drift time-
derived CCS values obtained in nitrogen drift gas (DTCCSN2) to
support future work on wine characterization and identification of
metabolites present in wine.

Wines representing several different grape varieties and
different regions in the Republic of Macedonia were considered
within this study. Of particular focus for red wines from this region
is the high total phenolic content especially for Vranec grapes.
Vranec is the most widely grown and most economically important
variety grown in the Republic of Macedonia and is also of impor-
tance to the entire Balkan region as an autochthonous variety in
Montenegro (known as “Vranac”), and is also cultivated in Serbia
and Croatia (Dalmatia). The Povardarie wine region in the Republic
of Macedonia is home to more than 80% of the Macedonian vine-
yards where other varieties including Stau�sina (autochthonous
Macedonian variety), Krato�sija, Pinot Noir, Merlot, Syrah, Kadarka
and Cabernet Sauvignon are also grown. An important goal of this
study was to provide a meaningful fingerprint of red wines stem-
ming from this region. Using appropriate software tools for align-
ment and statistical evaluation, the full range of putative
compounds determined in this study including retention time,
accurate mass, fragment spectra, and DTCCSN2 values representing
these varieties are reported with a view to improve the possibilities
for identity confirmation of wine metabolites using this approach
in future studies.
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2. Experimental

2.1. Chemicals

Stock solutions of analytical grade phenolic standards (kaemp-
ferol, quercetin, myricetin, gallic acid, epicatechin, catechin) were
purchased from Sigma-Aldrich (Vienna, Austria) and prepared in
water/methanol mixtures. LC-MS grade methanol and water,
ammonium formate, and formic acid were also purchased from
Sigma-Aldrich.

2.2. Grape harvesting and wine production

Grapes from V. vinifera red varieties (Cabernet Sauvignon,
Frankovka, Merlot, Pettit Verdo, Plavan Mali, Pinot Noir, Syrah,
Tempranilo and Vranec) were analysed in this study. Grapes were
grown in different wine regions in Republic of Macedonia and all
were harvested in September/October 2015, at optimal techno-
logical maturity: 18- 26� Brix (levels between 18 and 24�Brix are
desirable as objective criteria for estimating optimal grape matu-
rity). Grapes were collected from 5 to 35 year-old vineyards. The
distance between the rows was 1.5m and the distance between the
vines was 1.0m. All vineyards were located at attitude from 120 to
800m. Grapes were manually harvested early in the morning,
placed in crates and transported to the wineries for wine produc-
tion. In total 15 wineries processed the grapes in a same way
(Table S2).

The procedure for winemaking, applied in all wineries, was the
following: Harvested red grapes from all various varieties were
processed using an electrical inox crusher/destemmer, followed by
addition of SO2 (ca. 60e80mg/L total concentration), in the form of
5% sulfurous acid. After three to four hours, musts were inoculated
with commercial Saccharomyces cerevisiae yeast, which was pre-
pared by rehydrating (20e30 g/100 L) in water (30 �C) and applied
to the musts after 15min. In addition, nutrients were added in a
dose of 40e50 g/hL in order to improve the yeast survival during
the fermentation conditions.

Maceration of 6e12 days at 23± 2 �C, was applied during that
period (alcoholic fermentation) and pumping was applied for all
wines two times a day. After the maceration period, wines were
separated from the pomace by automatic pressing and stabilized in
an inox tank at 4 �C for a period of two to three weeks. After that
period, wines were racked and treated with sulfur dioxide again
(30e40mg/L). The second racking was performed after three to six
months of storage, bottled and stored in a cellar at 1e8 �C for 5
months before analysis.

In total, 42 red wines, from various varieties and various wine
locations in Republic of Macedonia (vintage 2016), were produced
and analysed. A volume of 0.5 L of each wine was taken in glass
bottles. All wines were sampled directly from the inox tanks placed
in the wineries, where they were produced, and kept for 8 months
before the analysis.

2.3. Preparation of samples and quality control protocols

Wine samples were filtered with nylon membranes (Iso-Disc™,
N-4-4, Nylon, 4mm� 0.45 mm, Supelco, Bellefonte, PA, United
States). Filtered samples were diluted 1:10 with 10mM ammonium
formate solution (pH 3.75). Samples were stored at 6 �C in the
autosampler tray when awaiting analysis. Pooled samples were
prepared by combining equal volumes of all samples to be
measured within a single batch. Additional quality control samples
measured included filtered blanks (i.e. containing the ammonium
formate solution) andwine samples spikedwith authentic phenolic
standards. All samples were analysed in a randomized order and
were interspersed with injections of a QC/filtered blank pair and a
spiked/unspiked wine pair. Pairs were measured after every sixth
sample (i.e. alternating throughout the sequence).

