
A Software Quality Model for RPG

Gergely Ladányi, Zoltán Tóth, Rudolf Ferenc
University of Szeged

Department of Software Engineering
Dugonics tér 13. H-6720 Szeged, Hungary

{lgergely,zizo,ferenc}@inf.u-szeged.hu

Tibor Keresztesi
R&R Software

H-1038 Budapest,
Ráby Mátyás utca 7, Hungary
tibor_keresztesi@rrsoftware.hu

Abstract—The IBM i mainframe was designed to manage busi-
ness applications for which the reliability and quality is a matter
of national security. The RPG programming language is the most
frequently used one on this platform. The maintainability of the
source code has big influence on the development costs, probably
this is the reason why it is one of the most attractive, observed and
evaluated quality characteristic of all. For improving or at least
preserving the maintainability level of software it is necessary to
evaluate it regularly. In this study we present a quality model
based on the ISO/IEC 25010 international standard for evaluating
the maintainability of software systems written in RPG. As an
evaluation step of the quality model we show a case study in
which we explain how we integrated the quality model as a
continuous quality monitoring tool into the business processes
of a mid-size software company which has more than twenty
years of experience in developing RPG applications.

Keywords—Software maintainability, ISO/IEC 25010, RPG
quality model, IBM i mainframe, case study

I. INTRODUCTION

There are many legacy systems written for mainframe
computers. These systems include critical elements such as
bulk data processing, statistics, and transaction handling. In
1988, IBM introduced the very robust AS/400 platform, which
became very popular to the end of the century (it was later
renamed to IBM i). It has its own programming environment
called ILE (Integrated Language Environment), which allows
using programs written in ILE compatible languages, like the
RPG programming language (Reporting Program Generator).

Business applications developed for the IBM i platform
usually use the RPG high-level programming language. In spite
of the fact that the language was introduced in 1959, RPG is
still widely used nowadays, and it is continuously evolving.
It stands close to database systems and it is usually used for
processing large amount of data.

Our main contribution in this work is the introduction of a
continuous quality management approach specialized to RPG.
According to our best knowledge, no or only very little effort
was invested into researching state-of-the-art quality assurance
techniques for RPG. To explore RPG source code and detect
components which carry high risks, we used the SourceMeter
for RPG static code analyzer tool. The analyzer provides three
types of measurements, which are the following:

• Software Metrics: A software metric in this context is
a measure of some property of the source code [1].
There is a growing need in software development
to define quantitative and objective measurements, so

software metrics are calculated for RPG language ele-
ments (namely for subroutines, procedures, programs,
and for the whole system).

• Rule violations: Rule violations [2] can reveal code
segments which are prone to errors. These can be
coding problems which are introduced e.g. acciden-
tally or because of low-skill programmers, and code
smells that can be symptoms in the source code that
possibly mean a deeper design problem in the code
and can cause incorrect operation in a later stage.
Code smells are not equal to bugs but the presence
of them is increasing the risk of bugs or failures in
the future. Rules are defined for RPG to indicate the
existence of possible code smells. Furthermore, coding
rules are excellent means for defining company coding
standards.

• Code duplications: Duplicated code segments come
usually from the very productive, but at the same
time dangerous source code copy-paste habit. Code
duplications [3] could be handled as a code smell;
however, they cover an important separable part of
quality assurance.

We used these low-level measurements as an input to
provide a diagnosis about an RPG system. This diagnosis,
which characterizes the quality of a whole RPG system, is
provided by the ISO/IEC 25010 [4] standard based new quality
model introduced in this paper. Building and testing a quality
model like this needs specialists in this specific domain. So,
the company called R&R Software1 (mid-sized company with
more than 100 software developers) was involved to help the
calibration and evaluation of the quality model with their deep
knowledge in developing software systems written in RPG.
They clarified the importance of each quality aspect, and also
provided a collection of industrial programs written in RPG.
As a validation of our approach, we show in a case study how
we managed to integrate our method into their development
processes, and how they used it for refactoring purposes.

The paper is organized as follows. In the next section we
summarize some related studies. Next, after a brief overview
of the RPG language, we describe our approach in detail in
Section III. Afterwards, in Section IV we present a case study,
which shows how our approach works in a real life situation. In
Section V, we collect some limitations and threats to validity.
Finally, in Section VI we close the paper with conclusions.

1http://www.rrsoftware.hu/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE Publicatio Repozitórium - SZTE - Repository of Publications

https://core.ac.uk/display/211030041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. RELATED WORK

In this section we provide an overview about the most
important studies about software quality measurement and its
relationship with RPG static code analysis.

A. RPG Analysis

In the last decades several studies have been published
dealing with software metrics. As a principle, Chidamber and
Kemerer provided a number of object oriented metric defini-
tions [5]. Despite RPG is not an object oriented programming
language, this study is essential for further investigations in
the area of software metrics. Chidamber and Kemerer also
developed an automated data collection tool to collect software
metrics. After collecting metrics, they suggested ways in which
managers may use these metrics for process improvement.

Many research effort was put into finding effective migra-
tion strategies for RPG legacy systems. Canfora et al. presented
an incremental migration strategy [6] to transform RPG legacy
programs into an object oriented environment. The migration
strategy consists of six sequential phases, trying to identify
objects in a persistent data storing environment. Applying
migration process is mainly used for transforming RPG II and
RPG III programs into RPG IV.

Software metrics were usually implemented for the most
widely used programming languages like C, C++ [7], Java [8]
and C# [9]. Only a few studies are dealing with the quality
assurance of the RPG language.

