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Abstract  22	

During oncogene induced senescence (OIS) heterochromatin is lost from the nuclear periphery and 23	

forms internal senescence associated heterochromatin foci (SAHF). We show that an increased nuclear 24	

pore density during OIS is responsible for SAHF formation. In particular, the nucleoporin TPR is 25	

necessary for both formation and maintenance of SAHF. Loss of SAHF does not affect cell-cycle arrest 26	

but abrogates the senescence associated secretory phenotype – a programme of inflammatory cytokine 27	

gene activation. Our results uncover a previously unknown role of nuclear pores in heterochromatin re-28	

organization in mammalian nuclei and demonstrate the importance of heterochromatin organisation for 29	

a specific gene activation programme.  30	

 31	

Introduction 32	

3D genome organization is governed by a combination of polymer biophysics and biochemical 33	

interactions, including local chromatin compaction, long-range chromatin interactions and interactions 34	

with nucleus structures. One such structure is the nuclear lamina (NL), which coats the inner nuclear 35	

membrane and is composed of lamins and membrane associated proteins, such as LBR. Electron 36	
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microscopy (E.M.) reveals large blocks of heterochromatin associated with the nuclear periphery 37	

(Capelson and Hetzer, 2009), and mapping genome interactions with laminB1 identifies > 1000 lamina-38	

associated domains (LADs). LADs are associated with heterochromatic histone marks (H3K27me3 or 39	

H3K9me3) (Guelen et al., 2008). Altered NL composition in the photoreceptors of nocturnal mammals 40	

leads to the loss of heterochromatin from the nuclear periphery and its accumulation at the centre of the 41	

nucleus (Solovei et al., 2013).  42	

Another situation in which there is a dramatic reorganisation of heterochromatin is in oncogene-induced 43	

senescence (OIS) - a cell cycle arrest program triggered by oncogenic signalling. OIS cells undergo 44	

striking chromatin reorganization, with loss of heterochromatin and constitutive LADs (Lenain et al., 45	

2017) from the nuclear periphery and the appearance of internal senescence-associated 46	

heterochromatin foci (SAHF). SAHF appear consecutive to cell cycle arrest and are not observed in 47	

non-transformed replicating cells (Narita et al. 2003). SAHF formation results from a reorganization of 48	

pre-existing heterochromatin –regions decorated with H3K9me3, H3K27me3, MacroH2a and HP1α,β,γ 49	

- rather than de novo heterochromatin formation on new genomic regions (Narita et al., 2003; Zhang et 50	

al., 2005; Chandra et al., 2012; Sadaie et al., 2013). Known factors implicated in SAHF formation 51	

include; activation of the pRB pathway (Narita et al., 2003), certain chromatin-associated non-histone 52	

proteins (Narita et al., 2006) and the histone chaperones HIRA and Asf1a (Zhang et al., 2005, 2007). 53	

The NL has also been implicated in SAHF formation: LaminB1 and Lamin B receptor (LBR) expression 54	

are decreased in OIS and their experimental depletion can facilitate, but is not sufficient for, SAHF 55	

formation (Sadaie et al., 2013; Lukášová et al., 2017).  56	

The nuclear envelope is perforated by nuclear pores that control transport between the cytoplasm and 57	

nucleus. The nuclear pore complex (NPC) is a large transmembrane complex, consisting of about 30 58	

proteins called nucleoporins (Fig. 1A) (Kim et al., 2018). In contrast to the adjacent NL, E.M. and super-59	

resolution light microscopy show that the nuclear area underneath nuclear pores is devoid of 60	

heterochromatin (Schermelleh et al., 2008; Capelson and Hetzer, 2009) and nuclear pore density in 61	

different neurons and glial cell types from the rat cerebellar cortex anticorrelates with compact chromatin 62	