2.4. HPLC-MS instrumentation

An Agilent 1290 Infinity II LC system was coupled to an Agilent
6560 IMS-QTOF mass spectrometer equipped with an Agilent
G1607A dual Jetstream ESI source, and an upgraded ion mobility
alternate gas kit with electronic drift gas pressure control. During
analysis, a solution containing calibrant masses (purine and hex-
akis-(1H,1H,3H-tetrafluoro-pentoxy) phosphazene) was combined
with the column effluent via a secondary capillary pump (Agilent
1100 series) and T-piece with a flow rate of 10 mL/min between
column exit and the ESI source. The secondary sprayer of the ion
source was completely closed to gas and liquid flow for all mea-
surements. Sample injection was performed by a Gerstel Dual Rail
MPS 2 robot (Mülheim an der Ruhr, Germany) with a loop size of
5 mL.

2.5. HPLC� IMS-TOFMS conditions

The chromatographic method was adapted from previous work
[26,27]. Briefly, HPLC separations were performed at a temperature
of 30 �C using a Zorbax Eclipse Plus C18 Rapid Resolution column
(2.1� 50mm, 1.8 mm dp) and a reversed-phase mobile phase
gradient. Eluent A contained 0.1% v/v formic acid in water, and
Eluent B was methanol. Using a solvent flow rate of 250 mL/min, an
initial composition of 98% A was held for 2.4min, followed by a
compositional gradient from 2 to 40% B in 2.4e18min, then
increasing to 70% from 18 to 20.4min. This composition was held
for 0.6min prior to returning to 2% B and holding for 3min (total
run time of 24min).

Nitrogen was used as drying gas at a temperature of 360 �C, a
sheath gas temperature of 225 �C and a sheath gas flow rate of 13 L/
min. The nebulizer gas pressurewas 30 psi, theMS capillary voltage
was 3500 V, the nozzle voltage 500 V and the fragmentor was set to
275 V. Following tuning in the 2 GHz extended dynamic range
mode with a mass range of 50e1700 m/z, mass calibration was
undertaken immediately prior tomeasurements using the supplied
tune mixture of the manufacturer. All voltage polarities were set
according to the ionization mode.

The IM trapping funnel was operatedwith an accumulation time
of 10 000 ms and released packages of ions every 45ms with a trap
release time of 150 ms set within the software. The drift tube was
operated with an absolute entrance voltage of 1574 V and an exit
voltage of 224 V with a drift tube pressure of 3.95 Torr and a tem-
perature of 25 �C using high purity nitrogen as the collision gas. The
acquisition settings were adjusted to yield 30 ion mobility tran-
sients per frame corresponding to 0.7 ion mobility frames per
second.

2.6. Post-processing of data

Data collected were firstly post-processed for online accurate
mass calibration in the software tool provided by the instrument
manufacturer using the reference masses of calibrant ions. Data
files were then subject to smoothing [28] in the chromatographic
and drift time domains with kernel sizes of 5 and 3, respectively.
The DTCCSN2 values for ions measured in wine samples were
determined using a single-field calculation facilitated by the mea-
surement of a series of calibrant ions with conditional reference
DTCCSN2 values representing the best estimate of the true values
[24]. Finally, data files were trimmed in the IM Browser to reduce
the searchable m/z vs drift time space according to knowledge of
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conformational ordering of molecules (see Supporting Information
S1).

2.7. Molecular feature finding and alignment

Data files were then assessed using MassHunter Mass Profiler
and the IM Browser Software (B08.00). Data files were evaluated in
batches according to wine type in a non-targeted workflow. For the
molecular feature finding step, the common organic molecules
isotope model was used, the charge state was limited to between
±1 and± 2, a minimum extraction threshold of 50 counts (spectral
abundance) set, andmolecular features were restricted to retention
times between 2 and 20min. Intersample molecular feature
alignment used retention timematching of ±0.20min, and accurate
m/z of 10 ppm± 2mDa. To enable varietal group fingerprinting,
resultant molecular feature lists were further filtered by frequency
within a given variety (i.e. presence in �2 samples within the va-
riety). These lists were further refined by Q-Score (�70) and a
minimum cut-off abundance of 5000 (average of the monoisotopic
ion peak volume). DTCCSN2 values of the authentic standards
measured using an established standardized method [24] were
added to a compound library for supporting identification confir-
mation via Agilent PCDL Manager (B.08.00).

