
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Codon usage influences fitness through RNA toxicity

Citation for published version:
Mittal, P, Brindle, J, Stephen, J, Plotkin, JB & Kudla, G 2018, 'Codon usage influences fitness through RNA
toxicity' Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.1810022115

Digital Object Identifier (DOI):
10.1073/pnas.1810022115

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the National Academy of Sciences

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 08. Jul. 2019

https://doi.org/10.1073/pnas.1810022115
https://www.research.ed.ac.uk/portal/en/publications/codon-usage-influences-fitness-through-rna-toxicity(7fa9d492-f6ed-4212-a9f5-5cca9661c065).html


Codon usage influences fitness through RNA toxicity 1	
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 3	
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2University of Pennsylvania, Philadelphia, USA 5	
 6	

Abstract 7	

Many organisms are subject to selective pressure that gives rise to unequal usage of 8	

synonymous codons, known as codon bias. To experimentally dissect the mechanisms of 9	

selection on synonymous sites, we expressed several hundred synonymous variants of the 10	

GFP gene in Escherichia coli, and used quantitative growth and viability assays to estimate 11	

bacterial fitness. Unexpectedly, we found many synonymous variants whose expression was 12	

toxic to E. coli. Unlike previously studied effects of synonymous mutations, the effect that 13	

we discovered is independent of translation, but it depends on the production of toxic mRNA 14	

molecules. We identified RNA sequence determinants of toxicity, and evolved suppressor 15	

strains that can tolerate the expression of toxic GFP variants. Genome sequencing of these 16	

suppressor strains revealed a cluster of promoter mutations that prevented toxicity by 17	

reducing mRNA levels. We conclude that translation-independent RNA toxicity is a 18	

previously unrecognized obstacle in bacterial gene expression. 19	

 20	

Significance statement 21	

Synonymous mutations in genes do not change protein sequence, but they may affect gene 22	

expression and cellular function. Here we describe an unexpected toxic effect of synonymous 23	

mutations in Escherichia coli, with potentially large implications for bacterial physiology and 24	

evolution. Unlike previously studied effects of synonymous mutations, the effect that we 25	

discovered is independent of translation, but it depends on the production of toxic mRNA 26	
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molecules. We hypothesize that the mechanism we identified influences the evolution of 27	

endogenous genes in bacteria, by imposing selective constraints on synonymous mutations 28	

that arise in the genome. Of interest for biotechnology and synthetic biology, we identify 29	

bacterial strains and growth conditions that alleviate RNA toxicity, thus allowing efficient 30	

overexpression of heterologous proteins. 31	

 32	

Main text 33	

Although synonymous mutations do not change the encoded protein sequence, they cause a 34	

broad range of molecular phenotypes, including changes of transcription 1, translation 35	

initiation 2, 3, translation elongation 4, translation accuracy 5, 6, RNA stability 7, and splicing 8. 36	

As a result, synonymous mutations are under subtle but non-negligible selective pressure, 37	

which manifests itself in the unequal usage of synonymous codons across genes and genomes 38	

9-11. Several recent experiments directly measured the effects of synonymous mutations on 39	

fitness in bacteria 2, 12-17. It has been commonly assumed that fitness depends primarily on the 40	

efficiency, accuracy, and yield of translation. Here we show that in the context of 41	

heterologous gene expression in E. coli, large effects of synonymous mutations on fitness are 42	

translation-independent, and are mediated by RNA toxicity. 43	

To study the effects of synonymous mutations on bacterial fitness, we used an IPTG-44	

inducible, bacteriophage T7 polymerase-driven plasmid to express a collection of 45	

synonymous variants of the GFP gene 2 in E. coli BL21-Gold(DE3) (henceforth referred to as 46	

BL21) cells (see Methods). Without IPTG induction, there were no discernible differences in 47	

growth between strains (Figure 1A). When induced with IPTG, the growth rate of GFP-48	

producing strains was reduced, consistent with the metabolic burden conferred by 49	

heterologous gene expression. The growth phenotype varied remarkably between strains 50	

expressing different synonymous variants of GFP (Figure 1B, Supp Figure 1). "Slow" 51	
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variants caused a long lag phase post-induction, indicating that at this stage the cells either 52	

stopped growing or died, while "fast" variants showed growth rates closer to non-induced 53	

cells. Several hours after induction, the slow variants appeared to resume growth (Figure 1B): 54	

we found that this was related to the emergence of suppressor strains that could tolerate the 55	

expression of these variants (Supp Figure 1D, and see below). 56	

We quantified cell viability post-induction by assessing the colony-forming ability of cells 57	

(Figure 1C). Fast variants showed the expected increase in cell numbers post-induction, but 58	

slow variants caused a 1000-fold decrease in viable cell numbers. Similarly, spotting of non-59	

induced cells onto LB plates with IPTG showed that the slow variants formed markedly 60	

fewer colonies than fast variants (Figure 1D). Microscopic analysis of slow variants showed 61	

decrease in cell number, growth arrest and in some cases massive cell death following IPTG 62	

induction. In the case of fast variants we observed normal increase in cell numbers and 63	

negligible cell death after induction (Supp Figure 2). These results indicate that certain 64	

synonymous variants of GFP cause significant growth defects when overexpressed in E. coli 65	

cells, and we will henceforth refer to these variants as "toxic". 66	

To test if toxicity was specific to T7 promoter-driven overexpression, we analysed growth 67	

phenotypes following the expression of a subset of GFP variants using a bacterial polymerase 68	

(trp/lac) promoter system (Methods). Although the growth phenotypes measured with 69	

bacterial promoter constructs were not as dramatic as with T7-based constructs, presumably 70	

because of lower GFP expression levels, growth rates with both types of promoters were 71	

correlated with each other (Figure 1E). Interestingly, toxicity increased at high temperature, 72	

and decreased at low temperature (Supp Figure 1C). Taken together, these results indicate 73	

that the toxic GFP variants cause growth defects in two different E. coli strains, with two 74	

types of promoters, possibly through a common mechanism. 75	
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To understand if toxicity depends on the process of translation, we selected several toxic and 76	

nontoxic variants of GFP and mutated their Shine-Dalgarno (SD) sequences from GAAGGA 77	

to TTCTCT to prevent ribosome binding and block translation initiation. As expected, 78	

mutation of SD sequences completely inhibited the production of functional GFP protein 79	

from all tested constructs (Figure 2A). To our surprise, GFP variants without SD sequences 80	

remained toxic, and their effects on growth were indistinguishable from variants with a 81	

functional SD sequence (Figure 2B). Western blot analysis confirmed that mutation of the SD 82	

sequences ablates GFP expression (Supp Figure 3). We considered the possibility that a 83	

cryptic SD element within the coding region allowed translation of a truncated fragment of 84	

GFP, which would be consistent with loss of GFP fluorescence and translation-dependent 85	

toxicity. However, analysis of the coding regions with the RBS Calculator 18 revealed no 86	

strong SD consensus sequences. These results raise the possibility that toxicity might arise at 87	

the RNA level, rather than at translation or protein level. 88	

To identify sequence elements required for toxicity, we selected one of the toxic variants 89	