(Garcia-Segura et al. 1989). The nucleoporin TPR has been shown to be responsible for 63	

heterochromatin exclusion zones at NPCs (Krull et al., 2010).  64	

The composition and density of NPCs changes during differentiation and tumorigenesis (D’Angelo et 65	

al., 2012;; Raices and D’Angelo, 2012; Sellés et al., 2017; Rodriguez-Bravo et al., 2018). We therefore 66	
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hypothesized that NPCs could contribute to global chromatin organization and that, specifically, 67	

heterochromatin organization could result from a balance of forces attracting heterochromatin to the NL 68	

and forces repelling it away from the NPCs (Fig. 1B). In support of this hypothesis, here we show that 69	

nuclear pore density increases during OIS and that this increase is necessary for heterochromatin 70	

reorganization into SAHF. We identify TPR as a key player in this reorganization. Furthermore, we 71	

demonstrate the functional consequences of heterochromatin reorganization in OIS for the programmed 72	

activation of inflammatory cytokine gene expression – the senescence-associated secretory phenotype 73	

(SASP). 74	

 75	

Results and discussion 76	

Nuclear pore density increases during OIS 77	

To assess the role of NPCs in SAHF formation during OIS,  we induced the activity of oncogenic Ras 78	

(RASG12D) by addition of 4-hydroxy-tamoxifen (4HT) in human IMR90 cells, leading to OIS, activation of 79	

p53 and p16 and expression of SASP proteins (Acosta et al., 2013) (Fig. 1C; Fig. S1A). Nuclear pores 80	

disassemble upon entry into mitosis but are very stable during interphase (Daigle et al., 2001; Dultz and 81	

Ellenberg, 2010). In quiescent cells nuclear pore density is stabilised by down-regulation of nucleoporin 82	

mRNAs (D’Angelo et al., 2009). However, expression profiling in OIS cells (ER:Ras) showed that, 83	

compared with control ER:STOP (STOP codon) cells, nucleoporin mRNA levels are unchanged during 84	

senescence (Fig. S1B).  Nucleoporin protein accumulation in senescent cells was confirmed by 85	

immunoblotting for POM121 – an integral membrane protein of the NPC central ring ( Funakoshi et al., 86	

2011) and TPR – a large coiled-coil protein of the nuclear basket (Cordes et al., 1998) (Fig. 1A, D). 87	

Immunofluorescence and structured illuminated microscopy (SIM) (Schermelleh et al., 2008) showed 88	

that increased nucleoporin levels during OIS results in an increased nuclear pore density (Fig. 1E-G). 89	

 90	

Decreasing nuclear pore density leads to loss of SAHF formation 91	

To assess whether the increased nuclear pore density is responsible for heterochromatin reorganization 92	

into SAHF, we used siRNAs to deplete POM121 (Fig. S2A) during the entire course of OIS induction 93	

(Fig. 2A). As expected, since POM121 is required for NPC assembly during interphase (Dultz and 94	

Ellenberg, 2010; Funakoshi et al., 2011), this led to a decrease in nuclear pore density (Fig. 2B, C and 95	
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Fig. S2B). Consistent with our hypothesis, POM121 depletion resulted in a reduction of OIS cells 96	

containing SAHF (Fig. 2D, E). 97	

 98	

The nucleoporin TPR is necessary for SAHF formation and maintenance 99	

TPR is the last nucleoporin to be incorporated in new NPCs (Bodoor et al., 1999) through its interaction 100	

with NUP153 (Hase and Cordes, 2003) (Fig. 1A). TPR has been shown to establish heterochromatin 101	

exclusion zones at nuclear pores (Krull et al. 2010) and to influence HIV integration sites by maintaining 102	

an open chromatin architecture near the NPCs (Lelek et al.. 2015). 103	

To determine if it is the increased abundance of TPR at the nuclear periphery of OIS cells, as a result 104	

of elevated nuclear pore density, that is responsible for SAHF formation, we depleted TPR during OIS 105	

induction (Fig. S3A, B). Contrary to a recent report, TPR depletion did not affect nuclear pore density 106	

(McCloskey et al., 2018) (Fig. S3C). However similar to POM121 depletion, TPR depletion led to the 107	

loss of SAHF (Fig. 3A, B).  We confirmed these results with four independent siRNAs targeting TPR 108	

(Fig. S3D-F). We conclude that TPR is necessary for the formation of SAHF during OIS.  109	

The effect of TPR knockdown on heterochromatin re-localization during OIS does not appear to be due 110	

to obvious changes in the amount of laminB1 at the nuclear lamina, (Fig S4A). 111	

