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Abstract 

Container terminals play an indispensable role in loading/unloading containers from/to 

container vessels, since more than 80% of international trade volume in goods is 

transported by sea. This research aims to improve container terminal operational efficiency, 

particularly in the seaside area. Three major problems occur in this area during the planning 

and scheduling of incoming vessels. The first problem is the Berth Allocation Problem 

(BAP), which is associated with allocating berthing space and time to vessels. The second 

is the Quay Crane Assignment Problem (QCAP), which is on assigning a number of cranes 

(QCs) to vessels such that all required transhipments of containers can be fulfilled. The 

third is the Quay Crane Scheduling Problem (QCSP), which is on scheduling the sequence 

transhipment operations of the assigned QCs to the appropriate vessels. These problems 

can be solved independently. However, the first two problems are dependent on one 

another. The number of available QCs depends on when and where the vessel is berthed, 

and the berthing handling time varies depending on the number of QCs that can be or are 

assigned. 

This research addresses the integrated Berth Allocation and Quay Crane Assignment 

Problem (BACAP). The research has developed three models. The first model solves the 

BACAP with a large-scale benchmark. The second model solves the BACAP with the 

desired berthing position. These models consider the setting to be a single port with a single 

terminal. The third model solves the BACAP with desired berthing position by considering 

there to be multiple ports with multiple terminals. The common objectives are to minimise 

the total service time for the vessels (waiting time plus handling time), to minimise the total 

terminal costs and to maximise the utilisation of the quay cranes. The BACAP has been 

proven to be an NP-hard problem. Consequently, the large-scale instances are difficult to 

solve using exact methods. Therefore, heuristic methods are essential to solve this type of 

problem in an acceptable computational time. 

This research provides a novel self-adaptive constructive meta-heuristic algorithm using 

genetic programming (GP) and a genetic algorithm (GA) for solving the continuous 

dynamic BACAP. The vessel priority rule has a crucial impact on the scheduling processes 

in order to achieve the vessel operators and terminal operators’ goals. As a result, this 

research uses GP to evolve effective and robust composite dispatching rules to select the 

priority of the incoming vessels automatically with regard to the problem’s constraints and 

berth layout. The outcome will be a solver for the BACAP rather than a solution that can 

find an optimal or near optimal solution.  

The research solves the problem with different constraints and well-known benchmarks for 

large and small-scale instances. Comparative studies based on extensive computational 

experiments of the model and the literature were performed to verify its performance. 

Furthermore, the research extends the current state-of-the-art by innovating a new 

mathematical model to integrate the operational planning levels and solve the BACAP with 

multiple ports, in which one terminal operator owns multiple ports with multiple terminals 

and the incoming vessels have no restriction concerning berthing in any of them. 

The computational results of all proposed models show high performance when it comes 

to solving the BACAP in both single and multiple ports. The results indicate that the 

frameworks are quite competitive with other techniques and outperform other heuristic-

based frameworks on many occasions. Finally, the research presents future work areas and 

proposes an approach to unify the literature benchmarks and to develop a dataset generator.  
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1 

Chapter 1 : Introduction 

 

This chapter introduces the context of this research. It highlights the importance of 

the research by providing the motivation and scope of the research. Furthermore, 

the chapter presents the research framework and the direction followed in order to 

achieve the research objectives. Finally, it demonstrates the research structure and 

the organisation of the thesis. 

 

1.1 Motivation and Scope of Research 

The port industry has a significant economic impact on the global economy. This 

impact is expected increase over the next few years (European Commission, 2013). 

Ports, and container terminal ports in particular, are considered to be vital 

accelerators of local trade development in the age of globalisation. Therefore, 

global containerised trade volumes are experiencing a rapid increase. In 2015, they 

reached 1.69 billion tons, equivalent to 175 million twenty-foot equivalent units 

(TEUs) as seen in Figure 1-1 (UNCTAD, 2016). A recent European commission 

study on Europe’s Seaport 2030 key facts (European Commission, 2013) found that 

the cost and quality of port services are major factors for future European business 

to consider. Moreover, the cost of handling cargo, port dues and nautical port 

services can account for between 40%-60% of the total logistics chain costs 

concerning transported goods. However, Europe's ports face three significant 

challenges: 

- A 50% growth of the amount of cargo handled in European Union seaports 

is expected by 2030. 

- The newest generation of container ships can carry more containers. 

- The performance gap between Europe's ports produces enormous 

inefficiencies – longer routes, longer sea and land trips, more transport 

emissions and more congestion of the economy. 
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Container terminal seaports play an essential role in the maritime transportation life 

cycle, as they are the intersection point between sea and land global transport 

chains. Ships might have to wait for a berthing location and other terminal logistical 

services. Time is money; ports may not become attractive for shippers if the waiting 

time for ships to be served increases even if the port charges are low. Vessel 

operators expect the service at any port to be handled in a short amount of time in 

order to save on their running expenses. On the other hand, terminal operators 

expect to reduce their terminal costs, making sure to meet the customers' 

satisfaction standards and to increase the productivity of their terminals. Therefore, 

terminal operators might have the facilities to find optimal choices to respond to 

any conceivable scenario. This has opened up various challenging combinatorial 

optimisation problems in the field of maritime transportation. 

Computer technology has become an essential part of intelligent management 

systems used in container terminal operations. Operations research (OR) methods 

seek to innovate ways to enable the port operators to come up with cost-effective 

scheduling plans for vessels visiting their ports. The field of OR has significantly 

evolved over the years, and the problems encountered have become increasingly 

challenging and complex. An overview of the different terminal operations and the 

impact of OR has been described by Carlo, Vis, & Roodbergen, (2013); Voß, 

Stahlbock, & Steenken, (2004). 

 

Figure 1-1: Global containerised trade, 1996-2016 (Millions of TEUs and percentage annual change), 

(UNCTAD, 2016) 
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Volume and time in the context of port operations are the two critical aspects 

involved in measuring performance. Volume is a measurement of throughput or a 

port’s output and is expressed in either TEUs or weight (tons). Service time, which 

is waiting time plus handling time, is how long vessels spend in a port which also 

affects the port’s performance and productivity (UNCTAD, 2013). 

For a port operator handling a large volume of containers and ship calls, the 

productivity for such a terminal is high. Therefore, port operators might seek to 

improve productivity by using the port's resources efficiently in order to cope with 

the rapid increase of incoming vessels. The scheduling of incoming vessels should 

be optimised in order to minimise the total service time/total service costs of all 

vessels. 

A container terminal has three main areas; the seaside, yard side and land side. Each 

area has various problems that need to be solved. The seaside area, which is the 

major focus of this research, has three interrelated operational planning problems 

namely the berth allocation problem (BAP), the quay crane assignment problem 

(QCAP) and the quay crane scheduling problem (QCSP). The decisions related to 

these problems have a crucial impact on container terminal operational efficiency. 

In the literature, we have disclosed a few gaps that this research needed to fill in.  

Previous studies have been tackled the seaside problems separated, and there is still 

an insufficient number of them have tackled them in an integrated manner.  We also 

noted the impact of the dispatching rules and give different priorities for ordering 

incoming vessels while scheduling them. The studies have been used a single rule 

while solving the problems or used different rules and applying them one by one 

each time. To the best of our knowledge, a few studies solve these problems in a 

way of composite dispatching rules which consider multiple rules at the same time. 

Moreover, the studies were seeking to solve the problem and not to find a general 

solver which can apply it in similar problems with similar constraints. Most of the 

studies have solved the problems considering them in a single quay while a few of 

them consider multiple quays. 
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From previous studies, we can understand that container terminal ports need to 

adapt with aim of meeting the industry's future needs, and to handle the increase in 

the number and depth of container ships in order to serve them faster than before. 

This research investigates the above problems, and an integrated solution approach 

has been developed to solve the first two problems, namely berth allocation and 

quay assignment problem (BACAP). The research studies the seaside problems 

from a different perspective and analyses the problems’ constraints.  Moreover, this 

study extends the state-of-the-art solution by presenting a novel model to solve the 

seaside problems in the case of multiple ports that have multiple terminals owned 

by one owner, as commonly found nowadays. 

 

1.2 Research Aim and Objectives 

1.2.1 Aim 

This research aims to contribute to the existing knowledge to improve the 

operational efficiency of single and multiple container terminal ports, particularly 

in the seaside area as it is the bottleneck of container terminal operations. The 

increase of quay crane utilisation, the optimisation of container ships turnaround 

time (waiting time and handling time) and the minimisation of container terminal 

costs will lead to improvements. 

1.2.2 Objectives 

This research will examine the optimisation methods which will be applied to the 

operational planning problems that arise in the seaside container terminal area. We 

will use different approaches to model the integration between these problems by 

using novel self-adaptive hyper-heuristic algorithms to solve the problem. The main 

objectives of this research are as follows: 

• Identify the main combinatorial optimisation problems (COP) in container 

terminals and to classify the different methods used for solving each 

problem. 
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• Define the container terminal characteristics and berth layouts which have 

a significant impact on the container terminal seaside operational problems. 

• Identify the main vessel and QC scheduling challenges in real-world ports. 

• Develop new/pioneering intelligent algorithms for COP to optimise the total 

service time of the incoming vessels and to minimise the container 

terminal’s total costs.  

• Examine the developed algorithm in relation to the integrated terminal’s 

seaside problems. The study will focus on the integrated Berth Allocation 

and Quay Crane Assignment problem (BACAP). 

• Develop a new model to solve the BACAP in the case of multiple ports 

being available for berthing incoming vessels.  

• Compile and update a set of benchmarks that are used in the literature for 

the container terminal COP, focusing on the BACAP. 

• Evaluate and validate the performance of the developed algorithms against 

both exact and state-of-the-art heuristic methods. 

1.3 Research Methodology 

The proposed research study is quantitative and data-based. It uses experimental 

studies for the validation of the proposed novel methods and the analysis of the 

results. The research study also provides tools and techniques for solving the 

seaside operational planning problems of container terminals. 

This research will develop intelligent combinatorial optimisation algorithms to 

evolve the solutions. A meta-heuristic approach using a genetic algorithm (GA) and 

genetic programming (GP) was used to solve the problems. The analysis of the 

modelling efficiency was measured by comparing the results with state-of-the-art 

results for large instance benchmarks, and with a commercial software package 

such as CPLEX for smaller instances. A visit to a real container terminal port was 

conducted to study and analyse the practical seaside operational problems in 
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addition to the new challenges and circumstances faced during the scheduling 

process related to incoming vessels. 

1.4 Research Framework 

The research framework and direction followed to achieve the research objectives 

has been illustrated in Figure 1-2. The research starts with the motivation to improve 

the situation caused by the maritime logistics problems, and then found that the 

container terminal is a major part of the maritime logistics life cycle. Container 

terminals have three main areas as described before, which are the seaside, yard, 

and landside area. The research progressed to the first area, which was the seaside. 

The seaside area has three sequential problems, which are the berth allocation 

problem (BAP), the quay crane assignment problem (QCAP) and the quay crane 

scheduling problem (QCSP). This research focuses on the integration between the 

first two problems, which are bertha allocation and quay crane assignment problem 

(BACAP). The BACAP was tackled using different constraints and objectives for 

comparing with the existing literature models and to prove the effectiveness of the 

proposed model on a single port with one container terminal (one quay), before 

extending it to solve the BACAP with multiple quays/Ports. 
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Figure 1-2: Research Framework. 

BACAP: Berth Allocation Quay Crane Assignment Problem, GP: Genetic Programming, GA: Genetic Algorithm, CDR: Composite 

Dispatching Rules, QC: Quay Crane, SPR: Standard Priority Rules. 
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1.5 Research Structure and Thesis Organisation 

The overall research structure and flow illustrated in Figure 1-3. 

 

Figure 1-3: Research Structure and Flow. 

 

Thesis Organisation: 

The outline of the thesis with a summary of each chapter is as follows. 

Chapter 2 provides an overview of the importance of the container terminal. It 

introduces the container terminal management life cycle regarding its systems and 

processes. It shows the types and layout of a container terminal, the different areas 

and its associated problems and classifications, as well as the different types of 

equipment needed during transhipment. 

Chapter 3 presents a comprehensive literature review on container terminal seaside 

operational problems including, in particular, the BACAP. It presents the BACAP 

classification, benchmarks, and the optimisation methods that have been used to 
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solve the problem in the existing literature. It reviews the literature for the BACAP 

in a single port and investigates the BACAP when considering the case of multiple 

ports. Finally, it points out the research gaps that will be covered in this thesis. 

Chapter 4 develops a genetic programming approach to solve continuous dynamic 

BACAP (BACAP_GP).  It presents the proposed independent algorithm for 

scheduling vessels (BACAP_Scheduler). It reviews the dispatching rules and 

composite dispatching rules (CDRs), and studies the efficiency of using CDRs for 

solving the BACAP on a large-scale benchmark.  

Chapter 5 studies a real BACAP in the “DP World-Sokhna” port. It adapts the 

proposed model in Chapter 4, BACAP_GP and improves the BACAP_Scheduler to 

solve the BACAP with the desired berthing position (BACAP_GP_DP). It provides 

a comparison study with the results of the state-of-the-art solution. The main 

difference between chapter 4 and chapter 5 as follows: 

Model difference/features Chapter 4 Chapter 5 

Vessel can moor before its expected time of arrival X  √ 

Vessel can moor in any position with cost X  √ 

Results compared with the state-of-the-art X  √ 

Evaluated on a large-scale dataset √ X 

The objective is to minimise the total service time costs 

The handling time calculated using the number of 

quay crane assigned √ 

√+ vessel’s shifting 

from its desired 

berthing position 

Support quay space utilisation in advance X  √ 
 

Chapter 6 presents a new problem, which is the BACAP with multiple ports. It 

develops a genetic algorithm model to solve the problem (MultiP_BACAP_GA). It 

integrates the strategic planning level with the operational level in order to solve 

the problem. It solves the problem via an exact method using CPLEX and presents 

a comparison study with the proposed heuristic method to prove its efficiency. 

Chapter 7 concludes this research and provides further research directions. 
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Chapter 2 : Container Terminal 

Management 

 

 

This chapter introduces the main operations of maritime container terminals. It 

provides the reader with an overview of container terminal management, its systems 

and processes and the equipment needed during the transhipment life cycle. This 

chapter also demonstrates the main container terminal’s areas and its problems as 

classified by the different planning/decision levels. Furthermore, it covers the 

seaside operational planning problems and its constraints. It also insights into the 

research gaps to fill in this study and the challenges encountered when handling the 

container terminals’ operations. 

 

2.1 Introduction 

Container terminal ports are gateways in the global containerised shipping industry. 

They are essential for completing the global supply chains which allow for links 

between the different means of freight transportation. Due to the importance of this 

industry, seaport competition has increased considerably as containerised trade 

volumes have rapidly increased in recent years. Port managers have to ensure that 

(i) the vessels are berthed as soon as possible after arrival to achieve a fast 

turnaround, (ii) the quay cranes load and unload the required containers in the 

shortest possible time and (iii) the cost of container transhipment is minimised. 

Table 2-1 presents the world’s 20 busiest container ports in the world in terms of 

the TEUs handled (The Journal of Commerce, 2016). We noticed that Shanghai, 

China, ranked as the busiest container terminal in the world in 2016 with a growth 

rate of 1.6% up from 2015. The volume reached 37.13 million TEU in 2016. 

Moreover, there is an increase parallel to this in almost all ports throughput. 

 



2.1.Introduction 

 11 

Table 2-1: Top 20 busiest container ports in the world as of 2016, (The Journal of Commerce, 2016). 

Rank Port, Country 
Volume 2016 

(Million TEU) 

Volume 2015 

(Million TEU) 

2015-2016 % 

VOLUME 

CHANGE 

1 Shanghai, China 37.13 36.54 1.6% 

2 Singapore 30.90 30.92 -0.1% 

3 Shenzhen, China 23.97 24.2 -1.0% 

4 Ningbo-Zhoushan, China 21.60 20.63 4.7% 

5 Hong Kong, S.A.R., China 19.60 20.07 -2.3% 

6 Busan, South Korea 19.45 19.46 -0.1% 

7 Guangzhou Harbor, China 18.90 17.22 9.8% 

8 Qingdao, China 18.00 17.47 3.0% 

9 Jebel Ali, Dubai, United Arab Emirates 15.73 15.6 0.8% 

10 Tianjin, China 14.49 14.11 2.7% 

11 Port Klang, Malaysia 13.20 11.89 11% 

12 Rotterdam, Netherlands 12.40 12.23 1.4% 

13 Kaohsiung, Taiwan, China 10.46 10.26 1.9% 

14 Antwerp, Belgium 10.04 9.65 4.0% 

15 Dalian, China 10.00 9.45 5.8% 

16 Xiamen, China 9.60 9.18 4.6% 

17 Hamburg, Germany 8.90 8.82 0.9% 

18 Los Angeles, U.S.A. 8.80 8.16 7.8% 

19 Tanjung Pelepas, Malaysia 8.28 9.1 -9.0% 

20* Keihin Ports, Japan 7.61 7.52 1.2% 

 

Container terminal management is increasingly becoming a complex task due to the 

number of incoming vessels and consequently, the increasing number of containers 

that need to be served. Container terminals have many integrated systems that work 

together to serve and track the containers from the moment that they arrive until 

they are released from the port. Moreover, there are other systems in place to 

communicate with both shipping lines and customers in order to pre-plan the 

containers’ collection and delivery. This include different systems to manage the 

equipment and vehicles, keep track of their performance and recording their 

maintenance records.  

All of the above systems must be managed efficiently to handle the container 

terminal operations. These operations have various planning problems that need to 

be solved, and decisions that must be taken. To manage such an industry and to 

cope with the rapid increase of the world’s level of containerised trading, terminal 

managers are forced to use computer technology and operations research techniques 

to remain competitive in global trade. These techniques are crucial for reducing the 

terminal costs and increasing the terminal equipment’s utilisation parallel to 

meeting shipping line satisfaction. 
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2.2 Container Terminal Overview 

In this section, we start with the terms that are commonly used in the context of a 

container terminal and the corresponding definition. A Container Terminal (CT) is 

a type of port where cargo containers are transhipped between ships, or between 

ships and land vehicles (trucks or trains) (Salido, Rodriguez-Molins, & Barber, 

2011). Figure 2-1 shows a visual illustration of the “TCB Barcelona container 

terminal”. The figure shows the waiting area, which is the area where incoming 

vessels waiting in order to start being served. A quay is a structure alongside a 

harbour where vessels may dock to load and unload cargos or passengers.  The 

mooring location of a vessel on the quay is called the berth. A quay can include one 

or more berths.  

Container terminals use cranes of different types to hold and transfer containers 

from one place to another, or from one mode of transportation to another. The 

essential type of crane in container terminals is the Quay Crane (QC); see Figure 

2-2. The QC is located and lined up alongside the quay and equipped with trolleys, 

which makes it easy to move along the quay but they cannot pass each other. The 

structure and design allows for the moving and transferring of containers from a 

moored vessel to a vehicle, or vice versa. We will provide more of a description of 

the types of crane that are commonly used in container terminals later on in this 

chapter. 

Containers are large metal boxes of a standard design and size for the transportation 

of goods; the standard sizes possible for a container is 20 foot (6.09 meters), 40 foot 

(12.18 meters), 45 foot (13.7 meters), 48 foot (14.6 meters), and 53 foot (16.15 

meters) (Worldshipping, 2014). The two most commonly used sizes today are the 

20-foot and 40-foot lengths. The Twenty-foot-Equivalent Unit (TEU) is used to 

refer to one container with a length of twenty-foot, while 2TEU or the Forty-foot 

Equivalent Unit (FEU) indicates a container of 40-foot length. Figure 2-3 illustrates 

a typical TEU container. 
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Figure 2-1: TCB Barcelona container terminal photo APM Terminals. Source (Fonseca, 2016) 

 

 

Figure 2-2: Quay Crane. Source (Kalmar global, 2018) Figure 2-3: The 20 feet Container (TEU) 

 

A Container Ship (CS) is a type of ship or vessel that carries containers in order to 

transfer goods from one place to another. As a result of globalisation, international 

trade has dramatically increased, and container ships have become larger and larger. 

In 2017, containerised trade continued to face the upsizing of container ships. 

Figure 2-4 shows the rapid increase in the size of container vessels from 1956 to 
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2017. The largest container vessel in the world can hold more than 21,000 TEU, 

and its operator is OOCL (Hong Kong). The length of the largest vessel is 400 

meters with a depth of 16 meters. Since the creation of modern water channels, for 

example the Suez Canal with a depth of 24 meters, ports have continued to improve 

their depth, and it is expected for there to be a further growth in vessel capacity up 

to 50,000 TEU in the next 50 years (Saxon & Stone, 2017).  

 

Figure 2-4: Maximum container-vessel capacity from 1956 to 2017, TEU. Source (Saxon & Stone, 2017) 

 

The layout of a container vessel has been presented in Figure 2-5. Containers are 

sorted on bays, which consist of many stacks in hold and on deck. Each bay has a 

number of stacks and tiers. Hatch covers separate the stacks in the hold from those 

on the deck. The unloading/loading containers processed to/from a container vessel 

should consider in advance the placement of the container, such as if it is either on 

deck or in the hold. For the unloading process, the containers on deck should be 
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removed first before the containers in the hold. As for the loading process, 

containers in the hold should be loaded first before loading the containers on the 

deck. 

 

 

Figure 2-5: A container vessel layout. Source (Kim, Kang, & Ryu, 2004) 

 

The continuous increase of vessel capacity has had a crucial impact on container 

terminal traffic. This has led to more significant pressure being placed on cargo 

handling services and the associated operational costs (UNCTAD, 2016). 

Moreover, it forces container terminals to expand their structure or to build a new 

one in addition to updating its equipment to cope with the increase. Container 

terminals are expensive to build and difficult to operate. 

2.3 Container Terminal: Systems and Processes 

The container terminal’s main process starts after the arrival of vessels at the port, 

followed by the allocation of vessels to the berths equipped with quay cranes (QCs). 

The QCs are responsible for loading and unloading the containers to and from the 

vessels. These containers are then transferred by trucks or trains to the yard area 

where they are temporarily stored until either transported inland or transferred to 
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other vessels (Vis & de Koster, 2003). Figure 2-6 shows a common CT operational 

scenario (Cordeau, Laporte, Legato, & Moccia, 2005).  

 

 
Figure 2-6: Container Terminal Operation Scenario (Cordeau et al., 2005). 

 

 

Container terminals can be divided into three main areas, namely the seaside area, 

the yard, and the landside area. Figure 2-7 illustrates a typical modern container 

terminal system used in the transhipment process. The seaside provides the services 

required by the container vessels. The yard area is responsible for storing containers 

temporarily until they are imported or exported while the landside area connects 

the container terminal to the hinterland. The CT uses trucks, trains and other means 

of transportation to transfer the containers between these areas. The flow of the 

involved processes and the interconnection between these areas working in two 

directions depends on importing or exporting containers. Each area has many 

problems that need to be optimised. 
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Figure 2-7: Container terminal system for transhipment process. 

 

The following sub-processes can summarise the transhipment systems and 

processes incorporated into CT: 

1. Arrival of vessels. 

2. Unloading and loading of containers. 

3. Transferring containers from vessel to stack, and vice versa. 

4. Stacking of containers. 

5. Inter-terminal transport and other modes of transportation. 

 

2.3.1 Seaside Area 

2.3.1.1 Arrival of vessels 

There is a direct communication link between the vessel operator and the terminal 

operators. This link is used to exchange information, such as the vessel’s expected 

time of arrival, the number of containers to be loaded/unloaded, the specific services 

needed etc. This information should be received in advance, sent by the vessel 

operators to the terminal operator for pre-planning and scheduling purposes.  

The time of a vessel being due to arrive in port is also referred to as the expected 

time of arrival (ETA). However, the vessel might face delays. The exact time that 

the vessel arrives at the port and is ready to be served is the actual time of arrival 

(ATA). Moreover, if the vessel arrives earlier than the ETA and the terminal is 

ready to serve it, then it is denoted as the earlier starting time (EST). 
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When the vessel arrives at the port, the terminal operator must allocate a berth on 

the quay to let the vessel moor. Moreover, it is important that the terminal operator 

finds a berth available at the requested vessel’s ETA. In addition, if the vessel 

operator requests a desired berthing position on the quay, then the terminal operator 

can consider this while finding a berth for that vessel. The desired berthing position 

is usually defined as the closest berth to the stacking area. The stacking area is the 

place where the containers should be located for a specific vessel. We can disclose 

the problems that might happen if the vessel arrival time changes from ETA to 

ATA, or from ETA to EST. The terminal operator might also consider other 

constraints concerning allocating a berth to a vessel, such as the depth of the berth 

should be higher than the vessel’s draft, the berth should have available quay cranes 

to serve the vessel etc. In this stage, the vessel is berthed and is ready to start loading 

or unloading its containers. 

2.3.1.2 Unloading and loading containers 

It is crucial for terminal operators to know how many containers are to be moved 

and their position onboard for either unloading or loading purposes to/from the 

vessels. The terminal operator needs to be ready with a suitable schedule plan to 

handle all of the movements in advance. The QCs are the handling equipment that 

the terminal uses at this stage. There are various types of QCs that might be used at 

either automated and manned ports. Some of QCs can move two or more containers 

at the same time, which will reduce the vessel’s service time. 

The terminal operator might need to decide on the number of QCs that will be 

assigned to the vessel to serve it. The time needed to move all containers mainly 

depends on the number of assigned QCs. Moreover, the operators might consider 

that the QCs move from one place to another on the quay using a rail track alongside 

the quay, which restricts them in passing one another. In addition, only one QC can 

work in a vessel’s bay area at a time, and there is a safety distance that should be 

considered between two adjacent quay cranes. 

There are two methods of assigning QCs to a vessel. The first method is the QC 

static assignment (time-invariant). In this case, the QC that is assigned to a vessel 
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will continue to be reserved to that vessel even if it has finished its work, and it will 

be released once the vessel has finished its services and is ready to move. The 

second one is the QC dynamic assignment (time-variant). In this case, the QC can 

be moved from one vessel to another before the first one has finished and moved. 

The terminal operator may use the dynamic assigning strategy to save more time 

and to increase the utilisation of the terminal’s QCs. 

2.3.2 Transport Area 

2.3.2.1 Transfer containers from vessel to stack and vice versa 

In this stage, the containers are transferred from vessel to stack and vice versa. In 

the previews stage, the quay crane unloads containers from the vessel and loads 

them onto one of the transportation means that are used to transfer containers to the 

destination of the stack. There are many types of transportation that can be used 

such as yard trucks, forklift trucks, multi-trailer system and straddle carriers, as in 

Figure 2-8. 

 

  
(a) (b) 

  

(c) (d) 

Figure 2-8: (a) Yard truck. (b) Forklift trucks. (c) Straddle carriers. (d) AGV. Source (Kalmar global, 2018) 
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At an automated container terminal, there are automated guided vehicles (AGVs) 

Figure 2-8.(d) and automated lifting vehicles (ALVs) that can be used to transfer 

containers from vessels to stack and vice versa. AGVs are robotic vehicles that 

travel along a predefined path that are automatically controlled by the terminal 

operators. This type of transport is only practical for ports with high costs regarding 

maintaining and operating the AGVs. Currently, AGVs are used in the container 

terminals of Rotterdam in the Netherlands and of Hamburg in Germany. For ALVs, 

they are used at the container terminal of Brisbane, in Australia. 

The terminal operator might decide on the type and the number of vehicles to be 

used and which vehicle transports which container, defining its destination in the 

stacking area.  

2.3.3 Yard Area 

2.3.3.1 Stacking of containers 

The yard area is the space in the container terminal where the containers are stacked 

and stored for a certain period until they are either transferred to a vessel or to the 

hinterland. The yard area can be divided into many sections depending on the type 

of container or if it contains dangerous goods, as two examples. The stack is 

organised into multiple blocks or lanes, each of which consists of a number of rows. 

In this method of organisation, the terminal operator can identify each container 

and store its information, such as where it came from (origin), where it should be 

moved to (destination), when will it be transferred and what its content is. 

It is crucial for the container terminal to sort the containers within the blocks, such 

as keeping the earliest transferred ones available and the most accessible to move 

before the ones that are to stay longer in the terminal. Moreover, the terminal 

operator might store empty containers separately. In this area (yard area), the 

terminal uses a type of cranes called a rail-mounted gantry crane (RMGC) or a 

rubber-tired gantry crane (RTGC) to handle the sorting operations, as in Figure 2-9. 

They can use forklift trucks, reach stackers and straddle carrier systems to support 

the operation of stacking and sorting the containers. 
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(a) (b) 

Figure 2-9: (a) RMGC. (b) RTGC. Source (Kalmar global, 2018) 

 

2.3.4 Landside Area 

2.3.4.1 Inter-terminal transport and other modes of transportation 

All containers in the yard area have to be transferred, either to vessels if they are 

for exporting purposes or to the hinterland if they are for importing purposes. If 

they are imported, then the final area - which is called the landside area in the 

terminal - will be used to transport the containers from the stack to inland by other 

modes of transportation. The mode of transportation may be a truck or train, which 

is used to transfer the containers away from the port to their final destination. 

 

2.4 Container Terminal: Planning Levels and Problems 

A container terminal consists of very complicated logistics systems. The previous 

sections illustrate the transhipment systems, processes and the life-cycle of and 

within the container terminal. All of these processes include many problems and 

decisions that need to be solved either in advance or in the moment. It is very 

complicated to try and solve all of the problems at once. Therefore, the planning 
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and scheduling problems of a container terminal can be distinguished either on a 

planning level and/or in the specific areas of the container terminal. Based on the 

planning time horizon level, there are three planning levels; strategic, tactical and 

operational. For the container terminal areas, the three main areas as has been 

described; seaside, yard and landside. The following is how the literature classified 

the problems and decisions inside the container terminals. 

Henesey (2006) classified the decisions of the container terminal’s operations into 

two decision types; control and planning, derived from Rushton, Croucher, & Baker 

(2010). A literature survey conducted by Henesey (2006) was organised into a 

framework with four categories: (1) container terminal subsystems including Ship-

to-Shore, Storage, Transfer, and Delivery/Receipt, (2) decision type (Planning and 

Control), (3) time frame (Strategic, Tactical and Operational) and the (4) typical 

issues which illustrate the type of problems that container terminal managers face 

when making a decision. 

Vis (2009) made a webpage for the research that they conducted in a container 

terminal. The researcher proposed there to be four decisions related to the logistics 

processes in the container terminal; the arrival of the ship, the unloading and loading 

of the ship, the stacking of containers, and the transportation of containers from ship 

to stacking area and vice versa. These decisions were studied at the strategic, 

tactical and operational levels. 

Based on the classification provided by Bierwirth & Meisel (2010), the various 

decision problems encountered in a container terminal and the direct link between 

the problems has been illustrated by Iris, Larsen, Røpke, & Pacino (2016) in Figure 

2-10. 

The following sub-sections provide a description on the decision planning levels, 

and explain in more detail, the seaside operational planning which is the main focus 

of this research. 
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Figure 2-10: Decision problems in a container terminal. Source (C. Iris et al., 2016). 
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2.4.1 Strategic planning 

Strategic planning problems have the highest costs to solve and have the most 

significant impact on the system’s performance. The decisions conducted at the 

strategic level are long-term decisions that last for years and can lead to the 

definition of a set of constraints for subsequent tactical and operational decisions. 

The problems are mostly related to a new terminal design (location, size, and 

layout), the resources that are available to use, and the strategic networks within the 

shipping lines, including contracts. 

For instance, strategic planning problems are:  

(1) Design of a container terminal (Berth, Yard and Hinterland layout design). 

Bockstael-Blok, Mayer, & Valentin (2003) studied the design of an inland container 

terminal through visualisation, simulation and gaming. De Castillo & Daganzo 

(1993) and Hwan Kim & Bae Kim (1999) studied the strategies used to locate 

containers in the yards and the suitable design/size of the blocks.  

(2) Transportation types/numbers inside a container terminal. Vis & Harika (2004) 

studied two different types of automated vehicle (automated lifting vehicles and 

automated guided vehicles) used to transport containers from the stack to the ship 

and vice versa. Murty, Liu, Wan, & Linn (2005) used the pooling strategy to 

minimise the number of vehicles required for transport operations. 

(3) Selection of equipment. Cartenì & Luca (2012) and Vis (2006) studied the 

strategic decisions that have to be made in order to determine the specific equipment 

(type/number) investments required and its properties related to the container 

terminal. 

2.4.2 Tactical Planning 

The tactical level of planning, and the associated problems and decisions, is 

considered to be short-term planning that lasts for months or weeks. The problems 

encountered are mostly related to space utilisation within the terminal, e.g. berth 

templates, yard templates and storage management. The layout of traffic courses 

for the horizontal transport system is also considered to be a tactical decision. 
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For instance, some of the tactical planning problems are:  

(1) Berth template design. M. P. M. Hendriks, Lefeber, & Udding (2013), Jin, Lee, 

& Hu (2015) and Moorthy & Teo (2007) studied the berth-windows (berthing 

locations/times for services) within a fixed length of planning horizon in order to 

maximise the service objective. This problem is also referred to as Tactical berth 

scheduling (Imai, Yamakawa, & Huang, 2014).  

(2) Yard template design. This problem also referred to as the Service allocation 

problem. Shipping companies, while contracting with the container terminal, 

usually ask them to reserve a space in the yard storage. The objective of this 

problem is to minimise yard reorganisation, which is the amount of reshuffling 

(Cordeau, Gaudioso, Laporte, & Moccia, 2007; D. H. Lee & Jin, 2013).  

(3) Vehicle fleet size. This is the number of necessary transport vehicles to transport 

all containers at a point in time (Vis, de Koster, & Savelsbergh, 2005; Vis, de 

Koster, Roodbergen, & Peeters, 2001). 

2.4.3 Operational Planning 

At the operational level of planning, the decisions are related to real-time 

operational planning which lasts from days down to seconds. The problems 

encountered at this level of planning are mostly related to daily work plans, process 

management and the scheduling of the container terminal resources. The common 

goals for container terminal operators while planning and scheduling are to 

minimise the transhipment time of containers in the terminal and to minimise the 

cost of operations. This is as well as increasing the utilisation of the container 

terminal’s resources. 

The following sections will describe the operational planning of the seaside area 

and the literature will be further detailed in the next chapter. Regarding the 

operational planning problems encountered in other areas as described by C. Iris et 

al. (2016) in Figure 2-10, we have:  

(1) Horizontal Transport Operations, which is comprised of the Vehicle 

Dispatching and Routing Problems. The first problem is responsible for assigning 
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vehicles to quay cranes for either the sequence of loading or unloading containers 

(exclusive assignment), or where each vehicle serves different quay cranes for the 

loading and unloading of containers (pooled assignment) (Meisel, 2009a). The aim 

is to minimise the waiting time of the quay cranes by reducing the empty travel of 

vehicles from the ship to a yard and vice versa (Bish et al., 2005; Bose, Reiners, 

Steenken, & Voss, 2000). The second problem is responsible for choosing the 

vehicle’s travel route and minimising terminal traffic (Kim & Kim, 1999a, 1999b).  

(2) Yard Management Planning is comprised of the following problems. (i) Yard 

Allocation Problem. This problem is responsible for the reservation of the yard’s 

capacity and the selection of storage locations for the individual containers of 

incoming vessels. The yard space should be organised into different container types 

such as export, import, transhipment containers etc (Kim, Park, & Ryu, 2000; L. H. 

Lee, Chew, Tan, & Han, 2006). This problem aims to minimise the time taken in 

the storage yard operations for storing, retrieving and reshuffling containers. (ii) 

Block Relocation Problem (re-marshalling/pre-marshalling) is the problem of 

repositioning containers within the yard to resolve unsuitable storage locations and 

stacking orders (Expósito-Izquierdo, Melián-Batista, & Moreno-Vega, 2012; Y. 

Lee & Hsu, 2007). Abbas, Al-Bazi, & Palade (2018) proposed a fuzzy knowledge-

based system integrated with a neighbourhood heuristic algorithm to optimise the 

stacking and retrieval operations of the containers in the yard. Their problem and 

solution considered the yard itself, the existence of pre-existing containers and the 

unknown container departure time. Their results showed the effectiveness of the 

proposed system when it came to optimising the number of containers relocated by 

5%, 6.6% for the improved container relocation time and amount of yard utilisation 

and minimising by 42% the average waiting time per third-party logistics truck. 

(3) Yard Crane Scheduling. This problem deals with the deployment of yard cranes 

to yard blocks, and the schedule stacking and retrieval operations of and for 

containers (Cheung, Li, & Lin, 2002; Wu, Li, Petering, Goh, & Souza, 2015; 

Chuqian Zhang, Wan, Liu, & Linn, 2002). The objective is the minimisation of the 

total delays related to the yard crane workload. 
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(4) Hinterland Operations. The hinterland area is the region where export/import 

containers are transferred to/from the terminal. The hinterland uses trucks or trains 

to connect the terminal to the inland region  (Ambrosino, Caballini, & Siri, 2013; 

G. Chen, Govindan, & Yang, 2013). The common objective of this problem is to 

minimise the hinterland workload operations and the waiting times for yard 

transport and equipment.  

 

2.4.3.1 Seaside Operational Problems 

Seaside operations are critical and have a major impact on a container terminal’s 

operational performance (M. Z. Li, Jin, & Lu, 2015). Seaside problems are 

considered to be the bottleneck operations in most CTs around the world (Carlo et 

al., 2015), this is because they are the primary problems to be dealt with, as they 

restrict the container terminals to reduce the turnaround time of the vessels and the 

operation costs. 

The seaside operational area has three main sequential problems related to container 

terminals planning: the Berth Allocation Problem (BAP), the Quay Crane 

Assignment Problem (QCAP), and the Quay Crane Scheduling Problem (QCSP) 

see Figure 2-11. Furthermore, for linear shipping companies in the seaside area, 

there is a problem called the Stowage Planning Problem (SPP). The following 

sections will describe the definition of each problem, and we will then discuss more 

related works in the next chapter. 

 

2.4.3.1.1 Berth Allocation Problem (BAP) 

For busy container terminals, several incoming vessels arrive per week at different 

times. All of the vessels have to moor in the quay(s) of the terminal. The cost of 

constructing a quay which includes multiple berths is very high compared to the 

investment cost of other facilities in the terminal (Y.-M. Park & Kim, 2003). 

Therefore, the BAP is considered to be a critical resource for determining the 
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capacity of the container terminal. The problem question is, ‘when and where do 

incoming vessels have to moor at the quay?’ 

The BAP is the first problem that terminal operators need to solve when a vessel 

calls into a port. This is used to allocate a quay space (berth position) and service 

start time to an arriving vessel. In the BAP, we have the container terminal quay(s) 

layout and a set of incoming vessels that have to be served within a given planning 

horizon. The vessel’s information, such as length, draft, the expected time of arrival 

(ETA), desired berthing position, and the number of containers to be 

served/minimum cranes needed, can be given in advance by the shipping lines. Port 

planners need to schedule all incoming vessels by allocating a berthing position and 

time for each vessel such that all vessels must be moored within the quay length. It 

is not allowed for more than one vessel to moor in the same berth at a time. Figure 

2-11.(a) represents a feasible berth plan to solve the BAP (Meisel & Bierwirth, 

2013); the x-axis represents the time horizon and the y-axis represents the quay 

length, while the rectangles are the vessels scheduled to moor at a specific time and 

berthing position. 

The BAP is also known as the Berth Scheduling Problem; see (Golias, Boile, & 

Theofanis, 2010; Golias, Portal, Konur, Kaisar, & Kolomvos, 2014; Kim & Moon, 

2003; Y. Lee & Chen, 2009; Saharidis, Golias, Boile, Theofanis, & Ierapetritou, 

2010; Y. Xu, Chen, & Quan, 2012), and also known as (Berth Planning Problem) 

see  (Hendriks, Laumanns, Lefeber, & Udding, 2010; Legato & Mazza, 2001; 

Moon, 2000; Ruiz, Batista, & Vega, 2013; Song, Cherrett, & Guan, 2012; 

Theofanis, Boile, & Golias, 2009). This problem is considered to be an NP-hard 

problem by relating it to the set partitioning problem (Lim, 1998). 

Various constraints might be considered when solving the BAP, which will be 

explained in section 2.4.3.2. The common objective function is minimising the 

vessel port stay time (vessel turn-around, also referred to as the vessel’s service 

time), which is the sum of the waiting and handling time of the vessel, the workload 

of the terminal resources, and the number of rejected vessels to be served at the 

terminal. 
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2.4.3.1.2 Quay Crane Assignment Problem (QCAP) 

One of the most critical container terminal resources is the quay cranes. This is due 

to their high purchase and maintenance costs. The quay crane is responsible for 

loading and unloading containers to/from vessels. The volume of containers to be 

moved is known in advance for each vessel and should be send by the ship operator 

to the terminals for each visit. The minimum number of quay cranes that can serve 

a vessel simultaneously might be contracted. The ship’s operators have to ensure 

that the correct number of containers are moved per hour, as well as the number of 

assigned quay cranes to a vessel, as both directly affect the expected departure time 

of the vessel. The problem question is, ‘how many and which quay cranes will be 

serving each vessel?’ 

The QCAP is to assign a number of quay cranes to vessels such that the required 

transhipment of containers can be fulfilled. In this problem, the planners have two 

decisions to make. The first decision is to determine the sufficient number of quay 

cranes to be assigned to each vessel, taking into consideration the availability of the 

minimum cranes needed at the berth for the berthing time of each vessel. The 

second decision is to determine the specific QCs (index) assigned in the first 

decision, as in Figure 2-11.(c), due to the fact that QCs are mounted on a rail which 

can move alongside the quay but cannot pass with another. The QCAP is also 

known as the Crane Split Problem, for the reason of the distribution of cranes to 

vessels (Voß et al., 2004).  

Figure 2-11.(b) and Figure 2-11.(c) demonstrate the QCAP in the case where the 

quay’s layout is continuous (described in section 2.4.3.2). The grey squares within 

a rectangular vessel indicate the assignment of QCs to the vessel in each time 

period. The total number of QCs serving berthed vessels in each time segment must 

not exceed the total QCs that the quay has. Moreover, this problem will not occur 

in the case of a discrete berth layout (described in section 2.4.3.2), where each berth 

is already fitted with a fixed number of cranes. The common objective function of 

this problem is to minimise the vessels’ delays and to maximise the utilisation of 

the QCs. 
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2.4.3.1.3 Quay Crane Scheduling Problem (QCSP) 

The QCSP is the third problem in the sequence of seaside operational planning 

problems. After a vessel is allocated a berth, moored and assigned a number of QCs 

to the vessel, the planners have to schedule the sequential operations of the QCs 

assigned for loading and unloading specific containers. The QCAP and the stowage 

plan (described next section) are the input of this problem. As mentioned before, 

each vessel has a container storage plan, identified by the tier and stack numbers. 

The unloading operation should identify the location of the containers to discharge, 

and similarly, the loading operation should also indicate the container’s destination, 

weight and type. Therefore, the QCs scheduling tasks usually describe the bay(s) in 

which the workload is location. The problem question is, ‘how to schedule the 

assigned QCs to load/unload containers from a vessel?’ 

The QCSP consists of scheduling the transhipment operations of a vessel by loading 

and unloading the containers using the QCs that are scheduled to it. In this problem, 

we are given a set of tasks that together represent the transhipment operations of a 

vessel, and a set of assigned quay cranes. The mission is to schedule the quay cranes 

that are assigned to the vessel in order to finish the operations as early as possible 

(Kim & Park, 2004). 

