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Abstract: The underlying navigation technology that enables the navigation of 
aircraft through airspace is improving, allowing aircraft to navigate waypoints 
that do not need to be previously defined, no longer being confined to antiquated 
navigational aids. From this the opportunity is arising to create highly optimized 
airspace that can change its design on the fly in reaction to the environment. This 
paper presents a novel approach towards route finding in airspace design using 
computational evolution. The proposed method, ROUTE, can create new 
airspace designs in reaction to changing environmental constraints, optimising 
for fuel burn (therefore cost and emissions) as well as noise disturbance, and route 
length. 

Keywords: Airspace Design, Genetic Algorithms, Dynamic Airspace, 
Constrained Optimisation. 

1 Introduction 

Currently, global airspace infrastructure is built around ‘conventional’ navigation, 
making use of ground-based beacons. Airspace design is carried out by humans who 
are aided by computer design tools. As there are many factors that must be considered 
such as noise pollution, airport capacity and aircraft fuel consumption which impacts 
fuel cost and emissions of the aircraft. All these factors are compounded by an ever-
increasing number of aircraft. This conventional approach does not take advantage of 
modern navigation technologies [1], [2]. With the advent of modern navigation 
technologies, aircraft far better know where they are, this means that a flight is no longer 
reliant on flying passed fixed waypoints. This development and introduction of 
Performance-based Navigation gives aircraft the opportunity to fly more dynamic 
routes that can change and react to environmental constraints, for example weather.  

Researchers have proposed methods for using genetic algorithms for the navigation 
of Unmanned Aerial Vehicles (UAVs) [3], [4]; work has also been done to look into 
airspace sectorisation using recursive geometric optimisation [5] as well as 
evolutionary optimisation [6]. The UKs Civil Aviation Authority (CAA) have outlined 
their view of how modern navigation should be used to better use airspace [7].  

This paper proposes an evolutionary heuristic computer aided method, called 
ROUTE, for developing airspace. Genetic algorithms are computational models for 
evolution designed to mimic natural evolution, where a pool of candidates is populated 
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with randomly created individuals. A pool of breeding candidates from each generation 
are selected using a roulette wheel selection method. This ensures preference for more 
fit candidates, however means that less fit candidates can also be selected. They are 
then mutated and crossed over and create the next generation. This method of selecting 
more fit individuals, while maintaining diversity from the fewer less fit individuals, 
means with each generation the algorithm will produce individuals whose fitness will 
tend towards the optimal solution [8].  

A benefit of using a computational approach means ROUTE can work alongside 
performance based [7] navigation to create automated reactive airspace, not dependant 
on constraints such as fixed waypoints. New waypoints can be transmitted to aircraft 
en-route. It would reduce the human resource needed for airspace design, as well as 
allowing numerous contingent situations to be more readily modelled.  

The rest of the paper is organised as follows. Related work is critically reviewed in 
Section 2. Section 3 introduce the design of the algorithm. Section 4 describes the 
algorithm in detail.  In Section 5 we present the experimental results and discuss issues 
raised from them.  Section 6 concludes the paper and propose future work.  

2 Related Work 

Work has been done to use GAs to compute the routes for UAVs [3], [4]. This work 
uses real time data to build the route for one UAV in less than half a second. While this 
work looks at the problem of computing a route for an aircraft based on terrain and 
avoiding certain features, it is limited in as much as it does not look at repeatable routes, 
or how one route may interact with another, other than coordinating the arrival between 
two drones.   

Analysis has been done [9], and a method proposed for organising airspace into 
‘tubes’ this approach means reducing complexity as aircraft will fly through tubes in 
the sky. The tubes will be formed using the Hough Transform, then using a GA adjusted 
to fit in the highest percentage of flights, with minimum extra distance travelled [10]. 
This approach looks at how to capture large routes aircraft can be moved through, 
however it doesn’t look at how aircraft should be routed from en-route airspace to an 
airfield. While this may not be such a problem in more sparsely populated countries, 
such as the US, this is more of a concern in the UK as airports are often in densely 
populated areas.  

Researchers also look at how airspace can be more effectively sectorised [5] and 
how this can be done dynamically [11]. The aforementioned research looks at how to 
reduce complexity and optimize airspace by changing the shape of sectors, but it does 
not consider the benefits that can be gained from changing the underlying routes aircraft 
fly. 

There has also been research into how airspace can be more efficiently utilised 
through Area Navigation, a technique which allows for dynamic navigation points. This 
research shows that more flexible navigation can allow for more efficient routes [12]. 
This paper proposes a method to determine the most appropriate points evolutionarily. 