To assess whether TPR is necessary for maintenance as well as the formation of SAHF, we used a time 112	

course to determine when SAHF are formed. The percentage of cells containing SAHF increased 113	

gradually after 4HT treatment of ER:Ras cells, reaching a maximum at 6 days (Fig. S4B). We therefore 114	

depleted TPR 6 days after 4HT addition, when SAHF have already formed (Fig. 3C). We observed a 115	

dramatic reduction of cells containing SAHF two days later (day 8) (Fig. 3D, E). siRNA depletion under 116	

these conditions was only partial and we observed loss of SAHF in cells specifically depleted for TPR, 117	

whereas SAHF were maintained in cells where knockdown was incomplete (Fig. S4C). In some cells 118	

with partial TPR depletion, there was a relocalization of heterochromatin to the nuclear periphery in 119	

patches that correspond to sites of TPR-depletion (Fig. 3F),  but that still contained nuclear pores as 120	

detected by MAB414 staining (Fig 3G). We conclude that exclusion of heterochromatin from the nuclear 121	

periphery by TPR is necessary for both the formation and maintenance of SAHF during OIS.  122	

 123	
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TPR is necessary for the senescence-associated secretory phenotype  124	

SAHF are proposed to be involved in silencing pro-mitotic genes, contributing to stable cell cycle arrest 125	

(Narita et al., 2003; Narita et al., 2006; Zhang et al., 2007). However, TPR- depleted OIS cells did not 126	

show defective cell-cycle arrest as assayed by BrdU incorporation and activation of p16, p21 and p53 127	

(Fig. S5A-C). This suggests that SAHF are dispensable for cell-cycle arrest, in agreement with the fact 128	

that not all senescent cells form SAHF (Kosar et al., 2011). Furthermore SAHF have been shown to be 129	

insufficient to maintain cell cycle arrest as inactivation of p53 or ATM in OIS cells leads to senescence 130	

escape without SAHF alteration (Di Micco et al., 2011).   131	

An important characteristic of OIS is activation of the senescence associated secretory phenotype 132	

(SASP) which is responsible for the non–cell autonomous effects of senescence. SASP consists of the 133	

expression and secretion of cytokines, chemokines, extracellular matrix proteases, growth factors and 134	

other signalling molecules. SASP is a tumour suppressive mechanism which reinforces cell cycle arrest 135	

and leads to paracrine senescence but can also promote tumour progression in premalignant lesions 136	

(Coppé et al., 2010; Acosta et al., 2013). Strikingly, in the absence of SAHF after TPR depletion, we 137	

observed a complete loss of the SASP as exemplified by lack of IL1α, IL1β, IL6 and IL8 mRNA and 138	

protein (Fig 4A-C, Fig. S5D, E). SAHF and SASP loss upon TPR depletion does not seem to be due to 139	

a general defect in nuclear transport as we detected NFκB nuclear import upon induction of paracrine 140	

senescence (Acosta et al., 2008; Chien et al., 2011; Acosta et al., 2013) (Fig. S6A- C). 141	

Similarly to some other nucleoporins, a fraction of TPR is present in the nucleoplasm as well as at 142	

nuclear pores (Frosst et al., 2002). To assess whether it is the increase in nuclear pore density in OIS 143	

– and consequent increased TPR abundance at the nuclear periphery - that is necessary for SASP or 144	

whether TPR has an independent role, we assessed SASP upon depletion of POM121 which is only 145	

present within the NPC. Decreased nuclear pore density upon POM121 depletion did not affect cell-146	

cycle arrest (Fig. S7A), but the SASP was impaired (Fig. S7B-D).  147	

The nuclear pore basket nucleoporin NUP153 (Fig. 1A) is necessary for the association of TPR with the 148	

NPC (Hase and Cordes 2003). To further confirm that the role of TPR in SAHF formation and SASP 149	

depends on its presence at the NPC rather than in the nucleoplasm, we depleted NUP153 (Fig. S8A), 150	

NPC density was unchanged (Fig. S8B), but consistent with the role of NUP153 in TPR-nuclear basket 151	

association, TPR-containing NPC density decreased upon NUP153 depletion (Fig. S8C). 152	
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Concomitantly, the percentage of SAHF containing cells decreased (Fig. S8D, E) and the SASP was 153	

lost (Fig. S8F). We conclude that it is TPR association with NPC that is necessary for SAHF formation 154	

and SASP activation in OIS. 155	

 156	

Chromatin reorganization controls the SASP 157	

Our results suggest that heterochromatin reorganization is necessary for SASP during OIS. To exclude 158	

that nuclear pores regulate SASP through another independent mechanism, we used a different means 159	

to deplete SAHF. The histone chaperone ASF1a is required for SAHF formation (Zhang et al., 2005, 160	