2.8. Statistical assessments

Feature summaries (compound exchange format, *.cef) for all
samples were imported into MassHunter Mass Profiler Professional
(14.2) to allow multivariate statistical assessments according to
variety. Varieties well-represented within the cohort of wine
samples (Vranec, Merlot, Cabernet Sauvignon, and Pinot Noir) were
assessed alongside the pooled QC and blank QC replicates. All
alignment tolerances were maintained from the initial software
Table 1
Summary of DTCCSN2 and corresponding accurate TOFMS results obtained for using offlin
for chromatographic measurements.

Compound Formula tR (min) Ion Species

Infusion measurements (step
field)

Stepped-field
(standard)

Single-field
(standard)

Gallic acid C7H6O5 2.16 [M�H]- 126.1 124.8
Kaempherol C15H10O6 20.3 [M�H]- 163.8 162.7

[MþH]þ 163.6 163.2
[MþNa]þ 182.8 182.0

Myricetin C15H10O8 17.1 [M�H]- 168.4 167.4
[MþH]þ 171.6 171.4
[MþNa]þ 190.3 189.4

Catechin C15H14O6 8.39 [M�H]- 158.1 156.9
[MþH]þ 161.6a 162.4
[MþH]þ 170.1a 168.6
[MþNa]þ 180.5 180.2

Epicatechin C15H14O6 11.0 [M�H]- 158.4 157.1
[MþH]þ 161.5a 162.4
[MþH]þ 169.8a 168.4
[MþNa]þ 177.5 177.0

Naringenin C15H12O5 19.4 [M�H]- 164.9 163.8
[MþH]þ 163.8 163.8
[MþNa]þ 181.3 180.6

Quercetin C15H10O7 19.3 [M�H]- 165.5 164.6
[MþH]þ 167.7 167.7
[MþNa]þ 186.6 185.9

Ferulic acid C10H10O4 12.91 [M�H]- 139.7 139.7

n.d. not detected.
a The drift times of conformers were manually determined for the stepped-field calcu
b Denotes significant detector saturation.
extraction step, except for the mass alignment which was increased
to ±15 ppm to allow for features with low ion counting statistics to
be better aligned across different varieties. Furthermore, a mini-
mum of two ions (isotopologues) was required for further consid-
eration as a molecular feature (putative compound).

3. Results and discussion

3.1. Level 2 identity confirmation using retention time, DTCCSN2 and
accurate mass

To firstly establish that the generic drift tube IM separation can
provide CCS values in agreement with standardized stepped- and
single-field measurements of relevant analytical standards for this
application, a series of analytical standards were measured using
direct infusion approaches and using the established LC� IM-
TOFMS method. The single-field approach utilized on this instru-
ment represents a derivation of the conventional Mason-Schamp
equation and relies on a single measurement of a series of cali-
brant ions, for which DTCCSN2 values were established in a recent
study [24]. Comparison of values derived from the conventional
stepped-field approach with single-field determination revealed an
average absolute bias of 0.41% across positive and negative ioni-
zation modes. This value is consistent with the average bias of
0.54% recently reported in an interlaboratory study [24].

In addition to the excellent agreement between results obtained
for the measurement of standards, agreement with results from
spiked wine samples also demonstrated the excellent measure-
ment precision (<0.3%) and low bias between the standardized
infusion and chromatographic results (average of 0.15%) as well as
the excellent precision across the sequences (<0.05%), indicating
that the wine matrix had little or no influence on the accuracy of
DTCCSN2 determination using this platform (Table 1 & Supporting
e stepped-field and single-field infusion for standards, and the single-field approach

DTCCSN2 (Å2)

ped & single- Online single-field measurements
(spiked wine sample)

Mass Accuracy

Bias (Single
vs Stepped)

Average
(n¼ 3)

%RSD Single-field
Bias (Std. vs
Wine)

Average
(n¼ 3)

