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Abstract

Recent advances in microscopy, computing power and image processing have enabled the

analysis of ever larger datasets of movies of microorganisms to study their behaviour. How-

ever, techniques for analysing the dynamics of individual cells from such datasets are not

yet widely available in the public domain. We recently demonstrated significant phenotypic

heterogeneity in the adhesion of Escherichia coli bacteria to glass surfaces using a new

method for the high-throughput analysis of video microscopy data. Here, we present an in-

depth analysis of this method and its limitations, and make public our algorithms for following

the positions and orientations of individual rod-shaped bacteria from time-series of 2D

images to reconstruct their trajectories and characterise their dynamics. We demonstrate in

detail how to use these algorithms to identify different types of adhesive dynamics within a

clonal population of bacteria sedimenting onto a surface. The effects of measurement errors

in cell positions and of limited trajectory durations on our results are discussed.

Introduction

The ability of microbes to move on and adhere to surfaces is an essential part of their survival

strategies [1]. Motility allows them to explore new niches and swim towards nutrients or oxy-

gen [2, 3] to optimise growth and division. Adhesion allows them to colonise surfaces and

grow protective biofilms [4, 5]. In this state, bacteria are typically more difficult to dislodge by

fluid flows and can enjoy increased resistance to antimicrobials [6, 7]. As a result, they become

sources of infection that are hard to eradicate [8].

Surface colonisation typically starts with the adhesion of a few individual microorganisms,

so that it is important to understand the physics of single-cell interaction with substrates.

Recently, we studied the adhesion of individual rod-shaped Escherichia coli (E. coli) bacteria

on glass, and discovered significant heterogeneity in adhesive propensity and post-adhesion

dynamics amongst a clonal (and therefore genetically identical) population [9]. These results,

which have important implications for the design of surfaces to minimise microbial adhesion,

were obtained using relatively unsophisticated time-lapsed optical microscopy in 2D coupled

with a bespoke suite of image analysis software. Our algorithms successively (1) identify
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accurately and reproducibly rod-shaped bacteria, (2) track all the individual bacteria in time,

and (3) analyse the dynamics of each individual cell on the surface to characterise its behav-

iour. Although a variety of methods for the individual steps already exist in the literature, our

work successfully combined, modified and developed them to allow the high-throughput,

semi-automated generation of large data sets.

These methods and their integration into a high-throughput suite were outlined in a recent

paper focussing on describing the results we obtained using this methodology. In this paper,

we analyse these methodological developments in depth, including possible pitfalls, and carry

out a detailed estimation of uncertainties. We also compare our methods with existing algo-

rithms. To achieve these goals, we use data obtained in the same way as in Ref. [9], but from an

entirely independent set of experiments. At the same time, we are releasing our software pub-

licly on GitLab. Taken together, what we present here should enable others to adapt our meth-

odology to study the adhesion of other microorganisms, or to dynamical studies of microbes

unconnected with adhesion. Indeed, we believe that our methodology should prove useful for

studying the dynamics of anisotropic synthetic colloids where significant polydispersities in

shape, size and behaviour exist.

Materials and methods

Sample preparation

E. coli bacteria were grown on Lysogeny broth (LB) agar plates. An inoculated colony was

transferred to 10 ml of liquid LB, which was then incubated overnight for 16 h at 30 ˚C. From

this, a fresh culture was inoculated at a 1:100 dilution in 35 mL of tryptone broth and grown

for 4 hours to late exponential phase. Next, the cells were washed by careful filtration three

times with motility buffer (MB) [MB: aqueous solution containing 6.2 mM K2HPO4 (Sigma-

Aldrich), 3.8 mM KH2PO4 (Fisher Chemical), 67 mM NaCl (Fisher Chemical), 0.1 mM EDTA

(Sigma-Aldrich)] and redispersed in MB with 0.72 μM glucose. The final optical density just

before the start of the experiment was OD� 0.03 (λ = 600 nm) corresponding to a concentra-

tion C� 4.5 × 107 cells/mL [10].

We used E. coli strain AB1157 WT [11] and strain AD31 (MG1655 fliF,fimA = ΔFFMG))

with genes coding for flagella and fimbrae deleted. Strain AD31 was constructed by P1 trans-

duction from strain JW4277 (BW25113 fimA) [12] into strain AD26 (MG1655 fliF) [9], follow-

ing removal of the kanamycin resistance cassette in FliF using flp recombinase expressed from

plasmid pCP20.