In 1982 Hartman [10] published a study which was dealing
with identifying software errors in RPG II and RPG III
systems using Halstead [11] and McCabe [12] complexity
metrics. The study was evaluated on commercially available
RPG modules written within IBM. Using measured metrics,
modules were assigned to low, medium, or high metric value
ranges. Concentrating upon modules that fall into medium and
high metric value ranges increased the effectiveness of finding
the most defects in the whole system. McCabe’s complexity
metric seemed slightly better at identifying modules with
errors than Halstead’s complexity metric. Another early paper
handles the error rate of a software as a measure of code
quality. Naib developed a methodology for the prediction of
the error rate and hence code quality prior to an application’s
release [13]. Naib considered the same metrics (mentioned as
internal factors) as Hartman, namely Halstead’s and McCabe
complexity and also lines of code (LOC). Contrary to them, we
did not use software metrics to identify errors in the system,
but to provide a flexible approach which is able to provide
various quality indices.

Kan et al. [14] were dealing with software quality manage-
ment in AS/400 environment. They identified the key elements
of the quality management method such as customer satis-
faction, product quality, continuous process improvement and
people. Based on empirical data the progress in several quality
parameters of the AS/400 software system were examined.
They presented a quality action road map that describes the
various quality actions that were deployed.

Bakker and Hirdes [15] described some project experiences
using software product metrics. They analyzed more than 10
million lines of code in COBOL, PL/I, Pascal, C, C++, and

RPG (about 1.8 million lines of code). The goals of the projects
written in RPG were maintenance and risk analysis. They
found that the problems in legacy systems have their cause
in the design, not in the structure of the code. Furthermore,
re-designing and re-structuring existing systems are less costly
and safer solutions to these problems than re-building.

Sometimes, RPG legacy systems can be hard to maintain,
improve and expand, since there is a general lack of under-
standing of the systems. Suntiparakoo and Limpiyakorn [16]
presented a method of flowchart knowledge extraction from
RPG legacy code. The extracted flowchart can serve as a
quality assurance item that facilitate the understanding of RPG
legacy code during a software maintenance process.

B. Quality Model

One can see that the set of previous studies on RPG
code maintenance and quality assurance is very limited, thus
a well-defined quality assurance method is desired to handle
maintainability effort questions.

Once we have quality indicators, like software metrics
which are capable to characterize the software quality from
various points of view, it is necessary to standardize this
information somehow [17]. This is the reason why the
ISO/IEC 25010 [4], and its ancestor, the ISO/IEC 9126 [18]
international standards have been created. The research com-
munity reacted quickly to the appearance of these standards,
and several papers have been published in connection to them.
Jung and Kim [19] validated the structure of the ISO/IEC 9126
standard based on the answers of a widespread survey. They
focused on the connections between the subcharacteristics and
the characteristics. They grouped subcharacteristics together
based on the high correlation in their values according to the
evaluators. The authors found that most of the evolved groups
referred to a characteristic defined by the standard.

Since the standards do not provide details about how
these characteristics can be determined, numerous adaptations
and various solutions have been developed for calculating
and assessing the values of the defined properties in the
standard [20], [21], [22].

Zou and Kontogiannis introduced a requirement driven
system transformation approach [23], [24]. They migrated
legacy procedural systems to modern object oriented platforms
while achieving specific quality requirements for the target
system using Markov model approach and the Viterbi algo-
rithm. They used soft-goal dependency graphs to describe their
maintainability and performance quality model for estimating
the quality of the target system. Contrary to them our aim was
not to improve the result of a migration process, but to provide
state of the art quality assurance techniques for legacy RPG
systems. Although the examination of quality dependencies
between the original and the migrated version of RPG legacy
systems is a part of our future work.

Others use benchmarking and quality models to provide
higher level information about a software system. Bench-
marking in software engineering is proved to be an effective
technique to determine how good a metric value is. Alves
et al. [25] presented a method to determine the threshold
values more precisely based on a benchmark repository [26]

holding the analysis results of other systems. The model has
a calibration phase [21] for tuning the threshold values of
the quality model in such a way that for each lowest level
quality attribute they get a desired symmetrical distribution.
They used the 〈5, 30, 30, 30, 5〉 percentage-wise distributions
over 5 levels of quality. To convert the software metrics into
quality indices we also used a benchmark with a large amount
of evaluations, but we applied it in a different way. During
the calibration, instead of calculating threshold values we
approximate a normal distribution function called benchmark
characteristic, which is used to determine the goodness of the
software.

III. APPROACH

In this section we present an approach that is an extension
of earlier research achievements concerning software quality
models [20] and its integration with a continuous quality
monitoring tool called QualityGate2 [27].

First we provide some general information about the struc-
ture of the RPG language. Next, we give an overview about
the used software metrics. Afterwards, we briefly introduce our
probabilistic software quality model, called ColumbusQM [20]
and its implementation to RPG.

A. The RPG Language

In this section we focus on the essential components
that we used for defining the quality model for the RPG
programming language.

Over the years, the data-intensive RPG language has
evolved in many aspects. RPG III (released in 1978) already
provided subroutines, modern structured constructs such as
DO, DO-WHILE, IF. A great break-through was performed
in 1994, when the first version of RPG IV was released.
With the release of RPG IV, developers obtained new features
like free-form blocks or definition specifications, and the set
of available operations was extended as well. RPG supports
different groups of data types, namely character data types
(Character, Indicator, Graphic, UCS-2), numeric data types
(Binary Format, Float Format, Integer Format, Packed-Decimal
Format, Unsigned Format, Zoned-Decimal Format), date, time
and time stamp data types, object data type (user can define
Java objects), and one can define pointers to variables, pro-
cedures and programs. In RPG IV there are two types of
functions. The first one is called subroutine which takes no
parameter and has a limited visibility and usability. Procedures
are more flexible constructs since they can have parameters and
they can be called from other programs.

