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Abstract

This thesis focuses on applying machine learning methods to both astronomi-

cal and cosmological problems. Regarding the application to astronomy, I use

data analysis techniques new to astronomy to detect strong correlations in

observed data to perform feature pre-selection, machine learning techniques

(four tree-based methods including Random Forests) to classify astronomical

objects, and novel software packages to interpret a machine learning model in

an attempt to understand how it is correctly classifying objects. I showcase

these techniques by applying them to the problem of star-galaxy separation

using data from the Sloan Digital Sky Survey (hereafter SDSS) and the re-

sults show that the rate of misclassifications can be reduced by up to ≈ 33%

over the standard SDSS frames approach.

In reference to the application to cosmology, I seek to answer the question:

’can we distinguish between cosmological/gravitational models using machine

learning, and if so, what features are useful discriminants?’. To approach this,

I use an image classification machine learning method called Convolutional

Neural Networks (CNNs) to classify dark matter particle simulations created

with different theories of gravity. The results show that these simulations can

be classified to a high degree of accuracy. I then investigate the model, using

generated datasets with known parameters to probe the decision boundaries

of the CNN and determine where the model breaks down. I also manipulate

the CNN into creating representations of dark matter particle simulations to

understand which features of the simulations it has been able to learn about

- showing that CNNs do not have to simply focus on matter density variance
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and can learn about higher order statistics such as isodensity curvature. All

of these methods are new to the analysis of different theories of gravity in

cosmology.
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Chapter 1

Introduction

The current model of our Universe indicates that everything we can observe

originated from the expansion of a very high density and high temperature

region - a model we call the Big Bang. During the last century, there has

been great progress in the understanding of this model and the nature of

our Universe. This great progress encompasses the solutions to Einstein’s

General Relativity (GR; Einstein, 1916), the discovery that the expansion

of the Universe is accelerating (Riess et al., 1998; Perlmutter et al., 1999),

and precise measurements of the fraction of energy and mass components the

Universe is comprised of (Komatsu et al., 2011).

The standard cosmological model (or ΛCDM model) goes some way to

explaining these observations. It has a Cold Dark Matter (CDM) compo-

nent to account for the matter that we cannot observe directly, and a dark

energy (Λ) component to account for the negative pressure that causes the

accelerated expansion we observe. While the model is very strange it fits the

observed data well, but there are still alternative theories that have yet to

be ruled out.

In the late-time Universe we have observed in modern galaxy surveys

(Alam et al., 2015; Abbott et al., 2018) that matter has condensed to form

stars and billions of these stars have become gravitationally bound to form

galaxies.
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Through the process of analysing this observed data, we can infer con-

straints on cosmological models. It is for this reason that the models must be

well understood, and the observed data be devoid of erroneous samples. It

is therefore of great interest to investigate new techniques, such as machine

learning, to provide insight into cosmological models and to correctly classify

objects in the Universe.

In this chapter I will begin with a discussion of GR and an introduction

to theoretical cosmology. I will then introduce some of the observational

evidence supporting the theory and discuss galaxies and stars in the late-

time Universe. I will then discuss modifications to gravity, particularly DGP,

a theory that utilises more dimensions to explain the acceleration of the

expansion of the Universe. These topics will set the scene for my investigation

into using machine learning techniques in cosmology.

1.1 Cosmological Model

The Copernican principle asserts that there are no preferred observers in the

Universe, arising from Copernicus’ model that the retrograde motion of the

planets was caused by the Earth’s motion around the sun. This was a huge

divergence from the earlier thinking that the Earth was at the center of the

universe. A natural and more modern progression to this principle is that

of the Cosmological Principle. In a similar way, the Cosmological Principle

asserts that there are no preferred directions or regions (on large scales) in

the universe, making it both statistically isotropic and homogeneous. More

specifically, this would mean that on large scales of the universe, every di-

rection would look the same, and the average density of matter would be

the same in all places of the universe. It is often assumed (and this can be

tested) that the laws of physics would be constant throughout the Universe

in space and time - allowing our investigation into the nature of the Universe

to be vastly less complicated. Finally, it is also established that all of space

was causally connected at some point, with space and time starting with the

2



Big Bang - a high density, high temperature, causally connected state (see

Section 1.3.1).

In this section I briefly outline some equations for our cosmological model

from General Relativity (GR), a general metric in terms of GR that conforms

with the cosmological principal - the FLRW metric, the equation governing

the expansion of space - the Friedmann equation, and other related phe-

nomena such as redshift, the magnitude system, and cosmological distance

measures.

1.1.1 General Relativity

The theory of General Relativity describes gravity as a geometric property

of spacetime, where the curvature of spacetime is directly influenced by the

energy and momentum of matter and radiation (see Carroll (2004) for further

discussion in connection to this section).

The theory is formulated with three key principles, summarised as:

• The principle of equivalence: This states that the inertial mass of an

object is equal to its gravitational mass. The acceleration of a body

due to gravity is independent of that body’s mass.

• The principle of general covariance: The form of the laws of physics

is the same in all inertial and accelerating frames. This is to say that

physical phenomena are independent of the coordinate system used to

describe them.

• The principle of consistency: This requires a new scientific theory to be

able to reproduce the successful results from old theories it is designed

to replace. For example, given the correct conditions, General Relativ-

ity should reduce to the laws of Newtonian mechanics and (with the

omission of gravity) the formulations of special relativity.

With these principles in mind, Einstein formulated the theory that de-

scribes how the curvature of spacetime changes due to its matter content, and
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how in turn, the curvature causes that matter to gravitate. In the presence of

curvature, geometry can no longer be described by normal Euclidean rules.

For example, the length of a path is no longer given by ds2 = dx2 where x

is a Euclidean coordinate; instead, the interval between two infinitesimally

close events in spacetime is defined as

ds2 = gµνdx
µdxν , (1.1)

where gµν is the spacetime metric tensor and x are some coordinates. This

metric is used to calculate the curvature of a Riemannian manifold from the

Riemann tensor, defined as

Rρ
λµν = Γρνλ,µ − Γρµλ,ν + ΓρµαΓανλ − ΓρναΓαµλ, (1.2)

where a comma denotes a derivative. The Christoffel symbols, Γλµν , de-

scribe an affine connection. This allows vectors to be transported around a

curved spacetime while staying parallel to the original connection. They can

be described with the metric as

Γλµν =
1

2
(gλµ,ν + gλν,µ − gµν,λ). (1.3)

If spacetime is flat, then gµν = diag(1,−1,−1,−1) and Γλµν = 0.

The curvature of a manifold can be defined by the magnitude of the

transformation of a vector after a parallel transport around a closed loop.

This is what the Riemann curvature tensor measures. It follows that if the

curvature was flat, then the magnitude of the transformation would be equal

to 0, therefore Rρ
λµν = 0.

The Riemann tensor can be contracted over to produce the Ricci tensor

Rµν = gρλRρλµν , which can be contracted over to produce the Ricci scalar

R = gµνRµν . These are both used in conjunction with the metric to formu-

late the Einstein curvature tensor Gµν , which measures the curvature of the

Universe in GR.

Gµν = Rµν −
1

2
gµνR. (1.4)
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Now that the mathematics related to the curvature of the universe in GR

has been defined, we can now outline the equations related to the matter

content of the universe. The energy-momentum tensor, T µν , describes the

energy and momentum of material in the Universe.

In the particular cosmological case that we’re interested in, we can use

the cosmological principal, that the Universe is statistically homogeneous

and isotropic, T µν must be a perfect fluid (meaning it is characterized only

by its rest frame mass density and isotropic pressure, and all other possible

properties are neglected). As such, it can be defined as

T µν = (ρ+ P )UµUν − Pδµν (1.5)

where ρ is mass density, P is pressure, and U is the four velocity of the

fluid. Energy-momentum conservation is described by

T µν;µ = 0. (1.6)

Now that we have equations governing the curvature of spacetime and the

energy-momentum of the matter residing within it, these can be combined

to form the Einstein Field Equations,

Gµν =
8πG

c4
Tµν (1.7)

The constant G, on the right hand side of the equation comes from the

principle of consistency. This means that in the presence of weak gravita-

tional fields, this equation will reproduce dynamics of Newtonian gravity.

1.1.2 The Friedmann-Lemâıtre-Robertson-Walker Met-

ric

Shortly after Einstein published his theory of GR, Friedmann (1924), Lemâıtre

(1927), Robertson (1935), and Walker (1935) all (independently) answered

the question, in terms of GR, what is the most general metric that conforms

to homogeneity and isotropy in the universe? The metric’s most common

form is
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ds2 = dt2 − a(t)2

[
dr2

1− kr2
+ r2dθ2 + sin2(θ)dφ2

]
(1.8)

where t is proper time - a coordinate-independent time measurement (the

time measured by an observer along a trajectory), and r, θ, and φ are spatial

coordinates. a(t) is the scale factor, which measures the size of the Universe

as a function of time and is normally set equal to 1 for the present day scale

factor. k is the curvature parameter, which can be set to one of three different

geometries, -1 for an open universe, 0 for a flat universe, and 1 for a closed

universe.

For a flat FLRW space in cartesian coordinates, by calculating the Christof-

fel symbols (Equation 1.3) and using them with the Ricci tensor Rµν , the only

relevant non-zero components of the Ricci tensor are

Rtt = −3
ä

a
, Rxx = Ryy = Rzz = (aä+ 2ȧ2) (1.9)

and the Ricci scalar is

R = 6

(
ä(t)

a(t)
+
ȧ2(t)

a2(t)

)
(1.10)

1.1.3 The Friedmann Equation

The Friedmann equation (Friedmann, 1922) is derived from using Equations

1.9 and 1.10 with the EFEs (Equation 1.7) and takes the form

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
. (1.11)

This relates the density of the universe ρ with the rate of change of the

scale factor with time (H(t), the Hubble parameter). When the derivative

of this equation is taken, the Friedmann acceleration equation is acquired

Ḣ +H2 =
ä

a
= −4πG

3
(ρ+ 3P ) (1.12)
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with P arising from the conservation of the energy-momentum tensor

(Equation 1.6) where ρ̇ = −3H(ρ + P ). In Section 1.4 there will be a dis-

cussion of the DGP model - a departure from the ΛCDM model, in which I

describe how the Friedmann equation is modified.

Hubble’s law describes the rate of cosmic expansion, and was first con-

firmed by Edwin Hubble (1929). It explains the observation that objects in

deep space seemingly have a ‘redshift’ - a relative velocity away from Earth

causing the light we observe to be doppler shifted. The law is written locally

as

v = H0d (1.13)

where v is a galaxy’s velocity, d is the proper distance to that galaxy,

and H0 is the Hubble parameter at the present redshift (z = 0). The motion

of objects in the Universe that is solely due to this expansion is called the

Hubble flow. The unit of H0 is most commonly known as km s−1 Mpc−1,

but it is often expressed by the dimensionless parameter h0, where h0 =
H0

100
km s−1Mpc−1. The most up to date measurement of h0 from the Planck

mission is 0.674 ± 0.005 (Planck Collaboration et al., 2018a), very different

from Hubble’s first measurement of 5 (Hubble, 1929). The current value of

h0 is still contested to this day with values calculated to be as much as 0.7

(Betoule et al., 2014).

Assessing the density of the Universe can be done with the Friedmann

equation. ρc is the critical density for a flat universe where k = 0, therefore

Equation 1.11 can be written as

ρc =
3H2

8πG
(1.14)

The density parameter Ω is defined as the ratio of the observed density

parameter ρ to the critical density ρc:

Ω ≡ ρ

ρc
=

8πGρ

3H2
. (1.15)
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This means that when this ratio is equal larger that 1, space is geomet-

rically closed, and the universe will stop expanding and eventually collapse.

If Ω is measured to be smaller than 1, space is geometrically open, and the

universe will continue expanding forever. The Planck Collaboration et al.

(2018a) results indicate that Ω = 1 and there is no contribution from the

curvature parameter Ωk, with it being calculated to be equal to 0.001±0.002.

This leads to being able to define the overall density of the universe as in the

ΛCDM model, a sum of its density components

Ω ≡ Ωm + Ωr + ΩΛ = 1 (1.16)

where m is matter, r is radiation, and Λ is the cosmological constant.

Matter (Ωm) makes up around 30% of the total density of the Universe

and is comprised of two components, baryonic matter and dark matter. Bary-

onic matter (protons and neutrons) is the matter we are able to observe, and

makes up all atoms, planets, stars, galaxies in the universe. Dark matter, we

are unable to directly observe and is thought to interact only with gravita-

tional forces, and can only be detected by observing its effect on astronomical

objects using gravitational lensing or by studying galaxy rotation curves. The

other 70% of the density of the Universe is thought to be ’dark energy’, a

possible explanation for the accelerating expansion of the universe. Carroll

(2001) provides a review of a proposed dark energy model that uses a Cos-

mological constant Λ - which assumes that dark energy is constant through

space and time. The accelerated expansion of the Universe can be charac-

terised by the equation of state of dark energy, w, which is the ratio of its

pressure (p) to its energy density (ρ). The final component of the content of

the Universe is that of radiation, r, which was dominant in the early stages

of the universe, but now makes up a negligible fraction of the total density.

1.1.4 Redshift, Magnitudes, and Distance Measures

As said in Section 1.1.3, redshift (z) is measured from light emitted from an

object in deep space that has been doppler-shifted. This ratio of the change
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in wavelength is defined as

λr
λe

= 1 + z (1.17)

where λr and λe are wavelength received and emitted respectively. To

calculate the total time for the light to travel the distance r = 0 to r = R,

Equation 1.17 is related to the scale factor by integrating the null geodesic

equation, ds2 = 0, for the FLRW metric, giving

χ =

∫ tr

te

dt

a(t)
=

∫ R

0

dr

1− kr2
(1.18)

where te and tr are the time a photon was emitted and received respec-

tively, and t is the present time. The object in deep space that emitted this

light is stationary in comoving coordinates r (its perceived velocity is due to

the scale factor a(t)). If light was to be emitted and received a short time

later (te+∆te and tr+∆tr), it will have travelled the same comoving distance

(χ). This means ∫ tr

te

dt

a(t)
=

∫ tr+∆tr

te+∆te

dt

a(t)
. (1.19)

If the limits of the integral are rearranged and ∆te,r are assumed to be

negligible,

dte
a(te)

=
dtr
a(tr)

. (1.20)

If Equation (1.20) is instead considered for two successive peaks of emitted

light waves, the time elapsed between the peaks of the waves is proportional

to the wavelength λ

λr
λe

=
a(tr)

a(te)
= 1 + z (1.21)

For present day, where a(tr) = 1, this equation can be written as a(te) =
1

1+z
. The wavelength emitted by these photons in rest frame has been accu-

rately measured in spectroscopic laboratory experiments, and consequently,

the redshift is calculated from the shifted wavelengths we observe.
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A useful distance measure is that of angular diameter distance, DA. It is

defined as the ratio between an object’s proper size (l) and apparent angular

size (θ) as measured on the sky: DA = l
θ
.

In a spatially flat universe, DA can be related to the comoving distance or

luminosity distance (a measurement of an object’s luminosity at cosmological

distances) and redshift such that

DA =
r

1 + z
=

DL

(1 + z)2
, (1.22)

where the redshift term accounts for the evolution of the scale factor

between the object’s light emission and the present.

The luminosity distance can also be related to an object’s absolute and

apparent magnitude, with the absolute magnitude (M) being a measure of an

object’s intrinsic luminosity, and apparent magnitude (m) being a measure

of the object’s magnitude if it were viewed from a distance of 10 parsecs.

This relation is

M = m− 5(log10(DL)− 1) (1.23)

The bolometric magnitude is different from the absolute magnitude as

it accounts for radiation at all wavelengths, and is defined by the ratio of

luminosity to that of the Sun (L�) in the following way

Mbol,? −Mbol,� = −2.5log10

(
L?
L�

)
. (1.24)

We will use these magnitudes extensively in Chapter 3.

1.2 The Visible Universe

In this section I briefly discuss the objects we can directly observe in our

Universe, stars and galaxies. I will discuss why they are important to classify

correctly, and how these classification methods have become more automated
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in recent years. This sets the scene for my machine learning classification

work in Chapter 3.

1.2.1 Stars and Galaxies

One method of probing the properties of the Universe is through the processes

of stars and galaxies. For instance, the deflection of light around our star due

to GR was first measured by Dyson and Eddington (Dyson et al. (1920)). In

more recent times, the most distant galaxy ever discovered (named GN-z11),

has a spectroscopically confirmed redshift of z = 11.09 (Oesch et al., 2016)

and existed approximately 400Myr after the Big Bang. This type of age

dating of galaxies provides an independent check on the timescales provided

from cosmological models. Many different physical galaxy properties such as

age, type, metallicity, and stellar mass, can be obtained by observing the light

that comes from them using recent advances in stellar population modelling

techniques. Hubble was the first to classify or group galaxies by type, in a

sequence or ‘tuning-fork’ (Hubble, 1926), with the main classifications being

large, red, early-type elliptical shaped galaxies, and bluer, late-type spiral or

barred-spiral galaxies. Methods analagous to this are still used to classify

galaxies today as shown in Masters et al. (2011), where they show a colour

cut (where the magnitude of light in one filter is compared with another) of

g-i > 2.35 is able to split the galaxies into morphologies comparable to early-

type Luminous Red Galaxies (LRGs) and late-type passive spiral galaxies at

lower redshift. This is useful, as being able to accurately select targets is

important for precise measurements of the cosmic distance scale or Hubble

parameter - for example, the use of quasars (QSOs; highly luminous and

distant galaxies) is discussed further in Section 1.3.4.

1.2.2 The Automation of Classification

In recent years, surveys of the sky such as the Sloan Digital Sky Survey

(SDSS, Alam et al., 2015) and the Dark Energy Survey (DES, DES Collabo-
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ration et al., 2017) have incorporated data processing/reduction pipelines to

automate the processing of vast amounts of data, helping to standardise and

accelerate science calculations. These pipelines convert images seen by the

telescope into managable and useable data, with the type of data depending

on the instruments used to observe the objects. A full spectrum (a detailed

measure of flux between two wavelengths) of the object may be available

if it has been observed with a spectrograph, or photometric magnitudes (a

coarse measurement in a small number of filters) calculated from the images

will be available. Various programs are incorporated in different pipelines

to automatically output results. For example, in the particular example of

determining properties of galaxies, the SDSS pipeline (Bolton et al., 2012)

includes various template fitting methods: a program called HyperZ (Bol-

zonella et al., 2000) in its pipeline that compares photometric data to red-

shifted stellar population models, and a full spectral fitting method called

Firefly (Wilkinson et al., 2017). In addition to template fitting methods,

there is a number of training methods included such as ANNz (Collister and

Lahav, 2004) or TPZ (Carrasco Kind and Brunner, 2013), which use machine

learning techniques to learn relations between the data and target results,

such as redshift or galaxy properties. These newer type of machine learning

techniques have yet to be included in these data processing pipelines.

Further discussion, analysis, and results of old classification methods in-

cluded in the SDSS pipeline and newer classification methods are presented

in Chapter 3.

1.3 Cosmological Probes

Beyond these questions of classification, we want to test the nature of the

cosmological model, posing the question - ’Is the Universe as we would expect

from ΛCDM, or do we need a further model?’. I approach these questions in

a machine learning context in Chapters 4 and 5.

In this section, I describe four main methods of probing the nature of our
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universe: analysing the Cosmic Microwave Background (CMB) to determine

what happened at the very start of the Universe, the use of the light from

Type 1a Supernova to calculate the expansion rate of the Universe, the use

of Weak Gravitational Lensing to shed light on the nature of dark matter,

and the analysis of the largest structures in our universe to further constrain

the behaviour of the cosmological model.

1.3.1 CMB

The very early universe, when it was approximately one millionth of its cur-

rent volume and 3,000,000 K in temperature, was filled with a ‘cosmic soup’

of coupled protons, electrons, and photons (Liddle, 2003). Due to the high

temperature, the photons had an energy higher than the energy required to

ionize hydrogen. As a consequence, any electron trying to bind to a pro-

ton was knocked away by a photon. This interaction (Thompson scattering)

caused the mean free path of the photons to be very short, forming an opaque

ionized plasma. This plasma had a very high sound speed due to the den-

sity and pressure being provided mainly by the photons, and propagated as

a spherical sound wave. As the Universe expanded further and cooled, the

photons lost their high energy, and electrons could bind with the protons.

The photons could no longer interact with the particles, and were able to

free stream through the universe. This process is known as decoupling, and

marks the time known as recombination when the universe was no longer

opaque, but transparent.

This radiation (named the Cosmic Microwave Background (CMB)) is the

earliest radiation we can observe, has the form of Black Body radiation, and

has a measured temperature of 2.72548 ± 0.00057K (Fixsen, 2009). When

measured at different angular distances on the sky, the CMB contains small

irregularities or anisotropies. These conform to what is expected from initial

quantum fluctuations in the Universe, magnified to a cosmic scale (Parker,

1968, 1969). These fluctuations are thought to be the initial seed for the

large-scale structure we observe in the Universe at present day. The exis-
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tence of the CMB was first predicted in 1948 (Gamow, 1948b,a; Alpher and

Herman, 1948b,a), and has been measured many times through the years,

with the first result from Arno Penzias and Robert Wilson in the 1960’s

and the latest result from the Planck satellite in 2018 (Planck Collaboration

et al., 2018b).

Figure 1.1 shows the the Fourier transform of the two-point correlation func-

tion or the power spectrum of the CMB, a measurement taken by the Planck

satellite (Planck Collaboration et al., 2016). Large scales are at low l and

small scales at high l. The first acoustic peak is at l ∼ 240 and is sensitive

to matter content of the universe after decoupling. Its position is consistent

with the Universe being spatially flat; if its position was further to the left

or right, it would indicate a closed universe or open universe respectively

(Doroshkevich et al., 1978; Kamionkowski et al., 1994). The amplitude of

the acoustic peaks are dependent on the matter density of the Universe. The

second peak is lower than the first, which is due to the temperature of the

baryonic matter causing pressure resulting in a damping of the amplitude.

Having a third peak that is more enhanced than the second indicates a dark

matter dominated matter density before recombination (Hu et al., 1996).

At high l (after 1000) the peaks are quashed by Silk Damping (Silk, 1968),

where photons after decoupling have travelled a finite distance before they

are scattered causing the diffusion or damping on the smallest scales.

