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Dzyaloshinskii-Moriya domain walls in magnetic nanotubes
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We present an analytic study of domain-wall statics and dynamics in ferromagnetic nanotubes with spin-orbit-
induced Dzyaloshinskii-Moriya interaction (DMI). Even at the level of statics, dramatic effects arise from the
interplay of space curvature and DMI: the domains become chirally twisted, leading to more compact domain
walls. The dynamics of these chiral structures exhibits several interesting features. Under weak applied currents,
they propagate without distortion. The dynamical response is further enriched by the application of an external
magnetic field: the domain-wall velocity becomes chirality dependent and can be significantly increased by
varying the DMI. These characteristics allow for enhanced control of domain-wall motion in nanotubes with
DMI, increasing their potential as information carriers in future logic and storage devices.
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I. INTRODUCTION

In recent years, ferromagnetic nanostructures featuring
narrow and stable domain walls (DWs) have been in the
spotlight of experimental and theoretical research, with an
overarching aim to achieve more compact spintronic logic
and memory devices [1–3]. In particular, numerous efforts
have been focused on DWs in ferromagnetic nanowires
[4–29], nanotubes [30–35], and thin films with perpendicular
magnetic anisotropy [36–40] featuring the Dzyaloshinskii-
Moriya interaction (DMI) [41,42]. Here we report striking
effects arising from the interplay between space curvature and
DMI in ferromagnetic nanostructures, leading to narrow and
stable DWs controllable, efficiently and reliably, by means of
electric current and magnetic field.

Curvature effects play a significant role in various fields of
physics and are attracting increasing attention in condensed
matter, particularly in nanomagnetism. The simplest system
with curvature where DW dynamics can be considered is
a magnetic nanotube. Furthermore, thin ferromagnetic nan-
otubes have attracted recent attention from experimentalists
owing to a number of technologically advantageous proper-
ties [33–35,43,44], including enhanced DW stability under
strong external fields, allowing for higher DW velocities
compared to flat geometries [26,30,31]; increased DW ve-
locities under electric current pulses [32]; and the possibility
of switching chirality in vortex DWs through magnetic field
pulses [32,45].

We show that in thin ferromagnetic nanotubes, the DMI in-
duces qualitatively different effects to those found in flat nanos-
tructures, such as thin films and rectangular nanowires [46]. In
nanotubes, DMI causes the domains to become twisted, with
helical lines of magnetization as in Fig. 1, forcing the DWs to
become narrower. In contrast, in rectangular nanowires with
DMI, the magnetization far from the DW remains parallel
to the wire axis while DWs become broader. This sharpening
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effect of DMI in nanotubes can enable substantial downscaling
in future nanodevices.

We further demonstrate that in a certain thin-nanotube
regime specified below, DWs exhibit perfectly stable motion
under an applied electric current, propagating without any
distortion. The adiabatic spin-transfer torque [47,48] is absent
in the spin dynamics equations, and the nonadiabatic term
takes the form of the adiabatic one.

Complementarily to the current, a magnetic field along
the nanotube triggers a rich dynamical response in the
magnetization texture. We show that the DW velocity becomes
strongly dependent on polarity and chirality [49] and can
be significantly enhanced by DMI, which is favorable for
memory applications. Moreover, the onset of magnonic [30]
breakdown, impeding DW transport at high fields, can be
efficiently suppressed by DMI.

II. STATICS

We consider a ferromagnetic nanotube with inner radius
R and thickness w. In the thin-nanotube regime w � R, the
micromagnetic energy [50] with DMI [41,42] takes the form

E(m) =
∫

d3r
{
A|∇m|2 + K[1 − (m · ez)

2]

+ DM2
s m · (∇ × m) + μ0M

2
s

2
(m · eρ)2

}
, (1)

where the integral runs over the volume of the nanotube,
A is the exchange constant, K is the easy-axis crystalline
anisotropy, D is the DMI constant, Ms is the saturation
magnetization, and μ0 is the magnetic permeability of vacuum.
The cylindrical-coordinate unit vectors ez,eρ , and eφ are shown
in Fig. 1.

