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ABSTRACT 12 

U-Pb zircon dating establishes a late Cambrian (Drumian) protolith age of 503 ± 2 Ma for a 13 

trondhjemitic gneiss of the calc-alkaline Strathy Complex, northern Scottish Caledonides.  Positive 14 

εHf and εNd values from trondhjemitic gneisses and co-magmatic amphibolites respectively, and an 15 

absence of any inheritance in zircon populations, support published geochemistry that indicates a 16 

juvenile origin distal from Laurentia. In order to account for its present location within a stack of 17 

Laurentia-derived thrust sheets, we interpret the complex as allochthonous and located along a 18 

buried suture. We propose that a microcontinental ribbon was detached from Laurentia during late 19 

Neoproterozoic to Cambrian rifting; the intervening oceanic tract closed by subduction during the 20 

late Cambrian and formed a juvenile arc, the protolith of the Strathy Complex. The 21 

microcontinental ribbon was re-attached to Laurentia during the Grampian orogeny which 22 

transported the Strathy Complex as a tectonic slice within a nappe stack. Peak metamorphic 23 

conditions for the Strathy Complex arc (650-700˚C, 6-7.5 kbar) are intermediate in pressure 24 

between those published previously for Grampian mineral assemblages in structurally overlying 25 

low-P migmatites (670-750˚C, <4 kbar) which we deduce to have been derived from an adjacent 26 

back-arc basin, and structurally underlying upper amphibolite rocks (650-700˚C, 11-12 kbar) that 27 

we interpret to represent the partially subducted Laurentian margin. This scenario compares with 28 

the northern Appalachians and Norway where microcontinental terranes are interpreted to have their 29 



origins in detachment from passive margins of the Iapetus Ocean during Cambrian rifting and to 30 

have been re-amalgamated during Caledonian orogenesis.  31 

INTRODUCTION 32 

The identification of suture zones in orogens depends upon the recognition of indicators of 33 

convergent plate margin processes such as calc-alkaline igneous rocks, high-pressure/low-34 

temperature metamorphic rocksand ophiolites. The complexity of many orogens may be inherited 35 

from a prior history of continental break-up as rifted margins can be characterized by hyper-36 

extension and detached continental ribbons (e.g. North Atlantic Ocean; Péron-Pinvidic and 37 

Manatschal, 2010). Subsequent ocean closure by subduction of the intervening oceanic tracts 38 

typically results in a collage of terranes separated by sutures (Vink et al., 1984). However, 39 

identification of sutures is challenging where tectonic excision has removed indicators of 40 

subduction, or where these have been buried either tectonically or beneath successor basins. 41 

The Appalachian-Caledonide orogen (Fig. 1A) contains a record of Neoproterozoic to Early 42 

Cambrian rifting and continental break-up prior to the opening of the Iapetus Ocean. During rifting 43 

along the length of the Appalachians (Laurentia) and Norway (Baltica), it has been interpreted that 44 

continental ribbons were detached from craton margins and re-accreted during Ordovician-Silurian 45 

orogenesis (Waldron and van Staal, 2001; Hibbard et al., 2007; Andersen et al., 2012).  In NW 46 

Ireland, the granulite facies Slishwood Division may represent a Laurentian fragment that was 47 

detached during rifting and later partially subducted (Daly et al., 2012). In Scotland, the orogenic 48 

architecture has been interpreted more simply with the Highland Boundary Fault apparently 49 

separating Laurentia from oceanic terranes (Fig. 1A; Chew and Strachan, 2013). To the northwest 50 

are exposedLaurentian Neoproterozoic metasedimentary successions, whereas to the southeast the 51 

Midland Valley Terrane is underlain by oceanic arcs (Dewey and Ryan, 1990), and the Southern 52 

Uplands Terrane comprises an accretionary prism (Leggett et al., 1979; Stone, 2014). In NW 53 

Scotland (Fig. 1B), the meta-igneous Strathy Complex has been interpreted as a calc-alkaline arc 54 

and regarded as basement to the Tonian  Moine Supergroup (Moorhouse and Moorhouse, 1983; 55 

Burns et al., 2004). New data instead establish a late Cambrian protolith age and, together with 56 

published field and geochemical data, require that the complex is allochthonous and defines a 57 

cryptic suture. Our new tectonic model for the northern Scottish Caledonides proposes an early 58 

evolution that has more in common with  the Appalachians and Norway than supposed previously.   59 