Modelling the shape of the CMB power spectrum can give good con-

straints on cosmological parameters of the Universe, as these peaks in the

power spectrum were frozen in at the time of recombination. This can be

done numerically with codes such as CAMB (Lewis et al., 2000) or CLASS

(Lesgourgues, 2011), which solve the full set of Einstein Field and Boltzmann

equations for a chosen cosmological model to replicate the expected temper-

ature fluctuations on the sky given some initial perturbations. These are

compared with measurements taken by satellites like Planck, with the latest

observational results of H0 being 67.4± 0.5km s−1Mpc−1.
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Figure 1.1: Power Spectrum of CMB measured in Planck Collaboration et al.

(2016). This plot shows the measured amplitude of the temperature fluctu-

ations in the CMB as a function of Multipole moment l (angular scale).

The blue points are the measured data points, with the red curve being a

prediction from theory.
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1.3.2 Type 1a SNe

A Type 1a Supernova (SNe; da Silva, 1993) occurs when a carbon-oxygen

white dwarf in a binary system accretes mass from a companion star and

exceeds the Chandrasekhar limit of ∼ 1.44M�, at which point it can no

longer support its own mass due to pressure from electron degeneracy (Lieb

and Yau, 1987). The star ignites due to the increase in temperature, fusion

begins, and a large portion of the carbon and oxygen is fused into heavier

elements. The energy released from this fusion causes the temperature to

increase rapidly and the star undergoes a violent explosion, causing a massive

shockwave and increase in luminosity to a typical absolute magnitude of MS

= -19.3 (Hillebrandt and Niemeyer, 2000). This typical magnitude is reached

due to Type 1a SNe having similar masses, hence these objects can be used

as standard candles - accurate distance measures of the universe.

The measurement of the peak brightness in Type 1a SNe by observing

luminosity over time led to the first evidence of the accelerating expansion

of the Universe (Riess et al., 1998). The brightness was converted to a

luminosity distance (DL) and spectral lines were used to calculate SNe’s

redshift (z). When this was done, Riess et al. (1998) discovered that the

calculated distance to the high-redshift SNe were on average 10% to 15%

higher than expected in a universe where there is no cosmological constant

and Ωm = 0.2.

Figure 1.2 (Betoule et al., 2014) shows a more recent result using SNe

from multiple data sources (Riess et al., 2007; Conley et al., 2011) called

the Joint Lightcurve Analysis (JLA) . As in the Riess et al. (1998) paper,

distance modulus (here, µ) is used along with redshift to show that H0 =

70km s−1Mpc−1.

The tension between Planck and Type 1a SNe measurements of H0 has

been previously said to be due to systematic uncertainties in either methods

(Dhawan et al., 2018). The latest result from the Riess et al. (2018) paper

calculates H0 = 73.48± 1.66km s−1Mpc−1 after using a new sample that ad-

dresses two outstanding systematic uncertainties affecting prior comparisons
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of Milky Way and extragalactic Cepheids (stars that vary in brightness peri-

odically) used to calibrate H0: their dissimilarity of periods and photometric

systems. This result has further increased the tension with the Planck +

ΛCDM result to 3.7σ, and the source of this discrepancy remains undeter-

mined.
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Figure 1.2: Hubble diagram of supernovae from various samples. The top

panel shows the distance modulus (µ) versus redshift (z) of the best-fit

ΛCDM cosmology for a fixed value of H0 = 70km s−1Mpc−1 (black line). The

bottom panel shows the residuals as a function of redshift. The weighted av-

erage of the residuals in logarithmic redshift bins of width ∆/z ∼ 0.24 (black

dots in bottom panel) (Betoule et al., 2014).
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1.3.3 Weak Gravitational Lensing

Cosmological constraints can also be determined from the assessment of weak

gravitational lensing, measuring the distribution of matter in the universe

(Hu and Tegmark, 1999). Unlike strong gravitational lensing, where the

path of light (from a background object) is distorted around an object (in

the foreground) with a mass density greater than a critical density, weak

lensing takes effect along most lines of sight through the universe. This is to

say, a foreground mass can be detected through the alignment of background

objects - measurement of their ellipticities or shear.

There are several ways in which weak gravitational lensing can occur: for ex-

ample, clusters of galaxies can cause strong lensing effects on aligned back-

ground sources, but also a more general weak lensing on the surrounding

background sources. These types of lensing measurements are very impor-

tant because they are independent from theories of star formation or cluster

dynamics. These standalone lensing mass maps can be correlated with op-

tical measurements to reveal the connection between dark matter mass and

stellar mass (Clowe et al., 2004).

A more subtle type of weak lensing comes in the form of galaxy-galaxy

lensing. This occurs when a galaxy causes the lensing, instead of a cluster

of galaxies. The detection of this signal is somewhat more difficult as the

galaxy shears need to be stacked or combined to make the signal significant.

An even weaker signal than that of galaxy-galaxy lensing is cosmic shear.

This is when the large-scale structure of the universe produces a measurable

shear in background sources, usually found by calculating a two-point shear

correlation function.

This type of weak lensing analysis has been performed by DES (DES

Collaboration et al., 2017), using a combination of three different two-point

functions: the cosmic shear correlation function of 26 million source galaxies,

the galaxy angular autocorrelation function of 650,000 luminous red galaxies,

and the galaxy-shear cross-correlation of luminous red galaxy positions and

source galaxy shears. The constraints on S8 (σ8, the amplitude of the (linear)
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power spectrum on the scale of 8 h−1Mpc) and Ωm DES calculated from their

analysis, compared to, and combined with Planck results are shown in Figure

1.3. There is clearly a tension between DES and Planck with both the S8

and Ωm parameters.

Another interesting result relevant to this work is that of the current

largest curved-sky galaxy weak lensing mass map from the DES first-year

(DES Y1) data (Chang et al., 2018). The map (shown in Figure 1.4) made

from gravitational lensing measurements of 26 million galaxies in the DES

Y1 data. It covers over 1300 deg2 and covers redshifts 0.2 < z < 1.3. Red

regions have more dark matter than average, blue regions less dark matter.

1.3.4 Large-Scale Structure

Near the beginning of the Universe, as the CMB shows, matter was almost

uniformly distributed across space. As time progressed, the dark matter

collapsed into a cosmic web as shown in Figure 1.4; baryons fell into these

gravitational potentials so that galaxies clustered together, tracing out the

cosmic web in a biased fashion. The specifics of the web pattern tell us about

gravity, matter density, the matter power spectrum, and dark energy. This

cosmic web pattern is used to discriminate between theories of gravity in

Chapters 4 and 5.

One particular aspect of the web patters is the feature known as the

Baryon Acoustic Oscillations (BAO). After recombination, when the pho-

tons had free streamed away, an excess of the baryons were left behind in a

spherical shell around the initial excess density of dark matter. This spherical

shell expanded along with the Universe, leaving a signature of the overden-

sity of baryons after recombination - this is known as a ‘peak’ in the BAO.

Even though the overdensities in dark matter pulled the baryons into the

potential wells, the signature of the baryon overdensity is still present and

measurable as a peak in the two-point correlation function of galaxy distri-

butions. Measuring this BAO signal was first achieved by Eisenstein et al.

(2005) and allows us to further constrain the cosmological parameters of the
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Figure 1.3: This plot shows the 68% and 95% confidence levels for constraints

on the values of S8 and Ωm using weak lensing from DES Y1 data. The blue

contour is solely using DES Y1 data, the green contour is using Planck data,

and the red contour is using a combination of both results (DES Collabora-

tion et al., 2017).
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Universe by comparing the observed result to predictions. For example, the

BAO peak would be observed to be at a different scale, or intensity, if the

flatness or matter content of the Universe were different from the currently

accepted model.

The reason this result has only been achieved in recent years is because

the BAO signal is very weak, and a large survey such as SDSS-III’s BOSS

(Dawson et al., 2013) is required for the signal to be significant. The BAO

measurement is calculated through measuring the two-point correlation func-

tion of galaxy positions in different redshift bins.

An example of a recent detection of the peak in the BAO at ∼ 105 Mpc

on the x-axis can be seen in Figure 1.5. This peak is seen in 3 redshift bins

(shifted in ζ on the y-axis for clarity), where the red curve is 0.2 < z < 0.5,

black is 0.4 < z < 0.6, and blue is 0.5 < z < 0.75. It was calculated using a

combined galaxy sample of 1.2 million galaxies over 9329 deg2, and a volume

of 18.7 Gpc3. They calculate H0 to be 67.6± 0.5km s−1Mpc−1 assuming flat

ΛCDM cosmology, consistent with Planck Collaboration et al. (2018a).

This analysis has been also been performed with the SDSS-IV eBOSS

sample (Dawson et al., 2016), including the first measurement of the BAO

between redshift 0.8 and 2.2 (Ata et al., 2018). This analysis was performed

using a sample of 147,000 QSOs over 2044 deg2. Figure 1.6 shows the BAO

peak in configuration space, and Figure 1.7 shows their constraints on ΛCDM.

The errors on this plot are larger due to the use of the quasar sample, which

is more uncertain data than the sample used to calculate the BAO peak seen

in Figure 1.5.

The different methods that I have described can be combined to give

more precise constraints on cosmological parameters, as shown in Figure ??

from the Alam et al. (2017) paper. The figure shows constraints (contours

representing confidence intervals) on w and ΩK for a model with varying

spacial curvature and a constant equation of state of dark energy. It uses data

from Planck 2015 results, SDSS Data Release 12 for the BAO measurements,

and the Joint Lightcurve Analysis for the SNe data. It is seen here that
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when combining results gained from multiple methods, the errors on the

measurements of cosmological parameters are greatly reduced.

1.4 Modified Gravity

While all the examples that have been given so far point towards the universe

fitting a ΛCDM model, there are still anomalies that cannot be explained.

The most serious problem is known as the ‘cosmological constant problem’,

where the observed value of Λ is around 120 orders of magnitude smaller

than the theoretically expected value (cut off at the Planck scale). Another

problem is called the ‘coincidence problem’, and poses the question ‘if the

Universe is accelerating in its expansion as we observe, why is it happening

now?’. Another way of thinking about this problem is to ask the question

‘why is ΩΛ and Ωm in the same order of magnitude?’.

Clifton et al. (2012) has a comprehensive review of alternative theories

to ΛCDM, of which one will be considered further in this work. The number

of theories that can be constructed solely using the metric tensor is limited,

as given by Lovelock’s theorem (Lovelock, 1971, 1972). This means that to

construct a theory of gravity with field equations different from those in GR,

one (or more) of the following must be done:

• Locality be abandoned.

• Fields considered other than that of the metric tensor.

• Spatial dimensions considered that are not four dimensional.

• Abandon rank (2,0) tensor field equations, symmetry of the field equa-

tions when exchanging indices, or divergence-free field equations.

DGP (Dvali et al., 2000) is useful and well-developed modified gravity

theory to consider as a competitor to GR, for the purpose of developing ma-

chine learning approaches that distinguish between laws of gravity. DGP
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utilises a higher number of spacial dimensions than four, and is used exten-

sively throughout this work in the form of dark matter particle simulations.

A basic overview of DGP is given in Section 1.4.1 and a description of the

dark matter particle simulations is given in Section 4.

To arrive at the theory of DGP gravity the EFEs mentioned in Section

1.1.1 must be rewritten in the form of the Einstein-Hilbert action,

S =
1

2

∫
R
√−gd4x (1.25)

where g is the determinant of gµν and R is the Ricci scalar. This equation

results in the EFEs when the action is varied with respect to the metric and

δS = 0. This means that if one wants to determine the form of the field

equations for a different theory of gravity, we must simply define an action.

1.4.1 DGP Gravity

The DGP gravity model was first theorised by Dvali et al. (2000), and stipu-

lates that matter is confined to a four-dimensional brane, which is embedded

in a five-dimensional bulk space-time, making it an example of a braneworld

model. The DGP action is defined as

S =

∫
brane

d4x
√−g

(
R

16πG

)
+

∫
d5x
√
−g(5)

(
R(5)

16πG(5)

)
(1.26)

+ Sm(gµν , ψi),

where g5 is the determinant of the five-dimensional metric of the bulk gµν ,

with R(5) being its Ricci scalar. Similarly, g is the determinant of the metric

of the brane (gµν), with R being its Ricci scalar. G and G(5) are the four-

and five-dimensional gravitational constants. ψi describes the matter fields

and their action Sm, which are confined to the four-dimensional part of the

model. The crossover scale, rc, is shown in Equation 1.27, and is the ratio of

G(5) to G,

rc =
1

2

G(5)

G
. (1.27)
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Below the crossover scale rc gravity looks four dimensional, and above it,

characteristics of five dimensions become apparent. The explanation of the

acceleration of the expansion of the universe is approached by two methods

in the DGP model, the normal branch of DGP (hereafter nDGP), or the

self-accelerating branch (sDGP). In the latter, the model does not require

a dark energy field, but numerous publications have pointed towards this

model being ruled out. This is due to it being in tension with CMB and

supernovae data (Fang et al., 2008), but also issues with the propagation of

ghosts (resultant additional degrees of freedom) (Koyama, 2007). In contrast,

the nDGP model does require a dark energy term in the four dimensional part

of the action to explain the accelerated expansion (Schmidt, 2009). Koyama

and Maartens (2006); Koyama (2007) showed that the expansion rate of the

nDGP model can be written as,

H(a) = H0

√
Ωm0a−3 + ρDE(a)/ρc0 + Ωrc −

√
Ωrc, (1.28)

where a subscript 0 means the value at present day, a is the scale factor,

H0 is the Hubble expansion rate, Ωm0 = ρ̄m08πG/(3H2
0 ), and is fractional

matter density where ρ̄m is the background value of the matter density, and

Ωrc = 1/(4H2
0r

2
c ). The dark energy term is denoted as ρDE, and ρc is the

critical density as in Equation 1.14. This dark energy term can be tuned

so that the expansion rate exactly matches that seen in ΛCDM (Schmidt,

2009).

In the past, there have been several methodologies used to parameterise mod-

els of gravity such as: presenting predictions for weak lensing correlation

functions given modified gravity models and calculating how weak lensing

statistics would change as a function of scale and redshift (Beynon et al.,

2010), or using cosmic shear - either through a tomographic approach where

correlations between the lensing signal in different redshift bins are used to

recover redshift information, or via a 3D approach, where the full redshift

information is carried through the whole analysis. Dark matter particle sim-

ulations have also been created using other modified gravity models (f(R)
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gravity) to assess how they affect the clustering of dark matter and halos

and fill non-linear scales (Zhao et al., 2011). In this work, I use dark matter

particle simulations created with the nDGP model of gravity, along with ones

created with ΛCDM gravity in order to examine whether a machine learning

approach is able to distinguish between the resulting cosmic webs.

1.5 Outline of Thesis

We have surveyed the state of cosmology, noting the importance of catego-

rization of objects, and selection of cosmological models. In this thesis, I will

examine both of these crucial tasks from a machine learning perspective.

As discussed in Section 1.3, observed data needs to be well categorised

and clean when processed to be able to calculate reliable results from it. In

Chapter 2 I describe four tree-based machine learning techniques that can be

used to classify astronomical objects. I then outline a data analysis technique

called MINT (developed to aid in genome trait prediction problems) that

detects strong correlations in observed data and selects the most important

features that relate to particular classification. I also describe how a novel

software package called treeinterpreter can interpret a tree-based model in

an attempt to understand not only which features are most important to a

particular classification, but what values of the feature contribute most to a

classification. The results from these methods will form the majority of my

work in Chapter 3.

Turning to cosmological/gravitational models, it can be seen from the theory

that the nDGP and ΛCDM models are very similar, especially on small

scales. For these reasons it can be hard to tell models of gravity apart,

especially when the two point statistics of these models can be so close.

Conventional methods of measuring data have worked up to this point, but

machine learning methods could help break degeneracies in these models. In

Chapter 2 I describe a machine learning method called Convolutional Neural

Networks (CNNs) that can classify image data. I use CNNs to classify dark
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matter particle simulations as either nDGP or ΛCDM gravity (Chapter 4 and

try to unravel the CNNs’ inner workings (Chapter 5) using two methods. In

the first method, I create my own dataset with parameters I have defined to

extract decision boundaries from the model, and in the second method I use

a pre-trained CNN (that can already correctly classify models of gravity) to

transform a random field into what it has learned a nDGP or ΛCDM dark

matter particle simulation looks like. In Chapter 6 I will describe further

work I have carried out and outline my conclusions.

Throughout this work, I adopt the standard Λ cold dark matter model

with the best-fit cosmological parameters from Jarosik et al. (2011) (WMAP-

Yr74), Ωm = 0.267, ΩΛ = 0.734, and H0 = 71 kms−1Mpc−1.
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Figure 1.4: Map of dark matter made from gravitational lensing measure-

ments of 26 million galaxies in the DES Y1 data. It covers over 1300 deg2

and covers redshifts 0.2 < z < 1.3. Red regions have more dark matter than

average, blue regions less dark matter. (Chang et al., 2018).
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Figure 1.5: BAO from SDSS-III BOSS with configuration space correlation

function (ξ(s)) on the y-axis and separation (s) on the x-axis. The colours

represent redshift bins, where the red curve is 0.2 < z < 0.5, black is 0.4

< z < 0.6, and blue is 0.5 < z < 0.75. The blue and red curves are shifted

by an arbitrary value of ± 0.4 for clarity. (Alam et al., 2017).
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Figure 1.6: The eBOSS DR14 quasar spherically-averaged BAO signal, with

configuration space (ξ(s)) on the y-axis and separation (s) on the x-axis.

The smooth component of the best-fit model has been subtracted from the

best-fit model and the measurements in order to isolate the BAO feature

(Ata et al., 2018).
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Figure 1.7: The left panel shows constraints on Ωm and ΩΛ using the 68% and

95% confidence levels for three sets of BAO data. The blue contour is using

only BOSS sample, red is when combining it with the DR14 sample, and the

filled blue contour is when using all available BAO data (including BOSS

Lyα). The right panel shows the one dimensional probability distribution

function for the value of ΩΛ for each of the three sets of BAO data. (Ata

et al., 2018).
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to the use of the full shape of the galaxy power spectrum.
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Chapter 2

Machine Learning Methods

Machine learning is a technique that allows computers to progressively im-

prove on a given task without being programmed to do so. The term was

first used by Arthur Samuel (1959) where he used a method called Artificial

Neural Networks (ANNs, commonly shortened to neural networks) to teach

a computer how to play checkers. The basic premise of machine learning

theory is that algorithms built in a specific way can learn from trends in

data and subsequently make predictions about new and unseen data.

Machine learning methods can either be ‘supervised’ or ‘unsupervised’

depending on the information available in the data. In supervised methods,

each training sample has a corresponding label or target value as to what

the sample represents. For example, in a machine learning application where

a user was teaching a computer about what spiral or elliptical galaxies look

like, a picture of a spiral galaxy could have the corresponding label of ‘spi-

ral’. Conversely, in unsupervised methods, no labels are assigned to training

samples and the algorithm finds trends in the data by itself.

The most widely used applications of supervised learning are with clas-

sification or regression problems. A classification problem would be like the

one mentioned previously, an image recognition problem where images are

classified as containing either a spiral or elliptical galaxy (discrete labels),

whereas a regression problem involves attempting to predict a continuous
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variable, such as redshift or magnitude.

In order for a machine learning algorithm to learn about trends in the

data, the input variables must be considered. These are commonly knows

as ‘features’ - individual measurable properties. Examples of these would be

measures of object magnitudes, shape, or colour, and for image recognition

techniques whole images can be used. It is important that the features that

are chosen are discriminative and independent to ensure efficient learning.

There are many different types of algorithms that can be used to do

machine learning; some popular ones include:

• Tree-based methods use a flowchart-like model to make decisions about

a sample’s target value (Breiman et al., 1984).

• Neural networks use an interconnected group of artificial neurons which

model data in a non-linear fashion (Rosenblatt, 1957).

• Support vector machines (SVM) map samples in feature space separat-

ing categories as much as possible (Cortes and Vapnik, 1995).

• Bayesian networks use probability distributions of variables with con-

ditional dependencies to separate data (Heckerman, 1995).

In this work, I will be considering the application of four tree-based meth-

ods to perform star-galaxy classification, and a deep learning method called

Convolutional Neural Networks (CNNs) to perform classification of n-body

simulations of either ΛCDM or nDGP dark matter particle simulations. In

this chapter, I will outline these two methods using well known datasets: the

Iris Flower Dataset for tree-based methods, and the Modified National Insti-

tute of Standards and Technology (MNIST) database of handwritten digits

for CNNs. Section 2.1 will discuss each of the four tree-based methods used,

the method behind how features are chosen for the star-galaxy separation

work, and a method to analyse and interpret tree-based models. Section

2.2 will introduce the theory behind ANNs and CNNs, describing each com-

ponent of the model, and possible ways of analysing and interpreting CNN

models in order to understand what they have learned.
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2.1 Tree-based Methods

This section introduces the machine learning algorithms used in this work,

including the methodologies behind the Mutual Information based Transduc-

tive Feature Selection (MINT) feature selection algorithm (He et al., 2013)

and a method to simplify ensemble methods based on decision trees called

treeinterpreter (Saabas, 2015).

The birth of tree-based methods lies with the classification tree model for

the Iris Flower Dataset that Fisher (1936) used to introduce linear discrimi-

nant analysis (LDA).

In Fisher’s 1936 paper, he introduced a multi-variate dataset commonly

known as the Iris Flower Dataset. Included in this dataset are 50 samples

from three species of Iris flower, with each sample including four features:

petal width and length, and sepal width and length. Much like the MNIST

dataset described in Section 2.2.7, the Iris flower dataset has become a stan-

dard benchmark for testing new machine learning algorithms. In this work,

I use this dataset to calculate a ranking of features in importance relating

to correct classifications (a function included in scikit-learn python package

called feature importance), which can help in the process of interpreting

the inner workings of a machine learning model. This is further explored in

Section 2.1.4, where I show an example of the feature importance calcula-

tion and also describe a newer method to better determine the importance

of each feature called treeinterpreter.

As well as the Iris Flower Dataset, Fisher brought forward the idea of

LDA, which finds a linear combination of features to separate data into two

or more classes (e.g. spiral or elliptical galaxy). It does this by using the

condition that the probability distribution functions that relate features to

classifications and log of the likelihood ratios be larger than a set thresh-

old, which would indicate the features belong to a particular classification.