Microscopy and optics

We used a Nikon TE300 Eclipse inverted microscope with a 60× Ph2 objective and focused in

an optical plane just above the capillary surface so that bacteria on the surface appeared dark

against a bright background. To record movies, we used a Mikrotron MC 1362 high-speed

camera. The dispersion of bacteria in MB was injected gently with a pipette into a borosilicate

glass capillary (Vitrocom, 0.4 mm × 8.0 mm × 50 mm), which was then sealed with Vaseline

and placed on a motorised stage. Multiple locations on the lower glass surface of the capillary

were followed in time and a movie was recorded when a position was visited. Each movie 1008

frames recorded at 30 frames/s at a resolution of 1040 × 1024 pixels.

Data analysis

Positions and orientations of individual cells were determined from each image frame in the

recorded movies. Trajectories were constructed by identifying corresponding (typically the
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nearest) cells in consecutive frames. Subsequently, trajectories were filtered by removing the

sections where two cells were too close together. The mean-squared displacement (MSD) and

mean-squared orientational displacement (MSOD) as functions of delay time were then calcu-

lated for each trajectory, from which translational and orientational exponents were calculated

to characterise cell dynamics.

Datasets used for this work are publicly available (Edinburgh DataShare [13]). At the time

of publication, software repositories to determine positions and orientations of rods (fin-
dRods2Dt [14]), construct trajectories (trackRods2Dt [15]), filter trajectories (filterTracks2Dt
[16]) and analyse trajectories (analyzeBugTracks2Dt [17]) are available on GitLab under the

GNU General Public License v3.0. The code is written in C for Linux. We also added Python
scripts to read positions and trajectories [18]. To ensure long-term availability, a copy of the

code in its current form is also added to the data repository [13].

Results and validation of algorithms

Identifying bacteria

To follow the dynamics of individual E. coli cells on the surface, it is required to extract their

positions and orientations within recorded movies. In our 1040 × 1024 pixel2 tiff-images at

60× magnification one pixel corresponds to 0.234 × 0.234 μm2. A 2 μm × 1 μm spherocylindri-

cal E. coli bacterium appears as an� 10 × 5 pixel2 rod. Typical movies contained 1008 frames

(tiff-images), and we recorded several hundreds of movies for an individual experiment.

There is a wide variety of software to recognise particles or cells from images. Some soft-

ware even focuses on various complex shapes [19] or is designed specifically to study individ-

ual cells within growing colonies [20], even in 3D and in dense systems using confocal

microscopy [21], or super-resolution microscopy and powerful segmenting strategies [22].

As before [9], our objective here was to study differences between bacteria on the surface in

the dilute case where there is ample distance between individual cells that all have a similar

rod-like shape. Although there was thus no need to separate partially overlapping cells or deal

with irregular shapes, the algorithm had to quickly identify cells in a robust way for large num-

bers of recorded movies. To this end, we adapted an earlier algorithm [23] to find colloidal

rods in 3D from confocal microscopy images. We modified it to find rod-shaped objects repre-

senting bacteria for 2D-images in our datasets in a high-throughput manner that is robust and

minimises the number of both false negatives (does not find a bacterium where there is one)

and false positives (identifies a bacterium in a place where there is none). The program, fin-
dRods2Dt [14], for which a detailed code-based description is also available in its repository,

works as follows.

We first filter out noise and background artefacts. The latter can arise, e.g., from dust parti-

cles on the glass covering of the charge coupled device (CCD) of the camera. Fig 1a shows part

of a raw image with the artefacts indicated. To filter these out, we averaged randomly selected

multiple images recorded at different locations in the capillary, and identify the artefacts,

which do not change from image to image, as spots with particularly high or low intensities;

these are then subtracted, Fig 1b. In the software, parameters such as background intensities to

subtract, approximate width of bacteria, as well as filtering and other settings can be entered

manually.

We next use a Gaussian blurring kernel (standard deviation σ� 0.7 pixels) to smooth out

the noise. Remaining background inhomogeneities on the tens of pixels scale arising from out-

of-focus cells were removed by convolving with a top-hat kernel with diameter� 20 pixels and

subtracting this from the unconvolved image. In other words, for each pixel, the average back-

ground in a square of the surrounding 20 pixels is subtracted from its intensity. Finally, we
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remove bright pixels that are outliers and then renormalise the signal to give intensities

between 0 and 1. After these steps, each bacterium appears as a bright groups of pixels against

a relatively uniform background, Fig 1b.

