
Reasonably Optimal Utilisation Through Evolution
(ROUTE) in Airspace Design

Thomas Lawson1 and Yanyan Yang2

1,2 School of Engineering, University of Portsmouth, Portsmouth, UK
1up780962@myport.ac.uk 2linda.yang@port.ac.uk

Abstract: The underlying navigation technology that enables the navigation of
aircraft through airspace is improving, allowing aircraft to navigate waypoints
that do not need to be previously defined, no longer being confined to antiquated
navigational aids. From this the opportunity is arising to create highly optimized
airspace that can change its design on the fly in reaction to the environment. This
paper presents a novel approach towards route finding in airspace design using
computational evolution. The proposed method, ROUTE, can create new
airspace designs in reaction to changing environmental constraints, optimising
for fuel burn (therefore cost and emissions) as well as noise disturbance, and route
length.

Keywords: Airspace Design, Genetic Algorithms, Dynamic Airspace,
Constrained Optimisation.

1 Introduction

Currently, global airspace infrastructure is built around ‘conventional’ navigation,
making use of ground-based beacons. Airspace design is carried out by humans who
are aided by computer design tools. As there are many factors that must be considered
such as noise pollution, airport capacity and aircraft fuel consumption which impacts
fuel cost and emissions of the aircraft. All these factors are compounded by an ever-
increasing number of aircraft. This conventional approach does not take advantage of
modern navigation technologies [1], [2]. With the advent of modern navigation
technologies, aircraft far better know where they are, this means that a flight is no longer
reliant on flying passed fixed waypoints. This development and introduction of
Performance-based Navigation gives aircraft the opportunity to fly more dynamic
routes that can change and react to environmental constraints, for example weather.

Researchers have proposed methods for using genetic algorithms for the navigation
of Unmanned Aerial Vehicles (UAVs) [3], [4]; work has also been done to look into
airspace sectorisation using recursive geometric optimisation [5] as well as
evolutionary optimisation [6]. The UKs Civil Aviation Authority (CAA) have outlined
their view of how modern navigation should be used to better use airspace [7].

This paper proposes an evolutionary heuristic computer aided method, called
ROUTE, for developing airspace. Genetic algorithms are computational models for
evolution designed to mimic natural evolution, where a pool of candidates is populated

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/211024003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

with randomly created individuals. A pool of breeding candidates from each generation
are selected using a roulette wheel selection method. This ensures preference for more
fit candidates, however means that less fit candidates can also be selected. They are
then mutated and crossed over and create the next generation. This method of selecting
more fit individuals, while maintaining diversity from the fewer less fit individuals,
means with each generation the algorithm will produce individuals whose fitness will
tend towards the optimal solution [8].

A benefit of using a computational approach means ROUTE can work alongside
performance based [7] navigation to create automated reactive airspace, not dependant
on constraints such as fixed waypoints. New waypoints can be transmitted to aircraft
en-route. It would reduce the human resource needed for airspace design, as well as
allowing numerous contingent situations to be more readily modelled.

The rest of the paper is organised as follows. Related work is critically reviewed in
Section 2. Section 3 introduce the design of the algorithm. Section 4 describes the
algorithm in detail. In Section 5 we present the experimental results and discuss issues
raised from them. Section 6 concludes the paper and propose future work.

2 Related Work

Work has been done to use GAs to compute the routes for UAVs [3], [4]. This work
uses real time data to build the route for one UAV in less than half a second. While this
work looks at the problem of computing a route for an aircraft based on terrain and
avoiding certain features, it is limited in as much as it does not look at repeatable routes,
or how one route may interact with another, other than coordinating the arrival between
two drones.

Analysis has been done [9], and a method proposed for organising airspace into
‘tubes’ this approach means reducing complexity as aircraft will fly through tubes in
the sky. The tubes will be formed using the Hough Transform, then using a GA adjusted
to fit in the highest percentage of flights, with minimum extra distance travelled [10].
This approach looks at how to capture large routes aircraft can be moved through,
however it doesn’t look at how aircraft should be routed from en-route airspace to an
airfield. While this may not be such a problem in more sparsely populated countries,
such as the US, this is more of a concern in the UK as airports are often in densely
populated areas.