Error
(ppm)

�0.99% 125.0 0.026% 0.13% 169.0149 4.3b

�0.65% 162.3 0.034% �0.28% 285.0409 1.4
�0.27% 162.9 0.028% �0.13% 287.0560 3.5
�0.44% n.d. n.d. n.d. n.d n.d.
�0.61% 167.1 0.024% �0.18% 317.0274 �9.0b

�0.10% 171.2 0.015% �0.10% 319.0457 2.7
�0.48% n.d. n.d. n.d. n.d n.d.
�0.73% 157.3 0.029% 0.24% 289.0709 �3.0b

0.47% 162.3 0.014% �0.021% 291.0873 �3.5b

�0.88% 168.1 0.015% �0.28% 291.0870 2.5
�0.18% n.d. n.d. n.d. n.d n.d.
�0.78% 157.2 0.031% 0.042% 289.0716 �0.58b

0.55% 162.2 0.016% �0.080% 291.0876 �4.4b

�0.82% 168.1 0.0034% �0.19% 291.0872 �3.2b

�0.27% n.d. n.d. n.d n.d.
�0.67% 163.7 0.028% �0.069% 271.0610 �0.86
<0.001% 163.4 0.040% �0.25% 273.0765 2.9
�0.41% n.d. n.d. n.d n.d.
�0.56% 164.6 0.011% �0.0060% 301.0334 �6.8b

�0.036% 167.4 0.0060% �0.18% 303.0507 2.7
�0.41% n.d. n.d. n.d n.d.
�0.021% 139.9 <0.001% 0.14% 193.0507 0.69

lation.
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Information Figure S2). The differences in DTCCSN2 values observed
between sodiated and protonated molecular ions were mostly be-
tween 9 and 12%, and were consistent with an expected increase
arising due to the change in charge carrier.

Precision and trueness of the m/z measurements (accuracy)
were also found to be generally very good except in cases where
detector saturation was apparent particularly in the negative ioni-
zation mode. In such cases, the mass error and precision increased
from <3 ppm to higher for the standards used in this study. This
occurred for some of the standard compounds used in this study
that are present in very high concentrations in red wine (i.e. cate-
chin, epicatechin, and quercetin). The probability of reaching
saturation of the TOF detector is increased in the IM-TOFMS mode
due to the change from a continuous ion transmission into discrete
ion packages reaching the detector in locally high concentrations.
Without use of a suitable software-based data processing to correct
such saturation effects [29], this limits the total dynamic range that
can be studied in this measurement mode [30]. In a practical sense,
this means that care must be taken to choose a sample dilution
level that is sufficient to reduce the number of saturation events
during the chromatographic run, but also does not effectively
dissipate signals arising from low abundance compounds that may
Fig. 1. (a) Base peak chromatograms recorded for pooled QC (n¼ 3, solid lines) and blank QC
standard compounds spiked into wine recorded during the measurement sequence (n¼ 3,
be of interest in fingerprinting workflows. Nevertheless, the ma-
jority of compounds were detected at levels below that where
detector saturation effects were observed to influence mass accu-
racy meaning that retention, accurate DTCCSN2 and TOF mass
spectra can be considered as reliable identification points for each
software-extracted molecular feature in the wine metabolomics
workflow.

3.2. Assessment of quality control samples

Having established the accuracy and control of measurement
repeatability with respect to the ion mobility separation and mass
accuracy for several standard phenolic compounds, variability
within the measurement sequences was assessed within a non-
targeted context by software-based extraction of the pooled QC
and procedural blank measurements. Comparison of base peak
chromatograms and data for standards spiked in wine samples
recorded during the 22 h measurement sequence indicated the
absence of substantial signal drift across the sequence (Fig. 1).
Procedural blanks measured throughout the measurement
sequence were batch software extracted using the same settings as
all sample groups and revealed only 23 significant molecular
(n¼ 4, dashed lines) samples spread out across the measurement sequence. (b) EICs of
injected at evenly spaced intervals across the 22 h sequence).
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features using a minimum abundance of 5000 (total ion volume),
group frequency of �2, and a Q-Score cutoff of 70. In comparison,
assessment of the pooled QC sample revealed 3466 significant
molecular features using the same settings.

