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Abstract

Human activity recognition has been an active research topic for decades
due to its potential applications in video surveillance, human-robot inter-
action, elderly care, and entertainment. Although significant progress has
been made recently with the emergency of RGB-D sensors, it still re-
mains a great challenge in applying it to practical scenarios. The main
contribution of this thesis is a novel human activity framework including
four algorithms, namely, Geometry property and Bag of Semantic mov-
ing Words (GBSW) for human action recognition, Spatial Relation and
temporal Moving Similarity (SRMS) for human interaction recognition,
Skeleton Motion Distribution model (SMD) for human action detection,
and Multi-stage Soft Regression (MSR) framework for online human ac-
tivity recognition.

Firstly, targeting at traditional human action recognition problem where
the action sequences are manually pre-segmented, a spatio-temporal fea-
ture descriptor GBSW which aggregates a bag of semantic moving words
(BSW) with the geometric feature (G) is proposed to effectively repre-
sent human actions from skeleton sequences. Experimental results have
shown that GBSW can obtain superior performance over the state-of-the-
art methods.

Secondly, taking advantage of the BSW feature extracted from individu-
als, the moving similarity between body parts is further explored to de-
scribe the mutual relationship for effective human interaction recognition.
A new large RGB-D based human-human interaction dataset, namely, On-
line Human Interaction (OHI) Dataset is collected for the evaluation of hu-
man interaction recognition algorithms. The effectiveness of the proposed



method has been proven by the experimental results on both the public
dataset and the newly collected dataset.

Thirdly, to remove the manual segmentation requirement in the traditional
action recognition and achieve automatic action detection for a given video
sequence, a novel SMD model is developed. Specifically, an adaptive
density estimation function is built to calculate the density distribution
of skeleton movements. Experimental results have demonstrate that our
method outperforms the state-of-the-art methods in terms of both detec-
tion accuracy and recognition precision.

Fourthly, a MSR framework is developed for online activity recognition
where the action needs to be recognized immediately for a continuously
incoming video stream. The developed framework delicately assembles
overlapped activity observations in all periods to improve its robustness
against arbitrary activity segments. Extensive experimental results on sev-
eral public available databases have demonstrated the outstanding perfor-
mance of the MSR method over the state-of-the-art approaches.
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Chapter 1

Introduction

1.1 Background

Human conduct many activities for different purposes in daily life by interacting with
objects, partners or robots. Automatically recognizing human actions using the data
captured by vision sensors has attracted increasing attention due to its wide applica-
tions in many areas such as video surveillance, elderly care, entertainment, and human-
machine interaction. According to the complexity, common human activities can be
broadly grouped into the following four different categories: gestures, actions, inter-
actions, and group activities (Aggarwal & Ryoo, 2011). The movements of a person’s
specific body part, such as ‘stretching a leg’ and ‘nodding’, are defined as gestures.
It has the lowest complexity of the four activities and could be combined to represent
a specific intention of a person. Actions are usually performed by a single person
and may be composed of multiple gestures (e.g., ‘waving hands’, ‘running’). Interac-
tions involve two persons (e.g., ‘shaking hands’, ‘hugging’). Group activities are the
activities performed by groups that are composed of multiple persons (e.g. ‘a group
meeting’, ‘a group of people playing games’). Compared to gestures and actions, inter-
actions and group activities are more complex due to the involvement of more subjects
and the interdependence between each subject. This thesis targets at actions performed
by a single person and interactions between human and human, with a special focus on
developing algorithms to be applied into practical scenarios.

The task of human activity recognition is to automatically identify the human be-
haviors giving a video stream or a still image, as shown in Fig. 1.1. Feature extraction
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1.1 Background

and model training are two important and necessary steps to obtain a final recognition
result. The feature extraction procedure aims to build a most representative descriptor
for the input data. To achieve a good classification, the extracted features are expected
to have a large inter-class variety and a small intra-class variety. The model training
procedure will use a classifier to train a specific model for action recognition. After
the model is trained, the activity inference will assign class labels to action sequences.

Fig. 1.1: Framework of Vision-based Human Activity Recognition.

Most of the early activity recognition research concentrates on using data captured
by RGB images due to the limited sensing technology. Although this kind of data
source could provide rich color and texture information about the scene, it is sensitive
to illumination conditions, which will lead inconstant recognition results. Fortunately,
this sensitivity can be largely alleviated by the cost-effective RGB-D sensors that pro-
vide easy access to extra depth images and 3D skeleton data. Compared to common
RGB cameras, the RGB-D sensors equipped with an extra IR projector and IR camera
can measure the distance information of the scene via the structured light technique.
The depth information facilitates the segmentation of human bodies and the extraction
of 3D body joints even in an extremely dark environment (Shotton et al., 2013a). It
has motivated many skeleton-based methods, depth image-based methods, and hybrid-
based methods.

Traditional activity recognition algorithms focus on classifying different types of
activities from pre-segmented action sequences, where each video clip only contains
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1.2 Problems and Challenges

one complete activity. These action sequences are manually segmented after the ac-
tion is finished. However, for many practical applications, the action recognition is
expected to be executed with low latency while the action is being performed. For
example, an alarm is expected to be triggered when dangerous behaviors happen in a
public surveillance, and the assisted robot should be able to provide immediate help
for the elderly people if they are going to fall down, etc. Action recognition in these
realistic scenarios is referred to as online action recognition where actions need to be
recognized immediately from a continuously incoming video stream. Online action
recognition is challenging in that the action detection and recognition need to be con-
ducted simultaneously in a limited time window where the action might only be partly
observed. To this end, it has been one of the bottlenecks for many practical human
activity recognition applications.

Based on the background, the goal of this thesis is to develop a set of new method-
ologies and techniques for human activity recognition in practice. The problems and
challenges are summarized in Section 1.2.

1.2 Problems and Challenges

Human beings can identify an ongoing action from recorded videos easily, however,
it is challenging for a computer to understand the human activity. To develop an ef-
fective and automatic human activity recognition system, the following problems and
challenges need to be addressed:

1. The performance of human action recognition methods suffer from variance in
individual’s performing styles, body sizes and appearances, viewing conditions,
and execution speeds (Shahroudy et al., 2016b; Vemulapalli et al., 2014; Xia
et al., 2012; Zanfir et al., 2013). It is challenging to develop a feature descriptor
which is distinctive for different activities and similar among activity sequences
from the same category.

2. Compared to actions performed by a single person, human interactions are more
complex in that the interdependence between each other also plays an important
role. It is challenging to directly adapt existing single human action methods
to interactive scenarios to achieve high recognition accuracy (Kong & Fu, 2014;
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1.3 Overview of Approaches and Contributions

Yun et al., 2012). In addition, most of the existing RGB-D based datasets target
at the evaluation of human action recognition algorithms and few datasets are
specifically collected for human interaction.

3. Online activity recognition aims to automatically detect and identify human ac-
tivities for a continuously incoming video stream without any prior manual seg-
mentation. Compared to traditional activity recognition, it is more challenging
in that the action detection and action recognition need to be simultaneously ad-
dressed (Shan & Akella, 2014; Zhu et al., 2016b). Moreover, the detected action
sequences might only contain part of a complete action and it is challenging for
algorithms to effectively identify activities with the limited information.

1.3 Overview of Approaches and Contributions

Considering the challenges being presented in the previous section, this thesis makes
four main contributions listed as follows:

1. An effective spatio-temporal feature descriptor GBSW which aggregates the
BSW with the G feature is proposed to describe human actions from skeleton se-
quences. The proposed BSW, which highlights the discriminative moving trend
of each activity category via a kernel-based dynamic encoding algorithm, could
extract the 3D moving trend of each joint in 3D space. The geometry infor-
mation among skeleton joints along the whole action sequence is calculated to
extract motion cues in the temporal domain. Experimental results have shown
the semantic representation and the complementary effect of the aggregation of
different types of features in GBSW can achieve outperforming accuracy over
the state-of-the-art methods.

2. Based on the BSW feature extracted from individuals, this thesis further pro-
poses the SRMS descriptor by modeling the spatial relation between interactive
skeleton joints and the temporal moving similarity among interactive body parts
for human interaction recognition. A new large RGB-D based OHI Database
(Liu et al., 2017a) is collected in this thesis to serve as a benchmark of hu-
man interaction recognition. Outstanding performance on the SBU Interaction
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database (Yun et al., 2012) and the OHI database has been achieved by the pro-
posed method.

3. A novel skeleton motion distribution based model is proposed to detect actions
in videos. By converting the unique movement characteristics of each action to
its corresponding motion distribution, the occurrence frame of actions can be
detected. Then, a snippet-based classifier is designed to process the observed
video immediately for action classification. This classifier is performed in frag-
ment level and can reduce the influence of false detections.

4. This thesis proposes to formulate the online action recognition as a MSR prob-
lem. Multiple score functions that measure the compatibility between a video
segment and an activity label are collaboratively learned in the MSR framework.
The inherent evolution of segments from adjacent performance stages is mod-
eled by introducing a soft label strategy into the learning formulation. This soft
regression has the capacity of reinforcing the capacity of distinguishing similar
partial activities and the robustness to arbitrary activity fragments. Extensive
experimental results on the MAD database (Huang et al., 2014) and the OHI
database have shown 8.9% improvement of the MSR method over the state-of-
the-art approaches.

1.4 Outline of Thesis

The rest of the thesis is structured as follows:
Chapter 2 provides a comprehensive review of human action recognition, human

interaction recognition, and online activity recognition, covering both hand-crafted
features and learning-based features, with a special focus on data captured by RGB-
D sensors. Moreover, a detailed discussion of the reviewed work in terms of adopted
method types and their performance on public datasets is presented. This Chapter aims
to provide readers a systemic and comprehensive background as well as achievements
in the state-of-the-art algorithms.

Chapter 3 firstly introduces BSW to describe the moving trend of skeleton joints
in 3D space. The moving directions are divided into several semantic moving words
and the frame-level moving direction is quantified to these words via a kernel-based
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encoding algorithm. To extract the temporal information of skeleton joints, the G fea-
ture among joints along the whole action sequence is also calculated by the offset
displacement between the initial frame and the current frame. Finally, a spatiotempo-
ral feature descriptor GBSW which aggregates BSW with G is calculated for human
action recognition. The outstanding performance of GBSW over the state-of-the-art
methods is proved by the experimental results on MSR-Action3D (Li et al., 2010) and
Florence3D-Action (Seidenari et al., 2013).

Chapter 4 proposes the moving similarity between body parts based on each sub-
ject’s moving trend feature to effectively describe the mutual relationship between sub-
jects for human interaction recognition. To facilitate the experimental evaluation, a
new large RGB-D based OHI dataset is collected, which can be used as a benchmark
for the evaluation of human interaction recognition. Experiments conducted on both
public SBU Kinect Interaction (Yun et al., 2012) dataset and newly collected OHI
dataset have demonstrated the effectiveness of the proposed method.

Chapter 5 introduces a novel skeleton motion distribution based method for action
detection. The occurrence frame of actions is detected depending on the change of
their distribution property among each other. After detecting actions, a snippet-based
classifier is designed to process the observed video immediately for action classifica-
tion. Experimental results on the MAD database (Huang et al., 2014) have shown its
outstanding performance of accurately detecting actions in continuous videos.

Chapter 6 introduces the MSR framework to address the partial activity observa-
tion problem in online activity recognition. Multiple score functions that measure the
compatibility between a video segment and an activity label are collaboratively learned
in the MSR framework. The inherent evolution of segments from adjacent perfor-
mance stages is modeled by introducing a soft label strategy into the learning formula-
tion. This soft regression has the capacity of reinforcing the capacity of distinguishing
similar partial activities and the robustness to arbitrary activity fragments. Extensive
experimental results on the MAD database and the OHI database have demonstrated
the outstanding performance of the MSR method over the state-of-the-art approaches.

Chapter 7 summaries the thesis with a discussion of the contributions and future
work.
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Chapter 2

Literature Review

2.1 Introduction

Human activity recognition aims to automatically analyse the human behaviors from a
video stream or a still image. Most of the early research focus on activity recognition
from RGB images. However, this kind of methods are sensitive to illumination and
their performance is not robust due to the absence of 3D information. Fortunately,
these shortcomings can be largely alleviated by the cost-effective RGB-D sensors that
provide extra depth images and 3D skeleton data. As a consequence, more and more
methods based on RGB-D data have been explored, which reveals a promising future
direction for human activity recognition. Recently, inspired by the remarkable success
of deep learning techniques in image categorization tasks (Krizhevsky et al., 2012),
approaches based on the deep convolutional networks which aim to learn high-level
representations directly from training data have been adopted for activity recognition.

This chapter provides a detailed review of the data capturing, human action and in-
teraction recognition, online activity recognition, and RGB-D human activity datasets.
Considering that the feature extraction process varies to a large extent and plays an
important role in most of the existing methods, this thesis further categorizes the exist-
ing methods according to the construction of features. Meanwhile, the overview of the
classification methods is presented during the description of each method and is also
discussed in Section 2.8.

The rest of this chapter is organized as follows. Section 2.2 describes Kinect sen-
sors and 3D data. Section 2.3 and Section 2.4 review hand-crafted features based
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human action and interaction recognition methods respectively. Section 2.5 presents
a survey on deep learning based human activity recognition. Section 2.6 provides an
overview of the existing online activity recognition methods. Section 2.7 summarizes
the commonly used RGB-D human activity datasets. Section 2.8 provides a compari-
son between hand-crafted based and deep leaning based methods along with a discus-
sion of their performance on the most commonly used datasets.

2.2 Kinect Sensor and 3D Data

The task of vision based human activity recognition is to identify the human behaviors
from the scene observed by an acquisition system. Most of the early research use only
the color and texture information in 2D images provided by traditional RGB cameras.
However, the sensitivity to illumination changes and subject texture variations as well
as the lack of 3D information of the scene often degrade the recognition accuracy.
There are mainly three categories of methods to obtain 3D data.

The first way to get the 3D information of human bodies is using a marker-based
motion capture system (Mocap). In Mocap, different types of markers are placed in
specific positions (such as boney regions), and the 3D position of a human body is gen-
erated by estimating the position of each marker. Mocap is able to accurately capture
human pose and track it along the time resulting in high resolution data. Therefore,
Mocap has been used in a wide range applications, such as animation, video games,
and virtual coaches. Several motion capture datasets have been collected providing
such data for human activity analysis, like the Carnegie Mellon University Motion
Capture database and HDM05 (Müller et al., 2007). Fig. 2.1 shows an example of
motion capture systems used by Müller et al. (2007). The retro-reflective markers
attached to the actor’s body are tracked by an array of six to twelve calibrated high-
resolution cameras arranged in a circle. Although the skeleton joints obtained by the
Mocap system is reliable and less noisy, this type of systems require the user to wear
some physical markers to acquire the 3D data, which makes it not convenient for the
general public.

The second way is to reconstruct 3D information from 2D image sequences cap-
tured from multiple views (Argyriou et al., 2010). The low-cost stereo camera is
equipped with two or more lenses with a separate image sensor or film frame for each
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2.2 Kinect Sensor and 3D Data

Fig. 2.1: Motion capture system used in HDM05 dataset (Müller et al., 2007).

lens. This allows the camera to simulate human binocular vision and therefore gives it
the ability to generate 3D images. The relative depth information to the objects could
be obtained by comparing the two images. However, it is still challenging to recon-
struct 3D information from stereo images due to the complexity of the geometry. In
addition, the exhaustive calibration and synchronization process among multiple cam-
eras is not desirable and limits its practical applications.

Fortunately, these shortcomings can be largely alleviated by the cost-effective Kinect
sensors, such as Microsoft Kinect and ASUS Xtion, that provide easy access to the 3D
structure of the scene using one camera, as shown in Fig. 2.2. The Kinect sensor is

(a)

Fig. 2.2: The structure of the Kinect sensor, including infrared (IR) projector, IR cam-
era, and RGB camera.

originally introduced as a game tool, which has greatly revolutionized the way people
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play games and how they experience entertainment. It allows users to naturally inter-
act with a computer with gestures. Compared to traditional RGB cameras, the third
dimension (depth) of users provided by the Kinect sensor makes computer vision tasks
such as body language understanding much easier. With its excellence and low cost,
Kinect’s impact has extended far beyond the gaming industry.

In addition to standard RGB images, a depth map is also provided giving each
pixel the corresponding distance with respect to the sensor. Structured light and time
of flight technology are two common ways to estimate the depth information. Structure
light cameras (e.g. Microsoft Kinect v1) project a known pattern onto the scene and
calculate its distortion to estimate the distance of points. Time of flight cameras (e.g.
Micorsoft Kinect v2) emit a light signal in the scene and compute depth based on the
time elapsed between the emission of a light signal and its reception with the known
speed of light.

Two main software libraries namely Microsoft Kinect SDK and OpenNI SDK are
developed for providing skeleton joints. Shotton et al. (2013a) provided an real-time
effective skeleton construction algorithm based on body part distribution in 2011 (Fig.
2.3). A single depth image is classified at each pixel using a randomized decision

Fig. 2.3: Skeleton estimation from a single input depth image based on body part
recognition (Shotton et al., 2013a).

forest classifier. Each branch in the forest is determined by a simple relation between
the target pixel and various others. The pixels that are classified into the same category
form the body part, whose local modes are estimated to provide high-quality proposals
for 3D skeleton joints. Finally, the 3D skeleton is inferred by fitting the joint proposals
with the silhouette. This algorithm is able to generate 3D human skeleton models
within about 5 ms.
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To this end, the RGB image of the scene, its corresponding depth map, and 3d
skeleton information could be obtained by the Kinect sensor, as shown in Fig. 2.4.
Compared to traditional RGB cameras which have high sensibility to color and light

Fig. 2.4: The RGB image, depth iamge and skeleton joints obtained by the Kinect
sensor.

conditions, the Kinect sensor has the robustness to the change of illumination con-
ditions. In addition, the available 3D information of the scene indeed facilitates the
subtraction of objects of interest from the background. As a consequence, many meth-
ods based on RGB-D data have been explored (Han et al., 2017; Presti & La Cascia,
2016; Zhang et al., 2016; Zhu et al., 2016a) for human activity recognition. Following
sections will provide a comprehensive review of the existing human action and interac-
tion recognition methods, including both hand-crafted based and deep learning based
algorithms. Fig. 2.5 shows the categories of these methods.