(GFP_170), and a nontoxic variant (GFP_012), and performed DNA shuffling 19 to generate 90	

constructs that consisted of random fragments of GFP_170 and GFP_012. All the shuffled 91	

and non-shuffled constructs we generated encoded the same GFP protein sequence. Analysis 92	

of growth rate phenotypes of these shuffled constructs revealed a fragment near the 3' end of 93	

the GFP_170 coding sequence (nt 514-645) that was sufficient to elicit the toxic phenotype 94	

(Figure 2C, Supp Figure 4A, B). Some mutations outside of the toxic region partially 95	

improved fitness, which might be explained by interactions of the RNA secondary structure 96	

between the toxic region and the mutated regions. The GFP_170 mRNA is predicted to have 97	

a very low translation initiation rate, due to strong RNA secondary structure near the mRNA 98	

5' end 2. Nevertheless, replacement of the strongly structured 5' region with an unstructured 99	

fragment did not affect toxicity (Supp Figure 4A, B). 100	
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The above results led us to hypothesize that the toxicity associated with GFP expression was 101	

independent of translation, but depended on the presence of a specific fragment of RNA. To 102	

test this hypothesis, we performed growth rate measurements with a series of constructs. 103	

First, we isolated the 132-nt toxic region identified in the DNA shuffling experiment, and 104	

expressed it on its own, with or without start and stop codons. The expression of the 132-nt 105	

fragment of GFP_170 was sufficient for toxicity, whereas the corresponding fragment of 106	

GFP_012 did not cause toxicity. The effect of the 132-nt fragments on growth did not depend 107	

on the presence of translation start and stop codons (Figures 2C, D), the fragments contained 108	

no cryptic translation initiation signals, and FLAG tag fusions showed no detectable protein 109	

expression from the GFP_170 fragment in any of the three reading frames (Supp Figure 3B). 110	

Second, we introduced stop codons upstream of the toxic fragment in the GFP_170 coding 111	

sequence, and in the corresponding positions of GFP_012. This placement of stop codons 112	

ensures that ribosomes terminate translation before reaching the putative toxic region of the 113	

RNA, while still allowing a full-length transcript to be produced. As expected, internal stop 114	

codons abrogated GFP protein production (Figure 2C), but despite the presence of premature 115	

stop codons, GFP_170_Stop still caused toxicity to bacterial cells while GFP_012_Stop 116	

remained non-toxic (Figure 2D). To remove possible out-of-frame translation, we inserted 117	

stop codons into GFP_170 in all three frames, before and after the toxic region, and toxicity 118	

remained the same in all cases (Supp Figure 4C). Third, we introduced an efficient synthetic 119	

T7 transcription terminator 20 upstream of the toxic region in GFP_170 and in the 120	

corresponding location in GFP_012. Notably, we found that both variants with internal 121	

transcription terminators became nontoxic, and GFP_170_TT grew slightly faster than 122	

GFP_012_TT (Figure 2D). The GFP_170 fragment also caused toxicity when fused to FLAG 123	

tags (in any of the three reading frames), and when fused to fluorescent protein mKate2, it 124	

caused toxicity and reduced expression of mKate2 by 50-fold (Supp Figure 4D, E, F). 125	
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Overall, these data suggest that toxicity is caused by the RNA itself, rather than the process of 126	

translation or by the protein produced. 127	

To investigate the sequence determinants of RNA-mediated toxicity, we measured the growth 128	

phenotypes of single synonymous mutations within the 132-nt region of GFP_170. Close to 129	

half of these mutations reduced or abolished the toxic phenotype, whereas the remaining 130	

mutations had no effect (Figure 3A). There was no clear relationship between the position of 131	

mutations within the region and their effect on growth, nor was there any relationship 132	

between the type of nucleotide introduced and growth. RNA toxicity associated with triplet 133	

repeats has been described in Eukaryotes 21, but we found no triplet repeats in the toxic GFP 134	

mRNAs. Consistent with our observation that the toxic effect does not require translation, 135	

codon adaptation index was not associated with toxicity (Figure 3B). RNA folding energy, 136	

measured either in the immediate vicinity of each mutation, or for the entire 132-nt 137	

mutagenized region, was not correlated with toxicity, and we were unable to identify any 138	

RNA structural elements associated with the toxic phenotype (data not shown). We further 139	

probed the effects of sets of several mutations within the 132-nt toxic region. 75/98 sets of 140	

mutations we introduced within the region reduced or abolished toxicity, whereas 23/98 sets 141	

had no effect (Supp Figure 5). In almost all cases, the phenotypes of sets could be deduced 142	

from the effects of individual mutations in a simple way: if any mutation in a set abolished 143	

toxicity, then the set also did. Four sets did not conform to this rule, indicating potential 144	

epistatic interactions between mutations (not shown). Mutations near the 3' end of the 132-nt 145	

fragment had no effect on toxicity, identifying a minimal toxicity-determining region of 146	

about a hundred nucleotides that either consists of a single functional element, or it contains 147	

multiple elements whose cooperative action causes toxicity.  148	

Several recent studies examined the effects of synonymous mutations on fitness in bacteria, 149	

either in endogenous genes, or in overexpressed heterologous genes2, 12-16. Fitness had been 150	
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found to correlate with the codon adaptation index (CAI), GC content, RNA folding, protein 151	

expression level, a codon ramp near the start codon, and measured or predicted translation 152	

initiation rates. We quantified these variables in a set of 190 synonymous variants of GFP, 153	

and analysed their impact on fitness. We also considered two candidate toxic RNA fragments 154	

(GFP_170, nt 514-645, and GFP_155, nt 490-720), both of which were common to several 155	

constructs and appeared to negatively influence fitness (Figures 3C, D). High protein 156	

expression was previously shown to correlate with slow growth14, whereas we found positive 157	

correlations of fitness with total protein yield or protein yield per cell. These correlations 158	

presumably reflect reduced protein yields and cell growth after the induction of toxic RNAs. 159	

As seen previously, growth rate and optical density were positively correlated with CAI, and 160	

GC content was correlated with optical density2, 16. However, in a multiple regression 161	

analysis aimed to disentangle the effects of these covariates, we found that the presence of 162	

candidate toxic RNA fragments predicted slow growth in both BL21 and DH5α cells, 163	

whereas CAI and GC3 did not (Methods). This suggests that the apparent correlation of CAI 164	

or GC content with fitness, observed in this and previous studies2, 16, might result from the 165	

confounding effect of toxic RNA fragments (Supp Figure 6A, B). Consistently, an 166	

experiment with 22 new, unrelated synonymous GFP constructs spanning a wider range of 167	

GC content showed no correlation between GC content and bacterial growth (Supp Figure 168	

6C, D). To further test whether toxicity could be explained by unusually high expression of 169	

certain GFP variants, we measured the mRNA abundance of 79 toxic and non-toxic RNAs by 170	

Northern blots, and correlated GFP mRNA abundance per cell with OD. Although we 171	

observed differences in mRNA abundance, mostly related to mRNA folding 2, we find no 172	

significant correlation between RNA abundance and toxicity (Spearman rho=0.12, p=0.29). 173	