Identified bacteria are shown in Fig 1c. To find the positions and orientations of individual

cells, rod-shaped ‘islands’ of sufficiently high intensity are identified. Following previous work

that is already described in detail [23], we search for backbones, straight lines of bright pixels

on a local maximum or a saddle point. The pixels within one radius of all sufficiently bright

backbones are then grouped into islands. Next, the algorithm calculates the co-variance matrix

of each island and uses its eigenvectors to determine the orientations and approximate lengths

of the long axis (eigenvector with the larger eigenvalue) and short axis (eigenvector with small-

est eigenvalue), as well as an approximate centre of mass (CM), taken to be the weighted posi-

tion-average of pixel intensities. To refine the CM, the positions of the poles are determined by

calculating the average intensity along the long axis and then the poles are taken to be the the

points on either side where the intensity becomes half of this average value. The width is deter-

mined in a similar way. Now, the refined CM is calculated as the point halfway between both

poles in the length direction. We find that this procedure gives stable results, even when there

is an intensity gradient along the long axis (e.g. if the bacterium is tilted slightly out-of-plane)

or if there are background artefacts.

We have validated the code using images obtained via phase contrast microscopy but our

method is sufficiently general that it should be applicable to other techniques, e.g. epifluore-

sent, confocal or dark field microscopy.

Tracking bacteria

To characterise the dynamics of individual cells, we employed an algorithm trackRods2Dt [15]

that calculates trajectories from the determined positions in consecutive frames (Fig 2). For

each bacterium in each frame, a list of nearest neighbours in the next frame is made, from

which a possible match is found. By repeating this for consecutive frames, trajectories are

constructed. To correctly track the faster-swimming bacteria, we use each displacement as a

prediction for the next and look around this position for possible candidates. For diffusing

bacteria, such a prediction will be correct in only half the cases (diffusion is random, so there is

an equal probability a bacterium moves in one direction or the other). The tracking algorithm

does not yet take into account whether a bacterium is diffusing or swimming. This is not a

problem in our case, however, since the displacements involved for diffusing cells are small

Fig 1. Identifying bacteria on surface. (a) Part of an original image as obtained with phase contrast microscopy, dark signal indicates objects that are

in focus. The yellow arrows indicate artefacts produced by dust in the optical path, here from the glass cover protecting the camera chip. (b) The same

image after artefact removal, black/white inversion, Gaussian blurring, local background subtraction and intensity renormalisation. (c) Bacteria with

their long (red) and short (yellow) axes determined.

https://doi.org/10.1371/journal.pone.0217823.g001
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and the correct candidates are still found. Even for dilute dispersions, it sometimes happens

that two or more trajectories intersect. We devised a separate program, filterTracks2Dt [16], to

deal with this by removing segments within a trajectory where cells are within close range of

others, and create two new trajectories from the remaining segments on either end of it.

Dynamical analysis of bacteria

In our code to analyse trajectories analyzeBugTracks2Dt [17], we determine the mean-squared

displacements along the length axis of each cell within a trajectory, calculate the translational

and rotational exponents, and use these parameters to categorise the cellular surface dynamics.

Specific microscope parameters such as the frame rate, pixel size can be entered manually. For

our analysis we only consider trajectories with a duration of at least 25 frames (� 0.8).

Determining the anchoring point of adhering cells. To characterise the dynamics of indi-

vidual bacteria, we identify the point of minimal motion along the length axis of each individual

cell within a trajectory [9]. For each bacterium i with time-dependent position ri(t), we calculate

the mean-squared displacement (MSD) hR2
i ðf ; t ¼ 0:4sÞit ¼ hðriðf ; t þ tÞ � riðf ; tÞÞ

2
i at 31

different points riðf ; tÞ ¼ rið0; tÞ þ fin̂ iðtÞl
p
i ðtÞ along the long axis, where fi 2 [−0.5, 0.5] is the

relative dimensionless coordinate along this axis, n̂ and lpi ðtÞ the normalised orientation vector

and projected length of the bacterium at time t (Fig 3a), and τ = 0.4 s is the delay time over

which the MSD is measured. This relatively short delay time ensures sufficient statistics is avail-

able even for the shorter trajectories amongst those considered for analysis.