Fig. 2.5: The category of human activity representations using RGB-D data.
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2.3 Hand-crafted Features based Human Action Recog-
nition

This section mainly focuses on reviewing related works on RGB-D data based single
human action recognition. Based on the data modality used, they can be classified into
three categories: skeleton-based methods, depth-based methods, and hybrid feature-
based methods.

2.3.1 Skeleton-based Methods

Skeleton information can be estimated using the RGB data (Toshev & Szegedy, 2014;
Yang & Ramanan, 2013), wearable motion capture (Mo-Cap) sensor (Deng et al.,
2012) or depth data (Shotton et al., 2013b; Ye et al., 2011). The review of skeleton-
based methods gives priority to depth data in this section. The release of RGB-D
sensors such as Kinect and Xtion makes it possible to obtain 3D positions of body
joints from depth images frame-by-frame (Shotton et al., 2013b), encouraging a lot of
recognition methods using skeleton data being proposed. The skeleton-based methods
can be further divided into trajectory-based and pose-based algorithms.

Trajectory-based algorithms explore characteristics of the spatio-temporal trajec-
tory of skeleton joints to identify various actions (Gowayyed et al., 2013; Ofli et al.,
2014; Ohn-Bar & Trivedi, 2013; Qiao et al., 2017; Zanfir et al., 2013). Gowayyed
et al. (2013) proposed a 3D trajectory descriptor, which concatenated three 2D pro-
jections of the whole skeleton sequences, to represent the movement of each joint.
The final action classification was conducted based on these trajectory descriptors. In
(Ohn-Bar & Trivedi, 2013), joint angles between connected pairs of body parts were
chosen as motion features and then similarities between each angle with temporal evo-
lution were used as representation of actions. A modified histogram of oriented gra-
dients, i.e., HOGs, was utilized to capture the posture information around each joint
over the whole time. Qiao et al. (2017) applied a local feature representation named
trajectorylet, which constrained the dynamic characteristic of actions from the entire
sequence to a short temporal range, to capture ample static and dynamic information
of actions. Compared to extracting dynamic characteristic of actions from the entire
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sequence, more specific dynamic information within a short temporal range was cap-
tured in this trajectorylet description. In (Ofli et al., 2014), the most informative joints
of performing each action were firstly captured within an instant time according to the
mean or variance of joint angle trajectories. Although this local trajectory represen-
tation could remove the inactive frames and emphasize the distinctive sub-sequences,
it is challenging to extract salient trajectories from the noisy skeleton sequences. Guo
et al. (2018) encoded motion trajectories of body parts to a gradient variation based
sparse histogram and applied a support vector machine (SVM) with chi-square kernel
for action recognition.

Compared to the trajectory-based approaches, pose-based approaches focus more
on key poses characterized by the skeleton point distribution or its surrounding body
parts. Features such as joint locations, joint angles, and 3D geometric relationships
between body parts are often directly employed as advantageous representations of
activities (Lillo et al., 2017; Pazhoumand-Dar et al., 2015; Theodorakopoulos et al.,
2014; Xia et al., 2012). In (Xia et al., 2012), the histogram of 3D joint locations,
i.e., HOJ3D, in a modified spherical coordinate centering at hip center, was proposed
to describe human postures which were then clustered into K clusters using K-means.
These K clusters representing the prototypical poses of actions were considered as
observation symbols in a discrete Hidden Markov Model (HMM) to explain the tem-
poral evolution. Pazhoumand-Dar et al. (2015) applied joint angles to depict body
poses and simultaneously used the relative motions between joints to describe their
relationships in the time domain. To reliably identify actions from noisy skeletal data
sequences, they formulated a classification function based on an extended formula-
tion of the longest common subsequence algorithm. Instead of using the movement
of all skeleton joints, Eweiwi et al. (2015) focused on mining discriminative joints
with apparent motion property. Discriminative joints were determined by partial least
squares, whose location information, velocity, and the movement normals were en-
coded as poses during a short video period. Chaaraoui et al. (2014) used Dynamic
Time Warping, i.e., DTW, to calculate the matching between action sequences for ac-
tion recognition, where an evolutionary algorithm was proposed to select the optimal
set of skeleton joints to form sequences of key poses for each action. Vemulapalli
et al. (2014) made use of the rotations and translations among body parts to model
their relative 3D geometry relation, with which human motion was encoded as curves
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in Lie group. This method is able to reveal the concurrence of body parts, whereas the
isolation of body parts remains difficult when there is overlapped areas among body
parts.

2.3.2 Depth-based Methods

The depth images, which store the Euclidean distance between the sensor and points
in the scene, make it easy to extract human bodies from the cluttered background.
Furthermore, depth images are invariant to the change of lighting conditions thus sta-
ble and rich information could be provided for describing human shape or motion.
Some researchers (Bulbul et al., 2015; Chen et al., 2013; Li et al., 2010; Wang et al.,
2015d; Yang et al., 2012a) proposed to project the 3D depth information onto three
2D orthogonal planes corresponding to the front, side, and top view for feature ex-
traction, as shown in Fig. 2.6. Li et al. (2010) extracted 3D representative points of

Fig. 2.6: Method proposed in (Yang et al., 2012a).

the body silhouette from these planes to model postures for recognition. The bi-gram
maximum likelihood decoding algorithm was employed to reduce the computational
complexity. In (Yang et al., 2012a), Depth Motion Maps, i.e., DMMs, were generated
by stacking depth maps over the whole sequence and then HOGs were computed to
characterize human motions. The concatenation of HOGs was the input of a linear
SVM classifier for final action classification. To reduce the computation cost caused
by the computation of HOGs in (Yang et al., 2012a), Chen et al. (2013) used the con-
catenation of DMMs from three viewpoints as the final representation. Human body
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shape was reflected in detail from different viewpoints in these DMMs. Bulbul et al.

(2015) improved DMMs by implementing the contourlet transform with a multi-scale
and multi-directional analysis to enhance the shape characteristic of DMMs.

The surface normal vectors calculated using a group of 3D points can be used to
describe the shape and motion information (Oreifej & Liu, 2013; Slama et al., 2014;
Yang & Tian, 2014b). Shape and motion information were jointly extracted in a 4D
space formed by extra considering the depth and time domain. Oreifej & Liu (2013)
proposed to divide the depth sequences into many spatio-temporal cells and surface
normals in each cell were counted to compute the Histogram of Oriented 4D, i.e.,
HON4D. The normal variable from human body surface depicts the change of human
shape and motion. Similarly, super normal vector (Yang & Tian, 2014b), i.e., SNV,
was calculated by grouping local hypersurface normals to create the low-level poly-
normal, which further preserves the correlation among local normals in the polynormal
and achieved 2.3% improvement compared to HON4D. Slama et al. (2014) modeled
sequence features as subspaces lying on Grassmann manifold, where the geometric
and dynamic information of human body were computed. The action classification
benefits from the geometric structure of Grassmann manifold. Principal component
analysis, whose computational complexity was O(min(m3,m2n)) with m being the
feature dimension and r being the number of training samples, was applied to reduce
the dimension of features.

Alternatively, some researchers propsed to segment the depth data to interest areas
(the most active parts), from which compact features were extracted for action recogni-
tion. In addtion, features from the interest areas can describe local parts of the actions
thus are robust to occlusions or clutter. For example, Wang et al. (2012a) constructed
random occupancy patterns feature from 4D subvolumes randomly sampled in depth
map sequences to gain the robustness towards occulsions. Xia & Aggarwal (2013) uti-
lized the depth cuboid similarity to depict the local feature around the spatio-temporal
interest points extracted from depth videos. In (Liu & Liu, 2016), the spatial relation-
ship among selected joints with discriminative shape and movement was used to build
the depth context descriptor for final action recognition. Compared to the methods ex-
tracting features direct from images, these approaches require extra computational cost
to detect interest regions through the whole depth sequence before feature extraction.
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2.3.3 Hybrid Feature-based Methods

The association of multi-modal data such as skeleton data, color, and depth images
can improve the recognition performance (Althloothi et al., 2014; Raman & Maybank,
2016; Wang et al., 2012b, 2014; Yang & Tian, 2014a; Zhu et al., 2013). For exam-
ple, the depth or RGB information can reflect the appearance or texture information
surrounding the skeleton joints while the movement of joints can describe the motion
information.

The majority of hybrid features tend to extract the corresponding depth informa-
tion around skeleton joints (Raman & Maybank, 2016; Shahroudy et al., 2016b; Wang
et al., 2012b, 2014), or combine the features from joints and depth images directly
(Althloothi et al., 2014; Jalal et al., 2017; Ji et al., 2018). Wang et al. (2012b, 2014)
proposed the local occupancy pattern, i.e., LOP, to describe the appearance around
each joint. The body movement was interpreted by the relative positions of joint pairs
and LOP was obtained by projecting cloud points in the spatial grid around each joint.
Ji et al. (2018) partitioned the human body to several motion parts by embedding the
skeleton data into depth sequences. Local features extracted from these motion parts
were aggregated into a discriminative descriptor. The depth inforamtion of objects
around joints was also associated in (Raman & Maybank, 2016) as the low-level layer
of a hierarchical HMM. It has a computational complexity of O(TK2) where T is
the sequence length and K is the state number. Zhu et al. (2013) coupled the motion
depending on points of interest and spatial information using a random forests-based
fusion strategy. The frame-level fusion strategy used in this method makes informa-
tion from different data sources complement each other more effectively. To reduce the
confusing frames and computation cost, the information from depth images was em-
ployed to determine the discriminative frames among the whole sequence in (Yang &
Tian, 2014a). Yang & Tian (2014a) proposed a depth map based accumulated motion
energy function to select the discriminative skeleton frames to remove noisy frames
and reduce computational cost. After the calculation of EigenJoints (Fig. 2.7) which
combines the difference of postures, motion, and offset information of joints, they
used non-parametric Naive-Bayes-Nearest-Neighbor (Boiman et al., 2008) to classify
multiple actions.
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Fig. 2.7: Method proposed in (Yang & Tian, 2012).

Apart from the combination of skeleton joints and depth images, some researchers
also consider RGB information (Kong & Fu, 2015a; Liu et al., 2015; Sung et al., 2012;
Zhang & Parker, 2016). Sung et al. (2012) employed skeleton joints to model motion
features and extracted HOGs features from regions of interest in both RGB and depth
images to characterize the appearance cues. A coupled hidden conditional random
fields model (Liu et al., 2015) was proposed to learn the latent correlation between
visual features from both RGB and depth source. In this model, the temporal context
within individual modality was preserved while learning the correlation between two
modalities. Alternatively, Kong & Fu (2015a) projected features from RGB and depth
images into an united space and independent private spaces for action recognition,
which indicated that knowledge and correlation from different sources could be shared
with each other to reduce noise and improve the action recognition performance.

2.3.4 Summary

The hand-crafted human action recognition methods were divided into skeleton-based,
depth-based, and hybrid feature-based according to the used data modality. Each type
of methods has its advantages and limitations. Although depth images have the out-
standing capability to describe appearance information, they might suffer from holes
where depth data is missing. Skeletons are compact and straightforward to depict
the motion properties of actions, however, the limitation of the skeletal feature is that
it does not give information about the surrounding objects which should be consid-
ered when modeling human-object interaction. In addition, the skeleton tracking from
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Kinect sensors is not very reliable when the human body is partly occluded or the
subject is not in an upright position facing the sensor. The combination of features
from different modalities has the potential to improve the recognition performance by
overcoming the respective weakness.

2.4 Hand-crafted Features based Human Interaction
Recognition

This section provides a comprehensive review of human interaction recognition using
RGB-D data. They can be regarded as a type of activities where one person adapts
his/her behavior according to the action of the other person. Although an interaction
is a collection of atomic actions from individuals’ actions, it cannot be easily isolated,
especially when human bodies have overlapped area caused by physical contact or oc-
clusion, as shown in Fig. 2.8. In these situations, there is large ambiguity of feature

(a) (b)

Fig. 2.8: Inaccurate estimation of skeleton joints (in white color) caused by inter-
occlusion and self-occlusion during human interaction.

assignment to a unique person, which makes features used for atomic action recogni-
tion, such as interest points and trajectories, difficult to directly be applied for human
interaction recognition (Kong & Fu, 2016). Compared with single person action, the
feature space of human interaction has more variations in subject appearance, scale,
viewpoint, interacting motion patterns, etc., due to multiple persons involved (Kong
et al., 2012). Moreover, diverse interacting motion patterns (the actions and reactions
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vary from each other) make human interaction recognition more challenging. For ex-
ample, semantic performances of the defender to protect oneself vary from step back,
crouch, to hit back, so this requires all possible co-occurrence relations to be extracted.

The majority of existing RGB-D data based human interaction recognition use
features from skeleton sequences or combine features from different data modalities,
while few approaches are based on single depth data (Gori et al., 2017; Yun et al.,
2012). Therefore, they can be classified into two categories: skeleton-based methods
and hybrid feature-based methods.

2.4.1 Skeleton-based Methods

Some human interaction recognition algorithms utilize features of joint pairs to exhibit
the spatial and motion relation over the time (Huynh-The et al., 2015; Yun et al., 2012).
Yun et al. (2012) extracted different features of skeleton joints, such as distance, joint
movement between consecutive frames, the geometric relationship between joints and
planes, and velocity features, as shown in Fig. 2.9. To reduce the irrelevant frames,

Fig. 2.9: Diverse features proposed in (Yun et al., 2012).

interaction sequences were depicted by a bag of body-pose via multiple instance learn-
ing. Their experimental results showed that the joint features outperform velocity fea-
tures by 30%. A hierarchical model was employed by (Huynh-The et al., 2015) for
interaction recognition, where interaction was disjointed into topics. The correlation
among low-level features, topics, and activities, was exhibited in the model.

Interactive body part pairs are distinct among different interactions, for instance,
shaking hands can roughly be regarded as the interaction between two hands. Thus,
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mining the essential interactive pairs helps to remove redundant information from the
inactive body parts. For example, the activities between two persons were described
as the motion and spatial relations between informative body parts in (Ji et al., 2014,
2015; Saha et al., 2015). The contrast mining method was applied to extract the most
active body part pairs for each interaction class in (Ji et al., 2014). On the basis of
this work, Ji et al. (2015) extracted intra-inter-frame features of single or interactive
pairs. The learned contrastive feature distribution model provided a discriminative
description for interactions. Compared to the employment of all joints in (Yun et al.,
2012), these mined representations are more discriminative and not computationally
expensive. However, occlusion or big inter-class similarity makes the extraction of
interactive body parts difficult. Wu et al. (2017) proposed a human interaction feature
descriptor by utilizing the static, dynamic and direction properties of the skeleton data.
They addressed the interaction recognition by formulating it as a sparse group lasso
problem.

Some scholars transformed the interaction problem to the single person action
recognition problem (Bloom et al., 2014, 2016; Hu et al., 2013). The interaction
between players was decomposed into two single individual actions in a computer
gaming environment in (Bloom et al., 2016). Each player’s action was trained and
classified separately, and the final interaction classification was achieved through the
combinition probability of two actions. Hu et al. (2013) (Fig. 2.10) firstly identified the

Fig. 2.10: The flowchart of positive action recognition in (Hu et al., 2013).

most active person according to the following two rules: the person acts firstly or the
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person with greater motion at the beginning short frames.Then, the action of the active
person was used for human interaction recognition. Features proposed in (Yun et al.,
2012) were utilized to encode the position action as a pose descriptor in (Bengalur,
2013; Hu et al., 2013). Although this method is able to reduce the feature dimensions,
its effectiveness will be affected when the interaction with heavy occlusion. Unlike the
methods mentioned above, Coppola et al. (2016) utilized features from two individuals
and the relationship between each other for different purposes. They treated physical
proximity features learned from social interaction as prior knowledge and built a mul-
tivariate Gaussian distribution to estimate the distribution of each interaction category.

2.4.2 Hybrid Feature-based Methods

Gori et al. (2017) built a bounding box around the human body to restrict the area
of interest because it could help to remove most of the redundant information of the
different modalities. Then, a matrix called relation history image was proposed to
depict the local relations, which contains Euclidean distances of joint pairs and com-
parison of depth value between pixels in a bounding box. Similarly, van Gemeren et al.

(2014) explored shape and movement features for each interactive person from bound-
ing boxes where the interaction happens and merged the information of joints with
poselets to select key frames for action representation. Xia et al. (2015) combined the
posture, motion information, and local appearance feature from both RGB and depth
channel for interaction recognition. They studied interaction from a robot-centric view
instead of the conditional third-person view. Appearance and motion properties were
extracted directly from body parts in (Alazrai et al., 2015) and (Xu et al., 2015). The
semantic meaning of body-part between two interacting people was described by mo-
tion direction and distance between two persons in (Alazrai et al., 2015). To supple-
ment the movement profile, local shape information was extracted from the bounding
box around body parts. The final feature descriptor was formed by concatenating all
these features together. In (Trabelsi et al., 2017), a comprehensive feature descriptor
combining the distance property of the 3D skeleton data and the dense optical feature
extracted from the color and depth images was proposed to describe human interac-
tions.
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Contextual information is a vital factor for recognizing human activity, especially
for those during human interaction and human-object interaction (Ni et al., 2013). The
relationship between activities and backgrounds, and features from a specific object
with which a person interacting could support valuable context for action recognition.
In (Ni et al., 2013), constraints based on depth value were used to improve the accu-
racy of objects detection. Apart from extracting appearance features by HOGs for each
subject, the spatio-temporal contextual attributes were encoded by relative distances,
velocity or time order. Additionally, the depth-based environment description was con-
sidered for representing different scenes and thus made the recognition more precise.
A dual assignment K-means clustering algorithm which exploits the correlation be-
tween actions and scenes was proposed in (Jones & Shao, 2014). Their experimental
results showed that the performance can be improved by considering the contextual
feature.

2.4.3 Summary

The multi-modal data provided by RGB-D sensors has been encouraging more re-
searchers to investigate approaches for human interaction recognition. This section
summarized both skeleton-based and hybrid feature-based methods. Currently, the in-
terdependent relation between interactive persons was mainly represented by the dis-
tance between body parts in the proposed methods. Although the distance property is
useful, it might not be sufficient to reflect the inherent relations. Thus, one direction of
future research may be designing effective approaches toward the semantic interpreta-
tion of activities.