Whilst this isn’t specifically the first example of a decision tree, Fisher did

bring forward the dataset that is still used today and the idea of regression

classifying, which is the end result of tree-based classification methods.
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The first specific example of a regression tree algorithm was published by

Morgan and Sonquist (1963) in their Automatic Interation Detection (AID)

method. In the AID method, at the start of the tree (the root node) data

is recursively split (or grouped) into two child nodes. The quality of the

splits are measured and splitting stops when the quality surpasses a certain

threshold (the modern day application of this process is more thoroughly

explained in Section 2.1.2). The result which the AID method predicted

was the end node sample mean, a continuous variable, therefore making AID

a regression method. The THeta Automatic Interaction Detection method

(THAID) used the ideas from AID to solve classification problems, choosing

to split data as it progresses through the tree to maximise the number of

observations in each category (Messenger and Mandell, 1972).

There was not much interest in these methods, as it was quickly shown

that the AID method could severely overfit the data (Einhorn, 1972). This

meant the model was able to predict the training data with high accuracy,

but did not generalise well and was inadequate when attempting to predict

on unseen data. It was also shown that there was a problem with feature

selection in the trees - if there were two features that were highly correlated,

only one would appear in the tree (Doyle, 1973). This made any kind of

measure of the importance of features relative to each other unreliable.

These issues prevented tree-based methods from being adopted until the

publication by Breiman et al. (1984), titled “Classification And Regression

Trees” (CART). In this paper, a new method was employed to address the

generalisation issues of AID and THAID. In CART, the trees would not use

the AID/THAID method to determine when to stop splitting, but would

rather grow a large tree and remove splits (pruning) to reduce the size of the

tree to find a minimum cross-validation estimate of error. Also, to account

for the unreliability in measuring feature importance in the AID/THAID

method, CART had the ability to produce ’surrogate splits’ in the tree. This

is when a series of splits are performed using alternate features, as a substitute

for the original desired split. This has two main advantages: it can deal with
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missing data values in the original desired split, but also compare feature

splits against each other (providing a score) providing a more reliable method

of determining feature importance.

From CART, interest has developed in utilising ensembles of classifiers

to make predictions on data. In section 2.1.1, I discuss the various ensemble

methods used for the results presented in Chapter 3.

There is a more comprehensive review of the history of tree-based methods

in Loh (2014).

2.1.1 Object Classification Using Tree Based Machine

Learning Methods

In this section, various tree-based machine learning methods used in this work

are described in more detail. Four tree-based machine learning methods are

used in this work: Random Forest (RF, Breiman, 2001), Adaboost (ADA,

Freund and Schapire, 1997; Zou et al., 2009), Extra Randomised Trees (EXT,

Geurts et al., 2006) and Gradient Boosted Trees (GBT, Friedman, 1999, 2001;

Hastie et al., 2009). I use the implementations of these algorithms from

within the scikit-learn python package (Pedregosa et al., 2011) - tools

for data mining and data analysis. All of these methods are able to draw a

decision boundary in multidimensional parameter spaces which distinguishes

between classifications. I describe these algorithms briefly below.

A decision tree is a flowchart-like model that makes ever finer partitions

of the input features (for instance, photometric properties) of the training

data. Each partition is represented by a branch of the tree. The input feature

and feature value used to generate the partitions are chosen to maximise

the success rate of the target values (for instance, point source or galaxy

classifications) which reside on each branch. This process ends at leaf nodes,

upon which one or more of the data sit. A new object is queried down the

tree and lands on a final leaf node. It is assigned a predicted target value

from the true target values of the training data on the leaf node. A single

decision tree is very prone to over fitting training data.
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Random Forests (RF, Breiman, 2001) train by generating a large number

of decision trees, with each tree using a bootstrap re-sample of the training

data and a random sample of the input features. During classification of

new data the majority vote across all trees is taken. By building a model

that takes a vote from many decision trees, the problem of over fitting the

training set is overcome, allowing better generalisation to unseen data.

Extra Randomized Trees (EXT, Geurts et al., 2006) is a similar algorithm

to Random Forests, but splits in the generated decision trees are decided at

random instead of calculating a metric. This makes model training faster

and can further improve generalisation.

Adaboost (ADA, Freund and Schapire, 1997; Zou et al., 2009) and Gradi-

ent Boosted Trees (GBT, Friedman, 1999, 2001; Hastie et al., 2009) are both

examples of boosted algorithms, which convert so-called decision stumps into

strong learners. Decision stumps are shallow decision trees (trees with a low

depth) that result in predictions close to a random guess. The data is pro-

cessed through these trees multiple times with the algorithm weighting the

model based on performance. Adaboost changes the model between itera-

tions by re-weighting the data of objects that were misclassified at a rate

governed by the learning rate parameter. This minimises model error by

focusing the subsequent tree on those misclassified objects. Gradient Boosted

Trees changes the model by iteratively adding decision stumps according to

the minimisation of a differentiable loss function (which tracks misclassifi-

cation) using gradient descent. The model will start with an ensemble of

decision stumps and the loss will be assessed. Between each iteration the

algorithm adds decision stumps that reduce the loss of the model, stopping

when loss can no longer be reduced (when the gradient of reducing loss flat-

tens).

2.1.2 Assessing Node Splits (Metrics)

A decision tree progresses from the whole dataset being split in a node at

the top of the tree to small subgroups of the data being split at the bottom
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of the tree, and does this by choosing a variable at each node that best splits

the data. The quality of this split is assessed using a metric, which generally

assess the homogeneity of the target variable during the progression. In

this work, I test and use two metrics when creating tree-based models, gini

impurity (Light and Margolin, 1971), and information gain (or cross-entropy

impurity) (Quinlan, 1986).

As said previously, at each node an assessment takes place before the

data is split again. Given that there are training vectors xi and target or

label vectors yi for a given dataset. If values 0, 1, ... K-1 are the target

classification for node m in the decision tree, representing a region Rm with

Nm observations, the proportion of classification k observations in node m is

given as pmk, where

pmk = 1/Nm

∑
xi∈Rm

I(yi = k). (2.1)

Gini Impurity is then a measure of how often an element that is cho-

sen randomly from the data residing on that node Xm would be incorrectly

labelled if it was to be given a label at random. Its formulation is,

G(Xm) =
∑
k

pmk(1− pmk), (2.2)

where G would be the measure of Gini Impurity.

Information Gain (Cross-Entropy Impurity) considers that given a sample

reached this node that is being assessed, what is the expected amount of

information required to specified whether a new example should be labelled

in a particular way. It is formulated as,

IG(Xm) = −
∑
k

pmklog(pmk), (2.3)

where IG would be the measure of Information Gain (Cross-Entropy Im-

purity). These metrics are quite similar, except that using information gain

is slightly more computationally taxing due to the logarithmic part of the
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calculation. In this work, both of these metrics are tested when tuning the

tree-based methods.

2.1.3 Feature selection using MINT

To aid in the interpretation of the results of tree-based ensemble methods,

it would be advantageous to select only a small number of features, but

chosen wisely such that they are minimally correlated with each other, and

have strong classifying power (Andrew. Hall, 2000). Various feature selection

methods have been explored in recent years in relation to object classification

problems, such as the Fisher discriminant (Fisher, 1936; Soumagnac et al.,

2015), or the previously mentioned feature importance function provided

in the scikit-learn package (Pedregosa et al., 2011; Hoyle et al., 2015). This

work shows the first known application of the feature selection method known

as MINT (He et al., 2013) to astronomical data.

To explain how MINT works, I start with an explanation of ‘Maximum

Relevance and Minimum Redundancy’ (mRMR), another method of feature

selection which can help to find a small number of relevant input features

without relinquishing classification power. This has been proven to work in

multiple datasets involving e.g. handwritten digits, arrhythmia, NCI cancer

cell lines, and lymphoma tissues (Ding and Peng, 2005; Peng et al., 2005).

mRMR first calculates the maximum relevance, a feature selection method

based on the measurement of mutual dependence (correlation) between the

features. Maximum relevance measures the mean of all of the mutual infor-

mation values (a measure of correlation) between unique pairs of individual

features xi, and classes c, with the aim of finding a set of features most cor-

related with a specific classification. The maximum relevance calculation is

given by maximising D for the selected features S and class c where

D =
1

|S|
∑
xi∈S

1(xi; c), (2.4)

with I being the mutual information, and |S| is the cardinality of the
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feature set S. Selecting features that are maximally relevant to the classifi-

cation causes the set of returned features to be highly correlated with one

another. To compensate for this, features that are highly correlated with

other features are removed using minimum redundancy. This is calculated

by minimising R for the selected features S where

R =
1

|S|2
∑

xi,xj∈S

I(xi, xj), (2.5)

with I(xi,xj) representing the mutual information between features xi and

xj.

We would like to maximise D (Equation 2.4) while minimising R (Equa-

tion 2.5). This can be simplified, completing the mRMR calculation by

combining these requirements in one equation, and maximising Φ where

Φ = D −R. (2.6)

This ensures the returned set of selected features is highly correlated with

the classification, but are mutually exclusive from other features in the set.

This work uses an extension of mRMR called Mutual Information based

Transductive Feature Selection (MINT) (He et al., 2013), a method designed

to help with the ‘curse of dimensionality’ in genome trait prediction. This

arises due to the issue of having many more features than samples in the

dataset. MINT assesses the mutual information between the training sam-

ple’s features and classification and, setting it apart from mRMR, between

individual features in both the training and test sample.

This means that MINT can effectively combine Equations 2.4 and 2.5

into Equation 2.6, the same as mRMR, but is able to exploit a much larger

amount of data due to the assessment of the correlation between features for

the entire sample, not just the training sample.

I will now consider an expanded version of Equation 2.6 with the MINT

modifications included. The incremental search for features using MINT

works in the following way; I assume we have a set of X total features, and
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Sm−1 as a subset of those features containing m − 1 features. The m-th

feature is selected from the remaining feature set, X − Sm−1, by maximising

Φ in the same way as in Equation 2.6, as follows:

maxxj∈X−Sm−1

[I(xTrj ; cTr)− 1

m− 1

∑
xi∈Sm−1

I(xTr + Test
j ;xTr + Test

i )].
(2.7)

The modifications are made clear by the indication of which sample set

is being used in the mutual information calculations, either only the training

(Tr), or both training and test (Test) samples.

I follow He et al. (2013) and explore the high dimensional feature space

using the greedy algorithm (Vince, 2002). In the case of MINT, greedy means

that parts of the calculation are performed dynamically - utilising previously

calculated values in the MINT algorithm for future MINT calculations -

making the feature selection process vastly quicker.

A user defined number of features is selected using the MINT algorithm,

thus reducing the amount of input data (by reducing the number of features)

required to make a robust prediction for the test sample. In this work, I have

incorporated python code kindly provided by Ben Hoyle to calculate MINT

feature selections in Chapter 3.

2.1.4 Interpreting Models of Tree Based Methods

I use tree-based machine learning methods because they are robust, difficult

to overfit, and have methods available to aid in interpreting them (Hastie

et al., 2009). By examining the decision trees created by the algorithm, the

inner workings of the model can be understood. However, when the data are

vast and complex and an ensemble of trees is used, the scope of the model

deepens to such a degree that interpretation becomes near impossible. It is for

this reason that new methods of model interpretation must be investigated.

The possible structure of an example decision tree from a Random Forest

with no limit on the hyperparameter ‘maximum depth’ is seen in Figure 2.1.
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Starting from the top and working down the tree, an object would advance

through the tree in one direction or another towards the leaves (predicted

class) at the bottom. It is clear from the complexity of the tree that it is

unfeasible to easily gain information relating to the inner workings of the

model by simply looking through the trees. This is especially the case since

each tree will have drawn different decision boundaries relating to specific

types of objects. For example, one tree may be very good at classifying red

point sources, while another may excel at classifying blue galaxies.

Figure 2.1: Example of a single decision tree from a Random Forest comprised

of 256 trees with unrestricted maximum depth. Blue colours indicate one

classification, while orange colours indicate a different classification. Opac-

ity of colour represents probability of classification with more solid colours

denoting higher probabilities.

There are methods for determining which features are important to the

machine learning model, such as the feature importance function provided

in the scikit-learn package (Pedregosa et al., 2011). This is sometimes re-

ferred to as the ‘mean decrease impurity’, which is the total decrease in node

impurity, an assessment of how well the model is splitting the data, averaged

over all of the trees in the ensemble (Breiman et al., 1984). This is to say

that the features in the model are assessed, and if they consistently con-

tribute to making classifications, their importance increases. This is useful,
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but somewhat ambiguous as it does not give much insight into the individual

decisions the trees make, such as where it is most efficient to draw a boundary

in parameter space. An example of the result of the feature importance

function performed using default settings for a Random Forest on the Iris

Flower dataset is shown in Figure 2.2. When looking at this figure, it is clear

that petal width is the most important feature when classifying the types of

Iris flower, however, no insight is given about the importance of any specific

width.

Figure 2.2: Feature Importance using a Random Forest with default settings

on the Iris Flower dataset.

Instead, a python package called treeinterpreter 1 (Saabas, 2015) can be

used in an effort to decipher this information. For each object, treeinterpreter

follows the path through the tree, taking note of the value of the feature in

question every time it contributes or detracts from an object being given a

particular classification. This means that one can investigate how much the

1https://github.com/andosa/treeinterpreter
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value of a particular feature contributes to the probability of a certain classi-

fication. This is the first known application of treeinterpreter to astronomical

data (on the suggestion of Ben Hoyle).

To learn how treeinterpreter works, I start with the mathematical descrip-

tion for a prediction given by a single tree. The probability of a particular

object being a member of class c is given by the prediction function f(x),

where x is the feature vector for the object in question. In the case where

f(x) is obtained from a single tree, I have

f(x) = cfull +
K∑
k=1

contrib(x, k), (2.8)

where cfull is the initial classification bias due to the class distribution in

the sample for the class c, and contrib(x, k) is the contribution from feature

k in the feature vector x to the probability of being classified as class c.

An object traversing through the tree from the root to the leaves follows this

path: at the root node, the probability of class c is the classification bias cfull

and if there were no further splits in the tree, the probability that any object

in the test sample was of class c would remain at the initial classification

bias cfull. I.e. my sample could be 63% galaxies, so any object starting in a

single tree would have a 63% probability of being a galaxy. As an object’s

feature is questioned by the node (e.g. FIBERMAG G < 22), the probability

of it being classified as a galaxy deviates from that 63% by a small amount;

defined by the percentage of the training sample of class c that satisfied the

node criteria. It is this contribution, contrib(x, k), and those from subsequent

nodes that are summed to give the overall prediction for the object.

Extending this to an ensemble of trees is fairly straightforward; the overall

prediction function F (x) from a Random Forest is the average of those of its

trees fj(x) (Breiman et al., 1984),

F (x) =
1

J

J∑
j=1

fj(x), (2.9)

where the number of trees is given as J .
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There is one last consideration to account for in the treeinterpreter cal-

culation; if each decision tree has been built using a bootstrap of the whole

sample, the initial bias of the tree, cfull, will be different for each tree. It

is for this reason that the bias terms of each tree are averaged and added

to the average contribution of each feature. This makes the full equation in

treeinterpreter (Saabas, 2015) for the prediction function

F (x) =
1

J

J∑
j=1

cjfull +
K∑
k=1

(
1

J

J∑
j=1

contribj(x, k)). (2.10)

This not only presents which features are important to a particular clas-

sification in the model overall, but also which features were important for

the individual classification of each object. As the value of the feature for

each object in the data is known, where in parameter space the model is

succeeding or failing can be determined.

2.2 Artificial Neural Networks

An Artificial Neural Network is made from interconnected layers of artificial

neurons. To understand modern ANNs, the understanding of the ‘percep-

tron’ (Rosenblatt, 1957) is the natural starting point. A perceptron is an

algorithm that takes multiple inputs, and produces a binary classification,

above or below a set threshold. A simple diagram of this is shown in Figure

2.3, where x1,2,3 are inputs and the circle is the perceptron.

Each input x has a corresponding weight w and the perceptron is assigned

a bias b, with the weight being a value that corresponds with the input’s

importance to the output, and the bias changing how easy it is to pass the

threshold. The output to the perceptron can be defined as the weighted sum

of the weights and inputs w · x =
∑

j wjxj plus the bias,

output =

0, if w · x+ b ≤ 0

1, if w · x+ b > 0
(2.11)
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where the cases 0 or 1 are whether the perceptron was activated or not.

This equality condition, in this case a step function, applied to the summed

weights and biases is called an ‘activation function’. This current model of

a neuron acts the same as a NAND logic gate and when arranged in layers

(a network), these perceptrons can compute any standard logic function.

Learning algorithms could automatically choose the optimum weights and

biases for our network by changing them a small amount, and then assessing

the subsequently changed output. The quantification of this change is called

a loss or cost function, which will be better defined in Section 2.2.2. The only

problem with this idea is that with perceptrons, because of the binary nature

of them, changing the weights and biases a small amount could cause the

output to change a considerable amount. This would occur when a changed

output from 0 to 1 propagates through the layers, changing subsequent layers

in the network in a complicated way.

A solution to this problem is to change the perceptrons to ‘sigmoid neu-

rons’, changing the activation function at the end to a sigmoid function. This

would allow the inputs and outputs to these neurons to be continuous values

from 0 to 1. This now means that a small change in the weights and biases

in the neuron results in a small change in the output, and allows the network

to be tuned for better results.

Since the application of the sigmoid function, research into activation

functions has progressed and newer ones such as ReLU (Hahnloser et al.,

2000, 2003) or Leaky ReLU (Maas, 2013) have proved to be more successful.

The name ReLU means ‘Rectified Linear Unit’, where a linear unit would be

an activation of x = y, and it is rectified in the respect that it only considers

positive values. A visual representation of what these activation functions

look like is in Figure 2.4.

2.2.1 Backpropagation

The idea of backpropagation was first theorised by Rumelhart et al. (1988)

and works by repeatedly tuning the weights in the network, then assessing the
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Figure 2.3: Perceptron diagram (Nielsen, 2015)

Figure 2.4: Activation functions
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difference between the output and the desired output (the loss or cost func-

tions defined in Section 2.2.2). This is the process that allows the network to

‘learn’ about the inputs, and adapt the weights and biases to more accurately

predict desired outputs. This allowed neural networks that contained hidden

layers - layers of neurons in between the input and output layers which allow

for much more complex functions to be modelled in ANNs. An example of

an ANN architecture with one single hidden layer is shown in Figure 2.5.

Figure 2.5: ANN with single hidden layer (Image taken from

https://www.nicolamanzini.com/single-hidden-layer-neural-network/)
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2.2.2 Loss functions

The way that I assess predictions of a classification model is to use cross-

entropy loss (de Boer et al., 2005) or log-loss, which gives a probability value

between 0 and 1. The loss increases as shown in Figure 2.6 as the predicted

class moves further away from the true class. In the context of this figure,

this means if the true class was assigned the label 1, and the model predicted

the label of 1 with a probability of 0.2, the loss would be the high value of 2.

The model is highly penalised for incorrect predictions due to the exponential

nature of the loss at the lowest probabilities. In theory, a perfect model would

have a loss value of 0.

If the classification is binary,

cross entropy = −(y log(p) + (1− y) log(1− p)) (2.12)

where y is the true classification and p is the predicted classification. If

there is more than two possible classifications (multiclass), a separate loss is

calculated for each class c per sample s and the result is summed over all

classed M :

−
M∑
c=1

ys,c log(ps,c) (2.13)

This is the main loss function used in Chapters 4 and 5 of this work.

2.2.3 Gradient Descent Optimisation Algorithms

The way neural networks are tuned is by using a technique called gradient

descent (Robbins and Sutton, 1951; Kiefer and Wolfowitz, 1952). Gradient

descent is an optimisation algorithm that iteratively tweaks some parameters

of a function to minimise the loss or cost. This is analogous to a ball rolling

down a hill and finding the minimum point in a valley. The general process

is as follows:

• Parameters are initialised and corresponding loss is calculated,
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Figure 2.6: Cross-entropy loss (Image taken from

https://github.com/bfortuner/ml-cheatsheet/blob/master/docs/loss functions.rst)
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• Parameters are changed by a small amount (governed by the learning

rate) and the loss is recalculated,

• Gradient of the change in loss is calculated,

• If the loss is reducing, the parameters continue to be changed in the

same way and the process is repeated until convergence is reached.

If the learning rate is set too high the optimal parameters may be over-

looked and the loss will oscillate; if the learning rate is too low, the optimal

parameters may never be achieved.

Gradient descent can be performed in a number of ways regarding the

number of training examples considered per parameter update. Either the

gradient is calculated after the whole dataset has been processed (batch gradi-

ent descent), after each training example (stochastic gradient descent; SGD),

or somewhere in between (mini-batch gradient descent). Each method has

advantages and disadvantages; for example, batch gradient descent can be

slow and cumbersome due to memory limitations with large datasets but will

always converge to the global or local minimum depending on the error sur-

face. SGD can cause the loss to fluctuate wildly as it does not consider many

similar training examples simultaneously, but this allows it to find more op-

timal local minima when complex error surfaces occur. In this work, I utilise

mini-batch gradient descent with a batch size set at 25.

It can be seen that as the idea of gradient descent is developed, there

are many methods one can employ to arrive at an optimal set of param-

eters, spawning many different optimisation algorithms. One popular idea

throughout these algorithms is to vary the learning rate through a parame-

ter called momentum (Rumelhart et al., 1988) or something similar, helping

to achieve convergence faster and reducing oscillations. A momentum term

increases the parameter updates when the loss is reducing, and decreases the

parameter updates when the loss is increasing.

The gradient descent optimisation algorithm used through Chapters 4

and 5 of this work is Adaptive Moment Estimation (Adam) (Kingma and
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Ba, 2014). Adam computes adaptive learning rates for each parameter and

stores an exponentially decaying average of past gradients, which is similar to

a momentum term but gives Adam a more complex form of hysteresis. The

authors of the algorithm show that it works well empirically and compares

well to other forms of adaptive learning methods.

2.2.4 Data Augmentation

A commonly used technique in deep learning is that of ‘data augmentation’

(Yaeger et al., 1996), a preprocessing step where the dataset is used to create

new samples that the machine learning algorithm considers as new data.