Furthermore, we detected no consistent differences in plasmid abundance between toxic and 174	

nontoxic variants. 175	
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To study the molecular mechanisms of toxicity caused by mRNA overexpression, we aimed 176	

to evolve genetic suppressors of this phenotype. We selected several GFP constructs that 177	

showed both strong toxicity and moderate or high GFP fluorescence, and plated bacteria 178	

containing these constructs on LB agar plates with IPTG and ampicillin. We observed a 179	

number of large white colonies that apparently expressed no GFP, and smaller bright green 180	

colonies producing high amounts of the GFP protein (Figure 4A). We hypothesized that the 181	

green colonies have acquired a genomic mutation that allowed cells to survive while 182	

expressing toxic RNAs. To support this, we cured the evolved strains of their respective 183	

plasmids and re-transformed the cured strains with the same plasmid. The re-transformed 184	

strains readily formed bright green colonies on IPTG+ampicillin plates, and exhibited faster 185	

growth rates in IPTG medium compared to the parental strain. This supported our hypothesis 186	

that the mutations were located on the chromosome and not the plasmid. We therefore 187	

selected 22 evolved strains and the parental strain for genome sequencing, and used the 188	

GATK pipeline for calling variants (Methods). 189	

In all green suppressor strains, we found a single cluster of mutations in the Plac promoter of 190	

the T7 polymerase gene that explains the suppressor phenotype (Figure 4B, C, Supp Table 1). 191	

The parental BL21 strain contains two alleles of the Plac promoter: the wild-type allele PlacWT 192	

controls the lac operon, and a stronger derivative allele PlacUV5 controls T7 RNA polymerase. 193	

In the suppressor strains, recombination between these two loci associates PlacWT promoter 194	

with T7 polymerase, leading to reduced levels of polymerase and presumably to reduced 195	

transcription of GFP. The same Plac promoter mutations were recently observed in the 196	

C41(DE3) and C43(DE3) strains of E. coli (the "Walker strains"), and were responsible for 197	

the reduced T7 RNA polymerase expression, high-level recombinant protein production, and 198	

improved growth characteristics of those strains 22-24. Similar to our suppressor strains, 199	

C41(DE3) and C43(DE3) allowed high protein expression of toxic GFP variants, and little 200	

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/344002doi: bioRxiv preprint first posted online Jun. 11, 2018; 

http://dx.doi.org/10.1101/344002
http://creativecommons.org/licenses/by/4.0/


toxicity was observed in these strains (Figure 4D). Taken together, these results support our 201	

conclusion that high levels of RNA, rather than RNA translation or protein, are responsible 202	

for toxicity. 203	

To test whether translation-independent RNA toxicity might affect genes other than GFP, we 204	

turned to the ogcp gene, which encodes a membrane protein Oxoglutarate-malate transport 205	

protein (OGCP) believed to be toxic for E. coli. OGCP overexpression was originally used to 206	

derive the C41(DE3) strain, now commonly used for recombinant protein expression 22. As 207	

expected, we found that expression of OGCP was toxic to BL21 but not to C41(DE3) cells. In 208	

agreement with our observations for GFP, a translation-incompetent variant of OGCP lacking 209	

the Shine-Dalgarno sequence was just as toxic to BL21 cells as a translation-competent 210	

variant (Supp Figure 7). A translation-competent, codon-optimized variant of OGCP retained 211	

toxicity in BL21 cells. These experiments suggest that translation-independent RNA toxicity 212	

might be a widespread phenomenon associated with heterologous gene expression in E. coli. 213	

Heterologous protein expression is known to inhibit growth of E. coli. Toxicity is typically 214	

attributed to the foreign protein itself, and it is often remedied by lowering expression, 215	

reducing growth temperature, or using special strains of E. coli such as C41(DE3). Here we 216	

demonstrate that the same strategies and strains also prevent toxicity when RNA, rather than 217	

protein, is the toxic molecule. We speculate that other cases of toxicity, previously attributed 218	

to proteins, may in fact be caused by RNA. Although the molecular mechanisms of RNA 219	

toxicity are presently unclear, we identified several GFP and OGCP variants with similar 220	

phenotypes, suggesting that the phenomenon may be common. Interestingly, induction of 221	

wild-type APE_0230.1 in E. coli inhibits growth, but a codon-optimized variant does not 222	

inhibit growth despite increased protein yield 25. In addition, several recent high-throughput 223	

studies found unexplained cases of slow growth or toxicity upon the expression of various 224	
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random sequences in E. coli 14, 26, 27. Our results point to RNA toxicity as a possible cause of 225	

these observations. 226	

Our results are relevant to the phenomenon of synonymous site selection in microorganisms. 227	

Synonymous mutations can influence fitness directly (in cis), by changing the expression of 228	

the gene in which the mutation occurs 12, 13, 15, or indirectly (in trans), by influencing the 229	

global metabolic cost of expression 2, 14, 16, 28. Experiments with essential bacterial genes 230	

predominately uncover cis-effects, most of them mediated by changes of RNA structure or 231	

other properties that influence translation yield. For example, mutations in Salmonella 232	

enterica rpsT downregulated the gene, and could be compensated by additional mutations in 233	

or around rpsT or by increase of the gene copy number 13. Similarly, mutations that disrupted 234	

mRNA structure of the E. coli infA gene, through local or long-range effects, explained much 235	

variation in fitness across a large collection of mutants 12. Protein abundance and RNA 236	

structure contribute to the observed trans-effect of mutations 14. Although our results are 237	

broadly consistent with a role of RNA structure, the specific structure is unknown, and the 238	

effects we uncovered are translation-independent, suggesting that a novel mechanism is 239	

involved. Toxic RNAs might interact with an essential cellular component, either nucleic acid 240	

or protein, and interfere with its normal function. Such interactions might be uncovered by 241	

pulldowns of toxic RNAs combined with sequencing or mass spectrometry. Alternatively, 242	

RNA phase transitions may be involved; such transitions have been shown to contribute to 243	

the pathogenicity of CAG-expansion disorders in Eukaryotes, providing a mechanistic 244	

explanation for this phenomenon 29. Further studies will address the mechanisms, 245	

biotechnology applications, and evolutionary consequences of RNA toxicity in bacteria.  246	
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Supplementary Methods  247	

Genes, plasmids and bacterial strains 248	

We used a collection of 347 individually cloned full-length synonymous variants of the GFP 249	

gene. 154 of these variants came from our previous study 2, while the others were ordered as 250	

gBlocks from Integrated DNA Technologies (IDT), generated from existing variants by DNA 251	

shuffling 19 or made by site-directed mutagenesis, as described below. The coding sequences 252	

of all variants are provided as a fasta file. The GFP library was cloned into the Gateway entry 253	

plasmid pGK3, and then into Gateway destination plasmids pGK8, a T7 promoter-based 254	

expression plasmid, and pGK16, an expression plasmid with a bacterial trp/lac promoter 2. 255	