Researchers also look at how airspace can be more effectively sectorised [5] and
how this can be done dynamically [11]. The aforementioned research looks at how to
reduce complexity and optimize airspace by changing the shape of sectors, but it does
not consider the benefits that can be gained from changing the underlying routes aircraft
fly.

There has also been research into how airspace can be more efficiently utilised
through Area Navigation, a technique which allows for dynamic navigation points. This
research shows that more flexible navigation can allow for more efficient routes [12].
This paper proposes a method to determine the most appropriate points evolutionarily.

A technique of optimising approach trajectories based on environmental constraints
has also been proposed [13]. This is improved upon [14]. This research looks at

methods for proposing routes which build on existing routes. Our method proposes an
approach capable of proposing its own routes.

Lastly it has been shown that through optimising speed and trajectories it is possible
to improve efficiency and reduce emissions of a flight path [15], [16]. Our evolutionary
approach hopes to iteratively find these improvements and propose routes that apply
them.

The proposed ROUTE algorithm offers a technique building on past research to
build routes which form the best compromise between Speed, efficiency, pollution, and
therefore cost. The goal of the ROUTE algorithm is to address these problems and
develop a technique for generating airspace designs in a reasonable amount of time, to
be able to better take advantage of more modern navigation technologies and adapt in
real time to changes in the environment.

3 The ROUTE Design

3.1 Design Objectives

The ROUTE algorithm aims to find the optimal design of airspace, consisting of

multiple routes, given a set of defined environmental constraints. It will look to use
computational evolution to propose the most effective airspace structure given a set of
constraints. This can be applied on a smaller scale to produce Arrival and Departure
routes or a larger scale to produce the design for a country’s airspace or beyond. The
design objectives have been outlined as follows:

• Below 4,000ft priority is given to minimising noise pollution over populated
areas.

o As an aircraft is not at this altitude for long, and this is the altitude
that most noise pollution is produced.

• Between 4,000ft and 7,000ft equal priority is given to minimising noise
pollution and route efficiency.

o At this altitude it is still important to consider surrounding
communities, however if this might produce an unnecessarily
complex route, a compromise would be preferred.

• Above 7,000ft priority is increasingly given to maximising route efficiency.
o As an aircraft climbs away from 7,000ft its noise pollution becomes

less of a concern, and for this reason simpler more efficient routes
are preferred.

o Route efficiency can be described as minimising journey times and
route lengths as well as fuel burn by aircraft.

• Maximise airport utilisation
o Where capacity is sufficiently large, aircraft should arrive at an

airport at the maximum rate safely allowed.
• Minimise Airspace complexity

o Many separate routes, which cross each other produce risk for air
traffic control and pilots, for this reason flightpaths should cross each
other as infrequently as possible.

• It must be possible to avoid designated areas.
o Due to weather or security concerns, for example, or regulatory

issues such as overflying national parks.

Maximising efficiency and airport utilisation should result in the ROUTE algorithm
finding novel approaches to managing arrivals, without placing aircraft on hold as this
is a highly inefficient. An example of how improved efficiency can be achieved is seen
in LAMP 1a, which uses an arc to organise arrivals into London City airport [17].
Although only on one route, and done manually, this demonstrates that there are
approaches beyond using holding stacks to improve efficiency. The proposed method
ROUTE will propose ways that these optimisations could be automated, and also find
many small improvements which can accumulate.

3.2 Genome Structure

Each generation the algorithm will produce a population of multiple possible solutions,
it is these solutions which will be scored based on its fitness and be acted upon by the
genetic operators. Each solution contains a set of n routes, where n is the number of
pairs of entrance and exit (start and finish) points. Each solution will contain the same
number of routes between the same points, only one route within a solution will be
subject to mutation or crossover.

3.3 Mutators

The ROUTE algorithm involves 6 genetic operators, one crossover operator, and 5
genetic mutators. These mutators are used to introduce suitably variance to allow routes
to converge towards an optimal solution. All operators are only applied to the
intermediary points on a route, the first and final points remain static. For each solution,
only one route will have the chance of being mutated. Now we will outline the six
operators.

1. Crossover: This operator combines two parent routes into two new offspring.
A random point is selected along each route, the first half of the first route is
then combined with the first part of the second route, and the second part of
the first route is combined with the second part of the second route. This
operator is only applied to routes between the same start and finish point. The
number of nodes in the child routes can differ from their parents.