2.5 Deep Learning based Human Activity Recognition

Motivated by the great achievements of deep learning techniques in computer vision
community, researchers have developed many deep learning based methods for human
activity recognition. Unlike the hand-crafted methods where specific types of features
need to be designed to distinguish human action and interaction, most of the deep learn-
ing based methods code human action or interaction information directly into a map
and then resize the map to a fixed size for activity recognition. Therefore, this thesis
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does not specifically separate existing deep learning based human activity recognition
methods into single human action and human interaction at this stage. Following the
same taxonomy with the hand-crafted methods, the research reviewed in this section is
grouped into three categories: skeleton-based, depth-based, and hybrid-feature based.

2.5.1 Skeleton-based Methods

Convolutional Neural Networks (CNN) is automatic feature extractors which could
extract effective information from different spatial locations in the input image by a
number of filters. Recently, inspired by its remarkable success in image categoriza-
tion tasks Krizhevsky et al. (2012), CNN-based methods which aim to learn high-level
representations directly from skeleton sequences have been adopted for action recogni-
tion. Their focus is mainly on transforming the skeleton joints positions or trajectories
into images and then adapting CNN for classification.

Li et al. (2017) proposed to project 3D skeleton joints into three orthogonal 2D
planes. Together with the 3D distance information, they constructed four joint dis-
tance maps according to a linear interpolation function and then applied AlexNet
(Krizhevsky et al., 2012) to classify actions. Ke et al. (2017) firstly transformed the co-
ordinate of skeleton joints from Cartesian coordinates to cylindrical coordinates (Wein-
land et al., 2006) and constructed three clips of gray images using the relative positions
between the skeleton joints and four manually defined reference joints. Then, the fea-
tures extracted from a pre-trained VGGNet (Simonyan & Zisserman, 2015) were fed
into a multi-task learning network which consists of two fully connected layers, a recti-
fied linear layer, and a softmax layer, for the final classification. The method dealt with
the different action duration problem by coding the temporal dynamics of the skeleton
sequence into respective dynamic image rows and further resizing the image to a fixed
size.

Observing that the image resizing operation might introduce extra noise for the
network, Liu et al. (2017c) proposed to directly input a skeleton image, which was
constructed by indexing the skeleton joints into several tiny 5×5 images and expanded
by using the spatial-temporal information, to a modified Inception-ResNet CNN archi-
tecture for action recognition, as shown in Fig. 2.11. The drawback of this method is
the assumption of each action has a fixed number of skeleton sequence as input. The
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Fig. 2.11: Spatio-temporal image representation of human skeleton joints proposed in
(Liu et al., 2017c).

spatio-temporal information of 3D skeleton sequences was encoded into three joint tra-
jectory maps according to three different views (i.e., front, top, and side) in (Hou et al.,
2018; Wang et al., 2016b). A ConvNet for each trajectory map was trained and actions
were classified via a late fusion of the three output scores. Similarly, Du et al. (2015a)
proposed to code the temporal and spatial information of the skeleton sequence into
image columns and rows respectively. Then a CNN with four convolution layers and
two fully connected layers were used for action recognition.

Different with previous methods, Yan et al. (2018) proposed to employ a multi-
layer graph neural networks, where the graph nodes consist of joint coordinates and
estimation confidences, to automatically learn the spatio-temporal pattern of the skele-
ton data. The undirected spatio-temporal graph can well perseve both the connectivity
of human body structure and its temporal variation in the consecutive frame, which
helps to achieve over 80% recognition rate on the NTU-RGB+D dataset (Shahroudy
et al., 2016a). Huang et al. (2017) employed a neural network architecture to learn a
temporally aligned Lie group representations (Vemulapalli & Chellapa, 2016) for ac-
tion recognition, which demonstrated that the non-Euclidean Lie group structure can
also be incorporated by the CNN structure.

As an alternative solution to CNN, Recurrent Neural Network (RNN) could ef-
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2.5 Deep Learning based Human Activity Recognition

fectively model the temporal information. However, due to the gradient vanishing
problem, most of the RNN methods lack the ability to process long action sequences.
One of the popular solutions is to employ the Long Short-Term Memory (LSTM)
(Hochreiter & Urgen Schmidhuber, 1997) which solves the problem by utilizing a
gating mechanism to determine the memory length of the input sequence.For example,
Veeriah et al. (2015) proposed a differential RNN by adding a gating into LSTM to
model the dynamics of salient motions. Various hand-crafted features concatenated
from successive frames were fed to the proposed LSTM structure.

Du et al. (2015b, 2016) proposed an end-to-end hierarchical RNN which fuses the
feature extracted from five human body parts for action recognition. As pointed out
in (Zhang et al., 2017c), the relationship between non-adjacent parts can be useful
to depcit the dynamic characteristics of actions. Shahroudy et al. (2016a) utilized
the human body structure to build a part-aware LSTM. By concatenating part-based
memory cells, the non-adjacent parts relations learned from the 3d skeleton sequence
help to describe the dynamics of actions and thus improve the recognition performance.

Mahasseni & Todorovic (2016) employed the regularized LSTM on top of a deep
CNN for RGB video based action recognition. Assuming extra 3D skeleton data can
complement the lost information in the video, they proposed to regularize the network
by using the 3D skeleton sequence from a few actions. Zhu et al. (2016c) fed the
skeleton joints to a deep LSTM network with mixed-norm regularization term to learn
co-occurrence features for action recognition. They further applied an internal dropout
method to the LSTM neurons in the last LSTM layer to learn complex motion dynam-
ics, as shown in Fig. 2.12. Zhang et al. (2017c) explored various geometric relational

Fig. 2.12: Deep LSTM network (Zhu et al., 2016c): three LSTM layere and two feed-
forward layers.
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2.5 Deep Learning based Human Activity Recognition

features among all joints and used a stacked three layers LSTM for action recognition.
Observing the lost information in the transnational pre-processing procedure, which

transforms and rotates 3D skeleton joints to the person-centric coordinate system,
Zhang et al. (2017b) proposed a view adaptive RNN with LSTM structure to deal
with the viewpoint variations. To reduce the noise of the irrelevant joints and improve
the performance, Liu et al. (2018) developed a global context-aware attention LSTM
to selectively pay attention to informative joints in each frame with the help of the
global memory cell. The attention ability was further improved by using a recurrent
attention mechanism. CNN and LSTM were jointly utilized for action recognition in
(Núñez et al., 2018), where the output of CNN was served as the input of LSTM. A
two-stage training procedure was further developed, which firstly trains the CNN and
then trains the combined network.

Unlike the previous RNN based methods where only the temporal domain of the
skeletons are modeled, Liu et al. (2016b) proposed a tree-structure based traversal
method to handle the spatial adjacency graph of the body joints. A trust gate was also
proposed to remove noisy joints and deal with the occlusion in the 3D skeleton data.
Similarly, Song et al. (2017) proposed to add joint-selection gates in the spatial at-
tention model and frame-selection gazes in the temporal model for action recognition.
They further proposed a joint training strategy to train the network in an end-to-end
way. Wang & Wang (2017) proposed a two-stream RNN architecture which jointly
models the spatial articulated property and the temporal dynamic of skeletons. The
additional spatial RNN models the spatial dependency of joints by considering human
body kinematics. However, for human interaction, they conducted action recognition
on each person and used the average score as the final recognition result. The perfor-
mance on human interaction can be improved by further considering the relationship
between interactive persons.

2.5.2 Depth-based Methods

Depth image sequences contain rich motion features, however, they are not suitable
to be the input of the most existing CNN models which are specifically designed for
color images. Some researchers proposed to extract hand-crafted features from depth
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2.5 Deep Learning based Human Activity Recognition

sequences by stacking shape and motion features over the whole video, and then con-
vert them to texture images by encoding depth information. The generated texture
images enable the use of existing models pre-trained on large scale image recogni-
tion or segmentation datasets with the fine-tuning operation to achieve satisfactory re-
sults. Wang et al. (2015b, 2016b) encoded the DMMs feature (Yang et al., 2012a) into
Pseudo-RGB images, which could convert the spatial and temporal movement infor-
mation into textures and edges. Three independent ConvNets corresponding to three
viewpoints were trained and the final recognition result was assigned by fusing the
class score from three ConvNets. In (Wang et al., 2016c), both the posture and motion
feature in depth image sequences were extracted from dynamic depth images, dynamic
depth normal images, and dynamic depth motion normal images. The spatial-temporal
information was encoded into images using bidirectional rank pooling. These image-
based representations enable existing CNN models trained on a large scale of image
data for action recognition from depth sequences.

Rahmani & Mian (2016) proposed to learn a view-invariant human pose model
from depth sequences. Each frame of real depth videos was input to the CNN model to
learn a view-invariant and high-level feature space, and then new human poses captured
from unknown views were transferred to this space to achieving a cross-view action
recognition. These poses were clustered into different clusters and only the pose labels
rather than action labels were used to learn the CNN model. They augmented the scale
of multi-view training data by synthetically fitting 3D human models to real motion
data and then produced several poses from different viewpoints. To overcome the lim-
itations of skeleton data, such as a poor tolerance to self-occlusion and noise, Crabbe
et al. (2015) proposed a skeleton-free body pose estimation from depth sequences by
mapping the depth silhouette of the human body to the pose space through the CNN.
They argued that this direct mapping without the intermediate skeleton step is more
potential to be applied in general conditions.

2.5.3 Hybrid Feature-based Methods

Some researchers proposed to learn multi-modal features via separate networks for ac-
tion recognition (Ijjina & Chalavadi, 2017; Miao et al., 2017; Rahmani & Bennamoun,
2017; Wu et al., 2016a; Zhang et al., 2017a). Zhang et al. (2017a) proposed to use
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3D convolutional neural networks (3DCNN) (Ji et al., 2013; Tran et al., 2015) and
bidirectional convolutional long-short-term memory networks to learn spatio-temporal
information from multi-modal data (RGB, depth, and flow produced from RGB). The
final gesture recognition was achieved by combining learned multi-modal features in a
linear SVM classifier. A Deep Dynamic Neural Networks (DDNN) (Wu et al., 2016a)
was designed for gesture recognition with multi-modal inputs. The DDNN includes a
Gaussian-Bernoulli Deep Belief Network to explore dynamic features from skeleton
sequences, and a 3DCNN to extract spatio-temporal features from RGB and depth im-
ages. This method proved that the fusion of multi-modal information could result in
a better performance over uni-modal ones due to the complementary relation among
different data channels.

Instead of the later fusion of results from each separate ConvNets, Scene Flow to
Action Map (SFAM) was proposed to extract features from RGB and depth channels
as one entity to ConvNets in (Wang et al., 2017). Different variants of SFAM could
encode effective spatial and temporal dynamics and enable the direct action recogni-
tion from two data modalities without later the score fusion. Alternatively, Shi & Kim
(2017) investigated a privileged information-based RNN framework for action recog-
nition from depth sequences. Skeleton joints provided during training was considered
as a type of privileged information to achieve a better estimation of network parame-
ters. Liu et al. (2016c) proposed to learn high-level features from raw depth images
by designing a 3DCNN structure, while the low-level features such as the position and
angle information between skeleton joints were calculated by the proposed JointVec-
tor. The classification results of SVM using both types of features were fused for the
final action recognition. The model infers temporal information from the raw depth
sequences by introducing the 3D filters.

2.5.4 Summary

This section reviewed different deep learning methods for human activity recognition
using RGB-D data. According to the modality input to the neural networks, the meth-
ods were grouped into skeleton-based, depth-based, and hybrid feature-based. Most
of the existing deep learning methods for action recognition rely on transforming the
hand-crafted depth or skeleton features to texture images, and fine tune existing CNN
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models trained on larger scale image datasets for the classification of transformed im-
ages. The temporal information which is important to describe the evolution of an
action is considered in different ways. A single image is captured by stacking the
depth motion maps over a whole depth sequence in the majority of the depth-based
methods. Some methods in the skeleton-based category restore the temporal informa-
tion by converting skeleton features to a color image frame by frame. The different
temporal duration problem is handled by resizing the final color image, which might
introduce extra noise. LSTM is an effective solution to model the temporal informa-
tion by introducing a gate mechanism to capture the temporal dependencies between
frames.

2.6 Online Activity Recognition

Most of the human activity recognition methods rely on trimmed data provided by pub-
lic datasets, however, the performance of these methods remain unknown when applied
in online scenarios where the starting and ending time of the action are not given ahead.
It is also necessary to detect activities with a low latency so the system can provide an
instant response. For example, in human-robot interaction or collaboration scenar-
ios, robots are expected to perform desirable activities by quickly interpreting human
intentions. To localize the action, most of the early research uses a probability/energy-
based threshold to detect the boundary or key poses of each action (Shan & Akella,
2014; Zhu et al., 2016b). For example, Zhu et al. (2016b) identified transit motion
features between two continuous poses in training phase, and the online classification
was achieved by comparing likelihood probabilities in the Maximum Entropy Markov
Model model.

There are some methods executing segmentation according to the clip-level or
frame-level labelling approach (Devanne et al., 2017a; Huang et al., 2014; Kulkarni
et al., 2015; Wu et al., 2015). Kulkarni et al. (2015) utilized DTW and dynamic frame
warping for simultaneous action segmentation and classification. In their method, each
video frame was assigned a label based on its comparison to the template representa-
tions, and the change of labels between consecutive frames indicated the starting or
ending point of an event. Huang et al. (2014) developed sequential max-margin event
detectors to spot an event from a continuous video with the presence of multiple event
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classes. The classifier was trained by using partial segments of events as the input.
The most likely class was selected by penalizing other classes in the spot. Wu et al.

(2015) clustered daily life clips to several action-words, with which an action-topics
model was learned to reflect the co-occurrence and temporal relations. The action seg-
mentation was realized according to the change of action topics between consecutive
clips.

Sliding window is also a popular and compact technique for online action recogni-
tion (Gong et al., 2014; Song et al., 2012; Wu et al., 2017), by which a video stream is
usually divided into a set of overlapped segments and then classification is conducted
in each segment. Similarly, in (Bloom et al., 2013), an action label was allocated to
each frame depending on the most confident prediction, and the boundary of actions
in a video stream was determined by smoothing the calculated frame-level predictions
via a sliding window. Such sliding window strategy has low computational efficiency
and the difficulty of exploring a proper window size.

Instead of segmenting video streams using the sliding window strategy, Nowozin
& Shotton (2012) proposed to detect action points which functioned as action peak
frames to speed up the detection performance for online action recognition. Based
on this, some approaches were developed for the action points detection in stream-
ing videos (Bloom et al., 2013, 2017; Fothergill et al., 2012; Sharaf et al., 2015). In
(Sharaf et al., 2015), the action peaks were identified according to action probabilities
computed using a linear SVM classifier. A recursive feature elimination algorithm is
proposed to select discriminative skeleton features whose covariance was then hierar-
chically encoded to represent human actions. Bloom et al. (2017) proposed to combine
the clustered spatio-temporal manifolds and the temporal history of activities to detect
the peaks of actions in a continuous stream. However, the detection result of a single
time instance might not be representative enough for the complete action sequences
and can cause false detections especially when the peak frames from different activi-
ties are quite similar.

More recently, some deep learning based methods address this problem by devel-
oping different architectures. Molchanov et al. (2016) proposed a recurrent 3DCNN
to simultaneously perform classification and localization of hand gestures from con-
tinuous depth, color, and stereo-IR data sequences. They employed connectionist
temporal classification (Graves et al., 2006) to make gesture classification from the
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nucleus phase of the gesture without requiring particular segmentation. Shou et al.

(2016) present to address action temporal localization via multi-stage CNNs, which
includes identifying candidate segments that may contain actions, action recognition,
and temporal boundary localization. Recently, many methods based on RNN or its
variants (e.g., LSTM) have been proposed for online action recognition (Chai et al.,
2016; Li et al., 2016; Song et al., 2018), owing to their appealing capacity of mod-
eling temporal dynamics of sequences. For example, Chai et al. (2016) proposed a
spotting-recognition strategy to firstly segment continuous gestures into isolated ges-
tures using the hand detector trained from Faster R-CNN, and then recognize the seg-
mented gestures by fusing multi-modal features in a two streams RNN framework.
Li et al. (2016) proposed a multi-task end-to-end Joint Classification Regression Re-
current Neural Network to simultaneously identify the action class and its temporal
localization.

2.7 RGB-D Datasets

2.7.1 Human Action Datasets Using RGB-D Sensors

MSR-Action3D (Li et al., 2010)

The MSR-Action3D dataset has 20 action types (Fig. 2.13 shows some samples), 10
subjects, and each subject performs each action for two or three times. The actions are:
high arm wave, horizontal arm wave, hammer, hand catch, forward punch, high throw,

draw x, draw tick, draw circle, hand clap, two hand wave, side boxing, bend, forward

kick, side kick, jogging, tennis swing, tennis serve, golf swing, and pickup throw.

Florence3D-Action Dataset (Seidenari et al., 2013)

This dataset has 9 actions and 10 subjects. Each action was performed two or three
times: wave, drink from a bottle, answer phone, clap, tight lace, sit down, stand up,

read watch and bow. Most of the actions, such as answer phone and drink a bottle,
have a great similarity.
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Fig. 2.13: Example frames of MSR-Action3D dataset (Li et al., 2010).

MSRDailyActivity3D Dataset (Wang et al., 2012b)

MSRDailyActivity3D Dataset aims to collect human’s daily activities in the living
room. It has 16 action types (Fig. 2.14 shows some samples), 10 subjects, and each
subject performs each action for two times. The activities are: drink, eat, read book,

Fig. 2.14: Example frames of MSRDailyActivity3D dataset (Wang et al., 2012b).

call cellphone, write on a paper, use laptop, use vacuum cleaner, cheer up, sit still,

toss paper, play game, lay down on sofa, walk, play guitar, stand up, sit down. Some
of the activities were performed in two different poses: sitting on sofa and standing.
Compared to MSR-Action3D dataset, this dataset involves human-object interactions
which makes it more challenging. This is due to the complex relation between human
and objects is also needed to be considered to describe activities.
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2.7.2 Human Interaction Datasets Using RGB-D Sensors

Although there are some early early human-human interaction datasets collected by
RGB sensors, such as BEHAVE (Blunsden & Fisher, 2010), UT-Interaction (Ryoo &
Aggarwal, 2010) and TV Human Interaction (Patron-Perez et al., 2010), this subsec-
tion only reviews most of the publicly available RGB-D sensing based human interac-
tion datasets. Fig. 2.15 shows some sample frames of each dataset.