This means it does not identify the modified sample as the same as one it has

previously seen, as this would cause problems in the bias of the dataset. Using

data augmentation can improve regularisation and help reduce overfitting of

the training set due to the increased number of samples, and is also useful if

there is limited data or storage space available. In terms of an image dataset,

there are several well tested ways of performing data augmentation, such as

cropping, rotating, or flipping the images. The method of data augmentation

used in this work is detailed in Section 4.

2.2.5 The Neural Network Learning Process

Every time the network looks over a set number of examples in a training

set, this is called one epoch. After one epoch has occurred, the network is

validated using a set number of examples from the test data (the performance

of the network is assessed) until either the user stops the training manually,

or the training is set to be stopped automatically when a certain point is

reached. This point could be when the loss stops falling after a few epochs

or the networks achieves a certain level of performance.

Now that the ideas of loss functions, gradient descent, batches, and epochs

have been established, exactly when the network learns can be better estab-

lished. During each epoch the neural network looks at the training data in
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batches and after each batch is seen by the network, backpropagation oc-

curs. This is when the weights and biases are tuned in the network through

monitoring the loss function. This is a relentless process, with weights and

biases being updated often (more than) thousands of times per epoch. It

is through this method that the error function surface (the local and global

maxima and minima of loss) is explored, and a viable set of weights and

biases are discovered in a neural network.

2.2.6 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks are a category of deep learning artificial neu-

ral networks and have been commonly applied to visual based machine learn-

ing tasks such as recognition or classification. Examples of this include being

able to recognise animals or objects in images, different characters or digits,

or sentiment in sentences. One of the first CNNs that became popular was

called LeNet5 by Lecun et al. (1998), where he identified that using indi-

vidual pixels as features do not take advantage of the fact that features in

images are highly spacially correlated. The CNN architecture he used was

very complex, subsampling the training images (called MNIST and described

in Section 2.2.7) through many layers to select important features from the

images and eventually passing those features to a multi-layered neural net-

work to classify them. Many modern CNN architectures, including the ones

employed by this work, follow the same principles.

CNNs can analyse images of colour or greyscale; when using a coloured

image, each of the red blue and green components of the image are split into

channels that the CNN can analyse and identify features in. In greyscale

images such as the MNIST dataset, only one channel is required.

In this work, I utilise a python package called Keras (Chollet et al., 2015)

(which is built upon Tensorflow (Abadi et al., 2015)) to create CNN models.
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2.2.7 MNIST Database of Handwritten Digits

The MNIST database (Lecun et al., 1998) is a large collection of digitised

handwritten digits, created from a combination of two National Institute of

Standards and Technology (NIST) databases. These databases were origi-

nally sourced from high school students (Special Database 1) and employees

of the United States Census Bureau (Special Database 3). The database

contains 60,000 training samples and 10,000 test samples, each normalised

to produce an image of 28x28 pixels, with pixel intensities ranging from 0

(white) to 255 (black).

Much like the Iris Flower dataset described in Section 2.1, the MNIST

database has been adopted by the machine learning community as a stan-

dard benchmark for machine learning algorithms, with a number of scientific

papers looking to achieve the lowest error rate. The creators of the database

obtained an error rate of 0.8% using SVMs (Lecun et al., 1998), but this

has since been improved upon using CNNs, achieving an error rate of 0.23%

(Cireşan et al., 2012), or to 0.21% using new regularisation techniques (Wan

et al., 2013). A new and extended version of the database has since been

released as of 2017 called Extended MNIST (EMNIST). Derived from NIST

Special Database 19, it contains 240,000 training images and 40,000 test im-

ages. The MNIST database has been used to perform a number of tests

relating to the model sensitivity analysis methods detailed in Section 2.2.9.

2.2.8 Layers in CNNs

Figure 2.7 shows the layers used in the LeNet5 CNN architecture. From left

to right, the layers are: the input layer with example MNIST training sample,

convolutional layers and pooling (subsampling) layers interlaced, then they

are passed through full connections to the multi-layered neural network and

the classification output layer. Each of these layers will be described in the

following subsections.
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Convolutional Layers

Consider the input image to a convolutional layer as a matrix of pixel values.

For example, in the case of the MNIST dataset, a 28x28 matrix of pixel

values ranging from 0 (white) to 255 (black). The steps to computing a

convolutional layer are:

• Choose a ‘filter’ or ‘kernel’ - a separate smaller matrix with randomly

initialised values,

• Move the filter across the input image starting at the top left, this is

called a ‘stride’,

• Between each stride an element wise matrix multiplication is computed

and the sum of the matrix is taken.

The resulting matrix is smaller and is commonly known as a ‘convolved

feature’ or ‘feature map’, as its purpose is to detect or map features. This

means the filter essentially becomes a template matching operation in the

CNN. Having multiple filters with different properties that are learned during

the training process allows the CNN to pick out many different features in

the same layer. At this point in the CNN, after the convolution operation,

it is normal to include an activation layer to introduce non linearity into the

network, which is required to ensure the a network with multiple layers can

learn complex functions. Without introducing non-linearity to the network,

regardless of the number of convolutions or hidden layers, the network would

compute a linear transformation of the input values.

Pooling Layers

Pooling layers are included in CNNs to reduce dimensionality while retaining

important information about the image. There are different ways of pooling

information such as maximum, average and sum. Figure 2.8 shows an exam-

ple of a max pooling operation with the stride parameter set at 2 on a 4x4
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feature map on the left with the resultant 2x2 filter on the right. The maxi-

mum value is taken from each coloured 2x2 stride, creating the new pooled

filter. In the LeNet5 architecture and in this work, pooling is performed after

each convolution (and applied activation).

Pooling is useful for this work for two main reasons: reducing the number

of parameters in the model helps to prevent overfitting and the model be-

comes more generalised, as small changes in inputted samples do not change

outputs from pooling (Lecun et al., 1998).

Other Layers

There are various other layers or operations commonly used in finalising the

architecture of a CNN. These layers include,

• Batch Normalisation layer: Performing a normalisation operation be-

tween each layer of a neural network has been shown to improve per-

formance and stability (Ioffe and Szegedy, 2015). The inputs passed to

each layer after batch normalisation are of zero mean and unit variance,

achieved by scaling the activations.

• Flatten layer: This is an operation where all of the feature maps and

dimensions of the feature maps are organised into a 1D vector, ready to

pass to a fully connected layer of neurons. It is equivalent to performing

a dimension transformation in common programming languages and is

also required (for instance) to save a 3D vector to a standard text file.

• Softmax layer (Bridle, 1990): This is the final layer in a neural network

classifier, and provides a probability distribution over K different clas-

sifications. It is defined as σ(z)j = ezj/
∑K

k=1 e
zk for j = 1 to K, where

a K dimensional vector or arbitrary real values (as would be outputted

by the CNN) are normalised into a K dimensional vector σ(z) where

the components sum to 1.

A table of the CNN architecture used in this work can be found in Table

4.1.
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Figure 2.7: LeNet5 CNN architecture (Lecun et al., 1998)

Figure 2.8: Max pooling example (Image taken from

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/)
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2.2.9 Interpreting CNNs

While it is useful that CNNs can achieve such great accuracies in image

classification tasks, there are many reasons why understanding how models

make their decisions is important to study. For instance, if CNNs were to be

used to drive medical decisions such as classification of malignant tumours,

or safety decisions such as in an accident involving self driving vehicles, why

the model is behaving a certain way becomes very important to justify the

use of them. While this reason for model interpretation is important, it

has been shown in previous work that model interpretation can be used

in astronomy to verify current techniques, or enlighten the community to

previously overlooked information (Morice-Atkinson et al., 2018). In this

section, I outline the methods I have used to interpret why the CNN models

I create in Section 4.2 are successful when classifying dark matter particle

simulations of different models of gravity. The results from these methods

are shown in Section 5.1.

Model Sensitivity Testing Methods

Generated Gaussian Random Fields

One way of inferring which features a trained CNN uses to classify dark

matter particles as either ΛCDM or nDGP gravity would be to perform

classification on a dataset with a subset of the features known to be present

in the training dataset. The reason a subset would be used is because it

would reduce the number of free parameters in the dataset. The method I

use to do this is as follows:

• Train a CNN to classify ΛCDM and nDGP dark matter particle simu-

lations to a high accuracy.

• Measure the matter power spectrum of the dark matter particle simula-

tions in the training dataset, allowing the two point correlation function

to be parameterised for ΛCDM and nDGP gravity.
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• Create a set of power laws that are very similar to the matter power

spectrum measured in the ΛCDM and nDGP simulations. Some power

laws with different amplitudes, some with different gradients.

• Use the created power laws to generate numerous gaussian random

fields with the same spacial dimensions as the training set.

• Allow the trained CNN to attempt to classify these generated gaussian

random fields as if they were real dark matter particle simulations.

• Identify which power laws classified as ΛCDM or nDGP gravity.

In doing this, I will be able to determine which power laws the CNN

prefers to classify as one model of gravity or the other. Perhaps one model

of gravity will prefer high amplitudes on large scales and small amplitudes

on small scales, and the other model will prefer a more equal amplitude

at all scales. This investigation will be performed for CNN models trained

using: ΛCDM and nDGP simulations that are very different when comparing

their power spectra, ΛCDM and nDGP simulations with more similar power

spectra, and ΛCDM and nDGP simulations where the amplitude in their

power has been removed (i.e. they have been normalised).

Activation Maximisation

In this work I attempt to interpret the CNN model using a technique called

‘Activation Maximisation’ (AM) contained in a python package called Keras-

vis (Kotikalapudi and contributors, 2017). The idea behind AM is to create

an input image of a chosen classification using the CNN model by monitoring

a new loss function, AM loss. This is done through gradient descent iterations

where δAM Loss
δinput

is monitored - i.e. the input is changed as the AM loss reduces.

The basic process is as follows:

• A CNN model is trained using a training set, and validated as one that

performs well,
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• A new input image is created with the same dimensions as the dataset,

with pixel values drawn from a gaussian distribution with set mean and

variance. In the case of the MNIST dataset, it would be a 28x28 array

of pixels,

• A desired classification is chosen,

• This new input image is processed through the CNN model, and the

AM loss is assessed.

• The input is then changed and the AM loss is assessed again, and the

gradient of the loss is computed. If the AM loss is reducing, the input

data sample has been changed in the correct manner and will continue

being modified in the same way.

• The AM image is output, and resembles what the CNN would classify

as the desired/chosen classification with high accuracy

Through this process, the new input image will slowly change from Gaus-

sian distributed values to values that resemble the desired classification, as

the activation of the parameters in the CNN model is maximised. When the

AM loss no longer reduces, assessing the resulting new input image created

from the CNN model should yield insights into how the model makes correct

classifications.

Figure 2.9 shows what a CNN trained on MNIST data (to a classification

accuracy of > 99%) produces when it is tasked to change a grid of Gaussian

distributed values to what the CNN would classify as a number 8 with a

high accuracy. It can be seen that the resultant AM image does resemble a

number 8, but it looks quite different to the MNIST training images.

There are various parameters which can be changed when performing

activation maximisation. They are briefly described as: the output limits

of the created AM image (set to a minimum of -1 and a maximum of 1

in my case), and tolerances for AM loss, and two regularisation parameters

called ‘LPNormalisation’ (Riesz, 1910) and ‘Total Variation’ (Mahendran and
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Figure 2.9: Activation Maximisation image example for MNIST (the

number 8). (Image generated from https://github.com/raghakot/keras-

vis/blob/master/examples/mnist/activationmaximization.ipynb)
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Vedaldi, 2015). The LPNormalisation regularisation in this context helps

to control the intensities seen in the AM image, and the Total Variation

regularisation encourages more coherent image structures (Kotikalapudi and

contributors, 2017). These loss parameters are kept to their default values

throughout this work. In Section 5.2 I use the CNN models to create AM

images of simulations (hereafter AM simulations) for each ΛCDM and nDGP

gravity and I then analyse the outputs. I use this analysis to compare the

AM simulations to the original simulations I used to create the CNN models

to gain insight into what characteristics the model has been able to learn

about. This is the first known application of AM methods to cosmological

data.
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Chapter 3

Source Separation Using

Machine Learning

An important and long-standing problem in astronomy is that of object clas-

sification; for example, whether an object in a photographic plate is a nearby

star or a distant galaxy. Independent of the data-sample under investiga-

tion, the process of building a source catalog will require object classification.

There are multiple ways of determining the classification of astronomical ob-

jects, each with their own advantages and disadvantages. For example, tem-

plate fitting methods applied to photometric (Baum, 1962; Puschell et al.,

1982) or spectroscopic data (Cappellari and Emsellem, 2004; Sarzi et al.,

2006) can be accurate but are dependent on the choice of templates; whereas

classifying objects by radial profile (Le Fevre et al., 1986) can be quick, but

of limited accuracy due to the small amount of information used for each

object. For instance, radial profile data alone cannot be used to distinguish

between point sources, such as stars and QSOs.

There are successful complex point source separation methods in use to

identify astronomical objects, such as likelihood functions (Kirkpatrick et al.,

2011), where an object is classified as a QSO based on the summed Gaussian

distance to every object in a set of known QSOs and stars in colour space.

There are also complex machine learning methods for object classification
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that exist, such as Artificial Neural Networks that use photometry to isolate

high redshift QSOs (Yèche et al., 2010), or objects at fainter magnitudes

(Soumagnac et al., 2015). A recent investigation has also been performed into

source separation using multi narrow-band data with Convolutional Neural

Networks (Cabayol et al., 2018). A comparison of many of these methods

applied to Dark Energy Survey Y1 data can be found in Sevilla-Noarbe et al.

(2018).

This work aims to introduce a new combination of machine learning data

analysis methods to astronomy1, specifically with the use case of object clas-

sification, although it is noted that these methods can be readily applied to

other problems. The goal is to use machine learning to improve the preci-

sion/purity of object classification from photometric data, while simultane-

ously analysing the generated machine learning models in an effort to un-

derstand the decision making processes involved. The object classification

method I aim to improve on is the classification parameter stored in the

SDSS catalogue as frames (explained further in Section 3.1.

I achieve this by selecting data properties relevant to the classification

problem, then using those data with a range of machine learning algorithms

to classify astronomical objects. During object classification, information

behind the decision-making process that is usually internal to the machine

learning algorithm will be gathered, output, and visualised to achieve a

deeper understanding of how the machine learning algorithm succeeds in

classifying individual objects.

The Chapter is laid out as follows. Section 3.1 describes the SDSS data

and standard classification method behind assigning the frames parameter,

Section 3.2 includes a comparison of algorithm performance, and methods to

interpret the decision making processes in one of the tree-based algorithms.

Section 3.3 details the results obtained from these methods in terms of purity

and completeness.

1My code is hosted at https://github.com/xangma/ML RF
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3.1 Data

In this Section I introduce the observational data used in this Chaper, which

is drawn from the Sloan Digital Sky Survey (hereafter SDSS Gunn et al.,

1998). I briefly review the standard photometric star/galaxy classification

criterion given by the frames method which is obtained through the query of

the objc type parameter (Stoughton et al., 2002) in the CasJobs SkyServer

(Szalay et al., 2002).

3.1.1 Observational data

The data in this work is drawn from SDSS Data Release 12 (DR12, Alam

et al., 2015). The SDSS uses a 2.5 meter telescope at Apache Point Ob-

servatory in New Mexico and has CCD wide field photometry in 5 bands

(u, g, r, i, z York et al., 2000; Smith et al., 2002; Gunn et al., 2006; Doi et al.,

2010), including an expansive spectroscopic follow-up program (Eisenstein

et al., 2011; Dawson et al., 2013; Smee et al., 2013) covering 14,555 square

degrees of the northern and equatorial sky. The SDSS collaboration has

obtained more than 3 million spectra of astronomical objects using dual

fiber-fed spectrographs. An automated photometric pipeline performs object

classification to an r band magnitude of r ≈ 22 and measures photometric

properties of more than 100 million galaxies. The complete data sample, and

many derived catalogs including galaxy photometric properties, are publicly

available through the CasJobs server (Li and Thakar, 2008)2.

As I will draw large random samples from the SDSS DR12 data, the full

relevant dataset must first be obtained. I obtain object IDs, magnitudes and

errors as measured in different apertures in each band, radial profiles, both

photometric and spectroscopic type classifications, and photometry quality

“flags” using the query submitted to CasJobs shown in Appendix A.1. Flags

are useful indicators of the status of each object in the catalogue, warn of

possible problems with the object images, or possible problems with the var-

2skyserver.sdss3.org/CasJobs
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ious measurements related to the object3. The resulting catalog is similar

to that used in Hoyle et al. (2015), but redshift information is omitted. A

range of standard colors (e.g., PSFMAG U-PSFMAG G) and non-standard colors

(e.g. PSFMAG U-CMODELMAG G) are generated for each object. The final cata-

log contains 215 input quantities, or ‘features’. The magnitudes used in this

Chapter are PSFMAG, CMODELMAG, DERED, and FIBERMAG. DERED magnitudes

are MODELMAG magnitudes that are corrected for galaxy extinction. SDSS

states MODELMAG magnitudes are calculated by using ’the model (exponen-

tial or de Vaucouleurs) of higher likelihood in the r filter, and applying that

model (i.e., allowing only the amplitude to vary) in the other bands after

convolving with the appropriate PSF in each band’. FIBERMAG represents

the flux contained within the aperture of a spectroscopic fiber in each band.

In Section I describe the magnitudes used in the frames method, PSFMAG and

CMODELMAG. Objects that have a clean spectroscopic classification are filtered

by selecting objects with a Zwarning flag in the catalogue that is equal to 0.

This selection removes ≈ 11% of the sample.

The final catalog contains 3,751,496 objects. It is noted that approxi-

mately 66% of these objects are spectroscopically classified as galaxies with

the remaining objects classified as point sources. Two random samples from

the final catalogue are selected: the first is a training sample of 10,000 objects

and the second is a test sample comprised of 1.5 million objects. The small

training sample allows a large exploration of model space to be completed in

a tractable time scale.

3.1.2 Existing SDSS Classification Schemes: Spectral

Fitting and Photometric Selection

The SDSS provides both a spectroscopic and a photometric classification for

each object which both attempt to infer if the object is a galaxy or a point

source, including both stars and QSOs. I briefly review both techniques

3see https://www.sdss.org/dr12/algorithms/photo flags recommend/
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below.

The spectroscopic classification is stored in a catalogue parameter called

CLASS, which is assigned by comparing spectral templates and the observed

spectra using a χ2 cost function (Bolton et al., 2012). During this process

galaxy templates are restricted between redshifts, 0 < z < 2 and QSO tem-

plates are restricted to z < 7. It is noted that the observed spectra are

masked outside the wavelength range of 3600Åto 10400Å. In this work I as-

sume that this analysis produces the true object classification due to the fact

that this method directly determines the differences between single stellar

spectra and compound galaxy spectra of many stars, and I will use it to

compare different photometric classification predictions.

A second empirical method using photometric data is called frames (stored

as the objc type parameter in the CasJobs SkyServer), and uses the combi-

nation of following photometric magnitude measurements PSFMAG-X - CMODELMAG-X.

The PSFMAG magnitude is calculated by fitting a point spread function model

to the object which is then aperture corrected, as appropriate for isolated

stars and point sources (see Stoughton et al., 2002). The CMODELMAG magni-

tude is a composite measurement generated by a linear combination of the

best fit exponential and de Vaucouleurs light profile fits in each band. The

resulting CMODELMAG magnitude has excellent agreement with Petrosian mag-

nitudes for galaxies, and PSF magnitudes of stars (Abazajian et al., 2004).

Therefore the condition PSFMAG-X - CMODELMAG-X is a reasonable discrimi-

nator between galaxies and point sources.

In detail the composite feature PSFMAG-X - CMODELMAG-X is divided into

two bins for each of the X=5 SDSS bands, and the separating condition used

to determine the object class is the same for each band and given by

PSFMAG− CMODELMAG > 0.145. (3.1)

The SDSS pipeline provides the frames classification for each object in

each photometric band, as well as an overall classification calculated by sum-

ming the fluxes in all bands and applying the same criterion as in Equation
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3.1. This latter summation is used as the base line SDSS photometric clas-

sification scheme in this work. It is my understanding that this threshold of

0.145 was chosen through experimentation, as discussed in Section 4.4.6.1 of

Stoughton et al. (2002).

The distribution in PSFMAG vs. CMODELMAG is shown for the training sam-

ple in Figure 3.1, with the condition given in Equation 3.1 as the dashed

black line, and the colours denoting spectroscopic classification.
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Figure 3.1: Object classification using the frames method. Here we show

the relevant difference between two magnitude estimates in the I band, with

the discriminating dashed black line drawn according to Equation 3.1.

In this work I investigate if a new photometric classification can improve

the accuracy of the frames methods, and if by understanding how some

machine learning systems work, I can motivate changes to these base-line
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photometric classification schemes. The authors of the frames method state

that it accurately classifies objects at the 95% confidence level to r =21, and

that the method becomes unreliable at fainter magnitudes (Stoughton et al.,

2002).

3.1.3 Data Preparation

For the main body of this work, I only select data with good photometry and

spectra. In particular I select objects in the catalogue where their clean flag

is equal to 1. This removes objects which are duplicates, or with deblending

issues, interpolation issues, or have suspicious detections, or are stars close

to the edge of the survey.

How this may bias the results is explored, and a standalone test is per-

formed in Section 3.3.1 with and without the clean flag selection to deter-

mine what effect this has on the classification accuracy.

3.2 Methods

In this work, I perform object classification using the four tree-based algo-

rithms described in Section 2.1 (Random Forest, Extra Randomised Trees,

Gradient Boosted Trees, and Adaboost. These methods are used with each

of the following three subsets of photometric features:

• the five features that the SDSS pipeline uses in the frames method

(i.e., PSFMAG - CMODELMAG for each filter);

• five features selected using a feature selection method, MINT as dis-

cussed in Section 2.1.3;

• all 215 features available in the sample.

Each test is performed with 10000 objects in the training sample, predicting

on a test sample of 1.5 million objects. I will show the results for accuracy

of classification in Section 3.3.2 for each algorithm operating on the different
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True Galaxies True Point Sources

Objects classified as galaxies Tg Fps

Objects classified as point sources Fg Tps

Table 3.1: Variables used for defining purity and completeness.

subsets of photometric features. In this work, accuracy of classification is

100% when the classification provided from the tree-based algorithms or the

frames method is equal to the classification provided by the CLASS parame-

ter.