2. Delete Mutator: This operator operates on both feasible and infeasible routes.
It randomly removes an intermediate node from the selected route.

3. Insert Internal Waypoint mutator: This mutator imagines an oblong shape
around the two waypoints that form a segment, then inserts a new waypoint
within that shape.

4. Smooth turn operator: This operator places two new waypoints on the
midpoint of the segments either side of the selected segment, then deletes the
selected waypoint, the result being that it will create segments with smoother
turns that the previous.

5. Split Segment mutator: This mutator splits a segment in two, placing a
waypoint on a segments mid-point. This is used to help ensure segment lengths
are shorter than the maximum segment length.

6. Approach Mutator: This operator replaces the penultimate waypoint with a
new waypoint randomly placed within the approach cone of an airport.

3.4 Route Feasibility

A route will be feasible if it passes through no excluded airspace, and if it does not
make any turns at too great of an angle. If a route is infeasible, then it will not have its
fitness evaluated. It will instead have its fitness set equal to the sum of the largest
feasible fitness, and the number of infeasible segments in the route.

3.5 Evaluating Fitness

For each Individual Route ri the routes fitness F(ri) shall be defined as follows:

 F(ri) = ∑{ lr * wl + tr* wt + pfor* wpfo + fbr* wfb } (1)

Where each w is the weight of the corresponding value. Each value is outlined below:
1. l (Total route length): Total length in kilometres of the route. Where len(sri) is

the length of a single segment (sri) of the route.

 lr = ∑ {𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠𝑟𝑟𝑟𝑟)}𝑛𝑛
𝑖𝑖=0 (2)

2. t (Total route time): Total flight time for the route. Where spdsri is the speed
restriction of the segment.

 tr = ∑ {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠𝑟𝑟𝑟𝑟)}𝑛𝑛
𝑖𝑖=0 (3)

3. pfo (Population overflown in each flight band): Where pfor0 represents the
population in the height band FL0 – FL40, pfor40 represents the population in
the height band FL40 – FL70, pfor70 represents the population in the height
band FL70+.

 pfor = ∑𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟0 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟40 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟70 (4)

4. Total fuel burned: For a given number of aircraft, flying the generated routes,
what is the total amount of fuel burned in KG. Where fbrr represents the fuel
burn rate for the aircraft on the selected route. This can be adapted on a per
route basis.

 ∑ {𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠𝑟𝑟𝑟𝑟)}𝑛𝑛
𝑖𝑖=0 (5)

This algorithm measures fitness against one objective F(r). The aim is to minimise
F(r). The use of the weights w allows for the prioritisation of different objectives to
meet the users’ needs. This means that one can decide whether to prioritise
environmental disruption due to noise over CO2 emissions and cost by adjusting the
weight values.

This is inspired by [4] however as it is not in real time, it considers some of the
concerns from [6] to introduce novel mutators to insure low complexity when multiple
routes are introduced.

4 The ROUTE Algorithm

The ROUTE algorithm is designed using computational evolution. The algorithm will
initially generate a population of individual routes, these routes will then be evaluated
according to a set of viability criteria. Those individual routes who meet the viability
criteria are then evaluated for fitness. This is done for efficiency as fitness calculations
are computationally expensive. Once evaluated the routes are then randomly selected
using the roulette method for mutation and crossover. This roulette method is a method
of random selection where more fit individuals are more likely to be selected however
less fit individuals are still able to be selected, this preserves diversity. Once selected
the individuals are subject to either mutation or crossover, or are directly passed through
to the next generation, the chances of any of these three operators being applied are
equal. The routes are then re-evaluated and the process loops and continues until the
end condition is reached. The end condition in ROUTE is either a limit on number of
generations, or the number of generations progressed without a significant change. This
process is outlined in Figure 1 below.

Fig. 1. ROUTE Algorithm flow diagram

In this algorithm, a chromosome represents a group of routes. Each route is a

sequence of points, initially randomly selected, between fixed entrance and exit points.
All the candidate routes form the population, this is formed of P groups of routes.

For evolution, a set S is selected where S ≤ P this set forms the candidates for genetic
mutation and crossover. Individuals from P are selected using a roulette wheel of P
slots, where the probability of an individual being selected is inversely proportional to
the fitness of and individual. During roulette selection, an individual may be selected
more than once.