2007) and indeed its depletion led to a loss of SAHF in ER-Ras cells (Fig. 5A-C). ASF1a depletion did 161	

not affect nuclear pore density (Fig. 5D), but as for TPR and POM121 depletion, there is a dramatic loss 162	

of the SASP upon ASF1a depletion in ER-Ras cells (Fig. 5E).  Whilst we cannot completely rule out that 163	

intact nuclear pores are needed for SASP activation independent of chromatin reorganization, this result 164	

supports the hypothesis that heterochromatin reorganization is necessary for the SASP.  165	

Our data suggest that an increase in nuclear pore density is responsible for the eviction of 166	

heterochromatin from the nuclear periphery by TPR and the consequent formation of SAHF in OIS. 167	

Similar mechanisms could be conserved in other types of senescence as nuclear pore density is also 168	

increased in replicative senescence (Maeshima et al. 2006). Chromatin organisation relative to the 169	

nuclear periphery has generally been considered from the point of view of interactions between 170	

(hetero)chromatin and components of the nuclear lamina. Here we demonstrate that the repulsion of 171	

heterochromatin by nuclear pores is another important principle of nuclear organisation and it will be 172	

interesting to establish whether the modulation of nuclear pore density also influences the 3D 173	

organisation of the genome during development. 174	

Methods  175	

Cell culture  176	

IMR90 cells were infected with pLNC-ER:RAS and pLXS-ER:Stop retroviral vectors to produce ER-RAS 177	

and ER-Stop cells respectively (Acosta et al., 2013). Ras translocation to the nucleus was induced by 178	

addition of 4-hydroxy-tamoxifen (4HT) (Sigma) diluted in DMSO to 100 nM. 4HT containing-medium 179	

was changed every 3 days. 180	

 181	
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SiRNA transfection 182	

2x105 IMR90, ER-STOP and ER-Ras cells were transfected using Dharmafect transfection reagent 183	

(Dharmacon) with a 30 nM final concentration of predesigned siRNAs (Dharmacon, Table S1). 184	

 185	

RNA expression analysis 186	

mRNA expression profiling was by IonTorrent mRNA sequencing using the Ion AmpliSeq™ 187	

Transcriptome Human Gene Expression Kit. 6 biological replicates were analysed and adjusted p-value 188	

were calculated by Benjamini and Hochberg (BH) and FDR multiple test correction. Data analysis was 189	

performed using Babelomics-5 (http://babelomics.bioinfo.cipf.es).  190	

For individual mRNAs, total RNA was extracted using the RNeasy minikit (QIAGEN) and cDNAs 191	

generated using Superscript II (Life technologies). Real-time PCR ws performed on a Lightcycler 480 192	

(Roche) using SYBR Green PCR Master Mix (Roche) using primer listed in Table S3. Expression was 193	

normalized to β-actin.  194	

 195	

Immunoblotting 196	

1x106 cells were lysed in RIPA buffer and protein concentration determined using a Pierce BCA protein 197	

analysis kit. 15 µg of proteins were run into NuPage 3-8% Tris acetate gels (Invitrogen). After transfer 198	

onto nitrocellulose with a iBlot 2 gel transfer device (Thermofisher), immunoblotting was done using 199	

antibodies as listed in Table S2. 200	

 201	

Immunofluorescence and SAHF measurement 202	

2x105 cells were seeded and grown on coverslips during senescence induction. Cells were fixed in 4% 203	

paraformaldehyde (pFa) for 10 min at room temperature, permeabilized in 0.1% Triton X100 for 10 min, 204	

blocked in 1% BSA for 30 min, incubated with primary antibodies diluted in 1% BSA for 1h and with 205	

fluorescently labelled secondary antibodies (Life Technologies) for 45 min. Coverslips were 206	

counterstained with DAPI and mounted in Vectashield (Vectorlabs). 207	

To detect replicating cells, cells were incubated with 10 µM 5-Bromo-2’ – deoxyuridine (BrdU) (Sigma) 208	

