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Abstract

Semantic classes can be either things (objects with a

well-defined shape, e.g. car, person) or stuff (amorphous

background regions, e.g. grass, sky). While lots of classifi-

cation and detection works focus on thing classes, less at-

tention has been given to stuff classes. Nonetheless, stuff

classes are important as they allow to explain important

aspects of an image, including (1) scene type; (2) which

thing classes are likely to be present and their location

(through contextual reasoning); (3) physical attributes, ma-

terial types and geometric properties of the scene. To un-

derstand stuff and things in context we introduce COCO-

Stuff 1, which augments all 164K images of the COCO 2017

dataset with pixel-wise annotations for 91 stuff classes. We

introduce an efficient stuff annotation protocol based on su-

perpixels, which leverages the original thing annotations.

We quantify the speed versus quality trade-off of our pro-

tocol and explore the relation between annotation time and

boundary complexity. Furthermore, we use COCO-Stuff to

analyze: (a) the importance of stuff and thing classes in

terms of their surface cover and how frequently they are

mentioned in image captions; (b) the spatial relations be-

tween stuff and things, highlighting the rich contextual re-

lations that make our dataset unique; (c) the performance of

a modern semantic segmentation method on stuff and thing

classes, and whether stuff is easier to segment than things.

1. Introduction

Most of the recent object detection efforts have focused

on recognizing and localizing thing classes, such as cat and

car. Such classes have a specific size [21, 27] and shape [21,

51, 55, 39, 17, 14], and identifiable parts (e.g. a car has

wheels). Indeed, the main recognition challenges [18, 43,

35] are all about things. In contrast, much less attention has

been given to stuff classes, such as grass and sky, which are

amorphous and have no distinct parts (e.g. a piece of grass

is still grass). In this paper we ask: Is this strong focus on

things justified?

To appreciate the importance of stuff, consider that it

makes up the majority of our visual surroundings. For ex-

1http://calvin.inf.ed.ac.uk/datasets/coco-stuff

A large long train on a steel track.

A blue and yellow transit train leaving the station.

A train crossing beneath a city bridge with brick towers.

A train passing by an over bridge with a railway track (..).

A train is getting ready to leave the train station.

Figure 1: (left) An example image, (middle) its thing annotations

in COCO [35] and (right) enriched stuff and thing annotations

in COCO-Stuff. Just having the train, person, bench and potted

plant does not tell us much about the context of the scene, but with

stuff and thing labels we can infer the position and orientation of

the train, its stuff-thing interactions (train leaving the station) and

thing-thing interactions (person waiting for a different train). This

is also visible in the captions written by humans. Whereas the cap-

tions only mention one thing (train), they describe a multitude of

different stuff classes (track, station, bridge, tower, railway), stuff-

thing interactions (train leaving the station, train crossing beneath

a city bridge) and spatial arrangements (on, beneath).

ample, sky, walls and most ground types are stuff. Further-

more, stuff often determines the type of a scene, so it can

be very descriptive for an image (e.g. in a beach scene the

beach and water are the essential elements, more so than

people and volleyball). Stuff is also crucial for reasoning

about things: Stuff captures the 3D layout of the scene and

therefore heavily constrains the possible locations of things.

The contact points between stuff and things are critical for

determining depth ordering and relative positions of things,

which supports understanding the relations between them.

Finally, stuff provides context helping to recognize small or

uncommon things, e.g. a metal thing in the sky is likely an

aeroplane, while a metal thing in the water is likely a boat.

For all these reasons, stuff plays an important role in scene

understanding and we feel it deserves more attention.

In this paper we introduce the COCO-Stuff dataset,

which augments the popular COCO [35] with pixel-wise

annotations for a rich and diverse set of 91 stuff classes. The

original COCO dataset already provides outline-level anno-

tation for 80 thing classes. The additional stuff annotations

enable the study of stuff-thing interactions in the complex

COCO images. To illustrate the added value of our stuff an-

1
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notations, Fig. 1 shows an example image, its annotations in

COCO and COCO-Stuff. The original COCO dataset offers

location annotations only for the train, potted plant, bench

and person, which are not sufficient to understand what the

scene is about. Indeed, the image captions written by hu-

mans (also provided by COCO) mention the train, its inter-

action with stuff (i.e. track), and the spatial arrangements

of the train and its surrounding stuff. All these elements are

necessary for scene understanding and show how COCO-

Stuff offers much more comprehensive annotations.