The last term on the right-hand side of Eq. (1) represents
the shape anisotropy stemming from the thinness of the
nanotube. In nanotubes with radius R much larger than the
magnetostatic exchange length

√
A/(μ0M2

s ), this term forces
the magnetization to lie nearly tangent to the surface. In this
case, the unit vector of magnetization may be described by its
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FIG. 1. Domain-wall profile in a thin nanotube with
Dzyaloshinskii-Moriya interaction. The magnetization lies tangent
to the nanotube surface.

orientation �(z,ρ,φ; t) in the (z,φ)-tangent plane:

m = ez cos � + eφ sin � . (2)

Substituting Eq. (2) into Eq. (1) and introducing the dimension-
less coordinates s = r/R,ζ = z/R,ξ = ρ/R, anisotropy κ =
KR2/A, and DMI constant η = DM2

s R/(2A), we thereby
obtain the expression for the dimensionless energy E =
E/(2AR):

E =
∫

d3s(ε1(�) + ε2(�)), (3)

where the energy densities ε1 and ε2 are given by

ε1 = 1
2 |∂ζ�|2 − V (�) + 1

4 (1 + κ) , (4)

ε2 = 1
2 |∂ξ� + η|2 + 1

2 |∂φ�|2 . (5)

The “potential” V , which appears in ε1, is given by

V (θ ) = 1
4a2 cos 2(θ − δ), (6)

a = [(1 + κ)2 + 4η2]
1
4 , tan 2δ = − 2η

1 + κ
, (7)

where δ is taken between −π/2 and π/2. Below we shall see
that δ determines the orientation of the twisted domains, while
1/a is the DW width.

Next we look for a magnetization profile � which min-
imizes the energy E . The ε2 term vanishes (and is thus
minimized) by taking ∂ξ� = −η and ∂φ� = 0. Then �

is of the form θ0(ζ ) − η(ξ − 1). In the thin-nanotube limit
(and taking κ,η = O(1)), the ε1 term can be simultaneously
minimized by taking θ0(ζ ) to satisfy the Euler-Lagrange
equation θ ′′

0 = −V ′(θ0), subject to the boundary conditions
that θ0(±∞) correspond to maxima of V (not minima). These
maxima, given by θ = δ + nπ , describe the orientations of
magnetization in domains. In the case of zero DMI, i.e., η = 0,
the magnetization far from the DW center is parallel to the
nanotube axis. However, for η �= 0 the magnetization profile
becomes helical, as shown in Fig. 1.

Domain walls correspond to boundary conditions θ0(±∞)
describing oppositely oriented domains. There are four distinct
DW profiles, characterized by polarity σ and chirality χ

(one is shown in Fig. 1); for more details see Appendix A.
Polarity determines whether the DW is head to head (σ = 1)
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FIG. 2. Mechanical analogy: The profile θ (ζ ) may be regarded
as the instanton orbit of a particle θ taking infinite time η to
move between consecutive local maxima of V (θ ) − he cos θ (κ = 1
throughout). Dashed curve: With no DMI or applied field, the local
maxima are θ = 0 and θ = π , corresponding to domains aligned
along the nanotube axis. The instanton orbit, indicated by the arrows,
describes a tail-to-tail DW with negative chirality. Dotted-dashed
curve: With DMI parameter η = 1 but no applied field, the local
maxima are shifted by δ = −π/8, corresponding to twisted domains.
The instanton orbit corresponds to a head-to-head DW with positive
chirality. Solid curve: With η = 1 and applied field he = 1, the
values of V − he cos θ at consecutive maxima are no longer equal; a
specific value j + v, the coefficient of linear damping in Eq. (15),
is required to ensure that particle reaches the second maximum
without overshooting. Hashed curve: For large enough he, a maximum
and minimum of V − he cos θ coalesce, and the instanton orbit is
destroyed.