Figure 1 lists a sample RPG IV code fragment. The
code snippet presents some features and capabilities of the
RPG language. From the beginning, RPG uses the column-
dependent source format. In this way programming requires
the code elements to be placed in particular columns. For
instance, the character in the 6th column means the spec-
ification type. In Figure 1 there are Control (H), File (F),
and Definition (D) specifications. Calculation specifications
(column-dependent) can be added to perform an appropriate
sequence of calculations. Since RPG IV, it is possible to use the

2https://www.quality-gate.com/

....+....1....+....2....+....3....+....4....+....5....+...
H DATEDIT(*DMY/)
FEMPLOYEE IF E K DISK
D Pay S 8P 2

* Prototype Definition for subprocedure CalcPay
D CalcPay PR 8P 2
D Rate 5P 2 VALUE
D Hours 10U 0 VALUE
D Bonus 5P 2 VALUE
/free

chain trn_number emp_rec;
if %found(emp_rec);

pay = CalcPay (emp_rate: trn_hours: trn_bonus);
endif;

/end-free

Figure 1. Sample RPG IV code

free-form blocks for column-independent calculations. In this
sample, payment is calculated by a procedure named CalcPay
(prototype declaration can be found in the sample, but the
definition is not presented here). In this paper, our point is
not to present all RPG language capabilities, but just to show
the reader how it looks like. For details, see the ILE RPG
Programmer’s Guide on IBM’s website.3

B. SourceMeter for RPG

A core item in source code quality assurance is a tool set
that provides useful information about a system from different
points of view. In our study the static code analysis was done
by a tool called SourceMeter for RPG4. Since our focus in this
paper is not on static analysis, we will present the capabilities
of the tool only briefly.

Using the tool, we can calculate different metrics for
source code elements located in RPG source files, namely for
Subroutines, Procedures, Programs and for the whole System.
Metrics are organized into four groups to indicate the role and
characteristics of them. These groups are listed in the following
(some group members are also presented in parentheses):

• Size (LOC, LLOC)
• Documentation (CLOC, CD)
• Coupling (NII, NOI)
• Complexity (NLE, McCC)

The quality model which will be presented in Section III-C,
uses these source code metrics as low-level quality indicators.
The description of the used software metrics and quality
characteristics can be found in Table I.

SourceMeter also collects information about rule violations
found in RPG source files. Rule violations do not result in
immediate errors, but they indicate the locations in source code
where possibly deeper problems exist. SourceMeter contains
a wide range of rules defined for the RPG language. Rules
are not categorized like metrics, but classified into three
groups according to their criticality. These three groups are
the followings (with a given sample):

• Warning P1 (Forbidden operation used)
• Warning P2 (Too Deep Copy/Include nesting)
• Warning P3 (Debug operations should be avoided)

3https://publib.boulder.ibm.com
4https://www.sourcemeter.com/

Table I. DESCRIPTION OF THE NODES IN THE RPG QUALITY MODEL.

Sensor nodes

CC Clone coverage. The percentage of copied and pasted source code parts, computed for the
subroutine, procedure, program, and the system itself.

CLOC Comment Lines of Code. Number of comment and documentation code lines of the subrou-
tine/procedure/program. Subroutines’ CLOC are not added to the containing procedure’s
CLOC. Similarly, subroutines’ and procedures’ CLOC are not added to the containing
program’s CLOC.

CD Comment Density. The ratio of comment lines compared to the sum of its comment and
logical lines of code (CLOC and LLOC). Calculated for subroutines, procedures, and
programs.

LLOC Logical Lines of Code. Number of code lines of the subroutine/procedure/program,
excluding empty and comment lines. In case of a procedure, the contained subroutines’
LLOC is not counted. Similarly, in case of a program, the contained subroutines’ and
procedures’ LLOC is not counted.

McCC McCabe’s Cyclomatic Complexity [28] of the subroutine/procedure. The number of
decisions within the specified subroutine/procedure plus 1, where each if, else-if, for,
do, do-while, do-until, when, on-error counts once. Subroutines’ McCC are not added to
the containing procedure’s McCC.

NLE Nesting Level Else-If. Complexity of the subroutine/procedure/program expressed as the
depth of the maximum embeddedness of its conditional and iteration block scopes, where
in the if-else-if construct only the first if instruction is considered. The following RPG
language items are taken into consideration: if, for, do, do-while, do-until, select, and
monitor. The else-if, else, when, other, and on-error operations do not increase the value
of the metric; however, they can contain elements defined above, which increase NLE.
Subroutines’ NLE are not added to the containing procedure’s NLE. Similarly, subroutines’
and procedures’ NLE are not added to the containing program’s NLE.

NII Number of Incoming Invocations. Number of other subroutines which directly call the
subroutine.

NOI Number of Outgoing Invocations. Number of other subroutines which are directly called
by the subroutine.

Warning P1 The number of critical rule violations in the subroutine/procedure/program. They can be
potential root causes of system faults.

Warning P2 The number of major rule violations in the subroutine/procedure/program. Serious coding
issues which makes the code hard to understand, and can decrease efficiency.