Expression from both plasmids is IPTG-inducible; pGK8 produces untagged GFP, whereas 256	

pGK16 encodes a 28-codon 5'-terminal tag with weak mRNA secondary structure, known to 257	

facilitate expression 2. pGK8 was used for GFP expression in the strain BL21-Gold(DE3) [E. 258	

coli B F- ompT hsdS(rB
- mB

- dcm+ Tetr gal λ(DE3) endA Hte], in C41/C43 strains (Lucigen) 259	

22, and in evolved suppressor strains (see below). pGK16 was used for expression in the 260	

DH5α strain [F- Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17(rk
-, 261	

mk
+) phoA supE44 thi-1 gyrA96 relA1 λ-] 262	

Growth assays 263	

For growth rate analysis, three independent colonies of E. coli cells carrying each construct of 264	

GFP were grown overnight at 37°C in a 96-well plate with 2 ml wells, with constant shaking 265	

(320 rpm), until the cultures reached saturation. Following that, the culture was diluted 1:100 266	

in 200 µl of LB containing ampicillin (100 µg/ml) in a 96-well plate (Cat No. 655180, 267	

Cellstar). The plate was covered with its lid and placed in an automated plate reader (Tecan 268	

Infinite M200 Pro/ Tecan Sunrise). After an hour of incubating the plate at the appropriate 269	

temperature, typically 37°C, with constant orbital shaking (amplitude-1.5 mm, frequency-335 270	

rpm), the cultures were induced with 1 mM IPTG. Subsequent to induction, plates were 271	
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incubated in the plate reader with constant shaking as before. To avoid condensation while 272	

adding IPTG we retained the lid of the plate in the plate reader chamber which was 273	

maintained at 37°C and we avoided prolonged manipulation of plate outside the plate reader. 274	

To avoid excessive evaporation of cultures and test for potential contamination, we placed 275	

media without bacterial cultures in the external rows and columns of each plate, and only 276	

used internal wells for experiments. Optical density (OD) was measured at 595nm and GFP 277	

fluorescence was measured with excitation at 485 nm and emission at 515 nm, at fixed time 278	

intervals over a period of 6-8 hrs (or 24 hrs in the low-temperature growth assays). LB-only 279	

wells were used to normalize the background OD and fluorescence. Bacterial growth rate and 280	

fluorescence represent means from three independent experiments, with three replicate 281	

measurements in each experiment.  282	

We calculated the growth rates of IPTG-induced cultures as the slope of log2(OD) against 283	

time, normalized to the slope of  non-induced cultures. Thus: 284	

 285	

   growth rate = λinduced / λnoninduced, 286	

    287	

where λ = (log2(ODt) - log2(OD0)) / t; OD0 and ODt represent the optical densities at the 288	

beginning and end of a time interval, and t represents the duration of the time interval. We 289	

defined the time interval as the interval between 1 h and 2.5 h after induction, with a further 290	

restriction that the OD of cells is between 0.1 and 1.0. 291	

This formula gives a negative growth rate when the OD of the induced culture decreases over 292	

time, seen for example for GFP_170 in Figure 1B. We explain the slight reduction of OD by 293	

the lysis of a fraction of cells, mediated by expression of the toxic constructs. Indeed, we 294	

could observe cell lysis of GFP_170-expressing cells under the microscope. 295	

 296	
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Typically, the growth rate formula is applied to exponentially growing cells, and only gives 297	

positive values for such cells. In our experiments, although non-induced cells grew 298	

exponentially (Figure 1A), the growth rate of induced cells changed over time (Figure 1B), 299	

due to the combination of reduced growth following the expression of toxic constructs, partial 300	

cell lysis, and emergence of suppressors. Thus, the formula is only meant to approximate the 301	

behaviour of cells and provide a combined estimate of toxicity. 302	

Graphs were plotted using GraphPad Prism 7 Software. 303	

Cell viability assay 304	

The viability of bacterial cultures was estimated by spot assay or more quantitatively by 305	

measuring the colony forming units. For spot assays, BL21 strains carrying a subset of GFP 306	

constructs were grown in 2 ml LB with ampicillin, overnight in 14 ml falcon tubes with snap 307	

cap, at 37°C. Following growth to saturation, cells were diluted 1:100 in LB containing 308	

ampicillin (100 µg/ml) and allowed to grow until OD reached ~0.5. Cultures in exponential 309	

phase were then diluted in LB (a factor of 10 between each step) and spotted on to LB plates 310	

containing Ampicillin (100 µg/ml) and 1 mM IPTG. Plate containing no IPTG were used as 311	

control to show equal number of cells were spotted. A volume of 10 µl was used for spotting. 312	

For quantitative measurements, exponential phase cultures were induced with 1 mM IPTG. 313	

Following induction, 1 ml of culture was aliquoted at every 1 hr interval and appropriately 314	

diluted (depending on OD) and 100 µl of appropriate dilution was spread on LB-Agar plates 315	

containing ampicillin (100 µg/ml). For each culture two different dilutions were spread at 316	

each time point in duplicate. Plates were then incubated at 37°C until colonies appeared on 317	

them. Viability was assessed by counting the colony forming units (cfu/ml) from the plates. 318	

Microscopic analyses of viability 319	

Microscopy slides were prepared as previously published 30. Briefly, two plain microscopy 320	

slides were cleaned with absolute ethanol. One of the two plastic covers of a gene frame 321	
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(ABgene; 10 mm x 10 mm) was removed and the adhesive side pressed onto the centre of a 322	

glass slide. 1.5% Low Melting Point (LMP) agarose was dissolved in MQ water. 60 µl of the 323	

warm agarose solution was pipetted into the centre of each gene frame. The second glass 324	

slide was placed on top of the gene frame, avoiding the formation of any air bubbles. The 325	

sandwiched slides were allowed to set at 4°C for one hour. Then the upper glass slide was 326	

removed by sliding off gently from the agarose bed. BL21 cultures were grown in LB with 327	

ampicillin until OD reached ~0.2-0.3, following which they were induced with 1 mM IPTG. 328	

Un-induced cultures served as control. Subsequent to induction, aliquots were taken at 329	

appropriate time points. 1 µl propidium iodide (Life Technologies, 1mg/ml solution), that 330	

stains dead cells preferentially, was added to the aliquots. The tubes were then incubated at 331	

room temperature in dark for 5 minutes. 4 µl of culture was mounted onto the agarose bed 332	

and evenly spread on the agarose bed by turning the slide up and down. A clean glass 333	

coverslip was adhered to the upper adhesive side of the gene frame avoiding any air bubbles.  334	

Slides were imaged using using 100X Lens on a Zeiss Axio-Observer Z1 inverted 335	

microscope (Carl Zeiss UK, Cambridge, UK), with a ASI MS-2000 XY stage (Applied 336	

Scientific Instrumentation, Eugene, OR). Samples were illuminated using brightfield or a 337	

Lumencor Spectra X LED light source (Lumencor Inc, Beaverton, OR) complete with 338	

Chroma #89000ET single excitation and emission filters (Chroma Technology Corp., 339	

Rockingham, VT) and acquired on an Evolve EMCCD camera (Photometics, Photometrics, 340	