Each classification method is assessed using the standard metric of purity

and completeness. I adopt the same definition as in Soumagnac et al. (2015)

where purity refers to the fraction of retrieved instances that are relevant;

completeness is the fraction of relevant instances that are retrieved. These

measures are defined for galaxies in Equations 3.2 and 3.3 using the variables

in Table 3.1, with the equations for point sources being similar. In relation

to this work, purity would be a measure of how many galaxy classifications

(Tg + Fps) correctly identified galaxies (Tg), and completeness would be a

measure of how many galaxies (Tg) were correctly identified out of the total

amount of galaxies (Tg + Fg).

Purity =
Tg

Tg + Fps
(3.2)

Completeness =
Tg

Tg + Fg
(3.3)

Figure 3.2 shows an example of the decision boundaries created from a

Random Forest run using only two features, a simplified version of the first

test in the list above. The area where the algorithm classifies objects as

galaxies is shown in red, with classifications of stars shown in blue. The ar-

eas where classifications are more distinct have bolder colours, with the area

around the horizontal boundary showing more uncertainty in object classi-
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Figure 3.2: Training data (pink and cyan points for galaxies and point

sources) plotted over the decision boundaries (red and blue background for

galaxies and point sources), generated by an example Random Forest run us-

ing frames features in g and i band. The colour of the training data denotes

spectroscopic classification.
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fication. The plotted points show all 10000 objects of the training sample,

colour-coded by their spectroscopic type. It should be noted that the Ran-

dom Forest draws boundaries very similar to the ones in the SDSS pipeline

paper, though not as linear. However, it can be seen that some objects

are misclassified using both the frames method and this particular Random

Forest run. Using more than two features, such as in the tests listed above,

allows the machine learning methods to utilise more dimensions in parameter

space and consequently achieve a higher accuracy of classification.

3.2.1 Results from feature selection using MINT

The SDSS pipeline measures and calculates a rich abundance of features

from the photometric images. Rather than just focusing on those features

employed in the frames algorithm, one may also choose other available fea-

tures to pass to the machine learning algorithms. In this work, I reduce the

number of features from 215 to 5 using MINT. This is to mirror the number

of features the frames method uses and to test whether accurate predictions

can be made with severely reduced data per object. Another major reason

for utilising MINT over other feature selection methods such as mRMR is

because it is able to utilise photometric data from the 1.5 million objects

in the test sample. This provides more confidence that the selected features

will be those which are correlated least with one another, thus giving us the

best chance of accurate object classification.

Table 3.2 shows the results of the MINT feature selection method for

5 or 10 total selected features. It can be seen that there are features in

common between these two sets; these have clearly been identified as robust

and distinct features for classification.

The effect of changing the number of MINT selected features on the

classification accuracy has been investigated in a test Random Forest run

(with 256 trees and no set maximum depth). This can be seen in Figure 3.3.

The accuracy of the results only increases slightly (≈ 0.2%) as the number
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Number of selected MINT features (using 10000 training objects and 1.5

million test objects)

5 10

PSFMAG G - CMODELMAG R DERED Z - FIBERMAG R

PSFMAG I - FIBERMAG I PSFMAG I - CMODELMAG I

DERED G - FIBERMAG G PSFMAG I - FIBERMAG I

PSFMAG I - CMODELMAG I DERED G - FIBERMAG G

PSFMAG R - FIBERMAG Z PSFMAG G - CMODELMAG R

PSFMAG Z - FIBERMAG Z

PSFMAG G - CMODELMAG G

PSFMAG R - FIBERMAG Z

DERED R - PSFMAG R

PSFMAG R - FIBERMAG R

Table 3.2: The features selected by MINT when setting the total number

of features to five, or ten. PSFMAG, DERED, FIBERMAG, and CMODELMAG are all

different estimates of magnitude in the 5 possible SDSS bands of u,g,r,i, and

z.
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of MINT selected features increases. Also shown is the effect of changing

the number of objects in the training sample. Again, the accuracy does not

change significantly (<1%).

3.2.2 Results from Interpreting Models of Tree Based

Methods using treeinterpreter

The output data when using treeinterpreter is visualised in Figure 3.4, where I

present results for a particular example feature FIBERMAG G - CMODELMAG R;

this feature’s results exemplify several notable behaviours. These figures were

produced by creating a Random Forest model, and classifying each object in

the test sample with it while outputting the contributions to the probability

of classification for each feature. A density plot was then created with the

object’s colour (FIBERMAG G - CMODELMAG R) on the x-axis, and the contri-

bution to the probability of being classified as a galaxy on the y-axis. The

density shown by the colour bars in each figure represent: the number of

actual spectroscopically confirmed galaxies in Figure 3.4a, the number of

galaxies the model predicted correctly in Figure 3.4b, model purity for ob-

jects the model predicted as galaxies in Figure 3.4c, and model completeness

for actual spectroscopically confirmed galaxies in Figure 3.4d. Purity refers

to the fraction of retrieved instances that are relevant; completeness is the

fraction of relevant instances that are retrieved.

Figure 3.4a shows the contribution to the probability of galaxy classifi-

cation from FIBERMAG G - CMODELMAG R, for all of the galaxies in the test

sample, given a Random Forest model trained on 10000 objects (using 256

trees and all 215 features in our catalogue). The colours show the number of

objects with white showing the absence of data. Most of the galaxies fall into

a small line of assigned probability of 0.002 at a FIBERMAG G - CMODELMAG R

value of approximately 2.3, the mean of the sample, with the remaining galax-

ies scattered around the plot making up the blue colour. For this particular

feature, FIBERMAG G - CMODELMAG R, some objects in the sample are given

a reduced probability of being galaxies (i.e. they receive a negative contri-
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Figure 3.3: Effect of number of MINT selected features on predictive ac-

curacy. Coloured lines denote the number of objects used in the training

sample.
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(a) The contribution to the probability of being predicted a galaxy by

FIBERMAG G - CMODELMAG R of all spectroscopically confirmed galaxies in

sample. Colour represents number of galaxies.
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(b) The contribution to the probability of being predicted a galaxy by

FIBERMAG G - CMODELMAG R for galaxies that have been correctly classi-

fied. Colour represents number of galaxies.
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(c) The contribution to the probability of being predicted a galaxy by

FIBERMAG G - CMODELMAG R for all objects classified as galaxies where the

colour represents model purity.
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(d) The contribution to the probability of being predicted a galaxy by

FIBERMAG G - CMODELMAG R for all spectroscopically confirmed galaxies

where the colour represents model completeness.

Figure 3.4: Density plot of contributions to the probability of a galaxy classifi-

cation by PSFMAG G - CMODELMAG I for spectroscopically confirmed galaxies.

Purity refers to the fraction of retrieved instances that are relevant; com-

pleteness is the fraction of relevant instances that are retrieved. In relation

to this work, purity would be a measure of how many galaxy classifications

correctly identified galaxies, and completeness would be a measure of how

many galaxies were correctly identified out of the total amount of galaxies.

This example was created with a Random Forest comprising of 256 trees with

no maximum depth, using all 215 available features.
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bution to probability); these are the data points below the black line. The

model does not necessarily incorrectly classify these galaxies due to this one

feature; there may be other features that are more important to the model

than this one for classifying these particular galaxies.

Figure 3.4b shows the same as 3.4a, but for all the galaxies in the test

sample that were correctly classified as galaxies. The colouring is the same

as in Figure 3.4a. There are a number of galaxies with a FIBERMAG G -

CMODELMAG R value of 0 to 2 that were incorrectly classified as point sources

by the model, as they are missing when comparing to Figure 3.4a.

The colour of Figure 3.4c shows the purity of the galaxy classification,

the fraction of retrieved instances that are relevant. Here it can be seen that

the model has failed to correctly classify bluer galaxies, where FIBERMAG G -

CMODELMAG R is closer to 0. This is because that region of parameter space

is being used to classify point sources, see Figure 3.5.

The colour of Figure 3.4d shows the completeness of the galaxy classifi-

cation; this can be interpreted as the probability that the object will be a

galaxy given the model. Around values of FIBERMAG G - CMODELMAG R = 0,

it can be seen that the model begins to fail at classifying galaxies correctly.

Visual analysis of this kind provides insight into how the model is drawing

boundaries in parameter space, and information about where the limitations

of the classifications arise.

3.2.3 Performance of Algorithms

Each machine learning method used in this work was tuned to optimise clas-

sification performance. This is achieved by varying the hyperparameters

for each algorithm (such as number of trees and tree depth) and assess-

ing the performance of the model using k-fold cross-validation (Mosteller

and Tukey, 1968). The scikit-learn implementation of this method is called

GridsearchCV 4. In the K-fold cross-validation method, the best hyperpa-

4http://scikit-learn.org/stable/modules/generated/sklearn.model_

selection.GridSearchCV.html
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Figure 3.5: The contribution to the probability of being classified as a point

source by FIBERMAG G - CMODELMAG R where the colour represents purity.

The correctly classified point sources here are occupying the parameter space

of the incorrectly classified galaxies in Figure 3.4c. 3.4c.
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rameters are determined by splitting the training data up into a user de-

fined number of groups (ten for example), training the model on nine of the

groups, and testing the model on the last remaining group. The groups are

then rotated until each group has been tested and the results of the tests

are averaged. This process is performed for each set of hyperparameters, the

results from the averaged tests are compared, and the set of hyperparameters

with the best results is chosen.

The explored hyperparameters are: n estimators: the number of trees,

max features: the number of features to consider when looking for the best

split within a tree, min samples leaf : the minimum number of objects re-

quired to be at a leaf node, criterion: the function that measures the quality

of the split, min samples split: the minimum number of samples required

to make a split, max depth: limits the maximum depth of the trees, and

learning rate: (used only in the boosted model building methods of ADA

and GBT) shrinks the contribution of each classifier by the set value.

The most efficient hyperparameters are listed in Tables 3.4, 3.5, and 3.6

for the frames features test, the MINT selected features test, and the all

features test respectively. The full grids can be seen in Table 3.3.

In most cases, 64 trees is an adequate number of estimators for all of

the tested machine learning algorithms. However, it can be seen that the

preferred trees are shallower when using five MINT selected features, yet

the mean validation scores match or exceed that of the tests when using

the frames set of features. This shows that MINT selected features do not

degrade the predictive power, while reducing the number of computations.

3.2.4 Using Random Forests as a motivation for im-

proving frames

Machine learning algorithms can also be used to optimise or check pre-

existing decision boundaries such as the ones provided by the frames method

in Equation 3.1. It is possible that a line very similar to the black dashed line

in Figure 3.1 would be more accurate in classifying these objects. To check
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Hyperparameter Grid

n estimators 64, 128, 256, 512

max features 1, 3, None

min samples leaf 1, 3, 10

criterion gini, entropy

min samples split 2, 3, 10

max depth 3, 6, 9, None

learning rate 0.001, 0.01, 0.1, 0.5, 1.0

Table 3.3: Hyperparameters for each machine learning algorithm (where

applicable) which we explored during the gridsearch cross-validation.

n estimators is the number of trees, max features is the number

of features to consider when looking for the best split within a tree,

min samples leaf is the minimum number of objects required to be at

a leaf node, criterion is the function that measures the quality of the split,

min samples split is the minimum number of samples required to make a

split, max depth limits the maximum depth of the trees, and learning rate

(used only in the boosted model building methods of ADA and GBT) shrinks

the contribution of each classifier by the set value.
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Hyperparameter Optimization Results (using frames features)

RF ADA EXT GBT

n estimators 64 512 64 64

max features 3 1 1 1

min samples leaf 3 1 1 3

criterion gini entropy entropy -

min samples split 3 2 2 3

max depth None 6 None 9

learning rate - 1.0 - 0.1

Mean Validation Score 0.974 0.975 0.974 0.974

Standard Deviation 0.004 0.003 0.004 0.002

Table 3.4: The most efficient variables for each machine learning method

when only using the frames set of features. The Mean Validation Score

is the accuracy which the best parameters achieved. Rows are as in Table

3.3.
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if this is the case, I generated a Random Forest model on the training set,

using only PSFMAG I and CMODELMAG I as input features (the same features

as in the frames method for I-band). After performing a hyperparameter

search (excluding max features as I only have 2 features), I then generated

a fine grid of x and y coordinates spanning our training set magnitude lim-

its and used the model to classify each of those points, which then outputs

the decision boundary. I fit a straight line to the main trend of the deci-

sion boundary, and use this line instead of the one provided by the frames

method of classification to classify objects, and determine if the Random

Forest model can improve on it. I present the results of this test in Section

3.3.3.

3.3 Results of object classification using ma-

chine learning

Presented in this section are the results from the tests described in previous

sections. In particular I show results for the investigation into whether the

clean flag generates artificial bias in the sample and model (Section 3.1.3). I

then compare the frames classification method with machine learning meth-

ods as introduced in Section 2.1.1. I examine the use of Random Forests to

improve the frames classification as discussed in Section 3.2.4, and finally

present an example of multiclass classification where I classify objects as

galaxies, stars, or QSOs.

3.3.1 Clean flag test

As described in Section 3.1.3, I perform a Random Forest test without the

pre-selection of objects labeled as clean in the CasJobs database, to assess

how this affects accuracy. Using the frames features defined in Section 3.1.2,

with optimised Random Forest settings (after performing a new hyperparam-

eter search because applying this flag changes the objects in the sample), the
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results from this test reach a total accuracy of 97.2%. This is 0.2% below

the achievable rate when applying the clean flag.

As this work is essentially a proof of concept and not a comparison of

machine learning models, I have chosen to utilise the clean flag in our tests

to ensure the machine learning algorithm can build a model from reliable

objects. This reduces noise in the model that could have influence on the

placement of decision boundaries, which would cloud interpretability.

3.3.2 Comparing frames and Machine Learning Meth-

ods

In this section, the main comparison is made between object classification

using the SDSS frames criteria and the machine learning methods described

in Section 2.1.1.

Object classification is assessed using the frames criteria (Equation 3.1).

Table 3.7 shows the results from the frames method of object classification

in all filters separately, as well as combined. It is seen here by using all filters

in combination that 97.1% of object classifications match the classification

given by spectroscopy. This result shows that the frames method performs

object classification above the 95% confidence level while remaining simple

and monotonic. The next tests will use machine learning methods to attempt

to improve on this.

Table 3.8 shows the results of the different machine learning algorithms

using the same set of features as the frames classification method. In all

cases, the accuracy is slightly higher than that achieved by the frames

method, with the average accuracy increase being 0.3%, and the highest

accuracy being 97.4%.

Table 3.9 shows the results from the machine learning runs with 5 MINT

selected features (see Table 3.2 and Section 3.2.1). The highest accuracy seen

in this set of runs is also 97.4%, showing that the MINT selected features are

only as useful for classification accuracy as those selected for frames (except

in the case of the Adaboost algorithm which shows a slight improvement

86



of 0.1%). It is of interest that there is only one feature in common between

frames and MINT, and yet they succeed equally well under machine learning.

While using a low number of features (specially selected or not) in com-

bination with machine learning methods yields good results, accuracy can

be further improved by using as much data as possible. Table 3.10 shows

the results when using all available features in our catalogue, for each ma-

chine learning algorithm. It is seen here that the ExtraTrees and Gradient

Boosted Trees method achieves the highest accuracies, correctly classifying

98.1% of the objects in the test sample. This improves on the frames object

classification accuracy by 1.0%, which is ≈ 33% improvement in the rate of

misclassification.

3.3.3 Using Random Forests as a motivation for im-

proving frames

In Section 3.2.4, I discussed how Random Forests could be used to check or

optimise a method like frames. Figure 3.6 shows that by fitting a line to the

main trend of the decision boundary used by the Random Forest model, we

obtain a slightly shallower line than the one given by the frames method,

with the equation being y = 0.993x+−0.218. Using this new line to classify

the test data, I improve the accuracy of object classification in the I band by

≈0.8%, and discover that objects are more likely to be point sources when

CMODELMAG I is lower than PSFMAG I at fainter magnitudes (though this effect

decreases as brightness of the object increases).

3.3.4 Multiclass Classification

The SDSS pipeline outputs both a classification type and subtype from the

template fitting of spectra (e.g. type = point source, sub type = star or

QSO). Therefore, it is possible to test machine learning algorithms with the

more complex task of deciding between more classifications than just galaxy

or point source.
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Figure 3.6: The decision boundaries generated by a Random Forest run using

PSFMAG I and CMODELMAG I as features. The training data (pink and cyan

points for spectroscopically confirmed galaxies and point sources) has been

plotted over the decision boundaries (red and blue background for galaxies

and point sources). The original frames method of classification is shown by

the black dashed line, and the Random Forest motivated method of classifi-

cation is shown by the green line.
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Figure 3.7: The decision boundaries generated by an example Random For-

est run on a multiclass problem using two photometric colours as features.

The training data (pink, cyan, and orange points for spectroscopically con-

firmed galaxies, point sources, and QSOs) has been plotted over the decision

boundaries (red, blue, and orange background for galaxies, point sources,

and QSOs).
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Figure 3.7 shows the decision boundaries from a Random Forest run using

two photometric colours where the algorithm was asked to decide if an object

was a star, galaxy, or QSO - a multiclass problem. The two colours were cho-

sen as features for this example because they better disperse the data than

using two frames features. The training process is the same as for a binary

classification problem except that here the decision trees in the forest will

have a fraction of leaves which identify QSOs. After a fresh hyperparame-

ter search, the Random Forest achieves an object classification accuracy of

89.6%. This accuracy is lower than in previous tests due to the model’s in-

ability to accurately distinguish between stars and QSOs; this may be due to

their inherent similarities as point sources. Nevertheless, this example points

towards the potential of ML methods for more extensive multiclassification

problems.

The work in this chapter has showcased tree-based machine learning

methods by revisiting the long standing object classification method used

in the SDSS pipeline, frames, with the aim of increasing object classification

accuracy using photometric data. I have developed a pipeline that offers in-

depth analysis of machine learning models using treeinterpreter, which has

the ability to select the most important and relevant features specific to the

input data using MINT. In practice, the pipeline improves on the frames

object classification accuracy by 1.0%, which is ≈ 33% improvement in the

rate of misclassification (object classification error improved from ≈ 3% to

≈ 2%).
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Hyperparameter Optimization Results (using 5 MINT features)

RF ADA EXT GBT

n estimators 64 512 64 256

max features 1 1 3 1

min samples leaf 1 3 3 10

criterion entropy entropy gini -

min samples split 10 3 3 10

max depth 3 4 None 9

learning rate - 0.01 - 0.01

Mean Validation Score 0.974 0.974 0.973 0.974

Standard Deviation 0.006 0.006 0.005 0.006

Table 3.5: The most efficient variables for each machine learning method

when using 5 MINT selected features. The Mean Validation Score is the

accuracy which the best parameters achieved. Rows are as in Table 3.3.
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Hyperparameter Optimization Results (using all features)

RF ADA EXT GBT

n estimators 256 512 512 512

max features None None None None

min samples leaf 1 1 1 10

criterion entropy entropy entropy -

min samples split 2 10 3 2

max depth None 3 None 6

learning rate - 0.1 - 0.1

Mean Validation Score 0.979 0.980 0.981 0.981

Standard Deviation 0.003 0.004 0.004 0.004

Table 3.6: The most efficient variables for each machine learning method

when using all available features in the sample. The Mean Validation

Score is the accuracy which the best parameters achieved. Rows are as in

Table 3.3.
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Chapter 4

Testing Models of Gravity

Using Machine Learning -

Classification

As shown in Chapter 3, machine learning algorithms are able to create mod-

els that accurately classify astronomical objects as either stars or galaxies

using photometric data. I have also been able to interrogate the model, pa-

rameterising where the decision boundaries are drawn, and where the model’s

classifications succeed or fail. With the formation of stars and galaxies being

a consequence of the laws of gravity, it would be interesting to pose the ques-

tion - ‘Can current machine learning algorithms help in determining which

theory of gravity our Universe follows?’, and if they can ‘how are these ma-

chine learning algorithms determining this?’. To answer these questions I

use dark matter particle n-body simulations created using two types of grav-

ity, ΛCDM and nDGP, which result in differing particle distributions. This

work is the first known application of machine learning algorithms to classify

different models of gravity using n-body simulations in cosmology.

In this chapter I describe the code used to generate the ΛCDM and nDGP

simulations and the parameters used to generate them. I perform some basic

statistical analysis on the simulations, including measuring the power spec-
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trum, and form the simulations into a labelled training and test set ready

for my CNN to learn from (Section 4.1). The goal is to create a CNN model

that can classify each simulation as either ΛCDM or nDGP gravity mod-

els. I describe the architecture of the CNN in Section 4.2, and perform tests

monitoring classification accuracy of a CNN model using a constant set of

ΛCDM simulations and nDGP simulations of varying rcH0 values (Section

4.3). In Section 4.5 I describe how this work can be extended, and introduce

new types of machine learning models that could apply to this type of inves-

tigation, including some preliminary tests. In Chapters 4 and 5 of this work,

accuracy of classification is 100% when the classification provided from the

CNN model is equal to the model of gravity used to generate the simulation.

All of the simulations used in the calculations in Chapters 4 and 5 were

generated using the local supercomputer to the Institute of Cosmology and

Gravitation, Sciama 2. This was parallelised using a script written in UNIX,

running on up to 1000 cores at a time. All of the CNN calculations were

done either using a Nvidia K80 graphics processing unit (GPU) provided by

Google Cloud Services, or my own Nvidia GTX 1080 and 1050 GPUs.

4.1 Particle Simulations

Whilst not specifically a dark matter particle simulation, the first experi-

ment that could be considered a type of particle simulation was performed

by Holmberg (1941), where he constructed an array of lights to mimic grav-

itational force as both light and gravity intensity follow a r−2 dependency.

The aim of his experiment was to demonstrate the tidal interactions between

two galaxies.

From these initial demonstrations, the field developed through the 1960’s

with the idea that galaxy clusters form through gravitational instabilities
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within an expanding universe (van Albada, 1961). The first numerical cal-

culations of galaxy cluster stability then followed using only 10-100 particles

(Aarseth, 1963; von Hoerner, 1963), and then hundreds of particles (Hénon,

1964; Peebles, 1970). In the 1980’s, physical processes included in cosmolog-

ical simulations became much more detailed, with models where the mass of

the universe was dominated by collisionless particles. The growth of density

fluctuations in the expanding universe and the temperature of the particles

had an impact on the linear power spectrum of the density fluctuations (even-

tually leading to the CDM model (Peebles, 1983)).