(a)

(b)

(c)

Fig. 2.15: Example frames of (a) SBU Kinect Interaction dataset, (b) G3Di dataset,
and (c) NTU RGB+D dataset.

SBU Kinect Interaction Dataset (Yun et al., 2012)

This dataset is the first RGB-D dataset for human interaction. The dataset contains ex-
amples of 8 interaction classes: approaching, departing, kicking, punching, pushing,

hugging, shaking hands, exchanging something, performed by 21 sets involving 7 par-
ticipants. Compared to single person actions, these action categories are challenging
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because they are not non-periodic actions and have very similar body movements. This
dataset is publicly used for the evaluation of recognition performance.

G3Di Dataset (Bloom et al., 2014)

This dataset was collected for real time multi-player gaming. Interactions including
collaborative and competitive mode in this dataset are virtual interactions during a
computer game scenario. It has 6 sports: boxing, volleyball, football, table tennis,

sprint, hurdles. Each sport involves various actions: right punch, left punch, defend for
boxing, serve, overhand hit, underhand hit, jump hit for volleyball, kick, block, save

for football, serve, forehand hit, backhand hit for table tennis, run for sprint and run,

jump for hurdles. 12 people who were split into 6 pairs interacted through a computer
interface.

NTU RGB+D Dataset (Shahroudy et al., 2016a)

This dataset was collected in a varying indoor environment. Three cameras were set in
different angles to capture each activity. To make the viewpoints manifold, the height
and distances of the cameras to the subjects are alterable. The dataset has 60 activity
classes including 40 daily actions, 9 health-related actions, and 11 human interactions.
In comparison to the current datasets, the dataset is larger in classes, samples, and
views due to variant camera settings.

2.7.3 Continuous Human Action Dataset

Multi-Modal Action Detection (MAD) Dataset (Huang et al., 2014)

This is a sequential action database collected by Carnegie Mellon University in 2014.
Fig. 2.16 shows some sample frames of the MAD database. The MAD database has
40 sequences performed by 20 subjects (2 sequences each subject). Each sequence
contains 35 actions continuously performed by one subject. The time series between
two actions are considered as the null class where the subject keeps standing in most
cases. Three modalities: RGB videos, depth videos, and 3D coordinates of 20 skeleton
joints were recorded using the Microsoft Kinect sensor.
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Fig. 2.16: Example frames of MAD dataset

PKU-MMD Dataset (Liu et al., 2017b)

This is a large-scale dataset created for continuous human action understanding. Multi-
modality including RGB, depth, infrared radiation and skeleton joints were recorded
in this dataset. It has 51 action categories in total, which consist of 41 daily actions,
such as drinking, waving hand, combing hair, etc., and 10 interaction actions, such as
hugging, shaking hands, etc. As the dataset is mainly aimed at action location and
recognition from continuous sequences, it contains 1076 long video sequences, each
of which contains about 20 action instances and lasts 3 to 4 minutes. 66 subjects of
different ages were asked to perform actions.

2.7.4 Summary

This section reviewed different types of datasets collected using RGB-D sensors for
human activity recognition. Most of the existing datasets may not be as challenging as
realistic due to the involvement of constantly clustered or clean backgrounds. More-
over, most of the datasets provided only manually trimmed activity segments, which
only contain one activity inside. This configuration does not mimic the practical sce-
nario where activities are performed continuously. The big gap between the lab and
practical scenarios makes it unclear of the online performance of the existing meth-
ods when applied in real-world. Therefore, the wild dataset without any constraints,
where subjects acting actions naturally in the realistic environment, is imperative and
promising for the future research.
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2.8 Discussion

This section provides a discussion for both hand-crafted methods and deep learning
methods in terms of feature types, adopted classifiers, and accuracies. Two commonly
used human action datasets (MSR-Action3D and MSRDailyActivity3D) and one hu-
man interaction dataset (SBU Kinect Interaction) are selected for the comparison of
different algorithms.

Table 2.1 categorizes techniques and compares their performance on two com-
monly used human action datasets. Each column of the table contains one type of
methods, i.e., depth-based, skeleton-based or hybrid feature-based methods. Inside the
column, the algorithms are further ranked according to the achieved accuracy. It can
be seen that all the three categories of methods have achieved good recognition per-
formance on the MSR Action 3D dataset due to its simplified experimental setting and
action classes. Among them, 100% accuracy is obtained by Wang et al. (2016b) which
converted the classic DMM to RGB images and utilized CNN for classification. How-
ever, their performance might decrease greatly in different viewpoint settings due to
the dramatic variation of depth maps. Actually, based on the accuracy on this dataset,
it is also easy to find that the skeleton-based methods are better suited for the classifica-
tion of actions under different viewing angles than the depth-based methods and hybrid
features-based methods. On the other hand, the hybrid features-based approaches out-
perform the skeleton-based or depth-based methods in the human-object interaction
dataset of MSRDailyActivity3D, indicating that the skeleton alone is insufficient to
distinguish actions which involve human-object interactions. The reason might be that
the context information of objects also plays an important role in the defined actions.

Table 2.1 also divides the methods into hand-crafted methods and deep learning
methods. The table shows that the top recognition accuracy of MSR Action3D dataset
is achieved by deep learning based methods, which demonstrates their effectiveness
in human action recognition. Compared to the former dataset, fewer deep learning
based methods are evaluated on the MSRDaliyAcitivity3D dataset and hand-crafted
methods achieve better performance at this stage. Regarding the classifier, Most of
the hand-crafted methods adopt the SVM, while deep learning methods normally use
CNN, LSTM or their combination for recognition.
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2.8 Discussion

Table 2.2: Comparison of the state-of-the-art methods on SBU Kinect Interaction.

Notation: Separately: consider each person’s action as an individual sample and averaging the classification scores for the
final prediction; Concatenation: simply stack each person’s feature together or further include the interrelationship between
the two persons.

SBU Kinect Interaction(5-fold cross-validation Yun et al. (2012))

Reference Feature Accuracy (%) Type Interaction solution
Yun et al. (2012) Skeleton 80.30 MIL Distance
Ji et al. (2014) Skeleton 86.90 SVM Body part
Ji et al. (2015) Skeleton 89.40 SVM Body part

Wu et al. (2017) Skeleton 91.00 - Distance
Liu et al. (2017a) Skeleton 91.12 SVM Body part

Reference Feature Accuracy (%) Type Interaction solution
Zhu et al. (2016c) Skeleton 90.4 LSTM Seperately
Song et al. (2017) Skeleton 91.5 LSTM Concatenation
Liu et al. (2016b) Skeleton 93.3 LSTM Concatenation
Ke et al. (2017) Skeleton 93.6 CNN Seperately

Wang & Wang (2017) Skeleton 94.8 RNN Seperately
Liu et al. (2018) Skeleton 94.90 LSTM Concatenation

Zhang et al. (2017b) Skeleton 97.2 RNN Concatenation

Table 2.2 reports a comparison of the state-of-the-art methods on the commonly
used human interaction dataset: SBU Kinect Interaction, in terms of accuracies, fea-
ture types, classifiers, and solutions to the interaction challenge. The interaction chal-
lenge lies in the adapting of single human’s action features into a representation that
is suitable for the human interaction scenario. As shown in the table, the existing
solutions can be grouped into four categories (joints distance, interactive body part,
separately, concatenation) whose definition is shown in the caption of the table. The
top performance of deep learning based methods (97.2%, Zhang et al. (2017b)) outper-
forms the top hand-crafted based method (91.12%, Liu et al. (2017a)) to a large extent.
It can also be observed that all of the human interaction approaches are based on the
skeleton data. In hand-crafted methods, the inter-relationship between two persons is
modeled by using interactive body parts or joints distance information. While in the
deep learning based methods, this challenge is handled by a concatenation operation
or the simple separation strategy which recognizes each person’s action and averages
the classification scores for the final prediction.

It can be observed from the tables that deep learning based methods have achieved
superior recognition performance over hand-crafted based methods in most of the ex-
isting human activity datasets. However, it is also well-known that most of the deep
learning based approaches require large training samples to reduce the affect of over-
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2.8 Discussion

fitting and achieve better performance. Apart from the recognition accuracy, it is also
essential for the algorithms to be computationally efficient for many real-world motion
recognition applications. Most of the existing hand-crafted methods achieved real-
time performance via a careful design of the features and the use of low computational
cost classifiers such as SVM. Due to the complex structure of neural networks, exist-
ing deep learning based methods heavily rely on advanced parallel computing devices
such as GPU and TPU to reach real time performance.
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Chapter 3

Spatio-temporal Representation for
Human Action Recognition

3.1 Introduction

The emergence of cost-efficient RGB-D sensors eases the difficulties of the high sen-
sitivity to illumination conditions and texture variability of the RGB data (Niebles &
Fei-Fei, 2007; Niebles et al., 2008) and reveals a promising direction for human activ-
ity recognition by providing depth data. The depth information also enables 3D human
skeleton joints to be easily estimated (Shotton et al., 2013b). Fig. 3.1 shows the config-
uration of 20 body joints. A large number of research has been done for human action
recognition using skeleton data. Various characteristics of skeleton joints, such as lo-
cations, angles, and geometric relationships, were utilized to model different human
actions (Gaglio et al., 2015; Gowayyed et al., 2013; Lillo et al., 2017; Pazhoumand-
Dar et al., 2015; Qiao et al., 2017). However, accurate recognition still remains a
challenge because of various object appearances, poses, and video sequences.

To achieve effective human action recognition, this chapter proposes a spatio-
temporal feature descriptor to describe various human actions. Specifically, in spatial
domain, a kernel enhanced BSW for each joint is constructed to represent the moving
trend of skeleton joints using an effective histogram projection method. The directions
in BSW are grouped into semantic moving words, whose distribution over an activity
sequence explicitly interprets the moving trend of skeleton joints. Furthermore, the
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3.2 Feature Extraction

20(Head)

2(Shoulder Left)

11(Wrist Left)

9(Elbow Left)

13(Hand Left)

6(Hip Left)

19(Foot Left)
17(Ankle Left)

15(Keen Left)

7(Hip Center)

3(Shoulder Center)

4(Spine)8(Elbow Right)

5(Hip Right)

1(Shoulder Right)

10(Wrist Right)

12(Hand Right)

14(Keen Right)

18(Foot Right)

16(Ankle Right)

Fig. 3.1: Configuration of 20 body joints.

kernel-based dynamic weighting strategy is developed to augment the informative fea-
tures. This feature could describe the specific tendency of skeleton joints in 3D space.
In temporal domain, the geometry information of joints in each frame is modeled by
the relative motion with the initial status.

The remainder of this chapter is organized as follows: Section 3.2 introduces the
proposed human action representation. Section 3.3 reports experimental results as well
as the comparison with the state-of-the-art methods. Section 3.4 summarizes the work
of this chapter.

3.2 Feature Extraction

3.2.1 Data Pre-processing

The original coordinate of joints obtained by Kinect sensors is translated to the pro-
posed person-centric coordinate system (as shown in Fig. 3.2). This coordinate trans-
formation makes features invariant to various locations and orientations by extracting
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3.2 Feature Extraction

Fig. 3.2: Person-centric coordinate system.

them in the relative position rather than the absolute position. It is defined as follows:
the z′ axis can be calculated using the vector from the hip center to the spine joint, and
its unit vector is denoted as (a7, a8, a9); the x′ axis is the normal vector of a plane con-
structed by the spine point, left hip point and right hip point, and its unit normal vector
is represented by (a1, a2, a3); finally, the y′ axis can be determined by the dot product
of above two unit vectors, and the value of its unit y′ is (a3, a4, a5). Consequently, the
transformation of coordinates is calculated using the following equation:

P = R ∗ P ′ + T (3.1)

where P and P ′ denote the original coordinate and the transformed coordinate, re-
spectively, and T is the coordinate of the hip center [xh, yh, zh]

−1. R is the rotation
matrix:

R =

a1 a2 a3
a4 a5 a6
a7 a8 a9


−1

3.2.2 3D Moving Trend Feature

Semantic Moving Words

The moving directions of body joints in 3D space are various while actors performing
different actions, therefore, the directions in 3D space are divided into several semantic
moving words Vw, and a distribution of movements over these semantic moving words
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3.2 Feature Extraction

is captured to interpret the moving trend of an activity sequence. The criterion in
selecting the size of the semantic moving words is based on whether the constructed
moving words can equally divide the 3D space and it is representative for the moving
direction. The effect of different sizes of the semantic moving words (ranging from 6,
14, 26, 42, 62, 86 to 114) on the recognition result will be studied in the experiment
section. Let Vw = [v1,v2, ...,vm] be the matrix of m words in 3D space (here,
m = 26 is considered for example), which are given by:

v1 = (0, 0, 1)T , v2 = (0, 0,−1)T , v3 = (0, 1, 0)T ,
v4 = (0,−1, 0)T , v5 = (1, 0, 0)T , v6 = (−1, 0, 0)T ,
v7 = (1, 1, 1)T , v8 = (−1,−1,−1)T ,v9 = (1, 1,−1)T ,
v10 = (−1,−1, 1)T ,v11 = (1,−1, 1)T , v12 = (−1, 1,−1)T ,
v13 = (1,−1,−1)T ,v14 = (−1, 1, 1)T , v15 = (1, 1, 0)T ,
v16 = (−1,−1, 0)T ,v17 = (1,−1, 0)T , v18 = (−1, 1, 0)T ,
v19 = (−1, 0,−1)T ,v20 = (1, 0, 1)T , v21 = (1, 0,−1)T ,
v22 = (−1, 0, 1)T , v23 = (0, 1, 1)T , v24 = (0,−1,−1)T ,
v25 = (0, 1,−1)T , v26 = (0,−1, 1)T

(3.2)
Fig. 3.3 shows the defiend 26 semantic words in 3D space.

Fig. 3.3: Samples of semantic moving words (taking m = 26 for example).

To augment the discriminative information of skeleton joints, a kernel enhanced
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3.2 Feature Extraction

BSW is proposed, where features in both spatial and temporal domain are jointly
weighted based on their contribution to an activity. As shown in Fig. 3.4, the moving
trend of joints is captured from the front, side, and top view. The moving characteristic

(a)

(b)

Fig. 3.4: The comparison of moving trends of skeleton joints in actions waving and
kicking.

for the joints in the left hand (11) and leg (17) captured from the action waving and
kicking are shown in (a) and (b) respectively. Joint 11 with apparent moving property
is regarded as the active one in the action waving, where joint 17 with few move is
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3.2 Feature Extraction

inactive. While joint 11 is inactive in the action kicking where joint 17 is opposite.
To conclude, the moving trend of the active joint is more apparent than that of the
inactive joint, while the moving trend of the same joint in different classes is also di-
verse. Thus, it is reasonable to use the moving trend of skeleton joints to discriminate
different action categories.

For the i− th joint, given a point set:

P i = {pi1, ..., pit, ..., piF} (3.3)

where F denotes the length of action sequence, and t denotes the time. Since pit in-
cludes three coordinates x, y, z. The 3D direction vector vi

t of the i th joint is obtained
via pit and pit−1:

vi
t = {xpit − xpit−1

, ypit − ypit−1
, zpit − zpit−1

} (3.4)

and then calculate the cos〈vi
t,vj〉 of angle θi(t) between vi

t and m vectors:

cosθij(t) =
vj · vi

t

‖vi
t‖‖vj‖

, j ∈ [1,m] (3.5)

where vj ∈ V. Since the greater the cosθij(t) value, the more similar the direction
Singhal et al. (2001), the cosine similarity cosθij(t) is calculated to describe the simi-
larity between vi

t and vj .

Bag of Semantic Moving Words

(Van Gemert et al., 2010) showed that the image classification performance of the
distribution of visual words using the soft-assignment strategy is superior than that of
the hard-assignment strategy. Instead of distributing the probability over all words, a

Gaussian kernel K(x) =
1√
2πδ

exp(−(x− µ)2

2δ2
) is applied for the soft voting of the

moving trend histogram. This soft voting has the capacity of weighting salient motion
during building the final histogram. Since the cosine similarity is suited to measure
the distance between two direction vectors, a Gaussian kernel function is improved
by considering it as the variable. The weight during the voting is then computed as
follows:

K(cos(vt,v
i
w)) =

1√
2πδ

exp(−(cos(vt,v
i
w))− µ)2

2δ2
) (3.6)
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3.2 Feature Extraction

where µ and δ are the mean and standard deviation of cosine values, respectively. Here,
the mean of the Gaussian function is 1 due to the trait of cosine values.

A soft-assignment strategy where a frame direction is distributed to multiple most
relevant word candidates is achieved using a 1 × f vector S. The soft voting degree
is controlled by using a parameter k to determine the elements in S. For example, if
k = 3, the frame direction is encoded to the 3 words with the top 3 similarities. Thus,
the elements of S satisfy:

St =


1 if the value cos(vt,viw) belongs to

k biggest similarities
0 otherwise

(3.7)

To weight the frames which make bigger contributions to the whole sequence, the
frame displacement Dis(t) = ‖vt‖ is added during a quantization process. Therefore,
the frame weight function can be achieved as follows:

w(t) = Dis(t) ∗K(cos(vt,v
i
w)) (3.8)

The final representation of each word is built by accumulating the movement through
the action sequence:

BSW (viw) =

f∑
t=1

St ∗ w(t) (3.9)

3.2.3 Geometry Property

To remove the coordinate difference caused by various distances between actors and
the depth sensor, the world coordinate from the depth sensor is translated to the center
of actors in each frame. Although the world coordinate of each frame may differ
under current strategy, the advantage is obvious as hip-center point is relatively stable
in majority of actions. Apart from the feature of hip-center point relative movement,
it should be noted that different actors might have different initial poses for the same
action. In order to eliminate the influence of different initial poses for the rest 19 joints,
the displacement between the relative joints in current frame and the joints in the initial
frame is applied to reflect the geometry property in current frame.

Furthermore, the action recognition performance is affected by the various body
sizes of the actors. This is caused by internal difference of human or various distances
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3.2 Feature Extraction

between actors and the depth sensor. To solve this problem, a feature normalization
method is performed on the extracted geometry property feature. The movement of a
point can be regarded as the composition of movements of x, y, z axes. In each single
frame, the relative motion of each joint to its initial status in three axes is recorded.
Each frame represents a body pose that can be described by the locations of 20 joints.