Tucson, AZ). GFP and RFP channels were used to image GFP and Propidium iodide (GFP-341	

excitation: 470/22 nm, dichroic: 495 nm emission: 520/28 nm, RFP- excitation: 542/33 nm, 342	

dichroic: 562 nm emission: 593/40 nm). Image was captured using Micromanager 343	

(https://open-imaging.com/). For each microscopy slide, at least 10 independent fields were 344	

imaged in multi-channel acquisition mode, whilst remaining as unbiased as possible in order 345	
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to obtain a true representation of the cell number and morphology of cells in the culture. 346	

Acquired images were analysed using ImageJ software. 347	

Generation of additional mutated constructs 348	

To prevent the ribosomes from translating, we mutated the Shine-Dalgarno (SD) sequence in 349	

seven GFP constructs. All mutations were performed in the pGK3 plasmid 2, using a site 350	

directed mutagenesis protocol 31, employing AccuPrime™ Pfx DNA Polymerase (Thermo 351	

Fisher Scientific). The RBS site aaGAAGGA was changed to tgTTCTCT. The oligos used 352	

were SD_mut_Forward and SD_mut_Reverse primers (see List of oligos).  The mutations 353	

were confirmed by sequencing and the constructs were then sub-cloned into pGK8 using 354	

Gateway cloning. The constructs were then transformed into BL21 cells and growth rates and 355	

fluorescence were analysed as described above. 356	

Constructs expressing: 1) 132 nt fragments of GFP_012 and GFP_170 with and without start 357	

and stop codons ("Frag" and "Frag_(s+s)"), 2) GFP_012 and GFP_0170 with stop codons at 358	

136th and 157th codon ("Stop1" and "Stop2"), and 3) GFP_012 and GFP_170 with 359	

transcription terminator sequence inserted at 492 nt position ("TT"), were generated as 360	

follows: 132 nt of GFP_170 and its corresponding region on GFP_012 were PCR-amplified 361	

using oligos containing BamHI and EcoRI sites (see List of oligos), for cloning into pGK3 362	

plasmid. Start and stop codons were also added to the respective oligos in case of Frag_(s+s) 363	

constructs. To introduce TAA stop codons at 136th and 157th codon positions, site directed 364	

mutagenesis was carried out using specific oligos on pGK3-GFP_012 and pGK3-GFP_170 365	

plasmids. In the same way we introduced stop codons in all three reading frames at the 157th 366	

and 215th codon positions of plasmid pGK3-GFP_170. To introduce Transcription 367	

Terminator (TT), 5’end phosphorylated oligos containing 57 nt sequence of TT, were self-368	

annealed and cloned into the HpaI site of GFP_012 and GFP_170, on pGK3 plasmid. To fuse 369	

FLAG tags with the toxic fragment of GFP_170 (514-642bp) in all three reading frames, we 370	
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amplified the GFP fragment from pGK3-GFP_170 with a forward primer containing a 371	

BamHI site and three individual reverse primers containing the FLAG tag in three different 372	

reading frames along with an EcoRI site. All the above constructs were cloned into pGK3, 373	

confirmed by sequencing and subcloned into pGK8 by Gateway cloning. All pGK8 374	

constructs were then transformed into the BL21 strain and growth and fluorescence were 375	

analysed as above. 376	

DNA shuffling was performed as previously reported 19, with minor modifications. Briefly, 377	

an incomplete DNase I digestion of equimolar concentrations of the two variants was carried 378	

out in the presence of 5 mM MnCl2. Mn2+ ions in the reaction ensure DNaseI digests both 379	

strands of DNA at approximately the same sites 32. To achieve controlled digestion DNase I 380	

treatment was performed for only 2 minutes at 15°C before inactivating the enzyme at 90°C 381	

for 5 minutes. Digested products were assembled by primerless assembly to obtain larger 382	

fragments of expected size. Assembly PCR was performed using Q5 high fidelity DNA 383	

polymerase (NEB) and PCR conditions were as follows: Annealing temperature:45°C, 384	

extension time:30 secs for 40 cycles. The above step was followed by re-amplification with 385	

oligos pENTR_seq_U6 and pENTR_seq_L3. We obtained 36 GFP constructs from this 386	

experiment that were made of randomly shuffled fragments of GFP_012 and GFP_170. The 387	

shuffled variants encoding the GFP protein sequence were cloned into the pGK16 vector 388	

using Gateway cloning and transformed into DH5α for analysis of growth phenotype. 389	

To make synonymous mutations in the region spanning nts 534-642 in GFP_170, we 390	

designed degenerate oligos in five windows of 20-25 base pairs. In each window all wobble 391	

positions were mutated synonymously, allowing all possible changes at a given position. Site 392	

directed mutagenesis was performed using oligo sets A, B, C, D and E (see list of oligos) and 393	

AccuPrime Pfx DNA Polymerase (Thermo Fisher Scientific). All mutagenesis were carried 394	

out on the pGK3-GFP_170 plasmid. Mutations were confirmed by sequencing and the 395	
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constructs were then sub-cloned into pGK8. The number of mutations per construct that we 396	

generated ranged from 2-9 and we obtained 98 constructs from five sets of PCRs. Single 397	

mutations were also generated in the region spanning 540-620 bp. Each wobble position was 398	

mutated synonymously, allowing all possible changes. We generated 36 constructs such that 399	

each construct had only one synonymous mutation per construct at a given codon in the 400	

region. Codons which were exactly the same between GFP_012 and GFP_170 were not 401	

mutated. 402	

Bovine mitochondrial 2-oxoglutarate carrier protein (OGCP) constructs: wild type OGCP 403	

(OGCP_WT), OGCP with Shine-Dalgarno sequence changed from GAAGGA to TTCTCT 404	

and with no start codon (OGCP_noRBS), OGCP with E. coli-optimized codons (OGCP_CO), 405	

were purchased as gBlocks from IDT. 406	

mKate2 constructs: A mKate2 gene fusion with the toxic fragment of GFP_170 was also 407	

ordered as a gBlock from IDT. The fragment contained BamHI and EcoRI sites for cloning 408	

into the pGK3 plasmid. The mKate2 gene by itself was amplified from the mKate-GFP_170 409	

fusion construct using primers containing BamHI and EcoRI sites for cloning into pGK3. All 410	

constructs were confirmed by sequencing and subcloned into pGK8 by Gateway cloning. 411	