When larger simulations were able to be produced the study of dark

matter halos commenced, with Frenk et al. (1985) and Quinn et al. (1986)

analysing the structure of halos containing a few thousand particles per ob-

ject. It was through the 1990’s that simulations containing 105 particles were

achievable and as such, the beginnings of the research into the inner struc-

ture and accretion history of dark matter halos (Tormen et al., 1997). Due

to hardware advances, n-body simulation codes became more complex in the

2000’s, with the creating of a popular code called GADGET-2 (GAlaxies

with Dark matter and Gas intEracT) (Springel, 2005). GADGET-2 could

be run on hardware in parallel, and could cope with hundreds of millions of

particles, with the size of the simulation limited to the amount of available

physical memory. The code also employed various techniques for calculating

long and short range gravitational forces felt between the particles.

A new code has been released in the last few years called L-PICOLA

(Howlett et al., 2015), which vastly reduces the computational time required

to create accurate n-body simulations.

4.1.1 L-PICOLA and MG-PICOLA

To create dark matter particle simulations I utilise a modified version of

the L-PICOLA (Howlett et al., 2015) code called MG-PICOLA (Winther
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et al., 2017), which includes the option of nDGP gravity (as well as F (R)

gravity discussed in Section 1.4). L-PICOLA is used to generate and evolve

a set of initial conditions (based on second-order Lagrangian perturbation

theory; 2LPT) into a dark matter field at z = 0 in speeds that are 3 orders

of magnitude faster than full non-linear N-Body simulations. In order to

create these simulations, one must consider how cold dark matter particles

evolve over cosmic time - they follow the equation of motion as described in

Scoccimarro (1998)

d2Ψ

dτ 2
+H(τ)

dΦ

dτ
+∇Φ = 0, (4.1)

where, Φ is the gravitational potential, H(τ) = dlna
dτ

is the conformal

Hubble parameter with a being the scale factor. Ψ is the displacement vec-

tor of the particle and relates the particle’s Eulerian position to its initial

Lagrangian position. To provide an accurate solution to Equation 4.1, L-

PICOLA uses the COLA method (Tassev et al., 2013). The COLA method

works by using the first and second-order lagrangian displacements, which

provide exact solutions at large, quasi-linear scales, and solving for the non-

linear component. Howlett et al. (2015) states that the reason this method

is so useful is because the Lagrangian displacements only have to be calcu-

lated once, at z = 0, and scaled by the appropriate derivatives of the growth

factors.

L-PICOLA uses the ‘Kick-Drift-Kick’ (or ‘leapfrog’) method (Quinn et al.,

1997) to update the velocities and positions of each particle in each timestep,

using a combination of the gravitational potential Φ and the stored 2LPT

displacements. In this method, after an initial ‘kick’, particle velocities are

calculated from the displacements and updated to the nearest half-integer

timestep. Once the particles have drifted for a half-integer timestep, the

particle positions are calculated from the previous velocities. This results in

(excluding the beginning and end of the evolution) the particle positions and

velocities never being calculated at the same point in time, with each calcu-

lation leapfrogging the other. The reason this method is used is because it is
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time-reversible, guaranteeing that errors in the total energy of the system do

not increase with time, and that the total energy of the dynamical system is

conserved.

For my investigation, the velocity information for each dark matter particle

simulation is not used for model discrimination, however, in Section 5.3 I

discuss how this could be used to improve this result.

The gradient of Φ is calculated using the Particle-Mesh method (an overview

is in Hockney and Eastwood (1988)). In this method, a mesh is placed over

the dark matter particles, and the gravitational forces are calculated at each

mesh point. Then the gravitational potential for each particle is calculated

by interpolation using the coordinates of the mesh points and particles. This

gravitational potential is used to update the velocity and resultant displace-

ment in the timestep. This method is efficient because for N3
m mesh points in

the simulation and N3 particles, the maximum number of force calculations

required in each timestep is N3
m where N = Nm, which is much quicker than

calculating the contribution to the gravitational force at each mesh point

from each particle.

4.1.2 Simulation Parameters and Dataset Specifics

The settings used to create the simulations used in Chapters 4 and 5 are

detailed in this section. I created each simulation using MG-PICOLA (v0.9)

on a single core of the local supercomputer. Each simulation is 128 Mpc3 in

volume binned to 643 (meaning each voxel is 2 Mpc3) and contains 1283 dark

matter particles of a constant mass of 2*1010M�. The nDGP simulation sets

use rcH0 values of 0.5, 0.75, 1.00, 1.50, 2.50, 5.00. In all cases, simulations

are converted from particle number counts (n) in each voxel to overdensities

(δ = n−n̄
n̄

). The python code I wrote creates simulation sets comprising of

500 simulations for each model of gravity, i.e. 500 ΛCDM simulations, 500

nDGP with an rcH0 value of 0.5, 500 nDGP with an rcH0 value of 0.75 etc.

For each test, the ΛCDM simulation set and one nDGP simulation set of

101



a particular rcH0 value is chosen. These sets are combined and randomly

divided in equal portions (50/50) into a training and test set. This shuffle

and split is performed before any data augmentation techniques so there is

no crossover of rotated simulations between the training and test set. Each

of these simulations is a cube with 6 faces, which can each be rotated 4 times,

extending the total dataset size to an effective 12000 training and 12000 test

samples. If this data augmentation technique was not used, creating 24000

unique simulations would take 24 times longer than creating 1000 unique

simulations and rotating them. Instead of saving all of the rotated simula-

tions in a large file, to save disk space I wrote a python generator (a type of

function in the python programming language) that performs this rotational

data augmentation as the CNN is training.

When training a CNN (using the set of ΛCDM simulations and a set of

nDGP simulations with a particular rcH0 value), 10000 simulations are ran-

domly drawn from the training sample, and when testing, 5000 simulations

are drawn from the testing sample. This process represents one ‘epoch’ of

training, and in this investigation, training occurs for 15 epochs per test.

Figure 4.1 shows both a ΛCDM and nDGP simulation (rcH0 = 0.5) ran-

domly drawn from the training set.

Figure 4.2 shows 25 averaged histograms of the overdensities of both

ΛCDM and nDGP simulations. The x-axis is displayed logarithmically and

the errors are the red lines and are the standard deviation of the 25 his-

tograms of simulations. It is seen here that ΛCDM gravity produces on

average a more sparse distribution of particles throughout the simulations

than is seen in the nDGP gravity simulations. Figure 4.3 shows the same

as Figure 4.2, except the y-axis is also displayed logarithmically. This shows

that when comparing the densest regions of the simulations, nDGP gravity

produces more intense dense regions on average.
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(a) ΛCDM input simulation

(b) nDGP input simulation

Figure 4.1: Example of input simulations generated by MG-PICOLA. The

colour bar represents number of particles. The plotted data includes the

bottom 5% (approximately) of the data in the ranges of the simulations so

that structure can be seen.
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Figure 4.2: Histogram of overdensities of input simulations generated by

MG-PICOLA. Blue and orange lines are the averaged histograms of 25 sim-

ulations randomly drawn from the dataset where rcH0 = 0.5 for the nDGP

simulations. Errors are the red lines and are the standard deviation of the

25 histograms of simulations.
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Figure 4.3: Histogram of overdensities of input simulations generated by

MG-PICOLA. Blue and orange lines are the averaged histograms of 25 sim-

ulations randomly drawn from the dataset where rcH0 = 0.5 for the nDGP

simulations. Errors are the red lines and are the standard deviation of the

25 histograms of simulations.
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4.1.3 Power Spectrum

To quantify one of the main differences in the models of gravity, I measure

their power spectrum using the Fourier transform of the two-point correlation

function of the particle densities. The power is measured in each spherical

shell in Fourier space, or each k bin or k mode. This is done using Equation

4.2 (Howlett, 2016),

P (k) =
∑
k

[
(Ñc(k)2 −Np)g

2
] V 2

N2
pV

, (4.2)

in which Nc = N − N̄ and g = sin(k∗ksize)
k∗ksize , Np is the total number of

particles in the simulation, V is the simulation volume, Nc is the fourier

transformed overdensities, g is a corrective factor required due to the fact

that we’ve binned the simulation to a grid, and P (k) is the power in that

particular k bin. The code to perform this measurement was kindly provided

by Cullan Howlett.

Figure 4.4 shows the measured and averaged power spectrum of 25 ΛCDM

and nDGP simulations randomly drawn from the training set with the nDGP

simulations having differing rcH0 values. The error bars are the standard de-

viation of the randomly drawn 25 simulations for each model of gravity. It

is seen here that using an rcH0 value of 0.50 (the blue line) causes a ∼10%

enchancement in power across all k modes. This should enable the CNN to

discriminate between the models of gravity used to produce the simulations

quite well. As this rcH0 value increases, the power enhancement over ΛCDM

diminishes and the CNN should find it increasingly more difficult to correctly

classify the simulations as being created using a particular model of gravity.

This effect is shown more clearly in Figure 4.5, where only a portion of Figure

4.4 is shown.
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Figure 4.4: Power Spectra of input simulations generated by MG-PICOLA.

The coloured lines are averages of 25 simulations randomly drawn from the

dataset for each chosen rcH0 value. The error bars are the standard deviation

of the randomly drawn 25 simulations.
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Figure 4.5: Power Spectra of input simulations generated by MG-PICOLA

(zoomed). The coloured lines are averages of 25 simulations randomly drawn

from the dataset for each chosen rcH0 value. The error bars are the standard

deviation of the randomly drawn 25 simulations.
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4.1.4 Minkowski Functionals

Minkowski Functionals are useful when characterising the large-scale struc-

ture seen in cosmological simulations (Schmalzing et al., 1996). They provide

this information in the form of four geometric parameters for 3D images:

volume, surface area, mean curvature, and Euler Number (χ). These are

commonly referred to as V0, V1, V2, and V3 respectively.

As a basic explanation, these parameters are calculated for a range of

‘threshold’ values (ν) (see Weinberg et al. (1987) and Melott (1990)). For a

simulation with constant dark matter particle masses, this threshold value

is a parameter that changes the properties of an isodensity surface. The left

panel in Figure 4.6 shows a dark matter particle simulation with spheres of

small radii decorating the particle positions, corresponding to a small thresh-

old value. The right panel shows what would occur when the threshold value

is increased. If the collection of spheres together is considered to be an iso-

density surface, the Minkowski Functionals would be the computation of the

total volume (V0), surface area (V1), mean curvature (V2), and Euler Number

(V3) of the isodensity surface at varying threshold parameters. Euler Num-

ber in this instance would be a measure of the connectivity of the spheres,

or how much each sphere intersects with another. When spheres (compo-

nents) intersect, they create tunnels or cavities; where a tunnel would be a

hole through the isodensity surface that connects one side to the other and a

cavity would be a hole inside the isodensity surface that does not connect to

the outside. Due to this phenomena, measuring the Euler Number gives the

ability to characterise filamentary structures. The Euler number is defined

as

χ = number of components−number of tunnels+number of cavities. (4.3)

In this work, I have adapted code included in two github repositories:

garrelt/Size-Analysis-C2-Ray for the code to calculate the Minkowski Func-

tionals in C, and jeremycclo/msci reionisation to use the code from within

python. Both of these repositories use this code in analyzing the size distri-
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bution of HII regions (interstellar atomic ionized hydrogen).

Figure 4.6: Simulation particles with spheres of different radii placed around

them representing a low threshold value (left) or high threshold value (right).

Figure from Schmalzing et al. (1996).

To aid in understanding, I have calculated the average of ten Minkowski

Functionals for Gaussian random fields in a 3D cube and plotted the results

in Figure 4.7. The top left panel (V0) shows that at a low threshold value,

the total volume of the isodensity surface is high, and as the threshold value

increases the volume decreases. The top right panel (V1) shows that at a low

threshold value, the surface area of the isodensity surface is low, then as the

threshold value increases there is a peak in surface area. At high threshold

value, the isodensity surface starts smoothing out (imagine the spheres in the

right panel of Figure 4.6 increase in radius) and the surface area decreases.

In the bottom right panel (V2), as the threshold value starts increasing, the

mean curvature of the isodensity surface decreases, until there is a crossover

point and the mean curvature begins to increase until the isodensity surface

starts smoothing out at a high threshold value. Finally, in the bottom right

panel (V3), it is seen that there is a rapid depression in connectivity within

the isodensity surface at the middle threshold value.
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Figure 4.8 shows the average of ten Minkowski Functionals for the ΛCDM

and nDGP (rcH0 = 0.50) dark matter particle simulations and Figure 4.9

shows the percentage difference between these Minkowski Functionals. Errors

are omitted on this plot because they are negligible. It should be noted that in

this work, the density threshold parameter ν is a function of the overdensity

(δ) in the n-body simulations. The Minkowski Functional in each case is

therefore 0 below ν = -1.

When examining these Minkowski Functionals, it is clear that they are

all quite similar. The biggest difference between the models of gravity are

shown in V3, the Euler number, with nDGP simulations having a higher peak

at ∼ ν = -1. This means that between the simulations, the nDGP model

provides more filametary structures than the ΛCDM model. In Chapter 5,

I will examine if the CNN model is attempting to use this characteristic to

classify simulations by using the activation maximisation method on the CNN

models with the density amplitude removed. This will allow the CNN model

to produce simulations that it believes looks most like ΛCDM or nDGP

gravity, and I will measure the Minkowski Functionals of these outputted

simulations.

4.2 Classification of Different Models of Grav-

ity Using CNNs

The aim of this investigation is to determine to what accuracy a CNN can tell

the difference between dark matter particle simulations created using ΛCDM

and nDGP models of gravity, and how the chosen rcH0 value for nDGP sim-

ulations affects those accuracies. The CNN model architecture used in this

investigation is shown in Table 4.1, with each convolutional layer labelled

with numbers 1 to 6. This CNN architecture mimics that of Ravanbakhsh

et al. (2017) due to their successes in using this architecture to predict values

of σ8 and Ωm. The model will be trained with a constant ΛCDM dataset and

an nDGP dataset each with a different rcH0 value, and the results will infer
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Figure 4.7: Minkowski functionals for a Gaussian distribution.

Figure 4.8: Minkowski functionals for the input simulations.
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at what rcH0 value the CNN model no longer has the ability to tell apart

the different models of gravity.

The Output Shape column in Table 4.1 shows the dimensions of the sim-

ulations at each layer (shown in the Layer (type) column). In the top half

of the network this is in the format (x, y, z, n filt), with the x,y,z, variables

being the dimensions of the simulation and n filt being the number of filters

in that layer. In the bottom half of the network after the Flatten layer, the

Output Shape takes the form of (units), with the units being the number of

neurons in that layer. For consistency, batch size is kept to a size of 25 for

each test.

The Param # column is the number of parameters in the Filter Shape

that can be modified during the training process and is calculated from (x *

y * z * n channels + 1) * n filt. In this calculation, n channels is the number

of filters from the previous layer. This means that the number of parameters

in Layer 2 is (4 * 4 * 4 * 2 + 1) * 12 = 1548.

It can be seen here that the dimensions of the filters (input shapes) get

progressively smaller as the number of filters get progressively larger. This

can be interpreted as a compression of the most relevant information from

the largest cosmic scales available in the simulation.

4.3 CNN rcH0 Investigation

In this section I present the results from the investigation into the binary

classification of ΛCDM and nDGP simulations with differing rcH0 values. For

each choice of rcH0 value, the maximum accuracy of classification associated

with the lowest loss value within 25 epochs of training is taken, using a batch

size of 25. The resulting accuracies are shown in Table 4.2.

The results in Table 4.2 clearly show that the CNN model can correctly
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Layer (no) Layer (type) Filter Shape Output Shape Param #

1 Conv3D (3, 3, 3, 2) (62, 62, 62, 2) 56

Batch Norm (62, 62, 62, 2) 0

LeakyReLU (62, 62, 62, 2) 0

AveragePooling (31, 31, 31, 2) 0

2 Conv3D (4, 4, 4, 12) (28, 28, 28, 12) 1548

Batch Norm (28, 28, 28, 12) 0

LeakyReLU (28, 28, 28, 12) 0

AveragePooling (14, 14, 14, 12) 0

3 Conv3D (9, 9, 9, 64) (6, 6, 6, 64) 559936

Batch Norm (6, 6, 6, 64) 0

LeakyReLU (6, 6, 6, 64) 0

4 Conv3D (3, 3, 3, 64) (4, 4, 4, 64) 110656

Batch Norm (4, 4, 4, 64) 0

LeakyReLU (4, 4, 4, 64) 0

5 Conv3D (2, 2, 2, 128) (3, 3, 3, 128) 65664

Batch Norm (3, 3, 3, 128) 0

LeakyReLU (3, 3, 3, 128) 0

6 Conv3D (2, 2, 2, 128) (2, 2, 2, 128) 131200

Batch Norm (2, 2, 2, 128) 0

LeakyReLU (2, 2, 2, 128) 0

7 Flatten (1024) 0

8 Dense (1024) 1049600

LeakyReLU (1024) 0

Dropout (1024) 0

9 Dense (256) 262400

LeakyReLU (256) 0

Dropout (256) 0

10 Dense (2) 514

Softmax (2) 0

Table 4.1: The CNN architecture used.
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Figure 4.9: Differences in Minkowski functionals for the input simulations.

rcH0 Highest Accuracy Accuracy achieved

on epoch number

0.50 1.0000 13

0.75 0.9998 25

1.00 0.9944 4

1.50 0.9652 23

2.50 0.5440 1

5.00 0.5470 1

Table 4.2: CNN model classification results.
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discriminate between ΛCDM simulations and nDGP simulations, especially

when a low rcH0 value is used in the nDGP simulations. The fact that

the model can classify rcH0 = 0.50 simulations with an error less than 1 in

5000 is not surprising, given that there is a ∼10% enhancement in the power

spectrum across all k-modes when comparing to ΛCDM simulations. Given

that the densest regions in the nDGP simulations are higher in average and

absolute terms than those in the ΛCDM simulations, the CNN could simply

be learning to classify using the maximum densities found in the dataset. In

Chapter 5, I investigate whether this is likely to be what is happening.

What is particularly interesting about the results in Table 4.2 is the fact

that the CNN model can still discriminate between the models of gravity to

an accuracy above 96% when the nDGP simulations have an rcH0 value of

5.00, a ∼5% enhancement in the power spectrum across all k-modes. With

simulations of differing models of gravity and two-point statistics so close,

it is possible that there are many ΛCDM simulations in the dataset with

denser regions than nDGP simulations, suggesting the CNN model is using

other features than the average and absolute values of the densest regions to

discriminate between models of gravity. In Chapter 5, I attempt to test the

CNN model to determine how it is able to classify these simulations.

Figure 4.11 shows accuracy of classification, and Figure 4.10 shows the

loss (defined in Section 2.2.2) during the training of the CNN using nDGP

simulations with a rcH0 value of 0.50. It can be seen that loss gradually

decreases as the epoch and accuracy increases until the fourth epoch, where

the loss starts dramatically increasing. This means the gradient descent

algorithm had found a local minimum and then suddenly abandoned it. This

can be due to a number of reasons and each solution must be tested to

determine the cause. One reason the loss may have started to increase is if

the learning rate is too large and not adaptive. To counter this in future

investigations into this topic, the learning rate could be reduced when the

loss plateaus, further refining the loss in a given local minimum instead of

stepping out of it. Another reason may be if the chosen gradient descent

116



Figure 4.10: Loss during training over 13 epochs, where the blue line is

training loss, and the orange line is validation loss. The rcH0 value in the

nDGP simulations is set to 0.50 for this test.
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Figure 4.11: Accuracy during training over 13 epochs, where the blue line is

training accuracy, and the orange line is validation accuracy. The rcH0 value

in the nDGP simulations is set to 0.50 for this test.
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algorithm incorporates an element of momentum. This would mean when the

loss initially decreases in the early epochs, the algorithm gains momentum

and steps out of the local minimum in later epochs. One other common

reason the loss may have started to increase is because the CNN model begins

to overfit the training data in the later epochs, which can be countered by the

stronger application of regularisation techniques such as dropout. Given that

this particular trained CNN model classifies the different models of gravity

with an error of less than 1 in 5000, the reason for this fluctuation in loss

will not be further investigated.

4.4 CNN rcH0 Investigation (removed ampli-

tude)

In this section, I perform the same tests as in Section 4.3 with one key differ-

ence - I divide each simulation (δ field) by its standard deviation (hereafter

referred to as simulations with removed amplitude information). This gives

each simulation a standard deviation of one, and normalises their power spec-

trum amplitudes. The reason this is done is to ensure the CNN cannot simply

use the power spectrum amplitudes to classify each simulation as one model

of gravity or the other; it must be classifying using a different feature unique

to each simulation, such as the distribution of particles (Figure 4.2) or the

mean isodensity curvature as shown in Section 4.1.4. How these models are

classifying simulations will be also investigated in Chapter 5.

The resulting accuracies of this test are shown in Table 4.3. When com-

paring the results to that in Table 4.2 it is seen that the accuracies are not

as high and there is not a meaningful classification result when rcH0 was

more than 1.00. Also, the model did not improve after training on one epoch

of data (10,000 simulations), indicating that the signal in the data was not

prominent enough to develop a well defined way to classify the simulations.

However, this result shows when removing amplitude information from the

dark matter particle simulations, CNNs can still classify different models of
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rcH0 Highest Accuracy Accuracy achieved

on epoch number

0.50 0.8826 12

0.75 0.6336 1

1.00 0.6552 1

1.50 0.5556 2

2.50 0.5212 1

5.00 0.4940 1

Table 4.3: CNN model classification results (removed amplitude).

gravity correctly. This implies that the CNN is utilising the differences of

the mean isodensity curvature of the simulations as shown in Section 4.1.4.

This result is particularly interesting, considering the typical use cases of

CNNs (as described in Section 2.2 are to identify shapes and patterns, which

may be partly reflected in complex phenomena such as the mean isodensity

curvature.