This paper makes the following contributions: (1) We in-

troduce COCO-Stuff, which augments the original COCO

dataset with stuff annotations. (2) We introduce an annota-

tion protocol for COCO-Stuff which leverages the existing

thing annotations and superpixels. We demonstrate both the

quality and efficiency of this protocol (Sec. 3). (3) Using

COCO-Stuff, we analyze the role of stuff from multiple an-

gles (Sec. 4): (a) the importance of stuff and thing classes

in terms of their surface cover and how frequently they are

mentioned in image captions; (b) the spatial relations be-

tween stuff and things, highlighting the rich contextual re-

lations that make COCO-Stuff unique; (c) we compare the

performance of a modern semantic segmentation method on

thing and stuff classes.

Hoping to further promote research on stuff and stuff-

thing contextual relations, we release COCO-Stuff and the

trained segmentation models online1.

2. Related Work

Defining things and stuff. The literature provides defi-

nitions for several aspects of stuff and things, including:

(1) Shape: Things have characteristic shapes (car, cat,

phone), whereas stuff is amorphous (sky, grass, water)

[21, 59, 28, 51, 55, 39, 17, 14]. (2) Size: Things occur

at characteristic sizes with little variance, whereas stuff re-

gions are highly variable in size [21, 2, 27]. (3) Parts:

Thing classes have identifiable parts [56, 19], whereas stuff

classes do not (e.g. a piece of grass is still grass, but a

wheel is not a car). (4) Instances: Stuff classes are typ-

ically not countable [2] and have no clearly defined in-

stances [14, 25, 53]. (5) Texture: Stuff classes are typically

highly textured [21, 27, 51, 14]. Finally, a few classes can

be interpreted as both stuff and things, depending on the im-

age conditions (e.g. a large number of people is sometimes

considered a crowd).

Several works have shown that different techniques are

required for the detection of stuff and things [51, 53, 31, 14].

Moreover, several works have shown that stuff is a useful

contextual cue to detect things and vice versa [41, 27, 31,

38, 45].

Stuff-only datasets. Early stuff datasets [6, 15, 34, 9] fo-

cused on texture classification and had simple images com-

pletely covered with a single textured patch. The more re-

Dataset Images Classes
Stuff

classes

Thing

classes
Year

MSRC 21 [46] 591 21 6 15 2006

KITTI [23] 203 14 9 4 2012

CamVid [7] 700 32 13 15 2008

Cityscapes [13] 25,000 30 13 14 2016

SIFT Flow [36] 2,688 33 15 18 2009

Barcelona [50] 15,150 170 31 139 2010

LM+SUN [52] 45,676 232 52 180 2010

PASCAL Context [38] 10,103 540 152 388 2014

NYUD [47] 1,449 894 190 695 2012

ADE20K [63] 25,210 2,693 1,242 1,451 2017

COCO-Stuff 163,957 172 91 80 2018

Table 1: An overview of datasets with pixel-level stuff and thing

annotations. COCO-Stuff is the largest existing dataset with dense

stuff and thing annotations. The number of stuff and thing classes

are estimated given the definitions in Sec. 2. Sec. 3.3 shows that

COCO-Stuff also has more usable classes than any other dataset.

cent Describable Textures Dataset [12] instead collects tex-

tured patches in the wild, described by human-centric at-

tributes. A related task is material recognition [44, 4, 5]. Al-

though the recent Materials in Context dataset [5] features

realistic and difficult images, they are mostly restricted to

indoor scenes with man-made materials. For the task of se-

mantic segmentation, the Stanford Background dataset [24]

offers pixel-level annotations for seven common stuff cat-

egories and a single foreground category (confounding all

thing classes). All stuff-only datasets above have no dis-

tinct thing classes, which make them inadequate to study

the relations between stuff an thing classes.

Thing-only datasets. These datasets have bounding box

or outline-level annotations of things, e.g. PASCAL

VOC [18], ILSVRC [43], COCO [35]. They have pushed

the state-of-the-art in Computer Vision, but the lack of stuff

annotations limits the ability to understand the whole scene.

Stuff and thing datasets. Some datasets have pixel-

wise stuff and thing annotations (Table 1). Early datasets

like MSRC 21 [46], NYUD [47], CamVid [7] and SIFT

Flow [36] annotate less than 50 classes on less than

5,000 images. More recent large-scale datasets like

Barcelona [50], LM+SUN [52], PASCAL Context [38],

Cityscapes [13] and ADE20K [63] annotate tens of thou-

sands of images with hundreds of classes. We compare

COCO-Stuff to these datasets in Sec. 3.3.