Figure 2-11.(d) shows the QCSP representation, which illustrates each QCs 

scheduling workload in each vessel’s bay in each time period. The crossing of QCs 

and the safety margins between them should be considered in the solving of this 

problem, and this reflects that if more QCs are assigned to a vessel, then there is 

more crane interference and less crane productivity. Practically, each QC can serve 

only one bay at a time. This problem is considered to be an NP-hard problem 

(Monaco & Sammarra, 2007) and the common objective function is to minimise 

the span of the QCs scheduling operations, which reflects the minimisation of vessel 

handling time. 
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Figure 2-11: Seaside operational planning tasks at a container terminal. Source (Meisel & Bierwirth, 2013) 

 

2.4.3.1.4 Stowage Planning Problem (SPP) 

The SPP is focused on determining the exact position/slot (defined by a stack and 

tier number) of a vessel and assigning an export container to it. Shipping lines 

companies can be involved in this problem as they have to consider the following: 

(i) various measures should be considered for the stability of the vessel throughout 

its journeys such as trim, draft, and metacentric light;  (ii) the information regarding 

the sequence of the port visit plan is known in advance and the expected number of 

containers and their types when it comes to loading or unloading for each port. The 

containers should be sorted and organised onboard to minimise the reordering of 
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the containers (reshuffling/re-handling); (iii) The information regarding the current 

containers onboard, their class/type and how they are organised considering the 

required restrictions. Containers should be categorised according to their class, 

type, size, and destination. The common objective of this problem is to maximise 

the utilisation of the vessel’s capacity and to minimise the number of required 

reshuffling. 

Ambrosino, Sciomachen, & Tanfani, 2004 (2006) studied the stowage planning 

problem and denoted it as the Master Bay Plane Problem (MBPP). Sciomachen & 

Tanfani (2007) formulated the MBPP as a three-dimensional bin packing problem; 

the objective is to minimise the total loading time and maximise the utilisation of 

the quay equipment. Imai, Sasaki, Nishimura, & Papadimitriou (2006) proposed a 

multi-criteria optimisation method for the problem of stowage, taking into 

consideration the number of containers that are re-handled and the ship’s stability. 

2.4.3.2 Seaside operational Problems’ constraints 

In the previous sections, we have presented the seaside operational problems. These 

problems can be solved individually or in an integrated manner. Therefore, in this 

section, we have collected information on most of the constraints that might affect 

the seaside operational problems, which should be considered while solving the 

problems themselves. It is worth stating that the problems in the seaside operational 

area are to be solved hierarchically, which means that the output of the BAP will 

set the constraints for the next problems (QCAP and QCSP), and that the output of 

the BAP and QCAP will set the constraints for the next problem, which is QCSP. 

There are four common main constraints encountered in seaside operational 

problems: constraints related to vessel information, constraints related to timing, 

constraints related to berth layout and constraints related to the QCs.  

- Constraints related to vessel information: 

o Vessel length: depending on the vessel’s length, port operators allocate the 

vessel to the correct berth length in the quay (affects BAP). 
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o Vessel draft: this must be less than the berth depth. We should also 

consider the meteorological and tidal changes, and their impact on the 

berth depth (affects BAP). 

o Expected Time of Arrival (ETA): the vessel’s time of arrival could change 

depending on any delays that may occur (affects BAP). 

o Expected Finishing Time (EFT): this is the time when the vessel should be 

expected to finish its services in the berth and be ready to leave. The EFT 

is estimated depending on the service time, which is the maximum waiting 

time plus the handling time for each vessel (described later) (affects BAP). 

o Services required: this could include the number of containers to be loaded 

or unloaded to/from the vessel (affects QCAP/QCSP). 

o Quay cranes needed: the number of quay cranes needed, which might be 

requested by the vessel operators in advance (affects QCAP/QCSP). 

o Desired berthing position: this is the specific berth place on the quay that 

the vessel operators might request to moor the vessel in (affects BAP). 

 

- Constraints related to timing: 

o Starting Time (Berthing time) (affects BAP). 

▪ Static arrival: there are no arrival times given for the vessels. It is 

assumed that vessels are already waiting in the port and can berth 

immediately; see Figure 2-12.  

▪ Dynamic arrival: fixed arrival times are given for the vessels, so then 

the vessels berth depending on their ETA; see Figure 2-13. 

o Handling Time: this is the time that will be taken to serve the vessel, i.e. 

loading/unloading the containers. In the literature, the researchers deal 

with this amount of time in different ways (Meisel, 2009a): (1) known in 

advance (fixed), (2) depends on the berthing position, (3) depends on the 

number of cranes assigned to the vessel, (4) depends on the work schedule 

of the assigned cranes and (5) a combination of (2), (3), and (4) (affects 

BAP). 

o Time window: the time horizon that the planner has assumed while 

scheduling and solving a problem (affects BAP/ QCSP). 
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o Ending Time (Completion Time): the exact time that the vessel should be 

finished and ready to leave the berth (affects BAP). 

  

Figure 2-12: Static arrival time Figure 2-13: Dynamic arrival time 

 

- Constraints related to berthing layout: (affects BAP) 

o Discrete layout:  The quay could be partitioned into a number of sections 

called berths. Only one vessel can be served in a single berth at a time; see 

Figure 2-14.(a). 

o Continuous layout: There is no partitioning of the quay. Vessels can berth 

depending on their total length and the quay length. In this case, berth 

planning is more complicated than for a discrete layout; see Figure 2-14.(b). 

o Hybrid layout: like a discrete quay, but the vessels can be served in one or 

more berths depending on their length as shown in Figure 2-14.(c) and 

Figure 2-14.(d).  

 

Figure 2-14: Types of berth layouts. (a) Discrete layout. (b) Continuous layout. 

(c, d) Hybrid layout. (Bierwirth & Meisel, 2010) 
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- Constraints related to QCs:  

o Time-Invariant QCs assignment: assigning a constant number of QCs to a 

vessel during the handling time (see Figure 2-11.(b) Vessels 1 and 4) (affects 

QCAP/QCSP). 

o Time-Variant QCs assignment: assigning a number of QCs to a vessel, 

which can change during the handling time (see Figure 2-11.(b) Vessels 2, 

3, 5 and 6). The Time-Variant method of assignment is commonly used in 

practice due to its higher service quality and better utilisation of QCs. 

However, this problem is harder to solve (affects QCAP/QCSP). 

o QC tasks. This refers to the transhipment operations needed by a QC due to 

a specific vessel’s position (initial and final) with the starting and ending 

time expected. We also have to consider that each QC can serve only one 

bay at a time, and that there is a safety margin between any two adjacent 

cranes. Moreover, indexing the assigned QCs is essential, since the crossing 

of QCs over one another in the quay is impossible (Non-crossing). The task 

in the literature (Meisel, 2009a) can be defined with regard to the bay area 

or single bays, or with regard to the container stacks, container groups, or 

individual containers (affects QCSP). 

o QC timing: this constraint is related to the crane timing attributes taken into 

account while scheduling tasks. It is defined by Meisel (2009a) as Ready 

times, QC Time windows, and the travel time between bays (affects QCSP).  
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2.5 Conclusions 

In this chapter, we introduced the importance of the container terminal nowadays 

when it comes to facilitating large container transhipment around the world. We 

started by defining the most common terminologies used in the field, and then 

explained the systems and processes involved, the life cycle, and routine operations 

conducted in a container terminal. These processes raise many problems that need 

to be solved. Therefore, we provided an overview of the decision planning levels 

that the terminal operators follow in order to manage and control the container 

terminals. Regarding the complexity of the operations inside a container terminal, 

previous researches classified the problems for a more natural understanding and 

did so in order to solve the problems related to the classifications as introduced in 

this chapter. 

For the decision planning levels (strategic, tactical and operational), we gave a brief 

description of the problems regarding each level as classified by the areas inside the 

container terminal. The main areas as described are the seaside, yard and landside. 

The seaside area is our focus on this research. Therefore, we gave more detail on 

this area and introduced the main specific problems which are the BAP, QCAP and 

QCSP. These problems have been tackled in the literature, either in an integrated 

or individual manner. As we have focused on tackling the problems using the 

integrated method, we collected the typical constraints that have a profound impact 

in order for them to be considered while solving the problems. 

In the next chapter, we will focus on providing an in-depth literature review on 

seaside operational problems. This will enable us to highlight any gaps and 

weakness points that will be tackled later on, which in return will shed a light on 

our contributions in this research. 
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Chapter 3 : Literature Review 

 

In the previous chapter, we defined the seaside operational problems and explained 

that these problems can be solved individually or in an integrated manner. There 

are many studies dealing with the stated problems, which means that the problems 

have attracted the interest of many researchers. In this chapter, we have provided a 

comprehensive literature review on the seaside operational problems. This research 

focuses on the integrated berth allocation and quay crane assignment problem 

(BACAP) with different constraints and methods involved. Therefore, we have 

given more attention to this problem in the literature related to its classifications, 

benchmarks, and the optimisation methods that have been used to solve it. 

The chapter is organised as follows. In Section 3.1, an overview of the literature 

surveys conducted on the container terminal problems is presented. Section 3.2 

provides a comprehensive literature review of the individual seaside operational 

problems classified by berth layout. The integrated BACAP-related work classified 

by single port or multiple ports is provided in Section 3.3. The most available 

benchmarks and the optimisation methods used to solve the single BACAP have 

been provided in Section 3.3.1.1 and Section 3.3.1.2 respectively. Finally, Section 

3.4 has determined the literature gaps and concludes the chapter. 

3.1 Overview 

By exploring the surveys that have been published on container terminal problems, 

we have found (Stahlbock & Voß, 2008; Voß et al., 2004), described and classified 

the main logistics processes and operations in container terminals, and presented 

the solution methods used for optimisation. Rashidi & Tsang (2013) provided a 

survey on the container terminal problems and classified them into five scheduling 

decisions. They formulated the decisions as constraint satisfaction and optimisation 

problems respectively. Other studies presented surveys of container terminals but 

in the context of specific issues such as that by Angeloudis & Bell (2011), who 

provided a review of container terminal simulation models. Vis (2006) presented a 
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literature survey on the planning problems related to automated guided vehicle 

(AGV)-based terminals. Wiese, Kliewer, Suhl, & Str (2009) conducted a survey on 

container terminal characteristics and the modern equipment used for stacking 

operations in the yard area in different container terminals around the world. 

To the best of our knowledge, there are a few surveys that have been published on 

seaside operational problems such as that by Bierwirth & Meisel (2010, 2015), 

Carlo, Vis, & Roodbergen (2014a, 2014b, 2013) and Theofanis, Boile, & Golias 

(2009). A comprehensive survey of BAP, QCAP and QCSP has given by Bierwirth 

& Meisel (2010), who proposed a classification scheme for the problem formulation 

based on that by Cordeau, Laporte, Legato, & Moccia (2005) and Imai, Sun, 

Nishimura, & Papadimitriou, (2005), which is similar to the scheme by Theofanis 

et al. (2009). Carlo et al., 2014a (2013) continued the work of Bierwirth & Meisel 

(2010). They provided a review and classification of the journal papers published 

between 2004 and 2012 on container terminal seaside operations using the 

keywords: container, container terminal and port, filtering them to the ones solving 

the BAP, QCAP, and QCSP. The paper also provides more attributes for 

classification and good future trends for further researchers to examine to improve 

seaside operational problems, including seaside layout and material handling 

equipment. They presented a similar review and classifications on the storage yard 

operations in Carlo et al. (2014b) 

A follow-up survey to Bierwirth & Meisel (2010) has been presented in Bierwirth 

& Meisel (2015). The authors continued their work by classifying the new literature 

between 2009 and 2014 according to the features of the models considered for berth 

allocation, quay crane scheduling and integrated approaches. They used similar 

classification schemes to those proposed in their earlier study (Bierwirth & Meisel, 

2010).  We can observe from their survey that the numbers of research papers 

published between 2009 and 2014 increased with more than 79 new models 

proposed to solve the BAP and 52 models for QCSP, which means that these 

problems attracted the interest of many researchers. The scope of the problem has 

also increased, with an additional range of different constraints that reflects the 

reality faced by modern ports. This increase into the research of seaside operational 
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problems indicates its growing importance within the field of container terminal 

operations optimisation. 

3.2 Related Work on Seaside Operational Problems 

3.2.1 BAP Literature Review 

There have been numerous studies on the BAP. Imai, Nagaiwa, & Tat (1997) 

modelled the BAP for the commercial ports in Asia and extended the model in their 

second study (Imai, Nishimura, & Papadimitriou, 2001). In the literature, the BAP 

was typically formulated by D. Xu, Li, & Leung (2012) as a combinatorial 

optimisation problem such as a parallel-machine scheduling problem with 

multiprocessor tasks. It has also been formulated as a 2D bin-packing problem (Zhi 

a. Hu, 2010). However, the formulation of the problem leads to NP-Hard or NP-

complete problems, which require the use of heuristics and meta-heuristics to obtain 

solutions in an acceptable computational time (Golias, Boile, & Theofanis, 2006). 

Several heuristics and meta-heuristic approaches developed for the BAP have 

attracted enormous attention in academic research. For instance, Genetic 

Algorithms (GA) are used by Golias, Portal, Konur, Kaisar, & Kolomvos (2014), 

Simulated Annealing is used by Kim & Moon (2003) and Y. Xu, Chen, & Quan 

(2012), and Tabu Search is used by Lalla-Ruiz, Melián-Batista, & Marcos Moreno-

Vega (2012) and Lee, Jin, & Chen (2012). 

The most common goal of the BAP is to minimise the time for vessel turnaround 

and/or the total terminal costs. Due to the different terminal layouts and the different 

strategies used in port operations, researchers have started to classify the BAP (Imai 

et al., 2005). Figure 3-1 illustrates the latest classification for the BAP as presented 

by Bierwirth & Meisel (2015). The spatial attribute concerns the berth layout, 

temporal attribute describes the arrival process of vessels, while handling time 

attribute describes the way how the handling time of vessels is given as an input of 

the problem. Finally, the performance measure attribute considers the performance 

measures of the model. Most of these attributes have been explained in detail as 

seaside problems, constraints in the previous chapter. 
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Figure 3-1: BAP classification scheme, (Bierwirth & Meisel, 2015). 

 

The following sub-sections are the classification of the BAP in terms of the berth 

layout and its relationship with the other attributes. Berth layout has a crucial impact 

related to solving the BAP since it is the first constraint to scheduling incoming 

vessels. Moreover, we can introduce, from this point, the new BAP with multiple 

ports that will be described later on in section 3.3.2. We have also shown that this 

new problem has encountered less solutions and contributions from researchers in 

the literature. 

3.2.1.1 Discrete layout 

Emde, Boysen, & Briskorn (2014) studied the BAP as a discrete layout with a static 

vessel arrival time. They considered the handling time depending on the berthing 

position, and their objective was to minimise the completion time when serving 

vessels. They proposed an exact Branch-and-Bound method as well as developing 

a heuristic and Tabu search meta-heuristic approach to solve the problem. The exact 

method can optimally solve up to 18 vessels in a reasonable time. M. M. Golias, 

Boile, & Theofanis (2009) and Mihalis Golias et al. (2014) presented the BAP with 

similar constraints as Emde et al. (2014), but with a dynamic vessel arrival time and 

their objective function was to minimise the total waiting and handling time serving 

the vessels.  They developed a GA to solve the problem. Imai et al (2001) studied 

the discrete BAP in the context of both static and dynamic vessel arrival time. The 

objective was to minimise the waiting and handling times of the vessels. A 
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Lagrangean relaxation-based heuristic was presented to solve the problem. Pengfei 

Zhou, Kang, & Lin  (2006) considered vessel draft as a constraint for solving the 

discrete BAP in relation to the stochastic arrival and handing time of vessels. The 

objective was to decrease the total vessel waiting time. The authors proposed a GA 

to solve the problem. 

 

3.2.1.2 Continuous layout 

For continuous quay layout with dynamic vessel arrival, Ganji, Babazadeh, & 

Arabshahi (2010) proposed a GA to solve the BAP for a small and large-sized 

problem. The handling time was calculated depending on the berthing position, and 

the objective function was to minimise the total waiting and handling time. Lee, 

Chen, & Cao (2010) studied the problem with similar constraints but the handling 

time was considered to be fixed and their objective was to minimise the total 

weighted waiting and handling time. They developed two versions of the greedy 

randomised adaptive search procedure (GRASP). GRASP consists of two phases in 

each iteration, which are construction and a local search improvement to look for a 

near-optimal solution. Their method proposed identifying the possible berthing 

positions for the next vessel in the schedule. Z. H. Hu, Han, & Ding (2009) proposed 

a non-linear programming model and further proposed an immune algorithm to 

solve the continuous BAP. Guan & Cheung (2004) tackled similar problem 

constraints and developed a tree search procedure to minimise the total weighted 

port stay time of vessels. Moreover, F. Wang & Lim (2007) presented a stochastic 

beam search algorithm capable of solving instances with up to 400 vessels for this 

type of problem. 

Continuous static BAP has been presented by Guan, Xiao, Cheung, & Li (2002) 

with fixed vessel handling times. They proposed a priority rule-based heuristic to 

minimise the weighted completion time of vessels.  

Giallombardo, Moccia, Salani, & Vacca (2010) concluded that the continuous 

layout is much better when compared to the other quay layouts in terms of berth 
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space utilisation. In this regard, Lin, Ting, & Wu (2017) and Ting, Lin, & Wu 

(2013) solved the BAP as a continuous layout using simulated annealing. 

3.2.1.3 Hybrid layout 

For a hybrid quay layout such as Gioia Tauro port, (Cordeau et al., 2005) study 

focused on the BAP in this port where the nature of the quay in the middle was 

discontinued. They proposed a heuristic method to solve the problem. Imai, 

Nishimura, & Papadimitriou (2013) demonstrated the BAP of the indented terminal 

of the Amsterdam container terminal. The berth can accommodate one large vessel 

(mega-vessel) or several small ones as well as handling the mega-vessel from both 

sides. They proposed a channel terminal, which is similar to the indented terminal 

layout for handling mega-vessels from both sides, but it is also capable of avoiding 

the complexity of berthing small vessels. A GA was proposed to solve and compare 

the different layouts with the objective function of minimising the waiting and 

handling time of the vessels. They concluded that the channel terminal layout 

outperforms the indented terminal.  

Kordić, Davidović, Kovač, & Dragović (2016) addressed the BAP through the 

static arrival of vessels and the presence of a fixed handling time in a hybrid quay. 

Their study was based on the model presented by Rashidi & Tsang (2013). They 

proposed an exact algorithm based on the mixed integer programming model in 

order to solve the problem. The algorithm can solve up to 60 vessels within the time 

limit of 1800 seconds.  

C. Y. Cheong, Tan, Liu, & Lin (2010) studied the BAP using the Multi-Objective 

of makespan, waiting time and degree of deviation from the predetermined priority 

schedule. The dataset was generated randomly, and the solution was based on the 

Multi-Objective evolutionary algorithm incorporated with the concept of Pareto 

optimality. They used a fixed length chromosome which represented a fixed 

number of berths. In addition, they used five methods to solve the BAP which were 

berthing order decoding, assignment order decoding (which accepts the vessels 

assigning an earlier time than their ETA), berth exchange crossover, berth exchange 
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mutation and finally, local search exploration. They concluded that the three 

objectives used play an essential role in optimisation performance. 

 

3.2.2 QCAP Literature Review 

In practice, according to vessel length and the number of containers that are to be 

served, terminal operators need to determine the number of QCs to assign to a 

vessel. It may be contracted in advance with the vessel operators, as mentioned 

before. This number can vary between a minimum and maximum number of QCs. 

When the terminal operator decides to assign a number of QCs to a vessel, there are 

two ways to manage the operation of the QCs. The first is the number of assigned 

quay cranes which are fixed to the vessel handling time (time-invariant). This 

means that the fixed number of quay cranes assigned to a vessel is unchangeable 

during the vessel handling time. The second is time-variant, which means that the 

number of cranes assigned to a vessel can change during the handling time period. 

In practice, there are two significant reasons why the terminal operator cannot 

increase the number of QCs. The first one is the high cost of the purchase and 

construction of new QCs. The second is related to their structure, since they move 

on the same rail and cannot across each other, so the interference between them will 

be very high.  

In the literature, we found that this problem has barely received any attention from 

researchers concerning seeking to solve it individually, as it is not considered to be 

a difficult problem if it solved by the rule of thumb (Bierwirth & Meisel, 2010). 

However, it is usually solved when integrated with either the BAP  (Chang, Jiang, 

Yan, & He, 2010; Z.-H. Hu, 2010) or with the QCSP (Diabat & Theodorou, 2014; 

Theodorou & Diabat, 2015) due to its high impact on the vessels’ handling time. 

The main objective of the QCAP is to minimise crane productivity losses and to 

maximise their utilisation. 
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3.2.3 QCSP Literature Review 

The QCSP was proven to be an NP-complete problem by Lee, Wang, & Miao 

(2008). The authors provide a mixed integer programming model and proposed a 

GA in order to solve the problem. In the literature, the QCSP was also addressed as 

a machine scheduling problem, where the QCs are the machines and the containers 

to be served are the jobs. This was done by considering a particular constraint to 

avoid crossing the cranes (Bierwirth & Meisel, 2010). Figure 3-2 illustrates the 

latest classification for the QCSP. Task attribute describes the aggregation of a 

vessel’s containers into crane tasks, crane attribute is related to the proprieties of 

the crane resource as a whole, interference attribute indicates the restrictions on the 

movements of the cranes, and performance measures define the performance 

measures of the QCSP model.  

In this research, we are not considering this type of problem. However, our future 

research may integrate this problem into our models. For more details on the QCSP 

classification scheme and the literature overview, see Bierwirth & Meisel (2015). 

 

Figure 3-2: QCSP classification scheme, (Bierwirth & Meisel, 2015). 
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3.3 Related Work on the Integrated BAP and QCAP 

(BACAP) 

3.3.1 Single Port BACAP 

Individual seaside problems have been the subject of intensive research over the 

last few decades. However, in the literature, there is a limited amount of studies that 

seek to solve the integrated Berth Allocation Problem and Quay Crane assignment 

problem (BACAP). There is a direct impact of the distribution of cranes to vessels 

on the vessels processing time (Bierwirth & Meisel, 2010; Carlo et al., 2015). In 

the literature, a few studies refer to the BACAP as the Tactical Berth Allocation 

Problem (TBAP) (Giallombardo et al., 2010; Lalla-Ruiz, González-Velarde, 

Melián-Batista, & Moreno-Vega, 2014; Melián-Batista, Expósito-Izquierdo, Lalla-

Ruiz, Lamata, & Moreno-Vega, 2013). These studies indicate that the problem is 

the NP-hard combinatorial optimisation problem, as its computational complexity 

increases with the increasing number of arriving vessels as shown by Cordeau et al. 

(2005) and Pinedo (2012). 

Y.-M. Park & Kim (2003) solved the integrated BAP, QCAP and QCSP; their 

model suggests a two-phase solution procedure. The first phase determines the 

berthing position, berthing time, and the setting of the cranes at each vessel in the 

BACAP. The second phase, quay crane scheduling, is then constructed based on 

the results found from the first phase. A Lagrangean relaxation-based heuristic is 

used at the first decision level, and dynamic programming is applied in the second 

level to solve the integrated approach. Meisel & Bierwirth (2013) solved the 

integrated problem in another way. Since the container terminal process starts with 

BAP, and then QCAP and QCSP, the problem can be solved from back (QCSP) to 

front (BAP & QCAP), taking the productivity of the available cranes as the input 

data and using the constraints to solve the BAP and QCAP. The output of the BAP 

and QCAP is then used as the input data to resolve and adapt the final QCSP. 

Container terminals are dynamic environments that are subject to uncertainty, with 

risks imposed on them by external factors due to changeable weather conditions, 

the breakdowns of QCs, changes in the vessel’s expected time of arrival etc. Models 
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and algorithms can be adapted to consider these unexpected situations since they 

cannot be predicted in advance. (Mario Rodriguez-Molins, Ingolotti et al. (2014) 

formulated two conflicting objectives to solve the BACAP, which were minimising 

the total service time and maximising the robustness buffer time in order to accept 

uncertain situations. Their problem was solved by using the Mixed Integer Linear 

programming (MILP) model to minimise the service time using CPLEX, and using 

a GA model to maximise robustness using C++. 

 Ji, Zhu, Wang, Zhao, & Yang (2015) investigated the impact of changing the 

objectives of the terminal operator (TO) and vessel operator (VO). The VO needs 

their service to be completed in the minimum amount of time possible while the TO 

needs to ensure that there is a sufficient amount of profit for their port in order to 

maintain their market position goal in the wider context of port competition.  In this 

regard, we can find that for the different sizes of incoming vessels and their 

requirements for service handling, the terminal berthing plan might be reliable and 

flexible enough to achieve both the TO and VO’s goals. The different berth 

allocation scenarios based on the service strategies, which are first come first serve 

(FCFS), giving priority to small vessels (PTSV), and giving priority to large vessels 

(PTLV), can profoundly impact both the port’s timespan and operational efficiency. 

In this research, we used Genetic Programming as the method to optimise the 

schedule of completed service time considering the TO and VO’s goals, which 

results from the effective and robust composite dispatching rules used to solve the 

BACAP, as described in detail in Chapters 4, 5 and 6. 

To the best of our knowledge, most of the research papers published on the BACAP 

have been shown in Table 3-1 and Figure 3-3, sorted by the date of publication 

starting from 2003 through to 2018. We used the latest surveys related to container 

terminal problems and the following keywords in the most publication search 

engines; “Berth allocation”, “Berth scheduling”, “BAP”, “BACAP” and “Quay 

crane assignment”. The search engines included Elsevier, Informs, Interscience, 

Palgrave, Springer, IEEE, Taylor and Francis, and Google Scholar. Moreover, we 

included the research studies that tackled the BACAP either separately or integrated 

with other problems. We found 102 research papers from 2000 to 2018; 46 of them 
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were published before 2013 when we started this thesis, and the remaining 56 were 

published in later years.  

Table 3-1: Research papers published on the BACAP from 2000 to 2018. 

Year Reference Year Reference 

2018 (Canrong Zhang, Wu, Qi, & Miao, 2018) 2013 (He, Huang, Chang, & Zhang, 2013) 

2018 (Y. Liu, Wang, & Shahbazzade, 2018) 2013 (Dong, Hu, & Tao, 2013) 

2018 (Agra & Oliveira, 2018) 2013 (Meisel & Bierwirth, 2013) 

2018 (K. Wang, Zhen, Wang, & Laporte, 2018) 2013 (E. L. Ruiz, Izquierdo, Batista, & Moreno-Vega, 

2013) 

2018 (Krimi et al., 2018) 2013 (Vacca, Salani, & Bierlaire, 2013) 

2018 (Z. Xu & Lee, 2018) 2012 (M. P. M. Hendriks, Armbruster, Laumanns, 
Lefeber, & Udding, 2012) 

2018 (Yuping, Yangyang, Yuanhui, & Tianyi, 2018) 2012 (X. Chen & Yang, 2012) 

2017 (Hsu, Wang, Chou, Lee, & Wen, 2017) 2012 (Le, Wu, & Zhang, 2012) 

2017 (Salhi, Alsoufi, & Yang, 2017) 2012 (Chunxia Yang, Wang, & Li, 2012) 

2017 (Ç. Iris, Pacino, & Ropke, 2017) 2012 (Mario Rodriguez-Molins, Barber, Sierra, Puente, 
& Salido, 2012) 

2017 (C. Iris & Lam, 2017) 2012 (J. H. Chen, Lee, & Cao, 2012) 

2017 (Zhen, Liang, Zhuge, Lee, & Chew, 2017) 2012 (X. Liang, Li, Zhao, & Li, 2012) 

2017 (Correcher & Alvarez-Valdes, 2017) 2012 (Salido, Rodriguez-Molins, & Barber, 2012) 

2016 (El-boghdadly, Bader-El-Den, & Jones, 2016b) 2012 (C. Liang, Hwang, & Gen, 2012) 

2016 (El-boghdadly, Bader-El-Den, & Jones, 2016a) 2011 (H. L. Ma, Chan, Chung, & Wong, 2011) 

2016 (Türkoğulları, Taşkın, Aras, & Altınel, 2016) 2011 (Zhen, Chew, & Lee, 2011) 

2016 (Shang, Cao, & Ren, 2016) 2011 (Ali, Abouelseoud, & Elwany, 2011) 

2016 (Changchun, Canrong, & Li, 2016) 2011 (Xiaotao, Yuquan, & Qiushuang, 2011) 

2016 (Cavalcante, Oppen, Samer, & Urrutia, 2016b) 2011 (Raa, Dullaert, & Schaeren, 2011) 

2016 (Cavalcante, Oppen, Samer, & Urrutia, 2016a) 2011 (Meisel, 2011) 

2016 (J. Yang, Gao, Liu, & Liu, 2016) 2011 (Blazewicz, Cheng, Machowiak, & Oguz, 2011) 

2016 (He, 2016) 2011 (C. X. Yang, Wang, & Yang, 2011) 

2015 (F. Li, Sheu, & Gao, 2015) 2011 (C. Liang, Guo, & Yang, 2011) 

2015 (Karam & Eltawil, 2015) 2011 (Zeng, Hu, Wang, & Fang, 2011) 

2015 (C. Iris & Pacino, 2015) 2011 (Zeng, Yang, & Hu, 2011) 

2015 (Alsoufi, Yang, & Salhi, 2015) 2011 (Lu, Han, & Xi, 2011) 

2015 (Said & El-Horbaty, 2015) 2010 (Canrong Zhang, Zheng, Zhang, Shi, & Armstrong, 

2010) 

2015 (Pan & Xu, 2015) 2010 (Vacca, Salani, & Bierlaire, 2010) 

2015 (M. Z. Li et al., 2015) 2010 (M. Hendriks et al., 2010) 

2015 (Frojan, Correcher, Alvarez-Valdes, Koulouris, 
& Tamarit, 2015) 

2010 (Bierwirth & Meisel, 2010) 

2015 (Zhi-hua Hu, 2015) 2010 (Chang, Jiang, et al., 2010) 

2015 (Hsu, 2015) 2010 (Giallombardo et al., 2010) 

2015 (Ji et al., 2015) 2010 (Zhi a. Hu, 2010) 

2014 (Lalla-Ruiz et al., 2014) 2010 (Chun Yew Cheong, Habibullah, Goh, & Fu, 2010) 

2014 (Türkoǧullari, Taşkin, Aras, & Altınel, 2014) 2010 (Chang, He, & Zhang, 2010) 

2014 (Q.-M. Hu, Hu, & Du, 2014) 2010 (Chun Yew Cheong et al., 2010) 

2014 (Ursavas, 2014) 2010 (Han, Lu, & Xi, 2010) 

2014 (Karam, ElTawil, & Harraz, 2014) 2009 (C. Liang, Huang, & Yang, 2009) 

2014 (Aras, Türkoğulları, Taşkın, & Altınel, 2014) 2009 (Meisel & Bierwirth, 2009) 

2014 (H. Ma, Chan, & Chung, 2014) 2009 (Meisel, 2009a) 

2014 (Mario Rodriguez-Molins, Ingolotti, et al., 

2014) 

2009 (C. Liang, Lin, & Jo, 2009) 

2014 (M. Rodriguez-Molins, Salido, & Barber, 2014) 2009 (Na & Zhihong, 2009) 

2014 (Türkoğulları, Taşkın, Aras, & Altınel, 2014) 2009 (He, Mi, Chang, & Yan, 2009) 

2014 (Gao, Cao, & Zhao, 2014) 2008 (Peng-fei Zhou & Kang, 2008) 

2014 (Xiao & Hu, 2014) 2008 (Giallombardo, 2008) 

2013 (Shen & Ko, 2013) 2008 (Maarten Hendriks, Marco Laumanns, Erjen 

Lefeber, 2008) 

2013 (Zampelli, Vergados, Van Schaeren, Dullaert, 
& Raa, 2013) 

2008 (Legato, Gullì, & Trunfio, 2008) 

2013 (Rashidi & Tsang, 2013) 2007 (Lokuge & Alahakoon, 2007) 

2013 (Elwany, Ali, & Abouelseoud, 2013) 2006 (Meisel & Bierwirth, 2006) 

2013 (Chutian Yang, Wang, & Zheng, 2013) 2006 (J. Liu, Wan, & Wang, 2006) 

2013 (Sheikholeslami, Ilati, & Hassannayebi, 2013) 2003 (Y.-M. Park & Kim, 2003) 
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Figure 3-3: Number of research papers for the BACAP by year of publication. 

 

3.3.1.1 Benchmarks 

In the literature, there have been different benchmarks used by the researchers. Most 

of the benchmarks are either (i) real data imported from a port as a case study or (ii) 

generated data based on real data from a container terminal, considering the 

standard measures and average number of vessels arriving either per day or per 

week. In this section, Table 3-2 shows a summary of the benchmarks that have been 

used in the literature or updated by the researchers and that are available for the 

BACAP. 

In our research, we selected (i) The benchmark provided by Mario Rodriguez-

Molins, Ingolotti, et al. ( 2014) in order to solve the continuous dynamic BACAP. 

This is because it includes a large number of vessels and fewer constraints. We used 

this benchmark to verify the performance of the proposed model, and to test the 

composite dispatching rule concept generated by genetic programming as presented 

in Chapter 4; (ii) the benchmark provided by Meisel & Bierwirth (2009) in order to 

solve the continuous dynamic BACAP with desired berthing position as presented 

in Chapter 5; (iii) we generate a benchmark based on the benchmark in (ii) in order 

to solve the multi-port continuous dynamic BACAP with the desired berthing 

position as presented in Chapter 6. 
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Table 3-2: Summary of the BACAP literature benchmarks. 

Author (Mario Rodriguez-

Molins, Ingolotti, et 

al., 2014) 

(Meisel & 

Bierwirth, 2009) 

(Y.-M. Park & 

Kim, 2003) 

(Lalla-Ruiz et al., 

2014) 

(Giallombardo et al., 

2010) 

Benchmark - Generated. - Real data: 

based on (Y.-M. 

Park & Kim, 

2003) 

- Generated. 

- Real Data: 

Pusan Eastern 

Container 

Terminal (PECT) 

in Pusan (Korea).  

- Generated. 

- Real Data: based 

on (Giallombardo 

et al., 

2010);(Vacca et 

al., 2013) 

- Generated. 

- Real Data: 

Medcenter 

Container Terminal 

of Gioia Tauro 

(Italy) 

Size Includes 100 vessels 

/day, for 100 days 

instances 

Includes 30 

instances, 20 

vessels,30 vessels, 

and 40 vessels with 

10 instances for 

each. 

Real Data: 25 

instances; (13-20 

vessels). 

 

Randomly 

generated: 50 

instances (20-40 

vessels). 

Generated: 3 sets of 

5 instances with 10 

possible profiles per 

vessel. 

60 vessels, 12 

instances for 6 

classes of instances 

Input Data - Vessel ID. 

- Length of the 

vessel. 

- Arrival time of 

the vessel. 

- Number of 

movements (or 

containers) to be 

unloaded/loaded. 

- Priority of the 

vessel (1 ≤ p ≤ 10 

where 10 is the 

highest priority, 

and 1 is the lowest 

one). 

- Vessel ID. 

- Length of the 

vessel. 

- Desired 

berthing position 

of the vessel.  

- Crane capacity 

demands of the 

vessel (in QC-

hours). 

- Expected time 

of arrival. 

- Earliest starting 

time. 

- Expected 

finishing time. 

- Latest finishing 

time. 

- Minimum 

number of cranes 

to assign. 

- Maximum 

number of cranes 

to assign. 

- Vessel's costs 

- Expected time 

of arrival. 

- Length of the 

vessel. 

- Total operation 

time of cranes to 

handle the vessel. 

- Expected 

finishing time. 

- The least-cost 

berthing location. 

- The container 

handling cost per 

unit distance 

between berth and 

yard. 

- The penalty 

cost of the vessel 

per unit time of 

arrival. 

- Set of vessels 

- Set of berths 

- Set of time step 

- Set of quay 

crane profile 

- Service time of 

vessel 

- Maximum 

number of QCs 

available 

- Housekeeping 

cost/container 

- Expected time 

of arrival. 

- Earliest starting 

time. 

- Start/end of the 

availability of a 

berth. 

 

- Expected time of 

arrival. 

- Minimum 

number of cranes to 

assign. 

- Maximum 

number of cranes to 

assign. 

- Number of 

movements (or 

containers) to be 

unloaded/loaded. 

Assumptions - Quay length: 

700 meters 

- There is a safe 

distance between 

two moored ships. 

Assume that each 

vessel has a 2.5% 

of this length at 

each side as a safe 

distance. 

- Available Quay 

Cranes: 7 

- The maximum 

number of 

assigned QCs by a 

vessel depends on 

its length and not 

exceed the 

maximum number 

of QCs that the 

container terminal 

allows per vessel 

(5 QC),  

- Safe distance 

between two 

adjacent QCs (35 

meters). 

- Movements of 

the QC per time 

unit: 2.5 

moves/time unite 

- Quay length: 

1000 meter. 

- Time Horizon = 

168 hours 

- Number of 

available cranes = 

10 

- QCs 

interference 

exponent = 0.90  

- Berth deviation 

factor = 0.01 

- Cost per QC-

hour = 0.10 

 

- Quay length: 

1200 meter 

- Time Horizon = 

300 hours 

- Total number of 

cranes = 11 

- The maximum 

number of cranes 

= 5 

- The minimum 

number of cranes 

= 2 

- The service time 

of each vessel is 

determined by the 

QC profile 

assigned to it. 

- The vessels is 

divided into a 

number of classes 

and subclasses 

with a percentage 

of exchange 

number of 

containers. 

- Quay length: 

3395 meters. 

- Quay cranes 

available: 25 

- Quay crane 

productivity: 24 

containers/hour. 

- They consider 

six classes of 

instances: 

o 10 ships and 3 

berths, 1 week, 

8 quay cranes; 

o 20 ships and 5 

berths, 1 week, 

13 quay cranes; 

o 30 ships and 5 

berths, 1 week, 

13 quay cranes; 

o 40 ships and 5 

berths, 2 weeks, 

13 quay cranes; 

o 50 ships and 8 

berths, 2 weeks, 

13 quay cranes; 

o 60 ships and 13 

berths, 2 weeks, 

13 quay cranes. 
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3.3.1.2 Optimisation Methods 

There are a variety of methods that are able to be used to solve the BACAP. Since 

the BACAP is widely known to be an NP-Hard problem (Y.-M. Park & Kim, 2003), 

we found in the literature that a few researchers have proposed an exact method for 

optimisation. They also use this method to test a small number of instances for the 

purpose of verifying their models. In contrast, several heuristic and meta-heuristic 

methods (approximation methods) have been developed to solve the BACAP for a 

large number of instances. 

3.3.1.2.1 Exact methods 

In computer science and operations research, the exact methods are well-known and 

used for solving optimisation problems. There are algorithms that allow for the 

finding of an optimal solution to a problem, but they are time-consuming when the 

problem becomes more complicated, such as problems with hardly constrained or 

time-varying problems (Festa, 2014). 

Vacca et al. (2013) proposed a model to solve the BACAP based on an exponential 

number of variables, solved via column generation. They implemented an exact 

branch-and-price algorithm in order to produce optimal integer solutions along with 

several accelerating techniques developed to solve the problem. Ursavas (2014) 

studied discrete dynamic BACAP. The branch-and-cut algorithm was used to solve 

the real problem for the port of Izmir in Turkey.  

Mixed Integer Linear Programming (MILP) is mostly used as an exact method to 

solve the BACAP using mainly CPLEX as the solver. For instance, Aras et al., 

(2014); Q.-M. Hu et al., (2014) solved the continuous dynamic BACAP; while M. 

Hendriks et al. (2010) solved the continuous cyclic BACAP using MILP. 

3.3.1.2.2 Approximation method 

Heuristic and meta-heuristic methods are approximated methods, since they seek to 

produce good quality solutions to difficult problems in a reasonable amount of 

computation time. They are powerful methods and flexible to use to search for near-

optimal solutions (Festa, 2014). The main difference between these two methods is 
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that meta-heuristics consider the information collected during the search for the 

solution space, to further direct the search process. They have a mechanism to avoid 

getting stuck in local optima. 

The most frequently used meta-heuristic method in the literature for solving the 

BAP and BACAP is the Genetic Algorithm (GA). C. Liang et al. (2011) and C. 

Liang, Huang, et al. (2009) proposed a GA to solve the discrete dynamic BACAP 

with the aim of minimising vessel handling time, waiting time, and delay time. 

Chang, Jiang, et al. (2010), Mario Rodriguez-Molins et al. (2012) and Chunxia 

Yang et al. (2012) solved the continuous dynamic BACAP using GA. Han et al., 

(2010); He et al. (2009); Lalla-Ruiz et al. (2014); Lu et al. (2011); Peng-fei Zhou 

& Kang (2008) have also used a GA to solve the BACAP. 

Giallombardo et al. (2010) introduced the so-called Tactical Berth Allocation 

Problem. They developed a heuristic algorithm which combined Tabu search 

methods and mathematical programming techniques in order to solve the discrete 

dynamic BACAP. Moreover, Zeng, Hu, et al. (2011) and Zeng, Yang, et al. (2011) 

used the same Tabu search method to solve the continuous dynamic BACAP. 

Meisel & Bierwirth (2009) proposed a squeaky wheel optimisation and Tabu search 

method in order to solve the BACAP with a variable-in-time or time-variant QC 

related to vessel assignment. They considered that crane productivity depends on 

the berthing position of the vessels. The objective is to minimise the service costs 

plus the operational costs of the utilised QC-hours. The outcomes deliver significant 

improvements against the solutions reported by Y.-M. Park & Kim (2003). 

Elwany et al. (2013) proposed an integrated heuristics-based solution methodology 

using Simulated Annealing (SA) in order to solve the BAP and QCAP 

simultaneously. They assumed there to be a continuous berth layout with variable 

water depth along the quay, with dynamic vessel arrival. The results show high 

quality in relation to the reasonable computational time when compared with 

CPLEX as an exact method. 

The Greedy Randomised Adaptive Search Procedure (GRASP) is a meta-heuristic 

algorithm that has also been used by researchers in the literature to solve the 
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BACAP, like those used by Mario Rodriguez-Molins, Salido, & Barber (2014) and 

Salido et al. (2012). 

 

3.3.2 Multiple Ports BACAP 

In this section, we investigated the BACAP considering the setting of multiple 

ports/terminals under the control of one-port operator. The rapid increase in the 

number of containers transhipped between countries and the number of container 

vessels overall has lead to port managers increasing the number of container 

terminals, either in the same port or by building new ports. Furthermore, container 

terminal congestion may happen in the case of uncertainty of quay crane failure, 

insufficient berthing capacity or when shutting down of one terminal for any reason. 

Therefore, port operators must have an alternative plan for such a situation. 

Most of the published studies in the literature on the BAP or BACAP consider there 

to be a single terminal as described in the previous sections. Some research studies 

were case studies on a specific port, which have a specific layout. However, a few 

of these studies consider multiple terminals managed by one port operator for the 

BAP. In this case, the problem becomes more complicated, since the port operator 

might have to allocate a berth space, starting time, and a specific terminal/quay for 

every vessel. This problem is known as multiple ports BAP. 

We widely investigated this phenomenon by using online search engines to look for 

papers, research studies and thesis’ that contained the following keywords: “Berth 

allocation”, “Berth scheduling” and “Terminal operations” in combination with 

“Multi/multiple” and “terminal/port/quay”. The online search engines included 

Elsevier, Informs, Interscience, Palgrave, Springer, IEEE, Taylor and Francis, and 

Google Scholar. We also searched the citations of the previous relevant papers. We 

have included the survey papers related to the subject as well. To the best of our 

knowledge and to discern the outcome of the above investigation, we found that the 

BACAP in the context of multiple terminals/quays has not been studied enough in 

the literature. We classified these studies according to the planning decision levels 

as follows.  
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At the strategic level, M. P. M. Hendriks et al. (2012) considered multi-terminals 

within the same port in order to solve the cycling of calling vessels in the BACAP. 