It = {p1t , p2t , ..., pNt } (3.10)

where N is the number of joints, pit is the position of the i − th joint at time t and it
contains 3D coordinates xit, y

i
t and zit. The difference along three axes of each joint can

be computed between the initial status and the current status.
Firstly, the world coordinate system is translated to the hip-center joint for each

frame using Eq. 3.1. The transformed coordinates of skeleton joints are denoted as
prit . So the transformed coordinates of the frame is Irt = {pr1t , pr2t , ..., prNt } and the
geometry property of each joint at frame t is denoted as:

4xit = xrit − xri1 ,
4yit = yrit − yri1 ,
4zit = zrit − zri1 ,

(3.11)

where (xri1 , y
ri
1 , z

ri
1 ) and (xrit , y

ri
t , z

ri
t ) are the three transformed coordinates of the ini-

tial status and current status, respectively. The relative displacement of the i− th joint
at frame t is4dit : (4xit,4yit,4zit), and the geometric property of current frame is:

g(t) = {4d1t , ...,4dNt } (3.12)

G(k) = {g(1), ..., g(F )} denotes the feature of action k. So the dimension of the
defined geometric property feature for one frame is 20 × 3. Although (Yang & Tian,
2012) also uses the difference of the joints between current frame and the initial frame,
the proposed geometric property feature is totally different. In (Yang & Tian, 2012)
different combination of the joints is used and the final dimensions for each frame is
400× 3, which is 20 times larger than the proposed feature dimensions.

The length of action sequences may differ in each action instance, and this will
lead to unequal length of the geometry property feature. Therefore, the extracted fea-
ture is rescaled using the cubic spline interpolation (Vemulapalli et al., 2014) before
integrating them into the feature descriptor.
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3.2 Feature Extraction

Finally, to acquire the scale-invariant G(k) feature for the different body sizes, the
following normalization method is used:

Gn(k) =
G(k)

‖ G(k) ‖
(3.13)

3.2.4 GBSW Representation

The general framework of the proposed GBSW representation is shown in Fig. 3.5.
The upper part of Fig. 3.5 is the proposed BSW where a histogram of 26 bins corre-

Fig. 3.5: An overview of the proposed GBSW feature descriptor.

sponding to 3D moving directions is adopted to store the moving trend of each joint
through the whole action video. The lower part of Fig. 3.5 is the G feature which is
acquired from the N frames of the action sequence. In the G feature, the world coordi-
nate is firstly translated into hip-center using Eq.(3.3) and the relative displacement of
each joint is computed by using Eq.(3.11). To address unequal length of the G feature
caused by different length of action sequences, the relative displacement property of
each action instance is interpolated to the unified dimension, M × 20× 3.
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3.3 Experimental Evaluation

The final feature descriptor GBSW is a concatenation of the G feature and BSW
feature. The G feature indicates the temporal movement of each joint, while the BSW
feature reflects spatial motion direction of each joint in an action sequence.

3.3 Experimental Evaluation

3.3.1 Introduction of Datasets

This subsection gives detailed information about the adopted RGB-D datasets (MSR-
Action3D Dataset and Florence3D-Action Dataset) which are commonly used to com-
pare the performance of human action recognition algorithms. The experiment on the
two datasets aims to demonstrate the comparative results of the proposed GBSW on
human action recognition.

MSR-Action3D dataset (Li et al., 2010) has 20 human action categories. The data
is divided into three action sets AS1, AS2 and AS3, as shown in Table 3.1. Actions with

Table 3.1: Three action sets of MSR-Action3D dataset.

AS1 AS2 AS3
Horizontal Wave High Wave High Throw

Hammer Hand Catch Forward Kick
Forward Punch Draw X Side Kick

High Throw Draw Tick Jogging
Hand Clap Draw Circle Tennis Swing

Bend Hands Wave Tennis Serve
Tennis Serve Forward Kick Golf Swing

Pickup & Throw Side Boxing Pickup & Throw

similar movement are grouped in the AS1 and AS2 sets, while complex actions are
grouped in AS3 set. Each set has eight actions with some overlaps between action sets.
In each action set, there are three tests with different settings of training and testing
samples: Test One: 1/3 of the samples for training and the rest for testing; Test Two:
2/3 of the samples for training and the rest for testing; Cross Subject Test: samples
from half of subjects for training and the rest for testing. To carry out a fair comparison,
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3.3 Experimental Evaluation

experiment settings following the protocols from (Li et al., 2010) (samples of subject
1, 3, 5, 6, 9 as training) and (Zanfir et al., 2013) (samples of subjec 1, 2, 3, 4, 5 as
training) in Cross Subject Test are conducted.

For Florence3D-Action dataset, the Cross Subject Test setting from (Vemulapalli
et al., 2014) is used for the performance comparison.

3.3.2 Evaluation of the GBSW Representation

Having computed above feature descriptors, a linear SVM (Chang & Lin, 2011) algo-
rithm is then applied for action classification. To show the superior performance of the
combination of different features, the comparison between its recognition result and
that of the single features on two datasets is listed in Table 3.2. It can be seen that

Table 3.2: Recognition accuracy (%) of different features on MSR-Action3D and
Florence3D-Action dataset

Feature type MSR-Action3D Florence3D-Action
AS1 AS2 AS3 Cross Subject Test

G 50 79.5 92.4 85.9
BSW 92.4 85.7 93.3 88.0

GBSW 93.4 94.9 98.4 93.6

the GBSW feature which combines geometric property and bag of semantic moving
words improves the performance in each experimental setting, which proves that the
specific information from different types of features can complement each other. For
example, the geometric feature seems to be complementary in term of spatial informa-
tion to the motion feature in BSW, which enables the hybrid representation to be more
discriminative among different activity categories.

In addition, to evaluate the effect of the number of semantic moving words (ns), the
recognition performance of the proposed method with ns = 6, 14, 26, 42, 62, 86, 114

is shown in Table 3.3. The recognition accuracy increases till ns = 26, while it de-
creases when ns is over 26. This is because the rising number of semantic moving
words augments the ambiguous moving trend between actions, which influences the
discriminating capacity of the feature. Based on this finding, ns = 26 is selected to get
the following performance.
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3.3 Experimental Evaluation

Table 3.3: The average recognition accuracy (%) of the proposed feature representation
versus the size of semantic moving words.

Size of moving words MSR-Action3D Florence3D-Action
6 90.03 89.30

14 92.26 91.10
26 94.40 91.30
42 93.45 89.53
62 93.45 88.95
86 94.40 89.90

114 92.23 89.00

Fig. 3.6: Confusion Matrixes of the proposed GBSW feature descriptor: AS1,AS2 and
AS3 on MSR-Action3D dataset.

For MSR-Action3D dataset, Fig. 3.6 shows the confusion matrices of AS1, AS2
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and AS3 on Cross Subject Test achieved using the proposed GBSW. It can be seen
that most actions can be 100% recognized by the proposed descriptor, especially for
AS3 where all actions except Tennis Swing are correctly recognized. Because actions
in AS1 and AS2 have big inter-class similarity, some actions are similar with others,
such as Hammer and High Throw, Tennis Serve and Forward Punch. As a result, the
recognition accuracies of these actions are lower than those actions with smaller intra-
class variations.

Table 3.4: Recognition Accuracy (%) of Test One and Test Two on MSR-Action3D.

Test One
Methods AS1 AS2 AS3 Average

Bag of 3D Points (Li et al., 2010) 89.5 89.0 96.3 91.6

DMM-HOG (Yang et al., 2012b) 97.3 92.2 98.0 95.8

STOP (Vieira et al., 2014) 98.2 94.8 97.4 96.8

HOJ3D (Xia et al., 2012) 98.5 96.7 93.5 96.2

EigenJoints (Yang & Tian, 2012) 94.7 95.4 97.3 95.8

(Jalal et al., 2017) 96.9 98.3 98.7 97.9

3GMTG (Liu et al., 2016a) 94.7 95.0 96.8 95.5

GBSW 97.9 98.2 98.5 98.2

Test Two
Methods AS1 AS2 AS3 Average

Bag of 3D Points (Li et al., 2010) 93.4 92.9 96.3 94.2

DMM-HOG(Yang et al., 2012b) 98.7 94.7 98.7 97.4

STOP (Vieira et al., 2014) 99.1 97.0 98.7 98.3

HOJ3D (Xia et al., 2012) 98.6 97.9 94.9 97.2

EigenJoints (Yang & Tian, 2012) 97.3 98.7 97.3 97.8

(Jalal et al., 2017) 97.1 98.6 98.9 98.2

3GMTG (Liu et al., 2016a) 98.5 97.8 99.1 98.5

GBSW 98.2 98.7 99.1 98.7
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3.3.3 Comparison with State-of-the-art Methods

The following subsections present a comparison of the proposed method with the state-
of-the-art methods in terms of recognition accuracy.

Table 3.4 reports the results of Test One and Test two on the MSR-Action3D dataset.
It can be seen that the GBSW representation obtains highest average recognition rates
in both cases. Specifically, the proposed method achieved better performances on three
action sets than the skeleton-based methods, such as HOJ3D (Xia et al., 2012) and
EigenJoints (Yang & Tian, 2012). It should be noted that the highest accuracy of AS1

achieved by STOP (Vieira et al., 2014), which jointly uses the skeleton and depth
information, indicates that the recognition performance of similar actions might be
improved by an effective fusion of the depth information.

To evaluate the adaptability of the proposed method across subjects, the experiment
results on Cross Subject Test are reported in Table 3.5. To execute a fair comparison,
the considered methods are sorted into groups according to two protocols from (Li
et al., 2010) and (Zanfir et al., 2013), respectively. The compared methods on MSR-

Action3D dataset are further categorized into silhouette-based (Li et al., 2010; Oreifej
& Liu, 2013; Yang & Tian, 2014b; Yang et al., 2012b), local interest points-based
(Vieira et al., 2014; Wang et al., 2012a; Xia & Aggarwal, 2013) and skeleton-based
(Devanne et al., 2015; Vemulapalli et al., 2014; Wang et al., 2013, 2012b; Xia et al.,
2012; Yang & Tian, 2012; Yang et al., 2017a,b; Zanfir et al., 2013) in Table 3.5. The
GBSW method obtained recognition rates over 90% on AS1, AS2 and AS3 with the
procotol from (Li et al., 2010) and the rates were over 95% on AS2 and AS3 with the
procotol from (Zanfir et al., 2013). The proposed method outperformed silhouette-
based methods, for example, the recognition accuracy of GBSW was approximately
20% higher than that of (Li et al., 2010). Moreover, the proposed descriptor improved
the average recognition rate by 6.3% compared to DSTIP (Xia & Aggarwal, 2013)
which is the best result of the listed local interest points-based methods.

In addition, Table 3.6 records the Cross Subject Test performance of different meth-
ods on Florence3D-Action dataset. Some actions in this dataset are quite confused with
each other, for example, the body movement in answer phone and drink a bottle is sim-
ilar. The table shows that the proposed feature descriptor performed 93.6% recognition
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3.3 Experimental Evaluation

Table 3.5: Average accuracy (%) of Cross Subject Test on the MSR-Action3D.( 1
silhouette-based, 2 local interest points-based, 3 skeleton-based)

Protocol from (Li et al., 2010) (samples of subject 1, 3, 5, 6, 9 as training)
Method AS1 AS2 AS3 Average(%)

1
Bag of 3D Points(Li et al., 2010) 72.9 71.9 79.2 74.7
DMM-HOG(Yang et al., 2012b) 96.2 84.1 94.6 91.6

SNV(Yang & Tian, 2014b) - - - 93.1

2
STOP (Vieira et al., 2014) 91.7 72.2 98.6 87.5
ROP (Wang et al., 2012a) - - - 86.5

DSTIP (Xia & Aggarwal, 2013) - - - 89.3

3

HOJ3D(Xia et al., 2012) 72.9 85.5 63.5 79.0
EigenJoints(Yang & Tian, 2012) 74.5 76.1 96.4 82.3

Actionlets Ensemble (Wang et al., 2012b) - - - 88.2
HOD (Gowayyed et al., 2013) 92.4 90.2 91.4 91.3

(Vemulapalli et al., 2014) 95.3 83.8 98.2 92.5
(Devanne et al., 2015) - - - 92.1

LM3TL(Yang et al., 2017b) - - - 90.53
MIMTL(Yang et al., 2017a) - - - 93.6

(Jalal et al., 2017) 90.8 93.4 95.7 93.3
(Lillo et al., 2017) 94.3 92.9 99.1 95.4

3DMTG(Liu et al., 2016a) 92.4 93.8 97.1 94.4
GBSW 93.4 94.9 98.4 95.6

Procotol from (Zanfir et al., 2013) (samples of subject 1, 2, 3, 4, 5 as training)
HON4D (Oreifej & Liu, 2013) - - - 88.9

Pose set(Wang et al., 2013) - - - 90.2
Moving Pose (Zanfir et al., 2013) - - - 91.3

(Lillo et al., 2017) - - - 93.0
3DMTG(Liu et al., 2016a) 87.50 95.8 94.7 92.7

GBSW 88.9 96.2 95.5 93.5

accuracy, which improved the performance of (Seidenari et al., 2013) and (Vemulapalli
et al., 2014) by 11.6% and 2.7%, respectively.

On both MSR-Action3D dataset and Florence3D-Action dataset, the proposed method
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Table 3.6: Average accuracy (%) of Cross Subject Test on the Florence3D-Action.

Multi-Part Bag-of-Poses (Seidenari et al., 2013) 82.0
Full skeleton(Devanne et al., 2015) 85.9

Body part(Devanne et al., 2015) 87.0
(Vemulapalli et al., 2014) 90.9
3DMTG(Liu et al., 2016a) 91.3

GBSW 93.6

achieved better recognition performance over 3DMTG which calculates the bag of se-
mantic words without enhancing the discriminative motion information. The improved
accuracies indicate that the discriminative information weighted using the kernel func-
tion can help the proposed method improve the ability to distinguish different activity
classes.

3.4 Summary

This chapter presents the GBSW representation for human action recognition. The pro-
posed BSW, which highlights the discriminative moving trend of each activity category
via a kernel-based dynamic encoding algorithm, was aggregated with the G feature in
GBSW for human action recognition. Experimental results on two public datasets have
proved the compelling recognition results of the proposed approach. This outperform-
ing performance is owed to the semantic representation and the complementary effect
of the aggregation of different types of features.
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Chapter 4

Moving Similarity for Human
Interaction Recognition

4.1 Introduction

As an communication element, human-human interaction plays an important role in
our daily life. Although the development of RGB-D sensors has motivated consider-
able work conducted for human action recognition, the research for human interaction
is relatively unexplored. Unlike single person actions, human interaction is a behav-
ior performed by more than one person, where the interaction relationship between
people is of vital importance. Moreover, human interaction has large feature dimen-
sions which consist of individual information as well as mutual relations. The mutual
relations are typically represented by the distance between body parts in most of the
existing methods (Ji et al., 2014, 2015; Yun et al., 2012). For example, (Ji et al., 2015)
associated the distance and motion features from single body part and interactive body
part pairs for interaction representation. The distance property could provide useful
geometric information, however, it might be not effective enough to mine intrinsic
characteristics embedded in diverse interaction classes. Thus, exploring high level or
semantic information could help to enhance the performance of the traditional feature
representation for human interaction recognition (Ni et al., 2013).

In the previous chapter, the bag of semantic moving words of each joint is con-
structed to represent the moving trend of skeleton joints. This feature could describe
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4.2 Human Interaction Representation

the specific tendency of skeleton joints in 3D space and has been proven to be competi-
tive in human action recognition. Based on this feature extracted from individuals, this
chapter proposes the moving similarity (MS) between body parts to describe the mutual
relationship for human interaction recognition. Although several RGB-D based single
person action datasets such as MSR Action3D (Li et al., 2010) and MSRDailyActiv-

ity3D (Wang et al., 2012b) have been collected for human action recognition, there are
few RGB-D based human interaction datasets specially designed for human interaction
recognition. Thus, this chapter introduces a new large RGB-D based human-human in-
teraction dataset, namely Online Human Interaction (OHI) Dataset.

The remainder of this chapter is organized as follows: Section 4.2 introduces the
proposed human interaction representation. Section 4.3 presents the collected OHI
dataset. Section 4.4 reports experimental results as well as the comparison with the
state-of-the-art methods. Section 4.5 summarizes the work of this chapter.

4.2 Human Interaction Representation

4.2.1 Notation of Human Body Parts

Human bodies can be divided into five parts, i.e., the left/right arm, the left/right leg
and the torso. Each body part with four joints is described as following:

P = {b1, b2, b3, b4} (4.1)

where bi is the joint belongs to the body part, and it consists of three coordinates:
bi = {xi, yi, zi}. Human-human interaction actually can be seen as the interaction
between human body parts, thus the mutual relationship between humans could be
described by the spatial and motion relationship among body parts in the proposed
method.

4.2.2 Spatial Relationship

The distance between two interactive persons at each frame is an important spatial cue
of interactions. This mutual spatial relationship between different body parts changes
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4.2 Human Interaction Representation

over the time as well as in different interaction category. For example, in the hand-

shaking, the distance between the hand joints of two persons is narrowing over the
sequence until the shaking is finished; while in kicking, the distance between the foot
and the hip area narrows firstly when one person is attacking, and it begins to broad
when another person is defending. This spatial relationship between joints could be
effectively described by the frame-level change of Euclidean distance:

Distij =

√(
xi − xj

)2
+
(
yi − yj

)2
+
(
zi − zj

)2 (4.2)

Therefore, the spatial relationship between two body parts could be represented by
combining the relationship of their corresponding joints:

R
(
Pp1, Pp2

)
= {Dist12, ..., Distij, ...} (4.3)

where p1 ans p2 are body parts, i and j are the joint from the same or different body
part, which depict the intra spatial configuration of the body part itself and the inter
spatial configuration of body part pairs. As shown in Fig. 4.1, the geometric relation
between joints from the same body part indicates intra-relationship (the cool lines)
and the geometric relation between joints from different body parts indicates inter-
relationship (the pink lines).

Fig. 4.1: Spatial relationship between two shaking hands.

4.2.3 Semantic Moving Similarity of Body Parts

There are various ways for performing an activity but the the moving trend of each
category of acitvities is particular and represents certain meaning. Taking ’handshak-
ing’ for instance, both right hands stretch in the leftforward direction and then shake
in the up and down directions. Therefore, the semantic moving direction implements
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4.2 Human Interaction Representation

the inherent meaning to the spatial relationship and thus could make features more
distinctive between different interactions.