STRUCTURAL SETTING AND GEOLOGY OF THE STRATHY COMPLEX 60 



The Caledonides of northern Scotland comprises a series of thrust sheets that are dominated by the 61 

Moine Supergroup and associated Archean basement (Strachan et al. 2010; Fig. 1B). Thrusting 62 

occurred during the closure of the Iapetus Ocean and the Silurian (Scandian) collision of Laurentia 63 

and Baltica (Fig. 1B; Strachan et al. 2010). The Hebridean foreland to the west comprises Archean 64 

basement (Lewisian Complex) with a cover of Mesoproterozoic and Cambrian–Ordovician strata. 65 

Imbricated Cambrian strata in the footwall of the Moine Thrust restore to an outcrop width of >50 66 

km which represents the minimum eastern extent of the Hebridean foreland at depth (Butler and 67 

Coward, 1984) .   68 

The Moine Supergroup was metamorphosed during the Neoproterozoic (Strachan et al. 69 

2010) but the peak metamorphic assemblages in the Naver and Swordly nappes (Fig. 1B) were 70 

formed during Ordovician (Grampian) arc-continent collision (Kinny et al., 1999; Friend et al., 71 

2000).  The Strathy Complex occupies an anticlinal fold core (Fig. 1B; Moorhouse and Moorhouse, 72 

1983). Its western boundary with overlying Moine rocks of the Swordly Nappe is interpreted as a 73 

folded ductile thrust (Port Mor Thrust, Fig. 1B). The main ductile structures within the Naver and 74 

Swordly nappes and the Strathy Complex are assigned to the Grampian orogeny; late upright 75 

folding (Fig. 1B) occurred during Scandian thrusting (Kinny et al., 1999, 2003; Burns et al., 2004).    76 

 The Strathy Complex comprises a bimodal association of trondhjemitic grey gneisses and 77 

amphibolites with rare ultramafic lithologies, garnet-staurolite-sillimanite paragneiss and marble 78 

(Moorhouse and Moorhouse, 1983; Burns et al., 2004). The grey gneisses and amphibolites have 79 

calc-alkaline chemistry (Moorhouse and Moorhouse, 1983; Burns et al., 2004). Geochemical 80 

evidence indicates that the mafic end-member (amphibolites) was derived from a depleted mantle 81 

source and may have been related by crystal fractionation to the trondhjemitic grey gneisses (Burns 82 

et al., 2004). δ18O values of whole rock samples and mineral separates, and their correlations with 83 

major and trace elements suggest that the protoliths were hydrothermally altered at <200°C (Burns 84 

et al., 2004), consistent with the igneous protoliths being extrusive (Moorhouse and Moorhouse, 85 

1983) and/or high-level intrusions. The combination of moderate mantle-normalized LILE 86 

concentrations (e.g. MORB-normalized Rb and Ba averages of 16 and 15 respectively), flat 87 

chondrite-normalized LREE and HREE, pronounced negative Nb anomalies, and positive εNd 88 

(+7.0, +6.6, +6.5 and +4.5 at 500 Ma) in basalt-andesite compositions, suggests an origin either as a 89 

young intra-oceanic arc or an incipient back-arc (Burns et al., 2004; Schmidt and Jagoutz, 2017; 90 

details provided in GSA Data Repository). The rare layers of paragneiss and marble are 91 

lithologically dissimilar to any Moine units and here thought to represent relics of a sedimentary 92 

carapace to the arc. In the absence of protolith crystallisation ages, it has been assumed to represent 93 



a local Paleoproterozoic (Harrison and Moorhouse, 1976) or Mesoproterozoic (Burns et al., 2004) 94 

basement to the Moine Supergroup.  95 

NEW ISOTOPIC CONSTRAINTS ON THE STRATHY COMPLEX 96 

Geochronology was carried out by laser ablation inductively coupled plasma mass spectrometry 97 

(LA-ICPMS) on a sample of trondhjemitic gneiss (sample RS-14-16) and three late-kinematic 98 

pegmatites (details provided in GSA Data Repository). Twenty-six of 46 U-Pb zircon analyses from 99 

RS-14-16 are <15% discordant, with ages ranging from 522 Ma to 383 Ma. Eleven analyses form a 100 

cluster giving a Concordia age of 502.7 ± 1.9 Ma (Fig. 2; see supplementary information for a full 101 

discussion). The grains dated generally have sector or oscillatory zoning and are interpreted as 102 

igneous in origin. The Concordia age is therefore considered to correspond to the crystallisation age 103 

of the igneous protoliths of the Strathy Complex arc. Importantly, there is no evidence of any 104 

significantly older zircon grains in this sample. The zircons that were used to calculate the 105 