As no studies have yet demonstrated that relative quantification
using LC� IM-TOFMS via reliable fold-change determination with
full method validation, the complete set of software-extracted
molecular features from the pooled QCs was used to estimate the
variability of molecular feature abundance in this group to inform
further comparisons between varieties. Lower %RSD for the abun-
dance correlated well with increasing total volume ion abundance
and employment of a lower cut-off of 10 000 as total monoisotopic
ion volume yielded a set of 2195 molecular features for which 92%
of the features had %RSD (coefficient of variance) of <40% across
three technical replicates (Fig. 2). For this reason, this abundance
cut-off was used for comparisons of the major wine groups and
subsequent fingerprinting.
Fig. 2. Summary of 2183 molecular features aligned across 3 pooled QC replicates fr
10 ppm± 2mDa, and frequency in 3/3 replicates were required. Molecular feature searching
model with maximum charge state of 2 and minimum ion intensity of 50. Molecular feature
interpretation, the black line corresponds to the RHS y-axis and the grey columns to the LH
3.3. Annotation of metabolites

Use of CCS values as an identification point for metabolomics to
aid with identity confirmation is an emerging area of analytical
interest. Use of CCS values requires not only detailed knowledge of
the calibration procedure and within-lab repeatability of mea-
surements, but also interlaboratory studies of reproducibility to
finally provide estimates of the uncertainty associated with the
mobility measurand. A significant study from Paglia et al. [23] was
the first to make such an undertaking for commercial instruments
comparing travelling wave IM-MS measurements of both metab-
olites and lipids measured across three different labs. More
recently, the study of Stow et al. [24] demonstrated that agreement
across multiple laboratories (precision under reproducibility con-
dition) is below 1% for a wide range of metabolites and other
compound classes using this model of instrument. While CCS is a
promising candidate as an identification point for non-targeted
strategies, the high degree of correlation with m/z and the lack of
om MassProfiler workflow. Retention time tolerance ±0.2min, mass alignment of
was restricted to �2min (retention time) using the common organic molecules isotope
s were further filtered using a Q-Score of 70 and a total ion abundance of �10 000. For
S.
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accurate models to predict true CCS values in nitrogen prevent
unequivocal identity confirmation based upon these two parame-
ters alone. With this in mind, collecting traceable and accurate CCS
values for unknown compounds requires careful reporting of
experimental conditions (including sample preparation), and
scrupulous use of retention time and accurate mass for correct
alignment and fusion of positive and negative mode datasets.

In addition to the range of phenolic standards investigated in
this study (see Table 1), some putative compounds from previous
studies of red wines (particularly Vranec) were used to support
tentative identifications according to accurate mass spectra (see
Supporting Information Table S3). Of particular interest in this type
of dataset was the appearance of fragments associated with intact
phenolic metabolites, which could be initially aligned by the
retention profile. In addition to the well-known in-source frag-
mentation, the possibility of post-drift tube fragmentation is
apparent due to the use of an RF field to refocus the ions in the rear
funnel region of the instrument. Within IM-TOFMS datafiles, in-
source fragmentation can be distinguished from post-drift tube
fragmentation by inspection of the drift time of the suspected
fragment. Exemplary data are shown for standards investigated in
this study and for tentatively identified glycosylated compounds,
whereby fragment EICs and the drift spectra are shown to align
with the corresponding precursor in both dimensions. In-source
fragmentation can be considered to be a greater problem for non-
targeted assessments as rules for identifying this behavior must
be pre-determined for the molecular feature finding process.
Conversely, post-drift tube fragmentation will complicate data
processing, but can be used to increase confidence in annotation of
fragile metabolites via the combination of tR and td alignment of
fragments with precursors.

Other metabolites that could be tentatively identified based on
mass spectra and literature included grape reaction products (S-
glutathionyl caftaric acid and its derivatives [31,32]), along with
several phenolic compounds consistent with previous literature
studying similar wines (e.g. stilbenes, flavan-3-ols, anthocyanins,
acetylglucosides, and p-coumarylglucosides [33e35]). Additionally,
DTCCSN2 values for ions of some compounds could be directly
compared to previous studies including quercetin, catechin and
kaempferol, which were found to have biases of <0.4% compared to
recently published values [36].
Table 2
Putatively identified metabolites in Vranec samples based on positive and negative mod