or tail to tail (σ = −1), while chirality determines the sense
of rotation of m with increasing ζ , so that χ = σ sgn θ ′

0. The
Euler-Lagrange equation may be solved exactly to obtain

θ0 = 2χ arctan(eσaζ ) + δ. (8)

The DW profiles may be understood qualitatively in terms
of a mechanical analogy (see Fig. 2). We regard θ (ζ ) as the
trajectory of a particle moving in a potential V (θ ) with ζ

playing the role of time. In the static case, the DW boundary
conditions correspond to the particle approaching consecutive
maxima of V (located at δ mod π ) as ζ → ±∞. At times in
between, the particle traverses the intervening potential well
(this is an example of a so-called instanton orbit).

An important characteristic of the DW is its width � given
by 1/a, or in physical units,

� =
√

A[
(K + A/R2)2 + (

DM2
s /R

)2]1/4 . (9)

As is clear from this expression, DWs in thin nanotubes
become sharper in the presence of DMI, in marked contrast
to the case of rectangular nanowires [46]. DWs also become
sharper in nanotubes with higher curvature 1/R.

III. DYNAMICS

Under an applied current, the magnetization dynamics in a
ferromagnet far below the Curie temperature is described by
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the Landau-Lifshitz-Gilbert (LLG) equation [48,51–53]:

∂m
∂t

= γ H × m + αm × ∂m
∂t

− J
∂m
∂z

+ βJm × ∂m
∂z

,

(10)
where H = −(Ms)−1δE/δm is the effective magnetic field, γ

is the gyromagnetic ratio, α is the Gilbert damping constant, J
is the current along the nanotube in units of velocity, and β is
the nonadiabatic spin-transfer torque parameter. In the regime

w,

√
A

μ0M2
s

� R (11)

(as considered in the static case) and for currents J satisfying

J � γA

MsR
, (12)

it can be shown that m lies nearly tangent to the nanotube,
and Eq. (10) reduces to (see Appendix B for the details of this
calculation)

∂m
∂τ

= −m × (m × ht) − j
∂m
∂ζ

. (13)

Here τ = 2γA

αMsR2 t is the dimensionless time, ht is the tangential

component of the dimensionless effective field h = MsR
2

2A
H,

and j = MsR

2γA
βJ is the dimensionless current. Note that j is

proportional to nonadiabatic torque parameter β, whereas the
current term itself assumes the adiabatic torque form. This has
an important consequence, as described below.

Proceeding as in Eq. (2), we write m = ez cos � + eφ sin �

with �(ζ,ξ,τ ) = θ (ζ,τ ) + η(ξ − 1) to obtain

∂θ

∂τ
= ∂2θ

∂ζ 2
− j

∂θ

∂ζ
+ V ′(θ ) . (14)

We look for traveling-wave solutions of the form θ (ζ,τ ) =
ϑ(ζ − vτ ) describing axially symmetric DWs propagating
with velocity v. From Eq. (14), the profile ϑ satisfies

ϑ ′′ = (j − v)ϑ ′ − V ′(ϑ) (15)

subject to the same boundary conditions as in the static case.
It is easy to see that the moving profile ϑ coincides with the
static profile θ0 in Eq. (8) with velocity v = j . In physical
units, the DW velocity is given by

V = βJ/α . (16)

From Eqs. (11) and (12), Eq. (16) holds for velocities in the
regime

V � γ
β

α

√
μ0A. (17)

Thus, under an applied current, the DW propagates without
distortion and with velocity independent of polarity, chirality,
and DMI (see Supplemental Material [54]). As the velocity
approaches γ

β

α

√
μ0A, the magnetization acquires a non-

negligible radial component, and new behavior can be expected
to appear [30–32].