Concordia age have 176Hf/177Hf ratios that correspond to εHf values of +6 to +10.  106 

 None of the pegmatites analysed yielded a Concordia age. Analyses ranged from c. 463 Ma 107 

to c. 411 Ma. Our interpretation is that the pegmatites were produced by melting of host gneisses 108 

during the Grampian orogeny at c. 470 Ma at the same time as Moine rocks of the Swordly Nappe 109 

were migmatized (Kinny et al., 1999). The zircon analyses are therefore interpreted as reflecting 110 

lead loss and variable resetting during the Scandian orogenic event. U-Pb monazite dating carried 111 

out on sample RS-14-16 yielded a Concordia age of 422.1 ± 2.8 Ma. U-Pb rutile dating carried out 112 

on a sample of garnet-staurolite-sillimanite paragneiss (MD-16-01) yielded a Concordia age of 433 113 

± 5 Ma.  The monazite and rutile ages are within error of a monazite age of 431 ± 10 Ma obtained 114 

from nearby Moine rocks above the Swordly Thrust (Kinny et al., 1999) and are also interpreted as 115 

dating reheating during Silurian thrusting.  116 

NEW METAMORPHIC CONSTRAINTS ON THE EARLY HISTORY OF THE STRATHY 117 

COMPLEX 118 

Detailed thermobarometric analysis was carried out on the garnet-staurolite-sillimanite paragneiss 119 

(MD-16-01). The sample was obtained from a 6 x 2 m boudin enclosed within grey gneiss. The 120 

mineral assemblage associated with the early, sub-vertical gneissic foliation within the boudin is 121 

retrogressed at its margins. The boudin is wrapped by a subhorizontal foliation that is interpreted to 122 

have formed during the Grampian orogeny at the same time as regional migmatisation of the Moine 123 

rocks of the Swordly Nappe (Kinny et al., 1999). This locality therefore provides a unique 124 

opportunity to ascertain the early peak metamorphic conditions of the Strathy Complex during the 125 



Grampian orogeny. Pressure-temperature pseudosections were calculated for sample MD-16-01 126 

using THERMOCALC V.3.33 (June 2009 update of Powell and Holland, 1988) in the geologically 127 

realistic system MnNCKFMASHTO (MnO-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-128 

Fe2O3) (see also GSA Data Repository). The peak assemblage is interpreted to be garnet + 129 

orthoamphibole + sillimanite + biotite + plagioclase + quartz + rutile, corresponding to 650–700 °C 130 

and 6–7.5 kbars (Fig. 3). The prograde pressure-temperature (P-T) path is defined by the change of 131 

mineral assemblage and the growth of garnet. On a P-T (Fig. 3) the peak metamorphic conditions 132 

lie intermediate in pressure between those for Grampian mineral assemblages in overlying 133 

migmatites of the Swordly Nappe dated at 461 ± 13 Ma (670–750˚C, <4 kbar; Kinny et al., 1999) 134 

and underlying upper amphibolite to granulite facies rocks (650–700˚C, 11–12 kbar) of the Naver 135 

Nappe (Friend et al., 2000).  All three P-T boxes are interpreted to be Grampian in age and are 136 

distinctly different from the peak conditions deduced for the Naver Nappe during Scandian 137 

thrusting and folding (Fig. 3; ca. 730˚C and 9 kbar; Ashley et al., 2015).  138 

DISCUSSION  139 

The late Cambrian protolith age for the Strathy Complex shows that it is not part of the basement to 140 

the Moine Supergroup. The intervening Port Mor Thrust must be  a major tectonic break because: 141 

1) the geochemistry of the Strathy Complex is consistent with hydrothermal alteration of volcanics 142 

or shallow intrusives; this chemistry is peculiar to the complex and absent from structurally 143 

overlying Moine units; 2) the minor  marble and garnet-staurolite-sillimanite paragneiss units are 144 

unlike any local Moine or Archean lithologies and are likely to be Cambrian or early Ordovician in 145 

age and to have been deposited within or proximal to the arc; 3) the early Grampian metamorphic 146 

evolution of the Strathy Complex is  different from that of overlying Moine units. Furthermore, we 147 

suggest that the complex rests on an unexposed tectonic break which corresponds to a cryptic suture 148 