Warning P3 The number of minor rule violations in the subroutine/procedure/program. These are only
minor coding style issues, makes the source code harder to comprehend.

Aggregated nodes

Changeability The capability of the software product to enable a specified modification to be imple-
mented, where implementation includes coding, designing and documenting changes.

Complexity Represents the overall complexity of the source code. It is represented by the McCabe’s
Cyclomatic Complexity and the Nested level of the subroutines.

Comprehensibility Expresses how easy it is to understand the source code. It involves the complexity,
documentation and size of the source code.

Documentation Expresses how well the source code is documented. It is represented by the density and
the amount comment lines of code in a subroutine.

Fault proneness Represents the possibility of having a faulty code segment. Represented by the number of
minor, major and critical rule violations.

Stability The capability of the software product to avoid unexpected effects from modifications of
the software.

Aggregated nodes defined by the ISO/IEC 25010 standard

Maintainability Degree of effectiveness and efficiency with which a product or system can be modified to
improve it, correct it or adapt it to changes in environment, and in requirements.

Analyzability Degree of effectiveness and efficiency with which it is possible to assess the impact on
a product or system of an intended change to one or more of its parts, or to diagnose a
product for deficiencies or causes of failures, or to identify parts to be modified.

Modifiability Degree to which a product or system can be effectively and efficiently modified without
introducing defects or degrading existing product quality.

Testability Degree of effectiveness and efficiency with which test criteria can be established for a
system, product or component and tests can be performed to determine whether those
criteria have been met.

Reusability The degree to which an asset can be used in more than one system, or in building other
assets.

These groups are based on priorities. The Warning P1
group represents critical, Warning P2 major, and Warning
P3 means minor rule violations. One can see that using a
forbidden operation (defined by the actual company standards)
is more undesired than a debug message. For every code
element (subroutine, procedure, program, system), summarized
values are calculated to indicate the amount of rule violations
located in that appropriate code segment for each rule. The
quality model uses the number of rule violations according to
their priorities.

The third component of SourceMeter is responsible for
detecting the software code clones, also known as code
duplications. A code clone is a source code fragment that
occurs more than once in a given software system. Clones
are usually undesired, because of their possible side-effects.
One harmful effect occurs when a code part with bugs in it
is copied. Furthermore, duplicated code instances are hard to
actualize and maintain. SourceMeter can detect different types
of duplicated code parts in the source code, and also organize
the found code parts into clone groups (clone class - CCL). The

Figure 2. RPG quality model ADG

amount of cloned code is a very important metric to take into
consideration if we want to estimate the effort of maintaining a
system. SourceMeter for RPG provides different clone metrics
for the analyzed software system. Some of them are listed
below:

• Clone Class (CCL) – number of clone classes.

• Clone Instance (CI) – number of clone instances.

• Clone Coverage (CC) – percentage of copied and
pasted source code parts, computed for the subroutine,
procedure, program, and the system itself.

• Clone Age (CA) – number of previously analyzed
revisions in which the clone was presented.

• Clone Complexity (CCO) – McCC complexity for
clone instance. For clone classes CCO is the sum of
CCO of each CI in the clone class.

C. Qualification Method

In this section we provide a brief overview about the
probabilistic software quality model called ColumbusQM [20]
and show how we implemented the general approach for the
RPG language.

The ISO/IEC 25010 international standard defines the
product quality characteristics which are widely accepted both
by industrial experts and academic researchers. These char-
acteristics are: functional suitability, performance efficiency,
compatibility, usability, reliability, security, maintainability and
portability. In this study we focused on maintainability because
of its obvious and direct connection with the costs of altering
the behavior of the software. The standard defines the subchar-
acteristics of maintainability as well, but it does not provide
further details how we could calculate these characteristics and
subcharacteristics.

The basic idea behind the ColumbusQM is splitting the
complex problem of calculating a high-level quality character-
istic into less complex sub-problems. In the quality model the
relations between the lower level metrics which can be readily
obtained from the source code and the higher level quality
characteristics can be described with an acyclic directed graph,
called the attribute dependency graph (ADG). The developed
ADG for RPG language is shown in Figure 2.

The black nodes in the model are defined by the
ISO/IEC 25010 international standard, the white nodes are the
source code metrics calculated by the SourceMeter for RPG
tool, and finally, the gray nodes are the inner nodes defined by
us to help revealing the dependencies in the model. We call
the source code metric nodes as Sensor nodes and the other
nodes as Aggregated nodes. Table I contains the descriptions
of all nodes.

Although the basic structure of the ADG is based on an
earlier Java quality model [20], the differences between the
languages caused modifications. The most important difference
is that we could not apply object oriented metrics in the
RPG quality model because it is a procedural programming
language.

An essential part of the approach besides the quality
model is the benchmark, which contains several RPG systems.
By comparing the system with the applications from the
benchmark, the approach converts the low-level source code
metrics into quality indices. Formally, each source code metric
can be regarded as a random variable that can take real
values with particular probability values. For two different
software systems, let h1 (t) and h2 (t) be the probability
density functions corresponding to the same metric. Now, the

goodness value of one system with respect to the other, is
defined as

D (h1, h2) =

∫ ∞
−∞

(h1 (t)− h2 (t))ω (t) dt,

where ω (t) is the weight function that determines the notion
of goodness. Figure 3 helps us understand the meaning of the
formula: it computes the signed area between the two functions
weighted by the function ω (t).

Figure 3. Comparison of probability density functions

For the edges of the ADG, a survey was prepared. In this
survey the developers were asked to assign weights to the
edges, based on how they felt about the importance of the
dependency.