Finally, we determine the point of minimum MSD. For diffusing cells this point of minimal

motion roughly corresponds to the hydrodynamic centre. For adhering cells, we refer to the

point of minimal motion as its ‘anchoring point’. For a cell adhering at a single spot, this point

Fig 2. Trajectories of bacteria on the surface. The image is black/white-inverted (w.r.t. the filtered image in Fig 1b) and thresholded to be clear in

print. For each cell in the image, the point of minimal motion (anchoring point for adherers) is marked with a square. The combination of the inner

and outer color of the square denotes the cell type (see legend). For swimmers and diffusers, the traces show the trajectory of the point of minimal

motion. For adherers the trace shows the trajectory at the cell’s point of maximum motion (one of its poles) to visualise pivoting or active rotation

dynamics.

https://doi.org/10.1371/journal.pone.0217823.g002
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roughly corresponds to the point of attachment. For cells adhering at multiple spots, the

anchoring point represents a weighted average of these spots. A schematic of an adhering cell

and its anchoring point is shown in Fig 3b and 3c.

Characterising dynamics using translational and rotational exponents. There are many

ways to characterise the dynamics of individual cells. In the simplest method, adhering cells

can be identified by recording images at long shutter times, so that moving cells are smeared

out and adhering cells appear as a single spot [24, 25]. Displacements or MSDs from movies

can be used, where adhering cells have the lowest, and diffusing and swimming cells show

larger displacements [26, 27]. Alternatively, other parameters are used to distinguish different

dynamics, such as the curvature and directionality of the trajectories [28] or by looking at rela-

tive angles between consecutive displacements for different temporal coarse-grainings [29].

We distinguish between different types of dynamics in individual cells by using their trans-

lational and rotational power-law exponents [9]. To calculate these, we use values of the MSD

(τ) and MSOD(τ) at different delay times τ. This has the advantages of not requiring a priori
knowledge of typical values of the MSD for different kinds of dynamical behaviour. Instead,

the calculated exponents will always fall in a well-defined range independent of sample-specific

details such as diffusion constant or mean swimming speed.

The translational exponent kT is calculated as follows:

kT ¼
logðhR2ðt1ÞiÞ � logðhR2ðt0ÞiÞ

logðt1Þ � logðt0Þ
; ð1Þ

where τ1 = τ is the delay time over which the MSD is measured, and τ0 = 1/framerate is the

delay time between two consecutive frames. Adhering cells show kT� 0, diffusing cells show a

distribution around kT� 1, while swimming cells show kT� 2 (Fig 4a).

The minimum duration of a trajectory to be considered for analysis is 25 frames (� 0.8).

Therefore, we calculated the translational exponents k0:4s
T using a delay time τ = 0.4s, shorter

than the minimum trajectory duration. The distribution of translational exponents for τ = 0.4s

is shown in Fig 4b (gray area), showing distinct peaks for adhering, diffusing and swimming

Fig 3. Schematic of an adhering cell. (a) showing the long axis and orientation, (b) anchoring point (least mobile point), and the most mobile point,

and (c) side view showing an example where a cell is stuck at three adhesive spots (blue circles), the anchoring point (blue square with green centre)

being the average of those; the numbers show the fractional coordinates f 2 [−0.5, 0.5], where f = 0 at the centre and f = ±0.5 at the poles.

https://doi.org/10.1371/journal.pone.0217823.g003
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cells. We identified swimming cells for k0:4s
T > 1:3, diffusing cells for 0:6 < k0:4s

T < 1:3 and

adhering cells for k0:4s
T < 0:6.

Occasionally, it occurs that adhering cells can appear as swimming or diffusing on this

short time-scale, as their short-term dynamics has a diffusive or ballistic component. To deal

with this, we used two additional rules. First, we demanded that trajectories of adhering cells

have a duration of at least 6s. Trajectories with a duration less than this but k0:4s
T < 0:6 were

identified as ambiguous. For trajectories with a duration longer than 6s but k0:4s
T > 0:6, we also

calculated the translational exponent k4s
T for a longer delay time τ = 4s. A trajectory for which

k4s
T < 0:6 is identified as adhering, even if k0:4s

T > 0:6. The result is that cells otherwise detected

as diffusing are now correctly identified as adhering. The distribution using this additional

rule is shown in Fig 4b (black line) and shows a slightly better separation between the adhering

and diffusing peak.