Negative Mode Posi

# tR (min) m/z Freq. Q Score DTCCSN2 (Å2) Assumed
Species

Fragments
& adducts

tR (m

(a) 12.59 461.1083 12 77.6 207.5 [M� 2H]- [M-2H þ H2O]-;
[M-2H-glc]-

12.6

(b) 8.34 359.1348 12 100 173.8 [M�H]- e 8.35
(c) 17.84 385.1498 12 100 183.8 [M�H]- 223.0976 17.8
(d) 10.86 415.2186 12 100 198.1 [M�H]- 191.0338 10.8
(e) 12.74 385.1865 12 100 204.4 [M�H]- 149.0444 12.7
(f) 7.70 343.1036 12 100 183.1 [M�H]- e 7.70
(g) 7.84 315.0645 11 100 164.7 [M�H]- e 7.88
(h) 12.31 487.0846 12 99 212.5 [M�H]- 299.0556 12.3
(i) 9.83 358.1285 12 100 176.9 [M�H]- e 9.84

9.83
(j) 12.12 358.1281 12 100 177.0 [M�H]- e 12.1
(k) 8.83 367.1599 11 85.5 192.5 [M�H]- e 8.83
(l) 10.19 358.1286 12 100 177.0 [M�H]- e 10.2
(m) 14.17 372.1450 12 100 180.0 [M�H]- 334.1754 14.1
(n) 11.93 358.1282 12 98.4 177.0 [M�H]- e 11.9
(o) 10.34 490.2105 12 100 207.6 [M�H]- e 10.3
3.4. Generation of varietal fingerprints

As non-targeted extraction strategies involve a molecular
feature finding stepwhich is often in combinationwith binning and
intersample alignment of features, there are some variables that
can have an influence on final results prior to statistical assess-
ments. One example of note for the treatment of LC� IMTOFMS
datafiles is the software-based extraction of molecular features
from samples representing a wide variety of sample groups or
classes where abundances can substantially influence the signal
quality at low concentrations (i.e. poor ion counting statistics), or
approach detector saturation issues at very high levels. For this
reason, wine samples were considered in this study within the
software according to wine variety for the initial feature finding
process to ensure that the first list of putativemolecular features for
a given variety was solely a representation of that variety. Subse-
quent assessments requiring statistical comparisons of varieties
involved a secondary alignment of features according to tolerance
settings for retention time, mass accuracy and CCS.

Initial assessment of the results by principal component analysis
indicated the good repeatability for the quality control groups and
the ability to broadly classify wines according to variety. The Vranec
wines are readily distinguished from all other major groups, which
correlates well with their characteristic phenolic profile studied in
previous work [33e35]. Pinot Noir samples were also readily
distinguished from other wine varieties, but these results should be
carefully interpreted due to the limited number of wines (four)
available for this study (see Supporting Information Figure S3).

As datawere not normalized and variations between geographic
regions, maceration time, altitude and soil types could not be
exhaustively considered in this set of samples, the variability within
the Cabernet Sauvignon and Merlot wines appears be more sig-
nificant and therefore limits interpretation when using the entire
set of putative compounds and their raw abundances. Thus, in or-
der for a set of putative compounds to be used as an authentic
fingerprint, appearance of a molecular feature in at least 75% of
samples within a variety was required, variations in abundance
exceeding 50% within a variety were excluded, a fold-change of 3
taken as a cut-off for paired varietal comparisons and a one-way
analysis of variance (ANOVA) test employed to filter down to mo-
lecular features characteristic for the variety as supported by
principal component analysis and hierarchical clustering
e LC� IM-TOFMS measurements and statistical determination of wine fingerprints.

tive Mode

in) DTCCSN2 (Å2) Assumed
Species

m/z Freq. Q Score Fragments
& adducts

Putative
Formula/ID

1 207.1 [M]þ 463.1236 12 100 e peonidin
3-glucoside

184.4 [MþNa]þ 383.1311 12 100 e C16H23 O9
5 196.5 [MþNa]þ 409.1465 12 100 e C18H26 O9
5 198.2 [MþH]þ 417.2340 12 100 e C17H36 O11
4 204.4 [MþNa]þ 409.1826 12 99.6 e C19H30 O8

187.2 [MþNa]þ 367.1001 12 100 e C15H20 O9
171.8 [MþNa]þ 339.0623 10 100 e C20H12 O4

2 210.8 [MþH]þ 489.1004 12 100 321.0597 C23H20 O12
185.7 [MþH]þ 360.1441 12 100 e C16H23 O9
194.2 [MþH]þ 360.1440 12 100 e C16H23 O9