The moving direction between two consecutive frames is quantified into defined
semantic words. Thus the BSW of each joint could be calculated, as shown in Fig.
4.2a, and the value in each bin quantifies the motion degree in the corresponding mov-
ing word. In Fig. 4.2b, the first row indicates the two active or inactive body parts
during shaking hands. The blue histograms in the second row are the cumulative mov-
ing directions of joints (black ones) from each person, and the yellow part in the third
row is the result of intersection, which reflect the degree of similarity between two
body parts. Since each body part consists of four joints, its moving trend feature could
be summarized by traversing its corresponding four joints:

{BSW p
1 , BSW

p
2 , ..., BSW

p
4 }, (4.4)

where p denotes the body part.
Histogram intersection (Swain & Ballard, 1991) was proposed for color indexing in

object recognition and it can measure the degree of similarity between two histograms
(Barla et al., 2002). Here, the histogram intersection is adopted to count the times of
direction word in one joint that have corresponding times of the same direction word
in another joint. That is to say, the similarity between body parts is calculated by
intersecting the moving trend histograms. The similarity between the corresponding
word w from BSWi (joint i) and from BSWj (joint j) is denoted as follows:

SoJ
(
BSW (viw), BSW (vjw)

)
= min

(
|BSW (viw)|, |BSW (vjw)|

) (4.5)

The histogram of semantic moving words is interpolated into the same number of
frames (N ). By doing this, each bin in BSW having the same dimension. Thus, the
revised BSW with an N × n-dimensional vector could be defined as follows:

B̂SW = (

BSW (v1)︷ ︸︸ ︷
1, ..., 1 , 0, ..., 0︸ ︷︷ ︸

N−BSW (v1)

, ...,

BSW (vw)︷ ︸︸ ︷
1, ..., 1 , 0, ..., 0︸ ︷︷ ︸

N−BSW (vw)

) (4.6)
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4.2 Human Interaction Representation

(a)

(b)

Fig. 4.2: (a) Quantization of moving directions in the space for each joint. (b) Semantic
similarity between body parts by histogram intersection.
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4.3 Online Human Interaction Dataset

Following Eq.4.5, the similarity between body parts is denoted as follows:

SoPtype =
8∑
p=1

8∑
q=1

n∑
i=1

n∑
j=1

SoJ
(
BSW p

i , BSW
q
j

)
=

8∑
p=1

8∑
q=1

B̂SW
p
· B̂SW

q

(4.7)

where p and q are body parts, i and j are joints, and SoPtype could be SoPintra or
SoPinter, which means intra-similarity or inter-similarity, respectively. The relation-
ship between body parts from the same person and from two persons, respectively.
B̂SW

p
and B̂SW

q
are the histogram concatenation of joints from the body part p and

q, respectively. The final moving similarity (MS) of body parts for each sequence is
the concatenation of all body part pairs:

MS = {SoPintra1, SoPinter1, ...} (4.8)

4.2.4 Human Interaction Descriptor

Fig. 4.3 provides the framework of the proposed human interaction descriptor. The
obtained skeleton joints sequences are firstly pre-processed by translating them to the
body-center coordinate system as presented in Chapter 2. By doing this, the follow-
ing extracted features are invariant to different locations and viewpoints. Then the
intra- and inter-relationship between skeleton joints and the moving similarity among
body parts are calculated to describe the spatial and motion characteristics of human
interactions, respectively. By combining these two features, the SRMS descriptor is
constructed as input of a SVM classifier for human interaction recognition.

4.3 Online Human Interaction Dataset

This section describes the OHI dataset. This dataset contains 23 pairs of participants
with various clothing color and body size. It has 10 human-human interaction cate-
gories: shaking hands, high waving, kicking, punching, pushing, hugging, high-fiving,

approaching, departing and exchanging objects. Fig. 4.4 shows some examples of dif-
ferent interaction categories. Each category is repeated for three times and some of the
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4.3 Online Human Interaction Dataset

Fig. 4.3: The framework of the proposed human interaction descriptor.

categories might have more instances due to the consideration of different performing
styles (the right and left side). Thus, the total number of samples is 875.

The dataset is collected by using Kinect version 1 sensor. The recored data contains
RGB data, original depth data, registered depth data and skeleton data. The registered
depth data to its corresponding RGB image is further provided, which is useful for
motion recognition when RGB and depth are jointly used in pixel level. The resolution
of RGB and depth data is 640x480 and the dataset also provides 3D coordinates of 20
skeleton joints for each subject.

There are two parts in this database. In Part I, interactions are divided into iso-
lated sequences according to interaction categories. This part is mainly designed for
the offline activity recognition. For the evaluation of online activity recognition meth-
ods, Part II is collected where each video sequence contains 10 human interactions
continuously performed by one pair of subjects. During the interval of two activities,
the subjects are free to perform any actions instead of standing still, which makes this
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4.3 Online Human Interaction Dataset

(a) shakinghand with right hands (b) shakinghand with left hands (c) highwaving with right hands

(d) highwaving with left hands (e) kicking with the right foot (f) kicking with the left foot

(g) punching with the right hand (h) punching with the left hand (i) pushing

(j) hugging (k) highfiving with right hands (l) highfiving with left hands

(m) approching (n) departing (o) exchanging

Fig. 4.4: Interaction samples of depth images and skeleton joints on OHI dataset
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4.3 Online Human Interaction Dataset

database closer to practical scenarios as well as challenging. Table 4.1 lists the compar-
ison of the OHI dataset with the existing interaction datasets. Compared to the existing

Table 4.1: RGB-D sensor based human interaction datasets. HHI: human-human in-
teraction.

Dataset Interactions Participants Samples Data types Video type
SBU Kinect
Interaction

Yun et al. (2012)
8 HHI 7 subjects

21 sets 300
RGB(640x480)
depth(640x480)

skeleton(15 joints)
Trimmed

K3HI
Hu et al. (2013) 6 HHI 15 subjects 320 skeleton(15 joints) Trimmed

ShakeFive
van Gemeren et al. (2014) 2 HHI 37 subjects 100 RGB(640x480)

skeleton(20 joints) Trimmed

G3Di
Bloom et al. (2014)

6 Virtual
interactions

12 subjects
6 sets -

RGB
depth(640x480)

skeleton(20 joints)
Trimmed

ShakeFive2
van Gemeren et al. (2016) 8 HHI - 153 skeleton Trimmed

ISR-UoL
Coppola et al. (2016) 8 HHI 6 subjects

sets -
RGB(24 bits)

depth(8,16 bit )
skeleton(15 joints)

Trimmed

Online Human Interaction 10 HHI 13 subjects
23 pairs 900

RGB (640x480) ,
Depth (640x480) ,
Registered depth,

skeleton (20 joints) ,
30 fps

Trimmed
Continuous

datasets, the OHI dataset has four advantages:

1. More interaction samples: this dataset has around 900 interactions, which is 3
times than that of (Yun et al., 2012);

2. More complex: the performing habit of actors is considered by performing either
the right or left side;

3. The registered depth image: the value in depth maps is registered to the corre-
sponding RGB images. The registered depth information is useful for the seg-
ment of human body in RGB images and also provides convenience for jointly
using RGB and depth data in pixel level;

4. Extra continuous activity videos are provided for the research of online perfor-
mance. The time series between two activities (subjects are performing as they
want) is considered as the neutral activities. Different from the neutral activities
in (Huang et al., 2014) where subjects do not have actions just standing in the
most cases, the OHI database is closer to the reality and more challenging due to
the larger variability of the neutral activities.
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(a) Test One (b) Test Two

(c) Cross Subjects Test

Fig. 4.5: Confusion Matixes on SBU Interaction dataset

4.4 Experimental Evaluation

As mentioned before, there is few publicly available human interaction datasets and
most of the researchers evaluated their algorithms on the SBU Interaction Dataset
(Yun et al., 2012). Therefore, the proposed human interaction approach is tested on
the SBU Interaction Dataset (Yun et al., 2012). Owing to the newly collected OHI
dataset, some experiments are conducted on this dataset to demonstrate the perfor-
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4.4 Experimental Evaluation

mance of the proposed approach. The test results on the SBU dataset is compared with
the state-of-the-art approaches.This dataset contains examples of eight different inter-
action classes: approaching, departing, kicking, punching, pushing, hugging, shaking

hands, exchanging something. All the videos were collected in the same laboratory
environment from a third-person perspective. The majority of the interactions involve
acting-reacting relation. The testing on this dataset contains the Test One, Test Two and
Cross Subject Test.

4.4.1 Results on SBU Interaction Dataset

Having computed above feature descriptors, a linear SVM (Chang & Lin, 2011) al-
gorithm is then applied for human interaction classification. To test the recognition
ability of the proposed human interaction descriptor, the confusion matrices that indi-
cate the confusion among activity categories and the comparison to the state-of-the- art
are conducted on the SBU Interaction dataset. In Fig. 4.5, it can be seen that the pro-
posed method is able to successfully classify approaching and departing in Test One,
Test Two, and Cross Subject Test. The most common confusion is between pushing

and punching in all tests due to their similar poses.
Table 4.2 reports the recognition results of listed methods.
It shows that the recognition rates of the proposed algorithm on different tests are

over 90%. The average rate 92.75% is 2.25% higher than the best performance of listed
skeleton-based methods reported in (Baradel et al., 2017), meaning that the correlation
feature explored in the proposed method could extract high-level information from the
movement of skeleton joints, thus helps to reinforce the performance of discriminating
complex human interactions. It should be noted that the results of RHI and the im-
proved method in (Baradel et al., 2017) outperform that of the proposed method due
to the combination of RGB data and skeleton joints.
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Table 4.2: Recognition Accuracy (%) on SBU Interaction dataset.

State-of-the-art

Velocity features (Yun et al., 2012) 48.4
Plane features (Yun et al., 2012) 73.8
Joint features (Yun et al., 2012) 80.3

(Ji et al., 2014) 86.9

CFDM (Ji et al., 2015) 89.4

CHARM (Li et al., 2015) 83.9

HBRNN (Du et al., 2015b) 80.35
RHI (Gori et al., 2015) 93.08

Co-occurrence LSTM (Zhu et al., 2016d) 90.4

(Song et al., 2017) 91.51
Skeleton (Baradel et al., 2017) 90.5

Skeleton+RGB (Baradel et al., 2017) 94.1

Proposed

Test One 92.75

Test Two 91.67

Cross Subjects Test 93.84

Average 92.75

Fig. 4.6: Comparison of CFDM, Joint feature and Proposed Method by categories on
SBU interaction dataset.

Fig. 4.6 gives the detailed recognition accuracy comparison of each category
among Joint features (Yun et al., 2012), CFDM (Ji et al., 2015), and the proposed
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method. Compared to Joint Features in (Yun et al., 2012), the proposed method
achieves better recognition on most of the interactions, especially on punching, hug-

ging and exchanging. Furthermore, the accuracies of most categories are higher than
CFDM, apart from shakinghands, hugging and exchanging.

4.4.2 Experiment on OHI Dataset

For the newly collected dataset, the Test One, Test Two, and Cross Subjects Test setting
are used for evaluation. Fig. 4.7 shows the confusion matrices. With the proposed
method, the recognition rates in most interaction categories are over 90%, and some
reach to 100%. Although the similarity between interactions like pushing and punching

is huge, the rates that punching is unexpectedly recognized as pushing and pushing is
unexpectedly recognized as punching are slow (0.03 and 0.04, respectively). Because
the motion trend in the early stage of hugging is similar with that of approaching,
the possibility of hugging recognized as approaching is relatively high (0.10) in Cross

Subjects Test.

4.5 Summary

In this chapter, an effective human interaction representation is proposed. Firstly, the
geometric information among skeleton joints is calculated to represent the temporal
evolution of the mutual spatial relationship between interactive persons. Then, based
on the bag of semantic moving words, the moving similarity between body parts is ex-
tracted to represent the motion relationship between interactive subjects. Finally, both
the spatial and motion features are combined for human interaction recognition. The
outstanding performance (e.g., 92.75% on SBU Interaction) indicates that the spatial
relationship and moving similarity explored in the proposed method can effectively
describe the mutual relationship of interactive body parts, thus helps to reinforce the
performance of discriminating different human interactions. In addition, the challeng-
ing OHI dataset was introduced to be served for the evaluation of human interaction
recognition methods.
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(a) Test One

(b) Test Two

(c) Cross Subject Test

Fig. 4.7: Confusion Matixes on OHI dataset
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Chapter 5

Skeleton Motion Distribution based
Activity Detection

5.1 Introduction

Although significant work has been done for offline action recognition where the ac-
tions are pre-segmented by providing the starting and ending frames (Du et al., 2015b;
Guo et al., 2017; Jalal et al., 2017; Kong & Fu, 2015b; Shahroudy et al., 2016c),
their performance remains unclear when applied to realistic scenarios where no prior
information regarding the action’s trigger time is available. Most of the common situa-
tions require the algorithms to automatically process the data stream without any prior
information (De Geest et al., 2016). That is to say, an online system is required to rec-
ognize actions from untrimmed videos by answering ‘when does the action happen?’
and ‘what action is happening?’ (De Geest et al., 2016), as shown in Fig. 5.1.

Some work has been done for the similar task named early action recognition (Hoai
& De la Torre, 2014; Kong et al., 2014; Ryoo, 2011), which predicts actions before
they are fully finished. However, this type of methods assumed that the starting time
of actions is known beforehand. This solution can only be regarded as a partial answer
to online action recognition since more attention is focused on action classification
instead of detection. Compared to isolated action recognition and early action recogni-
tion, online action recognition is significantly more challenging for two reasons: firstly,
the boundaries of various action categories need to be detected accurately; secondly,
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Fig. 5.1: The comparison between isolated activity recognition and online activity
recognition.

only partial actions might be available for recognition due to the performance of ac-
tion detection algorithm, thus the action recognition algorithm should be capable of
recognizing actions from different action fragments.

This chapter proposes a skeleton motion distribution based method to simultane-
ously perform action detection and classification in continuous videos. The unique
movement characteristics of each action class make the corresponding motion se-
quence have different distribution from each other. The human motion is modeled
as a stochastic distribution using kernel density estimation, which has witnessed great
success in detecting outliers (Latecki et al., 2007) and background subtraction (El-
gammal et al., 2002; Mittal & Paragios, 2004). Since the change from one action to
another results in the distribution property at the beginning of the new action deviating
so much from the previous action in a video sequence. Therefore, the occurrence time
of actions could be detected depending on this change. Once an action is detected,
a snippet-based classifier is designed to process the observed video to achieve action
classification. This classifier is performed in a fragment level which could reduce the
influence of false detections caused by noises.

The remainder of this chapter is organized as follows: Section 5.2 introduces the
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proposed data pre-processing method. Section 5.3 introduces the proposed action de-
tection and recognition method. Section 5.4 reports experimental results as well as the
comparison with the state-of-the-art methods. Section 5.5 summarizes the work of this
chapter.

5.2 Data Pre-processing

The offset displacement of each joint is utilized to describe skeleton motion. Given
a human skeleton motion sequence d1, d2, ..., dn ∈ N , where N is the frame num-
ber. The coordinate of joints is translated to the hip-center coordinate system to make
the feature invariant to different locations. dt = [∆1

xt,yt,zt ,∆
2
xt,yt,zt , ...,∆

20
xt,yt,zt ] is the

offset displacement feature of skeleton joints in 3D space at time t. Herein, skeleton
displacement offset is computed as follows:

4xit = xit − xi1,
4yit = yit − yi1,
4zit = zit − zi1,

(5.1)

xi, yi, zi are coordinates of the i − th joint. 4xit,4yit,4zit are displacement offset in
three directions with respect to the initial position. To obtain a compact representation,
it is assumed that the skeleton motion feature lies on a low dimensional manifold em-
bedded in the ambient space, thus locality preserving projection (LPP) (He & Niyogi,
2003) is applied to reduce the dimensions of skeleton motion d. A transformation
matrix W is calculated to map motion data d to a set of points p in a low dimen-
sional space, such that p = W Td. LPP can optimally preserve the local neighborhood
structure of the data while mapping it to a lower dimensional space. Following the
procedure listed in Table. 5.1, the skeleton motion is represented in a subspace by a
linear transformation p = W Td.

5.3 Skeleton Motion Distribution

The density distribution of two actions’ skeleton motion is obtained using adaptive
kernel density estimation (Latecki et al., 2007), which is capable of estimating the

72



5.3 Skeleton Motion Distribution

Table 5.1: The procedure of representing human skeleton motion in low dimensional
space using LPP algorithm.

Input: human skeleton motion set D = d1, d2, ..., dt at t = 1, 2, ..., T .
Output: mapped representation on low dimension space p =WT d

Step 1: Constructing the adjacency graph.
Let G denote a graph with m nodes.

An edge is put between nodes i and j if data di and dj are ’close’.
LPP will choose the projections which can optimally preserve this
adjacency graph.

Step 2: Choosing the weights.
W is a symmetric matrix with weight value wij = 1

if and only if nodes i and j are connected, otherwise wij = 0.
Step 3: Computing Eigenmaps.

The objective function: min
∑n

i,j ||pi − pj ||2S;
According to p =WT d,

1

2

∑n
i,j(pi − pj)2S =

1

2

∑n
i,j(W

T di −WT dj)
2S

=WTD(D − S)DTW =WTDLDTW

Compute the eigenvectors and eigenvalues for the generalized
eigenvector problem: DLDTW = λXCXTW

Step 4: Mapping data. p =WT d

probability density of data samples without any assumptions of underlying data distri-
bution. Assuming the mapped motion data {p1, p2, ..., pn} is the random variable in a
feature space from a distribution with an unknown density q(p). The estimated q̂(p) at
point p is obtained using the following kernel density estimation function:

q̂(p) =
1

n

n∑
i=1

1

h(pi)k
K(

p− pi
h(pi)

) (5.2)

where k is the dimensionality of data samples, and h(pi) is the bandwidth at point pi.
K(·) is a kernel function. Herein, a multivariate Gaussian function with zero mean and
unit standard deviation is adopted. Thus, Eq. 5.2 could be denoted as follows:

q̂(p) =
1

n

n∑
i=1

1

(h(pi))k
· 1

(
√

2π)k
exp(−||p− pi||

2

2(h(pi))2
) (5.3)

Motion data is mostly multi-modal, even in the same action category, resulting
in that the data from different modality has different density. The estimated density
might be not precise if the whole set of motion data is used to estimate the density. On
the other hand, the distribution of a point should have the similar distribution with its
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neighbor points. To this end, the density estimation of a point is adapted by using its
neighbor Km(p). Thus, Eq. 5.3 is modified as follows:

q̂(p) ∝ 1

m

∑
pi∈Km(p)

1

(
√

2πh(pi))k
exp(−||p− pi||

2

2(h(pi))2
) (5.4)

where Km(p) includes m samples (m << n) belonging to the neighbor of the point p.
Compared to the holistic comparison, the local measure depending on Km(p) yields
more effective density estimation by reducing computation costs from the whole data
set (n samples) to local neighbors (m samples).