for 16 h prior to fixation and immunodetection using a BrdU antibody (BD Pharmingene 555627) in the 209	

presence of 1 mM MgCl2 and 0.5 U/ul DNaseI (Sigma D4527). 210	

Detection of SASP proteins, tumour suppressors and BrdU positive cells by high content microscopy is 211	
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described at (Hari and Acosta 2017). The % SAHF positive cells was determined by manual examination 212	

of 100-200 DAPI stained cells.  213	

 214	

Structured Illumination Microscopy (SIM) and measurement of nuclear pores density 215	

The bottom plane of cells was imaged by 3D SIM (Nikon N-SIM) and reconstructed using NIS element 216	

software after immunofluorescence with antibodies as indicated in Table S2. 15 nuclei were imaged for 217	

each condition and 5 ROI of 100x100 pixels were analyzed/nucleus. Individual nuclear pore complexes 218	

in each ROI were counted manually.  219	

 220	

β-Galactosidase staining 221	

SA-β-Gal staining solution was prepared using 20x KC(100 mM K3FE (CN)6 and 100 mM K4Fe (CN) 222	

6*3H2O in PBS), 20x X-Gal solution (ThermoFisher Scientific) diluted to 1x in PBS/1 mM MgCl2 at pH 223	

5.5-6. Staining was conducted overnight on glutaraldehyde fixed cells. 224	

 225	

Statistics 226	

All experiments were performed in a minimum of 3 biological replicates. Error bars are standard error 227	

of the mean. P-values were obtained by two sample equal variance, 2 tails t-test.  228	

 229	
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 335	

Figure Legends 336	

Figure 1. Nuclear pore density increases in OIS 337	

A) Model of the nuclear pore complex showing the position of TPR, NUP153 and POM121. Adapted 338	
from (Hoelz et al. 2011). 339	

B) Schematic showing the balance of forces attracting heterochromatin to the nuclear lamina and 340	
repelling heterochromatin from nuclear pores. 341	

C) Schematic of OIS induction in ER:Ras cells by 4HT and continued proliferation in ER:Stop cells. 342	

D) Western blot showing POM121 (left panel) and TPR (right panel) levels in 4HT treated ER:Stop and 343	
ER:Ras cells. 344	

E) TPR immunostaining in ER:STOP and ER:Ras cells treated with 4HT. Left: bottom plane of nucleus 345	
imaged by SIM. Right: enlargement of the insets. Scale bars  2µm. 346	

F) Mean (+/- SEM) nuclear pore density (pores/µm2) in 4HT treated ER:Stop and ER:Ras cells as 347	
counted by TPR staining in 3 biological replicates, ***p=0.0001. 348	

G) As for F) but for Pom121 staining. h.s = highly significant p=1.3E-06. 349	
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 350	

Figure 2. Increased nuclear pore density in OIS is necessary for SAHF formation 351	

A) Schematic showing depletion experiment for panels B to E. 352	

B) MAB414 (antibody recognizing several nucleoporins) immunostaining in ER:STOP cells treated with 353	
4HT after 2 days knockdown with scramble (Scr) or POM121 siRNAs. Left: bottom plane of nucleus 354	
imaged by SIM.  Right: enlargement of the insets. Scale bars 2µm. 355	

C) Mean (+/- SEM) nuclear pore density (pores/µm2) in 4HT treated ER:Stop cells after scramble (Scr) 356	
or POM121 siRNA knockdown, as assayed by TPR staining in 3 biological replicates, * p<0.05. 357	

D) DAPI staining of 4HT-treated ER:Stop and ER:Ras cells in controls (Scr) and upon POM121 depletion 358	
(siPOM121). Scale bars 10µm. Bottom: enlargement of the insets. 359	

E) Mean (+/- SEM) % of cells containing SAHF in 4HT-treated ER:Stop and ER:Ras cells after 360	
knockdown with scramble (Scr) siRNAs and in 4HT-treated ER:Ras cells with POM121 siRNAs. Data 361	
from 3 experiments. *p<0.05, h.s=highly significant. 362	

 363	

Figure 3. TPR is necessary for SAHF formation and maintenance 364	

A) DAPI staining of non-senescent 4HT treated ER:Stop and OIS (ER:Ras) cells after control scramble 365	