4.5 New Types of Models

So far throughout this chapter, I have shown that CNNs with a standard

architecture (Table 4.1) comparable to that seen in the original LeNet paper

(Lecun et al., 1998) are able to classify dark matter particle simulations by

their theory of gravity. In this section, I present the results from the same

analysis using Siamese Networks, and outline new and upcoming methods

that will be useful for analysing and generating cosmological simulations in

the future. This is the first known application of CNNs of the “One-shot

learning” variety to cosmological data, and I initiated and carried out all

aspected of this investigation.
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4.5.1 Siamese Networks

Siamese networks (Bromley et al., 1993; Chopra et al., 2005; Koch, 2015) are

a sub-category in a machine learning area called “One-shot learning” (Fei-Fei

et al., 2006; Lake et al., 2011)- a method in computer vision problems where

the number of training examples required is greatly reduced. Siamese net-

works do this by having two identical networks in parallel that share weights

between them and a loss function that focuses on the differences between the

two images. This means that instead of having one network learning about

both models of gravity, there can be two networks learning about the dif-

ferences between the two. Consequently, the objective changes from “which

model of gravity is this?” as investigated in Section 4.2 to “is this model

ΛCDM or not?”. As with all machine learning methods, they have their

own strengths and weaknesses. Siamese networks are limited due to the fact

that using them to investigate multiclass problems can be memory intensive,

especially with 3d datasets, as multiple training examples need to be fed to

the parallel networks simultaneously. However, they are beneficial because

sharing the weights across the parallel networks means there are fewer pa-

rameters in total, meaning less training data is required and consequently

there is less tendency to overfit. Also, if the inputs are of similar nature

and because each network learns about each class, the parallel networks are

somewhat simpler to compare.

The loss function that was previously used in Section 4.2 (binary cross en-

tropy) is not appropriate for Siamese networks and instead, a contrastive

loss function (Hadsell et al., 2006) which focuses on the difference between

classes is a better choice. This is done by focusing on the euclidean distance,

Dw between the outputs of the networks,

Dw =
√
{GW (X1)−GW (X2)} (4.4)

where GW is the output of one side of the parallel networks, and X1 and X2 is

the input data pair. This distance is seen in the Siamese network architecture

shown in Figure 4.12. In my case, Layer 10 in Table 4.1 is removed from the
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Layers Accuracy Accuracy achieved

on epoch number

0.50 0.9258 24

0.75 0.8814 12

1.00 0.9716 23

1.50 0.7458 21

2.50 0.5078 10

5.00 0.5016 10

Table 4.4: Siamese CNN model classification results.

standard CNN architecture and the contrastive loss function is used in its

place, assessing the output from two identical copies of the layers before it.

The contrastive loss function is defined as:

Closs = (1− Y )
1

2
(Dw)2 + (Y )

1

2
{max(0,m−Dw)}2 (4.5)

where Closs is the contrastive loss and Y is where the input pairs match or

are different. For instance, if the input pair is both ΛCDM simulations, Y

would be 0, or if one simulation is ΛCDM and one is nDGP, Y would be 1.

max is a function specifying the bigger value between 0 and m − Dw, and

m is a margin value that ensures disparate pairs beyond this margin do not

contribute to the loss. This causes the network to optimise based on pairs

that it evaluates as similar, but are actually disparate.

I have performed the gravity model classification with Siamese networks

with code adapted from examples on the Keras team’s Github repository.

The results are shown in Table 4.4.

Table 4.4 shows that it is clear that Siamese networks are able to classify

ΛCDM and nDGP simulations correctly, but are in fact slower than using a

standard CNN when using the same batch size. Each epoch took approxi-

mately twice the time to compute (the hardware is dealing with two simula-
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Figure 4.12: Siamese CNN Architecture. Figure taken from Chopra et al.

(2005).
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tions simultaneously), and the accuracies reached are not as high (accuracies

were > 0.99 for rcH0 <= 1.00), and accuracies were reached in higher epochs

than with standard CNNs.

It should be noted that when training the Siamese networks, the loss re-

duced in a much more stable fashion than using standard CNNs. This will

be due to the fact that a contrastive loss had to be used for training Siamese

networks, and not the standard binary cross entropy loss. Taking this into

consideration, future work could focus on leaving Siamese networks to train

for longer to determine whether the change in loss function and architecture

could lead to overall higher accuracies for the nDGP simulations with higher

rcH0 values.

4.6 Further Discussion of Results

While this investigation demonstrates that dark matter particle simulations

of different models of gravity can be classified using both standard CNNs

and Siamese networks to a high degree of accuracy depending on the rcH0

value, the method and results could be improved upon for all of the tests

presented in this chapter.

Regarding the method, in the future with access to more hardware, the re-

sults could be made more robust by performing the training multiple times

and averaging the accuracies per rcH0 value. This would reveal whether

there is a meaningful result when trying to classify nDGP sims with an rcH0

value of 2.50 or higher. This could be done in conjunction with a gridsearch,

exploring various learning rates, batch sizes, loss functions, and CNN archi-

tectures to maximise classification accuracy.

When considering the performance of the Siamese networks, it should

be noted that just as the standard CNN test was adapted from the classifi-
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cation of handwritten digits in the MNIST dataset, the generally accepted

type of problem to solve with Siamese networks is usually facial recogni-

tion/classification tasks. These datasets contain more than one person (a

multiclass problem), with images taken from all different angles (samples

from the same class). This is different to the dataset used in this investi-

gation, as I am using only two classes; however, due to the rotation of the

simulations and simulations generated from different initial conditions, my

dataset does contain many different examples of the same class, mimicking

the faces from different angles. It is for this reason that I believe that bet-

ter quality results could be obtained by making this a multiclass problem.

This could be done by either having a constant ΛCDM dataset with a nDGP

dataset containing all different rcH0 values, or making the nDGP dataset

a modified gravity dataset that contains more than one model of modified

gravity (such as the inclusion of simulations created with f(R) gravity).

4.6.1 Generative Adversarial Networks (GANs)

A more recent development in machine learning is that of Generative adver-

sarial networks (GANs), first introduced by Goodfellow et al. (2014). GANs

work by training two separate networks simultaneously, with one network

producing fake training examples (generative), and one network discriminat-

ing between fake and real training examples (adversarial). These networks

train in a competitive manner in order to better each other, meaning the

adversarial side will teach the generative side to create better fake train-

ing examples, and in turn the generative side will teach the adversarial side

to better discriminate between the real and fake training examples. This

is done until a loss function is minimised, and either the networks cannot

further progress each other, or the adversarial network can not discriminate

between real and fake training examples.

Methods such as GANs are particularly interesting for the interpretation
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of machine learning algorithms. If one were to create a GAN that could

generate unique dark matter particle simulations that were indistinguishable

from simulations created in the traditional manner (with programs such as

L-PICOLA or GADGET), they could be analysed and forensically compared

to each other to help determine the successes and failures of the machine

learning model. This would shed light on how machine learning algorithms

best model our universe, and vastly reduce the computational resources re-

quired for traditional methods. Early work into GANs that can produce dark

matter particle simulations has already started, with 500 and 100Mpc 2d

simulations producing results that are qualitatively and quantitatively very

similar to the original training data as shown by Rodriguez et al. (2018).

Due to time constraints, I have left tests using GANs to future work.
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Chapter 5

Testing Models of Gravity

Using Machine Learning -

Interpretation

In this Chapter, I expand upon various methods described in Chapter 2 and

present results from them using the CNN models created in Section 4.2.

This chapter deals with two methods to investigate how the CNN models

are correctly classifying simulations as one model of gravity or the other.

Results from the Model Sensitivity Analysis method are presented in Section

5.1, along with the caveats of the method. The results from the Activation

Maximisation method are presented in Section 5.2, and the caveats of this

method are also discussed. The chapter concludes with ways to address these

caveats and improve these techniques, and a discussion about work that could

be undertaken in the future to expand the research into this area.

5.1 Model Sensitivity Analysis

In this section, I explain the specifics behind the method described in Section

2.2.9. Firstly, the testing dataset must be created.
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Power Spectrum

To infer whether the CNN model is using two-point statistics alone to classify

the dark matter particle simulations, I first create a set of power laws similar

to the measured power spectra of the CNN training datasets as shown in

Figure 4.4. These power laws are created using a set of amplitudes (A) and

powers (n) over a set range of k bins, with the equation taking the form Akn.

In this test, 30 amplitudes each with 30 power values were chosen, totalling

900 power laws. The amplitudes are logarithmically spaced between 5.4 ·
101 < A < 8.6 ·101, and the power values are linearly spaced between −2.5 <

n < −0.1. These values are chosen by an iterative search, where it has been

tested that the CNN model will classify Gaussian random fields generated

using different power laws as either ΛCDM gravity or nDGP gravity (and

not simply classify every generated Gaussian field as one model of gravity).

The power laws are kept constant when testing each CNN model.

Figure 5.1: Power laws used in Model Sensitivity Testing.
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It is clear when looking at the chosen power laws in Figure 5.1 that they

do not lie near the amplitude of the non-linear part of the power spectrum

(red dashed line), especially at small scales. This appears to be due to

the how the CNN treats the differences between the simulation overdensities

compared to the generated Gaussian random fields. A major way these differ

is in the magnitudes, with the overdensities being in the hundreds, and the

generated fields being in the tens. This may be a contributing factor as to

why the CNN is only able to classify data using the amplitude of the large

scales.

5.1.1 Generated Gaussian Random Fields

For this part of the investigation, the pre-trained CNN model using nDGP

simulations with rcH0 values of 0.50, 0.75, 1.00 and 1.50 are used, as they

are the only CNN models that could classify the simulations to an accuracy

higher than that of 54%. Results of the CNN models with an rcH0 value

above 1.50 are not presented. Each generated Gaussian distribution drawn

from the power laws shown in Figure 5.1 is classified by each CNN model a

total of 10 times and averaged to ensure the result is robust.

5.1.2 Model Sensitivity Analysis Results

Figure 5.4 shows the results when using the trained CNN in Section 4.3 (with

nDGP simulations with rcH0 = 0.50) to classify generated Gaussian random

fields from power laws shown in Figure 5.1. The amplitude increases on the

x-axis and the gradient decreases on the y axis (with -2.5 being the steepest

and -0.1 being the shallowest). Yellow colour in the plot indicates where the

CNN classifies a generated Gaussian random field as ΛCDM gravity, and blue

indicates a nDGP classification. If there were no gradient from yellow to blue,

Figure 5.4 would show a definitive boundary in classification between fields

created using different amplitudes and slope of power laws. In this result it is

seen that nearly any distribution drawn from a power law with an amplitude
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Figure 5.2: 2D Slice through 3D generated random Gaussian field created

for Model Sensitivity Testing (low amplitude shallow gradient).

Figure 5.3: 2D Slice through 3D generated random Gaussian field created

for Model Sensitivity Testing (high amplitude steep gradient).
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lower than 6.3 · 101 is classified by the CNN as ΛCDM. The CNN model

clearly has trouble classifying the distributions with a gradient steeper than

-2.0, especially at high amplitudes. Figure 5.4 also shows that distributions

with shallow power laws and high amplitudes are typically classified as nDGP

gravity.

Given Gaussian random fields created using the same parameters, Figure

5.5 shows that when testing with the CNN model trained with simulations

where rcH0 = 0.75 (power spectrum tending closer to that of ΛCDM as rcH0

increases), the CNN model classifies any Gaussian random field drawn from a

shallow power law as nDGP, regardless of amplitude. The boundary to define

fields as ΛCDM for this model is less well defined than in Figure Figure 5.4,

with the CNN model continuing to struggle to definitively classify steeper

power laws as one model of gravity or the other.

Figure 5.6 shows a similar classification boundary to that seen in Figure

5.4, however for the fields drawn from the steepest amplitudes (n < -2.0),

the CNN has trouble making any meaningful classifications regardless of

amplitude.

Figure 5.7 shows a clearer classification boundary in amplitude for the

CNN model using nDGP simulations with an rcH0 = 1.50 than any of the

other CNN models. This is interesting because this is the first time a strict

boundary has been drawn using amplitudes, implying that as the rcH0 value

increases as the nDGP simulations start to increasingly resemble the ΛCDM

simulations, the CNN model seems to have changed the way it classifies

simulations.

5.1.3 Model Sensitivity Analysis Results (removed am-

plitude)

Upon performing the same model sensitivity analysis as in Section 5.1.2, the

CNN models from Section 4.4 classified every generated Gaussian random

field as ΛCDM gravity. Also, when varying the amplitudes of the generated

Gaussian random fields through and iterative search, the model continued
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Figure 5.4: Results from tested power laws using generated Gaussian random

fields where rcH0 = 0.50.
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Figure 5.5: Results from tested power laws using generated Gaussian random

fields where rcH0 = 0.75.
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Figure 5.6: Results from tested power laws using generated Gaussian random

fields where rcH0 = 1.00.
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Figure 5.7: Results from tested power laws using generated Gaussian random

fields where rcH0 = 1.50.
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to classify every field as ΛCDM gravity. It is for this reason that Figures

similar to 5.4 - 5.7 could not be produced for this section. It seems likely

that this is because the CNN did not learn about the amplitude of matter

density (or differences in this) for any of the types of simulations provided

and therefore classified every simulation as one model of gravity to achieve

the highest accuracy it could - 50%.

5.2 Activation Maximisation

In Section 2.2.9 I outlined the Activation Maximisation (AM) method, which

activates the CNN in such a way that it could change a distribution of ran-

domly initialised values to values that the CNN is most likely to classify

as a certain model of gravity. This essentially attempts to create the input

image that the CNN model would classify as a ΛCDM or nDGP simulation

as certainty. For the remainder of this work I will call this output the ‘AM

simulation’, with one being produced for each model of gravity. For this

investigation I used the CNN model where the nDGP simulations had an

rcH0 value of 0.50, and I outputted AM simulations for the CNN model with

normal density amplitudes and the one with the amplitudes removed. The

reason I have chosen the model where rcH0 = 0.50 for the nDGP simulations

is because it had the highest classification accuracy compared to models with

other rcH0 values. This was also the case when retaining amplitude infor-

mation or removing it, inferring that the model has been able to learn about

features other than the matter density amplitudes. The settings I used for the

AM simulation production are the default ones set in the keras-vis package

(discussed in Section 2.2.9) and are as follows: 200 iterations (backpropaga-

tion of loss cycles), LP Normalisation weight of 10, Total Variation weight

of 10, and AM loss weight of 1.

It is assumed that a valid method for determining whether the AM

method is working is to attempt to classify the AM simulation with the

CNN that produced it. It should classify the AM simulation as the model of
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gravity it represents with absolute certainty. However, the method fails to

pass this test. The fact that the limits of the AM simulation have been set

to (the default values of) between -1 and 1 results in a similar normalisation

problem as described in Section 5.1, where the CNN is expecting inputs of

simulation overdensities, not scaled values between -1 and 1. This results

in the CNN models not being able to classify the AM simulations correctly.

This is not the case when applying the AM technique to the MNIST dataset,

as is in the example on the keras-vis package’s repository. The explanation

for this is that the MNIST dataset’s training samples (the pixelated images of

the handwritten digits) always have a constant greyscale pixel value ranging

from 0 to 255, and therefore, the generated AM image of a desired class can

also have set limits between 0 and 255. This leads to a correct classification

of the generated AM image from the MNIST data, as the CNN is expecting

values between 0 and 255, and the AM image adheres to that requirement,

thus verifying the AM method for that example. When attempting to use the

AM technique with my simulation datasets however, each ΛCDM or nDGP

simulation does not have set limits of what the maximum number of parti-

cles in a voxel can be, leading to each simulation having its own maximum

magnitude of matter density. This causes the verification method of cor-

rectly classifying AM simulations with the CNN model that generated them

to be inappropriate. It should be noted that when AM images are generated

for the MNIST dataset, they do classify as the number they are meant to

represent.

Acknowledging these issues, there is no problems with investigating the

fact that the AM simulations between the models of gravity are quite differ-

ent. As such, I have measured the histogram of overdensities, power spec-

tra, and Minkowski Functionals of outputted AM simulations created using

CNNs with amplitude information included, and with it removed. I have

then averaged these measurements to investigate the particle distributions,

density amplitudes, and topologies of the AM simulations. These measure-

ments will provide insight about what the CNN has been able to identify as
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features in the training sets, giving insight into how important the amplitude

information is and if CNNs can utilise other information such as isodensity

curvature.

Figure 5.8: Histogram of overdensities of AM simulations generated by a

CNN model. Blue and orange lines are the averaged histograms of 25 AM

simulations. Errors are the red lines and are the standard deviation of the 25

histograms of the AM simulations. The errors do extend beyond the visible

range of the y-axis and are not shown.

Figure 5.8 shows 25 averaged histograms of AM simulations for both

ΛCDM and nDGP models. The axes have been displayed logarithmically in

order to enhance the differences between the simulations. It is seen here that

the distributions in each AM simulation are vastly different, with the ΛCDM

AM distribution more closely resembling the distribution seen in the ΛCDM

input simulation (Figure 4.3). Towards the middle of the x-axis, the orange

line is higher than the blue line, indication that the nDGP AM simulation

has denser regions than the ΛCDM AM simulation. This is also seen (albeit
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more subtly) in the histograms of the input data when the y-axis is displayed

logarithmically (Figure 4.3). This result shows that the ANN was able to

learn a more realistic particle distribution in the case of ΛCDM, but also

learned that nDGP has denser regions.

Figure 5.9: Histogram of overdensities of AM simulations generated by a

CNN model (removed amplitude). Blue and orange lines are the averaged

histograms of 25 AM simulations. Errors are the red lines and are the stan-

dard deviation of the 25 histograms of the AM simulations. The errors do

extend beyond the visible range of the y-axis and are not shown.

Figure 5.9 shows 25 averaged histograms of AM simulations for both

ΛCDM and nDGP models, but created using a CNN trained on simulations

with removed amplitude information. Towards the center of the plot is a

large peak in the orange line (nDGP AM simulation). It seems likely that this

was created because the CNN which trained on simulations with amplitude

information removed had to enhance the density in that region in order to

accentuate the differences between the models of gravity.
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5.2.1 Power Spectra of Activation Maximisation Sim-

ulations

Figures 5.10 and 5.11 are calculated from 25 AM simulations using CNN

models with and without density amplitudes. For both models (rcH0 = 0.50

in both models, and one has amplitude information, the other does not), I

calculated the power spectra and averaged the results. The error bar shown

is the standard deviation of the averaged power.

Figure 5.10: Power spectrum of Activation Maximisation simulation using a

CNN model that includes matter density amplitude information.

As discussed earlier, it is possible that the normalisation issues faced in

this investigation contribute to the power spectra shown in both Figures 5.10

and 5.11 being offset from the prediction from theory (red dashed line). Also,

the parameters used to create the AM simulations (LP-normalisation regu-

larisation, Total Variation regularisation, number of iterations etc.) could

have contributed to the seen overall deviation in the power spectrum from
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Figure 5.11: Power spectrum of Activation Maximisation simulation using a

CNN model that does not include matter density amplitude information.
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the theory. Disregarding the fact that the power spectrum of the AM sim-

ulations shows that there are some issues with the result, it is interesting

to note that in both cases (AM simulations created using CNNs trained on

simulations with and without amplitude information), the nDGP AM simu-

lations has higher power across all k-modes. This was the case earlier when

examining the nDGP simulations in the training set (Figures 4.4 and 4.5) at

low rcH0 values. This would be expected when the model has been made

aware of the differences in the amplitude of the matter density (Figure 5.10).

However, the CNN model that trained on simulations where the amplitudes

were normalised between ΛCDM and nDGP simulations also produces AM

simulations with a significant difference in amplitude of the matter density.

In fact, the difference in power across all k-modes is more pronounced. This

is a somewhat surprising result, considering the CNN was never trained with

any simulations (of either ΛCDM or nDGP) with amplitude information in-

cluded. This is also seen in the particle distributions of the AM simulations

created using CNNs trained on simulations with amplitude information re-

moved (Figure5.9. To be able to reproduce the denser regions seen in the

nDGP simulations, the amplitudes in the AM simulations have been en-

chanced across all k-modes.

Hopefully more information about these AM simulations can be gained

by investigating their Minkowski Functionals.

5.2.2 Minkowski Functionals of Activation Maximisa-

tion Simulations

Figures 5.12 and 5.14 show the averaged Minkowski Functionals from 10 AM

simulations (both ΛCDM and nDGP) created using CNN models trained

on data and without the inclusion of matter density amplitude information.

The error bars shown are the standard deviation of the averaged Minkowski

Functionals. Figures 5.13 and 5.15 show the percent differences between

them.

Figure 5.12 shows that the result for V1, the surface area of the isodensity
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Figure 5.12: Minkowski Functionals of Activation Maximisation simulation

using a CNN model that includes matter density amplitude information.
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Figure 5.13: Difference in Minkowski Functionals of Activation Maximisa-

tion simulation using a CNN model that includes matter density amplitude

information.
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Figure 5.14: Minkowski Functionals of Activation Maximisation simulation

using a CNN model that does not include matter density amplitude infor-

mation.
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Figure 5.15: Difference in Minkowski Functionals of Activation Maximisa-

tion simulation using a CNN model that does not include matter density

amplitude information.
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surface, behaves similarly between the ΛCDM and nDGP AM simulations

when amplitude information is included in the training. This is not the case

when examining Figure 5.14, where the V1 result between the AM simulations

is quite different. The most interesting result in this investigation of the AM

simulations appears when comparing the V2 and V3 Minkowski Functionals.

It is seen in both cases (with and without amplitude information included

when training), that the AM simulations that have been produced for ΛCDM

and nDGP have vastly different mean curvature and Euler number character-

istics. This shows that the CNN has managed to identify differences between

the models of gravity with or without the inclusion of information about the

amplitude of the matter density. This result indicates that the CNN is utilis-

ing differences in mean curvature or Euler number characteristics to classify

the simulations.

Comparing this result to the Minkowski Functionals calculated for the in-

put simulations the CNN used to train with provides some interesting insight.

In the V2 panel (mean curvature) in Figure 5.12, both of the AM simulations

(created with CNNs trained using simulations with amplitude information)

show a small depression before the threshold ν is 0, then a peak after 0. This

phenomena is also seen in the V2 input simulation Minkowski Functionals

seen in Figure 4.8, and is even more prominent in the V2 panels in Figures

5.14 where the AM simulations were created with CNNs trained using sim-

ulations without amplitude information. This indicates that the CNN had

to focus more on the differences in isodensity curvature between the models

of gravity. There is a clear indication, therefore, that the CNN is harnessing

higher order information encapsulated in the Minkowski Functionals.