To enhance the robustness of the density estimation function against the change
of data distribution for different subjects or action instances, an adaptive bandwidth,
h(pi) = h ·dm(pi), is achieved by considering the distance dm(pi) between the point pi
and its m− th neighbor, as shown in Eq. 5.5. This improvement makes the bandwidth
small in density action samples while big in sparse ones, thus enables the density
estimation function adaptive to various data density.

q̂(p) ∝ 1

m

∑
pi∈Km(p)

1

(
√

2πh · dm(pi))k
exp(− ||p− pi||2

2(h · dm(pi))2
) (5.5)

Fig. 5.2 shows an example of action detection, where the red dots and the blue
stars are samples from the normal action and running action, respectively. The blue
star in the rectangle is the starting point of running. The estimated density of running

points even at the beginning of the action has huge difference compared to that of
the normal action, which means the density distribution of a different action starts to
deviate significantly from the previous action at its beginning. Therefore, the relative
density relationship is used to effectively describe this difference, as denoted in Eq.
5.6:

LDR(p) ∝
∑

pi∈Km(p)
q̂(pi)
m

q̂(p) + c ·
∑

pi∈Km(p)
q̂(pi)
m

(5.6)

where LDR(p) denotes the ratio between the density at p and the average density of
its neighbors. c is a scaling constant to avoid infinity values of LDR caused by very
small estimated density at the point p.

Fig. 5.3 shows that the local estimated density of targeted actions has apparent
difference compared to normal actions, and this value will convert dramatically at its
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Fig. 5.2: Example of action detection.

starting and ending due to the change of the density distribution from action to ac-
tion. This sudden convert referred to as action boundaries in action sequences can be

Fig. 5.3: The local density ratio of a continuous video and action starting /ending points
detection through wavelet transform.

regarded as a type of impulses, which could be detected via wavelet transform. The
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wavelet transform is a powerful technique for analyzing irregular data, owing to its
great capacity in providing the frequency and corresponding time location information
of signals. This makes the wavelet transform suitable for detecting impulses occurring
at any time. Approximation and detail coefficients are outputs from the low-pass and
high-pass filter, respectively. The significant difference in density distribution between
the occurrence of the action and its neighbors allows the detection of impulses during
a time series with a high accuracy.

5.3.1 Snippet-based Action Recognition

Action durations exhibit considerable variability and only partial action observations
might be available due to the performance of action detection algorithm. To address
this issue, features from snippets incorporating partial segments of actions in different
performing stages are alternatively extracted. Fig. 5.4 shows a schematic illustration
of the proposed classification. At training time, action snippets are randomly generated

Fig. 5.4: Snippet-based classifier. Action snippets in different performing stage are
generated from the continuous video via sliding window.

from untrimmed videos using a sliding window strategy. The proposed snippet-based
classifier takes advantage of local temporal information, thus makes it robust to varia-
tions in execution time.

Compared to recognizing actions after they are totally completed, recognizing ac-
tions from partial action observations is more challenging due to the limited informa-
tion. To make the feature descriptor discriminative for different categories, the 3D
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5.3 Skeleton Motion Distribution

moving trend feature of joints proposed in Chapter 3 is adopted for action representa-
tion. The moving directions of skeleton joints, calculated using Eq. 5.7, are divided
into various semantic words, and then a histogram which can quantitatively reflect the
moving trend property is built by accumulating directions over the whole sequence.

vi
t = {xit − xit−1, yit − yit−1, zit − zit−1} (5.7)

Cosine similarity and displacement are combined for soft voting during histogram
quantification, as formulated in Eq. 5.8:

cosθij(t) =
vj · vi

t

‖vi
t‖‖vj‖

, j ∈ [1,m] (5.8)

where vj ∈ V is the defined semantic words.

5.3.2 Framework of Online Action Recognition

Table 5.2 lists the detailed procedure of action detection and recognition. The action

Table 5.2: Framework of the proposed online action recognition.

Input: skeleton motion set D = d1, d2, ..., dt at t = 1, 2, ..., T .
Snippet-based classifier C, window size length, stride step and threshold δ.
Output: Start points StartP and end points EndP of actions, action class Label
Initialization: StartP = 0, EndP = 0.
While t < T

·Map data dt to a low dimension space using LPP:pi =WT di;
· Compute local density relationship LDR(pi);
· Detect StartP and EndP according to detail coefficients cD1 and δ using dwt:
cD1[t] =

∑+∞
−∞ y[k]h[2t− k], where h is the high-pass filter;

If cD1(t) > δ

StartP = t;
Start snippet-based action recognition from time t using sliding window;
Assign each snippet a specific class label label(i) by the classifier C.

util cD1(t) < δ

EndP = t;
Smooth the labels of snippets from the detected sequence over time StartP
to EndP ;
Select the final Label with highest probability to the detected sequence;

End
End

boundaries are detected depending on the local density relationship in continuous ac-
tion sequences. And then the snippet-based classification is processed to continuously
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5.4 Experiment Results

classify partial actions. The proposed method achieves lower computation cost com-
pared to continuous recognition over the whole video, because the action recognition
is processed intermittently if the occurrence of actions is detected. In addition, the
classifier performing in fragment level could reduce the influence of false detections
and thus improve the performance.

5.4 Experiment Results

The effectiveness of the proposed method in detecting and recognizing actions from
continuous skeleton sequences is evaluated on the MAD database (Huang et al., 2014).
At test time, local density relationship is computed using Eq. 5.6 and then passed
through the wavelet transform for detecting action boundaries. For a fair comparison,
five-fold-cross-validation is performed as set in (Huang et al., 2014). At train time, a
snippet-based 36-class classifier is trained, where action snippets representing different
action stage of one class were picked up from videos.

Table 5.3 gives the comparison of the average performance in terms of precision

percentage (Prec) and Recall percentage (Rec) that defined in (Huang et al., 2014). TN:

Table 5.3: Average Detection and Recognition results on MAD database(%)

Methods Prec Rec
SVM+DP (Hoai et al., 2011) 28.6 51.4
SMMED (Huang et al., 2014) 59.2 57.4
ENB (Escalante et al., 2016) 76.1 73.6

Method in (Devanne et al., 2017a) 72.1 79.7
Proposed 84.8 80.8

number of correctly detected events who has 50% overlap with the ground truth event;
GTN: Number of all ground truth events; DN: number of detected events. Prec = TN

DN

and Rec = TN
GTN

. From the table, it can be seen that the proposed method achieves
over 80% accuracies in Prec and Rec which outperform the other compared meth-
ods. Specifically, the Prec of the proposed method is approximately 60% higher than
SVM+DP (Hoai et al., 2011), 25% higher than SMMED (Huang et al., 2014), and
8.7% higher than ENB (Escalante et al., 2016). On the other hand, the proposed
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5.4 Experiment Results

method improves the Rec rate by 7.2% compared to the result of ENB. Higher pre-
cision percentage and recall percentage of the proposed method indicate that it has the
capability to precisely recognize actions within detected actions and accurately detect
actions from continuous videos.

The action detection performance of different methods on two sample action se-
quences is also compared in Fig. 5.5. It can be seen from these color bars that the

Fig. 5.5: The comparison of the proposed method with SVM+DP, SMMED, and ENB
on two test sequences in the MAD database.

performance of the proposed method is the closest to the ground truth compared to
other listed methods. Although SVM+DP and SMMED could detect almost all action
occurrence, the accuracy of classification within a detected action is relatively low. In
spite of better performance in classification within detected actions of ENB, its missing
detection rate decreases. The proposed method is able to detect actions correctly with
a lower missing detection rate than ENB and performs a higher classification accuracy
than all listed methods. Furthermore, Fig. 5.6 reports the average detection accuracy of
each action class. The majority of actions could be detected with the accuracy around
80%. The relatively low accuracy in action 4 (‘walking’), action 22 (‘Right Arm Drib-
ble’), and action 23 (‘Right Arm Pointing to the Ceiling’) might be the result of the
action similarity.
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Fig. 5.6: Average detection accuracy of each action category.

5.5 Summary

This chapter proposed a skeleton motion distribution based method to deal with the
action detection and recognition problem in online action recognition. An adaptive
density estimation function was developed for calculating the density distribution of
skeleton motion in different actions. The transition of the density distribution from
action to action was investigated for effective action detection. Furthermore, a snippet-
based classifier which can handle action fragments was trained for the sequential action
recognition once actions were detected. Although the comparison with the state-of-
the-art methods in the publicly available database has shown that the proposed method
obtained better results including detection and classification performance. However,
the performance of accurately identifying uncompleted actions from partial observa-
tions still remains challenge.
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Chapter 6

Multi-stage Soft Regression for
Effective Online Activity Recognition

6.1 Introduction

Traditional offline activity recognition approaches aim to recognize pre-segmented ac-
tivities whose start time and end time are manually extracted (Guo et al., 2017; Jalal
et al., 2017; Liu et al., 2017d; Oreifej & Liu, 2013; Qiao et al., 2017; Shi et al., 2017;
Wang et al., 2015a; Zanfir et al., 2013; Zhang et al., 2018), thus the recognition re-
sults are typically given after the event occurred. However, in most of the practical
scenarios, it is difficult to know the boundary of activities ahead and the recognition
results need to be given during the activity period with low latency (Cai et al., 2016).
Thus, online activity recognition which aims to detect and recognize activities as soon
as possible in a continuous video stream is significantly important in such applica-
tions. To release the constraint of manually segmenting activities in traditional activity
recognition, some approaches executed activity segmentation and classification simul-
taneously in an input video (Evangelidis et al., 2014; Kulkarni et al., 2015). Although
activities are segmented automatically, the classification is performed until full activi-
ties are detected.

Compared to offline activity recognition and early activity recognition, online ac-
tivity recognition is more complex in that it needs to simultaneously and quickly per-
form activity detection and recognition in a continuous video stream (Wang et al.,
2018), as shown in Fig. 6.1. One of the most challenging problems in online activity
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6.1 Introduction

(a) Offline activity recognition (b) Early activity recognition

(c) Online activity recognition

Fig. 6.1: Comparison of offline activity recognition, early activity recogniton, and
online activity recognition.

recognition is the partial activity observation problem that only part of the activity can
be observed due to the incomplete sequence acquisition. The partial activity observa-
tion is possible at arbitrary performance stages, with a large inter-class variability and
intra-class similarity, and the available information of activities is limited.

This chapter addresses the task of recognizing activities with partial activity obser-
vations by formulating it as a Multi-stage Soft Regression (MSR) problem. Multiple
score functions that measure the compatibility between a video segment and an ac-
tivity label are collaboratively learned in the MSR framework. Human activities are
divided into three performance stages, namely start, peak, and end. At training time,
segments spanning all performance stages are collected to make score functions robust
and effective to arbitrary activity fragments, as shown in Fig. 6.2. Different activities
may have similar observations at their starting or ending stages so that uniformly us-
ing these observations for training might result in poor recognition performance. The
discriminative power of the regression model is enhanced by collaboratively learning
three score functions with a focus on different stages. Furthermore, the inherent evo-
lution of segments from adjacent performance stages is modeled by introducing a soft
label strategy into the learning formulation.

The remainder of this chapter is organized as follows: Section 6.2 introduces the
process of the proposed method. Section 6.3 reports various experimental results as
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Fig. 6.2: The overview of the proposed MSR framework.

well as the comparison with the state-of-the-art methods. Section 6.4 summarizes the
work of this chapter.

6.2 Model Formulation

6.2.1 Motivation

The offline activity recognition methods suffer from a drawback that the recognition
results can only be given after the action event. Observing this problem, many re-
searchers proposed the early activity recognition to obtain the recognition results dur-
ing the activity period (Cai et al., 2016; Hoai & De la Torre, 2014; Huang et al., 2014).
However, it still relies on pre-segmented sequences by providing the starting point of
the activity. These methods simplify the problem and over inflate the performance, thus
lack the applicability to practical applications. To deal with the previous problems, on-
line activity recognition that processes a continuous video stream has been appealing
in recent research. The partial activity observation problem mainly caused by the in-
complete sequence acquisition, makes it greatly challenging due to following reasons:
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6.2 Model Formulation

1) the partial observation is possible from an arbitrary performance stage, with a large
inter-class variability and intra-class similarity; 2) activities need to be recognized as
accurately as possible based on the limited information from the partially observed ac-
tivities. 3) the similarity between partially observed actions is enlarged compared to
complete activities.

To mitigate this issue, this chapter proposes a MSR framework, where multiple
score functions are collaboratively learned corresponding to each performance stage.
Partially observed activities in performance stages are collected at the learning stage
to improve the robustness of score functions. Furthermore, the inherent evaluation of
segments from adjacent performance stages is considered by introducing a soft label
strategy into the learning formulation. By doing this, the MSR method is capable of
identifying activities from partial observations with an outstanding performance.

6.2.2 Problem Statement

This chapter aims to develop an online activity recognition method for identifying
ongoing activity sequences. The method is particularly designed to deal with the partial
activity observation problem, and it is required to be robust to any activity segment.

Based on the evolution of an activity along the time domain, an activity is progres-
sively divided into three stages: start, peak, and end. The start segments are in an onset
stage describing the transition from the initial status to the peak status which includes
the most salient information of an activity of interest, while the end segments are in an
offset stage depicting the transition from the peak status back to the end status. The
definition of performance stages can be application dependent. Given a fully observed
activity sequence X[1 : T ] of length T , an arbitrary partial observation of it can be
represented by X[t1 : t2], where 1 ≤ t1 < t2 ≤ T . Herein, t1 is not constrained to
be 1, which means that the partial activity could be at any performance stage. This
overcomes the assumption that the partial activity needs to be observed from the start
of an activity in (Escalante et al., 2016; Ryoo, 2011). Note, T might vary in different
activity sequences. The goal is to extract discriminative information for any partial
activity X[t1 : t2] and then assign an activity label to it.
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6.2 Model Formulation

6.2.3 3D Spatio-temporal Activity Representation

Recently, a lot of human activity recognition approaches based on skeleton joints have
achieved satisfactory performance, owing to the invariance of the skeleton informa-
tion to different locations and human appearances (Shotton et al., 2013b). Here, the
structured feature descriptor GBSW proposed in Chapter 3 is adapted for the online
action recognition scenario. The coordinates of skeleton joints are firstly transformed
with respect to a person-centric coordinate system. This transformation reduces the
influence of various locations and orientations between subjects and the sensor. The
histogram of moving trend (as shown in Fig. 6.3) is mined from the frame moving
directions Vt, which can effectively infer the intention of an activity at a high level.
The directions in 3D space are empirically decomposed into l semantic moving words

Fig. 6.3: The moving trend of skeleton joints.

Vj, 1 ≤ j ≤ l. Finally, the motion feature over a sequence is coded to the moving
trend using the cosine similarity. For geometry feature, it is improved to make it adap-
tive to the segment-wise recognition by using the start of the segment as initial status
xin, yin, zin. Therefore, the process of feature extraction is summarized as follows:

vi
t = {xpit − xpit−1

, ypit − ypit−1
, zpit − zpit−1

}
cosθij(t) =

vi
t·vj

‖vi
t‖‖vj‖

, j ∈ [1, l]

binj =
∑t2

t=t1 ‖vit‖ ×max{cosθij(t)}, j ∈ [1, l]
H(i) = {bin1, ..., binm}
4dit = {xpit − x

i
in, ypit − y

i
in, zpit − z

i
in}

G(t) = {4d1t , ...,4dNt }

(6.1)
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where xpit , ypit , zpit represent the transformed coordinates of the i−th joint. vi
t and vj

denote the frame-level moving direction and the semantic moving word. H(i) and
G(t) mean the extracted moving trend feature and geometry feature, respectively.

6.2.4 Multi-stage Soft Regression

Let (X1, y1), (X2, y2), ..., (Xn, yn) be the training data, where Xi is the i − th activity
sample and yi is the label vector. To cope with random activity fragment X[t1 : t2], the
segment xk,ji (xk,ji ∈ Xi) at each performance stage k from each category i is generated
for learning, as shown in Fig. 6.2. A preliminary idea is to learn a single score function
to measure the compatibility between activity fragments and labels using all segments,
as denoted by the following formula:

min
Wo

n∑
i=1

3∑
k=1

m∑
j=1

||WT
o Φ(xk,ji )− yi||1,2 +

ξ

2
||Wo||22

s.t. ξ ≥ 0.

(6.2)

where m is the number of activity segments from the performance stage k, Wo is the
score function, and Φ(·) is the proposed feature extraction function. This preliminary
method is referred as Multi-stage Regression (MR) since activity segments at multi-
ple stages are used for the regression function. The MR method has the capacity of
identifying the partial activity when it happens at the peak stage as it includes the most
salient information of an activity of interest. However, the power of discriminating
similar segments from the start or end stage is insufficient, which will be discussed in
Section 6.3.