Once the adhering cells are identified, their post-adhesion dynamics can be classified by the

rotational exponent

kR ¼
logðhy2

ðt1ÞiÞ � logðhy2
ðt0ÞiÞ

logðt1Þ � logðt0Þ
; ð2Þ

where hθ2(τ)i is the mean-squared orientational displacement. Wobblers show kR� 0, pivoters

kR� 1 and active rotators kR� 2 (Fig 5a). The distribution of rotational exponents for τ = 0.4s

is shown in Fig 5b (gray area). We identify wobblers as k0:4s
R < 0:6, pivoters as

0:6 < k0:4s
R < 1:2, and active rotators with k0:4s

R > 1:2.

Using long-term rotational exponents (τ = 4s) in a similar way as the translational ones

slightly shifts peaks for pivoters to lower exponents, but does not appear to improve separation

between wobblers and pivoters (black line in Fig 5b).

Distribution of anchoring points for adhering cells. Fig 6a–6c shows the MSD for 31

different points along the length axis for pivoters (a), active rotators (b) and wobblers (c). Each

trajectory is represented by a line showing the MSD at each of these points. The lowest MSD

Fig 4. Calculation and distribution of translational exponents used to identify adhering, diffusing and swimming cells. (a) MSD of the anchoring

point versus delay time on a log-log plot for adhering, diffusing and swimming bacteria. The slope gives the translational exponent, the vertical dotted

line marks the delay time τ = 0.4s. Thin lines represent data from individual trajectories. Thick lines represent averages for each category and are

calculated from duration-weighted trajectories. (b) Distribution of translational exponents showing peaks for adhering, diffusing and swimming cells.

The gray distributions represent exponents calculated for shorter delay times (τ = 0.4s), black lines are for distributions including exponents calculated

for longer delay times (τ = 4s).

https://doi.org/10.1371/journal.pone.0217823.g004
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value is found at the anchoring point, whereas the highest MSD values are always located at

either one of the poles (f = −0.5 or f = 0.5).

The anchoring point, where the MSD is minimal, is marked with a square. Corresponding

distributions showing the density of anchoring points along the length axis are shown in Fig

6d–6f. Note that the absolute value |A| is plotted here, because the two poles of a cell are indis-

tinguishable in our images. The distributions of |A| for wobbling and pivoting bacteria are sim-

ilar to those already published [9].

Pivoters adhere at a single adhesive patch along the cell axis, for which the distribution is

close to being uniform (Fig 6d). The peak close to the centre (|A| = 0) and the trough near the

poles (|A| = 0.5) are related to artefacts resulting from the spherocylindrical shape of the cells:

when only longer cells are selected (it is clearly visible for lp� 2.2 μm) the peak disappears.

This is also the case for actively rotating cells (Fig 6e).

To explain these artefacts, consider a pivoter or rotator adhering at one of its poles and

standing vertical with respect to the substrate; its projection would appear effectively as a

spherical cell adhering somewhere near the centre, and therefore with an anchoring point

|A|� 0. Selecting only cells with a projected length greater than the cell width effectively picks

out cells oriented parallel to the surface for which the projected image is close to the real

image, removing the peak around |A| = 0. Because of the spherocylindrical shape, sticking

exactly at either poles would mean the cell is oriented vertical with respect to the surface

(and make it appear as a short cell with |A|� 0). Therefore, cells with |A|� 0.5 are not present

amongst the selection of longer cells. These effect would not be present in 3D time-series.

Interestingly, the data reveals that actively rotating cells (Fig 6e) exhibit an increased proba-

bility of polar adhesion (compared to pivoters, Fig 6d), probably because a fraction of rotators

is adhering with a short filament or part attached to the flagella motor and the concentration

of flagellar motors is highest at the poles [30].

As was discussed before [9], wobbling cells adhere to the surface with multiple adhesive

patches. Therefore, they are parallel to the surface, and the projection artefacts observed

for pivoters and rotators are not an issue. We can calculate a distribution of the expected

Fig 5. Calculation and distribution of rotational exponents used to identify different post-adhesion dynamics. (a) log-log plot of the MSOD versus

delay time for adhering bacteria reveals different post-adhesion dynamics of cells: wobbling, pivoting or actively rotating. The slope gives the rotational

exponent, the vertical dotted line marks the delay time τ = 0.4s. Thin lines represent data from individual trajectories. Thick lines represent averages for

each category and are calculated from duration-weighted trajectories. (b) distribution of rotational exponents for adhering cells showing regions for

wobbling, pivoting and rotating post-adhesion dynamics. The gray distributions represent exponents calculated for shorter delay times (τ = 0.4s), black

lines are distributions including exponents calculated for longer delay times (τ = 4s).

https://doi.org/10.1371/journal.pone.0217823.g005
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anchoring point for wobblers (gray lines in Fig 6f) by placing n imaginary adhesive patches

along the length axis using the measured P(A) for pivoters. For this dataset, we find a good

match with the experimentally observed distribution (blue line in Fig 6f) for n = 2, 3, as was

found before [9].