Isolation and validation of genetic suppressors 412	

BL21 cells carrying several GFP variants (both toxic and non-toxic) were plated on LB 413	

agar supplemented with Ampicillin (100 µg/ml) and 1 mM IPTG. We obtained two kinds 414	

of colonies on the plates: highly fluorescent small colonies and large white colonies. We 415	

picked primarily the green colonies and a few white colonies for further analyses. All the 416	

colonies that were picked were plated on LB Agar+Amp plates. All green and some white 417	

colonies grew on Amp plates while some of the whites couldn’t grow any further on Amp 418	

plates. 37 colonies that grew on Amp plates (30 green and 7 white) were selected for 419	
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further study. The growth rate and GFP fluorescence levels were measured for all colonies 420	

as described above. 421	

To validate that the mutation that affects the survival of cells on IPTG is located on the 422	

chromosome and not on the plasmid itself, we cured the strains of the plasmid. For curing, 423	

the colonies were streaked on LB Agar plates in absence of Ampicillin repeatedly for at 424	

least 3-4 rounds. Colonies obtained after growing without antibiotic selection were further 425	

replica plated on LB Agar and LB Agar+Amp. Colonies that grew on only LB Agar but 426	

not on LB Agar+Amp were cured of the plasmid. These cured strains were re-transformed 427	

with the same GFP variants from which they were isolated. After re-transformation these 428	

cured strains were plated on LB Agar+Amp+IPTG plates. We obtained only bright green 429	

colonies from the re-transformed cured strain that was originally bright green. However, 430	

the cured strain from white colonies, on retransformation with the same GFP plasmid, 431	

produced a mix of green and white colonies on IPTG plates. 432	

To further validate that the mutation was not located on the plasmid we isolated plasmids 433	

from the 37 colonies, and transformed them into fresh competent BL21 strain and assayed 434	

the growth and fluorescence. The phenotype was the same as in the parental strains, 435	

showing that the isolated plasmids did not carry any mutations that affected the phenotype. 436	

To identify the genomic mutations that conferred the suppressor phenotype we selected 22 437	

suppressors (green=18, white=4) for genome sequencing. We also sequenced the genomic 438	

DNA from two independent BL21 parental colonies to serve as reference and control 439	

during the analysis of genome sequences. 440	

Analysis of genome sequence and variant calling 441	

Chromosomal DNA was isolated using the Wizard® Genomic DNA Purification Kit 442	

(Promega, U.S.A.) according to the manufacturer’s instructions. The concentration of 443	

genomic DNA was estimated by Qubit dsDNA BR Assay Kit (ThermoFischer Scientific). 444	
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Quantitation and quality control of genomic DNA was performed on a Bioanalyzer 445	

(Edinburgh Genomics UK). Genomic DNA samples were supplied in required 446	

concentrations for Nextera XT Library preparation, followed by 250-bp paired-end HiSeq 447	

Illumina sequencing (Edinburgh Genomics, UK). 448	

The reads were mapped onto the reference genome sequence of BL21-Gold(DE3) 449	

(GenBank Accession ID CP001665.1) with default settings using bwa 33. PCR duplicates 450	

were marked using Picard tools (http://broadinstitute.github.io/picard/). Genomic variants 451	

(SNPs, indels and insertions) were called using GATK 34. We used GATK haplotype caller 452	

with ploidy=1, stand_call_conf=30 and stand_emit_conf=10. Variants were filtered with 453	

parameter settings: DP<9.0 and QUAL<10.0. Bedtools 35 was used to detect unique 454	

variation in our suppressor strains in comparison to the control strain and the reference 455	

genome. Finally, the identified variations were confirmed by targeted PCR amplification 456	

followed by Sanger sequencing. As the lac promoter is duplicated in the BL21-Gold(DE3) 457	

strain, wild type lac promoter (PlacWT) and the lacUV5 promoter(PlacUV5)driving the 458	

expression of T7 polymerase, we obtained dual peaks in targeted sequencing of PlacUV5 459	

promoter region. To resolve this we carried out a detailed analysis of this region by extracting 460	

all read pairs where one read of the pair was mapped on to an unduplicated region and the 461	

read pairs were unambiguously assigned to the specific loci on the genome. The genome 462	

sequencing results can be accessed on https://www.ncbi.nlm.nih.gov/sra/SRP149903. 463	

Statistical analyses 464	

We annotated the GFP sequences with a range of sequence-derived parameters and 465	

experimental measurements. The codon adaptation index (CAI) was calculated as in 2 466	

using codon optimality scores from 36. GC3 content (GC content at the third positions of 467	

codons) was calculated by dividing the number of G- and C-ending codons by the total 468	

number of codons. Folding energy within the window (-4 to +38) relative to the translation 469	

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/344002doi: bioRxiv preprint first posted online Jun. 11, 2018; 

http://dx.doi.org/10.1101/344002
http://creativecommons.org/licenses/by/4.0/


start codon 2 was calculated using hybrid-ss-min from the UNAFold package 37. 470	

Translation initiation rate was calculated in a window  from -40 to +60 relative to the start 471	

codon using the RBS Calculator 18. Growth rate was calculated as described in the "growth 472	

assays" section above. OD was measured 3 hr after IPTG induction, after subtraction of 473	

LB-only background. OD and fluorescence measurements from a previous study 2 were 474	

used after converting their units to units measured in the present study with a linear least 475	

squares model. Protein level measurements by Coomassie staining and RNA 476	

measurements by Northern blotting were from a previous study 2. Protein abundance per 477	

cell was calculated by dividing protein fluorescence by OD. 478	

To map the toxicity-determining region of GFP_170 based on the DNA shuffling 479	

experiment, we used Student's t-test for each synonymous position i to compare the growth 480	

rates of variants in which position i was derived from GFP_170 and from GFP_012. We 481	

applied a Bonferroni correction for 239 tests, resulting in a p-value cutoff of 0.0002 482	

(0.05/239). In this analysis, positions 532-640 from GFP_170 were associated with 483	

significantly slower growth of shuffled variants. We conservatively defined a slightly 484	

larger fragment (nts 512-645 of GFP_170) as the putative toxicity-determining region. We 485	

subsequently narrowed down this region based on the results of mutagenesis experiments. 486	

Regression analyses were performed in the R software package. Correlations reported in 487	

the text are quantified by the Spearman rank correlation coefficient and its associated p-488	

value. We performed multiple regression analyses in order to quantify the relative 489	

importance of the various predictor variables in determining growth rates and optical 490	

densities. The output of these analyses, shown below, highlights the predominant influence 491	

of toxic mRNA fragments on growth: 492	

 493	

Multiple regression. Dependent variable: growth rate, BL21 cells 494	
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Coefficients Estimate Std. Error t value Pr(>|t|) Significance 

GFP_155_nt490-720 -0.30111 0.05081 -5.927 1.48E-07 *** 

GFP_170_nt514-645 -0.41221 0.04715 -8.743 2.05E-12 *** 

CAI 0.24554 0.1678 1.463 0.148444  

GC3 -0.03029 0.09525 -0.318 0.751524  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 495	

Residual standard error: 0.1077 on 62 degrees of freedom 496	

Multiple R-squared:  0.6612,    Adjusted R-squared:  0.6394 497	

F-statistic: 30.25 on 4 and 62 DF,  p-value: 5.752e-14 498	

 499	

Multiple regression. Dependent variable: growth rate, DH5a cells 500	

Coefficients Estimate Std. Error t value Pr(>|t|) Significance 

GFP_155_nt490-720 -0.19791 0.05044 -3.924 0.000183 *** 

GFP_170_nt514-645 -0.16322 0.03054 -5.344 8.37E-07 *** 

CAI 0.17294 0.17654 0.98 0.330226  

GC3 -0.09352 0.08833 -1.059 0.292866  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 501	