3 184.6 [MþH]þ 360.1442 12 97.4 e C16H23 O9
186.4 [MþNa]þ 391.1566 12 99.6 e C15H28 O10

0 185.6 [MþH]þ 360.1441 12 100 e C16H23 O9
8 188.0 [MþH]þ 374.1607 12 100 e C17H25 O9
5 184.4 [MþH]þ 360.1443 12 95.1 e C16H23 O9
5 210.8 [MþH]þ 492.2259 12 100 e C19H39 O12 S



Table 3
Putatively identified metabolites in Pinot Noir samples based on positive and negative mode LC� IM-TOFMSmeasurements and statistical determination of wine fingerprints.

Negative Mode Positive Mode

# tR (min) m/z Freq. Q Score DTCCSN2 (Å2) Assumed
Species

Fragments
& adducts

tR (min) DTCCSN2 (Å2) Assumed
Species

m/z Freq. Q Score Fragments
& adducts

Putative
Formula/ID

(a) 8.38 373.0236 4 100 171.9 [M�H]- e 8.40 192.1 [MþH]þ 375.0385 4 99.2 e C10H14 O15
(b) 7.32 382.0999 4 100 176.6 [M�H]- e 7.33 189.3 [MþH]þ 384.1158 4 100 252.0721 C28H15 O2
(c) 6.84 383.1555 4 99.5 191.7 [M�H]- e 6.84 188.1 [MþNa]þ 407.1539 4 100 e C15H28 O11
(d) 8.41 401.2035 4 100 190.9 [M�H]- e 8.41 193.4 [MþH]þ 403.2189 4 100 e C16H34 O11
(e) 12.42 410.1309 4 100 203.0 [M�H]- e 12.42 200.0 [MþH]þ 412.1460 4 100 e e

(f) 6.30 416.1552 4 100 199.3 [M�H]- e 6.27 193.6 [MþH]þ 418.1711 4 100 e C15H29 O13
(g) 17.36 453.1338 4 100 222.1 [M�H]- 359.0923 17.37 218.0 [MþH]þ 455.1481 4 99.7 e C28H22 O6
(h) 15.05 471.0907 4 100 202.1 [M�H]- e 15.06 208.1 [MþH]þ 473.1060 4 100 e C23H20 O11
(i) 12.86 491.1189 4 82.7 226.5 [M� 2H]- [M-2H þ H2O]-;

[M-2H-glc]-
12.87 215.2 [M]þ 493.1342 4 100 [M þ H-glc]þ malvidin-

3-glucoside

Fig. 3. Putative identification of laricitrin 3-glucoside (C22H22O13) using positive and negative mode data. (a) inset shows retention time profile (EICs) of all considered monoisotopic
species shown in this figure, (b)e(d) drift spectra with calculated DTCCSN2 values annotated, (e)e(g) molecular feature mass spectra comparison to theoretical spectra calculated
using the online EnivPat tool [38].
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assessments (Supporting Information Figure S4). Using this
approach, lists of putative compounds appearing with statistical
significance in Vranec or Pinot Noir, or with substantially higher
abundance than all other varieties (maintaining group frequency
�75%) could be generated and are provided as preliminary finger-
prints for the wines in this study (see data in Supporting Infor-
mation). It is noted at this point that some limitations arise in the
interpretation of fingerprints due to practical difficulties in
covering all varieties and regions adequately in such a study.
Moreover, the influence of year-to-year variations also can play a
significant role in wine fingerprinting, which could not be assessed
for this cohort of samples. Taken together, the data from this study
represent a unique and robust estimate of the fingerprints for va-
rieties assessed in this study, but larger statistical interpretations
must be considerate of these issues.
3.5. Combining positive and negative mode data