In addition, an enhanced regression framework, named Multi-stage Soft Regression
is introduced. This is a fine-grained regression framework, where multiple score func-
tions for each specific performance stage are collaboratively learned to improve the
power of discriminating similar activity segments. To remain the consistency among
sequential segments, a soft label strategy between adjacent stages is implemented at
learning time. As shown in Fig. 6.2, WT

s ,W
T
p ,W

T
e are score functions corresponding

to each performance stage, which are collaboratively learned by soft labelling segments
from adjacent performance stages. The color gradient indicates the general trend of the
information of an activity along the time domain. Segments in the dark color contain
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more information than segments in the light color, and the information becomes more
while the color becoming darker. The MSR method is formulated as follows:

min
W,λ

n∑
i=1

2∑
k=1

m∑
j=1

||WT
s Φ(xk,ji )− yi(1− λs,j |Sgn(k − 1)|)||1,2

+
n∑
i=1

3∑
k=1

m∑
j=1

||WT
p Φ(xk,ji )− yi(1− λp,j |Sgn(k − 2)|)||1,2

+

n∑
i=1

3∑
k=2

m∑
j=1

||WT
e Φ(xk,ji )− yi(1− λe,j |Sgn(k − 3)|)||1,2

+
ξs
2
||Ws||22 +

ξp
2
||Wp||22 +

ξe
2
||We||22

s.t. ξs, ξp, ξe ≥ 0, 0 ≤ λs,j , λp,j , λe,j ≤ 1

(6.3)

where WT
s ,W

T
p ,W

T
e are score functions corresponding to the start, peak, and end stage,

respectively. Sgn(·) is the sign function andm is the number of segments in each stage.
(1−λs,j|Sgn(k−1)|) is the weight of segments to ensure stronger labels for segments
from k stage than that of its adjacent stage. For simplification, Eq.6.3 is rewritten as
follows:

min
W,θ

n∑
i=1

||WT
s X̂i − Yiθsp||1,2 +

ξs
2
||Ws||22

+ ||WT
p X̂i − Yiθspe||1,2 +

ξp
2
||Wp||22

+ ||WT
e X̂i − Yiθpe||1,2 +

ξe
2
||We||22

s.t. ξs, ξp, ξe ≥ 0, 0 ≤ θsp, θspe, θpe ≤ 1

(6.4)

where X̂ denotes the feature descriptor matrix of segments, and Y is the corresponding
label matrix. The elements in θsp corresponding to the segments at the start stage are
constrained to be 1 while learning WT

s (by analogy, θspe and θpe have the same affinity).
Compared to MR, there are three score functions WT

s ,W
T
p ,W

T
e collaboratively

learned in this MSR regression framework.

6.2.5 Optimization

The optimization problem Eq. 6.4 is solved by iteratively optimizing specific parame-
ters at each step while holding the others fixed. The details are shown below:
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Step 1. Fix θ and optimize W: the gradient of Eq. 6.4 with respect to W can be
represented by:

Gradientw =
n∑
i=1

∂||WT X̂i − Yiθ||1,2
∂W

+ ξsW, (6.5)

then the updated parameter at each time step is given by:

W(t) = W(t− 1)− τGradientw, (6.6)

where τ is the iteration step size.
Step 2. Fix W and optimize θ: θ is solved by the standard gradient descent method.

Specifically, the gradient of Eq. 6.4 with respect to θ is given by:

Gradientθ =
n∑
i=1

∂||WT X̂i − Yiθ||1,2
∂θ

, (6.7)

then the updated at each time step is given by:

θ(t) = θ(t− 1)− µGradientθ (6.8)

is projected into the constrained space. Here µ is the iteration step size.
Please note that W could be Ws, Wp, and We, and θ could be θsp, θspe, and θpe.

6.2.6 Activity Fusion

In a practical video stream, it is difficult to decide the exact performance stage of a
partially observed activity because of the ambiguous boundary among observations.
Therefore, instead of using a single score function to identify it, the results from three
score functions are fused using a Gaussian function.

arg max
labeln

c∑
n=1

∑
k=s,p,e

GkWT
k (labeln, :)Φ(xi) (6.9)

here,

Gk =
1√
2π
exp(−(Φ(xi)− µk)2

2δ2k
) (6.10)

where WT
k (labeln, :) is the learned coefficients of category labeln, c is the number of

activity classes, andGk is the weight of the score produced by WT
k (labeln, :). Gk is cal-

culated by a Gaussian function with mean µk and standard deviation δk of observations
at the performance stage k(k ∈ (s, p, e)).

88



6.3 Experimental Evaluation

6.3 Experimental Evaluation

6.3.1 Introduction of Datasets

The proposed method is evaluated on the public MAD dataset (Huang et al., 2014) and
the newly collected OHI dataset. The MAD database has 40 sequences performed by
20 subjects (2 sequences each subject). Each sequence contains 35 actions continu-
ously performed by one subject. The OHI dataset contains total 10 human interactions
and each interaction is performed by 23 pairs of subjects. Fig. 6.4a and Fig. 6.4b show
some sample frames and two datasets. In the MAD dataset, the time series between
two actions are considered as the null class where the subject keeps standing in most
cases, while in the OHI dataset, the time series between two activities (subjects are
performing as they want) is considered as the neutral activities, which makes the OHI
dataset more challenging due to the larger variability of the neutral activities.

(a) MAD database.

(b) OHI database.

Fig. 6.4: Sample frames of the MAD database and OHI database.

6.3.2 Evaluation of MSR Performance

The preliminary method MR and its improved version MSR are proposed to handle
the partial activity observation problem in online activity recognition. Compared to
the single score function in MR, multiple score functions are collaboratively learned
via a soft label strategy in the MSR framework. This experiment intends to evaluate the
improvement of MSR in terms of the property of discriminating similar partial activi-
ties and the robustness to arbitrary activity segments. Complete activities in both MAD
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and OHI databases are divided into three performance stages, from which overlapped
activity segments are selected.

Table 6.1 shows the recognition performance of the proposed methods on two
databases. From the first row in the table, it can be found that the recognition accura-

Table 6.1: Recognition Accuracy (%) of partial activities from the MAD database and
OHI database.

MAD database OHI database
start peak end Average start peak end Average

MR 67.87 70.75 55.35 64.66 42.51 61.40 38.46 47.46
MSR 80.28 83.33 65.88 76.50 54.74 76.53 60.00 63.76

cies on the start and the end segments are much lower than that of the peak segments
in MR. This investigation verifies a fact that segments from the peak period are easier
to be identified because their information is more discriminative than both start and
end stages. Observing that the necessity of improving the performance of partial ac-
tivity recognition, especially for segments from the start and end stages, the soft label
between adjacent stages is introduced in MSR to consider the inherent evolution of ac-
tivities. The comparison between MR and MSR is given to demonstrate the enhanced
recognition ability of MSR on similar segments.

The second row in Table 6.1 reports that the MSR method significantly improves
the overall performance by increasing the average accuracies from 64.66% to 76.50%
and from 47.46% to 63.76% on MAD database and OHI database, respectively. This
achievement owes much to the collaboratively learned score functions with a focus on
specific performance stages, which strengthens the recognition power of functions WT

s

and WT
e . Specifically, for two databases, the recognition accuracies of MR on three

stages are improved over 10% by MSR. More obviously, MSR achieves 60% on the
end stage on OHI database, which is approximately 20% higher than that of MR.

Fig. 6.5 shows the confusion matrices of the MR and MSR methods on the OHI
database. In the MR method, the recognition accuracies of observations from the start

and end stage in most activity classes are less than 50%, and even for the observations
from the peak stage which posses relatively rich characteristics of each activity cat-
egory. For example, activities such as punching, and hugging only have 47.1% and
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Fig. 6.5: Confusion matrixes of MR and MSR for observations from the start, peak,
end performance stage on the OHI database.

27.9% accuracy mainly due to the confusion with shaking hands. This poor perfor-
mance, especially for the beginning and ending parts, is mainly caused by the limited
information from minor temporal activity sequences. The MSR method significantly
boosts the overall recognition performance by learning a specific score function for
each performance stage as well as considering the inherent evolution of activities via
the soft label strategy. For example, MSR can correctly classify over 80% of the ob-
servations from the peak stage, and it dramatically improves the accuracy of kicking

by 66.7%.

6.3.3 Comparative Results in Online Activity Recognition

Since the target of online activity recognition is to detect and recognize activities as
soon as possible in a continuous video stream, this experiment therefore tests MSR’s
capacity of identifying activities from continuous video streams. The online operation
is executed using a sliding window which sequentially selects the activity segments
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over the time. Each segment will produce its own preliminary activity class by fusing
the results from the multiple score functions via the proposed activity fusion method.
Then a consistency among the sequential segments will be yielded by a segmental
smoothing function.

For the MAD database, the proposed MSR method is compared with the existing
state-of-the-art methods in terms of Prec and Rec. The same experimental settings and
definitions given in (Huang et al., 2014) are used: TN: the number of correctly detected
activities who have 50% overlap with the ground truth activity; DN: the number of
detected activities; GTN: the number of all ground truth activity classes, Prec =

TN

DN
and

Rec =
TN

GTN
. From Table 6.2, it is noticed that MSR has the best performance of over

80% accuracy in both Prec and Rec among all methods, which indicates its capacity of
precisely detect activity from videos and accurately classifying the detected activities.

Table 6.2: Online Performance: Average Detection and Recognition results on the
MAD database (%)

Methods Prec Rec
SVM+DP(Hoai et al., 2011) 28.6 51.4
SMMED(Huang et al., 2014) 59.2 57.4
ENB(Escalante et al., 2016) 76.1 73.6

(Devanne et al., 2017b) 72.1 79.7
Beyond Joints+RNN(Wang & Wang, 2018) 74.2 73.4

MSR 81.3 82.3

Fig. 6.6 shows the online performance on two test sequences. For each test se-
quence, the ground truth labels, results of SVM+DP (Hoai et al., 2011), SMMED
(Huang et al., 2014), ENB (Escalante et al., 2016), and MSR are listed. It can be ob-
served that although SVM+DP can detect the occurrence of each activity in two test
sequences, it has frequently fragmented labels around ground truth labels, meaning the
low recognition rate on detected activities. Though SMMED and ENB improve the
recognition performance, they suffer from the increasing rates of missing detection.
The colored bars of the MSR method in two sequences are the closest to the ground
truth bars by no fragmented labels and higher classification accuracies.
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Fig. 6.6: The comparison of MSR with SVM+DP, SMMED, and ENB on two test
sequences from the MAD database.

In addition, to evaluate the proposed MR and MSR methods in terms of the robust-
ness to arbitrary activity fragments in the online scenario, the five-fold-cross-validation
is performed on the MAD database. The 20 subjects in MAD database are divided into
5 groups and each group contains 4 subjects. The average accuracies are obtained by
successively using the sequences from 4 groups as training and the sequences from
the remaining group as testing. At testing time, the activity segments are possible
at any performance stage. Fig. 6.7 reports the average recognition accuracy of each
activity category. The figure shows that MSR outperforms MR on most of the activ-
ities. Especially, MSR achieves statistically significant improvements on Both Arms

Pointing to Right Side and Right Arm Punch, by increasing accuracies from 13.13%
to 100% and from 17.5% to 94.72%, respectively. Besides, compared to MR, MSR
has smaller standard deviations of results in all activity categories. This demonstrates
that the adaptability to random activity segments is strengthened by the collaboratively
learned score functions in MSR.
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Fig. 6.7: Average recognition accuracy on each activity category. Error bars indicate
standard deviations.
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6.4 Summary

This chapter proposed a multi-stage soft regression framework to deal with the partial
activity observation problem in online activity recognition. The MSR framework del-
icately assembled overlapped activity observations in any period and also considered
the relation between adjacent performance stages to improve its robustness to arbitrary
activity segments. By formulating the online activity recognition task as a multi-stage
soft regression problem, multiple score functions were collaboratively learned to ef-
fectively discriminate similar partial activity fragments.

Compared to MR, the improvements of MSR were firstly validated by over 10%
increases of the accuracies in each performance stage on both MAD and OHI datasets,
owing to reducing the confusion among activities. Furthermore, the MSR method
achieved an accuracy of 82.3% on the MAD database with a significant improvement
by 10.2% over the state-of-the-art method.

Although online activity recognition is essential in practical applications, it is still
a problem far from being solved, as artificial settings in both algorithms and databases
are far away from realistic scenarios, for example, all videos in the OHI dataset are
captured from a specific viewpoint. Therefore, extending the database with multiple
viewpoints and improving the proposed method to make it invariant to different view-
points could be the future work.
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Chapter 7

Conclusions

This chapter provides a summary of the contributions of this thesis and identifies the
future work of human activity analysis.

7.1 Overview

The main objective of this thesis is to develop effective human activity recognition
algorithms, which can be applied in many aspects such as human-robot interaction,
healthcare, video surveillance, elderly care, and education.

The emergency of RGB-D sensors provide an easy access to 3D information of
human in scenes by providing the extra depth information and skeleton joints. This
technology has greatly boosted the development of human activity recognition using
RGB-D data. To this end, this thesis has reviewed various human action and interac-
tion recognition methods, which were divided into three categories according to data
modality. Many approaches have been proposed to understand actions performed by
a single person. However, human interactions which are more complex than human
actions due to more variations in subject appearance, scale, viewpoint, interacting mo-
tion patterns are less explored. Though some methods achieved high recognition rate,
most of them are offline and their online performance which needs to simultaneously
detect activities from continuous videos and identify the activity type remains unclear.

To address the above problems, this thesis firstly proposed an effective spatio-
temporal feature descriptor GBSW which aggregates the BSW with the G feature to
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describe human actions from skeleton sequences. The proposed BSW and G could
extract the 3D moving trend and motion cues of skeleton sequences in the spatial and
temporal domains, respectively. Secondly, moving similarity between body parts was
extracted from interactive persons to describe their mutual relationship for human in-
teraction recognition. Also, the new OHI dataset was collected to be served as a bench-
mark for the future research. Thirdly, a skeleton motion distribution based approach
was developed to detect activities in continuous videos based on the change of the
motion distribution from each other. Finally, to deal with the partial activity obser-
vation problem in online activity recognition, the MSR framework was introduced to
collaboratively learn multiple score functions with a focus on each performance stage
to improve the recognition accuracy.

7.2 Contributions

This section presents the main contributions of this thesis which include the GBSW
method for accurate human action recognition, the SRMS approach for human inter-
action, the SMD model for activity detection, and the MSR framework for effective
online activity recognition.

In Chapter 3, an effective spatio-temporal feature descriptor GBSW was proposed
for human action recognition using skeleton sequences. It aggregated the BSW with
the G feature to describe human actions from skeleton sequences. The proposed BSW
was constructed to describe the moving trend of skeleton joints in 3D space. Mean-
while, the G feature along the whole action sequence was calculated to extract motion
cues in the temporal domain. Outstanding performance over the state-of-the-art meth-
ods on public datasets was achieved by the GBSW, owing to the semantic representa-
tion and the complementary effect of the aggregation of different types of features.

In Chapter 4, the moving similarity between body parts was further mined by tak-
ing advantage of the BSW feature extracted from individuals for human interaction
recognition. In addition, an RGB-D based OHI dataset was collected to serve as the
benchmark for the evaluation of human interaction recognition algorithms. The exper-
iment results on both SBU Kinect Interaction dataset and OHI dataset have proven the
effectiveness of the proposed method in discriminating complex human interactions.
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In Chapter 5, the SMD model was proposed for action detection in continuous
videos. The occurrence of actions was detected depending on the change of the motion
distribution in different action categories. Once an action was detected, a snippet-based
classifier was designed to process the observed video immediately for action classifi-
cation. Experimental results on public datasets have demonstrated that the proposed
method can effectively detect human actions in continuous videos.

In Chapter 6, the MSR framework was constructed to address the partial activity
observation problem in online activity recognition. Multiple score functions with a
focus on each performance stage were collaboratively learned to make it robust to ar-
bitrary activity fragments. The inherent evolution of partial activities from adjacent
stages was also modeled by introducing a soft label strategy into the learning formula-
tion. Extensive experimental results on the MAD database and the OHI database have
demonstrated the superior performance of the MSR method over the state-of-the-art
approaches.

7.3 Future Work

This section discusses the limitations of our work and some directions for the future
work.

7.3.1 Fusion of Multi-modal Data

The effectiveness and efficiency of the proposed GBSW method and the SRMS method
has been demonstrated through experiments on recognizing human actions and inter-
actions from human skeleton sequences. These methods are compact and straightfor-
ward to depict the motion properties of actions. However, they lack the capacity of
describing the appearance or the contextual information from the surrounding envi-
ronment which is important for understanding complex activities (e.g., human-human,
human-object, and human-environment interactions). Thus, combining the proposed
methods with extra features from other modalities, such as depth and RGB which have
the outstanding capability to describe the appearance cues, will be a future research
direction.
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7.3.2 Improvement of Adaptiveness to Different Tasks

Developing an action recognition method for a specific scene or action database is
relative simple. However, it remains a great challenge to develop a universal action
recognition methods for different tasks since the requirements of action types and
recognition performance various to a large extend in different situations. Also, it is
labor-intensive to repeatedly collect large amount of action samples and develop spe-
cific models for each application. Thus, improving the adaptive feature and the ro-
bustness of the proposed MSR framework to different real-world environments will be
another future research direction.

7.3.3 Improvement of Effectiveness in Activity Detection

With the quick prevalence of vision sensors on both public and private areas, a large
amount of human activity related video data has been collected nowadays. The per-
formance of existing activity recognition methods is very likely to be improved by
training on these large data. However, most of the existing methods require manually
segmentation and labeling operations on the recorded videos for training purpose. To
solve this problem, It is attracting to employ existing activity detection methods to au-
tomatically labeling a large amount of video data. Thus, improve the effectiveness of
activity detection is a promising future direction.

7.3.4 Improvement of Performance in Online Activity Recognition

Online activity recognition aims to instantly detect and recognize human actions from
continuously input videos. It is a challenging task, especially in unconstrained scenes,
where a large number of negative activities make the detection and recognition of ex-
pected actions difficult. The outstanding performance of the developed MSR frame-
work has been evaluated through both detection and recognition accuracy measure-
ments. However, it still remains a great challenge to recognize an ongoing action
correctly in an instant performance. Thus, improving the efficiency of the proposed
MSR framework to the real-world environment while at the same time keeping good
recognition accuracy will be another future research direction.
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7.3.5 Towards Deep Understanding of Human Behavior

Human behavior identification requires a long period observation of human activities
and might evolve some other information such as human affective status and visual
focus of attention. Many practical applications require a deep understanding of hu-
man behavior in order to make a robust judgement. For example, in a public safety
monitoring system, a criminal activity might have some prior wondering cues or sev-
eral specificity types of attention models. The safety system should avoid generating
a warning for similar activities such as running or falling. In a therapeutic interven-
tion with children with ASD, the labor of therapists will be reduced by the automatic
analysis of children’s behavior. The long-term analyzed data is also beneficial in pro-
ducing a consistent therapeutic intervention experience. Thus, it is a promising future
direction to develop methods for a deep understanding of human behavior.
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