Consequently, a multi-dimensional random variable ~Yv =(
Y 1
v , Y

2
v , . . . , Y

n
v

)
will correspond to each higher level node

v. Classically, a linear combination of goodness values and
weights is taken, and it is assigned to the higher level node.
When dealing with probabilities, one needs to take every
possible combination of goodness values and weights, and also
the probabilities of their outcome into account. We define the
aggregated goodness function for the node v in the following
way:

gv(t)=

∫
t=~q~r

~q=(q1, . . . , qn) ∈ ∆n−1

~r=(r1, . . . , rn) ∈ Cn

~f~Yv
(~q)g1(r1). . .gn(rn)d~rd~q, (1)

where ~f~Yv
(~q) is the probability density function of ~Yv ,

g1, g2, . . . gn are the goodness functions corresponding to the
incoming nodes, ∆n−1 is the (n− 1)-standard simplex in <n

and Cn is the standard unit n-cube in <n.

Although the formula may look frightening at first glance,
it is just a generalization of how aggregation is performed
in the classic approaches. Classically, a linear combination
of goodness values and weights is taken, and it is assigned
to the aggregate node. When dealing with probabilities, one
needs to take every possible combination of goodness values
and weights, and also the probabilities of their outcome into
account. Detailed overview of the ColumbusQM can be found
in our earlier paper [20].

D. Integration with QualityGate

Since our intention was to provide valuable information
for the managers and developers on a daily basis it was
necessary to integrate our approach into a continuous quality
management tool. The SourceMeter for RPG tool and the

ColumbusQM approach was integrated into a tool called
QualityGate [27]. As a comprehensive software quality man-
agement platform, QualityGate is capable of calculating quality
values using the ColumbusQM from source code using a wide
range of software quality metrics provided by the SourceMeter
for RPG tool. It is empowered by a built-in quality model con-
forming to the ISO/IEC 25010 standard and has a benchmark
containing analysis data from a large number of RPG systems.
This makes it possible to calculate objective quality attributes
and estimate upcoming development costs [29].

IV. CASE STUDY

In this section we present our empirical results about how
we managed to integrate the introduced quality model for RPG
approach and the QualityGate tool suite into the life of a mid-
sized software company.

We organized the case study into four consecutive phases.
In the first, initial phase we calibrated the SourceMeter for
RPG tool and created a benchmark and a quality model for
RPG. In the next, integration phase we prepared the IBM i
mainframe to regularly generate spool files and upload it into
a subversion repository. In the refactoring phase a software
module was improved based on the guidelines of the approach.
Finally, the last part of the case study is the discussion phase,
where we discussed our experiences about the approach.

A. Initial Phase

In the initial phase we personalized our approach to the
R&R Software company. First we went through every software
metric, rule violation and clone properties and calibrated them
in cooperation with RPG experts.

We created a survey to set the priorities of each rule viola-
tion. Developers classified each rule violation as minor, major
or critical. We also implemented some new rule violations
which seemed useful based on their opinions. We also asked
them to set the limits of specific rule violations, for example
what is the Nesting Level (NLE) value which is too much for
a subroutine and we need to mark it as a rule violation.

To build a benchmark, we used large, real-life RPG mod-
ules provided by the company. The basic statistics of them
can be found in Table II. As we can see there are applications
from 18K to 129K total logical lines of code (TLLOC) and
with thousands of subroutines. Since we wanted to compare
the given application to the other application of the company
in this study we used these four systems as benchmark.

Table II. BASIC STATISTICS OF THE BENCHMARK SYSTEMS.

System TLLOC Program num. Subroutine num.
AB 128,146 264 5,355
IV 18,378 62 850
LG 65,655 163 2,336
PR 129,484 288 5,944

Finally, we created and weighted a quality model in coop-
eration with them. This quality model can be seen in Figure 2
which has been already introduced in Section III-C.

B. Integration Phase

In the second phase we integrated our approach into their
IBM i programming environment. The flowchart of the whole
approach is shown in Figure 4.

Figure 4. Process chain of the approach.

First of all we had to program the IBM i mainframe to
generate the spool files from the chosen system on a daily
basis. Spool files are the results of the RPG compilation and
besides the source files they contain several useful information
about the compilation. SourceMeter for RPG supports both
spool files and raw source files, but since spool files contain
more information it is recommend to use them. After the spool
file generation is finished, the IBM i starts a script which
uploads the spool files to an SVN version control system.

We used an extendable open source continuous integra-
tion server called Jenkins5 to analyze every version in the
subversion repository. Jenkins makes it possible to extend the
build system with various plugins. We implemented a Jenkins
plugin, which provides a user interface where the user can set
the specific properties of the evaluation, like the used quality
model, subversion repository, or frequency of the analysis.
By using the plugin, when a new version is committed to
the subversion repository, Jenkins automatically downloads the
source files and executes the SourceMeter for RPG tool and
right after it uploads the results to the database of QualityGate.

Finally, QualityGate shows the quality of the evaluated ver-
sions on different timeline and spider charts. On the timelines
the developers can choose a specific version and find the root
cause why the given quality characteristic has been changed.

C. Refactoring Phase

As a result of the previous phases, the continuous quality
monitoring tool was ready for use. R&R selected a part of the
LG module for refactoring, which they wanted to improve.
The basic statistics before and after the refactoring of this

5http://jenkins-ci.org/

Figure 5. Low-level quality results.