Their objective was to minimise the costs associated with each QC in order to 

balance the QC workload and to further minimise the inter-terminal container 

transportation cost. Their solution was based on mixed-integer programming. They 

implemented the solution for real data through the terminal operator of PSA 

Antwerp. 

At the tactical level, Lee et al's (2012) work resembled the study of M. P. M. 

Hendriks et al. (2012). They included the storage yard allocation for transhipment 

flows rather than the QC workload. Moreover, they extended the study of Moccia 

& Astorino (2007), where the aim was to minimise the total inter-terminal and intra-

terminal handling costs that resulted from transhipment flows. They developed an 

integer programming model and a two-level heuristic algorithm to solve the 

problem. For the continuous BAP with multiple quays at the tactical level, Huang, 

Suprayogi, & Ariantini (2016) developed an integer programming model to 

determine the berthing windows of calling vessels within a planning horizon in a 

cyclical way. The aim was to minimise the sum of the service starting time 

deviations related to the desired time. They developed two heuristic methods in the 

case where there was increasing port demands. 

At the operational level, multiple terminals in the same port was considered by Imai, 

Nishimura, & Papadimitriou (2008). They formulated an additional terminal only 

in the case of the main terminal no longer being able to handle the expected number 

of incoming vessels at a point in time. In this case, a number of vessels were 

reallocated to a nearby terminal to minimise the total vessel service time. Frojan et 

al. (2015) studied continuous BAP in a container terminal with multiple quays. 

Their objective was to minimise the total assignment cost (waiting cost, delay cost, 

vessel assignment cost to the quay, and the vessel deviation cost if it was moved 

from its desired berthing position in the quay). They assumed that the handling time 

for each vessel was known and independent of the berthing position. Moreover, 

they assumed there to be a high cost for the condition preventing the vessel from 

mooring at a given quay. The experimental study was based on the dataset provided 
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by K. T. Park & Kim (2002) and Cordeau et al. (2005), with the updated version 

able handle multiple quays. They solved the problem for large instances, using GA 

and priority rules to build the initial population. The algorithm that they used was 

based on two constructive algorithms (exploratory and analytic). Finally, the local 

search algorithm was used to improve the solution.  

Dadashi, Dulebenets, Golias, & Sheikholeslami (2017) proposed a new 

mathematical model for berth allocation and the scheduling of vessels at multiple 

marine container terminals in the same port. They modelled the multiple terminals 

by combining the available berthing space of each terminal into a single wharf. 

Their model extends the model developed by Kim & Moon (2003) with the 

objective of minimising the total weighted delayed departure time of the vessels. 

They considered the problem to be a continuous berthing problem and studied the 

tidal effects on berth scheduling. They solved the problem using CPLEX. The 

benchmark used was from the port of Bandar Abbas (Iran), which has two terminals 

that differ in length and depth operated by one port operator. They grouped the data 

into 27 instances and conducted three experiments. The first one assumed there to 

be a first-come-first-serve priority weight to compare it with the current operations 

ongoing in Bandar Abbas port. The outcome was a reduction in all 27 instances in 

the delay of the departure. They observed that many factors affect the delay of 

vessels such as vessel size, storage yard utilisation and average quay crane 

production. The second experiment studied four sets of weights and their impact on 

the results. The final experiment evaluated the effect of increasing access channel 

depth on a vessel’s delayed departure. In their research, we can observe that the 

authors did not explain the method of dividing the vessels between the multiple 

terminals and the impact of sending one vessel to another terminal in the case of 

there being a tidal effect. Their objective was to minimise the total delay time only 

while not considering the cost of changing the vessel’s desired berthing position, 

which has a high impact on the results.  

Zhen, Wang, & Wang (2016) investigated the BACAP for one port with multiple 

terminals in the transhipment hubs. The model was formulated to minimise the 

bunker consumption and inter-terminal transfer costs for the containers. A local 



3.3.Related Work on the Integrated BAP and QCAP (BACAP) 

55 

branching-based method and particle swarm optimisation were developed to solve 

the problem. 

As explained before, berth layout can be divided into three types: continuous, 

discrete, and hybrid. If we study the hybrid layout, we can find that this type is quite 

similar to the multi-quay problem. This is as the quay is divided into berths, and 

each berth can handle two small vessels. One large vessel can occupy two berths. 

However, in the case of multiple ports, the problem is much more complicated since 

each port has multi-quay/terminal, and each quay in a different port has its own 

respective characteristics and an associated number of QCs. The quay crane in the 

multi-quay is independent, and there is a space for each vessel to moor in different 

berth other than its desired. Each container has a desired yard position (inter-

terminal). Therefore, there is a cost to transferring containers from the vessel’s 

berthing position in one terminal to another, or from one port to another. All of 

these constraints might be considered when solving this type of problem. 

The work of Imai et al. (2013) and S.-W. Lin & Ting (2014) is an excellent example 

of a hybrid dynamic BAP. The work was done by Türkoǧullari et al. (2014b) on a 

hybrid BAP while considering the QCAP is another great example. Türkoǧullari et 

al. (2014b) solved the BACAP and extended the work in order to handle berth 

allocation and quay crane specifics, which determines the specific cranes that will 

work on a vessel. They considered the hybrid layout, where the berth is divided into 

sections so then the vessel can be allocated to one or more of the berth sections. 

Moreover, they considered dynamic vessel arrival. Their objective was to minimise 

the costs of waiting, position and tardiness. They assumed there to be a time-

invariant assignment to the QCs, while the number of QCs did not change during 

the vessel’s stay in the berth. 

Chun Yew Cheong et al. (2010) considered the BACAP through the use of multi-

objective optimisation in order to minimise the handling and waiting time. They 

also used a hybrid layout port, which consisted of 23 berths and 87 QCs. By solving 

the problem with multiple objectives, the solution emphasised on the search for a 

Pareto-optimal set of solutions. The authors used the same method as used in C. Y. 
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Cheong et al's study (2010), including referencing the QCAP solved using 

constructive and improvement heuristics.  

3.4 Research Gaps and Conclusion 

Although seaside operational problems have received much attention in the 

literature, we have identified a few gaps that this research can fill in; the rest can be 

future research trends. In this section, we have provided the conclusion of the 

studied problems in the literature and an insight into the research gaps. 

It was noted that seaside operational problems consist of many constraints that may 

vary and change from one port to another. These constraints have a crucial impact 

on the solution method and how the problem is solved. Therefore, in this chapter, 

we have started to provide an overview of the literature, which aims to classify the 

problems concerning the constraints. These classifications can allow future 

researchers to identify their problems and constraints clearly and to facilitate their 

comparisons with similar studies. 

Several studies have tackled seaside operational problems independently. However, 

these problems are interrelated, and there is still an insufficient number of studies 

that has sought to solve them in an integrated manner. This research consisted of a 

deep integration of BAP and QCAP, solving them dependently. 

As we have focused this thesis on the BACAP, we reviewed the literature on the 

BAP as classified by berth layout, such as discrete, continuous, and hybrid. 

Consequently, we have provided a comprehensive body of literature on the BACAP 

regarding its classifications, benchmarks and the methods that have been used to 

solve the problem. We can observe that most of the previous studies tackle the 

BACAP as a single port/terminal. Therefore, we have reviewed the literature for 

this problem in the context of a single port, and then progressed to analysing it as if 

in multiple ports. 

We have found in common that most of the researchers have concluded that the 

current benchmarks that are available for the BAP/BACAP are not general enough. 

They advised finding general benchmarks that include different information to 
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handle different types of problems. Moreover, it is preferred that the benchmarks 

are quite similar to real container terminal data. These benchmarks will provide the 

best method and a better solution when the researchers go to compare their work 

with one another. We have presented the five most common benchmarks that were 

used in the literature and the ones that we used in our experiments in this thesis. 

Moreover, it can be observed that the BACAP was solved using different methods, 

either exact or heuristic. The heuristic methods have more of a share of the literature 

regarding the complexity required to solve the problem with the exact methods. We 

have discussed both methods, and found that the preferable way to verify any model 

is to use the exact method for small instances and then to compare the outcome with 

the results of the heuristic methods. This is as the heuristic methods do not 

guarantee optimality like the exact ones. We found that although some methods can 

provide excellent solutions, they are not flexible enough to cope with the practical 

requirements of TO and VO concerning giving priority to incoming vessels. 

In the literature, we noticed that most of the researchers tried to find a better solution 

using different methods, but no-one considered finding a better solver instead of 

finding a better solution, which is not capable of handling future constraints and 

different port layouts.  

We considered most of these issues in our research, by innovating an algorithm in 

order to find better dispatching rules using genetic programming to solve the 

BACAP. The resulting outcomes of this algorithm are the best solver, and thus can 

produce a better solution. This solver can easily be used to solve similar problems 

in the future with different constraints, providing a near optimal solution within an 

acceptable amount of computational time. 

Finlay, we explored the literature for the works that have been conducted related to 

the new problems that arise in the container terminals, which is the multiple ports 

BACAP. We have found that this type of problem is not considered often enough 

in the literature and this motivates us to study this type of problem in detail. 
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Chapter 4 : A Genetic Programming 

Algorithm for the Berth and Quay Crane 

Allocation Problem 

 

4.1 Introduction 

In container terminals, most of the operations are strongly interdependent. As 

mentioned previously, seaside operations face three main problems, BAP, QCAP 

and QCSP. These problems can be solved independently with a small number of 

instances (e.g. a small number of vessels with few constraints) as this may only 

have a slightly negative impact on the performance of the solution. However, this 

is not the case for highly constrained large instances, as the first two problems are 

highly dependent on one another. The number of available QCs depends on when 

and where the vessel is berthed, and the berthing handling time varies depending 

on the number of QCs assigned (W. Li, Wu, & Goh, 2015). Bierwirth & Meisel 

(2010) determined that treating the BAP and QCAP as an integrated problem could 

improve overall performance by 34%.  

This chapter focuses on the first two integrated problems, the Berth Allocation 

problem and Quay Crane Assignment Problem (BACAP) as in Figure 4-1 with no 

desired berthing position known in advance. The objective is to minimise the total 

service time of all vessels. The overall goal is to optimise the seaside container 

terminal operations by solving the BACAP as one problem, which in turn improves 

the container terminal throughput. 

Finding an effective vessel dispatching rule for a given problem is not a trivial task, 

as it is time consuming, and requires expert knowledge. Current constructive 

methods used to solve the BACAP are based on simple/standard priority rules, and 

the methods used to find a solution rather than finding a better solver. Our objective 

is to develop a new intelligent algorithm which uses a new priority-based 
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scheduling method to solve the problem using the Genetic Programming (GP) 

approach. GP is used to automatically evolve dispatching rules for the BACAP 

depending on the problem constraints and circumstances and it is able to find a good 

solver that can cope with different situations. In addition, the GP has advantages 

over traditional fixed-length chromosomes and the limitations of the genetic 

algorithm (GA) approaches (Koza, 1992). 

BAPBAP

QCAP

QCSP

Time

BACAP

 

Figure 4-1: The BACAP 

 

A comparative study of Standard Priority Rules (SPRs) and Composite Dispatching 

Rules (CDRs) has been presented in this chapter. CDR has been shown to be more 

efficient and flexible when it comes to meeting the needs of both terminal and vessel 

operators adequately. 

The contributions of this chapter are the following. (1) A novel genetic 

programming-based approach to evolve the dispatching rules for the BACAP 

problem that outperform other standard priority rules. (2) The “self-adaptability” of 

the proposed method; since almost all container terminal ports have distinctive 

characteristics, and so the performance of DR-based schedules varies significantly 

from port to another, and therefore, it is important to tune and select the best-

performing DRs manually. The proposed GP approach is “self-adaptable”, in which 

it automatically discovers/evolves high performing DR using different sets of 

variables based on what is available in each berth (3) We have developed an 

independent scheduler for the BACAP (BACAP_Scheduler) that can be combined 

with any appropriate optimisation method. (4) Provided an analysis of a wide range 

of DRs and compared the GP approach with a well-known large BACAP 

benchmark. 
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The chapter is organised as follows. In Section 4.2, the problem description has 

been described. The mathematical model with its notations and assumptions has 

been presented in Section 4.3. The complete description and survey of the used 

dispatching rules and composite dispatching rule to solve the BACAP has been 

presented in Section 4.4. In Section 4.5, the proposed algorithm BACAP_GP to 

solve BACAP has been presented. The extensive computational results have been 

presented and analysed in Section 4.6. In Section 4.7, we concluded the chapter and 

presented the future research directions. 

 

4.2 Problem Description 

In the BACAP, there are three main factors: (1) a set of incoming vessels (vessel 

list), where each vessel has several attributes such as length, expected time of 

arrival, the number of containers to be loaded/unloaded, and the minimum QC 

contracted between the Terminal Operators (TO) and Vessel Operators (VO) to 

serve the vessel; (2) the container Terminal (quay), where the quay has spaces 

(berths) to accommodate the vessels and the individual characteristics vary from 

port to another, such as quay length and depth and (3) the number of available QCs 

on the quay to load and unload containers to/from the vessel. 

To solve the integrated BACAP for a single quay in a port, we are required to 

allocate a time slot within a planning horizon and a berthing space on the quay to 

incoming vessels, taking into consideration that at least the minimum number of 

their QCs needed are available. Once a berth is set as being occupied for a vessel, 

no other vessel can occupy the same berth at the same time. Then, we assign a set 

of QCs to serve the vessel during its stay in the berth. 

Figure 4-2 demonstrates the BACAP problem. We have five vessels; the third and 

fifth one have the same expected time of arrival, and the rest have different times. 

These vessels should be scheduled to berth and be serviced by the QCs. The quay 

is shown as a single quay with four QCs. A quay could have one or more berths 

depending on the quay length and layout. 
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Figure 4-2: The single-quay BACAP problem description. QC: Quay Crane, ETA:       

Expected time of arrival 
 

4.3 Mathematical Model Formulation 

The general goal of container terminal’s berth planning is to provide fast and 

reliable services of vessels. This is reflected in the literature by various objective 

functions. The most common objective is to minimise the sum of the waiting and 

handling time of vessels (service time). Further objectives are, for instance, the 

minimisation of the workload of terminal resources and minimisation of the vessels 

rejected to be served at a terminal (Meisel, 2009b). 

In this study, the BACAP was modelled as a single objective function with the aim 

of minimising the total service time for all vessels as shown in equation (4.1). Figure 

4-3 represents a vessel coming in to berth and the associated time-space diagram. 

The notations used in the diagram will be explained in detail in the following 

sections. 
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Figure 4-3: Vessel to berth and time-space representation 
 

According to the classification scheme in Bierwirth & Meisel (2015), our approach 

is represented by the (BAP, QCAP(number)), which is the integration between the 
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berth allocation problem and quay crane assignment problem in order to decide on 

the berthing position, berthing time, and the number of cranes to assign to each 

vessel. Moreover, the problem is defined as cont | dyn | QCAP |  (wait + hand), 

which is described as follows: 

• Spatial attribute: Continuous layout: The quay is of a continuous layout, 

with no partitioning so then the vessel can berth depending on its length 

within the boundaries of the quay. 

• Temporal attribute: Dynamic arrival: All fixed arrival times are known in 

advance for all incoming vessels, so then the arrival times restrict the earliest 

berthing times by adding more costs 

• Handling time attribute: unknown in advance: The handling time of a vessel 

is unknown in advance, and it depends on the number of assigned QCs 

(QCAP) and the moves required. 

• Performance measure: wait and handling times: The objective function is 

to minimise the total sum of the waiting time and the total sum of the 

handling times (total service time) of all vessels V. 

4.3.1 Model Assumption 

The proposed model was established based on the following assumptions: 

• The vessel can be moored on the quay if there is a space greater than or 

equal to the vessel length, and if there is at least one QC available to start 

with. Moreover, we assume that all vessels can moor in any position on the 

quay (there is no desired berthing position). 

• The number of QCs assigned to the vessels is greater than or equal to the 

minimum number of allowed quay cranes and less than or equal to the 

maximum number of allowed quay cranes. 

• The QCs can be assigned to vessels using a dynamic approach (time- 

variant) so then the QCs can be assigned to another vessel before the original 

vessel departs. For more details on the differences between static and 

dynamic assigning for QCs, see Rodriguez-Molins, Salido, & Barber 

(2014). 
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• Information related to the incoming vessels is known in advance including 

the length of the vessel, expected time of arrival, and the movement/number 

of containers to be loaded/unloaded. 

• Every vessel has a draft that is lower than the depth of the quay. 

• The time for the QCs movements along the quay as well as the berthing and 

departure times of vessels to berth was not considered since it supposes 

there to be a constant penalty time (cost) for all vessels. 

• Vessel length includes the required safety margins, which is the safe 

distance between two moored vessels. 

4.3.2 Notations 

The following are the notations used in the proposed approach: 

Input data: 

 

Decision variables: 

𝑉 Set of vessels (Vessel list) to be served, each vessel denoted as  
𝑖 ∈ 𝑉. 

𝑣𝑙𝑖  Length of the vessel 𝑖  including the safety margins. 

𝑄𝐶 Number of available QCs in the quay. It is assumed that all QCs are 

homogeneous. 

𝑄𝐶𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 Number of movements of containers per time unit (hour). 

𝑠𝑎𝑓𝑒𝑄𝐶 Safe distance required between two continuous QCs including QC width. 

𝑞𝑚𝑎𝑥 Maximum number of QCs that container terminal allows per vessel. 

𝑞𝑖
𝑚𝑎𝑥 Maximum number of QCs that can be assigned to vessel  𝑖, and this depends 

on the 𝑣𝑙𝑖   and 𝑠𝑎𝑓𝑒𝑄𝐶, calculated by Equation (4.2). 

𝑞𝑖
𝑚𝑖𝑛 Minimum number of QCs that can be assigned to vessel 𝑖. 

𝑄𝐿 length of the quay. 

𝐸𝑇𝐴𝑖 Expected time of arrival of vessel 𝑖. 
𝐸𝐹𝑇𝑖 Expected finishing time of vessel 𝑖. 
𝑚𝑖 Number of required movements to load/unload containers to/from vessel 𝑖. 

𝐴𝑇𝐴𝑖 Actual time of mooring vessel 𝑖. 
𝐴𝐹𝑇𝑖 Actual finishing time of vessel 𝑖. 
𝑞𝑖 Number of assigning QCs to vessel 𝑖.  
𝑤𝑖  Waiting time of vessel 𝑖. 
ℎ𝑖 Handling time of vessel 𝑖. 
𝑇𝑠 Total service time for 𝑉. 

𝑣𝑖𝑀𝑖𝑛𝐻𝑇 Minimum handling time needed to service vessel 𝑖, in this case, we set 𝑞𝑖 =
 𝑞𝑖

𝑚𝑎𝑥 , and this is the ideal number of QCs to be assigned to vessel 𝑖. 
𝑠𝑖 Service time of vessel 𝑖. 
𝑏𝑆𝑡𝑎𝑟𝑡𝑖  The start point of the berth on the quay for vessel 𝑖. 
𝑏𝐸𝑛𝑑𝑖 The end point of the berth on the quay for vessel 𝑖. 
𝑣𝑖𝑂𝑟𝑑𝑒𝑟 The order of vessel 𝑖 in the 𝑉, obtained from the CDR tree generated by the GP. 
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4.3.3 Mathematical Model 

In this section, the mathematical model is based on (M. Rodriguez-Molins, Salido, 

& Barber, 2014; Mario Rodriguez-Molins, Ingolotti, et al., 2014) with minor 

modifications to overcome the proposed assumptions such as the QCs being 

assigned to a vessel in a dynamic approach (time-variant), which maximise the QCs 

utilisation and minimising the total service time. The following are the main 

equations used.  

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝑠 =  ∑(𝑤𝑖 + ℎ𝑖)

𝑖∈𝑉

  (4.1) 

 𝑞𝑖
𝑚𝑎𝑥 = max (1, min ( 𝑞𝑚𝑎𝑥,

𝑣𝑙𝑖

𝑠𝑎𝑓𝑒𝑄𝐶
))          ∀𝑖 ∈ 𝑉  (4.2) 

 𝑤𝑖 =  𝐴𝑇𝐴𝑖 − 𝐸𝑇𝐴𝑖                                            ∀𝑖 ∈ 𝑉 (4.3) 

 ℎ𝑖 =  𝐴𝐹𝑇𝑖 − 𝐴𝑇𝐴𝑖                                              ∀𝑖 ∈ 𝑉 (4.4) 

 ℎ𝑖 =  (
𝑚𝑖

𝑞𝑖  . 𝑄𝐶𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠
)                               ∀𝑖 ∈ 𝑉 (4.5) 

 𝑣𝑖𝑀𝑖𝑛𝐻𝑇 =  (
𝑚𝑖

𝑞𝑖
𝑚𝑎𝑥 . 𝑄𝐶𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

)             ∀𝑖 ∈ 𝑉 (4.6) 

 𝑠𝑖 =  𝑤𝑖 + ℎ𝑖                                                            ∀𝑖 ∈ 𝑉 (4.7) 

 𝑏𝐸𝑛𝑑𝑖 =  𝑏𝑆𝑡𝑎𝑟𝑡𝑖 + 𝑣𝑙𝑖                                         ∀𝑖 ∈ 𝑉 (4.8) 

 

4.4 Dispatching rules 

When solving scheduling optimisation problems, there are three major types of 

scheduling algorithm as illustrated in Figure 4-4 and explained in detail by Pinedo 

(2012). 

- Exact algorithms are the algorithms used to find and solve a problem to 

optimal. This type of algorithm cannot solve more sophisticated problems 

such as NP-hard Problems. In the literature, we found that this method 

applied in only 24% of the approaches for solving the BAP (Bierwirth & 

Meisel, 2015) with small instances (20 to 30 vessels benchmark). 
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- Approximation algorithms which the algorithms that produce solutions 

approximate to NP-hard optimisation problems that are guaranteed to be 

within the distance of the actual optimum. 

- Heuristic algorithms - this type of algorithms is commonly used to solve 

NP-hard problems. There is no guarantee that the solutions will be close to 

the optimum. However, it is a fast way to obtain solutions in an acceptable 

computational time. The performance is evaluated empirically. 

 

For heuristic algorithms, there are two main types of heuristics. 

- Construction Heuristics start to solve a problem from the beginning 

without a pre-scheduled solution. The algorithm schedules the jobs one by 

one and builds the solution as it progresses. 

- Improvement Heuristics - this type of algorithm starts to solve a problem 

with a predefined and scheduled solution, and tries to improve it or seeks a 

better solution. 

 

 

Figure 4-4: Types of Scheduling Algorithms. 

 

Dispatching rules (DRs) are defined by Pinedo (2012) as examples of construction 

heuristics. DRs in scheduling have received attention from researchers over the past 

few decades. In the field of job-shop-scheduling problems, DR in general, is a rule 

Scheduling 

Algorithms 

Exact 

Algorithms 
Approximation 

Algorithms 
Heuristic 

Algorithms 

Construction 

Heuristics 
Improvement 

Heuristics 



4.4.Dispatching rules 

 66 

that prioritises all of the jobs that are waiting for processing; whenever a machine 

is freed, a job with the highest priority in the queue is selected to be processed. 

The Standard priority rule (SPR), or dispatching rule (DR) in our approach is the 

method of how to tackle the vessel list in order to schedule them. In the literature, 

most of the researchers use a first-come-first-serve rule (FCFS) to order the vessel 

list depending on its ETA. Table 4-1 shows that fewer researchers consider the DR, 

while some of them use DR indirectly in their solutions. They also noted the 

priority-based rules used to solve the seaside CT problems. Priority-based rules 

either give a fixed value and assigned it to a vessel depending on the many strategies 

and policies related to the terminal managers. They may also assign priority to a 

vessel as a variable in the case of congestion in the berth. 

Table 4-1: Overview of research applied Dispatching Rule in seaside container terminal problems. 

Year Reference Rule(s) 

2017 (Correcher & Alvarez-Valdes, 2017) CDR, and Random priority rules 

2017 (Hsu et al., 2017) Different heuristic rules for BAP 

and QCAP such as, give priority 

depend on ETA, the least 

workload, QCs load balance 

2017 (De León, Lalla-Ruiz, Melián-Batista, & Marcos 

Moreno-Vega, 2017) 

FCFS, compared 12 algorithms 

2017 (Expósito-Izquierdo, Lalla-Ruiz, de Armas, 

Melián-Batista, & Moreno-Vega, 2017) 

Four DRs: Random, FCFS, 

WSPT, EDD 

2016 (Shang et al., 2016) Random priority rule 

2016 (Türkoğulları et al., 2016) EDD 

2016 (Ursavas & Zhu, 2016) Different priorities measured by 

the waiting cost. 

2016 (He, 2016) Eight DRs 

2016 (Huang et al., 2016) Three different priorities: given to 

vessels depends on existing in the 

berth template. 

2016 (El-boghdadly et al., 2016b) CDRs 

2016 (El-boghdadly et al., 2016a) CDRs 

2015 (Ursavas, 2015) Priority control mechanism 

2015 (Frojan et al., 2015) Twenty-six DRs 

2015 (M. Z. Li et al., 2015) Priority factor for vessels with 

important clients. 

2015 (Ji et al., 2015) Three DRs: FCFS, small vessels, 

big vessels 

2014 (Basri & Zainuddin, 2014) Ignored FCFS 

2014 (Mario Rodriguez-Molins, Salido, et al., 2014) Four DRs: FCFS, FCMP, 

MWWT, EWMT 

2013 (Elwany et al., 2013) CDR 

2013 (Chutian Yang et al., 2013) Priority given to vessels 

2012 (D. Xu et al., 2012) WSPT 

2012 (Y. Xu et al., 2012) Construction rule 
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2012 (Zhen & Chang, 2012) Give priority to vessels with weak 

performing 

2012 (X. Liang et al., 2012) The vessels ordered by sequence 

optimised by Practical Swarm 

Optimization 

2011 (Böse, 2011) Two DRs: FCFS, EDD 

2011 (C. Liang et al., 2011) Random priority rule 

2011 (Ali et al., 2011) Random priority rules 

2011 (Guldogan, Bulut, & Tasgetiren, 2011) Priority given to vessels 

2010 (Han et al., 2010) Priority given to vessels 

2010 (C. Y. Cheong et al., 2010) Priority given to vessels 

2009 (C. Liang, Huang, et al., 2009) Random priority rules 

2009 (Meisel & Bierwirth, 2009) Priority given to vessels 

2008 (Tang & Dai, 2008) Give priority to vessels with high 

capacity of containers 

2008 (Imai, Chen, Nishimura, & Papadimitriou, 2008) Ignored FCFS 

2006 (Pengfei Zhou et al., 2006) Ignored FCFS 

2003 (Imai, Nishimura, & Papadimitriou, 2003) Ignored FCFS 

 

Rodriguez-Molins, Salido, et al. (2014) applied three different DRs, plus the FCFS 

rule. (1) They used First Come Maximum Priority (FCMP): this is similar to FCFS, 

where the next vessel is chosen according to the arrival order but, in this case, there 

is no restriction on the time that the vessels can moor. (2) Maximum Weighted 

Waiting Time (MWWT): the vessel list is ordered according to their weighted 

waiting time. The vessel with the highest value is moored first. (3) Earliest 

Weighted Mooring Time (EWMT): among the vessels that can moor earlier, the 

operator chooses the vessel with the highest priority. Ji et al. (2015) applied three 

rules, FCFS, giving priority to small vessels and giving priority to large vessels 

depending. Böse (2011), proposed a simulation model that used two selection 

approaches; FCFS and the Earliest Due Date (EDD) rule. (D. Xu et al. (2012) 

proposed a weighted shortest processing time first (WSPT) rule as a selection 

priority method for incoming vessels. Meisel & Bierwirth (2009) proposed two 

meta-heuristic approaches, which enable changes in the priority list in order to 

improve the quality of the berth plans. Elwany et al. (2013) applied a criterion to 

give a higher priority to larger vessel with a later EFT. Ali et al. (2011) and C. Liang 

et al. (2011, 2009) used random priority rules to order the vessel list. Frojan et al. 

(2015) used 26 priority rules randomly generated as the initial population using a 

genetic algorithm. The first group of rules corresponds to the individual 

characteristics of the vessels, while the second group combines the features into 

more complex rules. The rest of the research studies shown in Table 4-1 either 
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ignored the FCFS rule and applied a priority list to the vessels, or they used FCFS 

only. 

The composite dispatching rule (CDR) is a combination of a number of SPRs used 

as one rule to evaluate the priorities of the jobs waiting in the queue for processing. 

To the best of our knowledge, this is the first work that has solved the BACAP 

using the concept of CDRs. The following sections will explain how we employed 

the CDRs to solve the BACAP. 

 

4.5 Genetic Programming for BACAP (BACAP_GP) 

The proposed algorithm BACAP_GP consists of two main parts. The first part is 

the GP approach, which is responsible for discovering the best dispatching rule for 

a given port scenario to optimise the 𝑇𝑠. The second part is the BACAP_Scheduler, 

which is responsible for applying the ordered vessel list by GP and finding the best 

mooring time and berth location for a given vessel 𝑣𝑖, in addition to assigning QCs 

to it. Figure 4-5 shows the relationship between the GP engine and the 

BACAP_Scheduler. More details will be explained in the following sections. 

Data Set

Instance Read

BACAP_Scheduler
GP Engine

Heuristic generator

Best Ordering 
heuristic

Heuristic
Fitness

Ordering
Heuristic

 

Figure 4-5: GP Engine and BACAP_Scheduler relationship 
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4.5.1 BACAP_GP Framework 

In this section, we have investigated the use of GP for evolving effective and robust 

CDRs to solve the BACAP. GP, as shown in our literature review, is not a 

conventional method to use to solve the BACAP. Nguyen, Zhang, Johnston, & 

Chen Tan (2013) applied the GP to solve QCSP, and they concluded that the GP 

outperformed the GA in terms of the average and best fitness. Therefore, it will be 

interesting to solve the integration problem, BACAP, using the GP. 

During the scheduling process in a container terminal, it is crucial to prioritise and 

order the incoming vessels so as to solve the BACAP. Instead of using SPRs, we 

have tried to evolve the priority functions based on the SPRs and created a CDR 

that can determine the best possible ordering for the vessel list, which in turn 

achieves our objective function. Figure 4-6 shows the BACAP_GP flowchart. The 

GP starts by creating a random initial population of CDRs using the terminal set 

and function set. The GP was used for evolving the vessel dispatching rules and 

ordering the vessel list accordingly, before sending it to the BACAP_Scheduler (as 

described in Section 4.5.2). Each CDR was implemented using the 

BACAP_Scheduler which, in return, used the GP to evaluate the fitness function of 

the schedule. If the maximum number of generations or the stopping condition is 

not reached, then the GP reproduces another population by using the crossover and 

mutation method, generating other CDRs. The process will continue until the 

stopping condition is reached, and then the GP will obtain the best CDR that 

determines the best ordering heuristic used. 
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Figure 4-6: BACAP_GP Flowchart 

 

  



4.5.Genetic Programming for BACAP (BACAP_GP) 

 71 

4.5.1.1 BACAP_GP Representation 

Genetic programming is a technique used to evolve computer programs to solve 

complex computational problems. The representation of GP individuals is a tree-

based form. Each individual presents a dispatching rule/equation constructed by a 

terminal set and a function set. In this section, we will describe the GP 

representation proposed for generating individuals using both the terminal and 

function set. 

1) Terminal set: 

The terminal set (leaf nodes) will be chosen as shown in Table 4-2, as they 

have a profound influence on the quality of the BACAP solution. These 

values can be found in the input data or calculated in the initialisation 

process as described before.  

 

Table 4-2: Terminal set for the BACAP_GP tree representation. 

Notation Description 

vli Vessel length 

ETAi Vessel expected time of arrival for the given vessel i 

EFTi Vessel expected finishing time for the given vessel i 

qi
Max The maximum number of QCs that can be assigned to a vessel 

mi Number of movements (loading/unloading) 

viMinHT Time for handling a vessel while it is working with qi
Max 

 

 

2) Function Set: 

The function set (internal nodes) will consist of the standard mathematical 

operators that are commonly used in the GP literature (addition, subtraction, 

multiplication, and division). Furthermore, we used other functions which 

often occur in evolving dispatching rules. Table 4-3 shows the chosen 

function set and its description. 
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Table 4-3: Function set for the BACAP_GP tree representation. 

Notation Description 

Add (x, y) Addition 

Sub (x, y) Subtraction 

Mul (x, y) Multiplication 

Div (x, y) Safe division, returns1if the denominator equals to 0 

Avg (x, y) Returns the average value of the input variables. 

Min (x, y) Returns the minimum of the two inputs. 

Max (x, y) Returns the maximum of the two inputs. 

Abs (x) Returns the absolute value of variable x. 

Ceiling (x) Returns the ceiling value of the input. 

Floor (x) Returns the floor value of variable x. 
 

An illustration of an individual with the tree representation generated by the 

BACAP_GP has been provided in Figure 4-7, which provides a possible CDR. The 

above chosen terminal and function sets are well-defined and closed, allowing for 

any combination of arguments that it may encounter. They have the important 

property of solving the BACAP problem, which is known as closure (Koza, 1992). 

The terminal set was chosen with different types, the GP works efficiently and there 

is no need for normalisation. Furthermore, the proposed fitness function is the 

objective function of the problem as shown in Equation (4.1). The following 

formula (4.9) represents a CDR (determines the order of a given vessel 𝑖) obtained 

from the tree shown in Figure 4-7. It gives a weight for each vessel which in return 

the GP used them to order the vessel list. 

+

viMinHT mi

*

viMinHT ETAi

/

 

Figure 4-7: Example of a BACAP_GP tree with defined functions and terminals. 

 

 
𝑣𝑖𝑂𝑟𝑑𝑒𝑟 =  

𝑣𝑖𝑀𝑖𝑛𝐻𝑇. 𝐸𝑇𝐴𝑖

𝑣𝑖𝑀𝑖𝑛𝐻𝑇 + 𝑚𝑖

 
(4.9) 
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4.5.1.2 Generate a set of initial solutions 

The BACAP_GP generates an initial population randomly by creating individuals 

as illustrated before. Each represents an ordering vessel and one possible solution 

with its corresponding fitness function. The BACAP_GP determines the best 

individual in the initial population and evolves it to the next generation. 

4.5.1.3 Fitness function 

In this study, our objective is to find effective CDRs for solving the BACAP with 

a minimum total service time 𝑇𝑠 for all vessels. The GP fitness function chosen to 

be the problem objective function has been shown in Equation (4.1). Therefore, we 

have proposed a method to form a CDR from the tree-based result of the GP. This 

CDR is then, with the minimum service time, used to evaluate the fitness value of 

the BACAP.  

4.5.1.4 Crossover Operation 

For crossover operations in the GP system, which is a tree-based individual (Koza, 

1994), the new individuals for the next generation are created by randomly 

recombining sub-trees from two selected parents. Figure 4-8 illustrates the 

crossover operations of the BACAP_GP approach. 

-
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Figure 4-8: Crossover representation for the BACAP_GP operation 
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4.5.1.5 Mutation Operation 

The mutation operation in the GP system was implemented by randomly selecting 

the node of a chosen parent individual and replacing the rest of the sub-tree by also 

randomly generating another sub-tree. Figure 4-9 illustrates the mutation operation 

BACAP_GP approach. 

+
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*
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/
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Figure 4-9: Mutation representation for the BACAP_GP operation 

 

4.5.2 BACAP Scheduler Algorithm (BACAP_Scheduler) 

The BACAP_Scheduler is the algorithm that we proposed to use to schedule the 

vessels in the plan according to the dispatching rules presented from the GP. It 

returns the total service time of the schedule plan for evaluation by the GP. To solve 

the BACAP, the BACAP_Scheduler represents the problem as a two-dimensional 

array, the x-axis demonstrates the time horizon, and the y-axis demonstrates the 

quay length. The goal is to assign all incoming vessels V in the array without 

violating the constraints mentioned earlier. We developed a software program using 

java to handle the assignment process for the vessel list one-by-one in the array, 

which will describe its function as (Scheduler). The order of the vessels is 

determined by the GP, which has been described in the previews section. 

After the Scheduler places a vessel in the array, it fills in the location with the 

correspondent Vessel ID, which shows the location of the vessel in the schedule. 

Empty spaces are denoted by zeros. A rectangle demonstrates the vessel with its 

position on the horizon starting from 𝐴𝑇𝐴 and ending in 𝐴𝐹𝑇for the time horizon 
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(x-axis). The length of the rectangle shows the length of the vessel 𝑣𝑖on the quay 

(y-axis). The following example demonstrates the representation of the scheduler 

array and how it works 

4.5.2.1 Numerical example 

An instance has been shown in Figure 4-10, which is the output of the Scheduler 

for four vessels with lengths of 400, 300, 300, 300 and ETA 1, 1, 2, 2 respectively. 

The Scheduler will reserve the array with the vessel's ID, which indicates its 

mooring time and the spaces in the quay. We can also notice that there is available 

space on the quay at time 2, position 400 to 500 - therefore the Scheduler fills it 

with a zero. The QC array shows the remainder of the QCs. If the container terminal 

has 7 QCs, then the remainder of QCs at time 1 and 2 are zero, while the remainder 

at time 3 and 4 is 1. Starting from time 5 until the end of the time horizon, the 

remaining QCs is 7, which means that they are not occupied. We noticed that all of 

the vessels have ATA = ETA, while vessel number 4 is ETA = 2. However, there is 

no availability for it to berth at this time, so it waits for 1 hour and is assigned to 

the time ATA = 3. 

 

Time (hours) 

QCs 0 0 1 1 7 7 7 7 7 
          

          

700 2 2 0 0 0 0 0 0 0 

600 2 2 4 4 0 0 0 0 0 

500 2 2 4 4 0 0 0 0 0 

400 1 0 4 4 0 0 0 0 0 

300 1 3 3 3 0 0 0 0 0 

200 1 3 3 3 0 0 0 0 0 

100 1 3 3 3 0 0 0 0 0 

0 1 2 3 4 5 6 7 8 9 
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Figure 4-10: Two-Dimensional array representation for the BACAP 
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The following is how the BACAP_Scheduler works as shown in flowchart Figure 

4-6: 

Step 1. Initialisation: in this step, we initialise the vessel list V by reading 

the given data (vessel ID, vessel length, expected time of arrival, 

number of movements). We will also initialise the quay as a two-

dimensional array and initialise the QC array. Using the vessel list 

data, we can calculate the 𝑞𝑖
𝑚𝑎𝑥, 𝑣𝑖𝑀𝑖𝑛𝐻𝑇 and EFT. 

Step 2. Berth Allocation Problem (BAP): The Scheduler reads the vessel 

data list one-by-one and investigates the availability of both the 

times and spaces (berths) in order to moor vessels in the quay. The 

Scheduler checks the schedule at the ETA for the vessel, starting 

from quay position zero until the end of the quay length. If there is a 

free space in the quay (quay array cells equal to zero) greater or equal 

to 𝑣𝑙𝑖, then we assign ATA = ETA and AFT = EFT before going to 

step 3. If there is no free space for 𝑣𝑖at the ETA, then the Scheduler 

increases the ETA by one-time unit (ATA = ETA + 1, AFT = EFT + 

1) and searches the schedule again at new ATA for free space in the 

quay until a free space is found. 

Step 3. Quay Crane Assignment Problem (QCAP): after a suitable location 

and time for the given vessel is found, then the Scheduler checks the 

availability of the QCs between time ATA and AFT that will serve 

the vessel while considering the given constraints of the minimum 

and maximum number of QCs required to serve the vessel. The 

Scheduler will accept the place if the 𝑞𝑖
𝑚𝑖𝑛is available in this period. 

If so, then we will go to step 4; if not, then the Scheduler will increase 

the ATA by one-time unit and let ATA = ATA + 1 and AFT = AFT + 

1 before starting again from step 2. 

Step 4. Dynamic QCs assignment (time-variant): after scheduling the vessel 

with at least the minimum number of QCs available, the Scheduler 

will try to add more QCs if possible to the vessel and recalculate the 

handling time needed, decreasing the EFT to AFT. 
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Step 5. Final plan assignment and updates: The Scheduler will place the 

vessel in the schedule (filling the quay array with the vessel IDs in 

the cells occupied by the vessel) and then update the QCs array with 

the number of remaining QCs available. These processes (step 2 to 

step 5) will continue until the end of the vessel list is reached. 

 

4.6 Computational Experiments and Analysis 

In this section, computational experiments were conducted to evaluate the 

performance of the proposed algorithm. We defined the standard SPRs commonly 

used in the literature and then produced a comprehensive study and comparison of 

the SPRs along with the evolved CDRs obtained from the BACAP_GP. The 

BACAP_Scheduler and the BACAP_GP were developed using Java and included 

the ECJ22 library (a Java-based Evolutionary Computation Research System, n.d.) 

in order to implement the GP.  

 

4.6.1 Datasets and parameter settings 

The experiments were performed using the same benchmark introduced in 

Rodriguez-Molins, Ingolotti et al. (2014) and Rodriguez-Molins, Salido, et al. 

(2014), published online. Due to the difficulties encountered when trying to find 

the subset of the vessels that the authors used in their experiments, we did not 

compare our results with them. A sample of this benchmark can be found in 

Appendix A. The benchmark contains 100 instances generated randomly that 

follows the suggestion of the container terminal operators; each instance is 

composed of a queue of 100 vessels to be scheduled over almost three months 

(2,160 hours). We chose this very large benchmark in order to investigate the 

performance of using the proposed algorithm and the GP method to solve the 

problem. The data for each vessel in the benchmark includes vessel ID, the length 

of the vessel, expected time of arrival and the movements (number of containers) 

to be unloaded/loaded. In this study, the following assumptions have been 

considered: 



4.6.Computational Experiments and Analysis 

 78 

• Quay length 𝑄𝐿 = 700 meters 

• The number of QCs on the quay 𝑄𝐶 = 7 QCs 

• Maximum number of QCs that the container terminal allows per vessel 𝑞𝑚𝑎𝑥= 5 QCs 

• Minimum number of QCs that can be assigned to a vessel 𝑞𝑖
𝑚𝑖𝑛= 1 crane 

• QC Movements per time unit 𝑄𝐶𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠 = 25 containers/hour. 

• 𝑠𝑎𝑓𝑒𝑄𝐶 = 35 metres 

 

From the above assumptions, the input data and using Equation (4.2) and Equation 

(4.6), we can initially calculate the best values for the maximum number of QCs 

that the vessel can work with 𝑞𝑖
𝑚𝑎𝑥 for the entire vessel list. We can then calculate 

the best handling time for the vessel 𝑣𝑖𝑀𝑖𝑛𝐻𝑇.  

In this experiment, the GP parameters were chosen as shown in Table 4-4, which 

shows the common values used in the literature. We implemented the Ramped half 

and half (full and grow method) to generate the initial population of the GP as 

proposed by Koza (1992), which produces a wide variety of trees of various sizes 

and shapes.  In this method, the initial population is divided into two parts. Half of 

the trees were generated randomly with a maximum depth proposed (full method) 

and the second half contained the randomly generated trees with variable depth 

values ranging from one to the maximum depth proposed (growth method). 

 
 

Table 4-4: BACAP_GP Parameters 

Parameter Value 

Number of iteration 50 

Population size 50 

Number of generation 50 

Creation Type Ramped half and half 

Maximum depth for population tree 7 

Crossover probability 0.8 

Mutation probability 0.1 

Recreation probability 0.1 

 

Regarding the dispatching rules, the following are the SPRs that we examined and 

compared with the BACAP_GP. 