A technique of optimising approach trajectories based on environmental constraints 
has also been proposed [13]. This is improved upon [14]. This research looks at 



methods for proposing routes which build on existing routes. Our method proposes an 
approach capable of proposing its own routes. 

Lastly it has been shown that through optimising speed and trajectories it is possible 
to improve efficiency and reduce emissions of a flight path [15], [16]. Our evolutionary 
approach hopes to iteratively find these improvements and propose routes that apply 
them. 

The proposed ROUTE algorithm offers a technique building on past research to 
build routes which form the best compromise between Speed, efficiency, pollution, and 
therefore cost. The goal of the ROUTE algorithm is to address these problems and 
develop a technique for generating airspace designs in a reasonable amount of time, to 
be able to better take advantage of more modern navigation technologies and adapt in 
real time to changes in the environment.  

3 The ROUTE Design 

3.1 Design Objectives 

 
The ROUTE algorithm aims to find the optimal design of airspace, consisting of 

multiple routes, given a set of defined environmental constraints. It will look to use 
computational evolution to propose the most effective airspace structure given a set of 
constraints. This can be applied on a smaller scale to produce Arrival and Departure 
routes or a larger scale to produce the design for a country’s airspace or beyond. The 
design objectives have been outlined as follows: 

• Below 4,000ft priority is given to minimising noise pollution over populated 
areas. 

o As an aircraft is not at this altitude for long, and this is the altitude 
that most noise pollution is produced. 

• Between 4,000ft and 7,000ft equal priority is given to minimising noise 
pollution and route efficiency. 

o At this altitude it is still important to consider surrounding 
communities, however if this might produce an unnecessarily 
complex route, a compromise would be preferred. 

• Above 7,000ft priority is increasingly given to maximising route efficiency. 
o As an aircraft climbs away from 7,000ft its noise pollution becomes 

less of a concern, and for this reason simpler more efficient routes 
are preferred.  

o Route efficiency can be described as minimising journey times and 
route lengths as well as fuel burn by aircraft.  

• Maximise airport utilisation 
o Where capacity is sufficiently large, aircraft should arrive at an 

airport at the maximum rate safely allowed.  
• Minimise Airspace complexity 



o Many separate routes, which cross each other produce risk for air 
traffic control and pilots, for this reason flightpaths should cross each 
other as infrequently as possible. 

• It must be possible to avoid designated areas. 
o Due to weather or security concerns, for example, or regulatory 

issues such as overflying national parks. 

Maximising efficiency and airport utilisation should result in the ROUTE algorithm 
finding novel approaches to managing arrivals, without placing aircraft on hold as this 
is a highly inefficient. An example of how improved efficiency can be achieved is  seen 
in LAMP 1a, which uses an arc to organise arrivals into London City airport [17]. 
Although only on one route, and done manually, this demonstrates that there are 
approaches beyond using holding stacks to improve efficiency. The proposed method 
ROUTE will propose ways that these optimisations could be automated, and also find 
many small improvements which can accumulate. 

3.2 Genome Structure 

Each generation the algorithm will produce a population of multiple possible solutions, 
it is these solutions which will be scored based on its fitness and be acted upon by the 
genetic operators. Each solution contains a set of n routes, where n is the number of 
pairs of entrance and exit (start and finish) points. Each solution will contain the same 
number of routes between the same points, only one route within a solution will be 
subject to mutation or crossover. 

3.3 Mutators 

The ROUTE algorithm involves 6 genetic operators, one crossover operator, and 5 
genetic mutators. These mutators are used to introduce suitably variance to allow routes 
to converge towards an optimal solution. All operators are only applied to the 
intermediary points on a route, the first and final points remain static. For each solution, 
only one route will have the chance of being mutated. Now we will outline the six 
operators. 

1. Crossover: This operator combines two parent routes into two new offspring. 
A random point is selected along each route, the first half of the first route is 
then combined with the first part of the second route, and the second part of 
the first route is combined with the second part of the second route. This 
operator is only applied to routes between the same start and finish point. The 
number of nodes in the child routes can differ from their parents. 

2. Delete Mutator: This operator operates on both feasible and infeasible routes. 
It randomly removes an intermediate node from the selected route. 

3. Insert Internal Waypoint mutator: This mutator imagines an oblong shape 
around the two waypoints that form a segment, then inserts a new waypoint 
within that shape. 



4. Smooth turn operator: This operator places two new waypoints on the 
midpoint of the segments either side of the selected segment, then deletes the 
selected waypoint, the result being that it will create segments with smoother 
turns that the previous. 