Precision in measuring the anchoring point

To estimate the precision with which the anchoring point is determined, we analyse the mean-

square-displacement of adhering cells (Fig 7). Of these, wobblers are the most firmly attached

cells, for which we obtain a median MSD� 0.002 μm2. This corresponds to a 0.04 μm root-

mean-squared displacement between frames, serving as an upper-bound on the error in the

displacement of tracked rods between consecutive frames.

How a systematic error in the MSD affects the translational exponent of

adhering cells

The translational exponent kT of adhering cells depends on the time-scale over which it is mea-

sured. Over short time scales, even the most firmly adhered cells show some diffusive motion

and kT will shift from zero towards one, whereas over long time scales the mean-squared dis-

placement saturates for adherers so that kT! 0. Moreover, kT also depends non-trivially on

the precision with which the position of the anchoring point is determined. Fig 8a shows the

raw distribution of the translational exponent, with peaks for adhering, diffusing and swim-

ming cells. Fig 8b shows the effect of introducing a random error in all positions by adding

0.01 μm2 systematically to all the MSDs. This δ2 is higher than the MSD of adhering cells, but

Fig 6. Anchoring points for different types of adhering. (a-c) MSD along the length axis for trajectories of 200 pivoters, 200 rotators, and 100

wobblers. For pivoters and rotators, data is shown for 100 cells of any length and for 100 cells with a projected length lp� 2.2 μm. For clarity, all but 10

lines are ghosted for each set of examples. For each trajectory, the minimum in MSD denotes the anchoring point. (d-f) The distribution of anchoring

points along the length axis A 2 [−0.5, 0.5]. The absolute value |A| is used because the two poles are taken to be indistinguishable. The histograms are

constructed from trajectories of 9404 pivoters (d), 700 rotators (e) and 7415 wobblers (f).

https://doi.org/10.1371/journal.pone.0217823.g006

Dynamical analysis of bacteria in microscopy movies

PLOS ONE | https://doi.org/10.1371/journal.pone.0217823 June 6, 2019 9 / 15

https://doi.org/10.1371/journal.pone.0217823.g006
https://doi.org/10.1371/journal.pone.0217823


lower than the MSD of diffusing cells, causing the peaks for adhering cells to shift toward

lower exponents (Fig 8b). The two-dimensional representations corresponding to the two dis-

tributions are shown in the insets to Fig 8a and 8b. It is clear that for pivoting cells the shift

toward lower exponents� 0 is particularly dramatic. This effect can be understood analytically

Fig 7. Box-plots of the anchoring point MSD for wobbling, pivoting and rotating cells, measured over a delay

time τ = 0.4s. As wobbling cells are firmly stuck to the surface, their MSD gives an upper bound for the measurement

precision. The box contains data in the inter-quartile range (IQR) between quartiles Q3-Q1. The average (mean) is at

the middle of the box. Coloured horizontal lines give median values. Upper whiskers have range 1.5×IQR from the

box, lower whiskers are minimum data values. Individual marks are outliers.

https://doi.org/10.1371/journal.pone.0217823.g007

Fig 8. How systematic errors affect the exponent landscape. Histograms of translational exponents k0:4s
T for bacteria on the surface, (a) as measured

(δ2 = 0), and (b) with a systematic error δ2 = 0.01 μm2 added to the MSD. Insets show 2D corresponding histograms for translational and rotational

exponents. Note the shift in the position of the peaks for kT, while the position in kR remains unaffected.

https://doi.org/10.1371/journal.pone.0217823.g008
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by writing the exponent in Eq 1 as

kT ¼
logðhR2ðt1Þi þ d

2
Þ � logðhR2ðt0Þi þ d

2
Þ

logðt1Þ � logðt0Þ
¼

log hR
2ðt1Þiþd

2

hR2ðt0Þiþd
2

logð t1
t0
Þ

¼
log hR

2ðt1Þi

hR2ðt0Þi

logð t1
t0
Þ
þ
log hR

2ðt1Þiþd
2

hR2ðt1Þi

logð t1
t0
Þ
�
log hR

2ðt0Þiþd
2

hR2ðt0Þi

logð t1
t0
Þ

;

ð3Þ

where the negative term on the right becomes large as δ2 becomes of similar order as R2(τ0),

causing the translational exponent tends to shift to shift to smaller values upon increasing δ2.