After the selection of S, the set is iterated through, randomly selecting whether to
mutate or not each individual, and where selected for mutation, each mutator has an
equal chance of being selected. Where a mutator is not applicable to an individual,
another mutator will be selected from the pool, with that mutator removed. Once
mutated fitness is re-evaluated, and the candidate is added to a new extended
population.

Once the set S has been exhausted the new extended population is evaluated and the
fittest P individuals are retained, while the lesser fit individuals are discarded.

Once a proposed solution is suitably fit, this solution is selected as the optimal
solution. Whether a solution is suitably fit can be chosen after a fixed number of
generations or evaluated by the algorithm.

The steps of the algorithm can be summarised as follows:
DATA: Population, ViablePool, NonViablePool
START
 randomize Population of size P
 while end condition not met do
 for each individual in population do
 evaluateViabilityScore() of individual
 if individual’s viability = 0 then
 evaluate fitness of individual
 add individual to ViablePool
 else if viability score > 0 then
 add individual to NonViablePool
 end if
 end for
 for each individual in NonViablePool do
 individual’s score = population’s highest fitness +

 individual’s viability
 end for
 combine ViablePool and NonViablePool to form candidates
 sort candidates by fitness from low to high
 assign candidates descending rank from first to last
 breedNextGeneration() and add children to

 population in order
 reduce population to P members
 end while
The ‘breedNextGeneration’ step is summarised in the algorithm below.
DATA Candidates, Population, Children

function breedNextGeneration()
START
 while Candidates < S do
 candidate = selectUsingRouletteWheel(Population)
 add candidate to Candidates
 end while
 for each candidate do
 if randomNumber(0 to 1) < mutationChance do
 mutator = select mutator at randomNumber(1 to 8)
 mutate candidate with mutator and add to children
 end if
 end for
 return children
END

The roulette wheel selection method ensures that while you are more likely to select

fitter individuals, there is a chance to also select the least fit individuals. This ensures
that the population does not stagnate. The below algorithm briefly outlines the simple
and efficient method for selecting a candidate using a roulette wheel implementation:

function selectUsingRouletteWheel ()
START
 for each candidate do
 totalRank += candidateRank
 end for

 targetRank = totalRank * RandomNumber(0.00 to 1.00)
 for each candidate do
 targetRank -= candidateRank
 if targetRank < 0 do
 return candidate
 end if
 end for
 return last candidate

END

Lastly the Viability of an individual is described as the sum of the deviance between

the upper and lower acceptable bounds and the actual measurement for each waypoint
in a route. This non-binary approach means that a small improvement, even though it
may not result in a viable route would be preferred as it is a step closer to a viable route.

For example, the following algorithm describes the calculation of the total viability
of the angles between segments in the route.

DATA TotalViability
function evaluateViabilityScore()
START
 for each waypoint in route do
 firstLineSegment = lineSegment(waypoint to waypoint+1)
 secondLineSegment = lineSegment(waypoint+1 to waypoint+2)

 angle = angleBetween(firstLineSegment, secondLineSegment)
 if angle > allowedAngle then
 TotalViability += angle – allowedAngle
 end if
 end for
 return TotalViability
END

Once evolution is complete, the fittest routes are selected. Each segment of each

route is iterated through. Where two routes intersect each other a two sub routes are
created from the point of intersection onwards. Each sub route is evaluated for fitness,
and the fittest sub route replaces the less fit sub route in both routes. This minimises
complexity as where the routes share commonality they will merge. This is illustrated
in figure two below.

5 Experimental Results

The ROUTE algorithm was implemented using Java 8 run on a Core i7 PC running

Windows 10. In order to validate that ROUTE reaches its objectives, we will present
evidence of the effect of changing weight parameters, as well as the effects of changing
constraints on the route, lastly presenting the overall effectiveness of the solution.

In the Figures below population is represented in the coloured grid beneath the routes
drawn. Purple represents higher population in a square, and pink represents less
population. The red line represents the approach, the top of the approach is where the
routes are attempting to converge, they would then fly the approach to the runway at
the opposite end.

Fig. 2. Completed Routes

Fig. 2 shows how a set of routes can evolve together. The left shows routes evolved,
and the right shows how these routes can be simplified to prevent unnecessary
overlapping.