Residual standard error: 0.1071 on 80 degrees of freedom 502	

Multiple R-squared:  0.3628,    Adjusted R-squared:  0.331 503	

F-statistic: 11.39 on 4 and 80 DF,  p-value: 2.296e-07 504	

 505	

Multiple regression. Dependent variable: OD, BL21 cells 506	

Coefficients Estimate Std. Error t value Pr(>|t|) Significance 

GFP_155_nt490-720 -0.20718 0.02904 -7.135 2.29E-11 *** 
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GFP_170_nt514-645 -0.40684 0.03874 -10.501 < 2e-16 *** 

CAI 0.36495 0.08492 4.298 2.82E-05 *** 

GC3 -0.04033 0.06678 -0.604 0.547  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 507	

Residual standard error: 0.09221 on 180 degrees of freedom 508	

Multiple R-squared:  0.5559,    Adjusted R-squared:  0.546 509	

F-statistic: 56.32 on 4 and 180 DF,  p-value: < 2.2e-16 510	

Western blotting 511	

For Western blotting, BL21strains carrying non-toxic and toxic GFP constructs +/- RBS were 512	

grown in 2 ml LB with ampicillin, overnight in snap cap tubes, at 37°C. Following growth to 513	

saturation, cells were diluted 1:100 in LB containing ampicillin (100 µg/ml) and allowed to 514	

grow until OD reached ~0.5 and then induced with 1mM IPTG. Un-induced samples were 515	

collected before adding IPTG as control. After 1.5 h of induction, 1-2 ml of cultures were 516	

pelleted. Pellets were re-suspended in standard RIPA buffer and briefly sonicated in presence 517	

of Protease inhibitor (Roche) to lyse the cells. The lysate was further spun at 14000rpm for 5 518	

mins to get rid of debris and the total protein was estimated by BCA assay (Pierce BCA 519	

protein estimation kit). 10µg of protein was resolved on 10% Bis-Tris gel. Prestained 520	

PageRuler protein ladder (ThermoFisher Scientific) was used as standard. Following 521	

electrophoresis the gel was transferred onto Nitrocellulose membrane using iblot2 gel transfer 522	

device (Invitrogen). The following antibodies were used for detection: Polyclonal Anti-GFP 523	

antibody (ab290, abcam), 1:5000, and goat anti-rabbit IgG-HRP conjugate (Santa Cruz 524	

Biotech, SC2030 ), 1:10000. 525	

In the case of Flag fusion constructs, cells were grown and processed as described above. 13 526	

µg of protein was resolved on 4-12% Bis-Tris gel. Prestained Benchmark protein ladder 527	

(Invitrogen) was used as standard. The following antibodies were used for detection, Flag M2 528	
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Monoclonal antibody (F3165, Sigma), 1:2000 and goat anti-mouse IgG-HRP conjugate 529	

(Santa Cruz Biotech, SC2031), 1:10000. The membranes were developed by soaking in 530	

Chemiluminescent substrate (Protein simple) and blots were imaged on Imagequant 531	

LAS4000 (GE Healthcare). 532	

 533	

  534	
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 535	

 536	

Figure 1. GFP variants are toxic in E. coli. (A-B) Growth curves of BL21 E. coli cells, 537	

non-induced (A) or induced with 1 mM IPTG at t=0h (B). Cells carrying GFP_012 (non-toxic 538	

variant, blue), GFP_170 (toxic variant, magenta), pGK8 (empty vector control, black) and 29 539	

other variants (grey) are shown. Each curve represents an average of 9 replicates (3 biological 540	

x 3 technical). OD, optical density. (C) Numbers of colony forming units (cfu)/ml at 541	

specified time points after induction with 1 mM IPTG. Data points represent averages of 4 542	

replicates, +/- SEM. (D) Semi-quantitative estimation of BL21 cell viability by spot assay. 543	

(E) Estimated growth rates of cells expressing GFP variants in DH5α and BL21 strains 544	

(averages of at least 6 replicates). 545	

  546	
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 547	

 548	

Figure 2. Toxicity of GFP variants is independent of translation. (A-B) Fluorescence (A) 549	

and growth rate (B) of BL21 cells expressing GFP variants with functional and non-550	

functional ribosome-binding sites (RBS). (C-D) Fluorescence (C) and growth rate (D) of 551	

cells expressing full-length GFP variants, truncated variants, and variants containing internal 552	

stop codons or transcription terminators. Inset in (C) shows location of toxic sequence 553	

element in GFP_170 which was calculated based on an analysis of growth rates of 36 554	

shuffled constructs. The Y-axis shows the statistical significance of the association of 555	

particular positions with slow growth. Variants derived from non-toxic GFP_012 are shown 556	

in blue, and variants derived from toxic GFP_170 are shown in magenta. Full-length 557	

constructs, truncated constructs and constructs with internal stop codons have similar growth 558	

rates, suggesting that the element of toxicity resides within the truncated fragment and that 559	

the mechanism of toxicity is independent of translation. FL, full-length construct; TT, T7 560	

transcription terminator. All data are averages of 9 replicates, +/- SEM. 561	

  562	
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 563	

 564	

Figure 3. Multiple sequence elements determine RNA-mediated toxicity. (A) Growth 565	

rates of single synonymous mutants of GFP_170, measured in BL21 strain (averages of 9 566	

replicates). Mutations located throughout the toxic region reduce or abolish toxicity. (B) 567	

Relationship between Codon Adaptation Index (CAI) and the growth rate of GFP mutants.  568	

Asterisk-marked codons represent the original codon in GFP_170. (C) Growth estimate 569	

(optical density) of BL21 cells expressing GFP variants containing fragments: GFP_155 nt 570	

490-720 (N=16, red), GFP_170 nt 514-645 (N=6, green), and other variants (N=163, blue). 571	

(D) Spearman correlation analysis of phenotypes measured in BL21 cells and sequence 572	

covariates in a set of 190 GFP variants. The size and colour of circles represents the 573	

correlation coefficient; crosses indicate non-significant correlations. 574	

  575	
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 576	

 577	

Figure 4. Isolation and characterization of genetic suppressors of toxicity. (A) 578	

Fluorescence image of LB+Amp+IPTG Petri dish with BL21 cells expressing GFP_003 579	

variant. (B) Genetic organization of lac and DE3 loci in BL21 cells. Dashed lines indicate 580	

homologous recombination between the loci in suppressor strains. (C) Sequence variation 581	

between the three types of promoters found in the suppressor strains. Substitutions are 582	

marked in red. (D) Growth curves and fluorescence of strains carrying the GFP_003 variant: 583	

parental BL21 strain (red), suppressors strains (N=7, green), C41 and C43 strains (blue). (E) 584	

Growth rates of C41 and C43 cells expressing several GFP variants. GFP_003, GFP_100 and 585	

GFP_170 are toxic in the BL21 strain, GFP_012 and GFP_183 are not. Growth curves are 586	

averages of 3 replicates.  587	
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Supplementary Figure 1. Growth phenotypes of GFP variants. (A-B) Growth rates in 590	

BL21 cells (A) and DH5α (B) in the presence of IPTG, sorted from minimum to maximum 591	

growth rate in each strain. (C) Growth curves of DH5α cells at different temperatures (23°C, 592	