5. Split Segment mutator: This mutator splits a segment in two, placing a 
waypoint on a segments mid-point. This is used to help ensure segment lengths 
are shorter than the maximum segment length. 

6. Approach Mutator: This operator replaces the penultimate waypoint with a 
new waypoint randomly placed within the approach cone of an airport. 

3.4 Route Feasibility 

A route will be feasible if it passes through no excluded airspace, and if it does not 
make any turns at too great of an angle. If a route is infeasible, then it will not have its 
fitness evaluated. It will instead have its fitness set equal to the sum of the largest 
feasible fitness, and the number of infeasible segments in the route. 

3.5 Evaluating Fitness 

For each Individual Route ri the routes fitness F(ri) shall be defined as follows: 

 F(ri) = ∑{ lr * wl + tr* wt + pfor* wpfo + fbr* wfb } (1) 

Where each w is the weight of the corresponding value. Each value is outlined below:  
1. l (Total route length): Total length in kilometres of the route. Where len(sri) is 

the length of a single segment (sri) of the route. 

 lr = ∑ {𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠𝑟𝑟𝑟𝑟)}𝑛𝑛
𝑟𝑟=0  (2) 

2. t (Total route time): Total flight time for the route. Where spdsri is the speed 
restriction of the segment.  

 tr = ∑ {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 ∗  𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠𝑟𝑟𝑟𝑟)}𝑛𝑛
𝑟𝑟=0  (3) 

3. pfo (Population overflown in each flight band): Where pfor0 represents the 
population in the height band FL0 – FL40, pfor40 represents the population in 
the height band FL40 – FL70, pfor70 represents the population in the height 
band FL70+. 

 pfor = ∑𝑠𝑠𝑝𝑝𝑝𝑝𝑟𝑟0 + 𝑠𝑠𝑝𝑝𝑝𝑝𝑟𝑟40 +  𝑠𝑠𝑝𝑝𝑝𝑝𝑟𝑟70 (4) 

4. Total fuel burned: For a given number of aircraft, flying the generated routes, 
what is the total amount of fuel burned in KG. Where fbrr represents the fuel 
burn rate for the aircraft on the selected route. This can be adapted on a per 
route basis. 



 ∑ {𝑝𝑝𝑓𝑓𝑓𝑓𝑟𝑟 ∗  𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠𝑟𝑟𝑟𝑟)}𝑛𝑛
𝑟𝑟=0  (5) 

This algorithm measures fitness against one objective F(r). The aim is to minimise 
F(r). The use of the weights w allows for the prioritisation of different objectives to 
meet the users’ needs. This means that one can decide whether to prioritise 
environmental disruption due to noise over CO2 emissions and cost by adjusting the 
weight values. 

This is inspired by [4] however as it is not in real time, it considers some of the 
concerns from [6] to introduce novel mutators to insure low complexity when multiple 
routes are introduced. 

4 The ROUTE Algorithm  

The ROUTE algorithm is designed using computational evolution. The algorithm will 
initially generate a population of individual routes, these routes will then be evaluated 
according to a set of viability criteria. Those individual routes who meet the viability 
criteria are then evaluated for fitness. This is done for efficiency as fitness calculations 
are computationally expensive. Once evaluated the routes are then randomly selected 
using the roulette method for mutation and crossover. This roulette method is a method 
of random selection where more fit individuals are more likely to be selected however 
less fit individuals are still able to be selected, this preserves diversity. Once selected 
the individuals are subject to either mutation or crossover, or are directly passed through 
to the next generation, the chances of any of these three operators being applied are 
equal. The routes are then re-evaluated and the process loops and continues until the 
end condition is reached. The end condition in ROUTE is either a limit on number of 
generations, or the number of generations progressed without a significant change. This 
process is outlined in Figure 1 below. 

 
Fig. 1. ROUTE Algorithm flow diagram 



 
In this algorithm, a chromosome represents a group of routes. Each route is a 

sequence of points, initially randomly selected, between fixed entrance and exit points. 
All the candidate routes form the population, this is formed of P groups of routes.  

For evolution, a set S is selected where S ≤ P this set forms the candidates for genetic 
mutation and crossover. Individuals from P are selected using a roulette wheel of P 
slots, where the probability of an individual being selected is inversely proportional to 
the fitness of and individual. During roulette selection, an individual may be selected 
more than once. 

After the selection of S, the set is iterated through, randomly selecting whether to 
mutate or not each individual, and where selected for mutation, each mutator has an 
equal chance of being selected. Where a mutator is not applicable to an individual, 
another mutator will be selected from the pool, with that mutator removed. Once 
mutated fitness is re-evaluated, and the candidate is added to a new extended 
population. 