(Scr) siRNA and upon TPR depletion (siTPR). Scale bars 10µm. 366	

B) Mean (+/- SEM) % of cells containing SAHF in 4HT-treated ER:Stop and ER:Ras cells after 367	

knockdown siRNAs as in (A). Data from 3 experiments. **p<0.01, h.s=highly significant. 368	

C) Time course for TPR depletion by siRNA late in the OIS programme as performed for panels D-F. 369	

D) DAPI staining of 4HT-treated ER:STOP and OIS cells ER:Ras in controls (Scr) and upon TPR 370	

depletion (siTPR). Scale bars 2µm. 371	

E) Mean (+/- SEM) % of cells containing SAHF in 4HT-treated ER:Stop and ER:Ras cells after 372	

knockdown with scramble (Scr) siRNAs and in ER:Ras cells with TPR siRNAs. Data from 3 experiments. 373	

**p<0.01, h.s=highly significant. 374	

F) DAPI (blue) and TPR (red) staining of 4HT-treated ER:STOP and ER:Ras upon TPR depletion 375	

(siTPR) imaged by SIM. Right: enlargement of the insets. Scale bars 2µm. 376	

G) DAPI (blue) and TPR (red) staining of 4HT-treated ER:Ras cells upon TPR depletion (top). Bottom 377	

image shows co-staining with the nucleoporin antibody MAB414 (green). 378	

 379	
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Figure 4. TPR is necessary for the SASP 380	

A) Mean (± SEM) mRNA level, measured by qRT-PCR for SASP genes (IL1α, IL1β, IL6,I L8), in 4HT-381	

treated ER:Stop and ER:Ras cells after knockdown with scramble (Scr) siRNAs and in 4HT-treated 382	

ER:Ras cells with TPR siRNAs. Expression is relative to ER:Ras cells transfected with Scr siRNAs. Data 383	

from 3 experiments. h.s=highly significant. 384	

B) Mean (± SEM) % of cells positive by immunostaining for SASP cytokines (IL1α, IL1β, IL6,IL8) in 385	

4HT-treated ER:Stop and ER:Ras cells after SiRNA knockdown as in (A). Data from 3 experiments. 386	

**p<0.01, *** p<0.001,  h.s=highly significant. 387	

C) Immunostaining (green) for IL1α  and IL1β  in DAPI (blue) stained nuclei of 4HT-treated ER:Stop 388	

and ER:Ras cells subjected to RNAi as in (A). Scale bars 100µm. 389	

 390	

Figure 5. Chromatin reorganization seems necessary for the SASP 391	

A) Mean (± SEM) ASF1a mRNA level, established by qRT-PCR, in 4HT-treated ER:STOP and ER:Ras 392	

cells after knockdown with scramble (Scr) or ASF1a siRNAs. Expression is shown relative to ER:STOP 393	

cells transfected with Scr siRNAs. Data from 3 experiments. *p<0.05. 394	

B) DAPI staining of 4HT-treated ER:STOP and ER:Ras cells in controls (Scr) and upon ASF1a depletion 395	

(siASF1a). Scale bars 2µm 396	

C) Mean (+/- SEM) % of cells containing SAHF in 4HT-treated ER:Stop and ER:Ras cells after 397	

knockdown with scramble (Scr) siRNAs and in ER:Ras cells with ASF1a SiRNAs. Data from 3 398	

experiments. ***p<0.001.  399	

D) Mean (+/- SEM) nuclear pore density (pores/µm2) in 4HT treated ER:Stop cells after knock down with 400	

scramble (Scr) or ASF1a (siASF1a) siRNAs as counted by MAB414 or TPR staining in 3 biological 401	

replicates, n.s= non significant. 402	

E) Mean (± SEM) mRNA levels, measured by qRT-PCR for IL1α, IL1β, IL6, IL8, in 4HT-treated ER:Stop 403	

and ER:Ras cells after knockdown with scramble (Scr) siRNAs and in 4HT-treated ER:Ras cells with 404	

ASF1a siRNAs. Expression is shown relative to ER:Ras cells transfected with Scr siRNAs. Data from 3 405	

experiments. ***p<0.001, h.s=highly significant. 406	
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