This result illustrates the importance of accurately determining bacterial positions before per-

forming detailed further analysis. In particular, one should be aware that even random errors

occurring at a frame-to-frame timescale can obscure longer-time dynamical information.

How the translational exponent distribution for diffusing cells depends on

trajectory durations

In our experiments, we classify different types of motion via the translational exponent kT,

whose value should be 1 for an infinitely long trajectory of a freely diffusing cell. In experi-

ments, however, diffusing cells can move in and out of the observation plane. As a result, each

trajectory has a finite duration, which will produce a distribution of kT values. To validate our

experimental analysis, we compared the experimental kT distributions with simulations of dif-

fusing cells and an approximate, analytic theory.

To calculate an approximate expression for the probability distribution P(kT) for diffusing

cells, we start from the probability density function for 2D diffusion away from the origin

Pðr; tÞ ¼
1

4pDt
e� r

2

4Dt ; ð4Þ

where r = |r| is the distance from the origin. By integrating over the polar angle and making

the substitution U = r2 we obtain

PðU; tÞ ¼
1

4Dt
e� U4Dt : ð5Þ

with the expectation value for MSDðtÞ ¼
R1

0
UpðUÞdU ¼ 4Dt.

In practice it is possible to calculate the MSD in several ways. For the analysis of experimen-

tal data in this paper, we average over every possible pair of frames separated by the delay

time τ, which makes the most complete use of the data. However, because the video segments

spanned by these pairs of frames overlap, they are not independent, so it is difficult to obtain

an analytical prediction for this case. Thus, for the purpose of this calculation we consider

instead the MSD obtained by averaging over independent, non-overlapping segments. This

difference affects the final width of the distribution, as we discuss below. We split each trajec-

tory of duration T into β = T/τ independent segments. We define �U bðtÞ as the MSD obtained

by averaging over those segments for a single trajectory, i.e.,

�U bðtÞ ¼ b
� 1
Xb

i¼1

jrðitÞ � rðði � 1ÞtÞj
2
: ð6Þ

Then the probability distribution of �U bðtÞ is given by the probability distribution for the

mean of β individual selections from the exponential probability distribution given by Eq (5),
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which results in the so-called Erlang distribution

Pð �U bðtÞ ¼ xÞ ¼
bx

4Dt

� �b e�
bx

4Dt

xGðbÞ
; ð7Þ

where Γ is the gamma function. The exponent kT is defined by

kT ¼
ln ð �U bðtÞ=

�U abðt0ÞÞ

ln t=t0

; ð8Þ

where τ0 = 1/framerate is the first delay time in the window from which kT is extracted and α =

τ/τ0. In principle this calculation involves two distributions over the MSD, at delay times τ0

and τ. Instead, we make the approximation of a high frame rate compared to the delay time,

i.e., α� 1, which allows us to replace the probability distribution at τ0 with a delta function,

�U abðt0Þ ¼ 4Dt0 ¼ 4Dt=a because this distribution is over αβ repeats, and will therefore be

much narrower than the distribution at τ, taken over β repeats only. With this approximation,

we obtain finally

PðkTÞ ¼
ln a
GðbÞ

ðbakT � 1Þ
b exp � bakT � 1

� �
: ð9Þ

The distribution P(kT) from Eq 9 is plotted in Fig 9a for two different track durations

(dashed lines), showing that as the track duration is decreased, it becomes broader while show-

ing an increased skewness towards lower exponents. The translational exponents can also be

calculated from computer simulations. In these simulations, non-interacting particles are

allowed to freely diffuse for a duration T, with the displacement r = {x1, x2} of each particle cal-

culated using

xxðt þ DtÞ ¼ xxðtÞ þ zxðtÞ
ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

; ð10Þ

where ξ = 1, 2 indexes the dimension, the zξ(t) are random stochastic variables drawn from a

normal distribution centred at zero with unity standard deviation, D is the diffusion coeffi-

cient, and Δt is the time interval between consecutive timesteps. After this the exponent is

calculated from the MSD by using non-overlapping segments as defined in Eq (6), and the