Once the set S has been exhausted the new extended population is evaluated and the 
fittest P individuals are retained, while the lesser fit individuals are discarded.  

Once a proposed solution is suitably fit, this solution is selected as the optimal 
solution. Whether a solution is suitably fit can be chosen after a fixed number of 
generations or evaluated by the algorithm. 

The steps of the algorithm can be summarised as follows: 
DATA: Population, ViablePool, NonViablePool 
START 
  randomize Population of size P 
  while end condition not met do 
    for each individual in population do 
      evaluateViabilityScore() of individual 
      if individual’s viability = 0 then  
        evaluate fitness of individual 
        add individual to ViablePool 
      else if viability score > 0 then 
        add individual to NonViablePool 
      end if 
    end for 
    for each individual in NonViablePool do 
      individual’s score = population’s highest fitness + 

       individual’s viability 
    end for 
    combine ViablePool and NonViablePool to form candidates 
    sort candidates by fitness from low to high 
    assign candidates descending rank from first to last 
    breedNextGeneration() and add children to 

             population in order 
    reduce population to P members 
  end while 
The ‘breedNextGeneration’ step is summarised in the algorithm below. 
DATA Candidates, Population, Children 



function breedNextGeneration() 
START 
  while Candidates < S do 
    candidate = selectUsingRouletteWheel(Population) 
    add candidate to Candidates 
  end while 
  for each candidate do 
    if randomNumber(0 to 1) < mutationChance do 
      mutator = select mutator at randomNumber(1 to 8) 
      mutate candidate with mutator and add to children 
    end if 
  end for 
  return children 
END 
 
The roulette wheel selection method ensures that while you are more likely to select 

fitter individuals, there is a chance to also select the least fit individuals. This ensures 
that the population does not stagnate. The below algorithm briefly outlines the simple 
and efficient method for selecting a candidate using a roulette wheel implementation: 

function selectUsingRouletteWheel () 
START 
  for each candidate do 
    totalRank += candidateRank 
  end for 

    targetRank = totalRank * RandomNumber(0.00 to 1.00) 
    for each candidate do 
      targetRank -= candidateRank 
      if targetRank < 0 do 
        return candidate 
      end if 
    end for 
    return last candidate     

END 
 
Lastly the Viability of an individual is described as the sum of the deviance between 

the upper and lower acceptable bounds and the actual measurement for each waypoint 
in a route. This non-binary approach means that a small improvement, even though it 
may not result in a viable route would be preferred as it is a step closer to a viable route.  

For example, the following algorithm describes the calculation of the total viability 
of the angles between segments in the route. 

DATA TotalViability 
function evaluateViabilityScore() 
START 
  for each waypoint in route do 
    firstLineSegment  = lineSegment(waypoint to waypoint+1) 
    secondLineSegment = lineSegment(waypoint+1 to waypoint+2) 



    angle = angleBetween(firstLineSegment, secondLineSegment) 
    if angle > allowedAngle then 
      TotalViability += angle – allowedAngle 
    end if 
  end for 
  return TotalViability 
END 
 
Once evolution is complete, the fittest routes are selected. Each segment of each 

route is iterated through. Where two routes intersect each other a two sub routes are 
created from the point of intersection onwards. Each sub route is evaluated for fitness, 
and the fittest sub route replaces the less fit sub route in both routes. This minimises 
complexity as where the routes share commonality they will merge. This is illustrated 
in figure two below. 

5 Experimental Results 

 
The ROUTE algorithm was implemented using Java 8 run on a Core i7 PC running 

Windows 10. In order to validate that ROUTE reaches its objectives, we will present 
evidence of the effect of changing weight parameters, as well as the effects of changing 
constraints on the route, lastly presenting the overall effectiveness of the solution. 

In the Figures below population is represented in the coloured grid beneath the routes 
drawn. Purple represents higher population in a square, and pink represents less 
population. The red line represents the approach, the top of the approach is where the 
routes are attempting to converge, they would then fly the approach to the runway at 
the opposite end. 

  
Fig. 2. Completed Routes 



Fig. 2 shows how a set of routes can evolve together. The left shows routes evolved, 
and the right shows how these routes can be simplified to prevent unnecessary 
overlapping.  

 

  
Fig. 3. Showing one route with a length weight of zero. 

  
Fig. 4. Showing one route with a length weight of 10. This tends to take a more direct route. 