37°C and 42°C) in presence of IPTG.  At 23°C there are minor variations in growth of cells 593	

expressing GFP variants, at 37°C there are large variations, and at 42°C, some of the GFP 594	

variants fail to grow altogether. GFP_012 (non-toxic, blue), GFP_170 (toxic, magenta), other 595	

variants (grey). The growth curves represent averages of at least 6 replicates. (D) Growth 596	

curve of BL21 cells expressing GFP_170 (magenta); suppressor isolated after back-diluting 597	

cells expressing GFP_170 in presence (red) and absence (grey) of IPTG. The suppressor 598	

strain has similar growth phenotypes both in presence and absence of IPTG. 599	

  600	
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 601	

 602	

Supplementary Figure 2. Microscopic analysis of cell viability. Cell viability was 603	

estimated for BL21 cells expressing GFP_012 (non-toxic variant) and GFP_170 (toxic 604	

variant). Brightfield images give an estimate of cell morphology and densities. GFP and RFP 605	

channels were used to determine the number of cells expressing GFP and the number of dead 606	

cells stained by Propidium Iodide (PI) respectively. At 0 min (just before IPTG induction) 607	
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GFP_012 and GFP_170 cultures have similar cell densities and morphology. For cells 608	

expressing GFP_012, we see a steady increase in cell number after induction and GFP 609	

expression appears after 30 mins of induction. There is no significant cell death (PI stained 610	

cells) at any given time point. For cells expressing GFP_170 cell densities do not increase 611	

rapidly and most cells lose their morphology. We see a rapid increase in number of dead cells 612	

and the severity of the phenotype can be estimated at 240 min time point when PI staining 613	

shows only dead cells or debris from the dead cells. GFP expression is not seen for GFP_170 614	

due to a strong mRNA secondary structure at its 5’ end, impeding its translation. The scale 615	

bar is 5 µm. 616	
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 618	

 619	

Supplementary Figure 3. Measurement of GFP expression by Western blotting (A) 620	

Expression of four toxic variants of GFP in the presence and absence of RBS. UI, uninduced 621	

control; M, marker. GFP expression was analysed by probing with anti-GFP polyclonal 622	

antibody (abcam 290). Ponceau stained blot shows equal loading. (B) GFP_170 toxic 623	

fragment (nt 514-645) expression fused to FLAG tag in all three reading frames (S1, S2, and 624	

S3) was analysed by probing with monoclonal Anti-FLAG (F3165 sigma). UI, uninduced 625	

control; M, marker; C, control sample expressing two Flag-tagged proteins of size 116 and 90 626	

kDa. No FLAG expression was detected from S1, S2 or S3 constructs. 627	

  628	
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 629	

Supplementary Figure 4. The toxic element resides near the 3’end of GFP_170 and 630	

toxicity is independent of translation. (A) Growth curve for BL21 cells expressing 631	

constructs GFP_012, GFP_170 and their shuffled variants JB_015 and JB_016. JB_015 632	

consists of GFP_170 (nts 1-497) and GFP_012 (498-720); JB_016 consists of GFP_012 (1-633	

449) and GFP_170 (450-720). (B) Fluorescence of the shuffled constructs. JB_015 is non-634	

toxic and shows a low level of fluorescence; JB_016 and GFP_170 are toxic and almost non-635	
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fluorescent. (C) Growth rate of cells expressing GFP_170 constructs with internal stop 636	

codons before and after the toxic fragment (nt 514-645) in all three reading frames. TAA stop 637	

codons were inserted at nucleotide positions 469 (stop2_frame1), 470 (stop2_frame2) and 638	

471 (stop2_frame3) upstream of the toxic fragment and 643 (stop3_frame1), 644 639	

(stop3_frame2) and 645 (stop3_frame3) downstream of toxic fragment. (D) Growth curves of 640	

constructs having toxic fragment from GFP_170 fused to FLAG tag at the 3’ end in all three 641	

reading frames. All three constructs retain toxicity. (E) Growth curves of mKate2 and toxic 642	

GFP_170 fragment fused to mKate2 at the 5’ end. Fusion construct retains toxicity (F) 643	

Expression of mKate2. No fluorescence is detected when mKate2 is fused with the toxic 644	

fragment from GFP_170.  645	

 646	
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 648	

 649	

Supplementary Figure 5. Growth analysis of GFP constructs generated by shuffling and 650	

multiple synonymous mutations.  (A) 36 constructs were generated by DNA shuffling of 651	
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GFP_012 (blue) and GFP_170 (orange). All constructs encode full length GFP. Constructs 652	

are colour coded according to the sequence identity with GFP_012 and GFP_170. The 653	

constructs from top to bottom are arranged in ascending order of their growth (OD 595nm). 654	

The highlighted region shows that most constructs having sequence identical to GFP_170 655	

(orange) in 520-620 nt region are toxic. (B) An inset of the highlighted area from Panel A 656	

summarizes the results of multiple synonymous mutations that were generated in the toxic 657	

region. Each row represents a particular mutated variant and each column represents the 658	

nucleotide position. Columns highlighted orange and black represent nucleotides identical to 659	

GFP_170 and synonymous substitutions respectively. Each construct has 2-9 substitutions. 660	

Synonymous mutations in the region 534-624 nt reduce or abolish the toxicity of GFP_170 661	

but any number of synonymous mutations in 627-642 nt region had no effect on toxicity. All 662	

data are averages of 9 replicates, +/- SEM. 663	
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 665	

 666	

Supplementary Figure 6. No correlation between GC3 content and growth rate of GFP 667	

variants. (A-B) The correlation between GC3 content and growth (OD 595nm) of GFP 668	

variants in BL21 cells is driven by two toxic RNA fragments shared between a number of 669	

variants: GFP_155 nt 490-720, and GFP_170 nt 514-645, marked in orange. After removal of 670	

these variants (panel B), we no longer see any relationship between GC3 content and growth. 671	

(C-D) There is no relationship between GC3 content and growth in an independent set of 22 672	

GFP constructs, either in DH5α (C) or BL21 (D) strains. All data are averages of 9 replicates, 673	

+/- SEM. 674	
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 676	

 677	

Supplementary Figure 7. Spot assay for semi-quantitative estimation of cell viability of 678	

BL21 cells expressing OGCP variants. OGCP-WT (wild type OGCP), OGCP_noRBS 679	

(OGCP lacking functional RBS) and OGCP_CO (codon-optimized OGCP) variants were 680	

cloned in pGK8 plasmid and transformed in BL21 and C43 strains. In the absence of IPTG 681	

there are no difference in the viabilities between strains or constructs; in the presence of 682	

IPTG, the three constructs are toxic in BL21 cells but not in C43 cells. 683	
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 685	

 686	

Supplementary Table 1. Analysis of suppressor genotypes. 15/18 green suppressors 687	

showed a complete replacement of PlacUV5 promoter with PlacWT, 3/18 showed replacement of 688	

PlacUV5 with PlacWeak. 3/4 white suppressors had no changes in the promoter of T7 RNA 689	

polymerase, while for 1/4 we could not definitively assign the promoter type. 690	
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