• R1: FCFS: first-come-first-serve rule; the vessel list will be ordered by ETA. 

• R2: Max. QC needed low priority:  the vessel list will be ordered by 𝑞𝑖
𝑚𝑎𝑥 ascending. 
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• R3: Max. QC needed high priority: in this dispatching rule, the vessel list will be ordered 

by 𝑞𝑖
𝑚𝑎𝑥 descending. 

• R4: Vessel length high priority: gives larger vessels higher priority in the sorting order. 

• R5: Vessel length low priority:  gives smaller vessels higher priority in the sorting order. 

• R6: Movement low priority: here we give the lesser numbers of containers for the vessel 

that need to be loaded/unloaded higher priority. 

• R7: Movement high priority: same as above, but the vessels with a higher number of 

movements take priority. 

• R8: Min. Handling time low priority: in this dispatching rule, the vessel list will be ordered 

by 𝑣𝑖𝑀𝑖𝑛𝐻𝑇 ascending. 

• R9: Min. Handling time high priority: same as above, but gives priority to the vessels that 

need a long handling time. 

 
 

4.6.2 Results of SPRs and BACAP_GP 

We presented the results of using the nine SPRs explained above and compared the 

best results with the CDRs generated by the proposed algorithm (BACAP_GP). All 

of the tests were run for 10 hours or until they hit the stopping condition. We used 

a core i3 Intel processor at 1.8GHz and 4GB of RAM. 

A) SPRs Results: 

In this approach, we solved the BACAP using the BACAP_Scheduler with each of 

the SPRs proposed for ordering, giving priority to the vessels in the queue. This 

approach was examined without applying the GP algorithm. 

Table 4-5 shows the results of the SPRs of the benchmark. We denoted the total 

waiting time for the vessels in the instance by (W), while the (Ts) is the total service 

time for the vessels in the same instance. 

From the results of all 100 instances used, we noted that the highest number of 

values for the SPRs for the Ts comes from the rule (R2), which is gives priority to 

the vessels according to their 𝑞𝑖
𝑚𝑎𝑥 values ordered ascendingly. Rule (R1) is the 

next best rule, which gives priority to first-come-first-serve. This is because we 

restrict the vessels from being moored before its ETA. We found that the worst 
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results come from R7, which gives priority to the vessels that have a larger number 

of containers to be moved. 

Previous results show that the strategy of giving priority to incoming vessels is a 

decision for terminal managers and ship owners. They often prefer different service 

strategies. However, the results reflect the advice concluded by Ji et al. (2015), 

which says that “when the large vessel arrival probability is small, the terminal 

manager may adopt the service strategy of giving priority to large vessels; and when 

the arrival probability of large vessels becomes larger, they may adopt first-come-

first-served”. 

 

Table 4-5: Results of SPRs to solve BACAP. 

no. Results R1 R2 R3 R4 R5 R6 R7 R8 R9 Best Worst 

1 W 4 2 14 29 0 30 0 35 0 0 35 
 Ts 598 598 610 627 598 626 599 631 598 598 631 

2 W 13 25 28 39 34 21 45 44 32 13 45 

 Ts 623 633 641 649 643 630 653 651 639 623 653 

3 W 3 7 25 27 7 0 3 24 7 0 27 
 Ts 582 585 606 610 583 578 587 601 589 578 610 

4 W 30 34 35 50 81 48 90 52 90 30 90 

 Ts 618 622 626 633 666 631 677 637 676 618 677 

5 W 20 20 34 36 34 49 19 21 19 19 49 

 Ts 614 613 635 638 626 642 615 622 613 613 642 

6 W 13 20 13 48 45 53 59 41 59 13 59 

 Ts 732 732 732 770 753 761 777 757 776 732 777 

7 W 13 13 13 15 22 18 19 16 19 13 22 

 Ts 592 591 592 596 600 591 604 588 604 588 604 

8 W 22 59 40 43 68 62 43 48 31 22 68 
 Ts 671 712 691 696 726 708 698 694 691 671 726 

9 W 9 23 30 37 27 45 27 41 16 9 45 

 Ts 630 640 652 661 644 664 648 662 635 630 664 

10 W 11 11 11 9 40 14 12 9 11 9 40 
 Ts 615 613 616 615 643 615 618 612 616 612 643 

11 W 10 16 12 26 16 16 29 41 21 10 41 

 Ts 651 662 653 675 661 665 676 683 667 651 683 

12 W 16 28 30 26 41 55 31 49 34 16 55 

 Ts 612 618 623 632 635 647 636 642 637 612 647 

13 W 7 5 12 15 22 8 24 15 22 5 24 

 Ts 694 694 701 705 712 697 713 700 714 694 714 

14 W 0 0 0 0 12 0 12 0 12 0 12 

 Ts 628 628 629 627 644 626 645 626 645 626 645 

15 W 12 15 58 59 26 59 36 55 12 12 59 
 Ts 623 623 675 678 637 672 645 664 624 623 678 

16 W 29 33 40 48 28 35 40 40 40 28 48 

 Ts 656 659 670 678 657 662 672 664 670 656 678 

17 W 5 6 24 25 24 45 9 45 8 5 45 
 Ts 599 600 621 622 616 637 609 639 607 599 639 

18 W 15 15 14 21 34 37 18 53 16 14 53 

 Ts 596 596 598 608 615 619 603 642 600 596 642 

19 W 14 44 14 42 53 96 32 86 42 14 96 

 Ts 595 622 598 627 629 671 614 665 619 595 671 

20 W 3 3 31 31 42 16 21 23 21 3 42 

 Ts 630 625 661 661 663 642 648 649 647 625 663 

21 W 11 15 11 29 68 60 39 46 32 11 68 

 Ts 640 641 640 657 694 685 664 674 658 640 694 

22 W 9 10 18 19 10 10 26 10 18 9 26 
 Ts 622 620 632 635 623 614 648 615 640 614 648 

23 W 14 18 40 53 18 62 28 63 26 14 63 

 Ts 621 624 644 665 621 668 641 670 638 621 670 

24 W 15 15 17 18 48 40 34 42 34 15 48 
 Ts 604 604 609 611 638 628 620 633 619 604 638 

25 W 17 31 34 40 51 51 32 41 34 17 51 

 Ts 592 604 611 618 617 628 602 613 603 592 628 

26 W 4 4 4 6 11 16 8 7 8 4 16 

 Ts 626 626 626 627 630 634 628 627 628 626 634 

27 W 28 21 16 20 42 38 16 38 16 16 42 

 Ts 668 660 660 673 685 683 664 685 663 660 685 

28 W 12 7 12 10 15 32 31 18 29 7 32 

 Ts 577 575 580 580 585 600 602 585 601 575 602 

29 W 55 55 85 107 54 94 59 104 59 54 107 
 Ts 690 690 720 739 682 720 698 728 697 682 739 

30 W 27 17 76 77 60 88 34 76 34 17 88 

 Ts 725 715 780 783 754 786 733 780 733 715 786 
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no. Results R1 R2 R3 R4 R5 R6 R7 R8 R9 Best Worst 

31 W 24 31 38 47 38 58 30 46 34 24 58 

 Ts 597 601 618 629 613 628 608 622 611 597 629 

32 W 7 7 7 21 26 27 16 27 16 7 27 
 Ts 638 637 639 650 653 657 646 657 646 637 657 

33 W 18 18 21 19 23 19 19 19 12 12 23 

 Ts 624 624 632 628 628 620 629 622 621 620 632 

34 W 6 8 5 6 28 24 15 12 15 5 28 

 Ts 610 612 611 612 630 625 621 615 620 610 630 

35 W 8 6 13 12 10 7 12 12 12 6 13 

 Ts 629 629 638 637 632 623 636 633 636 623 638 

36 W 8 13 8 22 29 21 30 23 25 8 30 

 Ts 682 683 686 698 702 695 702 695 698 682 702 

37 W 14 20 25 32 45 21 26 21 15 14 45 
 Ts 647 649 663 665 670 648 663 649 650 647 670 

38 W 18 23 40 46 35 79 36 43 36 18 79 

 Ts 697 695 712 718 704 746 707 713 706 695 746 

39 W 16 11 19 20 37 19 19 19 13 11 37 
 Ts 635 632 645 645 655 639 641 641 637 632 655 

40 W 26 23 45 63 28 47 43 66 43 23 66 

 Ts 628 628 652 670 632 654 648 671 648 628 671 

41 W 10 10 10 38 31 15 25 15 25 10 38 

 Ts 647 647 647 676 660 648 663 648 661 647 676 

42 W 3 4 12 13 9 16 3 13 4 3 16 

 Ts 624 623 634 637 630 639 626 637 624 623 639 

43 W 32 40 41 36 78 61 47 57 49 32 78 

 Ts 680 685 693 684 721 708 696 707 696 680 721 

44 W 16 16 14 40 39 33 23 35 25 14 40 
 Ts 675 673 675 702 694 693 683 692 683 673 702 

45 W 28 28 30 41 54 33 47 39 55 28 55 

 Ts 681 682 686 700 708 697 704 702 712 681 712 

46 W 19 18 17 36 21 16 26 16 31 16 36 
 Ts 645 643 645 665 644 642 657 641 660 641 665 

47 W 46 54 66 75 60 53 72 75 80 46 80 

 Ts 633 638 656 669 651 649 670 666 672 633 672 

48 W 18 13 38 48 23 57 55 29 30 13 57 

 Ts 628 620 644 655 629 662 664 635 638 620 664 

49 W 7 5 7 21 11 9 16 10 16 5 21 

 Ts 661 665 665 683 673 669 674 665 673 661 683 

50 W 9 15 17 17 32 17 17 17 17 9 32 

 Ts 606 608 613 617 630 612 620 611 621 606 630 

51 W 3 3 54 78 6 35 17 35 17 3 78 
 Ts 614 615 663 685 618 641 626 640 627 614 685 

52 W 5 5 8 22 39 42 9 9 9 5 42 

 Ts 616 615 623 636 650 655 623 625 623 615 655 

53 W 16 19 18 21 47 72 29 37 30 16 72 
 Ts 630 630 634 641 658 688 641 656 643 630 688 

54 W 3 3 3 11 3 9 0 9 0 0 11 

 Ts 585 585 587 597 587 594 589 595 588 585 597 

55 W 9 11 16 21 40 42 25 38 25 9 42 

 Ts 620 620 628 628 646 649 635 646 635 620 649 

56 W 4 5 4 10 33 22 6 10 22 4 33 

 Ts 614 613 616 621 642 630 620 621 630 613 642 

57 W 4 4 4 12 0 11 20 0 4 0 20 

 Ts 649 647 652 662 647 660 663 650 645 645 663 

58 W 10 7 18 32 21 45 29 21 8 7 45 
 Ts 643 643 648 663 656 673 667 646 648 643 673 

59 W 30 37 115 138 38 153 84 106 60 30 153 

 Ts 585 584 672 697 588 706 641 656 615 584 706 

60 W 34 41 54 78 62 76 44 75 44 34 78 
 Ts 684 693 706 736 706 726 707 726 706 684 736 

61 W 19 18 55 81 42 65 48 71 44 18 81 

 Ts 572 573 607 638 602 615 610 623 604 572 638 

62 W 8 4 17 21 43 19 58 20 56 4 58 

 Ts 661 658 670 677 693 668 715 669 712 658 715 

63 W 14 14 19 15 28 7 37 7 34 7 37 
 Ts 589 588 594 589 606 578 615 579 612 578 615 

64 W 16 16 37 21 50 53 51 53 31 16 53 

 Ts 628 628 651 636 658 665 666 666 646 628 666 

65 W 14 15 74 64 52 99 23 79 28 14 99 
 Ts 705 710 768 757 748 785 715 768 724 705 785 

66 W 41 37 55 56 49 72 79 52 50 37 79 

 Ts 680 674 694 703 688 717 727 701 695 674 727 

67 W 8 7 13 33 6 55 7 33 7 6 55 

 Ts 710 708 717 739 706 753 713 734 710 706 753 

68 W 2 0 3 22 0 30 19 0 19 0 30 

 Ts 609 605 614 631 609 637 630 608 625 605 637 

69 W 15 10 28 49 10 40 33 38 33 10 49 

 Ts 660 658 672 695 661 676 680 678 680 658 695 

70 W 10 10 28 33 21 36 15 36 15 10 36 
 Ts 587 586 605 609 599 614 593 614 593 586 614 

71 W 13 13 19 42 11 13 16 13 16 11 42 

 Ts 596 597 601 636 600 601 615 600 611 596 636 

72 W 9 13 13 45 13 13 23 13 22 9 45 
 Ts 607 607 614 649 613 618 624 616 622 607 649 

73 W 4 4 20 20 28 13 53 25 45 4 53 

 Ts 588 587 604 605 604 594 635 605 627 587 635 

74 W 6 6 33 34 6 29 29 29 34 6 34 

 Ts 650 650 678 682 654 675 676 674 677 650 682 

75 W 11 8 18 23 19 23 36 15 21 8 36 

 Ts 699 695 704 711 707 714 727 699 714 695 727 

76 W 34 30 66 84 61 62 65 80 80 30 84 

 Ts 697 690 732 746 720 722 733 740 742 690 746 

77 W 23 13 19 18 39 68 35 27 13 13 68 
 Ts 696 679 693 693 702 740 711 692 686 679 740 

78 W 16 10 16 16 10 12 20 12 20 10 20 

 Ts 640 634 650 655 634 642 652 642 650 634 655 

79 W 8 6 46 41 9 18 25 23 6 6 46 
 Ts 650 646 685 685 645 655 666 666 646 645 685 

80 W 11 11 16 16 14 22 13 16 16 11 22 
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no. Results R1 R2 R3 R4 R5 R6 R7 R8 R9 Best Worst 

 Ts 617 617 623 621 621 632 619 623 619 617 632 

81 W 26 32 50 51 55 20 89 41 54 20 89 

 Ts 644 651 672 673 676 637 712 661 676 637 712 

82 W 5 5 31 60 36 46 20 51 21 5 60 

 Ts 663 662 693 722 691 703 683 709 682 662 722 

83 W 19 27 69 88 75 68 73 73 42 19 88 

 Ts 622 626 675 692 674 666 671 677 639 622 692 

84 W 11 11 33 38 23 20 43 16 39 11 43 
 Ts 592 590 617 624 603 600 625 595 622 590 625 

85 W 6 6 33 33 7 7 15 35 15 6 35 

 Ts 636 635 667 668 635 642 641 668 641 635 668 

86 W 18 22 30 33 62 26 76 40 28 18 76 
 Ts 694 699 713 716 734 705 752 719 704 694 752 

87 W 23 11 28 33 30 57 36 37 11 11 57 

 Ts 671 658 675 678 681 696 686 682 664 658 696 

88 W 12 12 12 4 9 42 5 21 5 4 42 

 Ts 628 628 627 622 627 651 626 633 626 622 651 

89 W 38 41 62 77 44 79 54 83 61 38 83 

 Ts 660 657 684 699 659 693 673 692 676 657 699 

90 W 11 2 9 12 36 47 21 41 13 2 47 

 Ts 592 582 592 600 617 630 600 625 594 582 630 

91 W 19 19 20 31 24 40 41 40 42 19 42 
 Ts 643 640 645 661 646 665 668 664 671 640 671 

92 W 1 1 24 24 39 49 9 59 8 1 59 

 Ts 584 583 605 607 623 631 591 641 594 583 641 

93 W 18 22 32 55 65 67 31 36 30 18 67 
 Ts 669 669 684 708 714 718 681 687 678 669 718 

94 W 21 21 21 48 38 54 32 54 26 21 54 

 Ts 650 649 651 683 669 682 665 682 659 649 683 

95 W 16 15 38 54 40 67 45 48 32 15 67 

 Ts 651 651 677 692 675 705 686 684 669 651 705 

96 W 4 4 30 28 29 43 4 39 4 4 43 

 Ts 657 653 683 680 677 691 654 689 655 653 691 

97 W 33 22 45 51 55 45 27 29 32 22 55 

 Ts 664 646 675 676 681 667 657 655 659 646 681 

98 W 14 19 15 15 34 23 12 17 10 10 34 
 Ts 638 644 640 641 652 645 637 636 636 636 652 

99 W 67 88 109 128 97 129 121 116 98 67 129 

 Ts 726 742 767 786 756 780 772 763 757 726 786 

100 W 11 11 11 37 14 25 14 25 20 11 37 
 Ts 637 637 642 672 643 656 648 656 647 637 672 

 

 

 

B) BACAP_GP Results 

In this approach, we used CDRs to solve the BACAP through the GP algorithm as 

described before. The experiment tested over 10 runs of the 100 instances 

benchmark. 

CDR is the combination between the SPRs that was formulated in a mathematical 

equation, e.g. Equation (4.9). By applying the GP approach to the vessel list, we 

obtained the results shown in Table 4-6. The table shows the worst and the best total 

service values for all instances compared with the GP.  

Table 4-6: Comparing the best Ts results from SPR with BACAP_GP 

Instance 

no. 
Worst SPR Best SPR GP 

Instance 

no. 
Worst SPR Best SPR GP 

1 631 598 595 51 685 614 608 

2 653 623 617 52 655 615 615 

3 610 578 577 53 688 630 623 

4 677 618 612 54 597 585 582 

5 642 613 612 55 649 620 618 

6 777 732 724 56 642 613 610 

7 604 588 588 57 663 645 645 

8 726 671 669 58 673 643 640 
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Instance 

no. 
Worst SPR Best SPR GP 

Instance 

no. 
Worst SPR Best SPR GP 

9 664 630 630 59 706 584 578 

10 643 612 610 60 736 684 674 

11 683 651 650 61 638 572 570 

12 647 612 603 62 715 658 656 

13 714 694 687 63 615 578 577 

14 645 626 622 64 666 628 624 

15 678 623 622 65 785 705 705 

16 678 656 650 66 727 674 668 

17 639 599 597 67 753 706 702 

18 642 596 592 68 637 605 605 

19 671 595 595 69 695 658 655 

20 663 625 624 70 614 586 583 

21 694 640 640 71 636 596 593 

22 648 614 613 72 649 607 603 

23 670 621 616 73 635 587 583 

24 638 604 597 74 682 650 650 

25 628 592 587 75 727 695 690 

26 634 626 625 76 746 690 674 

27 685 660 659 77 740 679 677 

28 602 575 572 78 655 634 628 

29 739 682 671 79 685 645 644 

30 786 715 707 80 632 617 608 

31 629 597 596 81 712 637 628 

32 657 637 633 82 722 662 660 

33 632 620 614 83 692 622 622 

34 630 610 608 84 625 590 588 

35 638 623 622 85 668 635 632 

36 702 682 679 86 752 694 690 

37 670 647 643 87 696 658 655 

38 746 695 693 88 651 622 619 

39 655 632 630 89 699 657 646 

40 671 628 620 90 630 582 582 

41 676 647 640 91 671 640 637 

42 639 623 622 92 641 583 581 

43 721 680 671 93 718 669 660 

44 702 673 664 94 683 649 645 

45 712 681 680 95 705 651 645 

46 665 641 636 96 691 653 651 

47 672 633 619 97 681 646 639 

48 664 620 615 98 652 636 628 

49 683 661 661 99 786 726 716 

50 630 606 600 100 672 637 635 

 

Figure 4-11 shows the overall observation of the best SPRs for 100 instances 

benchmarked with the BACAP_GP approach. As can be seen, the BACAP_GP has 

outperformed all of the other SPRs in almost all instances in the benchmark. 

Moreover, the flexibility of the model to cope with the needs of the terminal and 
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vessel operators by balancing between the dispatching rules was used to order all 

incoming vessels and to finish all services with the minimum time possible. 

 

 

Figure 4-11: Comparing the results of best SPRs with the BACAP_GP for 100 instances 

 

To study and examine the GP performance, Figure 4-12 shows the GP performance 

of three random runs out of ten for one instance over 50 generations. We noticed 

the distribution of the results over the 50 generations; all runs try to minimise the 

fitness by evolving the CDRs. The first generations are fast trying to get better 

results up to generation 25. After that, the GP hardly improves the results until the 

end of the run. As we know the GP method is an approximate method that cannot 

guarantee optimality, it still tries to get near to optimal. The more runs and trials 

where the characteristics of the runs are changed, (e.g. change the number of 

generations, population, crossover and mutation) the more it may lead to better 

results. 
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The distribution of the solutions for six randomly selected instances over ten runs 

has been shown in the box-plots in Figure 4-13. Each box-plot represents the 

distribution of the objective values where the horizontal line within the box encodes 

the median, and the upper and lower ends of the box are the third and first quarter 

respectively. The upper and lower vertical lines encode the maximum and minimum 

values. The box represents the spread of the data. 

It appears that the minimum and maximum values are close to each other and since 

the objective function of the problem is to minimise the value of the objective 

function, we noticed that the spread of the data is close to the minimum in the box 

plot. These results show the efficiency of the GP in solving the problem over the 

different instances. 

 

 

Figure 4-12: The GP performance of one instance and three runs over 50 generations. 
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Figure 4-13: Box-plots of the distribution of the solutions for six randomly selected instances over ten runs. 

 

 

(A) 

 

(B) 

Figure 4-14: The GP trees, representing the worst (A) and best (B) CDRs evolved for a random instance. 

 

Regarding the CDRs evolved by the GP, Figure 4-14 shows the worst CDR (A) and 

the best CDR (B) created by the GP to solve a random instance. The trees were 

generated automatically by the ECJ at the end of each run. We can observe that the 

CDR was used to get the best result is more complex than the other one. Almost all 

terminal sets used in this CDR were part of a complex combination with the 

function set. This means that it is hard to solve the instance in this experiment using 

a simple SDR or a straightforward CDR.   
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4.7 Conclusion 

This chapter aims to contribute to the development of efficient optimisation 

methods to improve the performance of seaside container terminals. It presents a 

new optimisation method for the integrated berth allocation and quay crane 

assignment problem BACAP with no restriction of the vessels berthing position. 

The aim was to minimise the total service time for all incoming vessels.  

The study presented a BACAP_GP framework based on two developed approaches 

to solve the BACAP. First, we introduced a genetic programming approach 

BACAP_GP which evolves vessel dispatching rules and determines an efficient and 

customised CDRs in order to provide the best priorities to vessels. The BACAP_GP 

combines different sets of attributes (vessel related attribute, berth related attribute 

and quay crane-related attribute). This process allows the BACAP_GP to generate 

a tailored CDRs based on the attributes given in each set, as the attributes may vary 

from one port to another. 

Another advantage of the proposed BACAP_GP approach is that the evolved CDRs 

(construction heuristics) are reusable. In other words, the evolved DR heuristics are 

made up of mathematical equations that define the order of scheduling the vessels, 

as the dispatching rules play a key role in the overall performance of most 

optimisation methods based on performance-improving heuristics. 

Second, we developed an independent efficient algorithm, BACAP_Scheduler, 

which is responsible for scheduling the vessel list ordered by given dispatching 

rules without violating given constraints. The novelty of the proposed scheduler can 

work independently with any method of optimisation techniques. We tested the 

BACAP_Scheduler using nine different SPRs. We concluded that the terminal 

manager may adopt the terminal priority strategy and use R2 (Max. QC needed low 

priority) or R1 (FCFS) if the large vessels’ arrival probability is high. The study 

also provides a review of the previous research studies which solved the BACAP 

that considered dispatching rules in their approaches. 

In terms of performance, the BACAP_GP approach has been evaluated against a 

wide range of SPRs available in the literature and have been tested on a benchmark 
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that contains a wide range of a large-scale instances. BACAP_GP outperformed all 

of the other SPRs in almost all instances in the benchmark.  

In the next chapter, we will focus on improving the proposed approach after verified 

its performance to tackle the BACAP with desired berthing position and make it 

more generic to solve the problem with a technique to predict the possibility of 

vessels overlapping during the scheduling processes.  
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Chapter 5 : Enriched meta-heuristic 

approach and cost-based model for the 

BACAP with desired berthing position 

 

5.1 Introduction 

Water transportation is the cheapest transportation mode which allows for the 

transfer of massive volumes of cargo between continents. Containerised trade 

volume is rapidly increasing year after year, and seaport container terminal 

competition has also increased considerably. For large container terminals, terminal 

operators have to decide which berthing position suits which incoming vessel. This 

depends on many factors such as the number of quay cranes available to serve the 

vessel, the nearest berth to the dedicated space on the yard to store the containers 

in, contract issues, and the vessel’s characteristics (size and draft). The main goal 

of the terminal operators is to minimise the total service cost for all incoming 

vessels, which in return will minimise the container terminal charging fee. 

This chapter is to adapt and apply our framework to an extended version of the 

integrated berth allocation and quay crane assignment problem (BACAP). In this 

chapter, we will look at BACAP where the desired berthing position for incoming 

vessel is known in advance. Moreover, the vessel can be moored earlier than its 

ETA with an extra involved cost. The objective is to minimise the total service cost 

of all vessels. We consider the BACAP as presented in Meisel & Bierwirth (2009) 

which is an improved model formulation that was introduced by Park & Kim 

(2003). It is assumed that the vessel information provided in advance by the vessel 

operators to the terminal operator includes the berthing position. It is also assumed 

that the handling time for each vessel depends on the QC capacity demand, which 

is given as a number of QC-hours. The QC-hours required to serve a vessel will 

increase if it is not berthed at its desired position. 
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In this chapter, we improved the proposed algorithm that we introduced in the 

previous chapter, BACAP_GP, to solve the problem. Moreover, we provided a more 

terminal set to the genetic programming approach which concluded with better 

results. 

The contributions of this chapter are (1) a generic genetic programming-based 

approach for evolving the dispatching rules for use related to the BACAP problem 

within the desired berthing position and time-variant QC assignment, (2) the 

development of a new technique to improve quay space utilisation while 

scheduling, (3) to provide a study and analysis of the real problems that are facing 

current container terminals and (4) to compare the proposed approach results with 

the results in the literature using the benchmark provided by Meisel & Bierwirth 

(2009). 

The chapter is organised as follows. In the next Section, the real BACAP problem 

and a survey-based study has discussed. In Section 5.3, the problem description has 

been defined. In Section 5.4, the mathematical model with its notations and 

assumptions has been presented. The proposed algorithm, BACAP_GP_DP, has 

been presented in Section 5.5. In sub-section 5.5.3, a complete numerical example 

has been presented. The extensive computational results have been presented and 

analysed in Section 5.6. In Section 5.7, we have concluded the chapter and 

presented the suggested future research directions. 

5.2 Real BACAP problem discussion 

In this section, we have tried to investigate the real BACAP problem encountered 

in container terminals (problems faced, challenges, the current system for 

scheduling and any new technology used) and compared it with the existing 

literature. We visited one of the most important container ports in Egypt, which is 

DP World Sokhna.  

5.2.1 DP World Sokhna General Information 

DP World Sokhna is one of DP World’s international networks that manages 60 

terminals across 31 countries. Therefore, it is considered to be one of the largest 
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marine terminal operators in the world. DP World Sokhna has a strategic location 

at the heart of the vitally important East-West trade route. The location is below the 

southern entrance to the SUEZ Canal, on the Red Sea in Egypt as shown in Figure 

5-1(A). The port has a West quay and East quay with a length of 750 meters each, 

with a water depth of 17 meters (Figure 5-1(B); website 

(https://www.dpworldsokhna.com)).  

 

 

(A) 

 

(B) 

Figure 5-1: DP World Sokhna. (A) Location. (B) Masterplan 

 

Regarding the quay cranes, the port has 4 Super Post PANAMAX twin lifts which 

can handle twin 60 ton containers under a spreader with 22 rows of width. There is 

also a 2 Post PANAMAX which can handle twin 60 ton containers under a spreader 

with an 18-row width. Figure 5-2 shows the difference between the Post 

PANAMAX cranes. Moreover, it also has 4 mobile quay cranes which can be used 

with no restriction in movement. 

https://www.dpworldsokhna.com/
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Figure 5-2: Post Panamax Crane 

 

Regarding technology, DP World Sokhna uses a fully automated processing system 

which integrates all information into one system. The port uses a system called 

NAVIS & SPARCS for berth scheduling, managing and tracking terminals, yard 

operations and cargo movement. For more information on the features of NAVIS, 

we direct the reader to the website (http://www.navis.com). 

5.2.2 DP World Sokhna Study 

This study was done by visiting the DP World Sokhna port in December 2014. The 

main focus was to collect the real information regarding the BACAP problem and 

how the port handles such uncertainties. The summary of the questions that we 

requested being answered are as follows: 

- What was the process that the seaport operators applied to handle incoming 

vessels? 

- How to determine the number of cranes required to serve the vessels? 

- What are the uncertain situations that can happen and how can the port 

operators handle it? 

- Is there a software system used to schedule incoming vessels? 

- What are the problem(s) facing this software? 

- What is the average waiting time for vessels outside of the port? 

http://www.navis.com/
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- How long does it take the cranes to move (load/unload) containers? 

- What is the type of contract between the port and ship owners? (constraints 

related to assigning a number of quay cranes and the overall service time) 

- How does the port assign the priority of incoming vessels?  

The summary of the outcomes are as follows: 

- The ship sends the Baplie file (Appendix B.1), which contains information 

about the ship, the design, the number of containers that need moving, the 

placement of the containers on the ship and the ETA. The port confirms the 

ETA and assigns a berth to the ship, before calculating the handling time. 

This is the number of containers moved divided by the number of assigned 

QCs. 

- The distance between two ships = 2 bollards = 27 meters. 

- The distance between QCs = 1 Bay. 

- QC time = from 17 to 25 movements per hour. 

- The software system used is NAVIS & SPARCS in the beginning, before 

sending the information to Express to be saved. 

- Regarding the contracts, there are many different types of contract. Usually 

the contract contains the average number of movements and the time window 

for arrivals. If the ship arrives in this time window, the port must give it 

priority and the contracted number of cranes to finish within the contracted 

handling time. If the ship comes later, the port gives it less priority and will 

have fewer QCs available for the ship. If the ship does not have a contract 

with the port in advance, the port gives it less priority. 

- The port has new QCs that can handle two containers of 20 feet at the same 

time, but the containers must be beside one another. 

- Sometimes, it is required to move some containers away from the desired one 

that needs to be unloaded from the ship. In this case, the port will assign one 

QC. Moreover, if the containers are all in one bay, then the port will assign 

one QC as it cannot assign two QCs to the same bay at the same time. 
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5.2.3 Sensitivity Analysis 

CT operations in real ports comprise of more limitations and uncertainties than the 

constraints usually considered in most of the literature. Below is a description of 

some of the real-port challenges. 

1. Rescheduling: In some cases, port operators have faced a limitation 

concerning the software that they are using to reschedule incoming 

vessels. For example, in the case of an unexpected last-minute change of 

a vessel’s ETA due to bad weather or ship breakdown or an unforeseen 

situation that has occurred like the breakdown of a QC. Rescheduling the 

timetable has to be done manually, so they try to handle the situation using 

ad hoc rescheduling (Bruggeling et al., 2011; Du, Xu, & Chen, 2010; 

Mario Rodriguez-Molins, Salido, et al., 2014). 

2. Uncertainty: there is a considerable amount of uncertainties associated 

with ETA. This is as ships may experience unexpected delays or be forced 

to change their direction. In addition to the ETA, there are several 

uncertainties related to the BAP. For example, it could be due to crane 

failure, sometimes the vessels are not exactly sure how many containers 

need to be loaded or unloaded, they need more services to sort out some 

of the containers onboard before they visit the next port or some of the 

containers to be unloaded needs more QC movement to reach the desired 

one. All of the above uncertainties may affect the schedule and delay the 

service time finish. 

3. Distribution of containers onboard: Depending on the vessel length and 

the number of containers to be moved, a number of QCs can be assigned 

if there is a safe distance between cranes, and depending on the placement 

of the containers in the vessel’s bay. For example, if we have a vessel that 

has 50 containers that need to be served on a large vessel length but all of 

them are in one bay, we cannot assign two QCs in this bay in order to keep 

the appropriate amount distance between the cranes. We will assign only 

one QC and will neglect the constraint of vessel length in our calculations. 
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4. Different constraints: The constraints are different from one port to 

another. Moreover, the constraints could change over time in the same 

port. For example, some ports may use mobility QCs, which are flexible 

cranes that can move from one berth location to another, thus they by-pass 

other cranes. This type of crane is more fixable but slower than a standard 

crane and therefore, they are governed by a different set of constraints 

(Carlo et al., 2015). 

5. The contract between terminal operators (TO) and vessel operators (VO) 

includes the ETA, the average number of containers that need to be 

processed and the expected time to be taken to handle them. The TO might 

give priority to a vessel arriving within the time window (time between 

ETA and ETF) with the maximum number of QCs needed. If the handling 

time for serving this vessel exceeded the ETF, a fewer cranes may be 

assigned to complete its service. This mean, even the priorities are given 

to vessels with the maximum number of QCs contracted, the number of 

QCs might be change during the service time.  

6. Number of quays: to the best of our knowledge, the models and algorithms 

used in the literature for solving the BACAP consider only one quay in the 

port. However, in practice, some ports have more than one quay. In such 

ports, ships with the same or close ETAs could be moored in different 

quays at the same time. To the best of our knowledge, most ports 

nowadays have started to expand their areas and add more container 

terminals in order to handle the increase of incoming vessels. The 

literature, however, often considers the port to have one quay for 

scheduled vessels. For this reason, we have directed our research to tackle 

the multi-port BACAP in the next chapter. 
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5.3 Problem Description 

In this problem, the aim is to solve the BACAP in order to determine vessel starting 

time, the berthing position and to determine the number of QCs per hour that will 

serve each vessel in the planning horizon. The problem considers there to be a 

continuous single quay layout in a container terminal port with dynamic vessels 

arriving on time. The handling time for each vessel is evaluated by the number of 

assigned QCs for each one-hour period. 

For the BACAP, the optimal scenario while scheduling incoming vessels is to find 

a space in the quay that satisfies the requirements of the vessel. For instance, if the 

vessel is scheduled to start being loaded/unloaded at the same time of its ETA, there 

is a space in the quay at the vessel’s desired position and the maximum number of 

QCs requested are available, then in this case, the handling time and the total service 

cost for this vessel will be minimal. 

Figure 5-3 illustrates the impact of changing a vessel’s desired position while 

scheduling on its handling time and cost. The vessel shown in the blue rectangle is 

in the best position as it is on time (x-axis), as its starting time is similar to its ETA. 

It is also in the best position on the quay (y-axis), as it is moored similar to its 

desired berthing position. If this position during planning and scheduling process is 

occupied by another vessel, then the vessel should be moved either to be on time 

(x-axis) or in the quay (y-axis), or both. If the vessel was moved on time only, then 

the cost will increase. On the other hand, if the vessel was moved in the quay, then 

the handling time and cost will also increase. 

Therefore, it is shown that if the vessel is not able to satisfy the requested desired 

berthing position in its ETA, it will be better for it to move to another available time 

that satisfies its desired berthing position and required number of QCs to minimise 

its handling time but the cost will be high. 
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Figure 5-3: The impact of changing a vessel from its desired 

position on its handling time and cost. 

 

This type of problem is more complicated than the one described in the previous 

chapter, where the BACAP did not involve a desired position requested in advance. 

Accordingly, the BACAP_Scheduler can allocate any berth in the quay without any 

additional cost, and it is manageable to relocate the vessel over the quay in the case 

of overlapping with other vessels with the same ETA. The method used for 

calculating the handling time of a vessel depends on the number of QCs, and their 

movement and assignment to a vessel only. On the contrary, the problem in this 

chapter calculates the handling time considering the previous in addition to the 

number of the vessel shifts from its desired position. This movement may lead to 

an increase of the handling time. The problem in this chapter also considers the 

possibility of a vessel arriving earlier than its ETA and berthing with an additional 

cost. 

Figure 5-4, illustrates the structure of the quality service costs proposed by Meisel 

& Bierwirth (2009), which we have considered in our problem. If the vessel is 

berthed earlier than its ETA, a cost called (speedup cost) is added, and this cost 
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increases respectively to the time between the earlier starting time EST and the 

ETA. If the vessel exceeds its EFT, we start to add a cost called the (delay cost), 

which in return continuously increases with the increase of time between the 

expected finish time EFT until the late finish time LFT. If the vessel is delayed 

beyond the LFT, a cost called (penalty cost) is added to the delay cost until the 

actual finishing time when serving the vessel. The ideal scenario that can be shown 

is that if the vessel started at the ETA and finished before or at the EFT, then no 

cost is added.  

 

 

 

Figure 5-4: Structure of the service cost of a vessel.(Meisel & Bierwirth, 2009) 

 

 

5.4 Mathematical Model Formulation 

In this study, the BACAP is modelled as a single objective function with the aim of 

minimising the total service cost for all vessels. The problem’s definition and the 

mathematical model was obtained from Meisel & Bierwirth (2009) with minor 

modifications. 

According to the classification scheme in Bierwirth & Meisel (2010), our approach 

is represented by (BAP, QCAP (number)), which is the integration of the berth 

allocation problem and the quay crane assignment problem to decide on the 

berthing position, the berthing time, and the number of cranes to assign to each 
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vessel. Moreover, the problem is defined as cont|dyn|pos, QCAP | (w1speed + 

w2tard + w3res), which is described as follows: 

• Spatial attribute: Continuous layout: The quay has a continuous layout and 

no partitioning, so the vessel can berth depending on its length within the 

boundaries of the quay’s length. 

• Temporal attribute: Dynamic arrival: All fixed arrival times are known in 

advance for all incoming vessels, so then the arrival times restrict the earliest 

berthing times by adding more costs. 

• Handling time attribute: unknown in advance: The handling time of a vessel 

is unknown in advance, and it depends on its berthing position (pos) and the 

number of assigned QCs (QCAP). 

• Performance measure:  (w1speed + w2tard + w3res): The objective 

function used to measure the performance is intended to minimise the total 

sum of the combined weight of the following: 

o speed: Speedup of a vessel to reach the terminal before the expected 

arrival time. 

o tard: Tardiness of a vessel against the given due date. 

o res: Resource utilisation affected by the service of a vessel. 

 

5.4.1 Model Assumption 

The proposed model was established based on the following assumptions: 

• The vessel can be moored in the quay if there is a space greater than or equal 

to the vessel length, and if there are the minimum number of QCs required 

available.  

• The number of QCs assigned to vessels is greater than or equal to the 

minimum number of allowed quay cranes and less than or equal to the 

maximum number of allowed quay cranes. 
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• The QCs can be assigned to vessels using a dynamic approach (time- 

variant) so then the QCs can be assigned to another vessel before the original 

vessel departs. 

• Information related to incoming vessels known in advance includes the 

length of the vessel, desired position, crane capacity demand, the minimum 

and maximum QC range, earliest starting time, the expected time of arrival, 

the expected finishing time, and the late finishing time. 

• Every vessel has a draft that is lower than the draft of the quay. 

• The vessel’s length includes the required safety margin, which is the safe 

distance between two moored vessels. 

• The handling time of a vessel depends on the number of assigned QCs, the 

QCs capacity demand and the vessel berthing position, details will be 

explained in section 5.4.3. 

 

5.4.2 Notations 

The following are the notations used in this approach: 

Input data: 

𝑉 set of vessels to be served, 𝑉 = {1, 2,..., n}. 

𝑄 number of available QCs. 

𝐿 number of 10-meter berth segments (length of the quay). 

𝑇 set of 1-hour periods, 𝑇 = {0, 1, ..., H - 1}, H is the planning horizon. 

𝑙𝑖  length of vessel 𝑖 ∈ 𝑉 given as a number of 10-m segments. 

𝑏𝑖
0 desired berthing position of vessel 𝑖. 

𝑚𝑖  crane capacity demand of vessel 𝑖 given as a number of QC-hours. 

𝑟𝑖
𝑚𝑖𝑛 minimum number of QCs agreed to serve vessel 𝑖 simultaneously. 

𝑟𝑖
𝑚𝑎𝑥  maximum number of QCs allowed to serve vessel 𝑖 simultaneously. 

𝑅𝑖  feasible range of QCs assignable to vessel 𝑖, 𝑅𝑖 = [𝑟𝑖
𝑚𝑖𝑛 , 𝑟𝑖

𝑚𝑎𝑥]. 

𝐸𝑇𝐴𝑖  expected time of arrival of vessel 𝑖. 
𝐸𝑆𝑇𝑖  earliest starting time if journey of vessel 𝑖 is speeded up, 𝐸𝑆𝑇𝑖  ≤  𝐸𝑇𝐴𝑖 

𝐸𝐹𝑇𝑖  expected finishing time of vessel 𝑖. 
𝐿𝐹𝑇𝑖  latest finishing time of vessel 𝑖 without penalty cost arising. 

𝑐𝑖
1, 𝑐𝑖

2, 𝑐𝑖
3 service cost rates for vessel 𝑖 given in units of 1000 USD per hour. 

𝑐4 operation cost rate given in units of 1000 USD per QC-hour. 

𝑐𝑖
5 Overlap cost rate which is the possibility of overlap between vessel 𝑖 and the rest of 

vessels, given in units of 1000 USD per space 10-m segment. 

∝ interference exponent. 

𝛽 berth deviation factor. 

𝑀 a large positive number. 

w Weight of overlap 



5.4.Mathematical Model Formulation 

 101 

 

Decision and calculated variables: 

𝑏𝑖 integer, berthing position of vessel 𝑖. 

𝑠𝑖 integer, time of starting the handling of vessel 𝑖 (berthing time). 

𝑒𝑖 integer, time of ending the handling of vessel 𝑖 (finishing time). 

𝑟𝑖𝑡  binary, set to 1 if at least one QC is assigned to vessel 𝑖 at time 𝑡, 0 therwise. 

𝑟𝑖𝑡𝑞  binary, set to 1 if exactly 𝑞 QCs are assigned to vessel 𝑖 at time 𝑡, 𝑞 ∈  𝑅𝑖, 0 

therwise. 

∆𝑏𝑖 integer, deviation between the desired and the actually chosen berthing position of 

vessel 𝑖, ∆𝑏𝑖 =  |𝑏𝑖
0 − 𝑏𝑖| 

∆𝐸𝑇𝐴𝑖  integer, required speed up of vessel 𝑖 to reach its berthing time, ∆𝐸𝑇𝐴𝑖 =
(𝐸𝑇𝐴𝑖 −  𝑠𝑖)

+ 

∆𝐸𝐹𝑇𝑖  integer, tardiness of vessel 𝑖, ∆𝐸𝐹𝑇𝑖 = (𝑒𝑖 −  𝐸𝐹𝑇𝑖)+ 

𝑢𝑖  binary, set to 1 if the finishing time of vessel 𝑖 exceeds 𝐿𝐹𝑇𝑖 , 0 otherwise 

𝑦𝑖𝑗  binary, set to 1 if vessel 𝑖 is berthed below of vessel 𝑗, i.e. 𝑏𝑖 + 𝑙𝑖  ≤  𝑏𝑗, 0 otherwise 

𝑧𝑖𝑗  binary, set to 1 if handling of vessel 𝑖 ends not later than handling of vessel 𝑗 starts, 

0 otherwise 

𝑑𝑖
𝑚𝑖𝑛 Minimum duration needed to serve vessel 𝑖 (minimum handling time). 

𝑜𝑥𝑖  Number of time slot (hours) overlap vessel 𝑖 with the rest of vessels if any. 

𝑜𝑦𝑖 Number of spaces (10m-segment) overlap vessel 𝑖 with the rest of vessels if any. 

𝑣𝑖𝑂𝑟𝑑𝑒𝑟 The order of vessel 𝑖 in the 𝑉. 