In the next section, I will discuss what can be done to improve this

work and continue this area of research, both by extending methods already

discussed in this work and utilising completely new ones.
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5.3 Discussion

The results in this chapter show that it is possible to define decision bound-

aries for CNNs using techniques such as model sensitivity analysis, and even

gain insight into how CNNs can correctly classify different models of gravity

by investigating outputs from the Activation Maximisation technique. Re-

garding the model sensivity analysis, I have shown that the trained CNN

is sensitive to generated Gaussian random fields drawn from power spectra

with differing amplitudes and slopes. I have also been able to determine (for

differing rcH0 values) where the CNN is no longer able to classify generated

fields and how the model breaks down. In reference to the AM technique, I

have been able to interrogate the model and the results indicate that even

if the amplitude differences between the models of gravity are removed, the

CNN is able to detect differences in features such as mean isodensity cur-

vature (V2 Minkowski Functional). With this being the first time either of

these techniques have been used on cosmological data, there are inevitably

some improvements that could be made.

5.3.1 Improvements to the training of CNNs (Chapter

4)

In Section 4.2, the accuracy of classification in all of the CNN models could

be increased by spending a longer time training. This work allowed 25 epochs

of training using a sample size of 10,000 and batch size of 25, meaning each

CNN model viewed each simulation at least 25 times and tuned the weights

and biases in the CNN 10,000 times through backpropagation. Using these

settings did result in some of the CNN models being able to discriminate

between the models of gravity, but the training was not exhaustive. Instead

of setting the limit at 25 epochs, in the future the training could be stopped

upon reaching a higher limit. Keras, the python package used to create and

train the CNNs in this work does include a function (called early stopping)

that can stop the training upon reaching a plateau in loss reduction or a
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plateau in accuracy maximisation. For instance, this means that when the

loss is reducing during training, if the model had reached a minimum point

on the error surface and could not improve, training will stop automatically

before that minimum is abandoned. This would prevent that good model

from being lost. There is a caveat that should be considered when using

this method: if the tolerance is set too high and training is stopped too

early, there may have been a better model with lower loss that the model

never had the change of achieving. In real world applications, this is why

machine learning models are constantly being retrained, as there are so many

parameters that can change the chances of finding good models.

In conjunction with the early stopping function, it is also good practice

to use the previously mentioned function to lower the learning rate when the

reducing loss plateaus. This ensures that as the CNN finds a minimum on

the error surface, instead of the loss bouncing around that minimum and

possibly losing that model entirely, the loss can instead gradually reduce and

refine the minimum. Once the minimum has been refined, the loss would

plateau and the early stopping function would stop the training.

Another way to improve the models created in Section 4.2 would be to

perform a hyperparameter search, which has become more possible and as

such, more prevalent in recent years. Newly created functions have been

published on github by deep learning enthusiasts (Autonomio, 2018) and

research teams (Bergstra et al., 2013) and could be used in the future in

application to this work. This could help determine which combination of

kernel sizes, number of hidden layers, number of neurons in those hidden

layers, loss function, and learning rate are best to create a CNN model with

the lowest possible loss or highest possible accuracy.

Departing from the core changes that could made to possibly improve

the CNN model, it could be argued that the results in Section 4.4 could be

improved by making the Siamese network a multiclass problem. The goal

of a CNN is to reduce the loss between the current result and the desired

result; this leads to the probability that the CNN will learn about the most
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prominent feature in the data to accurately classify it. Due to the fact that

I am only using two classes (ΛCDM and nDGP simulations) for the Siamese

network architecture, it is possible that the network would only have to learn

about one model of gravity to be able to classify both of them correctly. If

the simulation it is assessing is not the model of gravity it has learned about,

it must be the other. This could be rectified by making this a multi-class

problem, and including other models of gravity for the CNN to learn about.

Then the CNN cannot simply learn about one model of gravity to be able

to classify them all correctly. This change would also help greatly in the

interpretation of the model when using Siamese networks. This work did not

investigate methods such as using activation maximisation in conjunction

with Siamese network architectures because the code is still in development,

though in the future, Siamese networks that provide AM simulations could be

very interesting to analyse. Due to the fact that Siamese networks have their

own branch of kernels that would only learn about one model of gravity,

it could be argued that the AM simulations produced by them could be

much more representative of the training simulations. This could give more

accurate insights into what features the CNN has been able to learn about

or model correctly.

5.3.2 Improvements to the interpretation of CNNs (Chap-

ter 5)

Regarding the results in Section 5.1.2, the normalisation issue was a major

issue in analysing the CNN models for both the Model Sensitivity Analysis

and Activation Maximisation techniques. I believe this issue could be ad-

dressed by rescaling the AM simulations after they have been produced to

the average mean and standard deviation of the simulations in the training

set; however, there are still possible problems with this idea. For example,

if the AM simulation that is supposed to represent a ΛCDM simulation was

rescaled to represent the training set, would it be more or less appropriate to

rescale the values to the mean and standard deviation of the whole training
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set, or just the ΛCDM simulations contained in the training set? If it was

rescaled to the statistics of just the ΛCDM simulations, it could be argued

that there is information leakage/contamination from the training set to the

AM simulation, as the statistics have been gained due to the fact that the

classification is already known in the training set. To try to mitigate this,

each AM simulation could be rescaled to the mean and standard deviation

of the whole training set (both ΛCDM simulations and nDGP simulations).

While this seems like the solution to the problem, the AM simulations will

still all have a condition imposed of a maximum number of particles that can

be in any one voxel, a condition that does not exist in the training dataset.

Even though these problems still exist, it is clear that AM can still be a

useful tool when trying to interrogate CNN models and determine how they

are making decisions.

In this work, I have used AM to investigate the CNNs by creating a

dataset by sampling various power laws. To be able to truly investigate

whether isodensity curvature is being used as a classification feature in the

CNNs, one idea would be to generate data with different curvatures. This

could be done by creating a set of desired curvatures in the Minkowski Func-

tional, generating Gaussian random fields, iteratively changing the field and

measuring the curvature, and using a χ2 minimisation function to guide the

fields closer to the desired curvature. This newly generated set of data with

user defined curvatures could be used to probe the decision boundaries of

the CNN model using curvature in conjunction with the user defined power

laws, giving further insights into which features the CNN is able to identify.

5.3.3 Further improvements

In recent years, investigations into using Fast Fourier Transforms (FFTs)

in conjunction with CNNs have become more popular. The most popular

research relating to this union of methods is to speed up the method and

reduce the memory required to perform the convolutions (Abtahi et al., 2017).

This would allow CNNs to be trained faster on high-quality hardware, and
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allow low-quality hardware to use them at all. In relation to my investigation,

I believe FFTs could be used to improve the results gained from the AM

technique described in Section 5.2. When considering why the AM images

are classified correctly by the CNN that produced them when applied to the

MNIST example, it should be noted that the current AM algorithm creates

the image by changing values in a random distribution, which is done in real

space, not Fourier space. This is acceptable when considering the MNIST

dataset, as two pixels side by side would have a high probability of being

linked causally. For instance, when considering an image of the number 0,

it is probable that there will be a high distribution of pixels that are side

by side that are white (or the pixel value is a 0), and a high probability

that there will be a distribution of pixels close together that have a pixel

value closer to 255. This is the same when considering a distribution of

dark matter particles. A much more appropriate method of producing an

AM simulation when considering dark matter particle distributions would

be to change the values of a random distribution in Fourier space, and then

converting back to real space at the end of the AM loss minimisation process.

I briefly investigated this issue when producing results for this work, and I can

report that training a CNN using a training set of Fourier transformed dark

matter particle simulations was possible (achieving classification accuracies

over 70% using nDGP simulations with an rcH0 value of 0.50), but I have left

modifying of the keras-vis AM code to be able to produce AM simulations

in Fourier space for future work.

There are many possible ways to extend this work further as methods

using deep learning to model and investigate our Universe mature. One such

idea would be to include the particle velocity data when training the CNN,

instead of simply using particle distributions as I have done. Besides the

hardware requirements, this would be quite easy to implement at the tech-

nical level. In current deep learning coding frameworks, training on color

images is achieved by splitting the red, green, and blue colors up into their

own separate ‘channels’ and are provided to the CNN simultaneously for each
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training sample. The equivalent could be done with these dark matter par-

ticle simulations, having one channel for particle positions, and one channel

for particle velocities. There would need to be tests done about whether

using the same kernels and having the data put through different channels,

or a different CNN architecture all together, would be the more appropriate

method of approaching this problem. The different CNN architecture could

be one that is somewhat similar to the Siamese network, except not providing

each branch of the CNN with simulations of different classification, but with

different data of the same simulation. In this architecture the Euclidean dis-

tance between the branches would not be compared as in Siamese networks,

as they are of the same class, but instead the kernels would be flattened and

concatenated before being passed to hidden layers.

This discussion has shown that there is a lot of work that can be done

on this subject in the future; however, the results presented in this work

provide a basis to improve upon. In Chapters 4 and 5 I have been able

to show that a CNN with no hyperparameter optimisation can discriminate

between different models of gravity to a high level of accuracy (depending

on the rcH0 value in the nDGP simulations). I have been able to show that

when removing matter density amplitude information from the simulation

sets, arguably their strongest identifying feature, the CNN can still classify

them correctly. I have also been able to show that one shot learning methods

such as Siamese networks are also able to classify these simulations correctly,

and should be further investigated to improve their effectiveness, as they

could be useful tools for making the CNN training process quicker.

I have then gone on to introduce a new method of extracting decision

boundaries from CNNs using generated data in the form of Gaussian ran-

dom fields, and also utilised and analysed the outputs from new techniques

(Activation Maximisation) in an effort to determine if the CNN models can

learn about the amplitude of matter density, or higher order statistics such as

the isodensity curvature in the models. The results indicate that the CNN

was able to learn about features other than the amplitude of the matter
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density.
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Chapter 6

Further Work and Conclusions

In this final chapter, I describe further work I have carried out during my

studies, and draw together my conclusions about the thesis.

6.1 HST Proposal

Outside of the machine learning methods I have used thus far, I have had the

opportunity to use more conventional methods to characterise astronomical

objects. I was approached by a colleague, Tom Collett, to perform a redshift

estimation using DES photometric data for a strong lensing candidate. The

reason for this was to create a proposal to acquire Hubble Space Telescope

(HST) imaging data to perform more accurate mass calculations than were

possible with the photometric DES data.

To do this I used a program called HyperZ (Bolzonella et al., 2000),

a template fitting code that works with photometric data to calculate the

redshift and physical galaxy properties (such as galaxy age, mass, metallicity,

and star-formation history). It does this by iteratively fitting the observed

photometric data to a set of reference (templates) or synthetic spectra, and

calculating the χ2 value (a measure of the difference between the observed

fluxes and template fluxes, then the best χ2 is chosen.

I used two template sets for this investigation, the first were the star-
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forming templates as described in Maraston et al. (2006). These include

32 sets of various star-formation histories, four different metallicities, 221

ages in the range of 1Myr - t(z) (restricted or unrestricted age), and dust in

various amounts. The second set were the purely passive templates described

in Maraston et al. (2009), where there was single-burst of star-forming, and

a spread of metallicities. After fitting the data, the redshift for the candidate

with the best χ2 was z = 2.6 ± 0.4.

The redshift for the lensed galaxy was calculated to be at z = 2.39, within

the errors of my initial calculation, from re-reduced spectral data (shown in

Figure 6.1) before Collett et al. (2017) was submitted. The mass enclosed

within the 14 arc second Einstein ring is calculated to be 1014.2 solar masses.

A full light profile reconstruction of the lensed images was performed to infer

the parameters of the mass distribution. This lensed system is of interest

because it requires either a very shallow dark matter profile, or the presence

of two merging dark matter components. The initial redshift that I calculated

helped to confirm the system and constrain the model. I am an author on

the paper and the proposal to acquire the HST data for the candidate was

accepted.

6.2 Conclusions

Research into the area of machine learning has become prevalent in recent

years, and it is important that research fields such as astronomy and cosmol-

ogy rapidly benefit from new modelling methods. Considering the successes

machine learning has had in other disciplines such as medicine, it is right

that these new methods are investigated and implemented along with cur-

rent well-established methods.

In relation to the results presented in Chapter 3, it can be seen that while

previous methods of classification perform very well, machine learning meth-

ods (especially feature driven and tuned models) can outperform them. In

this work I have been able to develop a pipeline that offers in-depth analysis of
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Figure 6.1: Spectra of gravitationally lensed galaxy from Collett et al. (2017).

The absorption features from the galaxy at z = 2.39 are indicated by the

vertical black dotted lines. The green overlaid spectra shows the ±1σ errors

from spectral extraction. The red overlaid spectra is a template of Shapley

et al. (2003) shifted by the measured redshift.
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machine learning models using treeinterpreter. This package allows features

used in a random forest to not only be ranked against one another, but shows

what particular value of the features were most important to the classifica-

tion. I have also applied the MINT feature selection method, which utilises

all of the data (training and test) to select a user defined number of features

that are the least correlated with one another, and simultaneously correlated

most with the classifications. The results show that the pipeline improves

on the frames object classification accuracy by 1.0%, which is ≈ 33% im-

provement in the rate of misclassification. Indeed, there are several reasons

for considering methods such as those outlined in Chapter 2.

Firstly, it has been shown that tree-based methods offer at least some level

of interpretability. Machine learning models and feature selection methods

such as MINT may choose to use features that do not seem to be obvious, so

figuring out how and why the model is working has been difficult. With new

codes such as treeinterpreter, I have shown that the models can be analysed

in such a way as to provide insight into which features are important to the

problem and why. Using such methods, it is possible for the machine to pick

out relations/correlations that have been previously missed.

Secondly, a higher degree of classification accuracy can be achieved - one

closer to that obtained by fitting spectra. The machine learning algorithms

also output probabilities for each classification, allowing users to single out

objects which are a problem for the machine learning model.

Thirdly, the machine learning method of classification is computationally

almost as quick as the frames method. For future surveys, speed of data

processing will become a very important problem. Our method could be

included in the pipeline of a new survey, where a standard training set is

created and given to the pipeline (from science verification data for example),

and the model could be continuously improved as new data is observed.

This work is an example of how new methods like treeinterpreter and

MINT are useful in understanding the relationship between data and the

performance of machine learning models. This analysis would have to be
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repeated for new datasets from different astronomical surveys because the

results presented here are not trivially transferable. In the future, as well

as being incorporated into survey data processing pipelines, these methods

could be applied to other problems in astronomy such as predicting redshifts

or the physical properties of galaxies, and offer new insights into how and

why machine learning algorithms make their decisions.

In relation to the results presented in Chapters 4 and 5, I have devel-

oped an approach to discriminating between cosmologies and gravities by

producing dark matter particle simulations with different cosmological mod-

els, compiling them into augmented datasets, and feeding them to machine

learning methods for classifying image data such as CNNs. I have shown

that these CNNs are able to distinguish between dark matter particles simu-

lations created using different theories of gravity to a high degree of accuracy.

I have also demonstrated that this is the case even when removing the most

obvious discriminator by normalising the power spectrum amplitudes. Fur-

ther to this, I have demonstrated that one-shot learning methods (CNNs of a

different architecture) are able to do the same. Here I used Siamese networks

in cosmology for the first time.

Following on from these novel results, I have been able to probe the model

and understand how it works, demystifying how CNNs are able to tell the

difference between these simulations. This has been done by extracting de-

cision boundaries and parameterising where the model breaks down using

generated datasets with known features (Gaussian random fields). Finally,

I have been able to manipulate the CNN into producing its own representa-

tions of different theories of gravity in order to study and determine what it

has been able to learn, showing that CNNs are able to learn about higher

order statistics present in the simulations such as isodensity curvature. I

have discussed how to improve the results for the existing methods, and out-

lined new directions that would be beneficial to the field such as the further

development of GANs. This would drastically reduce the required hardware

and time to produce accurate dark matter particle simulations.
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This work lays the foundation of using CNNs to study theories of gravity

in two major ways. Firstly, given that CNNs are able to learn about the

different theories, we can study successful CNN models to discover features

in dark matter particle simulations that may have been previously overlooked

- analogous to a fresh set of eyes looking at a problem. Secondly, if we

consider our simulations to be true representations of the universe, we could

project the simulations to create convergence maps and train CNNs with

them. We could then compare the generated convergence maps with those

like the one created from weak lensing using DES Y1 data (Figure 1.4) and

parameterise the differences. Finally, we could input the real convergence

map to the trained CNN and produce predictions about our Universe. The

quality of the predictions would increase as the simulations become larger and

more complex, for instance, with the inclusion of baryonic matter that would

affect predictions on small scales. Using extensions to the ideas presented in

this work it may be possible in the future for CNNs to answer the question

- ’Does our Universe follow Einstein’s theory of gravity, or a different one?’.
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Appendix A

First Appendix

A.1 Casjobs SQL Query

This is the SQL Query submitted to Casjobs to obtain all the values required

to calculate the whole sample used in this work.

select s.specObjID, s.class as spec class, q.objid,

q.dered u,q.dered g,q.dered r,q.dered i, q.dered z,

q.modelMagErr u,q.modelMagErr g, q.modelMagErr r,

q.modelMagErr i,q.modelMagErr z,

q.extinction u,q.extinction g,q.extinction r,

q.extinction i,q.extinction z,

q.cModelMag u,q.cModelMagErr u, q.cModelMag g,q.cModelMagErr g,

q.cModelMag r,q.cModelMagErr r, q.cModelMag i,q.cModelMagErr i,

q.cModelMag z,q.cModelMagErr z,

q.psfMag u,q.psfMagErr u, q.psfMag g,q.psfMagErr g,

q.psfMag r,q.psfMagErr r, q.psfMag i,q.psfMagErr i,

q.psfMag z,q.psfMagErr z,

q.fiberMag u,q.fiberMagErr u, q.fiberMag g,q.fiberMagErr g,

q.fiberMag r,q.fiberMagErr r, q.fiberMag i,q.fiberMagErr i,

q.fiberMag z,q.fiberMagErr z,

q.expRad u, q.expRad g, q.expRad r, q.expRad i, q.expRad z,
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q.clean, s.zWarning

into mydb.specPhotoDR12 from SpecObjAll as s

join photoObjAll as q on s.bestobjid=q.objid

left outer join Photoz as p on s.bestobjid=p.objid
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Hénon, M. (1964). L’évolution initiale d’un amas sphérique. Annales

d’Astrophysique, 27:83.

170



Hillebrandt, W. and Niemeyer, J. C. (2000). Type IA Supernova Explosion

Models. ARA&A, 38:191–230.

Hockney, R. W. and Eastwood, J. W. (1988). Computer simulation using

particles.

Holmberg, E. (1941). On the Clustering Tendencies among the Nebulae. II.

a Study of Encounters Between Laboratory Models of Stellar Systems by

a New Integration Procedure. ApJ, 94:385.

Howlett, C. (2016). Modelling and measuring cosmological structure growth.

Howlett, C., Manera, M., and Percival, W. J. (2015). L-PICOLA: A parallel

code for fast dark matter simulation. Astronomy and Computing, 12:109–

126, 1506.03737.

Hoyle, B., Rau, M. M., Zitlau, R., Seitz, S., and Weller, J. (2015). Fea-

ture importance for machine learning redshifts applied to sdss galaxies.

Monthly Notices of the Royal Astronomical Society, 449(2):1275–1283,

http://mnras.oxfordjournals.org/content/449/2/1275.full.pdf+html.

Hu, W., Sugiyama, N., and Silk, J. (1996). The Physics of Microwave Back-

ground Anisotropies. ArXiv Astrophysics e-prints, astro-ph/9604166.

Hu, W. and Tegmark, M. (1999). Weak Lensing: Prospects for Measuring

Cosmological Parameters. ApJ, 514:L65–L68, astro-ph/9811168.

Hubble, E. (1929). A Relation between Distance and Radial Velocity among

Extra-Galactic Nebulae. Proceedings of the National Academy of Science,

15:168–173.

Hubble, E. P. (1926). Extragalactic nebulae. ApJ, 64.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift. ArXiv e-prints,

1502.03167.

171



Jarosik, N., Bennett, C. L., Dunkley, J., et al. (2011). Seven-year Wilkinson

Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, System-

atic Errors, and Basic Results. ApJS, 192:14, 1001.4744.

Kamionkowski, M., Spergel, D. N., and Sugiyama, N. (1994). Small-scale

cosmic microwave background anisotropies as probe of the geometry of

the universe. ApJ, 426:57–60, astro-ph/9401003.

Kiefer, J. and Wolfowitz, J. (1952). Stochastic estimation of the maximum

of a regression function. Ann. Math. Statist., 23(3):462–466.

Kingma, D. P. and Ba, J. (2014). Adam: A Method for Stochastic Opti-

mization. ArXiv e-prints, 1412.6980.

Kirkpatrick, J. A., Schlegel, D. J., Ross, N. P., et al. (2011). A Simple

Likelihood Method for Quasar Target Selection. ApJ, 743:125, 1104.4995.

Koch, G. R. (2015). Siamese neural networks for one-shot image recognition.

Komatsu, E., Smith, K. M., Dunkley, J., et al. (2011). Seven-year Wilkin-

son Microwave Anisotropy Probe (WMAP) Observations: Cosmological

Interpretation. ApJS, 192:18, 1001.4538.

Kotikalapudi, R. and contributors (2017). keras-vis. https://github.com/

raghakot/keras-vis.

Koyama, K. (2007). TOPICAL REVIEW: Ghosts in the self-accelerating

universe. Classical and Quantum Gravity, 24:R231–R253, 0709.2399.

Koyama, K. and Maartens, R. (2006). Structure formation in the Dvali

Gabadadze Porrati cosmological model. J. Cosmology Astropart. Phys.,

1:016, astro-ph/0511634.

Lake, B., Salakhutdinov, R., Gross, J., and Tenenbaum, J. (2011). One shot

learning of simple visual concepts.

172

https://github.com/raghakot/keras-vis
https://github.com/raghakot/keras-vis


Le Fevre, O., Bijaoui, A., Mathez, G., Picat, J. P., and Lelievre, G. (1986).

Electronographic BV photometry of three distant clusters of galaxies. I -

Observations and reduction techniques. A&A, 154:92–99.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. 86:2278 – 2324.
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