Figure 6. High-level quality results.

submodule can be seen in Table III. As it was hoped and
expected, during the refactoring the overall maintainability of
the module increased. The number of critical rule violations
halved and only about one third of the major rule violations
remained in the code. The clone coverage of the module did not
change, since no effort was put into reducing clones. Also, the
developers did not reduce the number of minor rule violations.

Table III. BASIC STATISTICS OF THE LG SUBMODULE BEFORE AND
AFTER THE REFACTORING.

Property Before refactoring After refactoring
TLLOC 5,266 5,319
Program num. 9 9
Subroutine num. 226 233
Maintainability 4.87 5.41
WarningP1 num. 109 53
WarningP2 num. 238 80
WarningP3 num. 262 262
Clone Coverage 0.17 0.17

The initial low and high-level quality results of the submod-
ule can be seen in Figure 5 and Figure 6. The maintainability
of this system before the refactoring was 4.87 on the scale of
[0,10] (larger is better). Since the average is 5, this means the
initial maintainability of the selected LG submodule is slightly
under the average. Based on Figure 5, we can assume that this

is mostly because of the NII, NOI, McCC and NLE metrics,
because their goodness value is the lowest in the model.
According to the RPG quality model, the metrics influence
the goodness of the Complexity and Reusability aggregated
nodes, e.g. Complexity is calculated from McCC and NLE,
and it also has a very low 3.38 goodness value.

The business process of a refactoring task is quite simple
with QualityGate. The lead developer needs to find a coding
issue based on the guidelines of the approach. This issue
can be for example a badly maintainable subroutine, a rule
violation or a code duplication. The next step is to assign the
issue as a ticket to a suitable developer with some comment.
Finally, the developer has to fix the specified issue. At the
time the developer committed the fix for the issue the new
version will be uploaded to QualityGate. If the issue was a
rule violation or a code duplication, the validation of the fix is
done automatically, since it disappeared from the new version.

The progress of the maintainability quality characteristic
of the system during the whole refactoring process can be
seen in Figure 7. As it was expected, the maintainability
of the submodule increased with almost every new version.
After a week of refactoring the quality of the submodule
went above 5. It means it became more maintainable than
the average according to the benchmark. As we can see in
Figure 7, at this time the color of the timeline changed from
red to green, meaning the quality of the system reached a
specific threshold value. This previously set threshold value
determines whether the system is in NO-GO or GO state. In
this way managers can easily set the target quality of a specific
application.

Figure 7. Maintainability quality timeline.

In Figure 8 we can see that in the first week of the refac-
toring no effort was put into improving the McCC complexity
of the module. Although at the end of the refactoring process
it increased by 0.5, it remained still under 3. The complexity
of the system is still critical, but during the refactoring its
goodness increased from 3.38 to 3.69.

Figure 8. McCC quality timeline.

In Table III we saw that the number of critical rule
violations (WarningP1) decreased a lot during the refactoring.
This improvement can be seen on the quality timeline of
the WarningP1 node in Figure 9. If we compare it with the
maintainability timeline, we can see that fixing critical rule vi-
olations had an important role in the two highest improvement
on the maintainability timeline. This improvement was caused
mainly by the elimination of rule violations.

Figure 9. WarningP1 quality timeline.

In the following, two simple cases will be shown to demon-
strate the refactoring mechanism applied on the elimination
of rule violations. Companies have different standards for the
allowed set of operations to be used in the code. Since the
given set can differ in companies, the list of operations to
avoid in code is customizable. At R&R Software, ADDDUR
is one of these operations to avoid. Using such an operation
is forbidden according to the company’s standard.

Look at the code snippet from the LG module, shown in
Figure 10. A subroutine definition can be seen named fk0601.
In the first step a checking subroutine is called, then if no
error was found in the date format an assignment is done,
and finally another check is performed by calling ckfm01.
The ADDDUR operation adds the duration specified in the
second operand called factor 2 (“7:*days” which means that
the number of days is increased by seven) to a date or time
and places the resulting Date, Time or Timestamp in the result
field (@@date). Since the ADDDUR operation is on the avoid
operation list, a critical rule violation will occur pointing to the
relevant code location.

To eliminate ADDDUR from the code, refactoring should
be performed on the code. In Figure 11 the same fk0601
subroutine is shown with some modifications. After checking
whether the date is in the desired format, the two eval and
the adddur operations were combined into one single eval
operation that has the same functionality.

Another critical rule violation is when a programmer does
not specify an error handling subroutine on a File Specification

....+....1....+....2....+....3....+....4....+....5....+...
C fk0601 begsr
C exsr ckdtfr

* No error --> Process
C *in99 ifeq *off
C eval @@date = %date(wsdtfr)
C adddur 7:*days @@date
C eval wsdtfr = %dec(@@date)
C exsr ckfm01
C endif
C endsr

Figure 10. Using avoid operation in a subroutine

....1....+....2....+....3....+....4....+....5....+...
C fk0601 begsr
C exsr ckdtfr

* No error --> Process
C *in99 ifeq *off
C eval wsdtfr = %dec(%date(wsdtfr)

+%days(7))
C exsr ckfm01
C endif

Figure 11. Eliminate avoid operation rule violation

line, thus error(s) occurred during file management will not
be handled correctly. In Figure 12 a file named lro1000c is
specified as an external file and also a fully procedural file
is stored on a local disk for only input purposes (in this
program). A line continuation is added with a keyword rename
to reference the file more easily from code. In this case, to
handle input errors on file lro1000c, we need to add another
keyword that is infsr. The given parameter of the infsr keyword
is the name of the subroutine that will handle occurring input
errors. The corrected source snippet can be seen in Figure 13.
A keyword has been added that marks srinfs as the error
handling subroutine.