  
Fig. 5. Balanced length and population 

Fig. 3 Shows a closer representation of how a lower priority (wl = 0) results in routes 
that more carefully avoid population. This is compared with Fig. 4 which shows how a 
higher priority (wl = 10) can lead to an almost direct route. Lastly Fig. 5 shows how a 
more appropriate weight (wl = 1) can lead to a route who is a better compromise, of 
being simpler with fewer route corrections, while also showing some tendency to avoid 
populated areas. 

   
Fig. 6. Demonstrating the avoidance of restricted areas (red boxes) 

Fig. 6 shows best how viability in ROUTE can affect a routes shape. Before ROUTE 
will evaluate the fitness of a route it must first evaluate whether it breaks any 
restrictions, for example if a turn is to sharp, or if it enters a restricted area. In this 
example, the route will first need to not enter the red box, before it is then optimised, 
notice therefore how it will avoid but stick close to the restricted areas. This 
demonstrates the ability of the ability to conform to viability requirements. 



In addition to visually confirming these results, we have included below the results 
from a series of tests, illustrating the effects of changing the algorithm configuration on 
the generated routes. 

Firstly, we look at the effect of changing weights to determine whether the route 
generated should be shorter or fly over fewer people. 

Table 1. Higher population weight (weight=10). 

 N Minimum Maximum Mean Std. Deviation 
Length 5 1056.42 1068.35 1061.3707 4.91244 
Population 5 199.20 208.03 203.6226 3.83253 

Table 2. Higher length weight (weight=10). 

 N Minimum Maximum Mean Std. Deviation 
Length 5 1011.51 1013.87 1012.3594 1.07681 
Population 5 257.42 265.11 260.5541 2.95241 

As should be expected, we can see that the mean length is smaller when the length 
weight is higher, similarly for the population it is smaller when the population weight 
is higher. However, interestingly the standard deviation is higher in the measurement 
with the lower weight. It could be concluded that due to the lower weight, the value is 
not as important to the algorithm, therefore it becomes less consistently optimised 
because the algorithm will it to boost other statistics. 

Next, we look at how changing the number of generations can impact the 
performance of the algorithm.   

Table 3. Fewer generations (generations=10). 

 N Minimum Maximum Mean Std. Deviation 
Fitness 5 17912.91 18039.44 17971.4361 50.49479 

Table 4. Greater generations (generations=100). 

 N Minimum Maximum Mean Std. Deviation 
Population 5 17827.42 17927.83 17875.2560 42.76566 

Here it is possible to see the two main benefits of increasing the number of 
generations used in evolution. Firstly, the longer search results in better results, this can 
be seen as all values of fitness are lower in the test allowed to run for more generations.  

Secondly, we also see a smaller standard deviation on the longer running sample. 
This suggest that the results are groups closer together. From this it can be concluded 
that with more time a given result is more reliably the `best' route. 

Lastly, we consider the effects of changing the population size. This is to see whether 
the computational expense of more individuals is rewarded with higher quality results. 

Table 5. Smaller population size (population=20). 

 N Minimum Maximum Mean Std. Deviation 



Fitness 5 17929.01 18079.07 17993.6140 63.21561 

Table 6. Larger population size (population=300). 

 N Minimum Maximum Mean Std. Deviation 
Population 5 17795.27 17942.86 17882.3460 59.22986 

Here it is possible to see that with a larger population the deviation is smaller, this 
suggests that with more individuals each run results in a closer result. This highlights 
the drawback of a genetic algorithm, as each run is based off a different random start 
point, the outcomes are not necessarily repeatable. However, seeing the smaller 
standard deviation with the higher population size suggests that a way to mitigate this 
pitfall is using a larger population. This small deviation suggests that the results are 
more similar, and therefore more consistent. 

6 Conclusions 

This paper has proposed ROUTE, an evolutionary approach to the design of airspace. 
The paper has demonstrated ways in which a route can be influenced by shifting 
priorities, to create a route fit for a given situation. This can be seen in the way the 
priorities change as a route gets closer to the ground, with a route following more 
contoured paths when it is lower in height. 

We believe this work has identified the viability of generating airspace structures 
using computational aided methods. However, more work should be done to evaluate 
what would be necessary to validate such an approach for operational use in such a 
safety critical industry. 

Moreover, improvements should be explored in simplifying airspace designs to 
promote simplicity. While this research begins to explore this problem, it looks for 
commonality in the routes, a better option may be to incorporate this as part of the 
genetic algorithm itself. This limitation of the algorithm, as well as the inability to 
compare it to operational data will need to be addressed before this approach could see 
operational use. 

The method initially outlined here, however, has great potential to create modern 
and adaptive navigational infrastructure, and could have applications beyond airspace, 
and future efforts could consider other areas of route planning which would benefit 
from a balanced approach to route design. 
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