Fig. 3. Showing one route with a length weight of zero.

Fig. 4. Showing one route with a length weight of 10. This tends to take a more direct route.

Fig. 5. Balanced length and population

Fig. 3 Shows a closer representation of how a lower priority (wl = 0) results in routes
that more carefully avoid population. This is compared with Fig. 4 which shows how a
higher priority (wl = 10) can lead to an almost direct route. Lastly Fig. 5 shows how a
more appropriate weight (wl = 1) can lead to a route who is a better compromise, of
being simpler with fewer route corrections, while also showing some tendency to avoid
populated areas.

Fig. 6. Demonstrating the avoidance of restricted areas (red boxes)

Fig. 6 shows best how viability in ROUTE can affect a routes shape. Before ROUTE
will evaluate the fitness of a route it must first evaluate whether it breaks any
restrictions, for example if a turn is to sharp, or if it enters a restricted area. In this
example, the route will first need to not enter the red box, before it is then optimised,
notice therefore how it will avoid but stick close to the restricted areas. This
demonstrates the ability of the ability to conform to viability requirements.

In addition to visually confirming these results, we have included below the results
from a series of tests, illustrating the effects of changing the algorithm configuration on
the generated routes.

Firstly, we look at the effect of changing weights to determine whether the route
generated should be shorter or fly over fewer people.

Table 1. Higher population weight (weight=10).

 N Minimum Maximum Mean Std. Deviation
Length 5 1056.42 1068.35 1061.3707 4.91244
Population 5 199.20 208.03 203.6226 3.83253

Table 2. Higher length weight (weight=10).

 N Minimum Maximum Mean Std. Deviation
Length 5 1011.51 1013.87 1012.3594 1.07681
Population 5 257.42 265.11 260.5541 2.95241

As should be expected, we can see that the mean length is smaller when the length
weight is higher, similarly for the population it is smaller when the population weight
is higher. However, interestingly the standard deviation is higher in the measurement
with the lower weight. It could be concluded that due to the lower weight, the value is
not as important to the algorithm, therefore it becomes less consistently optimised
because the algorithm will it to boost other statistics.

Next, we look at how changing the number of generations can impact the
performance of the algorithm.

Table 3. Fewer generations (generations=10).

 N Minimum Maximum Mean Std. Deviation
Fitness 5 17912.91 18039.44 17971.4361 50.49479

Table 4. Greater generations (generations=100).

 N Minimum Maximum Mean Std. Deviation
Population 5 17827.42 17927.83 17875.2560 42.76566

Here it is possible to see the two main benefits of increasing the number of
generations used in evolution. Firstly, the longer search results in better results, this can
be seen as all values of fitness are lower in the test allowed to run for more generations.

Secondly, we also see a smaller standard deviation on the longer running sample.
This suggest that the results are groups closer together. From this it can be concluded
that with more time a given result is more reliably the `best' route.

Lastly, we consider the effects of changing the population size. This is to see whether
the computational expense of more individuals is rewarded with higher quality results.

Table 5. Smaller population size (population=20).

 N Minimum Maximum Mean Std. Deviation

Fitness 5 17929.01 18079.07 17993.6140 63.21561

Table 6. Larger population size (population=300).

 N Minimum Maximum Mean Std. Deviation
Population 5 17795.27 17942.86 17882.3460 59.22986

Here it is possible to see that with a larger population the deviation is smaller, this
suggests that with more individuals each run results in a closer result. This highlights
the drawback of a genetic algorithm, as each run is based off a different random start
point, the outcomes are not necessarily repeatable. However, seeing the smaller
standard deviation with the higher population size suggests that a way to mitigate this
pitfall is using a larger population. This small deviation suggests that the results are
more similar, and therefore more consistent.

6 Conclusions

This paper has proposed ROUTE, an evolutionary approach to the design of airspace.
The paper has demonstrated ways in which a route can be influenced by shifting
priorities, to create a route fit for a given situation. This can be seen in the way the
priorities change as a route gets closer to the ground, with a route following more
contoured paths when it is lower in height.

We believe this work has identified the viability of generating airspace structures
using computational aided methods. However, more work should be done to evaluate
what would be necessary to validate such an approach for operational use in such a
safety critical industry.