 

5.4.3 Mathematical Model 

The mathematical model obtained from Meisel & Bierwirth (2009) with minor 

modifications. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ (𝑐𝑖
1. ∆𝐸𝑇𝐴𝑖 + 𝑐𝑖

2. ∆𝐸𝐹𝑇𝑖 + 𝑐𝑖
3. 𝑢𝑖 + 𝑐4. ∑ ∑ 𝑞. 𝑟𝑖𝑡𝑞

𝑞∈𝑅𝑖

+

𝑡∈𝑇

𝑐𝑖
5)

𝑖∈𝑉

 (5-1) 

 
𝑑𝑖

𝑚𝑖𝑛 = [
(1 + 𝛽. Δ𝑏𝑖). 𝑚𝑖

(𝑟𝑖
𝑚𝑎𝑥)𝛼

] 
(5-2) 

 

𝑐𝑖
5 = {

𝑤 . ∑ 𝑜𝑦𝑖𝑗 

𝑗∈𝑉

, 𝑖𝑓 (𝑜𝑥𝑖𝑗  𝑎𝑛𝑑 𝑜𝑦𝑖𝑗) > 0

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               ∀𝑖 ∈ 𝑉   

(5-3) 

 ∑ ∑ 𝑞∝

𝑞∈𝑅𝑖

. 𝑟𝑖𝑡𝑞 ≥ (1 + 𝛽. ∆𝑏𝑖). 𝑚𝑖                           ∀𝑖 ∈ 𝑉

𝑡∈𝑇

 (5-4) 

 ∑ ∑ 𝑞

𝑞∈𝑅𝑖

. 𝑟𝑖𝑡𝑞 ≤ 𝑄                                                      ∀𝑡 ∈ 𝑇

𝑖∈𝑉

 (5-5) 

 ∑ 𝑟𝑖𝑡𝑞 = 𝑟𝑖𝑡                                                   ∀𝑖 ∈ 𝑉  ∀𝑡 ∈ 𝑇

𝑞∈𝑅𝑖

 (5-6) 
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 ∑ 𝑟𝑖𝑡 = 𝑒𝑖 −  𝑠𝑖                                                          ∀𝑖 ∈ 𝑉 

𝑡∈𝑇

 (5-7) 

 (𝑡 + 1) . 𝑟𝑖𝑡  ≤  𝑒𝑖                                           ∀𝑖 ∈ 𝑉  ∀𝑡 ∈ 𝑇 (5-8) 

 𝑡 . 𝑟𝑖𝑡  +  𝐻 . (1 − 𝑟𝑖𝑡)  ≥  𝑠𝑖                         ∀𝑖 ∈ 𝑉  ∀𝑡 ∈ 𝑇 (5-9) 

 ∆𝑏𝑖  ≥  𝑏𝑖 − 𝑏𝑖
0                                                            ∀𝑖 ∈ 𝑉 (5-10) 

 ∆𝑏𝑖  ≥  𝑏𝑖
0 − 𝑏𝑖                                                              ∀𝑖 ∈ 𝑉 (5-11) 

 ∆𝐸𝑇𝐴𝑖  ≥  𝐸𝑇𝐴𝑖 −  𝑠𝑖                                                  ∀𝑖 ∈ 𝑉 (5-12) 

 ∆𝐸𝐹𝑇𝑖  ≥  𝑒𝑖 −  𝐸𝐹𝑇𝑖                                                   ∀𝑖 ∈ 𝑉 (5-13) 

 𝑀 . 𝑢𝑖  ≥  𝑒𝑖 − 𝐿𝐹𝑇𝑖                                                      ∀𝑖 ∈ 𝑉 (5-14) 

 𝑏𝑗 + 𝑀 . (1 −  𝑦𝑖𝑗) ≥  𝑏𝑖 + 𝑙𝑖                        ∀𝑖, 𝑗 ∈ 𝑉,   𝑖 ≠ 𝑗 (5-15) 

 𝑠𝑗 + 𝑀 . (1 −  𝑧𝑖𝑗) ≥  𝑒𝑖                                 ∀𝑖, 𝑗 ∈ 𝑉,   𝑖 ≠ 𝑗 (5-16) 

 𝑦𝑖𝑗 + 𝑦𝑗𝑖 + 𝑧𝑖𝑗 + 𝑧𝑗𝑖 ≥  1                               ∀𝑖, 𝑗 ∈ 𝑉,   𝑖 ≠ 𝑗 (5-17) 

 𝑠𝑖 , 𝑒𝑖  ∈ {𝐸𝑆𝑇𝑖 , … 𝐻}                                        ∀𝑖 ∈ 𝑉 (5-18) 

 𝑏𝑖  ∈ {0, 1, … 𝐿 −  𝑙𝑖}                                       ∀𝑖 ∈ 𝑉 (5-19) 

 ∆𝐸𝑇𝐴𝑖 , ∆𝐸𝐹𝑇𝑖  ≥ 0                                         ∀𝑖 ∈ 𝑉 (5-20) 

 𝑟𝑖𝑡𝑞 , 𝑟𝑖𝑡 , 𝑢𝑖 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗  ∈ {0, 1}                        ∀𝑖, 𝑗 ∈ 𝑉  ∀𝑡 ∈ 𝑇  ∀𝑞 ∈ 𝑅𝑖 (5-21) 

 

The objective function in this model is shown in equation (5-1), which is designed 

to solve the BACAP with the minimum total service costs for scheduling all 

incoming vessels to the quay. Equation (5-2) calculates the minimum handling time 

needed to serve vessel 𝑖. From this equation, we can note that the minimum 

handling time is obtained if the desired position and maximum QCs required are 

both satisfied. Equation (5-3) predicts the possibility of overlap between vessels 

and calculates the cost. The cost of this overlap is the total length of the overlapped 

vessel 𝑖 with the rest of the unscheduled further vessels multiplied by the weight of 

the overlap. This will be described in the next sections. Constraints (5-4)-(5-6) are 
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responsible for the QCs assigned to each vessel that satisfy the required QC capacity 

needed concerning productivity losses caused by QC interference and the chosen 

berthing position. Constraints (5-7)- (5-9) set the start and end times for serving 

vessels while considering the QC assignment to a vessel. Constraints (5-10)- (5-13) 

are used to find the deviations from the desired berthing position and to determine 

the expected arrival and finish time for each vessel. Constraint (5-14) defines if the 

vessel finishes later than the EFT (delay). Constraints (5-15)-(5-17) prevent an 

overlap in the time and space of the vessels assigned to the same position. 

Constraint (5-18) sets the boundaries for the start and end times between EST and 

the planning horizon. Constraint (5-19) ensures that each vessel is positioned within 

the quay boundaries. Constraints (5-20)-(5-21) define the domains of the remaining 

decision variables. 

 

5.5 Genetic Programming for the BACAP with desired 

berthing position (BACAP_GP_DP) 

The proposed algorithm BACAP_GP_DP is the improved algorithm of 

BACAP_GP as described in the previous chapter, which can solve the BACAP with 

more realistic constraints such as, vessel’s desired berthing position and dynamic 

arrival time. The improvements consist of the two stages of solving the BACAP 

problem, which are the BACAP_Scheduler and the GP approach respectively. More 

detail will be explained in the following sections. 

 

5.5.1 BACAP_GP_DP Framework 

In this approach, we added more terminal sets to the GP to improve the CDRs 

generated by the GP. Moreover, we tuned the GP Tree parameters in order to 

enhance the solution and make the algorithm run faster. 

GP is an evolutionary computation technique that automatically finds computer 

programs used to solve a specific task; it is a domain-independent method for 

getting a solver rather than for finding a solution (Langdon, Poli, McPhee, & Koza, 
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2008). Comparing the GP with the genetic algorithm GA indicates that the GP 

population is not represented by a fixed string length of genes. Individuals in the 

GP are usually represented by different lengths of tree program, which makes the 

GP a powerful tool to solve NP-hard problems such as the BACAP. 

After introducing the BACAP_GP in the previous chapter and approving its 

performance when solving the BACAP, we concluded the importance of the 

dispatching rules and its impact on solving the BACAP. We applied the GP in this 

chapter, BACAP_GP_DP, in order to discover the superior construction of the 

CDRs and to compare their performance with the state of the art results. 

The main relationship between the GP engine and the scheduler has been shown in 

Figure 4-5. The BACAP_GP_DP is responsible for evolving the ship’s dispatching 

rules and ordering the vessel list accordingly, before sending the vessel list to the 

BACAP_Scheduler_DP. The BACAP_Scheduler_DP is responsible for handling 

the scheduling process using the order of vessels obtained by the BACAP_GP_DP, 

and then returning the best possible schedule for evaluation using the 

BACAP_GP_DP and vice versa. 

The following is the BACAP_GP_DP representation, which includes the terminal 

set and function set that was used in our algorithm.  

 

5.5.1.1 BACAP_GP_DP Representation 

In this section, we will describe the GP representation proposed for generating 

individuals using the terminal set and function set. 

3) Terminal set: 

It is crucial for the results’ quality and efficiency to choose a good terminal 

set and function set. Moreover, reducing these sets will reduce the search 

space and make the GP algorithm run faster. Therefore, we proposed highly 

effective sets which can be used to find a better solution for the BACAP. 

The proposed terminal set in this study is shown in Table 5-1; these values 

can be found and calculated in the initialisation stage or during the 

scheduling process for each vessel. 
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Table 5-1: Terminal set for the BACAP_GP_DP tree representation. 

Notation Description 

vl Vessel length 

ETAi Vessel expected time of arrival for the given vessel i 

EFTi Vessel expected finishing time for the given vessel i 

ESTi Earliest arrival time for the given vessel i 

LFTi Latest finish time for the given vessel i 

qi
Max The maximum number of QCs that can be assigned to a vessel 

mi Number of movements (loading/unloading) 

viMinHT Time for handling a vessel while it is working with qi
Max 

vpos vessel’s preferred mooring position 

pos Terminal preferred position 

Overlap The amount of overlap with other vessels 

Tolerance Reflects the amount of time a vessel can wait and still finishes 

Density Amount of movement need per hour, so the ship service can finish before 

the vETA 

Gap The length of unusable of the berth if allocated in its preferred position. 

Allowance The time between estimated time of finish and latest finish time 

SpeedUp Duration between earliest time of arrival and expected time of finish 

Space The minimum required slots to serve the ship which is length of the ship 

multiplied by the minimum service time 

Volume The space multiplied by maximum number of QC 

 

In Table 5-1, vpos represents the given vessel’s preferred position as stated 

by the vessels’ operators, while pos represents the preferred position from 

the terminal operator’s perspective during the scheduling process. Overlap 

represents the number of predicted Overlap Times and Overlap Spaces that 

are identified between a vessel and others (described in the next Section). 

The rest of the terminal set proposed has been explained in the above table. 

 

4) Function Set: 

The function set will consist of standard mathematical operators as shown 

in Table 5-2. 
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Table 5-2: Function set for the BACAP_GP_DP tree representation. 

Notation Description 

Add (x, y) Addition (+) 
Sub (x, y) Subtraction (-) 
Mul (x, y) Multiplication (*) 
Div (x, y) Safe division ( / ) ,  returns1if the denominator equals to 0 
Avg (x, y) Returns the average value of the input variables. 
Min (x, y) Returns the minimum of the two inputs. 
Max (x, y) Returns the maximum of the two inputs. 
Abs (x) Returns the absolute value of variable x. 
Ceiling (x) Returns the ceiling value of the input. 
Floor (x) Returns the floor value of variable x. 

 

5.5.1.2 Generate a set of initial solutions 

The BACAP_GP_DP generates an initial population randomly by creating a 

number of individuals as illustrated before. Each individual represents ordering 

vessels, and one possible solution with its fitness function. The BACAP_GP_DP 

determines the best individual out of the initial population and evolves it to the next 

generation. 

5.5.1.3 Fitness function 

In this study, our objective is to find effective CDRs for solving the BACAP with 

a minimum total cost of 𝑍 for all vessels, as shown in Equation (5-1). Therefore, we 

have proposed a method to form a CDR from the tree-based result of GP. This CDR 

is then, with the minimum service cost, used to evaluate the fitness value of the 

BACAP.  

5.5.1.4 Crossover & Mutation Operation 

The crossover and mutation operation in the proposed BACAP_GP_DP system is 

implemented as the same “Koza-style”  (Koza, 1994). This is explained in detail in 

the previous chapter. 

5.5.2 BACAP_Scheduler_DP 

This approach is the extended approach for the BACAP_Scheduler that was 

described in the previous chapter. After investigating the literature, we found that 

this approach is more generic and can handle scheduling all incoming vessels in 
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order to solve the BACAP in most scenarios. The significant improvements of this 

approach include: (1) considering the desired berthing position of a vessel and 

providing a cost for any shifts; (2) accepting the earliest starting time EST if the 

journey of a vessel is speeded up; (3) determining the different costs if a vessel is 

berthed at a different time/position than what is expected and (4) examining the 

possibility of overlap between each vessel. 

The model starts by reading the vessel data and initialising the solution by assigning 

𝑍 to infinity, resetting 𝑄, filling in the schedule array with zeros, calculating the 

minimum handling time for each vessel using equation (5-2) and checking the 

possibility of overlap between incoming vessels while also assigning a cost 𝑐5 for 

each vessel. We can calculate 𝑐5 as it is the total area of intersection between two 

vessels that are overlapping. First, we check the availability of QCs in the time 

between vessels 𝐸𝑇𝐴 and 𝐸𝐹𝑇. Second, we check to see if the desired position of 

the vessel is empty. If the QCs are not available or the vessel is overlapping with 

another vessel, then we start testing all of the times from EST to time horizon H 

and all the possibility berths in the quay. We then calculate the total cost of the 

vessel in this time and position using equation (5-1). From this, we can determine 

the best time and position data with the minimum cost to the vessel. These processes 

continue until the end of the vessel list 𝑉. Finally, we calculate the total cost of the 

schedule then send it to the GP engine for evaluation. To speed up the running time, 

we implemented stopping conditions if there is no improvement to be found in the 

solution or if there is no availability regarding the QCs. 

After the BACAP_Scheduler_DP places a vessel in the array, it fills in the location 

with the correspondent Vessel ID. This shows the location of the vessel in the 

schedule. Zeros denote empty spaces. A rectangle demonstrates the vessel, with its 

position on the horizon starting from 𝑠 and ending in 𝑒 for the time horizon (x-axis), 

and the length of the rectangle showing the length of the vessel 𝑣𝑖 in the quay (y-

axis). 

From Figure 5-3, we can determine that the best solution with the minimum cost 

involved can be obtained if all vessels can berth in their desired berthing positions 
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at the expected time of arrival. If this is not the case, two possible scenarios can be 

found, as follows: 

1. If the available QCs between vessel 𝐸𝑇𝐴 and vessel 𝐸𝐹𝑇<𝑟𝑖
𝑚𝑖𝑛 for the 

vessel leads to the vessel finding another suitable starting time between 𝐸𝑆𝑇 

and the time horizon. 

2. If the desired position for a vessel at its 𝐸𝑇𝐴 is occupied, this means that 

the vessel will overlap with another vessel. This will lead the new vessel to 

shifting from the desired position to search for a free space in the quay. 

From equation (5-1) which calculates the total cost, and from equation (5-2) which 

calculates the minimum handling time, we can notice that scenario (1) is worse than 

scenario (2) as above, because shifting the vessel from the desired position will cost 

less than changing its starting time. However, scenario (2) can be worse than 

scenario (1) if the distance of shifting exceeds the limit and the vessel handling time 

duration begins to increase, as it would then need more quay cranes/hours to finish 

loading or unloading. Therefore, the proposed approach to the 

BACAP_Scheduler_DP can manage the above scenarios by executing the 

following: 

1. The BACAP_Scheduler_DP starts to test every vessel against the rest of 

incoming vessels in the list to see if there is Overlap Time with it. If yes, the 

BACAP_Scheduler_DP will decrease the number of maximum quay cranes 

needed for all vessels that Overlap Time, such that the total number of quay 

cranes for all vessels with an Overlap Time less or equal to the total number of 

QCs in the quay. This approach will solve scenario (1). We defined vessel 1 as 

Overlap Time vessel 2 if one of the following occurred: 

 

1.a. If ((𝐸𝑇𝐴2>=𝑠1) and (𝐸𝑇𝐴2<=𝑒1)) 

1.b. If ((𝐸𝐹𝑇2>= 𝑠1) and (𝐸𝐹𝑇2<= 𝑒1)) 

1.c. If ((𝐸𝑇𝐴2<= 𝑠1) and (𝐸𝐹𝑇2>= 𝑒1)) 

From the above, we can determine the total time that vessel 1 overlapped vessel 

2 by:  𝑜𝑥12 = min  (( 𝑒1 − 𝐸𝑇𝐴2), (𝐸𝐹𝑇2 − 𝑠1)). 
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Figure 5-5 illustrates the Overlap Time. The BACAP_Scheduler_DP calculates 

the ox and predicts the future schedule for the current vessel and the vessels 

further along in the order, so it minimises the future overlap between vessels 

and utilises the QCs usage in each time slot. 

2. The BACAP_Scheduler_DP starts to test every vessel in the list to see if there 

is an Overlap Space. If yes, then the BACAP_Scheduler_DP will start to shift 

the current vessel to be scheduled by adding coast 𝑐5, which will allow for the 

shifting of the vessel in the quay from its desired position while not exceeding 

the limit as described before. This approach will manage scenario (2). We 

defined vessel 1 as Overlap Space vessel 2 if one of the following occurred: 

 

2.a. If ((𝑏2
0>=𝑏1) and (𝑏2

0<=𝑏1 + 𝑙1)) 

2.b. If ((𝑏2
1>= 𝑏1) and (𝑏2

1<= 𝑏1 + 𝑙1)) 

2.c. If ((𝑏2
0<= 𝑏1) and (𝑏2

1>= 𝑏1 + 𝑙1)) 

From the above, we can determine the total spaces that vessel 1 overlapped 

vessel 2 by: 𝑜𝑦12 = min  ((𝑏1 + 𝑙1 − 𝑏2
0), (𝑏2

1 − 𝑏1)). 

Figure 5-6 illustrates the Overlap Space. The BACAP_Scheduler_DP calculates 

the oy and predicts the future schedule for the current vessel and the vessels 

further along in the order, so it minimises any future overlap between vessels 

and utilises the QCs in each space. 

The BACAP_Scheduler_DP will continue testing each vessel in the list with the 

next vessels’ order. If case 1 (overlap Time) and case 2 (Overlap Space) are 

satisfied between two vessels, then full overlap has occurred and we can start 

to calculate 𝑐5 to the current vessel. The aim of using 𝑐5 is to force the current 

vessel, that will overlap future vessels, from its desired position so then the 

future vessels that need this position in the quay can find a space to berth with 

minimum cost. 
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Figure 5-5: Definition of Overlap Time Figure 5-6: Definition of Overlap Space 

 

5.5.3 Numerical Example 

In this section, we demonstrate a complete example of solving the BACAP with 

desired berthing position in a real instance as provided by Meisel & Bierwirth 

(2009). We solved the problem using our proposed method, BACAP_GP_DP. 

Table 5-3 shows a sample of the instance including 20 vessels and the data provided 

by the vessel’s operators. The quay length and setting parameters used in this 

example are shown in section 5.6.1. In the BACAP problem with desired berthing 

position, we need to schedule all of the vessels by allocating a suitable berth on the 

quay and finding a starting time for each vessel. We then need to determine the 

number of QCs to serve the vessels in a time-variant manner. The objective is to 

find the minimum total service cost for this schedule. 

Table 5-3: A sample of instance with 20 vessels produced by (Meisel & Bierwirth, 2009) and solved using 

BACAP_GP_DP. 

Vessel ID 𝒍 𝒃𝟎 𝒎 𝑬𝑻𝑨 𝑬𝑺𝑻 𝑬𝑭𝑻 𝑳𝑭𝑻 𝒓𝒎𝒊𝒏 𝒓𝒎𝒂𝒙 𝒄𝟏 𝒄𝟐 𝒄𝟑 

1 15 60 6 3 3 7 8 1 2 1 1 3 

2 8 75 7 9 8 13 15 1 2 1 1 3 

3 19 69 6 9 8 13 14 1 2 1 1 3 

4 10 2 13 13 12 20 23 1 2 1 1 3 

5 21 17 50 29 26 44 51 2 4 2 2 6 
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6 39 14 57 41 37 53 58 4 6 3 3 9 

7 20 59 14 43 39 51 54 1 2 1 1 3 

8 25 31 28 57 52 66 69 2 4 2 2 6 

9 18 42 8 64 58 69 70 1 2 1 1 3 

10 21 39 15 69 62 74 75 2 4 2 2 6 

11 15 21 5 86 78 89 90 1 2 1 1 3 

12 34 16 53 88 80 99 104 4 6 3 3 9 

13 14 66 12 96 87 103 106 1 2 1 1 3 

14 10 73 9 102 92 107 109 1 2 1 1 3 

15 19 74 13 108 98 115 118 1 2 1 1 3 

16 15 79 15 110 99 119 122 1 2 1 1 3 

17 26 55 20 130 117 136 139 2 4 2 2 6 

18 19 43 10 137 124 143 145 1 2 1 1 3 

19 24 23 20 141 127 147 150 2 4 2 2 6 

20 25 73 34 150 135 160 165 2 4 2 2 6 

 

First, the BACAP_GP_DP tries to evolve the CDRs using the proposed terminal 

and function sets. The CDRs are responsible for ordering the vessels as part of the 

dispatching rule while scheduling. Second, the BACAP_GP_DP sends the ordered 

vessels to BACAP_Scheduler_DP to schedule the vessels, to get the total costs of 

the schedule and to send it back to the BACAP_GP_DP to evaluate the fitness 

function of the schedule.  

Figure 5-7 shows the best CDR evolved by the BACAP_GP_DP after running 50 

populations and 50 generations. This CDR will generate a function (program) as 

shown in Equation (5-22) which can be simplified to −1/(𝐸𝐹𝑇𝑖 ∗ 𝐸𝑇𝐴𝑖) to orders the 

vessels shown in Table 5-3 to be as follows. Vessel ID: 20, 12, 2, 1, 3, 4, 8, 16, 15, 14, 

13, 19, 17, 18, 11, 10, 9, 7, 6, 5. 
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Figure 5-7: Example of the best CDR evolved by BACAP_GP_DP to 

solve the BACAP instance. 
 

𝑣𝑖𝑂𝑟𝑑𝑒𝑟 =
𝑚𝑖 − 𝑣𝑖𝑀𝑖𝑛𝐻𝑇

𝑣𝑖𝑀𝑖𝑛𝐻𝑇 −  𝑚𝑖

𝐸𝐹𝑇𝑖 ∗ 𝐸𝑇𝐴𝑖⁄  
(5-22) 

 

The BACAP_Scheduler_DP uses the previous ordered vessels and applies the 

proposed model to determine the best schedule plan that minimises the total service 

cost (Z).  Figure 5-8 shows the optimal solution plan for the 20 vessels with the 

value of Z=53.9. The x-axis is the time horizon (10-hour time segments) and the y-

axis is the quay length (10-metre berth segments). The plan shows each vessel 

where and when it will berth. Moreover, it shows how many QCs will serve each 

vessel in each one-hour period of time. The small shaded square shows the QC.  

For instance, the ETA and actual starting time (s) for V1 is 3, and the desired and 

actual berthing position is 60. The EFT and the actual finish time (e) is 7. The 

minimum QCs requested is 1 and the maximum is 2, so the scheduler assigned 2 

QCs for the first 3 hours and then assigned 1 QC for the fourth hour (time-variant). 

The total cost for serving V1 using Equation (5-1) means that 

Z=1*0+1*0+3*0+0.1*7+0.01*0=0.7 ($700). For vessel V11, the ETA is 86 but the 

actual is 85. The EFT is 89 and the actual is 88. The desired berthing position and 

the actual is 21. Calculating the total cost means that 

Z=1*1+1*0+3*0+0.1*6+0.01*0=1.6 ($1600). By evaluating the rest of the vessels, 

we can determine that the total service cost for the 20 vessels is 53.9 ($53,900) 

which is the optimal solution obtained using CPLEX as reported by Meisel & 

Bierwirth (2009). 
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Figure 5-8: Example of complete berth Plan with QCs. 
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5.6 Computational Experiments and Analysis 

In this section, computational experiments were conducted to evaluate the 

performance of the proposed algorithm. We defined the standard SPRs commonly 

used in the literature and then produced a comprehensive study and comparison of 

the SPRs along with the evolved CDRs obtained from the BACAP_GP_DP. The 

BACAP_Scheduler_DP and the BACAP_GP_DP were developed using Java and 

included the ECJ22 library (A Java-based Evolutionary Computation Research 

System, n.d.) in order to implement the GP. All tests were run for 10 hours or until 

the stopping conditions were reached on a core i3 intel processor with 1.8GHz and 

4GB of RAM. 

5.6.1 Datasets and parameter settings 

The experiments were performed using the same benchmark introduced by Meisel 

& Bierwirth (2009) to compare our approach. The benchmark contains three sets of 

test instances including 20, 30 and 40 vessels with ten instances each. The vessels 

size is classified in each instance into three classes; 60% belong to class Feeder, 

30% belong to class Medium, and 10% belongs to class Jumbo. Moreover, the 

minimum and maximum QCs needed for each vessel and the costs applied 

depending on the vessel class, which makes the benchmark closer to the real CT 

data.  

The dataset for each vessel includes: vessel ID, length of vessel, desired berthing 

position, crane capacity demand of the vessel, expected time of arrival, earliest 

starting time, expected finishing time, latest finishing time, minimum and 

maximum number of cranes to assign and vessel service costs. A sample of the 

instances has been shown in Table 5-3. 

In this study, the following assumptions were considered: 

• Quay length 𝐿 = 100 segment (1000 metres) 

• Number of QCs on the quay 𝑄 = 10QCs 

• Time Horizon 𝐻= 168 hour (one week) 

• Interference exponent α=0.9 



5.6.Computational Experiments and Analysis 

 115 

• Berth deviation factor β =0.01 

• Operation cost per QC-hour 𝑐4=0.1 

• Weight of overlap 𝑤 = 0.01 

From the above assumptions, the input data and using Equation (5-2), we can 

initially calculate the best values for the minimum handling time (duration time) for 

the vessel 𝑑𝑖
𝑚𝑖𝑛.  

In this experiment, the GP parameters were chosen as shown in Table 5-4, which is 

the common values used in the literature. We applied the ramped-half-and-half 

method (Koza, 1992). The following are the SPRs that we examined and compared 

with the BACAP_GP_DP. 

• R1: FCFS: first-come-first-serve rule; the vessel list will be ordered by ETA. 

• R2: Max. QC needed low priority: the vessel list will be ordered by 𝑟𝑖
𝑚𝑎𝑥 Ascending. 

• R3: Max. QC needed high priority: in this dispatching rule, the vessel list will be ordered 

by 𝑟𝑖
𝑚𝑎𝑥 descending. 

• R4: Vessel length high priority: gives the larger vessels high priority in the sorting order. 

• R5: Vessel length low priority: gives the smaller vessels high priority in the sorting order. 

• R6: Min. Handling time low priority: in this dispatching rule, the vessel list will be ordered 

by 𝑑𝑖
𝑚𝑖𝑛 ascending. 

• R7: Min. Handling time high priority: same as above, but gives priority to vessels which 

need a long handling time. 
 

 

Table 5-4: BACAP_GP_DP Parameters 

Parameter Value 

Number of iteration 50 

Population size 50 

Number of generation 50 

Maximum depth for population tree 7 

Crossover probability 0.8 

Mutation probability 0.1 

Recreation probability 0.1 
 

 

5.6.2 Results of SPRs and the BACAP_GP_DP 

In this section, we present the results and the in-depth analysis of the 

BACAP_GP_DP framework. We have also provided a comparison between the 
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BACAP_GP_DP and the seven SPRs as discussed above. Extensive numerical 

experiments and analysis were performed and the outcome was compared with the 

results produced by Meisel & Bierwirth (2009). 

A) SPRs Results: 

In this approach, we solved the BACAP using the BACAP_Scheduler_DP with each 

of the SPRs proposed for ordering and giving priority to the vessels in the queue. 

The approach was examined without applying the GP algorithm. 

Table 5-5, shows the results of the objective function (Z) using the proposed SPRs 

for all instances of the benchmark. It can be noticed that no dominating rule 

outperforms all of the other rules in all instances. Instead, the performance of the 

rules varies from one instance to another. For example, the Best SPR for instance 

number one was obtained by applying rule R4. Instance number 5 was obtained 

from applying rule R3 or rule R7. Instance number 7 was obtained by applying rule 

R3 or rule R4 or rule R7.  

The last column in Table 5-5 (FCFS) shows the results provided by Meisel & 

Bierwirth (2009). If we compare these results with R1, which also uses the same 

rule of first-come-first-serve, then we find that the change made to our proposed 

algorithm, the BACAP_Scheduler_DP, improved performance in almost all of the 

results. This approves of the powerful technique used in our algorithm to solve the 

BACAP based on construction manner. 

To study and understand the impact of using the proposed SPRs to solve the 

BACAP, we tried to count how many times each rule outperformed all of the other 

rules.  Figure 5-9 shows the proportion of the Best SPR according to each dispatch 

rule. We discovered that 34% of the Best SPR results were obtained from rule R3, 

29% were obtained from rule R4, 20% were obtained from rule R7, 17% were 

obtained from rule R1, and 0% were from the rest of the rules.  
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Table 5-5: Performance comparison between the dispatching rules (SPRs) 

ships ins. R1 R2 R3 R4 R5 R6 R7 Best 

SPR 

FCFS 

20 1 118.5 132.7 124.6 90.2 132.7 94.1 106.8 90.2 118.5 

 2 60.1 62.5 55.1 56.1 61.4 58.6 58 55.1 60.1 

 3 94.7 119.9 84.3 134.7 108.2 161.8 93.1 84.3 97.6 

 4 96.4 150.3 128.6 126.8 150.4 148.4 121.1 96.4 96.4 

 5 65.2 77.2 57.7 57.9 69.4 72.4 57.7 57.7 73.1 

 6 57.6 73.8 57.6 59.7 73.8 76.9 58.5 57.6 57.6 

 7 88.3 99.1 77.1 77.1 104.8 101.1 77.1 77.1 93.3 

 8 78.9 92.5 77.9 102.2 95.7 95.7 77.9 77.9 78.9 

 9 86.5 104.7 90.1 84.9 105.6 124.4 93.2 84.9 96.4 

 10 115.5 176.5 134.5 116.4 191.1 162.9 115.6 115.5 115.5 

30 11 209 389.9 213.5 221.6 399.4 392.4 267.2 209 216.0 

 12 96.5 145.6 92.3 100.9 145.3 146 104.9 92.3 96.7 

 13 134.7 166.5 118.7 124.5 166.6 165.6 111.8 111.8 135.0 

 14 128.9 284.3 137.6 136.4 285.1 159.8 141.2 128.9 144.5 

 15 200.3 307.5 178.2 175.5 492.2 332.2 184.6 175.5 197.5 

 16 135.9 155.6 129.4 130.8 216.9 203 129.6 129.4 137.7 

 17 139.8 182.6 120 111.4 178.4 176.4 113.3 111.4 139.8 

 18 167.8 223.6 166.8 157.1 222.7 242.3 160.3 157.1 167.8 

 19 260.3 516.4 232 210.9 492.5 501.5 238.6 210.9 268.7 

 20 153.9 269.4 146.5 150.4 313.3 442 161 146.5 184.7 

40 21 322.4 551.7 393.1 321 637.7 754.1 430.1 321 317.0 

 22 272.5 559.2 257.2 262.2 393 747.4 278.6 257.2 276.9 

 23 476.8 926.3 451.2 452.6 1266.4 1083.9 363.9 363.9 550.4 

 24 439.8 829.1 439.9 438.1 868.5 790.1 438.9 438.1 453.3 

 25 221.2 578.7 228.6 258.8 867.6 622.7 191.8 191.8 239.1 

 26 420.8 1110.8 486 430.2 1182 1011.4 414.4 414.4 398.9 

 27 325.8 714.6 369 281.7 718 816 293.3 281.7 354.6 

 28 423.1 1596.8 534.5 694.8 1281.3 1048.8 523.4 423.1 424.2 

 29 293.5 622.5 259.8 414 569.5 747.5 413.6 259.8 334.2 

 30 387.8 715.6 331.1 542.8 766.1 610.2 466.7 331.1 425.8 

 

The above results show that the strategy of giving priority to incoming vessels is a 

crucial decision to minimise the total cost of scheduling, and it can be different from 

one port to another or even from one case to another. However, using the rule R3, 

which gives priority to vessels according to their 𝑟𝑖
𝑚𝑎𝑥 values in descending order, 

will obtain better solutions. The next rule is to use R4, which is giving priority to 

large vessels first, because the large vessel’s arrival probability is small, and this 

again verifies the advice concluded by Ji et al. ( 2015), as described in the previous 

chapter. 
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Figure 5-9: Proportion of the best SPR by dispatch rule performance. 

 

B) BACAP_GP_DP Results 

In this approach, we used composite dispatching rules (CDRs) evolved by the GP 

algorithm to solve the BACAP with the desired position. 

We conducted numerous experiments using different parameters of the GP and the 

proposed algorithm BACAP_GP_DP to test the performance. We concluded the 

results into two main groups. The first one was using a population size equal to 50, 

and we denoted this as (GP1). The second one was using a population size equal to 

100, denoted as (GP2). The rest of the parameters have been explained in Table 5-4. 

In the first experiment, GP1 is compared to the SPRs explained above. Figure 5-10 

illustrates the comparison between the results of GP1 and the Best SPR obtained from 

the previous approach, using a single dispatching rule. We noticed that the GP1 

results outperformed the best results of SPR. We can conclude in this part that using 

CDRs is always better to solve the BACAP with rather than using a single 

dispatching rule SPR. 
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Figure 5-10: Compare GP1 performance with the Best SPR. 

 

In the second experiment, GP2 was compared to GP1. Table 5-6 reports the 

obtained objective function value of Z, representing the total service cost of the 

berth plan. The Gap is calculated as (𝐺𝑎𝑝 =
𝑍−𝐿𝐵

𝐿𝐵
), and LB is the lower bound 

obtained by the CPLEX and reported in Meisel & Bierwirth (2009). We noticed 

that the GP2 results outperformed in almost all instances compared to the results of 

GP1, but the results took a longer time to obtain. A sample of the evolved CDR tree 

by the BACAP_GP_DP is shown in Figure 5-7 and Appendix B.2. 

To the best of our knowledge, this is the only dataset available with existing results. 

Therefore, this dataset is used here as a benchmark to compare the GP results with 

other existing methods in the literature. Table 5-6 also shows the performance of 

the GP against the other improvement and construction methods reported in Meisel 

& Bierwirth (2009). FCFSLR uses the DR with a local search, SWO uses the same 
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DR with Squeaky wheel optimisation, while TS is based on the Tabu Search 

optimisation method. 

The GP outperformed the FCFS construction approach reported in Meisel & 

Bierwirth (2009). As expected. the methods that use both (construction and 

improvement) meta-heuristics/heuristics has outperformed the GP as a construction 

approach. However, the GP results are very competitive related to the improved 

methods. The aim in the future is to combine the GP evolved heuristics with an 

improvement optimisation layer. 

 

Table 5-6: Performance comparison between the evolved GP scheduling and the other heuristics. 

  Construction Improvement 

ships ins. FCFS    GP1   GP2  FCFSLR SWO TS 

  Z LB Gap  Z Gap  Z Gap Z Z Z 

20 1 118.5 84.0 0.41  88.1 0.05  84.3 0.00 86.1 85.1 85.1 

 2 60.1 53.9 0.12  54 0.00  54.29 0.01 53.9 53.9 53.9 

 3 97.6 75.2 0.30  81.2 0.08  79.69 0.06 87.3 77.4 77.4 

 4 96.4 75.8 0.27  92.4 0.22  90.4 0.19 79.7 79.7 77.9 

 5 73.1 56.8 0.29  57.7 0.02  58.09 0.02 56.8 56.8 56.8 

 6 57.6 57.6 0.00  57.6 0.00  57.6 0.00 57.6 57.6 57.6 

 7 93.3 67.5 0.38  77.1 0.14  69.5 0.03 69.9 68.9 68.9 

 8 78.9 56.1 0.41  66 0.18  61.9 0.10 69.6 57.0 56.1 

 9 96.4 75.0 0.29  81.9 0.09  78.4 0.05 76.3 75.9 75.5 

 10 115.5 88.2 0.31  104.5 0.18  98.59 0.12 101.1 94.6 93.0 

30 11 216.0 137.7 0.57  186.7 0.36  178.3 0.29 152.6 147.8 149.5 

 12 96.7 81.4 0.19  88.9 0.09  86.8 0.07 86.4 83.3 82.5 

 13 135.0 100.9 0.34  111.8 0.11  112.3 0.11 107.6 105.7 104.5 

 14 144.5 96.8 0.49  118.7 0.23  107.69 0.11 113.2 105.8 113.2 

 15 197.5 136.9 0.44  172.1 0.26  145.3 0.06 173.8 159.0 157.4 

 16 137.7 106.2 0.30  126.2 0.19  120.4 0.13 127.2 118.5 119.5 

 17 139.8 99.6 0.40  111.4 0.12  110.5 0.11 110.2 104.5 104.2 

 18 167.8 117.8 0.42  139.7 0.19  130.3 0.11 131.4 125.5 131.2 

 19 268.7 156.4 0.72  189 0.21  185.7 0.19 185.0 173.8 173.8 

 20 184.7 125.6 0.47  140.3 0.12  136.7 0.09 140.5 135.2 138.3 

40 21 317.0 165.7 0.91  260.7 0.57  245.9 0.48 261.3 215.0 226.7 

 22 276.9 159.6 0.73  224.5 0.41  222.4 0.39 189.0 178.8 183.4 

 23 550.4 185.0 1.98  305.9 0.65  301.1 0.63 325.7 273.9 264.3 

 24 453.3 224.1 1.02  414.8 0.85  410.5 0.83 360.2 326.6 342.2 

 25 239.1 133.3 0.79  175.4 0.32  165.5 0.24 162.0 155.1 154.8 

 26 398.9 201.3 0.98  343.1 0.70  304.3 0.51 273.1 260.4 259.6 

 27 354.6 172.2 1.06  281.7 0.64  255.3 0.48 233.0 200.8 215.8 

 28 424.2 211.7 1.00  419.8 0.98  390.5 0.84 408.5 286.2 294.3 

 29 334.2 180.3 0.85  243.2 0.35  259.8 0.44 268.4 219.4 223.4 

 30 425.8 170.1 1.50  331.1 0.95  326.2 0.92 280.8 240.9 254.7 
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5.7 Conclusion 

This study presents a new optimisation method for the integrated berth allocation 

and quay crane assignment problem (BACAP) with predefined desired berthing 

positions for the incoming vessels. The objective function aims to minimise the total 

service costs of a berth plan. We investigated how real container terminal operations 

work by visiting the DP World Sokhna port, providing a sensitive study analysis to 

understand the practical BACAP compared with the literature. 

First, we have improved the BACAP_Scheduler to BACAP_Scheduler_DP, which 

is capable of tackling the BACAP with the desired position. We improved the 

mathematical model to predict the overlap that might happen between vessels 

during scheduling. This technique gives the proposed algorithm a powerful tactic 

to use to minimise the total costs that will be added in the case of overlapping. 

Second, we have introduced a genetic programming approach called 

BACAP_GP_DP, which is also an improved version of the BACAP_GP, which 

automatically evolves efficient and customised dispatching rules for the BACAP. 

The BACAP_GP_DP is capable of combining different sets of attributes (vessel-

related attribute set, berth-related attribute set and quay crane-related attribute set). 

This allows the BACAP_GP_DP to generate tailored DRs based on the attributes 

given in each set, as the attributes may vary from port to another. The results show 

that the GP outperformed all SDRs in all instances in the (construction) method and 

that it is very competitive with the well-known literature (improvement) methods. 

The performance of the proposed approach leads us to tackle the BACAP with multiple-

ports which is multiple ports and terminals owned by one terminal operator. This 

will be explained in detail in the next chapter. For further research, the aim is to 

extend the BACAP_Scheduler_DP to test and evaluate the behaviour of the evolved 

heuristics when combined with other optimisation methods. Future work should 

combine the BACAP_GP_DP with an improved optimisation layer. 
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Chapter 6 : Berth and Quay Crane 

Optimisation Model with Multiple Ports 

 

6.1 Introduction 

This chapter focuses on the multiple ports BACAP. Most of the previous studies 

tackled the seaside container terminal problems by solving the three main ones 

which are the berth allocation problem (BAP), the quay crane assignment problem 

(QCAP) and the quay crane scheduling problem (QCSP) in an independent or 

integrated manner, but these studies consider there to be one container terminal in 

one port. Only a few studies considered the multi-terminal scenario where several 

ports are managed by one operator, and the target is to schedule incoming vessels 

across the different available ports. This is known as multi-quay/multi-terminal or 

multi-port BAP. In this chapter, we extended the dynamic continuous BACAP to 

multi-port BACAP. 

In our thesis, we give the following terms (multi-port, multiple ports, multiple 

terminals and multiple quays) to locations that have a set of terminals, where each 

terminal has a set of quays. These terminals are managed by one port operator 

regardless of the distance between them within the same country. In this case, the 

port operator needs to schedule all incoming vessels from the strategic level plan 

on these terminals and available quays in each terminal. 

In this regard, this chapter aims to (1) develop a generic model to solve the BACAP 

with multiple ports, which includes multiple quays, (2) integrating the strategic 

planning level with the operational level to provide a guideline for container 

operator decision-making and (3) to develop a two-level heuristic algorithm to 

evolve the dispatching priority rules for scheduling vessels in the quays. The 

objective is to minimise the total cost of services for all vessels. 
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To the best of our knowledge, this is the first study that tackles the BACAP with 

multiple ports and multiple quays, in addition to there being integrated levels of 

planning. We, therefore, believe that our contribution to this problem is novel and 

generic. Finally, we generated a new dataset based on a well-known pre-existing 

one to handle a new problem type. 

This chapter is structured as follows. Section 6.2 describes how multiple ports 

operate. Section 6.3 illustrates the problem. The proposed mathematical model with 

assumptions and used notations has been given in Section 6.4. Section 6.4.4 

presents an illustration of the multiple ports BACAP plan framework. In Section 

6.5, a solution approach, namely MultiP_BACAP_GA, has been presented. Section 

6.6 describes the computational experiments of CPLEX and GA. Finally, we have 

provided our conclusions in Section 6.7. 

 

6.2 Multiple Ports Operations 

Nowadays, mega-ports in the world are usually multi-terminal port systems rather 

than single-terminal systems (Zhen et al., 2016). For instance, there are many 

container terminals (CTs) that have multiple quays in one place (port) or different 

places (ports). For example, Valencia (Spain) has 2 quays; Jebel Ali port (Dubai) 

has three terminals with five quays (Frojan, Correcher, Alvarez-Valdes, Koulouris, 

& Tamarit, 2015). The ports of Rotterdam, Los Angeles and Shanghai also has nine, 

nine, and seven container terminals, respectively (Zhen et al., 2016). In Singapore, 

PSA Singapore has four container terminals in Tanjong Pagar (3 quays), Keppel (4 

quays), Brani (3 quays) and Pasir Panjang (9 quays). It operates them as one 

seamless and integrated facility; the port of Hong Kong has nine container terminals 

situated in Kwai Chung-Tsing Yi basin, and five different operators run it. The 

productivity of these ports depends mainly on the efficient berth allocation of the 

calling vessels. From the point of view of the ship operators, the timeline is a crucial 

factor as a delay at one port often results in a domino effect on ship routing and 

scheduling for the following ports.  
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To solve the BACAP for the above type of CTs, considering them as a single quay 

is unprofessional and this might lead to an increase in the total service cost. The 

novelty of our proposed model is that it integrates a scheduling plan for all of the 

ports/quays at once. The computational results approved that, if we solve the 

BACAP problem separately (each quay in each port), then this will decrease the 

utilisation of the QCs and increase the total service cost. For instance, if we have 

two vessels with the same ETA, and the quay was crowded to accept both of them, 

then to solve the BACAP for this scenario we will move one of the vessels to 

another starting time which may affect its EFT and add a cost to the terminal. 