(Fig. 1B). This explains the geochemical and isotopic characteristics of the complex, and the 149 

absence of any inherited Proterozoic or Archaean zircon grains in the trondhjemitic gneiss and 150 

felsic pegmatites derived from that gneiss, which all imply a juvenile origin in a setting distal from 151 

the Laurentian margin. The Strathy Complex appears to have no relation to adjacent rock units and 152 

we interpret it as a thrust-bounded terrane. 153 

 Our model for the early evolution of the Scottish Caledonides envisages detachment of a 154 

fragment of Laurentia during continental rifting at ca. 600–580 Ma (Fig. 4A). This fragment 155 

corresponds to the Moine rocks and Archean basement above the Naver Thrust and equivalent 156 

structures further south, and the northeastern extension of the Grampian Terrane (Fig. 1A). During 157 

the late Cambrian, east-dipping (present reference frame) subduction zones and juvenile magmatic 158 



arcs developed on both sides of the microcontinental fragment: to the east the Midland Valley arc 159 

(Dewey and Ryan, 1990), and to the west the Strathy Complex arc (Fig. 4B). Arc-continent 160 

collisions during the early Ordovician at ca. 480–470 Ma resulted in re-attachment of the 161 

microcontinent to Laurentia by thrusting which transported a tectonic slice of the Strathy Complex 162 

within a Grampian nappe stack (Fig. 4C). An alternative scenario is that the Strathy Complex 163 

represents a far-travelled thrust sheet of the Midland Valley arc that was interleaved with Moine 164 

units during later thrusting. However, this is is rejected on the basis that the low-pressure 165 

metamorphic conditions in the Swordly Nappe are inconsistent with a location in the footwall of a 166 

major thrust sheet.  167 

Our tectonic model explains the juxtaposition of the contrasting Grampian peak 168 

metamorphic assemblages. Partial subduction of the leading edge of Laurentia accounts for the P-T 169 

conditions in the Naver Nappe (Fig. 4C). In contrast, the early P-T path for the Strathy Complex is 170 

interpreted to have been driven in part by addition of magma into a progressively thickening arc, 171 

whereas we suggest that the high temperatures necessary for generation of the Swordly Nappe 172 

migmatites were initiated by high heat flow in a back-arc  (Fig. 4B; see Hyndman et al., 2005). It is 173 

interpreted that initial thrust stacking (Fig. 4C) was  followed by extrusion of the Naver Nappe 174 

rocks back up the subduction channel, and extensional displacement along the thrusted contact 175 

between the Strathy Complex and the Swordly Nappe migmatites, which juxtaposed these 176 

contrasting metamorphic terrains at a similar  crustal level by the end of the Grampian orogeny 177 

(Fig. 4D).   178 

 Our tectonic model compares with those for other areas of the Appalachian-Caledonide 179 

orogen. In Newfoundland, Waldron and van Staal (2001) proposed detachment of the Dashwoods 180 

terrane from the Laurentian passive margin during Cambrian rifting, followed by re-amalgamation 181 

in the early Ordovician. A peri-Laurentian continental ribbon terrane was likely present along much 182 

of the length of the Appalachians (Hibbard et al., 2007).  Our proposal that the Strathy Complex is 183 

located along a cryptic buried suture suggests that the northern Scottish Caledonides comprise at 184 

least two peri-Laurentian terranes and is therefore more complex in its crustal architecture than 185 

considered previously. The evidence for a cryptic suture has largely been buried tectonically, 186 

demonstrating the potential difficulties in identifying such structures in ancient orogens.   187 
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Figure captions 264 

Figure 1. A: Simplified map of the Appalachian-Caledonide orogen, modified from Waldron et al., 265 

(2014). GGF, Great Glen Fault; HBF, Highland Boundary Fault; NHT, Northern Highlands 266 

Terrane; GT, Grampian Terrane; MVT, Midland Valley Terrane; SUT, Southern Upland Terrane. 267 

B: Geological map of the Caledonides of northern Scotland (see 1A for location, modified from 268 

Burns et al., 2004) with interpretative cross-section. MT, Moine Thrust; NT, Naver Thrust; ST, 269 

Swordly Thrust; PMT, Port Mor Thrust.  270 

Figure 2. U-Pb Concordia diagram for zircon analyses from sample RS-14-16 (Strathy Complex 271 

grey gneiss), together with CL images of representative zircon grains. Laser pits are shown as 272 

circles together with site number and the indicated 206Pb/238U age.   273 

Figure 3. Pressure-temperature diagram showing: a) P-T paths and peak metamorphic conditions for 274 

the Naver Nappe ① (Friend et al., 2000), the Strathy Complex ② (see text and Supplementary 275 