Fig 9. Distribution of the translational exponent for trajectories of diffusing cells. (a), Probability distribution of the exponent kT for diffusers, from

simulated tracks of specific duration (T = 60 and T = 180 frames), compared with the theoretical result (Eq 9). The mean-squared displacements arising

from the theoretical model assume calculations with non-overlapping time segments. To compare with theory (Eq 9), the simulation results in this

figure have been calculated in the same way. (b), Contour plot of probability to measure a certain translational exponent in simulations for different

durations of a trajectory calculated using overlapping segments. Data is normalised such that the sum of probabilities for each trajectory duration

(column) adds up to one. (c), Probability distribution of the exponent kT for diffusers, from simulated tracks and from experiments for ΔFF and 0.2w%

TWEEN 20. The simulated trajectories have the same durations as the trajectories from the experiments. The MSD from simulations in this figure have

been calculated based on averages over overlapping segments, exactly as in the experiments.

https://doi.org/10.1371/journal.pone.0217823.g009
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distribution of exponents is plotted in Fig 9a, showing good agreement with the theoretical

prediction. We also calculated the simulated kT distribution by using overlapping segments to

calculate the MSD (red curve). The resulting distribution has a similar shape but is narrower

than the equivalent distribution calculated with non-overlapping segments. This is expected

since using overlapping segments makes complete use of the data, so should provide a more

precise estimate of kT.

We also investigated systematically how the distribution of kT with non-overlapping seg-

ments depends on the trajectory duration by running a series of simulations, each using a dif-

ferent duration that was fixed for all trajectories within that simulation. Fig 9b shows how the

distribution of kT narrows for increasing trajectory duration and approaches 1 for long trajec-

tories. The choice of D and Δt in the simulations did not affect the distribution of kT.

We also compared the exponents calculated from trajectories in the computer simulations

with those calculated from experimental trajectories of diffusing cells. To make sure that there

were no swimmers in the population, we used a strain of nonflagellated bacteria (ΔFFMG). To

minimise the number of adhering cells on the surface, we performed the experiment using a

buffer solution containing 0.2w% of TWEEN 20, which effectively blocks the adhesion of

almost all of the bacteria to the surface [10]. For the simulations, we used exactly the same dis-

tribution of trajectory durations as in the experimental dataset, and now used overlapping seg-

ments to calculate the MSD, as in the experiments. Again, we find good agreement, Fig 9c.

This validates our data analysis technique, and demonstrates that, at least for diffusing parti-

cles, we can safely neglect optical artefacts and selection effects (e.g., the depth of focus is lim-

ited, so that there will be a coupling between diffusivity D and trajectory duration T).

Summary

The automated analysis and interpretation of microscopy images containing microorganisms

is of academic and practical relevance. Studying bacteria on the level of single cells has the

potential to reveal new important phenomena related to bacterial adhesion and population

heterogeneities [9, 20, 31–35]. Therefore, algorithms that can extract this information from

videos are highly relevant to study differences between individual cells within a population,

which has potential applications in developing medical diagnostics methods.

We have previously described [9] variations in adhesion properties of cells within a clonal

population. Our conclusions were based on a detailed analysis of microscopy videos. In this

work, we have discussed in detail the algorithms used to identify, follow and characterise bac-

teria on the surface from images in recorded microscopy movies using a dataset similar to [9]

but for a different batch of freshly prepared bacteria. To aid the future development of analysis

software for the high-throughput analysis of microscopy movies in experiments, we make

available this data as well as the source code (mainly written in the programming language C
for Linux) to find, track and analyse the dynamics of rod-shaped bacteria [13–18].

We have discussed algorithms to determine the positions and orientations of individual

bacteria (findRods2Dt) and subsequently calculate and filter their trajectories in time (track-
Rods2Dt and filterTracks2Dt). We explained in detail how the mean-square displacement

(MSD) of the least mobile point on each cell is then used to calculate a translational exponent

to characterise the dynamics of individual cells (analyzeBugTracks2Dt). For adhering cells, we

explained how the rotational exponent from the orientational mean-square displacement is

used to characterise post-adhesion dynamics.

To validate our results, we have performed a quantitative analysis of how errors and limited

trajectory durations affect the translational exponents of adhering and diffusing cells. We

found that exponents of adhering cells shift towards zero upon addition of a random error in
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particle position. We also provided a theoretical description of how the skewed distribution of

translational exponents for diffusing cells depends on the duration of the trajectories. For long

trajectories, the distribution is strongly peaked around 1, but broadens for shorter trajectories.

We verified the theory with simulations and experiments.
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