Next we study the effect of an external magnetic field on
DW dynamics. We take the field to be uniform along the
nanotube axis, He = Heez. In the thin-nanotube limit, the

η
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FIG. 3. DW velocity v vs DMI parameter η for different chiral-
ities χ and polarities σ (he = κ = 1 and j = 0). Changing the sign
of χ and η leaves v unchanged, while changing the sign of σ and η

alters the sign of v.

applied field generates an additional term in Eq. (15):

ϑ ′′ = (j − v)ϑ ′ − V ′(ϑ) − he sin ϑ , (18)

where he = MsR
2

2A
He. The boundary conditions are modified so

that ϑ(±∞) correspond to consecutive maxima of a modified
potential, V (ϑ) − he cos ϑ . In terms of the mechanical analogy
(Fig. 2), ϑ(ξ ) again describes the trajectory of a particle
moving from one potential maximum to another, as above.
However, the potential difference at consecutive maxima
induced by the applied field is compensated now by the
additional (anti)damping term (j − v)ϑ ′.

Numerical solutions of Eq. (18) show that the applied field
causes the DW velocity to depend strongly on DMI, chirality,
and polarity (see Fig. 3). For a given field strength, the velocity
achieves a maximum for a nonzero value of η and varies with
DMI through η by a factor exceeding 2. While Eq. (18) cannot
be solved analytically, one can develop an expansion in powers
of he (see Appendix C for the details):

v = j + σ

√
1 + κ + a2

2a2
he + χ

πη

2a5
h2

e . (19)

As shown in Fig. 4, this quadratic approximation is in good
agreement with the numerical results. In the limit of no current
and DMI, j = η = 0, it yields v = σhe/(

√
2a) in accord with

η
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FIG. 4. DW velocity v vs DMI parameter η for different values of
the external field he (σ = +,χ = +,κ = 1, and j = 0 throughout).
The solid curves are obtained from the numerical solution of
Eq. (18); the dotted curves are given by the approximate analytical
formula (19).
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FIG. 5. DW velocity v vs applied field he for different values of
the DMI parameter η and chirality χ (σ = +,κ = 1, and j = 0). For
η = 0,v is given by the exact linear relation v = σhe/a. For η �= 0,v

is obtained by solving Eq. (18) numerically. Curves are computed up
to the critical field hc.

Ref. [55], or in physical units the DW velocity due to magnetic
field reads

V = σγ√
2α

R√
1 + KR2/A

He. (20)

In the limit of R → ∞ this expression reduces to a well-
known result for the velocities of transverse DWs in flat
nanostrips [12].

The dependence of the DW velocity on applied field and
chirality is shown in Fig. 5. It follows from Eqs. (19) and (7)
that for small fields, the DW velocity is suppressed by the DMI.
However, for larger fields and chirality χ = σ sgn(ηhe), the
velocity may be enhanced by DMI (for the opposite chirality,
v is always reduced).

At a certain critical applied field hc, a bifurcation occurs
beyond which the DW velocity is suppressed. In terms of the
mechanical analogy of Fig. 2, as he approaches hc, a maximum
and minimum of the potential V − he cos ϑ coalesce, the
instanton orbit is destroyed, and the character of the traveling
DW changes. This phenomenon has been discussed in terms of
the spin-Cherenkov effect [30,56], and more recently in terms
of pulled wavefronts of the KPP equation [57]. It is straight-
forward to obtain an analytic expression for hc in terms of η,
shown in Fig. 6. For η � 1 + κ the leading-order behavior
is given by hc = 1 + κ − 3(cη)2/3, with c = √

1 + κ/(2
√

2),
while for η 	 1 + κ the leading-order behavior is hc = η. The

η
-3 -2 -1 0 1 2 3

h
c

1

2

3

(1/2,
√

2)

FIG. 6. Critical applied field hc vs DMI parameter η.

important conclusion is that the critical field can be enhanced
by increasing DMI, thus allowing for faster DW propagation.