Moreover, improvements should be explored in simplifying airspace designs to
promote simplicity. While this research begins to explore this problem, it looks for
commonality in the routes, a better option may be to incorporate this as part of the
genetic algorithm itself. This limitation of the algorithm, as well as the inability to
compare it to operational data will need to be addressed before this approach could see
operational use.

The method initially outlined here, however, has great potential to create modern
and adaptive navigational infrastructure, and could have applications beyond airspace,
and future efforts could consider other areas of route planning which would benefit
from a balanced approach to route design.

References

[1] EUROCONTROL, “European Airspace Concept Handbook for PBN
Implementation.”

[2] S. Timar, G. Hunter, and J. Post, “Assessing the Benefits of NextGen
Performance Based Navigation (PBN),” 2013.

[3] X. Zhang and H. Duan, “An improved constrained differential evolution

algorithm for unmanned aerial vehicle global route planning,” Appl. Soft
Comput. J., vol. 26, pp. 270–284, Jan. 2015.

[4] C. Zheng, L. Li, F. Xu, F. Sun, and M. Ding, “Evolutionary route planner for
unmanned air vehicles,” IEEE Trans. Robot., vol. 21, no. 4, pp. 609–620, 2005.

[5] A. Basu, J. S. B. Mitchell, and G. Sabhnani, “Geometric Algorithms for
Optimal Airspace Design and Air Traffic Controller Workload Balancing,” in
2008 Proceedings of the Tenth Workshop on Algorithm Engineering and
Experiments (ALENEX), Philadelphia, PA: Society for Industrial and Applied
Mathematics, 2008, pp. 75–89.

[6] D. Delahaye and S. Puechmorel, “3D airspace design by Evolutionary
computation,” in AIAA/IEEE Digital Avionics Systems Conference -
Proceedings, 2008, p. 3.B.6-1-3.B.6-13.

[7] CAA, “Performance-based Navigation Airspace Design Guidance : Noise
mitigation considerations when designing PBN departure and arrival
procedures.”

[8] D. Whitley, “A Genetic Algorithm Tutorial.”
[9] M. Xue, “Design Analysis of Corridors-in-the-sky,” Santa Cruz, CA, United

States, 2008.
[10] M. Xue and P. H. Kopardekar, “High-Capacity Tube Network Design Using

the Hough Transform,” J. Guid. Control. Dyn., vol. 32, no. 3, pp. 788–795,
2009.

[11] R. Ehrmanntraut and S. McMillan, “Airspace design process for dynamic
sectorisation,” AIAA/IEEE Digit. Avion. Syst. Conf. - Proc., pp. 1–9, 2007.

[12] K. R. Sprong, B. M. Haltli, J. S. Dearmon, and S. Bradley, “IMPROVING
FLIGHT EFFICIENCY THROUGH TERMINAL AREA RNAV.”

[13] R. H. Hogenhuis, S. J. Hebly, and H. G. Visser, “Optimization of area
navigation noise abatement approach trajectories,” Proc. Inst. Mech. Eng. Part
G J. Aerosp. Eng., vol. 225, no. 5, pp. 513–521, 2011.

[14] S. Hartjes, H. G. Visser, and S. J. Hebly, “Optimization of RNAV Noise and
Emission Abatement Departure Procedures,” no. September, pp. 1–13, 2012.

[15] J. Lovegren and R. J. Hansman, “Estimation of Potential Aircraft Fuel Burn
Reduction in Cruise Via Speed and Altitude Optimization Strategies,” 2011.

[16] O. Sahin Meric, “Optimum Arrival Routes for Flight Efficiency,” J. Power
Energy Eng., vol. 3, pp. 449–452, 2015.

[17] NATS, “LAMP Phase 1a airspace change now live - NATS,” 2016. [Online].
Available: https://www.nats.aero/news/newsbrief/janfeb-2016/lamp-phase-1a-
airspace-change-now-live/. [Accessed: 28-Feb-2019].

	1 Introduction
	2 Related Work
	3 The ROUTE Design
	3.1 Design Objectives
	3.2 Genome Structure
	3.3 Mutators
	3.4 Route Feasibility
	3.5 Evaluating Fitness

	4 The ROUTE Algorithm
	5 Experimental Results
	6 Conclusions
	References