A number of phenolic metabolites could also be aligned (fused)
across the positive and negative ionization mode datasets,
providing confirmation of the correct assignment of the neutral
mass. Reconciling positive and negative mode data for phenolic
compounds is particularly valuable in non-targeted strategies as
the combination of retention time and neutral mass alignment can
be used to recover DTCCSN2 values for corresponding protonated
and sodiated species by calculating the neutral mass from the
negative mode measurements. To this end, the consensus retention
time and accurate mass data (i.e. [M�H]- of the monoisotopic
mass) for the high abundance molecular features present were
exported to a compound spectral libraries containing the accurate
neutral masses and retention times. The corresponding positive
ionization data files were then searched against this database and
matches interrogated to support the assignment by retention time
and neutral mass alignment (Mþ, [MþH]þ and [MþNa]þ species
allowed). Results from the fusion of the most characteristic mo-
lecular features in Vranec and Pinot Noir varieties from this study
detailed in Table 2 and Table 3. A detailed example of this anno-
tation process is shown in Fig. 3. Using data from two measure-
ments of the same sample, up to seven identification points could
be established for a molecular feature (i.e. retention time, accurate
Fig. 4. Correlation of DTCCSN2 values determined for aligned positive and negative mode mo
analytical standards in Table 1 (blue/red). For positive ions, protonated (diamonds) and sod
colour in this figure legend, the reader is referred to the Web version of this article.)
mass spectrum in both modes, CCS values for up to 3 primary ion
species, and manually drift-aligned fragment ions). Although it is
not possible to use CCS (or drift time) as an additional alignment
parameter between ionization modes, preliminary screening of the
cross-ionizationmode alignment could be performed by examining
the CCS values determined for the respective ion species. Some
aligned molecular features were found to exhibit a large discrep-
ancy in CCS values between the two modes, which was found in
some cases to indicate mis-alignment with a post-drift fragment or
in-source fragment. Thus, for effective screening of results, data
from measurement of analytical standards are valuable in esti-
mating the likelihood of a correct match for a given molecular class
(Fig. 4). Following manual quality checking of these molecular
features, the correlation between abundance across the two ioni-
zation modes was found to be very good in many examples with
correlation coefficients (R2) values of 0.63e0.97 for eleven putative
metabolites in Vranec wines, and 0.70e0.99 for nine putative me-
tabolites in Pinot Noir providing a further endorsement of the
approach for elucidation of metabolites of interest (See Supporting
Information Figures S6 & S7). Anthocyanins are of particular in-
terest in this workflow as the cross-sample alignment should
consider Mþ, [M� 2H]- and the proposed [37] [M-2H þ H2O]-

species as characteristic across the two datasets [37], as observed
for the putatively identified peonidin 3-glucoside in Vranec and
malvidin 3-glucoside inMerlot (Fig. 5). Of interest in such examples
is the similarity in gas phase mobility behavior of the ions whereby
the adducted species appears with a bimodal arrival time distri-
bution. We therefore expect that enabling data processing work-
flows to search for and correctly annotate such examples based on
improving understanding of such phenomenawill be of substantial
benefit for metabolomics-based fingerprinting of wine and similar
phenol-rich samples.
4. Conclusion

Assessment of a range of traditionally produced wines origi-
nating from the Republic of Macedonia allowed detailed finger-
prints for individual varieties to be established. Importantly, each
putative compound of interest for a given wine type by statistical
assessment is annotated with retention (LC), accurate mass and
lecular features for Vranec (white) and Pinot Noir (grey) with comparison to data from
iated (triangles) species are shown separately. (For interpretation of the references to



Fig. 5. Results supporting the putative identification of anthocyanins. (a)e(g) malvidin 3-glucoside (C23H25O12) in Merlot and (h)e(n) peonidin 3-glucoside (C22H23O11) in Vranec
using positive and negative data. Theoretical mass spectra calculated using the online EnivPat tool [38].
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standardized CCS information, all of which can be used to support
future comparative studies focusing on wine metabolomics. We
emphasize that the process of populating metabolite spectral li-
braries with CCS for pseudo-molecular ions in both ionization
modes to support accurate mass information requires thorough
reporting of calibration and measurement conditions in order to be
considered as a useful identification point alongside retention time,
accuratemass and diagnostic fragment ions. Furthermore, there is a
rich amount of data from mobility-separated fragments and ad-
ducts that will require software developments to make full use of
this. In this regard, the use of a method for traceable determination
of DTCCSN2 values is of particular importance in endorsing the use of
nested IM separation for characterization of wine and metab-
olomics in general. In addition to expanding our focus toward
extending higher-level metabolite identity confirmation via accu-
rate mass/CCS database building and datamining, future work will
also focus on assessing the quantitative capabilities of LC� IM-
QTOFMS for metabolomics, which is a significant topic of interest
for non-targeted studies in general.
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