However, if we have multiple quays and we can integrate them together, then we 

can allocate each vessel to a different quay so then both vessels can moor at the 

same ETA but in a different quay. 

Moreover, in the case of an emergency or uncertainty that prevents one vessel from 

berthing in one quay, and we need to change its berth to another one. It will be more 

useful to use such an algorithm to tackle the problem as a multiple quays situation 

rather than as a single quay. We understand that to change a vessel berth from one 

port to another or from one quay to another will add costs. However, this cost might 

be less than if opting to change the vessel’s starting and finishing time, as time is 

crucial for the vessel owner’s plans. The proposed model will discover the optimal 

scheduling solution plan that suits the incoming vessels and the availability of the 

ports/quays. 

For decision-making planning problems, there are three different levels of planning: 

strategic, tactical and operational planning. We can consider the BACAP at these 

distinct levels. For the strategic level, it is the most extended time plan, which 

extends from one year to several years. It is used to determine the most suitable 

schedule for terminal and vessel operators. This plan could be contracted between 

them for a prolonged period with no change until they come up for renewal or 

negotiate for a new contract. As for the tactical level, the plan will be for the short-

term (one week up to several months). At this level, we will consider the timetable 

of arrivals and the departure of vessels at a studied terminal. Within this level, the 

decisions and schedules for seeking optimality have been made. Finally, regarding 
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the operational level, the time horizon goes from one day to one week. In this level, 

it is aims to optimise the service time for the vessels by minimising the waiting and 

handling time, and minimising terminal costs. Moreover, the actual arrival time, 

tide, breakdown of equipment, uncertainty and real-time operational constraints 

should be tackled at this level (Hendriks, Armbruster, Laumanns, Lefeber, & 

Udding, 2012).  

The typical contract between a port operator and a shipping line process starts by 

the shipping line requesting a berth with a condition that suits the shipping schedule 

and the characteristics of the ship with the average number of containers that need 

to be moved stated (loading/unloading). The port operator evaluates the berthing 

requirement and its current operations. The negotiation usually takes several rounds 

before reaching an agreement. For a port operator that manages more than one port 

and with every port having multiple terminals, the decision might be quite 

complicated since they need to schedule all incoming vessels between their 

respective ports and terminals. Moreover, they need to consider the average costs 

of services in each container terminal in addition to the cost of changing the desired 

berthing position from one terminal to another, or from one port to another. 

 

6.3 Problem Description 

In the Multi-Port BACAP Figure 6-1, we have a set of incoming vessels that need 

to be served, and we have a set of ports. Each port has multiple terminals. The first 

part of the problem is to allocate the time, port, quay and a berth position in the 

terminal for all vessels to solve the BAP. Once a berth is occupied by a vessel, no 

other vessel can occupy the same berth at the same time. The second part of the 

joint problem is to assign a set of QCs in the quay to serve the vessel during staying 

in the berth to solve the QCAP, taking into consideration that the number of QCs 

should be within the minimum and maximum range of QCs required or contracted 

between the terminal operator and shipping line operator in advance. The decision 

made on the number of QCs may depend on the length of the vessel, the number of 

containers to be moved and how the containers are distributed on the vessel. In this 
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regard, the vessel's operators should send the vessel information to the CT operators 

in advance. This information includes the vessel length, expected time of arrival, 

the number of containers to be moved and its desired position in a specific quay 

within a particular port. The primary objective is to minimise the total assignment 

costs. 

 

Figure 6-1: The Multi-Port BACAP problem description 

 

Figure 6-2 illustrates the relationships between the multi-port BACAP components, 

which includes: BAP, QCAP, ship ordering priorities, Multi-Port, and the heuristic 

solver method that we chose to solve the problem. The intersection between these 

components defines the area of the proposed problem. We have integrated the 

problems of BAP and QCAP that we need to solve in the case of multi-port; the 

solver will use the genetic method with the priority of dispatching rules to obtain 

the solution. 

We noticed that this type of problem is entirely different from that of a single quay, 

where each quay has a number of quay cranes and the specifications of quay length, 

depth and the distance of the desired vessel berthing position. Accordingly, all of 

these factors will affect the solution and objective function in return. 

On the other hand, since the vessel’s characteristics - such as the vessel’s length, 

time of arrival and the working hours needed to load/unload the containers - can 
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be expected beforehand, it becomes possible to determine the usage of berths that 

can enable the vessels to be served as soon as they arrive. 

 

 

Figure 6-2: The Multi-Port BACAP Relationships 

 

6.4 Mathematical Model Formulation 

In this section, we have presented a novel model for the multi-port BACAP. 

6.4.1 Model Assumptions 

The proposed model was established based on the following assumptions: 

• The vessel i can be moored on the quay if there is a space greater than or 

equal to the vessel length, and if there is at least a minimum number of QCs 

available to start with. 

• The number of QCs assigned to vessel i is in the range between the 

minimum and maximum number of QCs contracted to serve the vessel. The 

optimal value in this range will be found by the model.  

• The QCs can be assigned to vessels using a dynamic approach (time-variant) 

so then the QCs can be attributed to another vessel before the original one 

departs. For more details on the differences between static and dynamic 

assigning for QCs, we direct the reader to Rodriguez-Molins, Salido, & 

Barber (2014). 
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• All vessels have a draft that is lower than the depth of the quay that they are 

assigned to.  

• The quay layout is continuous. The ETA is Dynamic arrival. 

• The handling time of a vessel depends on the number of assigned QCs 

(QCAP), moves required and the vessel position which are calculated 

depending on the equation (6.2) as shown in the next section. The 

performance measure is the total cost of position, waiting time, tardiness 

and overlap, and the objective function is to minimise these costs. 

• The vessel length includes the required safety margins, which is the safe 

distance between two moored vessels. 

 

The following notations have been used to solve the Multi-Port BACAP. 

6.4.2 Notations 

Input data and calculated variables: 

 

𝑃 Set of ports. Each port 𝑝 ∈ 𝑃 has a set of quays. 

𝑋 Set of quays in all ports. 

𝑉 Set of vessels to be served, 𝑉 = {1, 2, . . , 𝑛} 

𝑄𝑥  Number of available QCs at quay 𝑥 

𝐿𝑥  Number of 10-m berth segments (length of the quay 𝑥) 

𝑇 Set of 1-hour periods, 𝑇 = {0, 1, . . , 𝐻 − 1}, 𝐻 is the planning horizon 

𝑙𝑖 Length of vessel 𝑖 ∈ 𝑉 given as a number of 10-m segments 

𝑏𝑖𝑥
0  Desired berthing position of vessel 𝑖 at quay 𝑥 

𝑚𝑖 Crane capacity demand of vessel 𝑖 given as a number of QC-hours. 

𝑟𝑖
𝑚𝑖𝑛 Minimum number of QCs agreed to serve vessel 𝑖 simultaneously 

𝑟𝑖
𝑚𝑎𝑥 Maximum number of QCs allowed to serve vessel 𝑖 simultaneously 

𝑅𝑖 Feasible range of QCs assignable to vessel 𝑖,𝑅𝑖 = [𝑟𝑖
𝑚𝑖𝑛 , 𝑟𝑖

𝑚𝑎𝑥] 
𝐸𝑇𝐴𝑖 Expected time of arrival of vessel 𝑖 
𝐸𝑆𝑇𝑖  Earliest starting time if journey of vessel 𝑖 is sped up, 𝐸𝑆𝑇𝑖 < 𝐸𝑇𝐴𝑖  

𝐸𝐹𝑇𝑖 Expected finishing time of vessel 𝑖 
𝐿𝐹𝑇𝑖  Latest finishing time of vessel 𝑖 without penalty cost arising 

𝑐𝑖
1,  𝑐𝑖

2, 𝑐𝑖
3 Service cost rates for vessel 𝑖 given in units of 1000 USD per hour 

𝑐4 Operation cost rate given in units of 1000 USD per QC-hour 

𝑐𝑖
5 Overlap cost rate which is the possibility of overlap between vessel 𝑖 and the rest 

of vessels given in units of 1000 USD per space 10-m segment. 

𝑐𝑖𝑥
𝐸𝑇𝐴 Assignment cost of vessel 𝑖 to quay 𝑥 given in 1000 USD. 

𝛼 Interference exponent of QC productivity 

𝛽 Berth deviation factor 

𝑀 A large positive number 

𝑑𝑖
𝑚𝑖𝑛 Minimum handling time needed to serve vessel  𝑖 

w Weight of overlap 
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Decision variables: 

𝑏𝑖 Integer, berthing position of vessel 𝑖 at the quay to which it is assigned 

𝑠𝑖 Integer, time of starting the handling of vessel 𝑖 (berthing time)  

𝑒𝑖 Integer, time of finishing the handling of vessel 𝑖 (finishing time) 

𝑟𝑖𝑡  Binary, set to 1 if at least one QC is assigned to vessel 𝑖 at time 𝑡, 0 otherwise 

𝑟𝑖𝑡𝑞  Binary, set to 1 if exactly qQCs are assigned to vessel 𝑖 at time 𝑡, 𝑞 ∈ 𝑅𝑖, 0 

otherwise 

Δ𝑏𝑖 Integer, the deviation between the desired and the chosen berthing position of vessel 

𝑖 at the quay to which it is assigned. Δ𝑏𝑖 = |𝑏𝑖𝑥
0 − 𝑏𝑖| 

Δ𝐸𝑇𝐴𝑖  Integer, required speed up of vessel 𝑖 to reach its berthing time, Δ𝐸𝑇𝐴𝑖 =
(𝐸𝑇𝐴𝑖 − 𝑠𝑖)+ 

Δ𝐸𝐹𝑇𝑖  Integer, tardiness of vessel 𝑖, Δ𝐸𝐹𝑇𝑖 = (𝑒𝑖 − 𝐸𝐹𝑇𝑖)
+ 

𝑢𝑖 Binary, set to 1 if the finishing time of vessel 𝑖 exceeds 𝐿𝐹𝑇𝑖 , 0 otherwise 

𝑦𝑖𝑗 Binary, set to 1 if vessel 𝑖 is berthed below of vessel 𝑗 i.e.𝑏𝑖 + 𝑙𝑖 ≤ 𝑏𝑗, 0 otherwise 

𝑧𝑖𝑗  Binary, set to 1 if handling of vessel 𝑖 ends not later than handling of vessel 𝑗 starts, 

0 otherwise 

𝑚𝑑𝑖𝑥  Binary, set to 1 if vessel 𝑖 moored at quay 𝑥, 0 otherwise 

𝑜𝑥𝑖  Number of time slot (hours) overlap vessel 𝑖 with the rest of vessels if any. 

𝑜𝑦𝑖 Number of spaces (10m-segment) overlap vessel 𝑖 with the rest of vessels if any. 

 

6.4.3 Mathematical Model 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑(

𝑖∈𝑉

𝑐𝑖
1. Δ𝐸𝑇𝐴𝑖 + 𝑐𝑖

2. Δ𝐸𝐹𝑇𝑖 + 𝑐𝑖
3. 𝑢𝑖 + 𝑐4. ∑ ∑ 𝑞. 𝑟𝑖𝑡𝑞 + 𝑐𝑖

5

𝑞∈𝑅𝑖

)

𝑡∈𝑇

+ ∑ ∑(𝑐𝑖𝑥
𝐸𝑇𝐴. 𝑚𝑑𝑖𝑥)

𝑖∈𝑉𝑥∈𝑋

 

(6.1) 

 

 
𝑑𝑖

𝑚𝑖𝑛 = [
(1 + 𝛽. Δ𝑏𝑖). 𝑚𝑖

(𝑟𝑖
𝑚𝑎𝑥)𝛼

] 
(6.2) 

 

𝑐𝑖
5 = {

𝑤 . ∑ 𝑜𝑦𝑖  

𝑖∈𝑉

, 𝑖𝑓 (𝑜𝑥𝑖  𝑎𝑛𝑑 𝑜𝑦𝑖) > 0

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      ∀𝑖 ∈ 𝑉   

(6.3) 

 ∑ ∑ 𝑞∝

𝑞∈𝑅𝑖

. 𝑟𝑖𝑡𝑞 ≥ (1 + 𝛽. Δ𝑏𝑖). 𝑚𝑖                       ∀𝑖 ∈ 𝑉

𝑡∈𝑇

 
(6.4) 

 ∑ ∑ (𝑞. 𝑟𝑖𝑡𝑞). 𝑚𝑑𝑖𝑥 ≤ 𝑄𝑥  

𝑞∈𝑅𝑖

                  ∀𝑡 ∈ 𝑇, ∀𝑥 ∈ 𝑋

𝑖∈𝑉

 
(6.5) 

 ∑ 𝑟𝑖𝑡𝑞 = 𝑟𝑖𝑡                                               ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇

𝑞∈𝑅𝑖

 
(6.6) 

 ∑ 𝑟𝑖𝑡 = 𝑒𝑖 −  𝑠𝑖                                                       ∀𝑖 ∈ 𝑉 

𝑡∈𝑇

 
(6.7) 

 (𝑡 + 1). 𝑟𝑖𝑡 ≤  𝑒𝑖                                       ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (6.8) 
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 𝑡. 𝑟𝑖𝑡 + 𝐻. (1 − 𝑟𝑖𝑡) ≥  𝑠𝑖                         ∀𝑖 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (6.9) 

 Δ𝑏𝑖 ≥  𝑏𝑖 −  ∑(𝑏𝑖𝑥
0 . 𝑚𝑑𝑖𝑥)

𝑥∈𝑋

                               ∀𝑖 ∈ 𝑉 
(6.10) 

 Δ𝑏𝑖 ≥  ∑(𝑏𝑖𝑥
0 . 𝑚𝑑𝑖𝑥) − 𝑏𝑖

𝑥∈𝑋

                            ∀𝑖 ∈ 𝑉 
(6.11) 

 Δ𝐸𝑇𝐴𝑖 ≥  𝐸𝑇𝐴𝑖 −  𝑠𝑖                                            ∀𝑖 ∈ 𝑉 (6.12) 

 Δ𝐸𝐹𝑇𝑖 ≥  𝑒𝑖 −  𝐸𝐹𝑇𝑖                                              ∀𝑖 ∈ 𝑉 (6.13) 

 𝑀. 𝑢𝑖 ≥ 𝑒𝑖 − 𝐿𝐹𝑇𝑖                                                    ∀𝑖 ∈ 𝑉  (6.14) 

  𝑏𝑗 + 𝑀. (1 − 𝑦𝑖𝑗) ≥  𝑏𝑖 + 𝑙𝑖                  ∀𝑖, 𝑗 ∈ 𝑉,  𝑖 ≠ 𝑗  (6.15) 

 𝑠𝑗 + 𝑀. (1 − 𝑧𝑖𝑗) ≥  𝑒𝑖                           ∀𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗  (6.16) 

 𝑦𝑖𝑗 + 𝑦𝑗𝑖 + 𝑧𝑖𝑗 + 𝑧𝑗𝑖 ≥ 𝑚𝑑𝑖𝑥 + 𝑚𝑑𝑗𝑥 − 1          ∀𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗, ∀𝑥 ∈ 𝑋 (6.17) 

 𝑏𝑖 + 𝑙𝑖 ≤ ∑ 𝑚𝑑𝑖𝑥 . 𝐿𝑥

𝑥∈𝑋

                                          ∀𝑖 ∈ 𝑉 
(6.18) 

 ∑ 𝑚𝑑𝑖𝑥

𝑥∈𝑋

= 1                                                           ∀𝑖 ∈ 𝑉 
(6.19) 

 𝑠𝑖 , 𝑒𝑖 ∈ {𝐸𝑆𝑇𝑖 , … 𝐻}                                                 ∀𝑖 ∈ 𝑉  (6.20) 

 𝑏𝑖 ∈ {0,1, … 𝐿𝑥 −  𝑙𝑖}                                    ∀𝑖 ∈ 𝑉, 𝑥 ∈ 𝑋 (6.21) 

 Δ𝐸𝑇𝐴𝑖 , Δ𝐸𝐹𝑇𝑖 ≥ 0                                                   ∀𝑖 ∈ 𝑉 (6.22) 

 𝑚𝑑𝑖𝑥 ∈ {0,1}                                                    𝑖 ∈ 𝑉, 𝑥 ∈ 𝑋 (6.23) 

 𝑟𝑖𝑡𝑞 , 𝑟𝑖𝑡 , 𝑢𝑖 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 ∈ {0, 1}         ∀𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗, ∀𝑡 ∈ 𝑇 , ∀𝑞 ∈ 𝑅𝑖 (6.24) 

 

When solving the BACAP problem, the objective is to minimise the total service 

time, minimise the total service cost, or minimise the waiting time while increasing 

the utilisation of the terminals’ QCs. The most widely used objective function in 

the literature was minimising the total service cost. 

In our proposed mathematical model, the objective function is to minimise the total 

service cost as shown in equation (6.1). The vessel service costs include, the costs 

for assigning all incoming vessels to quays, their berthing position, the precise 

berthing time and the number of cranes needed to serve the vessel within the 

handling period. 
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From the mathematical model above, constraint (6.2), calculates the minimum 

handling time required to serve vessel i. Equation (6.3) predicts the possibility of 

overlap between vessels and calculates its cost. The cost of this overlap is the total 

length of the overlap vessel 𝑖 with the rest of the unscheduled further vessels 

multiplied by the weight of overlap, as described in the previous chapter. 

Constraints (6.4)-(6.6) ensure that every vessel receives the required QC capacity 

with respect to productivity losses caused by QC interference and the chosen 

berthing position. Constraints (6.7)-(6.9) set the starting and ending times for 

serving vessels, considering the QCs assignment to a vessel. Constraints (6.10)-

(6.13) find the deviations from the desired berthing position at quay 𝑥 to which it is 

assigned and determines the expected arrival and finish time for each vessel. 

Constraint (6.14) defines if the vessel finishes later than the 𝐸𝐹𝑇 (delay). 

Constraints (6.15)-(6.17) prevent overlapping in time and space for vessels assigned 

to the same quay. Constraint (6.18) ensures that the position at the quay is valid and 

constraint (6.19) ensures that every vessel is assigned to a quay. Constraints (6.20) 

and (6.21) ensure the boundaries of each vessel to the berth is inside quay space 𝐿𝑥 

and planning horizon 𝐻. The additional constraints define the domains for the 

remaining decision variables. 

 

6.4.4 Multiple Ports BACAP Plan Framework 

In this research, we integrated the main three levels of planning in order to solve 

the Multiple Ports BACAP. Figure 6-3 shows the proposed plan framework. On the 

strategic level, the port operator considers two types of information. The first one 

is related to the ports’ information and its characteristics, and the second one is 

related to the vessel’s information which provided by ship lines in advance 

according to the contract. At this level, many decisions should be undertaken such 

as the number of ports and the number of available quays in each port. This is in 

addition to the number of available QCs for each quay, the desired berthing quay 

for each vessel and how much it cost to change this quay to another one.   
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In this research, the strategic plane is responsible for dividing the incoming vessels 

to the available quays in the ports. The outcome will find the best quay for each 

vessel. 

 

Figure 6-3: Multi-Port BACAP Plan Framework 

 

There are four types of incoming vessel. The first one has its desired position in a 

specific port in a particular quay and cannot be in another port, but it can be shifted 

or await its desired position. The second can berth in any quay within the same port. 

The third case is flexible, and able to berth in any port or quay. Finally, is the case 

in which a vessel can berth in a specific quay in each port. In this research, we 

converted the set of ports and its quays into a number of quays, and managed the 

cost for berthing from one port to another. Therefore, each vessel encounters a cost 

when it comes to berthing in a different quay depending on the pre-defined cost to 

berth in a different port. Furthermore, we must bear in mind that we have 

encountered some constraints that prevent a vessel from berthing in a specific 
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port/quay. For instance, the vessel’s draft with relevance to the quays depth or a 

contract restriction between the vessel operators and port operators. 

From the previous illustration of the types of incoming vessels, we have proposed 

a Vessel-Quay Matrix costs list as shown in Table 6-1. This table shows the costs 

for each vessel 𝑣𝒊 in each quay 𝑥𝒊. The power of this matrix is to control the type of 

problem in order to solve it or to direct a vessel to berth in a specific quay. This 

means that we can solve the problem as if it was in one port with one quay, one port 

with multiple quays or multiple ports with multiple quays. To do so, we can assign 

a high cost (𝑀) to the quays where the vessel cannot berth. For instance, 𝑣𝟏 can 

berth in quays 𝑥𝟏and 𝑥𝟐with costs 3 and 4 respectively, but cannot berth in the quays 

𝑥𝟑 and 𝑥𝟒, while 𝑣𝟓 and 𝑣𝟔can berth only in quay 𝑥𝟐and 𝑥𝟑with costs 3 and 5 

respectively. 

Table 6-1: Vessel-Quay Matrix cost list 

 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 

𝒙𝟏 3 𝑴 𝑴 5 𝑴 𝑴 

𝒙𝟐 4 5 𝑴 𝑴 3 𝑴 

𝒙𝟑 𝑴 𝑴 3 6 𝑴 5 

𝒙𝟒 𝑴 6 4 𝟒 𝑴 𝑴 
 

 

The second level is the tactical plan, which takes place after the first level. In this 

level, the port operator builds the schedule for each quay in each port for a period 

of one or two weeks. They can construct a schedule up to one month in advance. 

The input data will be the vessel list for each quay, which should be as defined 

earlier by the strategic plan. In addition, the port operator can use the information 

provided by the ship-lines for the vessels such as (𝐸𝑇𝐴 , 𝐸𝑆𝑇, 𝐸𝐹𝑇, 𝐿𝐹𝑇, 𝑟𝑖
𝑚𝑖𝑛 and 

𝑟𝑖
𝑚𝑎𝑥). 

The third level is the operational level. In this level, the schedule that was built from 

and in the tactical level is tested and evaluated for a short period (a few days). The 

exact starting time and finishing time for each vessel and the exact berthing position 

in each quay should be defined at this point. Moreover, the QCs scheduling to serve 
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each vessel can also be identified. The port operator should strive to handle the 

uncertainties that can happen in the terminals, such as QC breakdown in order to 

keep the operational and tactical plans aligned with any minor changes. 

 

6.5 Genetic Algorithm for Multiple Ports BACAP 

(MultiP_BACAP_GA) 

In this section, we proposed a solution to the Multiple ports BACAP that integrates 

the three main decision plans as described before. The primary goal of the GA, 

which is responsible for the strategic decisions, is to classify all incoming vessels 

(list of vessels) into sub-lists of vessels that will be sent to each quay in each port. 

For the tactical and operational decisions, we applied the BACAP_Scheduler_DP 

(described in the previous chapter) in order to schedule the vessels in each quay and 

to determine the minimum scheduling cost. 

To illustrate the operations involved in classifying the vessels to ports/quays 

considering the constraints of the vessels and the port/quay, we have different 

methods: 

First, we can calculate the cost of each vessel in each port/quay and try to find the 

best solution with our objective function, which is the minimum cost and assigns 

the vessel to the cheapest quay, as in Figure 6-4. 

x1, with cost1

vi

x2, with cost2

xn, with cost n

.

.

.

 

Figure 6-4: Distributing vessels to Ports/Quays (Case1) 

 

Second, we can start to assign, vessel by vessel, to the first quay according to its 

ETA and the quay availability. We can then assign the minimum number of quay 
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cranes that the vessel can work with. If the solution is not feasible, then we will 

assign the vessel to the next nearest quay in the same port. If it is still not feasible, 

then we can assign it to another port as in Figure 6-5. 

x1
Order

= Cost1 

When x1 is full in ETA or there are no QCs available, then start to assign to x2

x2

x3

= Cost2 

= Cost3 

 

Figure 6-5: Distributing the vessels to the Ports/Quays (Case2) 

 

Third, we can assign the vessels to their desired ports/quays and then calculate the 

fitness. We can then swap the vessels to a different location (ports/quays) and 

calculate the eligibility again for this combination and so on. We repeat this until 

we get the best total fitness, as shown in Figure 6-6. In this research, we used the 

third method of distributing the incoming vessels to the available ports. 

List 1 v1 to v5 x1 = total Cost x1

List 2 v6 to v10

List n vn-5 to vn

.

.

.

x2 = total Cost x2

xn = total Cost xn

 

Figure 6-6: Distributing the vessels to the Ports/Quays (Case3) 
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6.5.1 MultiP_BACAP_GA Framework 

The flowchart of the proposed MultiP_BACAP_GA has been illustrated in Figure 

6-7. It starts by setting up the GA parameters needed, such as the number of 

population and generation, crossover, mutation, reproduction rate, seeds, etc. We 

set up the number of ports/quays and their characteristics, such as the length of the 

quay, depth, the number of quay cranes available in the quay etc. Next, we read the 

vessels' data, which included the vessel’s costs to berth for each port/quay. From 

this, we created the vessel-quay matrix cost list as described before. The GA uses 

this matrix to generate the chromosomes and individuals randomly in order to 

initialise a population. 

From the initial population, the GA starts to process the first generation for 

evaluation. The evaluation procedure occurs by calculating the total cost which 

includes two parts. The first one is the cost saved in the vessel-quay matrix cost list 

(cost1). For instance, from Table 6-1, the cost for berthing vessel 1 in the second 

quay is 𝑐𝑜𝑠𝑡1(𝑣12) = 4.  

The second part was obtained by creating a list of vessels for each port/quay and 

sending the list, one by one, to the BACAP_Scheduler_DP for evaluation to get the 

best schedule cost (cost2) for each quay. The GA tries to use different rules to order 

the vessel’s list for each quay and sends it again to the BACAP_Scheduler_DP to 

find a better solution, which is the minimum of cost2. If all rules and all ports/quays 

are tested, then the fitness of the current solution can be calculated. Now, we can 

finish evaluating the first individual. If all individuals are checked, then the first 

generation is completed. GA can determine the chromosomes that obtained the best 

results for this generation and continue to generate the second generation using the 

crossover and mutation, sending them again for evaluation as before. The process 

will continue as above until it reaches the last generation. Finally, the GA can find 

the best quay for each vessel and the best berth schedule for each quay. 
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Figure 6-7: The MultiP_BACAP_GA flowchart 
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6.5.2 Chromosome Representation 

We used an integer-coded chromosome representation to solve the strategic 

assigning of quays to vessels. We fixed the length of a chromosome to the number 

of vessels. The value of every gene indicates the id of the quay that a vessel should 

be berthed in. These values must be satisfied by the vessel-quay matrix cost list. 

Figure 6-8 shows an example of chromosome representation in which the length is 

six, and this equals a number of vessels. Vessel 1 can berth in quay 1 and quay 2, 

vessel 2 can berth in quay 2 and quay 4 and so on. The generated chromosome 

indicates that vessel 1 was chosen to berth in quay 1 and vessel 2 was chosen to 

berth in quay 4 and so on. 

1 2 3 4 5 6

1,2 2,4 3,4 1,3 2 3

1 4 4 3 2 3

Vessel

Accepted quays

Chromosome
 

Figure 6-8: GA chromosome encoding 

6.5.3 Generate a set of initial solutions 

The GA generated the initial population randomly by creating a number of 

individuals (chromosomes) as illustrated above. Each gene inside the chromosome 

represents one possibility that the vessel can berth in one quay, before sending the 

individuals one by one to the BACAP_Scheduler_DP for evaluation. Finally, it 

calculates the total cost for each chromosome. 

6.5.4 Fitness function 

The objective function is to minimise the total cost of distributing the incoming 

vessels toward the ports/quays, taking into consideration minimising the cost of 

changing the vessels’ desired position (cost1) and minimising the cost of scheduling 

the vessels in the quays (cost2). This was along with the availability of quay cranes 

that will serve the vessels. We calculated the fitness function using equation (6.1), 

simplified as follows: 
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 𝑚𝑖𝑛. 𝐹 = ∑ ∑ 𝑐𝑜𝑠𝑡1( 𝑣𝑖𝑥)

𝑖∈V

+ 𝑐𝑜𝑠𝑡2 (𝑣𝑖𝑥)                    ∀𝑖 ∈ 𝑉

𝑥∈𝑋

 
(6.25) 

6.5.5 Crossover Operation 

The crossover operator was applied to create the next generation by selecting two 

individuals from the previous generation to be the parents, thus creating the 

children. We used different methods for the crossover operator selection, such as a 

single-point crossover and two-point crossover, which is commonly used in 

permutation-based encodings to produce the offspring individuals (Rodriguez-

Molins, Ingolotti, et al., 2014). Figure 6-9.a illustrates the single point crossover 

operator which randomly choose a point in each parents’ chromosome. The genes 

before the point are inherited from parent 1 and the genes after the point are copied 

from parent 2.  

6.5.6 Mutation Operation 

In the mutation operation, high priority individuals were selected to reproduce the 

offspring ones. This happens by changing one gene randomly inside the 

chromosome to another acceptable quay which matches the vessel-quay list as 

described before. Figure 6-9.b illustrates the mutation operator. 

1 2 3 3 2 3

1 4 4 3 2 3

1 4 3 3 2 3

1 2 4 3 2 3

Parents

Children

1 4 3 3 2 3

1 3 3 4 2 3

Before mutation

After mutation

Crossover 
single point

 

a. Crossover operator b. Mutation operator 

Figure 6-9: Crossover / Mutation operators. 
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6.6 Computational Experiments and Analysis 

In this section, a comprehensive study of the computational experiments was 

conducted to test the performance of the proposed model. The model was developed 

to examine the minimum cost for scheduling a list of incoming container vessels to 

several ports managed by one port operator, and each port had many container 

terminals (quays). The problem considers the integrated BAP & QCAP. Therefore, 

the results should satisfy the decisions needed for the three planning determinations 

as described in section 6.4.4. To verify our model, we solved the initial problem 

using IBM ILOG CPLEX 12.6.1 (IBM ILOG, 2014) as an exact solution method, 

Appendix C.2. The GA heuristic algorithm and the BACAP_Scheduler_DP were 

developed in Java. All experiments were run parallel and independent on a server 

that had multiple cores; each core had an Intel Xeon processor 2.66GHz and 4.0 

GB of RAM. The stopping condition was either the computational time limit of 10 

hours being reached or running out of memory. 

6.6.1 Datasets and parameter settings 

6.6.1.1 Datasets and instances 

There are three datasets used in this chapter. This is the extended data of the 

proposed set from Meisel & Bierwirth (2009) to accommodate the new problem 

with multiple ports/quays that we have presented. The datasets have three types of 

classes (Feeder, Medium, and Jumbo). These classifications are related to the 

vessels' length and the number of QCs required for loading and unloading the 

containers. We added the desired position for each vessel in each port/quay and the 

cost that might be incurred if the vessel is scheduled to berth in different quays.  

The first and second benchmark consists of 30 instances; 10 instances of 20, 30 and 

40 vessels to be berthed on two ports one quay each, and two ports with three quays 

respectively. The third benchmark consists of 10 instances of 100 vessels to be 

berthed in 5 quays. For each instance, 60% of the vessels belong to Feeder, 30% of 

the vessels belong to Medium, and 10% of the vessels belong to Jumbo. 
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6.6.1.2 Parameters 

The common parameter values used in this chapter are as follows. The first five 

parameters were chosen as the previous experiment’s suggestion, described in the 

previous chapter to solve the BACAP for a single quay. The GA parameters were 

chosen after some of the initial experiments were conducted and obtained excellent 

results. 

- Number of available QCs at each quay 𝑥 (𝑄𝑥): 10 quay cranes. 

- Operation cost rate per QC-hour (𝑐4): 0.1 

- Interference exponent of QC productivity (𝛼): 0.9 

- Berth deviation factor (𝛽): 0.01 

- Weight of overlap 𝑤 = 0.01 

- For the GA parameters: crossover rate (0.6), mutation rate (0.3) and 

reproduction rate (0.1) 

The rest of the input parameters are different from one experiment to another. 

6.6.2 Results of Multi-Port BACAP, CPLEX and GA comparison 

In this section, we conducted many experiments to evaluate and measure how our 

model performed. The following is the results of the performance analysis, 

including the evolution, and the heuristic analysis. 

6.6.2.1 Performance Analysis 

Part 1 (Fixed assigning cost): In this experiment, we used the first two benchmarks 

that we created, which involve 30 instances with a maximum of 40 vessels. We 

assume that we have two ports, one quay for each, and we need to distribute the 

incoming vessels over the available quays, such that the final schedule cost of the 

total services for all ports is minimised. The quay length for each port is 1000 metres 

and the time horizon is one week (168 hours). We assumed here that there is a fixed 

cost for all vessels to berth in the first quay (𝑥) equal to zero (𝑐𝑖1
𝐸𝑇𝐴= 0), and the cost 

to berth in the second quay is equal to two (𝑐𝑖2
𝐸𝑇𝐴= 2). In this scenario, the port 

operator’s strategy decision tries to force all incoming vessels to berth in the first 

port, to reduce the load on the second port. However, in the case of uncertainty or 
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if the first port is busy, then the BACAP_Scheduler_DP will try to send some of the 

incoming vessels to the second port while keeping the total cost minimised. 

In this experiment, we tried to use different configurations for the CPLEX to find 

the most optimal solution, which in turn will be the guide to prove how far our 

proposed model is from the optimal. The CPLEX was configured as 

MIPEMPHASIS_HIDDENFEAS (emphasise finding hidden feasible solutions), 

with five parallel mode threads, fraccuts (generate Gomory fractional cuts 

aggressively) and applying local branching heuristics to the new incumbent. 

Table 6-2 shows the comparison between the results of the CPLEX and the 

proposed heuristic model (GA). We noticed that the CPLEX solved the first small 

group of vessels (20 vessels) and we obtained the optimal solution for instances 1, 

3, 8 and 9. We also observed that the CPLEX solved three instances from the group 

of 30 vessels (30-1, 30-4, 30-10) and that it could not solve any of the 40 vessel 

instances. 

The BACAP is also known as the NP-Hard problem, so the complexity of the 

problem increases with the number of vessels. This is the case shown by the results 

of the CPLEX. Accordingly, we proposed a meta-heuristic genetic algorithm to 

solve this type of problem, which can also be used to solve a vast array of issues 

but cannot prove the optimality. To run the GA in this experiment, we used 20 

generations and 30 populations as an initial stage and ran them five times. 

Comparing the results of the proposed heuristic algorithm (GA) with the CPLEX, 

we found that our model performed well. The results that we got from GA were 

near to the results of the CPLEX for the 20 and 30 vessel groups with a small gap. 

The GA solves all instances even with a large number of vessels, finding the optimal 

solution for instance 20-8. 
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Table 6-2: Multi-Port BACAP, GA and CPLEX comparison (2 Quays) 

n # 2Q-CPLEX 2Q-GA Gap 

20 1 67* 67.6 0.01 

 2 49.9 50.8 0.02 

 3 60.4* 61.9 0.02 

 4 54.8 55.5 0.01 

 5 50.1 51.9 0.04 

 6 57.6 57.6 0 

 7 59.8 60.7 0.02 

 8 51.1* 51.1* 0 

 9 61.3* 62.3 0.02 

 10 60.4 61.3 0.01 

30 11 91.2 93.9 0.03 

 12 - 77.2 - 

 13 - 87.1 - 

 14 83.2 85 0.02 

 15 - 101.4 - 

 16 - 84.9 - 

 17 - 87.2 - 

 18 - 89.5 - 

 19 - 101.6 - 

 20 92.1 92.9 0.01 

40 21 - 131 - 

 22 - 118.8 - 

 23 - 121.5 - 

 24 - 151.3 - 

 25 - 112.2 - 

 26 - 130.1 - 

 27 - 131.2 - 

 28 - 137 - 

 29 - 120.4 - 

 30 - 123.99 - 
 

* Optimal solution. Gap: (GA- CPLEX)/CPLEX 

 

Figure 6-10 shows the box-plot for the results of five runs. The chart displays the 

distribution of the maximum, first quartile, median, third quartile and the minimum 

values of the thirty instances above. The best values regarding our objective 

function were the minimum ones as displayed in Table 6-2. 
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Figure 6-10: Box-plot for the objective function (z-values) of five runs, 2 Quays. 

 

From the previous experiment, we extended the problem to two ports with three 

quays. The first port has two quays and the second one has one quay. Each quay is 

1000 metres in length and the cost for all vessels to berth in the first port first quay 

(𝑥) equals zero (𝑐𝑖1
𝐸𝑇𝐴= 0). The cost to berth in the first port second quay equals two 

(𝑐𝑖2
𝐸𝑇𝐴= 2) and the cost to berth in the second port equals three (𝑐𝑖3

𝐸𝑇𝐴= 3). The rest 

of the assumptions are similar those in the previous experiment. 

Table 6-3 shows the comparison between the results of the CPLEX and the 

proposed model (GA) in the case of three quays. We noticed that the CPLEX also 

solved the first small group of vessels (20 vessels) and that it obtained the optimal 

solution for instances 8 and 9. We also observed that the CPLEX solved five 

instances from the group of 30 vessels and one of the 40 vessel instances (40-5), 

which shows that the number of feasible solutions is higher than the first 

experiment. 
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Table 6-3: Multi-Port BACAP, GA and CPLEX comparison (3 Quays) 

n # 3Q-CPLEX 3Q-GA Gap 

20 1 63.8 64.4 0.01 

 2 49.9 50.8 0.02 

 3 60.4 63.1 0.04 

 4 54.8 55.5 0.01 

 5 50.1 51.9 0.04 

 6 57.6 57.6 0.00 

 7 59.8 60.7 0.02 

 8 51.1* 51.1* 0.00 

 9 56.3* 57.3 0.02 

 10 60.4 62.3 0.03 

30 11 - 94.3 - 

 12 - 79 - 

 13 87.9 87.1 -0.01 

 14 86.1 85 -0.01 

 15 - 104.3 - 

 16 - 85.6 - 

 17 87.2 88.2 0.01 

 18 87.1 92.9 0.07 

 19 - 107.1 - 

 20 91.2 96.7 0.06 

40 21 - 138.3 - 

 22 - 128.6 - 

 23 - 130.6 - 

 24 - 138.6 - 

 25 122.1 122.5 0.00 

 26 - 133.6 - 

 27 - 133.8 - 

 28 - 139.2 - 

 29 - 126.2 - 

 30 - 134.2 - 
 

* Optimal solution. Gap: (GA- CPLEX)/CPLEX 

Figure 6-11 shows the box-plot of the results of five runs. The chart displays the 

distribution of the maximum, first quartile, median, third quartile and the minimum 

values of the thirty instances above. The best values regarding our objective 

function are the minimum ones, as displayed in Table 6-3. When comparing Figure 

6-10 and Figure 6-11, we can observe that the difference between the results in the 

case of 3 quays was more than in the case of 2 quays, while the solution space 

increased and more obvious solutions were found. 
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Figure 6-11: Box-plot for the objective function (z-values) of five runs, 3 Quays. 

 

Accordingly, we can determine that the CPLEX can solve a number of instances 

for a higher number of vessels while the number of ports increases. This is because 

of the increase in the solution space. Returning to the performance of our proposed 

GA, we identified that the model can also solve all large instances with a small gap 

from CPLEX, which means that we can use our proposed algorithm for the multiple 

ports BACAP for a large number of vessels in an acceptable time. 

Part 2 (Random assigning cost): in this experiment, we further studied the impact 

of changing the assigning cost of vessels to ports. We re-evaluated the previous 

experiments but with a random cost of assigning vessels to quays (vessel-quay 

matrix cost). This scenario is practical in many ports, as we have multiple ports and 

multiple shipping lines. Each vessel can berth in any port with a different cost to 

berth in each port. In this case, the port operators have the chance to choose which 

port is better for which vessel to berth in, to speed up the turnaround time of the 
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vessel’s operations and to minimise the total cost for all ports that the port operator 

manages. 

In this experiment, the CPLEX was ran twice. First, we configured it as 

MIPEMPHASIS_HIDDENFEAS (emphasise finding hidden feasible solutions), 

with five parallel mode threads, fraccuts (Generate Gomory fractional cuts 

aggressively) and a local branching heuristic applied to the new incumbent. Second, 

we configured it as previous to the change to MIPEMPHASIS_BALANCED 

(balance optimality and feasibility), with twelve parallel mode threads, which might 

get the results faster than five threads. 

Table 6-4 shows the comparison between the results of the CPLEX and the 

proposed model GA for two quays and three quays in the case of assigning random 

costs. We noticed that the results were completely different than the results shown 

in Table 6-2 and Table 6-3. In the case of two quays, we found, that the CPLEX 

solved almost all 20 vessels and 30 vessels, and obtained the optimal solution for 

instances 1, 6, 8 and 9. Moreover, it also solved one of the 40 vessels instances (40-

8). For the case of three quays, the CPLEX solved all 20 vessels, 50% of the 30 

vessels and 40% of 40 vessels. This again indicates the high density of solutions 

when the number of quays increases. However, the total cost might also be 

increased. Appendix C.1 shows an example of multiple ports BACAP. 

Comparing the results of the GA with the CPLEX, we found that the GA also 

performs well with a small gap and that it can solve all instances from small group 

up to large groups of vessels. Moreover, the GA obtained the optimal solution for 

some instances like 20-1 and 20-6 for both cases of two and three quays 

respectively. From Table 6-2, Table 6-3 and Table 6-4, we noticed from the results 

that using three quays performs better than using two quays regarding the total cost. 
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Table 6-4: Proposed model results, assuming random costs 

n # 

2-Quay 3-Quay 

CPLEX 

(5 threads) 

CPLEX 

(12 threads) 

(G=20, 

P=30) 

(G=50, 

P=40) 

CPLEX 

(5 threads) 

CPLEX 

(12 threads) 

(G=20, 

P=30) 

(G=50, 

P=40) 

20 1 109.4 109.4* 109.4* 109.4* 88.4* 88.4* 88.4* 88.4* 

 2 86.4 86.4 86.4 86.4 80.4 80.4 80.4 80.4 

 3 98.7 98.7 98.7 98.7 96.6 96.6 96.6 96.6 

 4 90.8 90.8 90.8 90.8 84.8 84.8 84.8 84.8 

 5 92 92 94 94 77.7 77.7 78.4 78.4 

 6 103.7 103.7* 103.7* 103.7* 92.7* 92.7* 92.7* 92.7* 

 7 89.3 89.3 89.3 89.3 86.2 86.2 86.2 86.2 

 8 93.1* 93.1* 94.1 94.1 82.9* 82.9* 83.9 83.9 

 9 93.4* 93.4* 96.6 97.5 90.2* 90.2 91 91 

 10 99.1 - 100.9 99.9 84.6 84.6 84.8 84.8 

30 11 143.9 - 147.1 147.1 135.3 - 135.3 135.3 

 12 133.9 133.9 135.1 135.1 122.6 - 123.6 122.6 

 13 138.8 138.8 138.8 139.1 - - 132.8 132.8 

 14 127.6 127.6 128.6 128.6 125.8 - 126.5 127.5 

 15 150.9 - 153.9 153 - - 141.3 141.3 

 16 132.8 - 132.8 132.8 134.4 134.4 135.9 134.4 

 17 139.5 139.5 139.6 139.6 - - 132.9 132.9 

 18 142.6 142.6 144.6 146.5 - - 134.8 134.8 

 19 151.6 139.5 156.7 153.7 - - 143 140 

 20 - 146.3 150.2 149.7 134.4 134.4 135.9 135.3 

40 21 - - 191.7 188.9 - - 176.9 174.7 

 22 - - 191.4 188.4 170.3 - 170.5 170.5 

 23 - - 195.4 196.3 168.4 168.4 171.1 171.1 

 24 - - 213.9 214.2 - - 186.4 185.6 

 25 - - 179.8 180.8 164.8 164.8 165.8 166.8 

 26 - - 199.1 197.1 - - 178.8 180.7 

 27 - - 198.3 194 - - 171 170 

 28 187.6 - 202.4 209.1 - 179.7 180.5 180.5 

 29 - - 185.7 187.7 - - 165.5 165.5 

 30 - - 193.2 194.4 178.8 178.8 179.9 179 
 

* Optimal solution. 