IV. DISCUSSION AND CONCLUSIONS

In recent years there have been ongoing efforts to use ferro-
magnetic materials with perpendicular anisotropy [37,38,40]
to produce sharp and stable domain walls with a view to
make potential spintronic logic and memory devices more
compact and faster. Here we have described an alternative
approach to this goal via domain walls in thin nanotubes
with Dzyaloshinskii-Moriya interaction. These DWs are found
to have novel properties: the domains themselves become
twisted about the nanotube, forcing the DWs to become sharper
with increasing DMI, the opposite of what is seen in thin
nanowires [46].

Under applied currents in the regime specified by Eqs. (11)
and (12), these DWs propagate without distortion with a
velocity proportional to the current. Applying a magnetic
field, we find a rich dependence of DW velocity on polarity,
chirality, DMI, and field strength, which may provide enhanced
control in future spintronic devices. The DW velocity can be
significantly increased by DMI and the onset of the magnonic
regime suppressed.

This work provides the favorable material trends for engi-
neering nanotubes with DMI for faster and more robust DW
operation. Using the DMI parameter from Ref. [37] (DM2

s =
0.5 × 10−3 J/m2), A = 10−11 J/m, and taking the nanotube ra-
dius R ≈ 100 nm, we estimate the dimensionless DMI param-
eter η ≈ 2. For the same material parameters κ = 1 is reached
for K = 103 J/m3. These estimates show that the regime where
DMI has visible effects is experimentally feasible.

In the thin-nanotube limit, we are able to treat leading
contributions of dipolar interactions exactly. We have derived
explicit analytic expressions for the DW profiles and their
velocities under applied currents and fields that are in good
agreement with numerical solutions of the LLG equation.
These results are robust and potentially applicable even
beyond the thin-nanotube limit, which is hinted at by recent
micromagnetic studies [30].
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APPENDIX A: DOMAIN WALLS OF DIFFERENT
CHIRALITY AND POLARITY

There are four distinct DW profiles, characterized by
polarity σ = ±1 and chirality χ = ±1 (see Fig. 7). The
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FIG. 7. Domain-wall profiles in a thin nanotube with Dzyaloshinskii-Moriya interaction and polarity σ and chirality χ . The magnetization
lies tangent to the nanotube surface.

polarity determines whether the DW is head to head (σ = 1)
or tail to tail (σ = −1), while chirality determines the sense
of rotation of m with increasing ζ , so that sgn θ ′

0 = σχ .

APPENDIX B: DERIVATION OF EQ. (13) FOR CURRENT
DRIVEN DOMAIN-WALL MOTION

We start with rewriting the LLG equation, Eq. (10), in the
Landau-Lifshitz (LL) form. Taking the vector product of m
with both sides of the LLG equation, we obtain

m × ∂m
∂t

= − γ m × (m × H)

− α
∂m
∂t

− Jm × ∂m
∂z

− βJ
∂m
∂z

. (B1)

Then, combining the LLG equation and Eq. (B1) to eliminate
the m × ∂m/∂t term, we find

(1 + α2)
∂m
∂t

= − γ m × H − αγ m × (m × H)

− (1 + αβ)J
∂m
∂z

− (α − β)Jm × ∂m
∂z

,

(B2)

which leads to the LL equation:

∂m
∂t

= − γ̃ m × H − α̃m × (m × H)

+ J̃
∂m
∂z

+ β̃J̃m × ∂m
∂z

, (B3)

where

γ̃ = γ

1 + α2
, (B4)

α̃ = αγ̃ = αγ

1 + α2
, (B5)

J̃ = −1 + αβ

1 + α2
J , (B6)

β̃ = α − β

1 + αβ
. (B7)

Introducing dimensionless time τ ′ through

t = MsR
2

2γ̃ A
τ ′ = (1 + α2)

MsR
2

2γA
τ ′ , (B8)

the LL equation takes the form

∂m
∂τ ′ = −m × h − αm × (m × h) + j1

∂m
∂ζ

+ j2m × ∂m
∂ζ

,

(B9)
where

j1 = MsR

2A

J̃

γ̃
= −(1 + αβ)

MsR

2γA
J , (B10)

j2 = MsR

2A

β̃J̃

γ̃
= −(α − β)

MsR

2γA
J , (B11)

and h = MsR
2

2A
H,ζ = z/R.