Publication for details), and the Swordly Nappe ③ (Kinny et al., 1999), b) our inferred tectonic 276 

settings for these different metamorphic environments either prior to or during the Grampian 277 



(Ordovician) orogeny (see text for discussion), and c) the P-T path for the Naver Nappe during the 278 

Scandian (Silurian) orogeny (Ashley et al., 2015).   279 

Figure 4. Plate tectonic model for the late Neoproterozoic to Ordovician evolution of the Scottish 280 

Laurentian margin and the Strathy Complex together with simplified PT diagrams (see text for 281 

discussion). 4B shows the tectonic settings of the Moine rocks of the future Naver Nappe ①, the 282 

Strathy Complex arc ② and the Swordly Nappe migmatites ③. 4C shows their relative positions 283 

following arc-continent collisions and thrusting, and then in 4D their juxtaposition at approximately 284 

the same crustal level following tectonic and erosional thinning.  285 

 286 

 287 



LAURENTIA

L
B

A
TI

C

A
New-

foundland

Ireland

Scotland

Peri-Gondwanan arcs

Ganderia

Avalonia

Deformed margin Deformed margin

BalticaLaurentia

1B

GGF

HBF

N

G
Peri-Laurentian Terranes Peri-Baltic 

Terranes

ISNHT

GT

MVT

SUT

M
T

N
T S
T

P
M

T

B N 4 km

N
T

ST

Devonian

Silurian intrusions

Foreland

Strathy Complex/Nappe

Swordly Nappe

Naver Nappe

Moine Nappe

Archean basement

M
o
in

e

58°30'N

4°W

P
M

T

MT
Suture

?

A





d

450 500 550 600 650 700 750
2

3

4

5

6

7

8

9

10

ky
sill

ky
and

silland

+Grt

+Grt

+St
+S

t

+Rt

+Rt

11

12

13

3

2

Naver Nappe
(partially subducted 
Laurentian margin) 1

Strathy 
Complex

(arc)

Swordly Nappe 
(backarc basin)

Temperature (°C)

Pr
es

su
re

 (k
ba

r)

Scandian P-T loop 

(c. 
440-430 Ma)

450 500 550 600 650 700 750

2

3

4

5

6

7

8

9

10

ky
sill

ky
and

silland

+Grt

+Grt

+St
+S
t

+Rt

+Rt

11

3

2

Naver Nappe
(partially subducted 
Laurentian margin) 1

Strathy 
Complex

(arc)

Swordly Nappe 
(backarc basin)

Temperature (°C)

Pr
es

su
re

 (k
ba

r)

Scandian P-T loop 
(c. 440-430 Ma)



.. .
. . ..

...
........

.....

. . .. . . . ..

. . . . . . .. . .........
...

..

........
...

..
.... .......

...
.........

.

.... .........
. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .

. . .. ... .. . . . . .. .. ... . . . .
... .. .

. ..
. ..

.

.
.. .. .. ...

A. 600-580 Ma

B. 510-490 Ma

D. Late Grampian orogeny (c. 470-455 Ma)

Strathy Complex arc

Laurentia Iapetus Ocean

Midland Valley arc

Microcontinental fragment includes
eastern Northern Highland Terrane
and Grampian Terrane

High-heat flow in 
marginal/back-arc basin

1
2

3

1

2

3
.. .. .. ...

.. .. ...
. .. .. ...

. ..... .
..
. ...

. ...
. ...
..

...
.

. ...

Southern Uplands
accretionary prism

. . .. ..
. .. . . . . .. .. ... . . . .
... .. .. ..

. ..
.

.
.. .. .. ...

1

3.. .. .. ...

.. .. ...
. .. .. ...

..... .
..
. ...

. ...
. ...
..

...
.

. ...

C. Early Grampian orogeny (c. 480-470 Ma)

Future thrust

Inferred slab
break-off

. ... .
. .

. .

. . .

. . .. . .. . .

. . .
..

.

.
2

2

3

12

10

8

6

4

2
400 600 800

Kb

°C

2

3

1
12

10

8

6

4

2

Kb

°C
400 600 800

2

3

1

12

10

8

6

4

2
400 600 800

?

Kb

°C


	Strathy fig 1 v6.pdf
	Page 1

	Strathy fig 4 v6.pdf
	Page 3