 

In the following experiment, we expanded the dataset to 100 vessels and 5 quays to 

test the performance of our GA model, Table 6-5 shows the results. The CPLEX 

could not handle any of the instances in the large dataset, but the GA found a 
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feasible solution. Moreover, the GA stopped after the stopping condition of 10 

hours was reached and thus could not reach the maximum number of generations 

due to the complexity of the problem. 

Table 6-5: Results of 100 vessels with 5 Quays. 

n # 5Q-CPLEX 
5Q-GA 

(G=20, P=30) 

5Q-GA 

(G=50, P=40) 

100 1 - 407.1 408.1 

 2 - 370.2 372.2 

 3 - 417.8 428.3 

 4 - 394.8 390.2 

 5 - 447.1 434.5 

 6 - 419.8 414 

 7 - 486.4 466.3 

 8 - 404.2 404.6 

 9 - 453.8 451.8 

 10 - 475.3 478.5 
 

 

6.6.2.2 Evolution Analysis 

In this experiment, we studied the impact of changing the GA parameters on the 

results. We changed the number of generations from 20 to 50 and changed the 

population from 30 to 40. Figure 6-12 and Figure 6-13 show the results in the case 

of 2 quays and 3 quays with a fixed cost of assignment as mentioned earlier. We 

noticed that there is not much difference between changing the generation and 

population on the results. However, increasing the number of generations and the 

population ended with better results in the case of a large number of vessels in the 

3 quays problem as shown in Figure 6-13. 

In the case of 2 quays and 3 quays with a random cost of assignment, as in Figure 

6-14 and Figure 6-15, we observed that increasing the number of generations and 

the population ended with almost similar results with slight improvement. 

Accordingly, we can conclude that changing the number of population and 

generation in the GA has a better effect on the results while the complexity of the 

problem increased.  
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Figure 6-12: Evolution Analysis, 2 Quays, fixed cost 

 

 

Figure 6-13: Evolution Analysis, 3 Quays, fixed cost 
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Figure 6-14: Evolution Analysis, 2 Quays, random cost 

 

 

Figure 6-15: Evolution Analysis, 3 Quays, random cost 
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6.6.2.3 Heuristic Analysis 

In this sub-section, we studied the impact of changing the dispatching rules on the 

results. The rules considered have been shown in the following table. 

ID Rules Description 

1.  FCFS First-Come-First-Serve 

2.  maxOCNeededASC Maximum Quay Crane needed ascending 

3.  maxOCNeededDES Maximum Quay Crane needed descending 

4.  vLengthBigToSmall Vessel length sorted by descending 

5.  vLengthSmallToBig Vessel length sorted by ascending 

6.  movementLowToHigh Number of container needs to be loaded or unloaded ascending 

7.  movementHighToLow Number of container needs to be loaded or unloaded 

descending 

8.  minTimeHandlingASC Minimum time needed to handle a vessel ascending 

9.  minTimeHandlingDES Minimum time needed to handle a vessel descending 

10.  EFT Expected vessel finish time ordered ascending 

 

Figure 6-16 shows the efficient rules used in all of the previous GA experiments. 

The x-axis is the rule ID, and the y-axis is the count of how many times the rules 

succeed or were chosen during the GA generations. We noticed that the best five 

rules in descending order used in the process of optimisation for the case of 2 

quays was the following rules ID (1, 3, 9, 4 and 2); FIFS, maxOCNeededDES, 

minTimeHandlingDES, vLengthBigToSmall, and maxOCNeededASC. 
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Figure 6-16: Counts of dispatching rules used in the GA generations 

 

On the other hand, in the case of 3 quays, we recognised that the best five rules 

are the same rules as in the case of 2 quays, but in a different order. The rules are 

1, 3, 9, 2 and 4 respectively, which are FIFS, maxOCNeededDES, 

maxOCNeededASC, minTimeHandlingDES and vLengthBigToSmall. Moreover, 

we found that there are a few rules that have not been counted in the process of 

optimisation, for instance, rules 6 and rule 7. This means that these rules have less 

of an impact on the final solution. There is a crucial relationship between the rules 

used for dispatching the list of incoming vessels and the performance of the 

solution.  
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6.7 Conclusions 

In this chapter, we studied the berth allocation problem integrated with the quay 

crane assignment problem on an incoming set of container vessels related to a set 

of container ports. These ports were managed by one port operator. The objective 

function is to minimise the total cost of services for all vessels and to minimise their 

turnaround time. To the best of our knowledge, this is the first study that has tackled 

the BACAP with multiple ports and multiple quays, in addition to the integrated 

levels of planning. 

The port operator at the strategic level can identify the number of ports needed to 

work for an extended period (e.g. a year). We can do this by solving the problem 

by assigning a fixed cost or a high cost to a vessel-quay matrix cost list, as shown 

before. Consequently, we can solve it again with different cost values. The results 

should identify how many ports/quays are used and how the solution performs 

regarding the fitness function. From this end, the port operator can decide if it is 

better to use all of the ports/quays or just some of them. They will get useful 

information in order to conduct an analysis of how the quays will perform for the 

next year. For the benefit of this model, the port operator can pre-plan how many 

new contracts can be accepted or refuse them in the following year. 

The proposed model that has integrated the three levels of plans attempted to apply 

the high-level plan’s information to the low-level plan, and we found out how this 

performed before returning this to the high-level plan again. This model continued 

until it found a better solution that satisfied the ship lines and port operator. 

The problem was solved using an exact method, using the CPLEX. The results 

indicate that this approach can solve a small group of vessels only. Therefore, a 

proposed a meta-heuristic GA algorithm was developed which is capable of solving 

this type of problem with a large group of vessels. 

The results of the proposed GA algorithm prove that our model can perform well 

with both a small and high number of vessels, and in the case where we increased 

the complexity of the problem. 
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Chapter 7 : Conclusions and Future Work 

 

 

This chapter covers the conclusions of the research. It reviews the overall research 

findings, and summaries the contributions. It demonstrates the success related to 

achieving the research aim and objectives. Finally, it identifies future work and 

recommendations. 

 

7.1 Research Summary and Conclusions 

In this thesis, we focused on improving container terminal efficiency in the seaside 

operations. Two crucial container terminal planning problems have been 

investigated; the berth allocation problem (BAP) and the quay crane assignment 

problem (QCAP). This has covered both single and multiple ports scenarios. We 

developed a new method to solve the integrated berth allocation and quay crane 

assignment problem (BACAP), aiming to optimise the total service time for all 

incoming vessels and to minimise the terminal’s service costs. Applying the 

integration concept enables container terminal planners to obtain feasible plans for 

all incoming vessels. This is where berthing positions, berthing times and assigning 

quay cranes are dependently determined for the vessels.  

While the BACAP is a NP-hard problem and it has been solved by exact methods 

in the literature for small instances only, most of researchers use heuristic-based 

methods to solve the problem in a large number of instances. Genetic programming 

(GP) is a meta-heuristic method which is considered to be a sub of genetic algorithm 

(GA). It can search in the solutions’ problem space of and finds a method/solver 

rather than finding only one specific solution to the specific problem. In this regard, 

we were interested in using the GP method to solve the BACAP. The GP framework 

in this research plays an important role in optimising the vessels’ dispatching rules 

(DRs) and combining them into composite dispatching rules (CDRs) used for 

ordering any given vessel list. The obtained plans from the proposed evolved 
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solvers enable a highly productive utilisation of quay space and quay cranes as well 

as minimising the makespan for vessels’ berthing schedule. We presented the state-

of-the-art solution to the problem, and discussed the gaps and new trends that the 

literature does not cover. 

Firstly, we solved the BACAP using nine different common priority/dispatching 

rules by developing an independent scheduler (BACAP_Scheduler). The aim was 

to schedule all incoming vessels in a two-dimensional array while considering the 

constraints of the problem. The novelty of the proposed BACAP_Scheduler is can 

work independently with any optimisation techniques. Secondly, we introduced a 

GP approach (BACAP_GP) to dynamically evolve efficient DRs and to obtain 

CDRs to solve the problem. The presented study was developed in order to 

determine the most effective CDRs and their impact on the total vessel service time. 

We provided a literature review of the research studies that solved the BACAP, 

considering DRs. We discovered the importance of the terminal operators 

concerning adopting the vessel’s priority strategy used to solve the BACAP with 

relevance to the different input constraint. 

The BACAP_GP searches the heuristic in order to find a better solution. As soon as 

a berth is available with QCs, the generated rule is applied directly to the vessel list. 

The vessel with the highest order is selected to be processed. The benchmark that 

we used was well-known large-scale instances drawn from the literature, which 

contains 100 instances generated randomly, following the suggestions of the 

container terminal operators. Each instance is composed of a queue with 100 

vessels. Computational results and comparisons showed that the proposed 

BACAP_GP outperforms the standard priority rules in all instances and that it is 

more flexible when it comes to handling different scenarios and different port 

layouts. Moreover, solving the BACAP using the BACAP_GP while taking into 

consideration dynamic quay cranes (time-variant) also helps to decrease the waiting 

time for the vessels and speeds up the work in the terminals by minimising the total 

service time for all incoming vessels. It improves the performance of the container 

terminal operations, which was the major aim of this thesis. 
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From the above efficient outcome of the proposed algorithms, we used the 

improved BACAP_Scheduler_DP and BACAP_GP_DP to tackle the BACAP with 

desired berthing position by innovating a mathematical model to predict any 

overlap that might happen between the vessels during scheduling. This approach 

predicts the total costs that might be incurred in case of overlapping, while finding 

the optimal berthing position with minimum costs. The BACAP_GP_DP is a 

construction method. The computational results show the efficient performance of 

the developed algorithms for BACAP_GP_DP that solve the above problem. It 

outperformed all DRs in all instances using a construction method, and is very 

competitive when compared to well-known literature improvement methods. 

To the best of our knowledge, there are insufficient research studies available in the 

literature that tackle the BACAP in the case of multiple ports in which the incoming 

vessels have the opportunity to berth in different ports where multiple terminals are 

owned by one port operator. This encouraged us to apply the above approaches to 

this type of problem. Moreover, we studied the problem while considering the 

integrated levels of planning, strategic, tactical and operational levels. The aim was 

to achieve the satisfaction of the shipping lines and port operator’s aims. We 

developed a mathematical model to solve the problem MultiP_BACAP_GA and 

generated a suitable benchmark for testing. We solved the problem with two 

methods; an exact method using the commercial solver CPLEX, which can solve 

only a small number of instances, and a meta-heuristics method using GA which 

can solve any number of instances and find a near-optimal solution in an acceptable 

computational time. The computational results proved that our approach can 

perform well when faced with both a small and large number of instances. 
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7.2 Research Contributions 

This research has the following major contributions, which have been summarised 

from each chapter and that demonstrate the success of the research aim and 

objectives. 

1) Chapter 4: 

A. Develops an optimisation approach for solving the integrated BAP and 

QCAP. 

B. Applies composite dispatching rules rather than simple dispatching rules, 

and use a new priority-based schedule construction procedure. 

C. Determines that genetic programming meta-heuristic is not a conventional 

method to solve the BACAP in the literature from the optimisation 

viewpoint. We have presented a GP based approach to evolve the 

dispatching rules for the BACAP problem. In addition to the high 

performance of the evolved DRs, the main advantage of the approach is the 

self-adaptability of the proposed methods, which automatically 

discover/evolve high performing DR using different sets of variables based 

on what is available in each berth. 

D. Presents an independent scheduler for the BACAP that could be extended 

to deal with different objectives or combined with any appropriate 

optimisation method to find a better solution. 

E. Provides an analysis of a wide range of DRs and solves the BACAP for a 

large benchmark. 

2) Chapter 5: 

A. Solves the continuous dynamic BACAP with desired berthing position for 

each vessel.  
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B. Compares the results with well-known BACAP benchmark with an 

objective function to minimise the total cost of serving ships in a given 

terminal. 

C. Develops a new technique to improve quay space utilisation while 

scheduling. 

D. Demonstrates that the model is flexible enough to solve the problem of QC 

assignment using both Time-variant, and QC Time-invariant approaches. 

E. Integrates both the terminal operator’s and ship owner’s goals. 

3) Chapter 6: 

A. Develops a novel mathematical model to solve the BACAP in the case of 

multiple ports being available. 

B. Produces a new generated dataset to test the model. 

C. Solves the model with an exact method (CPLEX) for small instances. 

D. Solves the model with GA and compares the solution with that of CPLEX. 

E. Demonstrates a comparative study and analysis using CDR and SPR. 

F. Applies a new concept to solve the BACAP using an integrated method at 

the strategic and operational planning levels for decision makers. 

 

 

7.3 Future Work 

Future work can go in three main directions. The first direction is related to 

expanding the framework in terms of the scope and functionality. The second 

direction is related to the literature benchmarks. The third direction is related to 

single and multiple ports datasets. 
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7.3.1 Framework Scope and Functionality 

Further research in this direction aims to extend the proposed approaches in order 

to handle new features such as dual cycle cranes, which allow for QCs to discharge 

a container in the same cycle as a loading operation. Double spreader cranes which 

can transfer two containers at the same time. Moreover, the aim is to test and 

evaluate the behaviour of the evolved heuristics when combined with other 

optimisation methods. The aim in the future is to combine the GP-evolved heuristics 

with an improvement optimisation layer. In addition, it will be interesting to 

integrate the third problem present in seaside operational planning, which is the 

quay crane scheduling problem (QCSP) with the presented approaches. Also, more 

realistic constraints could be considered such as, varying depth of quay, other types 

or mixed types of quay layouts. 

Last but not least, is to solve the BACAP when considering fuel consumption and 

vessel emissions. In recent years with the increasing number of visiting vessels to 

port bringing in a large volume of vessel emissions, this has attracted the extensive 

attention of society. The legislation on vessel emissions was brought into force by 

the International Maritime Organisation (IMO) in 2005 (MARPOL Annex VI 

“prevention of air pollution from ships”, IMO, 2005) to reduce the negative 

environmental impacts and to pursue green ports and clean air at sea. 

7.3.2 Related to Literature Benchmarks 

Most of the literature solves the BACAP when considering deterministic 

parameters. However, uncertainty is more realistic. The uncertainties might include 

changes in the ETA, a weather forecast that affects the vessel depth, QCs 

breakdowns etc. Future research might examine the problem considering 

uncertainty in order to find a robust optimisation model. 

The literature review includes different benchmarks that cannot be used to compare 

the researchers’ work and most of them are not always available. It is crucial to 

generate a generic benchmark that accepts and meets all of the required criteria so 

then future researchers can use it to compare their work and obtain common 

findings to solve the BACAP.  To cope with the benchmark redundancy, the target 
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of future work in this direction can create a website that includes the current 

literature benchmarks and develops a benchmark generator for container terminal 

operation problems. The following is our approach regarding the website content 

and facilities which may help future researchers to test and evaluate their work and 

compare them to other researchers’ models: 

- Collect the current literature benchmarks and upload them to the website 

with a full description from the authors related to the following: 

o The problem to solve. 

o Number of instances. 

o Input data. 

o Output data. 

o Problem assumptions. 

o Other useful information/descriptions. 

These benchmarks will be collected by communicating directly with the 

authors to retrieve their data or creating an account for them on the website, 

so then the authors will find it more flexible when it comes to adding, editing 

or deleting their information. 

7.3.3 Single/Multi-port Dataset Generator 

The aim of future work in this direction is to develop a generic benchmark generator 

accessible to future researchers. This generator can be used to create different 

benchmarks for different types of seaside problems. The generator might be flexible 

enough to suit the researcher’s need, taking into consideration the problem 

constraints, quay layout and if the problem is in a single or multiple ports setting. 

The following is our approach regarding this direction: 

- Define the standard ranges for each data-set of the benchmark that is close 

to real terminal data. 

- Define a benchmark that covers different types of classified operational 

problems (BAP, QCAP, QCSP) and the integrated ones. 

- Develop a flexible benchmark generator that helps the user to generate a 

benchmark with various options to cover his assumptions and then to 
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provide an ID for the generated benchmark. This benchmark will be 

available on the website for any further researchers to use it. 

- The researchers can create an account on the website to upload their updated 

experimental results concerning a specific benchmark and to provide the 

method that they used to solve the problem. 

- Obtain real data from specific ports and upload it to the website. Moreover, 

to generate different benchmarks related to the ports in different scenarios. 

  



 

163 

References 
A Java-based Evolutionary Computation Research System. (n.d.). ECJ. Retrieved January 1, 2014, 

from http://cs.gmu.edu/~eclab/projects/ecj/ 

Abbas, A., Al-Bazi, A., & Palade, V. (2018). A Constrained Fuzzy Knowledge-Based System for 

the Management of Container Yard Operations. International Journal of Fuzzy Systems, 20(4), 

1205–1223. http://doi.org/10.1007/s40815-018-0448-9 

Agra, A., & Oliveira, M. (2018). MIP approaches for the integrated berth allocation and quay crane 

assignment and scheduling problem. European Journal of Operational Research, 264(1), 

138–148. http://doi.org/10.1016/j.ejor.2017.05.040 

Ali, I., Abouelseoud, Y., & Elwany, M. H. (2011). Container terminal berth allocation and quay 

crane assignment using IP and simulated annealing. 41st International Conference on 

Computers & Industrial Engineering, 31–37. 

Alsoufi, G., Yang, X., & Salhi, A. (2015). A combined Mixed Integer Programming model of 

seaside operations arising in container ports, (May), 1–16. 

Ambrosino, D., Caballini, C., & Siri, S. (2013). A mathematical model to evaluate different train 

loading and stacking policies in a container terminal. Maritime Economics & Logistics, 15(3), 

292–308. http://doi.org/10.1057/mel.2013.7 

Ambrosino, D., Sciomachen, A., & Tanfani, E. (2004). Stowing a containership: the master bay plan 

problem. Transportation Research Part A: Policy and Practice, 38(2), 81–99. 

http://doi.org/10.1016/j.tra.2003.09.002 

Ambrosino, D., Sciomachen, A., & Tanfani, E. (2006). A decomposition heuristics for the container 

ship stowage problem. Journal of Heuristics, 12(3), 211–233. http://doi.org/10.1007/s10732-

006-5905-1 

Angeloudis, P., & Bell, M. G. H. (2011). A review of container terminal simulation models. 

Maritime Policy & Management, 38(5), 523–540. 

http://doi.org/10.1080/03088839.2011.597448 

Aras, N., Türkoğulları, Y., Taşkın, Z. C., & Altınel, K. (2014). Simultaneous Optimization of Berth 

Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container 

Terminals. In Research Proceedings 2012 (pp. 101–107). Cham: Springer International 

Publishing. http://doi.org/10.1007/978-3-319-00795-3_15 

Basri, A. H., & Zainuddin, Z. M. (2014). Development of integrated model for continuous berth 

allocation problem and quay crane scheduling with non crossing constraint. In AIP Conference 

Proceedings (Vol. 1613, pp. 113–121). http://doi.org/10.1063/1.4894337 

Bierwirth, C., & Meisel, F. (2010). A survey of berth allocation and quay crane scheduling problems 

in container terminals. European Journal of Operational Research, 202(3), 615–627. 

http://doi.org/10.1016/j.ejor.2009.05.031 

Bierwirth, C., & Meisel, F. (2015). A follow-up survey of berth allocation and quay crane scheduling 

problems in container terminals. European Journal of Operational Research, 244(3), 675–

689. http://doi.org/10.1016/j.ejor.2014.12.030 

Bish, E. K., Chen, F. Y., Leong, Y. T., Nelson, B. L., Ng, J. W. C., & Simchi-Levi, D. (2005). 

Dispatching vehicles in a mega container terminal. OR Spectrum, 27(4), 491–506. 

http://doi.org/10.1007/s00291-004-0194-2 

Blazewicz, J., Cheng, T. C. E., Machowiak, M., & Oguz, C. (2011). Berth and quay crane allocation: 

a moldable task scheduling model. Journal of the Operational Research Society, 62(7), 1189–

1197. http://doi.org/10.1057/jors.2010.54 

Bockstael-Blok, W., Mayer, I., & Valentin, E. (2003). Supporting the design of an inland container 

terminal through visualization, simulation and gaming. Proceedings of the 36th Annual 



References 

 

 164 

Hawaii International Conference on System Sciences, HICSS 2003. 

http://doi.org/10.1109/HICSS.2003.1173652 

Bose, J., Reiners, T., Steenken, D., & Voss, S. (2000). Vehicle dispatching at seaport container 

terminals using evolutionary algorithms. Proceedings of the 33rd Annual Hawaii 

International Conference on System Sciences, 00(c), 1–10. 

http://doi.org/10.1109/HICSS.2000.926669 

Böse, J. W. (2011). Simulation of Container Ship Arrivals and Quay Occupation. In Operations 

Research/ Computer Science Interfaces Series (Vol. 49). http://doi.org/10.1007/978-1-4419-

8408-1 

Bruggeling, M., Verbraeck, A., & Honig, H. J. (2011). Decision Support for Container Terminal 

Berth Planning: Integration and Visualization of Terminal Information. Proceedings van de 

Vervoerslogistieke Werkdagen 2011 (VLW2011). 

Carlo, H. J., Vis, I. F. A., & Roodbergen, K. J. (2014a). Storage yard operations in container 

terminals: Literature overview, trends, and research directions. European Journal of 

Operational Research, 235(2), 412–430. http://doi.org/10.1016/j.ejor.2013.10.054 

Carlo, H. J., Vis, I. F. A., & Roodbergen, K. J. (2014b). Transport operations in container terminals: 

Literature overview, trends, research directions and classification scheme. European Journal 

of Operational Research, 236(1), 1–13. http://doi.org/10.1016/j.ejor.2013.11.023 

Carlo, H. J., Vis, I. F. A., & Roodbergen, K. J. (2015). Seaside operations in container terminals: 

literature overview, trends, and research directions. Flexible Services and Manufacturing 

Journal, 27(2–3), 224–262. http://doi.org/10.1007/s10696-013-9178-3 

Cartenì, A., & Luca, S. De. (2012). Tactical and strategic planning for a container terminal: 

Modelling issues within a discrete event simulation approach. Simulation Modelling Practice 

and Theory, 21(1), 123–145. http://doi.org/10.1016/j.simpat.2011.10.005 

Cavalcante, E., Oppen, J., Samer, P., & Urrutia, S. (2016a). Combinatorial Relaxation Bounds and 

Preprocessing for Berth Allocation Problems. Electronic Notes in Discrete Mathematics, 55, 

85–88. http://doi.org/10.1016/j.endm.2016.10.022 

Cavalcante, E., Oppen, J., Samer, P., & Urrutia, S. (2016b). The matching relaxation for a class of 

generalized set partitioning problems. ArXiv Preprint ArXiv:1606.09279, (227084), 1–14. 

Chang, D., He, J., & Zhang, H. (2010). A rule-based joint berth allocation and quay crane 

assignment. In 2010 2nd International Conference on Industrial and Information Systems, IIS 

2010 (Vol. 1, pp. 464–467). http://doi.org/10.1109/INDUSIS.2010.5565809 

Chang, D., Jiang, Z., Yan, W., & He, J. (2010). Integrating berth allocation and quay crane 

assignments. Transportation Research Part E: Logistics and Transportation Review, 46(6), 

975–990. http://doi.org/10.1016/j.tre.2010.05.008 

Changchun, L., Canrong, Z., & Li, Z. (2016). Behavior perception-based disruption models for berth 

allocation and quay crane assignment problems. Computers & Industrial Engineering. 

http://doi.org/10.1016/j.cie.2016.04.008 

Chen, G., Govindan, K., & Yang, Z. (2013). Managing truck arrivals with time windows to alleviate 

gate congestion at container terminals. International Journal of Production Economics, 

141(1), 179–188. http://doi.org/10.1016/j.ijpe.2012.03.033 

Chen, J. H., Lee, D. H., & Cao, J. X. (2012). A combinatorial benders’ cuts algorithm for the 

quayside operation problem at container terminals. Transportation Research Part E: Logistics 

and Transportation Review, 48(1), 266–275. http://doi.org/10.1016/j.tre.2011.06.004 

Chen, X., & Yang, Z. (2012). An algorithm for continuous berth allocation with quay crane dynamic 

allocation. In Proceedings - 2012 5th International Conference on Intelligent Computation 

Technology and Automation, ICICTA 2012 (pp. 541–544). 

http://doi.org/10.1109/ICICTA.2012.142 

Cheong, C. Y., Habibullah, M. S., Goh, R. S. M., & Fu, X. (2010). Multi-objective optimization of 

large scale berth allocation and quay crane assignment problems. Conference Proceedings - 



References 

 

 165 

IEEE International Conference on Systems, Man and Cybernetics, 669–676. 

http://doi.org/10.1109/ICSMC.2010.5641824 

Cheong, C. Y., Tan, K. C., Liu, D. K., & Lin, C. J. (2010). Multi-objective and prioritized berth 

allocation in container ports. Annals of Operations Research, 180(1), 63–103. 

http://doi.org/10.1007/s10479-008-0493-0 

Cheung, R. K., Li, C.-L., & Lin, W. (2002). Interblock Crane Deployment in Container Terminals. 

Transportation Science, 36(1), 79–93. http://doi.org/10.1287/trsc.36.1.79.568 

Cordeau, J.-F., Gaudioso, M., Laporte, G., & Moccia, L. (2007). The service allocation problem at 

the Gioia Tauro Maritime Terminal. European Journal of Operational Research, 176(2), 

1167–1184. http://doi.org/10.1016/j.ejor.2005.09.004 

Cordeau, J.-F., Laporte, G., Legato, P., & Moccia, L. (2005). Models and Tabu Search Heuristics 

for the Berth-Allocation Problem. Transportation Science, 39(4), 526–538. 

http://doi.org/10.1287/trsc.1050.0120 

Correcher, J. F., & Alvarez-Valdes, R. (2017). A biased random-Key genetic algorithm for the time-

invariant berth allocation and quay crane assignment problem. Expert Systems with 

Applications, 89, 112–128. http://doi.org/10.1016/j.eswa.2017.07.028 

Dadashi, A., Dulebenets, M. A., Golias, M., & Sheikholeslami, A. (2017). A novel continuous berth 

scheduling model at multiple marine container terminals with tidal considerations. Maritime 

Business Review, 2(2), 142–157. http://doi.org/10.1108/MABR-02-2017-0010 

De Castillo, B., & Daganzo, C. F. (1993). Handling strategies for import containers at marine 

terminals. Transportation Research Part B: Methodological, 27(2), 151–166. 

http://doi.org/10.1016/0191-2615(93)90005-U 

De León, A. D., Lalla-Ruiz, E., Melián-Batista, B., & Marcos Moreno-Vega, J. (2017). A Machine 

Learning-based system for berth scheduling at bulk terminals. Expert Systems with 

Applications, 87, 170–182. http://doi.org/10.1016/j.eswa.2017.06.010 

Diabat, A., & Theodorou, E. (2014). An Integrated Quay Crane Assignment and Scheduling 

Problem. Computers and Industrial Engineering, 73(December 2013), 115–123. 

http://doi.org/10.1016/j.cie.2013.12.012 

Dong, P., Hu, Z. H., & Tao, S. (2013). Berth and crane allocation problem based on cost analysis of 

quay cranes for container terminal. Dalian Haishi Daxue Xuebao/Journal of Dalian Maritime 

University, 39(2), 60–64. 

Du, Y., Xu, Y., & Chen, Q. (2010). A feedback procedure for robust berth allocation with stochastic 

vessel delays. In Proceedings of the World Congress on Intelligent Control and Automation 

(WCICA) (pp. 2210–2215). http://doi.org/10.1109/WCICA.2010.5554316 

El-boghdadly, T., Bader-El-Den, M., & Jones, D. (2016a). A Genetic Programming Algorithm for 

the Berth and Quay Crane Allocation Problem. In 2016 5th International Conference on 

Advanced Logistics and Transport (ICALT). IEEE. 

El-boghdadly, T., Bader-El-Den, M., & Jones, D. (2016b). Evolving local search heuristics for the 

integrated berth allocation and quay crane assignment problem. In 2016 IEEE Congress on 

Evolutionary Computation (CEC) (pp. 2880–2887). IEEE. 

http://doi.org/10.1109/CEC.2016.7744153 

Elwany, M. H., Ali, I., & Abouelseoud, Y. (2013). A heuristics-based solution to the continuous 

berth allocation and crane assignment problem. Alexandria Engineering Journal, 52(4), 671–

677. http://doi.org/10.1016/j.aej.2013.09.001 

Emde, S., Boysen, N., & Briskorn, D. (2014). The berth allocation problem with mobile quay walls: 

Problem definition, solution procedures, and extensions. Journal of Scheduling, 17(3), 289–

303. http://doi.org/10.1007/s10951-013-0358-5 

European Commission. (2013). Europe’s Seaports 2030: Challenges Ahead. European Commission 

- MEMO/13/448 23/05/2013. 



References 

 

 166 

Expósito-Izquierdo, C., Lalla-Ruiz, E., de Armas, J., Melián-Batista, B., & Moreno-Vega, J. M. 

(2017). Maritime Container Terminal Problems. In Handbook of Heuristics (pp. 1–27). Cham: 

Springer International Publishing. http://doi.org/10.1007/978-3-319-07153-4_57-1 

Expósito-Izquierdo, C., Melián-Batista, B., & Moreno-Vega, M. (2012). Pre-Marshalling Problem: 

Heuristic solution method and instances generator. Expert Systems with Applications, 39(9), 

8337–8349. http://doi.org/10.1016/j.eswa.2012.01.187 

Festa, P. (2014). A brief introduction to exact, approximation, and heuristic algorithms for solving 

hard combinatorial optimization problems. In 2014 16th International Conference on 

Transparent Optical Networks (ICTON) (pp. 1–20). IEEE. 

http://doi.org/10.1109/ICTON.2014.6876285 

Fonseca, J. (2016). APM Terminals Broaden Portfolio, Business Model. Retrieved June 8, 2018, 

from https://www.marinelink.com/news/terminals-portfolio404998 

Frojan, P., Correcher, J. F., Alvarez-Valdes, R., Koulouris, G., & Tamarit, J. M. (2015). The 

continuous Berth Allocation Problem in a container terminal with multiple quays. Expert 

Systems with Applications, 42(21), 7356–7366. http://doi.org/10.1016/j.eswa.2015.05.018 

Ganji, S. R. S., Babazadeh,  a., & Arabshahi, N. (2010). Analysis of the continuous berth allocation 

problem in container ports using a genetic algorithm. Journal of Marine Science and 

Technology, 15(4), 408–416. http://doi.org/10.1007/s00773-010-0095-9 

Gao, Z. J., Cao, J. X., & Zhao, Q. Y. (2014). Optimization Research of Berth Allocation and Quay 

Crane Assignment at Container Terminal Based on the Genetic Algorithm. Applied Mechanics 

and Materials, 505–506, 931–934. http://doi.org/10.4028/www.scientific.net/AMM.505-

506.931 

Giallombardo, G. (2008). The Tactical Berth Allocation Problem With Quay Crane Assignment and 

Transshipment - Related Quadratic Yard. Aet. 

Giallombardo, G., Moccia, L., Salani, M., & Vacca, I. (2010). Modeling and solving the Tactical 

Berth Allocation Problem. Transportation Research Part B: Methodological, 44(2), 232–245. 

http://doi.org/10.1016/j.trb.2009.07.003 

Golias, M., Boile, M., & Theofanis, S. (2006). The berth allocation problem: a formulation reflecting 

time window service deadlines. In Proceedings of the 48th Transportation Research. 

Golias, M., Boile, M., & Theofanis, S. (2009). Berth scheduling by customer service differentiation: 

A multi-objective approach. Transportation Research Part E: Logistics and Transportation 

Review, 45(6), 878–892. http://doi.org/10.1016/j.tre.2009.05.006 

Golias, M., Boile, M., & Theofanis, S. (2010). A lamda-optimal based heuristic for the berth 

scheduling problem. Transportation Research Part C: Emerging Technologies, 18(5), 794–

806. http://doi.org/10.1016/j.trc.2009.07.001 

Golias, M., Portal, I., Konur, D., Kaisar, E., & Kolomvos, G. (2014). Robust berth scheduling at 

marine container terminals via hierarchical optimization. Computers and Operations 

Research, 41(2014), 412–422. http://doi.org/10.1016/j.cor.2013.07.018 

Guan, Y., & Cheung, R. K. (2004). The berth allocation problem: models and solution methods. OR 

Spectrum, 26(1), 75–92. http://doi.org/10.1007/s00291-003-0140-8 

Guan, Y., Xiao, W. Q., Cheung, R. K., & Li, C. L. (2002). A multiprocessor task scheduling model 

for berth allocation: Heuristic and worst-case analysis. Operations Research Letters, 30, 343–

350. http://doi.org/10.1016/S0167-6377(02)00147-5 

Guldogan, E. U., Bulut, O., & Tasgetiren, M. F. (2011). A dynamic berth allocation problem with 

priority considerations under stochastic nature. Lecture Notes in Computer Science (Including 

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6839 

LNAI, 74–82. http://doi.org/10.1007/978-3-642-25944-9_10 

Han, X. Le, Lu, Z. Q., & Xi, L. F. (2010). A proactive approach for simultaneous berth and quay 

crane scheduling problem with stochastic arrival and handling time. European Journal of 

Operational Research, 207(3), 1327–1340. http://doi.org/10.1016/j.ejor.2010.07.018 



References 

 

 167 

He, J. (2016). Berth allocation and quay crane assignment in a container terminal for the trade-off 

between time-saving and energy-saving. Advanced Engineering Informatics, 30(3), 390–405. 

http://doi.org/10.1016/j.aei.2016.04.006 

He, J., Huang, Y., Chang, D., & Zhang, W. (2013). A Knowledge-based System for Berth Allocation 

in a Container Terminal. Indonesian Journal of Electrical Engineering and Computer Science, 

11(5), 2291–2300. 

He, J., Mi, W., Chang, D., & Yan, W. (2009). An investigation into berth allocation and quay crane 

assignment based on hybrid parallel genetic algorithm. 2009 International Conference on 

Artificial Intelligence and Computational Intelligence, AICI 2009, 2, 48–53. 

http://doi.org/10.1109/AICI.2009.41 

Hendriks, M., Laumanns, M., Lefeber, E., & Udding, J. T. (2010). Robust cyclic berth planning of 

container vessels. OR Spectrum, 32(3), 501–517. http://doi.org/10.1007/s00291-010-0198-z 

Hendriks, M. P. M., Armbruster, D., Laumanns, M., Lefeber, E., & Udding, J. T. (2012). Strategic 

allocation of cyclically calling vessels for multi-terminal container operators. Flexible 

Services and Manufacturing Journal, 24(3), 248–273. http://doi.org/10.1007/s10696-011-

9120-5 

Hendriks, M. P. M., Lefeber, E., & Udding, J. T. (2013). Simultaneous berth allocation and yard 

planning at tactical level. OR Spectrum, 35(2), 441–456. http://doi.org/10.1007/s00291-012-

0305-4 

Henesey, L. E. (2006). Multi-Agent Systems for Container Terminal Management. Blekinge Institute 

of Technology. 

Hsu, H.-P. (2015). A HPSO for solving dynamic and discrete berth allocation problem and dynamic 

quay crane assignment problem simultaneously. Swarm and Evolutionary Computation, 1–

13. http://doi.org/10.1016/j.swevo.2015.11.002 

Hsu, H.-P., Wang, C.-N., Chou, C.-C., Lee, Y., & Wen, Y.-F. (2017). Modeling and Solving the 

Three Seaside Operational Problems Using an Object-Oriented and Timed 

Predicate/Transition Net. Applied Sciences, 7(3), 218. http://doi.org/10.3390/app7030218 

Hu, Q.-M., Hu, Z.-H., & Du, Y. (2014). Berth and quay-crane allocation problem considering fuel 

consumption and emissions from vessels. Computers & Industrial Engineering, 70(2014), 1–

10. http://doi.org/10.1016/j.cie.2014.01.003 

Hu, Z. (2015). Heuristics for solving continuous berth allocation problem considering periodic 

balancing utilization of cranes. Computers & Industrial Engineering, 85, 216–226. 

http://doi.org/10.1016/j.cie.2015.03.017 

Hu, Z. a. (2010). A quay crane assignment approach for berth allocation problem in container 

terminal. 3rd International Symposium on Intelligent Information Technology and Security 

Informatics, IITSI 2010, 17–21. http://doi.org/10.1109/IITSI.2010.97 

Hu, Z. H., Han, X. L., & Ding, Y. Z. (2009). Optimizing continuous berth allocation by immune 

algorithm. In Proceedings - 2009 IEEE International Conference on Intelligent Computing 

and Intelligent Systems, ICIS 2009 (Vol. 3, pp. 631–635). 

http://doi.org/10.1109/ICICISYS.2009.5358083 

Huang, K., Suprayogi, & Ariantini. (2016). A continuous berth template design model with multiple 

wharfs. Maritime Policy and Management, 43(6), 763–775. 

http://doi.org/10.1080/03088839.2016.1169449 

Hwan Kim, K., & Bae Kim, H. (1999). Segregating space allocation models for container inventories 

in port container terminals. International Journal of Production Economics, 59(1), 415–423. 

http://doi.org/10.1016/S0925-5273(98)00028-0 

IBM ILOG. (2014). CPLEX User’s Manual, Version 12 Release 6. International Business Machines 

Corporation. 

Imai, A., Chen, H. C., Nishimura, E., & Papadimitriou, S. (2008). The simultaneous berth and quay 

crane allocation problem. Transportation Research Part E: Logistics and Transportation 



References 

 

 168 

Review, 44(5), 900–920. http://doi.org/10.1016/j.tre.2007.03.003 

Imai, A., Nagaiwa, K., & Tat, C. W. (1997). Efficient planning of berth allocation for container 

terminals in Asia. Journal of Advanced Transportation, 31(1), 75–94. 

http://doi.org/10.1002/atr.5670310107 

Imai, A., Nishimura, E., & Papadimitriou, S. (2001). The dynamic berth allocation problem for a 

container port. Transportation Research Part B: Methodological, 35(4), 401–417. 

http://doi.org/10.1016/S0191-2615(99)00057-0 

Imai, A., Nishimura, E., & Papadimitriou, S. (2003). Berth allocation with service priority. 

Transportation Research Part B: Methodological, 37(5), 437–457. 

http://doi.org/10.1016/S0191-2615(02)00023-1 

Imai, A., Nishimura, E., & Papadimitriou, S. (2008). Berthing ships at a multi-user container 

terminal with a limited quay capacity. Transportation Research Part E: Logistics and 

Transportation Review, 44(1), 136–151. http://doi.org/10.1016/j.tre.2006.05.002 

Imai, A., Nishimura, E., & Papadimitriou, S. (2013). Marine container terminal configurations for 

efficient handling of mega-containerships. Transportation Research Part E: Logistics and 

Transportation Review, 49(1), 141–158. http://doi.org/10.1016/j.tre.2012.07.006 

Imai, A., Sasaki, K., Nishimura, E., & Papadimitriou, S. (2006). Multi-objective simultaneous 

stowage and load planning for a container ship with container rehandle in yard stacks. 

European Journal of Operational Research, 171(2), 373–389. 

http://doi.org/10.1016/j.ejor.2004.07.066 

Imai, A., Sun, X., Nishimura, E., & Papadimitriou, S. (2005). Berth allocation in a container port: 

Using a continuous location space approach. Transportation Research Part B: 

Methodological, 39(3), 199–221. http://doi.org/10.1016/j.trb.2004.04.004 

Imai, A., Yamakawa, Y., & Huang, K. (2014). The strategic berth template problem. Transportation 

Research Part E: Logistics and Transportation Review, 72, 77–100. 

http://doi.org/10.1016/j.tre.2014.09.013 

Iris, C., & Lam, J. S. L. (2017). Models for continuous berth allocation and quay crane assignment: 

Computational comparison. In 2017 IEEE International Conference on Industrial 

Engineering and Engineering Management (IEEM) (pp. 374–378). IEEE. 

http://doi.org/10.1109/IEEM.2017.8289915 

Iris, C., Larsen, A., Røpke, S., & Pacino, D. (2016). Exact and Heuristic Methods for Integrated 

Container Terminal Problems. DTU Management Engineering. 

Iris, C., & Pacino, D. (2015). A Survey on the Ship Loading Problem. In Lecture Notes in Computer 

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics) (Vol. 9335, pp. 238–251). http://doi.org/10.1007/978-3-319-24264-4_17 

Iris, Ç., Pacino, D., & Ropke, S. (2017). Improved formulations and an Adaptive Large 

Neighborhood Search heuristic for the integrated berth allocation and quay crane assignment 

problem. Transportation Research Part E: Logistics and Transportation Review, 105, 123–

147. http://doi.org/10.1016/j.tre.2017.06.013 

Ji, M., Zhu, H., Wang, Q., Zhao, R., & Yang, Y. (2015). Integrated strategy for berth allocation and 

crane assignment on a continuous berth using Monte Carlo simulation. Simulation, 91(1), 26–

42. http://doi.org/10.1177/0037549714558128 

Jin, J. G., Lee, D.-H., & Hu, H. (2015). Tactical berth and yard template design at container 

transshipment terminals: A column generation based approach. Transportation Research Part 

E: Logistics and Transportation Review, 73, 168–184. 

http://doi.org/10.1016/j.tre.2014.11.009 

Kalmar global. (2018). Kalmar Equipment. Retrieved June 8, 2018, from 

https://www.kalmarglobal.com/ 

Karam, A., & Eltawil, A. B. (2015). A new method for allocating berths, quay cranes and internal 

trucks in container terminals. 2015 International Conference on Logistics, Informatics and 



References 

 

 169 

Service Science, LISS 2015, 31–36. http://doi.org/10.1109/LISS.2015.7369644 

Karam, A., ElTawil, A. B., & Harraz, N. A. (2014). An improved solution for integrated berth 

allocation and quay crane assignment problem in container terminals. CIE44 & IMSS’14 

Proceedings, 14-16 October 2014, Istanbul / Turkey, (1), 2057–2070. 

http://doi.org/10.13140/RG.2.1.5041.6164 

Kim, K. H., Kang, J. S., & Ryu, K. R. (2004). A beam search algorithm for the load sequencing of 

outbound containers in port container terminals. OR Spectrum, 26(1), 93–116. 

http://doi.org/10.1007/s00291-003-0148-0 

Kim, K. H., & Kim, K. Y. (1999a). An Optimal Routing Algorithm for a Transfer Crane in Port 

Container Terminals. Transportation Science, 33(1), 17–33. 

http://doi.org/10.1287/trsc.33.1.17 

Kim, K. H., & Kim, K. Y. (1999b). Routing straddle carriers for the loading operation of containers 

using a beam search algorithm. Computers and Industrial Engineering, 36(1), 109–136. 

http://doi.org/10.1007/s00291-004-0194-2 

Kim, K. H., & Moon, K. C. (2003). Berth scheduling by simulated annealing. Transportation 

Research Part B: Methodological, 37(6), 541–560. http://doi.org/10.1016/S0191-

2615(02)00027-9 

Kim, K. H., & Park, Y. M. (2004). A crane scheduling method for port container terminals. 