Taking ε = 2AR2

μ0M2
s

� 1 and j1,j2 = O(1), we have that the
radial component of m is O(ε), and m lies nearly tangent
to the nanotube. Let us decompose h into its tangential and
normal components, h = ht + hn, where ht = h − (h · eρ)eρ

and hn = (h · eρ)eρ . The LL equation (B9) is now equivalent
to a system of two equations:

∂m
∂τ ′ = −m × hn − αm × (m × ht) + j1

∂m
∂ζ

, (B12)
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0 = −m × ht − αm × (m × hn) + j2m × ∂m
∂ζ

. (B13)

Equation (B12) is the projection of Eq. (B9) on the tangent
space of the cylinder, and Eq. (B13) is the projection of
Eq. (B9) on eρ direction. From Eq. (B13) we obtain

αhn = m × ht − j2m × ∂m
∂ζ

(B14)

and consequently,

m × hn = 1

α
m × (m × ht) + j2

α

∂m
∂ζ

. (B15)

The substitution of Eq. (B15) into Eq. (B12) yields

∂m
∂τ ′ = −

(
α + 1

α

)
m × (m × ht) +

(
j1 − j2

α

)
∂m
∂ζ

= −
(

α + 1

α

)[
m × (m × ht) + j

∂m
∂ζ

]
, (B16)

where

j = −
(

α + 1

α

)−1(
j1 − j2

α

)
= β

MsR

2γA
J . (B17)

Rescaling time once again,

τ ′ =
(

α + 1

α

)−1

τ , (B18)

so that

t = α
MsR

2

2γA
τ , (B19)

we obtain

∂m
∂τ

= −m × (m × ht) − j
∂m
∂ζ

. (B20)

This is the central equation, Eq. (13), that we analyze
throughout the rest of the paper.

APPENDIX C: EXPANSION OF DOMAIN-WALL
VELOCITY IN MAGNETIC FIELD

While Eq. (18) cannot be solved analytically, it is straight-
forward to develop an expansion in powers of he. It turns
out that quadratic order is sufficient to capture the leading
dependence on polarity and chirality. Letting p(ϑ(ζ )) = ϑ ′(ζ ),
we may write Eq. (18) equivalently as

d

dϑ

(
1
2p2 + V − he cos ϑ

) = (j − v)p. (C1)

In terms of the mechanical analogy of Fig. 2, this corresponds
to energy balance. Letting ε = he, we expand p = p0 + εp1 +
ε2p2 and v = v0 + εv1 + ε2v2. At zeroth order we deduce that
p0(ϑ(ζ )) = θ ′

0(ζ ), where θ0 is the static profile, i.e., given by
Eq. (8). Then it follows that v0 = j . The equations for the next
two corrections p1 and p2 can be readily solved, and v1 and
v2 are then obtained by integrating Eq. (C1) over the interval
δ < ϑ < π + δ and noting that p0 vanishes at the endpoints.
Up to terms of order h3

e/a
5, we obtain

v = j + σ

√
1 + κ + a2

2a2
he + χ

πη

2a5
h2

e . (C2)
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L. Han, R. Schäfer, P. Fischer, S.-K. Kim, and O. G. Schmidt,
Adv. Mater. 26, 316 (2014).

[44] R. Streubel, L. Han, F. Kronast, A. A. Ünal, O. G. Schmidt, and
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