....1....+....2....+....3....+....4....+....5....+...
Flro1000c if e k disk
F rename(rorc:ro1000cr)

Figure 12. Missing error handling on File Specification

....1....+....2....+....3....+....4....+....5....+...
Flro1000c if e k disk
F infsr(srinfs)
F rename(rorc:ro1000cr)

Figure 13. Eliminate missing error handling on File Specification

By eliminating these critical rule violations it is very likely
that the quality of the system will improve. Nevertheless, as
we have seen the quality index is calculated from a wide set
of metrics. Consider a case when a programmer is told to
eliminate a code clone. So, the developer extracts the cloned
code parts into a procedure and calls it from the right places
where formerly the clones were located (assume that clone
instances were located in two subroutines). In this case, the
value of the CC (Clone Coverage) metric will be lower, but the
NOI (Number of Outgoing Invocations) values will increase
for both subroutines. To sum up, improving one characteristic
of the system does not necessarily result in the improvement
of the quality index of the system.

D. Discussion Phase

The last phase was the discussion phase where we con-
cluded our experiences about the approach in a workshop.
Altogether they found our approach useful and easy to use.
We organized their opinions into the following four points.

• According to them one of the most important feature
of the approach is that they were able to check the
RPG coding conventions inside the company using
the precisely calibrated rule violations and metrics.
This feature helped them to force their developers
to avoid undesirable solutions. This makes the source
code more maintainable since when a few months later

a different developer would like to maintain the code
part it will be much easier.

• The personalization of the approach can be done
easily. QualityGate provides user interfaces to create
new benchmarks and quality models. In the future they
would like to use this feature to validate and upgrade
their source code generator with a quality model which
is not designed for maintainability, but for their special
task.

• The best time to use the method is before testing,
since the tool could help preventing unnecessary test
cycles by revealing faults. Another good occasion to
use the method is when a new project is started or an
application needs to be upgraded.

• A long term benefit of using this approach is that
developers will learn what are the common patterns
solving different problems and what needs to be
avoided. In this way not only the company will benefit
using the approach but the developers as well.

V. THREATS TO VALIDITY, LIMITATIONS

Altogether the results are promising, but we have to high-
light the limitations and the threats to validity of our approach
as well.

One major limitation of our approach is generality, since
the entire process was designed within a cooperation of one
software company. The quality model reflects their and our
opinion, the benchmark was created from their software sys-
tems and they designed several rule violations. The approach
can be used in other companies as well, but it is highly
recommended to create a new benchmark and calibrate the
weights of the used quality model.

The validation of our method was based barely on the
opinions of the developers about the improvement of one
submodule. Examining more refactoring processes, collecting
exact values and running statistical tests would have provided
more precise results, but only a few developers were working
on the refactoring project and we could not run such tests
because of the lack of data.

A big question about software metrics and rule violations
affects the reliability of our approach as well. We know that
they are useful, they are proved to be good indicators for
some aspects of software quality, but maintainability is still
a subjective high-level characteristic, and we cannot be sure
that we took every important aspect into consideration.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced a software quality model for the
RPG programming language which conforms to the ISO/IEC
25010 international standard, and integrated it into the contin-
uous software quality monitoring tool called QualityGate. We
used software metrics, rule violations and code duplications to
estimate the maintainability of RPG software systems and to
reveal various source code issues.

As a validation of our approach we presented a case study
in cooperation with the R&R Software development company.
We organized the case study into four phases. In the initial

phase we calibrated the parameters of the tools, and in the
second phase we set up the IBM i compiler to generate spool
files into a subversion repository on a daily basis. The third
phase of the case study was the refactoring of one of their
submodules by the company. Finally, as a conclusion, we
discussed their experiences in using our approach.

Based on the opinions of the developers, the industrial
application of our method was a success. During the refac-
toring phase, the number of critical and major rule violations
halved. Despite the fact that the complexity goodness of the
examined system is still under the average, its maintainability
value increased and crossed the baseline value, so the state of
the project was changed from NO-GO to GO.

In the future we would like to analyze more RPG systems
and create domain specific benchmarks. By extending the
quality model with new metrics, more aspects could be taken
into consideration. We would also like to collect more votes
to the edges of the quality model to improve the generality
of our method. Based on a widespread survey we would like
to investigate the relationship between the exactly calculated
quality values and the subjective opinions of RPG experts.
Since we are able to measure the quality of the original and
the migrated version of a legacy system it would be interesting
to study their quality differences and using these experiences
to provide better migration algorithms.

We also plan to extend the presented approach to further
programming languages and perform similar industrial case
studies to the one presented in this paper.

ACKNOWLEDGMENT

This research was supported by the Hungarian national
grant GOP-1.1.1-11-2012-0323.

REFERENCES

[1] S. Chidamber and C. Kemerer, “A Metrics Suite for Object-Oriented
Design,” in IEEE Transactions on Software Engineering 20,6(1994),
1994, pp. 476–493.

[2] C. Boogerd and L. Moonen, “Assessing the Value of Coding Standards:
An Empirical Study.” in Proceedings of the 24th IEEE International
Conference on Software Maintenance (ICSM 2008). IEEE, 2008, pp.
277–286.

[3] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
Detection Using Abstract Syntax Trees,” in Proceedings of the 14th
International Conference on Software Maintenance (ICSM’98). IEEE
Computer Society, 1998, pp. 368–377.