European Journal of Operational Research, 156(3), 752–768. http://doi.org/10.1016/S0377-

2217(03)00133-4 

Kim, K. H., Park, Y. M., & Ryu, K.-R. (2000). Deriving decision rules to locate export containers 

in container yards. European Journal of Operational Research, 124(1), 89–101. 

http://doi.org/10.1016/S0377-2217(99)00116-2 

Kordić, S., Davidović, T., Kovač, N., & Dragović, B. (2016). Combinatorial approach to exactly 

solving discrete and hybrid berth allocation problem. Applied Mathematical Modelling, 0, 1–

22. http://doi.org/10.1016/j.apm.2016.05.004 

Koza, J. R. (1992). Genetic programming : on the programming of computers by means of natural 

selection. Massachusetts Institute of Technology. Cambridge, Mass. ; London: MIT Press. 

Koza, J. R. (1994). Genetic programming as a means for programming computers by natural 

selection. Statistics and Computing, 4(2), 87–112. http://doi.org/10.1007/BF00175355 

Krimi, I., Benmansour, R., el Cadi, A. A., Duvivier, D., Elhachemi, N., Deshayes, L., & Ouarrasse, 

A. A. (2018). The integrated multi-quay Berth Allocation and Crane Assignment Problem: 

Formulation and case study. In 2018 7th International Conference on Industrial Technology 

and Management (ICITM) (pp. 157–161). IEEE. http://doi.org/10.1109/ICITM.2018.8333938 

Lalla-Ruiz, E., González-Velarde, J. L., Melián-Batista, B., & Moreno-Vega, J. M. (2014). Biased 

random key genetic algorithm for the Tactical Berth Allocation Problem. Applied Soft 

Computing, 22, 60–76. http://doi.org/10.1016/j.asoc.2014.04.035 

Lalla-Ruiz, E., Melián-Batista, B., & Marcos Moreno-Vega, J. (2012). Artificial intelligence hybrid 

heuristic based on tabu search for the dynamic berth allocation problem. Engineering 

Applications of Artificial Intelligence, 25(6), 1132–1141. 

http://doi.org/10.1016/j.engappai.2012.06.001 

Langdon, W. B., Poli, R., McPhee, N. F., & Koza, J. R. (2008). Genetic programming: An 

introduction and tutorial, with a survey of techniques and applications. Studies in 

Computational Intelligence, 115, 927–1028. http://doi.org/10.1007/978-3-540-78293-3_22 

Le, M., Wu, C., & Zhang, H. (2012). An integrated optimization method to solve the Berth-QC 

Allocation Problem. In Proceedings - International Conference on Natural Computation (pp. 

753–757). http://doi.org/10.1109/ICNC.2012.6234544 

Lee, D. H., Chen, J. H., & Cao, J. X. (2010). The continuous Berth Allocation Problem: A Greedy 

Randomized Adaptive Search Solution. Transportation Research Part E: Logistics and 

Transportation Review, 46(6), 1017–1029. http://doi.org/10.1016/j.tre.2010.01.009 



References 

 

 170 

Lee, D. H., & Jin, J. G. (2013). Feeder vessel management at container transshipment terminals. 

Transportation Research Part E: Logistics and Transportation Review, 49(1), 201–216. 

http://doi.org/10.1016/j.tre.2012.08.006 

Lee, D. H., Jin, J. G., & Chen, J. H. (2012). Terminal and yard allocation problem for a container 

transshipment hub with multiple terminals. Transportation Research Part E: Logistics and 

Transportation Review, 48(2), 516–528. http://doi.org/10.1016/j.tre.2011.09.004 

Lee, D. H., Wang, H. Q., & Miao, L. (2008). Quay crane scheduling with non-interference 

constraints in port container terminals. Transportation Research Part E: Logistics and 

Transportation Review, 44(1), 124–135. http://doi.org/10.1016/j.tre.2006.08.001 

Lee, L. H., Chew, E. P., Tan, K. C., & Han, Y. (2006). An optimization model for storage yard 

management in transshipment hubs. OR Spectrum, 28(4), 539–561. 

http://doi.org/10.1007/s00291-006-0045-4 

Lee, Y., & Chen, C. Y. (2009). An optimization heuristic for the berth scheduling problem. 

European Journal of Operational Research, 196(2), 500–508. 

http://doi.org/10.1016/j.ejor.2008.03.021 

Lee, Y., & Hsu, N.-Y. (2007). An optimization model for the container pre-marshalling problem. 

Computers & Operations Research, 34(11), 3295–3313. 

http://doi.org/10.1016/j.cor.2005.12.006 

Legato, P., Gullì, D., & Trunfio, R. (2008). The quay crane deployment problem at a maritime 

container terminal. In Proceedings 22nd European Conference on Modelling and Simulation 

©ECMS Loucas (pp. 53–63). 

Legato, P., & Mazza, R. M. (2001). Berth planning and resources optimisation at a container 

terminal via discrete event simulation. European Journal of Operational Research, 133(3), 

537–547. http://doi.org/10.1016/S0377-2217(00)00200-9 

Li, F., Sheu, J.-B., & Gao, Z.-Y. (2015). Solving the Continuous Berth Allocation and Specific Quay 

Crane Assignment Problems with Quay Crane Coverage Range. Transportation Science, 

49(4), 968–989. http://doi.org/10.1287/trsc.2015.0619 

Li, M. Z., Jin, J. G., & Lu, C. X. (2015). Real-Time Disruption Recovery for Integrated Berth 

Allocation and Crane Assignment in Container Terminals. Transportation Research Record: 

Journal of the Transportation Research Board, 2479, 49–59. http://doi.org/10.3141/2479-07 

Li, W., Wu, Y., & Goh, M. (2015). Planning and Scheduling for Maritime Container Yards. 

Springer. Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-17025-

1 

Liang, C., Guo, J., & Yang, Y. (2011). Multi-objective hybrid genetic algorithm for quay crane 

dynamic assignment in berth allocation planning. Journal of Intelligent Manufacturing, 22(3), 

471–479. http://doi.org/10.1007/s10845-009-0304-8 

Liang, C., Huang, Y., & Yang, Y. (2009). A quay crane dynamic scheduling problem by hybrid 

evolutionary algorithm for berth allocation planning. Computers & Industrial Engineering, 

56(3), 1021–1028. http://doi.org/10.1016/j.cie.2008.09.024 

Liang, C., Hwang, H., & Gen, M. (2012). A berth allocation planning problem with direct 

transshipment consideration. Journal of Intelligent Manufacturing, 23(6), 2207–2214. 

http://doi.org/10.1007/s10845-011-0566-9 

Liang, C., Lin, N. A., & Jo, J. (2009). Multiobjective hybrid genetic algorithm for quay crane 

scheduling in berth allocation planning. International Journal of Manufacturing Technology 

and Management, 16(1/2), 127. http://doi.org/10.1504/IJMTM.2009.021506 

Liang, X., Li, W., Zhao, W., & Li, B. (2012). Multistage collaborative scheduling of berth and quay 

crane based on heuristic strategies and particle swarm optimization. In Proceedings of the 

2012 IEEE 16th International Conference on Computer Supported Cooperative Work in 

Design (CSCWD) (pp. 913–918). IEEE. http://doi.org/10.1109/CSCWD.2012.6221930 

Lim, A. (1998). The berth planning problem. Operations Research Letters, 22(April 1996), 105–



References 

 

 171 

110. http://doi.org/10.1016/S0167-6377(98)00010-8 

Lin, S.-W., & Ting, C.-J. (2014). Solving the dynamic berth allocation problem by simulated 

annealing. Engineering Optimization, 46(3), 308–327. 

http://doi.org/10.1080/0305215X.2013.768241 

Lin, S.-W., Ting, C.-J., & Wu, K.-C. (2017). Simulated annealing with different vessel assignment 

strategies for the continuous berth allocation problem. Flexible Services and Manufacturing 

Journal, 1–24. http://doi.org/10.1007/s10696-017-9298-2 

Liu, J., Wan, Y., & Wang, L. (2006). Quay crane scheduling at container terminals to minimize the 

maximum relative tardiness of vessel departures. Naval Research Logistics, 53(1), 60–74. 

http://doi.org/10.1002/nav.20108 

Liu, Y., Wang, J., & Shahbazzade, S. (2018). The improved AFSA algorithm for the berth allocation 

and quay crane assignment problem. Cluster Computing, 3456789. 

http://doi.org/10.1007/s10586-018-2216-x 

Lokuge, P., & Alahakoon, D. (2007). Improving the adaptability in automated vessel scheduling in 

container ports using intelligent software agents. European Journal of Operational Research, 

177(3), 1985–2015. http://doi.org/10.1016/j.ejor.2005.12.016 

Lu, Z., Han, X., & Xi, L. (2011). Simultaneous berth and quay crane allocation problem in container 

terminal. Advanced Science Letters, 4(6–7), 2113–2118. http://doi.org/10.1166/asl.2011.1533 

Ma, H., Chan, F. T., & Chung, S. (2014). A fast approach for the integrated berth allocation and 

quay crane assignment problem. Proceedings of the Institution of Mechanical Engineers, Part 

B: Journal of Engineering Manufacture. http://doi.org/10.1177/0954405414544555 

Ma, H. L., Chan, F. T. S., Chung, S. H., & Wong, C. S. (2011). Maximizing the reliability of terminal 

service by vessel scheduling and quay crane assignment. In 2011 IEEE International 

Conference on Quality and Reliability (pp. 85–89). IEEE. 

http://doi.org/10.1109/ICQR.2011.6031686 

Maarten Hendriks, Marco Laumanns, Erjen Lefeber, J. T. U. (2008). Robust periodic berth planning 

of container vessels. Proceedings of the 3rd German-Korean Workshop on Container 

Terminal Management : IT-Based Planning and Control of Seaport Container Terminals and 

Transportation Systems, 1–13. 

Meisel, F. (2009a). Maritime Container Transport (pp. 5–15). Heidelberg: Physica-Verlag HD. 

http://doi.org/10.1007/978-3-7908-2191-8_2 

Meisel, F. (2009b). Seaside Operations Planning in Container Terminals. Heidelberg: Physica-

Verlag HD. http://doi.org/10.1007/978-3-7908-2191-8 

Meisel, F. (2011). Scheduling seaside resources at container ports. Wiley Encyclopedia of 

Operations Research and Management Science. 

http://doi.org/10.1002/9780470400531.eorms0189 

Meisel, F., & Bierwirth, C. (2006). Integration of berth allocation and crane assignment to improve 

the resource utilization at a seaport container terminal. Operations Research Proceedings 

2005. 

Meisel, F., & Bierwirth, C. (2009). Heuristics for the integration of crane productivity in the berth 

allocation problem. Transportation Research Part E: Logistics and Transportation Review, 

45(1), 196–209. http://doi.org/10.1016/j.tre.2008.03.001 

Meisel, F., & Bierwirth, C. (2013). A Framework for Integrated Berth Allocation and Crane 

Operations Planning in Seaport Container Terminals. Transportation Science, 47(2), 131–147. 

http://doi.org/10.1287/trsc.1120.0419 

Melián-Batista, B., Expósito-Izquierdo, C., Lalla-Ruiz, E., Lamata, M. T., & Moreno-Vega, J. M. 

(2013). Fuzzy optimization models for seaside port logistics. IJCCI 2013 - Proceedings of the 

5th International Joint Conference on Computational Intelligence, 289–299. 

Moccia, L., & Astorino, A. (2007). The group allocation problem in a transshipment container 



References 

 

 172 

terminal. Proceedings of World Conference on Transport, 1–13. 

Monaco, M. F., & Sammarra, M. (2007). The Berth Allocation Problem: A Strong Formulation 

Solved by a Lagrangean Approach. Transportation Science, 41(2), 265–280. 

http://doi.org/10.1287/trsc.1060.0171 

Moon, K. (2000). A mathematical model and a heuristic algorithm for berth planning. Brain Korea 

21 Logistics Team. 

Moorthy, R., & Teo, C. P. (2007). Berth management in container terminal: The template design 

problem. Container Terminals and Cargo Systems: Design, Operations Management, and 

Logistics Control Issues, 28(4), 63–86. http://doi.org/10.1007/978-3-540-49550-5_4 

Murty, K. G., Liu, J., Wan, Y. W., & Linn, R. (2005). A decision support system for operations in a 

container terminal. Decision Support Systems, 39(3), 309–332. 

http://doi.org/10.1016/j.dss.2003.11.002 

Na, L., & Zhihong, J. (2009). Optimization of continuous berth and quay crane allocation problem 

in seaport container terminal. 2009 2nd International Conference on Intelligent Computing 

Technology and Automation, ICICTA 2009, 3, 229–233. 

http://doi.org/10.1109/ICICTA.2009.522 

Nguyen, S., Zhang, M., Johnston, M., & Chen Tan, K. (2013). Hybrid evolutionary computation 

methods for quay crane scheduling problems. Computers and Operations Research, 40(8), 

2083–2093. http://doi.org/10.1016/j.cor.2013.03.007 

Pan, J., & Xu, Y. (2015). Online Integrated Allocation of Berths and Quay Cranes in Container 

Terminals with 1-Lookahead. Computing and Combinatorics. 

Park, K. T., & Kim, K. H. (2002). Berth scheduling for container terminals by using a sub-gradient 

optimization technique. Journal of the Operational Research Society, 53(9), 1054–1062. 

http://doi.org/10.1057/palgrave.jors.2601412 

Park, Y.-M., & Kim, K. H. (2003). A scheduling method for Berth and Quay cranes. OR Spectrum, 

25(1), 1–23. http://doi.org/10.1007/s00291-002-0109-z 

Pinedo, M. L. (2012). Scheduling: Theory, Algorithms, and Systems. Springer (Vol. 4). 

http://doi.org/10.1007/s13398-014-0173-7.2 

Raa, B., Dullaert, W., & Schaeren, R. Van. (2011). An enriched model for the integrated berth 

allocation and quay crane assignment problem. Expert Systems with Applications, 38(11), 

14136–14147. http://doi.org/10.1016/j.eswa.2011.04.224 

Rashidi, H., & Tsang, E. P. K. (2013). Novel constraints satisfaction models for optimization 

problems in container terminals. Applied Mathematical Modelling, 37(6), 3601–3634. 

http://doi.org/10.1016/j.apm.2012.07.042 

Rodriguez-Molins, M., Barber, F., Sierra, M. R., Puente, J., & Salido, M. A. (2012). A Genetic 

Algorithm for Berth Allocation and Quay Crane Assignment. In Advances in Artificial 

Intelligence – IBERAMIA 2012 (pp. 601–610). Springer. http://doi.org/10.1007/978-3-642-

34654-5_61 

Rodriguez-Molins, M., Ingolotti, L., Barber, F., Salido, M. a., Sierra, M. R., & Puente, J. (2014). A 

genetic algorithm for robust berth allocation and quay crane assignment. Progress in Artificial 

Intelligence. http://doi.org/10.1007/s13748-014-0056-3 

Rodriguez-Molins, M., Salido, M. a., & Barber, F. (2014). A GRASP-based metaheuristic for the 

Berth Allocation Problem and the Quay Crane Assignment Problem by managing vessel cargo 

holds. Applied Intelligence, 40(2), 273–290. http://doi.org/10.1007/s10489-013-0462-4 

Rodriguez-Molins, M., Salido, M. A., & Barber, F. (2014). Robust scheduling for Berth Allocation 

and Quay Crane Assignment Problem. Mathematical Problems in Engineering, (2014). 

Ruiz, E., Batista, B., & Vega, J. (2013). Adaptive Variable Neighbourhood Search for Berth 

Planning in Maritime Container Terminals. In GREEN-COPLAS 2013: IJCAI 2013 Workshop 

on Constraint Reasoning, Planning and Scheduling Problems for a Sustainable Future. 



References 

 

 173 

Ruiz, E. L., Izquierdo, C. E., Batista, B. M., & Moreno-Vega, J. M. (2013). A Metaheuristic 

Approach for the Seaside Operations in Maritime Container Terminals. In Lecture Notes in 

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture 

Notes in Bioinformatics) (Vol. 7903 LNCS, pp. 28–35). http://doi.org/10.1007/978-3-642-

38682-4_4 

Rushton, A., Croucher, P., & Baker, P. (2010). The Handbook of Logistics and Distribution 

Management (4th Editio). Kogan Page. 

Saharidis, G. K. D., Golias, M., Boile, M., Theofanis, S., & Ierapetritou, M. G. (2010). The berth 

scheduling problem with customer differentiation: a new methodological approach based on 

hierarchical optimization. The International Journal of Advanced Manufacturing Technology, 

46(1–4), 377–393. http://doi.org/10.1007/s00170-009-2068-x 

Said, G. A. E.-N. a., & El-Horbaty, E.-S. M. (2015). An Optimization Methodology for Container 

Handling Using Genetic Algorithm. Procedia Computer Science, 65(Iccmit), 662–671. 

http://doi.org/10.1016/j.procs.2015.09.010 

Salhi, A., Alsoufi, G., & Yang, X. (2017). An evolutionary approach to a combined mixed integer 

programming model of seaside operations as arise in container ports. Annals of Operations 

Research. http://doi.org/10.1007/s10479-017-2539-7 

Salido, M. a., Rodriguez-Molins, M., & Barber, F. (2011). Integrated intelligent techniques for 

remarshaling and berthing in maritime terminals. Advanced Engineering Informatics, 25(3), 

435–451. http://doi.org/10.1016/j.aei.2010.10.001 

Salido, M. a., Rodriguez-Molins, M., & Barber, F. (2012). A decision support system for managing 

combinatorial problems in container terminals. Knowledge-Based Systems, 29(2012), 63–74. 

http://doi.org/10.1016/j.knosys.2011.06.021 

Saxon, S., & Stone, M. (2017). Container shipping : The next 50 years. McKinsey and Company. 

Sciomachen, A., & Tanfani, E. (2007). A 3D-BPP approach for optimising stowage plans and 

terminal productivity. European Journal of Operational Research, 183(3), 1433–1446. 

http://doi.org/10.1016/j.ejor.2005.11.067 

Shang, X. T., Cao, J. X., & Ren, J. (2016). A robust optimization approach to the integrated berth 

allocation and quay crane assignment problem. Transportation Research Part E: Logistics 

and Transportation Review, 94, 44–65. http://doi.org/10.1016/j.tre.2016.06.011 

Sheikholeslami, A., Ilati, G., & Hassannayebi, E. (2013). A Simulation Model for the Problem in 

Integrated Berth Allocation and Quay Crane Assignment. Journal of Basic and Applied 

Scientific Research, 3(2013), 343–354. 

Shen, S. Y., & Ko, F. S. (2013). A study of modeling the simultaneous berth and crane allocation 

problem. In Lecture Notes in Engineering and Computer Science (Vol. 2, pp. 1100–1105). 

Song, L., Cherrett, T., & Guan, W. (2012). Study on berth planning problem in a container seaport: 

Using an integrated programming approach. Computers and Industrial Engineering, 62(1), 

119–128. http://doi.org/10.1016/j.cie.2011.08.024 

Stahlbock, R., & Voß, S. (2008). Operations research at container terminals: A literature update. OR 

Spectrum, 30(1), 1–52. http://doi.org/10.1007/s00291-007-0100-9 

Tang, L., & Dai, L. (2008). Berth allocation with service priority for container terminal of hub port. 

In 2008 International Conference on Wireless Communications, Networking and Mobile 

Computing, WiCOM 2008. http://doi.org/10.1109/WiCom.2008.1988 

The Journal of Commerce. (2016). Top 50 Container Ports in 2016. Retrieved June 4, 2018, from 

https://www.joc.com/port-news/top-50-container-ports-2016-shanghai-tightens-grip-

crown_20170810.html 

Theodorou, E., & Diabat, A. (2015). A joint quay crane assignment and scheduling problem: 

formulation, solution algorithm and computational results. Optimization Letters, 9(4), 799–

817. http://doi.org/10.1007/s11590-014-0787-x 



References 

 

 174 

Theofanis, S., Boile, M., & Golias, M. (2009). Container Terminal Berth Planning. Transportation 

Research Record: Journal of the Transportation Research Board, 2100(1), 22–28. 

http://doi.org/10.3141/2100-03 

Ting, C., Lin, S., & Wu, K. (2013). The Continuous Berth Allocation Problem by Simulated 

Annealing. In APIEMS Conference. 

Türkoǧullari, Y. B., Taşkin, Z. C., Aras, N., & Altınel, İ. K. (2014). Optimal Berth Allocation, Time-

variant Quay Crane Assignment and Scheduling in Container Terminals. European Journal 

of Operational Research, 235(1), 88–101. http://doi.org/10.1016/j.ejor.2013.10.015 

Türkoğulları, Y. B., Taşkın, Z. C., Aras, N., & Altınel, İ. K. (2014). Optimal berth allocation and 

time-invariant quay crane assignment in container terminals. European Journal of 

Operational Research, 235(1), 88–101. http://doi.org/10.1016/j.ejor.2013.10.015 

Türkoğulları, Y. B., Taşkın, Z. C., Aras, N., & Altınel, İ. K. (2016). Optimal berth allocation, time-

variant quay crane assignment and scheduling with crane setups in container terminals. 

European Journal of Operational Research, 254(3), 985–1001. 

http://doi.org/10.1016/j.ejor.2016.04.022 

UNCTAD. (2013). Review of Maritime Transport 2013. United Nations. 

UNCTAD. (2016). Review of Maritime Transport 2016. United Nations. 

Ursavas, E. (2014). A decision support system for quayside operations in a container terminal. 

Decision Support Systems, 59(1), 312–324. http://doi.org/10.1016/j.dss.2014.01.003 

Ursavas, E. (2015). Priority control of berth allocation problem in container terminals. Annals of 

Operations Research. http://doi.org/10.1007/s10479-015-1912-7 

Ursavas, E., & Zhu, S. X. (2016). Optimal Policies for the Berth Allocation Problem under 

Stochastic Nature. European Journal of Operational Research. 

http://doi.org/10.1016/j.ejor.2016.04.029 

Vacca, I., Salani, M., & Bierlaire, M. (2010). The Tactical Berth Allocation Problem Integrated 

optimization in container terminals. Seminar Series, 1–26. 

Vacca, I., Salani, M., & Bierlaire, M. (2013). An Exact Algorithm for the Integrated Planning of 

Berth Allocation and Quay Crane Assignment. Transportation Science, 47(2), 148–161. 

http://doi.org/10.1287/trsc.1120.0428 

Vis, I. F. A. (2006a). A comparative analysis of storage and retrieval equipment at a container 

terminal. International Journal of Production Economics, 103(2), 680–693. 

http://doi.org/10.1016/j.ijpe.2006.01.002 

Vis, I. F. A. (2006b). Survey of research in the design and control of automated guided vehicle 

systems. European Journal of Operational Research, 170(3), 677–709. 

http://doi.org/10.1016/j.ejor.2004.09.020 

Vis, I. F. A. (2009). Decision problems at container terminals. Retrieved June 10, 2018, from 

http://www.irisvis.nl/container/ 

Vis, I. F. A., & de Koster, R. (2003). Transshipment of containers at a container terminal: An 

overview. European Journal of Operational Research, 147(1), 1–16. 

http://doi.org/10.1016/S0377-2217(02)00293-X 

Vis, I. F. A., de Koster, R. (M. . B. M., & Savelsbergh, M. W. P. (2005). Minimum Vehicle Fleet 

Size Under Time-Window Constraints at a Container Terminal. Transportation Science, 

39(2), 249–260. http://doi.org/10.1287/trsc.1030.0063 

Vis, I. F. A., de Koster, R., Roodbergen, K. J., & Peeters, L. W. P. (2001). Determination of the 

number of AGVs required at a semi-automated container terminal. Journal of the Operational 

Research Society, 52, 409–417. 

Vis, I. F. A., & Harika, I. (2004). Comparison of vehicle types at an automated container terminal. 

OR Spectrum, 26(1), 117–143. http://doi.org/10.1007/s00291-003-0146-2 



References 

 

 175 

Voß, S., Stahlbock, R., & Steenken, D. (2004). Container terminal operation and operations research 

- a classification and literature review. OR Spectrum, 26(1), 3–49. 

http://doi.org/10.1007/s00291-003-0157-z 

Wang, F., & Lim, A. (2007). A stochastic beam search for the berth allocation problem. Decision 

Support Systems, 42(4), 2186–2196. http://doi.org/10.1016/j.dss.2006.06.008 

Wang, K., Zhen, L., Wang, S., & Laporte, G. (2018). Column Generation for the Integrated Berth 

Allocation, Quay Crane Assignment, and Yard Assignment Problem. Transportation Science, 

(June), trsc.2018.0822. http://doi.org/10.1287/trsc.2018.0822 

Wiese, J., Kliewer, N., Suhl, L., & Str, W. (2009). A Survey of Container Terminal Characteristics 

and Equipment Types. Decision Support & Operations Research Lab. 

Worldshipping. (2014). CONTAINERS. Retrieved August 1, 2014, from 

http://www.worldshipping.org/about-the-industry/containers 

Wu, Y., Li, W., Petering, M. E. H., Goh, M., & Souza, R. de. (2015). Scheduling Multiple Yard 

Cranes with Crane Interference and Safety Distance Requirement. Transportation Science, 

49(4), 990–1005. http://doi.org/10.1287/trsc.2015.0641 

Xiao, L., & Hu, Z. H. (2014). Berth allocation problem with quay crane assignment for container 

terminals based on rolling-horizon strategy. Mathematical Problems in Engineering, 2014, 1–

11. http://doi.org/10.1155/2014/845752 

Xiaotao, J., Yuquan, D., & Qiushuang, C. (2011). A multi-objective genetic algorithm for berth 

allocation and quay crane assignment problem. In 2011 Chinese Control and Decision 

Conference (CCDC) (pp. 891–896). IEEE. http://doi.org/10.1109/CCDC.2011.5968309 

Xu, D., Li, C. L., & Leung, J. Y. T. (2012). Berth allocation with time-dependent physical limitations 

on vessels. European Journal of Operational Research, 216(1), 47–56. 

http://doi.org/10.1016/j.ejor.2011.07.012 

Xu, Y., Chen, Q., & Quan, X. (2012). Robust berth scheduling with uncertain vessel delay and 

handling time. Annals of Operations Research, 192(1), 123–140. 

http://doi.org/10.1007/s10479-010-0820-0 

Xu, Z., & Lee, C. (2018). New Lower Bound and Exact Method for the Continuous Berth Allocation 

Problem. Operations Research, (March), opre.2017.1687. 

http://doi.org/10.1287/opre.2017.1687 

Yang, C., Wang, S., & Zheng, J. (2013). The allocation of berth and quay crane by using a particle 

swarm optimization technique. In Lecture Notes in Electrical Engineering (Vol. 254 LNEE, 

pp. 779–787). http://doi.org/10.1007/978-3-642-38524-7_86 

Yang, C., Wang, X., & Li, Z. (2012). An optimization approach for coupling problem of berth 

allocation and quay crane assignment in container terminal. Computers and Industrial 

Engineering, 63(1), 243–253. http://doi.org/10.1016/j.cie.2012.03.004 

Yang, C. X., Wang, N., & Yang, H. L. (2011). Coupling optimization for berth allocation and quay 

crane assignment problem in container terminals. Jisuanji Jicheng Zhizao Xitong/Computer 

Integrated Manufacturing Systems, CIMS, 17, 2270–2277. 

Yang, J., Gao, H., Liu, W., & Liu, T. (2016). A NOVEL STRATEGY FOR BERTH AND QUAY 

CRANE ALLOCATION UNDER DISRUPTION IN CONTAINER TERMINAL. 

International Journal of Innovative Computing, 12(5), 1535–1551. 

Yuping, W., Yangyang, H., Yuanhui, Z., & Tianyi, G. (2018). Berth Allocation Optimization with 

Priority based on Simulated Annealing Algorithm. Journal of Engineering Science and 

Technology Review, 11(1), 74–83. http://doi.org/10.25103/jestr.111.09 

Zampelli, S., Vergados, Y., Van Schaeren, R., Dullaert, W., & Raa, B. (2013). The berth allocation 

and quay crane assignment problem using a CP approach. Lecture Notes in Computer Science 

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), 8124 LNCS, 880–896. http://doi.org/10.1007/978-3-642-40627-0_64 



References 

 

 176 

Zeng, Q., Hu, X., Wang, W., & Fang, Y. (2011). Disruption management model and its algorithms 

for berth allocation problem in container terminals. International Journal of Innovative 

Computing, Information and Control, 7(May 2011), 2763–2773. 

Zeng, Q., Yang, Z., & Hu, X. (2011). Disruption recovery model for berth and quay crane scheduling 

in container terminals. Engineering Optimization, 43(9), 967–983. 

http://doi.org/10.1080/0305215X.2010.528411 

Zhang, C., Wan, Y., Liu, J., & Linn, R. J. (2002). Dynamic crane deployment in container storage 

yards. Transportation Research Part B: Methodological, 36(6), 537–555. 

http://doi.org/10.1016/S0191-2615(01)00017-0 

Zhang, C., Wu, T., Qi, M., & Miao, L. (2018). Simultaneous Allocation of Berths and Quay Cranes 

under Discrete Berth Situation. Asia-Pacific Journal of Operational Research, 1850011, 

1850011. http://doi.org/10.1142/S0217595918500112 

Zhang, C., Zheng, L., Zhang, Z., Shi, L., & Armstrong, A. J. (2010). The allocation of berths and 

quay cranes by using a sub-gradient optimization technique. Computers and Industrial 

Engineering, 58, 40–50. http://doi.org/10.1016/j.cie.2009.08.002 

Zhen, L., & Chang, D. F. (2012). A bi-objective model for robust berth allocation scheduling. 

Computers and Industrial Engineering, 63(1), 262–273. 

http://doi.org/10.1016/j.cie.2012.03.003 

Zhen, L., Chew, E. P., & Lee, L. H. (2011). An Integrated Model for Berth Template and Yard 

Template Planning in Transshipment Hubs. Transportation Science, 43(45(5)), 483–504. 

http://doi.org/10.1287/trsc.1090.0306 

Zhen, L., Liang, Z., Zhuge, D., Lee, L. H., & Chew, E. P. (2017). Daily berth planning in a tidal port 

with channel flow control. Transportation Research Part B: Methodological, 0, 1–25. 

http://doi.org/10.1016/j.trb.2017.10.008 

Zhen, L., Wang, S., & Wang, K. (2016). Terminal allocation problem in a transshipment hub 

considering bunker consumption. Naval Research Logistics (NRL). 

http://doi.org/10.1002/nav.21717 

Zhou, P., & Kang, H. (2008). Study on Berth and Quay-crane Allocation under Stochastic 

Environments in Container Terminal. Systems Engineering - Theory & Practice, 28(1), 161–

169. http://doi.org/10.1016/S1874-8651(09)60001-6 

Zhou, P., Kang, H., & Lin, L. (2006). A Dynamic Berth Allocation Model Based on Stochastic 

Consideration. In 2006 6th World Congress on Intelligent Control and Automation (Vol. 2, 

pp. 7297–7301). IEEE. http://doi.org/10.1109/WCICA.2006.1714503 

 

 



 

 177 

Appendix A  
 

A.1 Sample of the instance produced by Mario 

Rodriguez-Molins, Ingolotti, et al., 2014 to solve BACAP 

using BACAP_GP 

 

ID Length ETA m p ID Length ETA m p 

1 260 16 416 9 51 102 1030 606 5 

2 232 31 968 3 52 369 1058 583 7 

3 139 68 364 6 53 183 1145 667 2 

4 193 82 761 6 54 136 1161 945 1 

5 287 105 686 3 55 235 1175 715 3 

6 318 116 630 7 56 117 1208 400 7 

7 366 138 811 2 57 319 1241 105 6 

8 166 157 156 2 58 210 1246 932 1 

9 109 163 783 5 59 374 1253 467 8 

10 251 179 222 1 60 292 1256 634 10 

11 292 180 740 4 61 285 1263 917 6 

12 147 208 921 1 62 352 1299 642 7 

13 179 228 913 10 63 72 1312 249 1 

14 177 241 392 2 64 150 1341 231 6 

15 184 244 475 10 65 235 1352 340 7 

16 391 259 407 9 66 93 1372 352 8 

17 114 264 468 8 67 267 1423 255 10 

18 143 265 924 10 68 283 1432 649 10 

19 159 312 633 3 69 206 1462 849 10 

20 153 312 444 2 70 75 1499 909 4 

21 199 321 846 1 71 273 1513 555 4 

22 244 332 282 9 72 272 1518 713 1 



 

 178 

ID Length ETA m p ID Length ETA m p 

23 304 335 552 1 73 150 1527 614 2 

24 87 392 399 8 74 212 1575 534 4 

25 337 395 438 10 75 308 1587 616 4 

26 304 438 189 5 76 79 1607 743 9 

27 283 484 338 1 77 281 1616 297 8 

28 180 508 278 4 78 134 1617 902 2 

29 233 555 229 3 79 94 1662 487 9 

30 89 589 636 1 80 100 1736 704 3 

31 94 621 230 2 81 361 1741 254 7 

32 137 667 351 2 82 257 1776 419 1 

33 252 715 119 8 83 380 1777 380 2 

34 107 716 392 9 84 246 1786 326 9 

35 285 739 845 2 85 386 1790 358 4 

36 349 754 470 5 86 178 1803 851 3 

37 117 800 674 1 87 269 1820 125 10 

38 77 800 211 6 88 149 1821 970 6 

39 333 806 123 9 89 230 1831 415 6 

40 352 810 956 5 90 339 1879 441 10 

41 270 837 390 3 91 344 1883 274 2 

42 78 881 148 8 92 123 1915 670 10 

43 398 894 560 6 93 157 1938 671 2 

44 108 941 569 9 94 262 1944 109 4 

45 253 942 946 1 95 372 1957 293 2 

46 74 983 215 10 96 353 1975 320 4 

47 295 996 900 3 97 134 1992 544 4 

48 324 1000 744 3 98 372 1999 185 7 

49 241 1005 424 7 99 251 2032 400 8 

50 372 1021 114 10 100 333 2056 233 2 
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Appendix B  
 

B.1 DP World Sokhna Vessel Map (Baplie file) 
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B.2 Sample of CDR created by BACAP_GP_DP to solve 

instance number 1 
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Appendix C  
 

C.1 Example of multiple ports BACAP in chapter 6 

The following table is the Instance number 8 dataset which solved for two quays with optimal solution equal to 93.1, the following figures show 

the distribution for the 20 vessels on quay1 and quay2 to get this optimality. 

   

ID 𝒍  𝒃𝟏
𝟎 𝒃𝟐

𝟎 𝒎  𝑬𝑻𝑨  𝑬𝑺𝑻  𝑬𝑭𝑻  𝑳𝑭𝑻  𝒓𝒎𝒊𝒏 𝒓𝒎𝒂𝒙 𝒄𝟏  𝒄𝟐  𝒄𝟑  𝒄𝟏
𝑬𝑻𝑨 𝒄𝟐

𝑬𝑻𝑨 

1 9 6 6 12 2 2 9 12 1 2 1 1 3 0 2 

2 22 59 59 38 9 8 20 25 2 4 2 2 6 4 5 

3 20 35 35 7 11 10 15 17 1 2 1 1 3 2 1 

4 30 23 23 54 12 11 23 28 4 6 3 3 9 8 8 

5 28 2 2 19 20 18 26 28 2 4 2 2 6 5 4 

6 22 70 70 24 27 25 34 37 2 4 2 2 6 5 3 

7 9 36 36 11 57 52 63 66 1 2 1 1 3 1 1 

8 10 24 24 6 69 62 73 74 1 2 1 1 3 2 1 

9 26 62 62 43 71 64 84 90 2 4 2 2 6 3 4 

10 17 81 81 10 73 66 79 81 1 2 1 1 3 0 2 

11 14 81 81 9 75 68 80 82 1 2 1 1 3 1 0 

12 8 88 88 9 79 71 84 86 1 2 1 1 3 1 1 

13 15 13 13 14 86 78 94 97 1 2 1 1 3 2 1 

14 36 45 45 55 89 80 100 105 4 6 3 3 9 7 7 

15 14 79 79 6 95 86 99 100 1 2 1 1 3 1 2 

16 16 10 10 14 100 90 108 111 1 2 1 1 3 2 2 

17 9 32 32 10 117 106 123 125 1 2 1 1 3 2 2 

18 18 1 1 12 137 124 144 147 1 2 1 1 3 0 2 

19 24 23 23 20 141 127 147 150 2 4 2 2 6 4 5 

20 25 73 73 34 150 135 160 165 2 4 2 2 6 3 3 
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Quay number 1 vessels’ distribution 

 

Quay number 2 vessels’ distribution 
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Quay number 1 vessels’ distribution using MultiP_BACAP_GA 

 

Quay number 2 vessels’ distribution using MultiP_BACAP_GA
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C.2 CPLEX code for Multiple Ports BACAP 

/********************************************* 

 * OPL 12.7.0.0 Model 

 * Author: Tamer 

 * Creation Date: 27 Nov 2016 at 04:33:55 

 *********************************************/ 

//using CP; 

 execute {  

   // to run Tune1.ops inside the model code 

   cplex.fraccuts = 2; 

   cplex.mipemphasis = 4; 

   cplex.parallelmode = 1; 

   cplex.threads = 5; 

   cplex.lbheur = true; 

   // 

   //run.run_processfeasible = true; 

   //cplex.intsollim = 1; 

  //cplex.objllim = 65; 

  // cplex.mcfcuts = 1; 

  //cplex.feasoptmode = 3; 

  //cplex.tilim = 300; // set time limit to 3600 seconds 

  //cplex.mipemphasis = 2; //0 default //1 feasibility over optimality 

           //2 optimality over feasibility 

//3 moving best bound //4 finding hidden feasible solutions 

  //cplex.epgap = 0.05; 

  

   //cplex.fraccuts = 2; 

 // cplex.fpheur = 1; 

  // cplex.preind = 0;    
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 // cplex.simdisplay = 2;  

 //cplex.getBestObjValue(); 

// cplex.tuningtilim = 50; 

    // cp.param.Workers = 1; 

  // cp.param.timeLimit=300; 

   //cp.param.searchType = "DepthFirst"; 

} 

 

int H=...; 

float alpha=...; float beta=...; float c4=...; 

int M=...; 

int nX=...; 

int n=...; 

range  V = 1..n; range  T = 0..H-1; range  X = 1..nX; 

int L[X]=...; 

int Q[X]=...; 

int id[V]=...; 

int l[V]=...; 

int b0x[V][X]=...; 

int m[V]=...; 

int ETA[V]=...; 

int EST[V]=...; 

int EFT[V]=...; 

int LFT[V]=...; 

int r_min[V]=...; 

int r_max[V]=...; 

int c1[V]=...; 

int c2[V]=...; 

int c3[V]=...; 
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int Cx[V][X]=...; 

range  R = 1..10; 

//dvar int+ R[i in V] in r_min[i in V]..r_max[i in V]; 

// variables 

 dvar int+ D_ETA[V]; 

 dvar int+ D_EFT[V]; 

 dvar int+ e[V]; 

 dvar int+ D_b[V]; 

 //dvar int+ R[V]; 

 dvar int+ b[V]; 

 dvar int+ s[V]; 

 //  

 dvar boolean r[V][T][R]; 

 dvar boolean rVT[V][T]; 

 dvar boolean u[V]; 

 dvar boolean y[V][V]; 

 dvar boolean z[V][V]; 

 dvar boolean md[V][X];  

  // expressiones 

  dexpr float Z = sum (i in V) (c1[i]*D_ETA[i] + c2[i]*D_EFT[i] + 

c3[i]*u[i] + c4 * sum (t in T, q in r_min[i]..r_max[i]) (q*r[i][t][q])) 

+ sum (x in X, i in V)(Cx[i][x]*md[i][x]); 

 // model 

  minimize Z; 

  subject to {   

  forall(i in V) // (3) 

     sum (t in T, q in r_min[i]..r_max[i]) (q ^ alpha)*r[i][t][q] 

>= (1+beta*D_b[i])*m[i]; 

   

  forall(t in T, x in X) //(4) 
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     sum (i in V, q in r_min[i]..r_max[i]) q*r[i][t][q]*md[i][x] 

<= Q[x]; 

     

  forall(t in T, i in V) //(5) 

     sum (q in r_min[i]..r_max[i]) r[i][t][q] == rVT[i][t]; 

     

  forall(i in V) //(6) 

     sum (t in T) rVT[i][t] == e[i] - s[i]; 

   

  forall(i in V,t in T) //(7) 

   (t+1)*rVT[i][t] <= e[i]; 

    forall(i in V,t in T) //(8) 

   t*rVT[i][t] + H*(1-rVT[i][t]) >= s[i];    

  forall(i in V) //(9) 

   D_b[i] >= b[i] - sum(x in X)(b0x[i][x]*md[i][x]);    

 forall(i in V) //(10) 

   D_b[i] >= sum(x in X)(b0x[i][x]*md[i][x]) - b[i];    

  forall(i in V) //(11) 

   D_ETA[i] >= ETA[i] - s[i];    

  forall(i in V) //(12) 

   D_EFT[i] >= e[i] - EFT[i];    

  forall(i in V) //(13) 

   M*u[i] >= e[i] - LFT[i];    

  forall(i,j in V : i!=j) //(14) 

   b[j]+M*(1-y[i][j]) >= b[i]+l[i];    

  forall(i,j in V : i!=j) //(15) 

   s[j]+M*(1-z[i][j]) >= e[i];    

  forall(i,j in V : i!=j, x in X) //(16) 

     y[i][j]+y[j][i]+z[i][j]+z[j][i] >=md[i][x]+md[j][x]-1; 
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 // forall(i in V) 

  // d_min[i] = ((1+beta*D_b[i])*m[i])/ Math.pow 

(r_max[i],alpha));    

   forall(i in V) //(17) 

   {  

    b[i]+l[i] <= sum(x in X)(md[i][x]*L[x]); 

         }  

  forall(i in V) //(18) 

   {  

    sum(x in X)(md[i][x]) == 1; 

         }  

         

  forall(i in V) //(19) 

   {s[i] <= H; 

    s[i] >= EST[i]; 

         }     

  forall(i in V) //(19-2) 

   {e[i] <= H; 

    e[i] >= EST[i]; 

         }     

 /*forall(i in V, x in X) //(20) 

   {b[i] <= L[x]-l[i]; 

    b[i] >= 0; 

        } */ 

   

  /*  forall(i in V) //() 

   {R[i] <= r_max[i]; 

    R[i] >= r_min[i]; 
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        } */    

    

  //forall(i in V) //(19) 

  // D_ETA[i] >=0;     

  /* 

  forall(i in V) //(19-2) 

   D_EFT[i] >=0; 

  */ 

       

 } 

/*execute { 

  

   //forall(t in T, x in X) //(4) 

   // writeln(r[]); //sum (i in V, q in r_min[i]..r_max[i]) 

q*r[i][t][q] <= Q[x]; 

 //writeln(z); 

 //cplex.getBestObjValue(); 

 }*/ 

  

 /*main { 

  thisOplModel.generate(); 

  cplex.solve();  

  var ofile = new IloOplOutputFile("modelRun.txt"); 

  ofile.writeln(thisOplModel.printExternalData()); 

  ofile.writeln(thisOplModel.printInternalData()); 

  ofile.writeln(thisOplModel.printSolution()); 

  ofile.close(); 

}*/ 
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