[4] ISO/IEC, ISO/IEC 25000:2005. Software Engineering – Software
product Quality Requirements and Evaluation (SQuaRE) – Guide to
SQuaRE. ISO/IEC, 2005.

[5] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design,” Software Engineering, IEEE Transactions on, vol. 20, no. 6,
pp. 476 –493, jun 1994.

[6] G. Canfora, A. De Lucia, and G. A. Di Lucca, “An incremental
object-oriented migration strategy for rpg legacy systems,” International
Journal of Software Engineering and Knowledge Engineering, vol. 9,
no. 01, pp. 5–25, 1999.

[7] R. Ferenc, I. Siket, and T. Gyimóthy, “Extracting Facts from Open
Source Software,” in Proceedings of the 20th International Conference
on Software Maintenance (ICSM 2004). IEEE Computer Society, Sep.
2004, pp. 60–69.

[8] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck
metrics for object-oriented design complexity: Implications for software
defects,” Software Engineering, IEEE Transactions on, vol. 29, no. 4,
pp. 297–310, 2003.

[9] P. Hegedűs, “A Probabilistic Quality Model for C# – an Industrial Case
Study,” Acta Cybernetica, vol. 21, no. 1, pp. 135–147, 2013.

[10] S. D. Hartman, “A counting tool for RPG,” in ACM SIGMETRICS
Performance Evaluation Review, vol. 11, no. 3. ACM, 1982, pp. 86–
100.

[11] M. H. Halstead, Elements of Software Science (Operating and Pro-
gramming Systems Series). New York, NY, USA: Elsevier Science
Inc., 1977.

[12] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software
Engineering, vol. 2, pp. 308–320, July 1976.

[13] F. A. Naib, “An application of software science to the quantitative
measurement of code quality,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 11, no. 3. ACM, 1982, pp. 101–128.

[14] S. H. Kan, S. Dull, D. Amundson, R. J. Lindner, and R. Hedger,
“AS/400 software quality management,” IBM Systems Journal, vol. 33,
no. 1, pp. 62–88, 1994.

[15] G. Bakker and F. Hirdes, “Recent industrial experiences with software
product metrics,” in Objective Software Quality. Springer, 1995, pp.
179–191.

[16] K. Suntiparakoo and Y. Limpiyakorn, “Flowchart Knowledge Extraction
on RPG Legacy Code,” Advanced Science and Technology Letters
(ASEA 2013), vol. 29, pp. 258–563, 2013.

[17] T. L. Alves, P. Silva, and M. S. Dias, “Applying ISO/IEC 25010
Standard to prioritize and solve quality issues of automatic ETL
processes,” IEEE International Conference on Software Maintenance
(ICSM 2014), pp. 573–576, 2014.

[18] ISO/IEC, ISO/IEC 9126. Software Engineering – Product quality.
ISO/IEC, 2001.

[19] H.-W. Jung, S.-G. Kim, and C.-S. Chung, “Measuring Software Product
Quality: A Survey of ISO/IEC 9126,” IEEE Software, pp. 88–92, 2004.

[20] T. Bakota, P. Hegedűs, P. Körtvélyesi, R. Ferenc, and T. Gyimóthy,
“A Probabilistic Software Quality Model,” in Proceedings of the 27th
IEEE International Conference on Software Maintenance (ICSM 2011).
Williamsburg, VA, USA: IEEE Computer Society, 2011, pp. 368–377.

[21] R. Baggen, K. Schill, and J. Visser, “Standardized Code Quality Bench-
marking for Improving Software Maintainability,” in Proceedings of the
Fourth International Workshop on Software Quality and Maintainability
(SQM 2010), 2010.

[22] J. Bansiya and C. Davis, “A Hierarchical Model for Object-Oriented
Design Quality Assessment,” IEEE Transactions on Software Engineer-
ing, vol. 28, pp. 4–17, 2002.

[23] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos, “Requirements-
driven software re-engineering framework,” in Reverse Engineering,
2001. Proceedings. Eighth Working Conference on. IEEE, 2001, pp.
71–80.

[24] Y. Zou and K. Kontogiannis, “Migration to object oriented platforms:
A state transformation approach,” in Software Maintenance, 2002.
Proceedings. International Conference on. IEEE, 2002, pp. 530–539.

[25] T. L. Alves, C. Ypma, and J. Visser, “Deriving Metric Thresholds
from Benchmark Data,” in Proceedings of the 26th IEEE International
Conference on Software Maintenance (ICSM 2010), 2010.

[26] J. P. Correia and J. Visser, “Benchmarking Technical Quality of Soft-
ware Products,” in Proceedings of the 15th Working Conference on
Reverse Engineering (WCRE 2008). Washington, DC, USA: IEEE
Computer Society, 2008, pp. 297–300.

[27] T. Bakota, P. Hegedűs, I. Siket, G. Ladányi, and R. Ferenc, “QualityGate
SourceAudit: A Tool for Assessing the Technical Quality of Software,”
in Software Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference on.
IEEE, 2014, pp. 440–445.

[28] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, no. 4, pp. 308–320, 1976.

[29] T. Bakota, P. Hegedűs, G. Ladányi, P. Körtvélyesi, R. Ferenc, and
T. Gyimóthy, “A Cost Model Based on Software Maintainability,” in
Proceedings of the 28th IEEE International Conference on Software
Maintenance (ICSM 2012). Riva del Garda, Italy: IEEE Computer
Society, 2012.