Annotating datasets. Dense pixel-wise annotation of im-

ages is extremely costly. Several works use interactive seg-

mentation methods [42, 57, 10] to speedup annotation; oth-

ers annotate superpixels [61, 22, 40]. Some works operate

in a weakly supervised scenario, deriving full image anno-

tations starting from manually annotated squiggles [3, 60]

or points [3, 30]. These approaches take less time, but typi-

cally lead to lower quality.

In this work we introduce a new annotation protocol to

obtain high quality pixel-wise stuff annotations at low hu-

man costs by using superpixels and by exploiting the ex-

isting detailed thing annotations of COCO [35] (Sec. 3.2).

https://github.com/nightrome/cocostuff


3. The COCO-Stuff dataset

The Common Objects in COntext (COCO) [35] dataset

is a large-scale dataset of images of high complexity.

COCO has been designed to enable the study of thing-thing

interactions, and features images of complex scenes with

many small objects, annotated with very detailed outlines.

However, COCO is missing stuff annotations. In this paper

we augment COCO by adding dense pixel-wise stuff anno-

tations. Since COCO is about complex, yet natural scenes

containing substantial areas of stuff, COCO-Stuff enables

the exploration of rich relations between things and stuff.

Therefore COCO-Stuff offers a valuable stepping stone to-

wards complete scene understanding.

Fig. 2 presents several annotated images from the

COCO-Stuff dataset, showcasing the complexity of the im-

ages, the large number and diversity of stuff classes, the

high level of accuracy of the annotations, and the complete-

ness in terms of surface coverage of the annotations. We

have annotated all 164K images in COCO 2017: training

(118K), val (5K), test-dev (20K) and test-challenge (20K).

3.1. Defining stuff labels.

COCO-Stuff contains 172 classes: 80 thing, 91 stuff, and

1 class unlabeled. The 80 thing classes are the same as in

COCO [35]. The 91 stuff classes are curated by an expert

annotator. The class unlabeled is used in two situations: if

a label does not belong to any of the 171 predefined classes,

or if the annotator cannot infer the label of a pixel.

Before annotation, we choose to predefine our label set.

This contrasts with a common choice in semantic segmenta-

tion to have annotators use free-form text labels [50, 52, 38].

However, using free-form labels leads to several problems.

First of all, it leads to an extremely large number of classes,

many having only a handful of examples. This makes

most classes unusable for recognition purposes, as observed

in [38, 63]. Furthermore, different annotators typically use

several synonyms to indicate the same class. These need

to be merged a posteriori [50, 58]. Even after merging,

classes might not be consistently annotated. For exam-

ple, PASCAL Context [38] includes the classes bridge and

footbridge, which are in a parent-child relationship. If one

image has bridge annotations and another image has foot-

bridge annotations, both can describe the same concept (i.e.

footbridge), or the bridge can be another type of bridge and

therefore describe a different concept. Similarly, in SIFT

Flow [36] some images have field annotations, whereas oth-

ers have grass annotations. These concepts are semantically

overlapping, but are neither synonymous nor in a parent-

child relationship. A region with a grass field could be an-

notated as grass or as field depending on the annotator.

To prevent such inconsistencies, we decided to predefine

a set of mutually exclusive stuff classes, similarly to how

the COCO thing classes were defined. Additionally, we or-

ganized our classes into a label hierarchy, e.g. classes like

cloth and curtain have textile as parent, while classes like

moss and tree have vegetation as parent (Fig. 3). The super-

categories textile and vegetation have indoor and outdoor as

parents, respectively. The top-level nodes in our hierarchy

are generic classes stuff and thing.

To choose our set of stuff labels, the expert annotator

used the following criteria: stuff classes should (1) be mu-

tually exclusive; (2) in their ensemble, cover the vast major-

ity of the stuff surface appearing in the dataset; (3) be fre-

quent enough; (4) have a good level of granularity, around

the base level for a human. However, these criteria conflict

with each other: if we label all vegetations as vegetation, the

labels are too general. On the other extreme, if we create a

separate class for every single type of vegetation, the la-

bels are too specific and infrequent. Therefore, as shown in

Fig. 3, for every super-category like vegetation, we explic-

itly list its most frequent subclasses as choices for the anno-

tator to pick (e.g. straw, moss, bush and grass). And there

is one additional subclass vegetation-other to be picked to

label any other case of vegetation. This achieves the cover-

age goal, while avoiding to scatter the data over many small

classes. For some super-categories (floor, wall and ceiling)

we are particularly interested in the material they are made

of. Therefore we include the material type in the class defi-

nition (e.g. wall-brick, wall-concrete and wall-wood). This

enables further analysis of the materials present in a scene.

Our label set fulfills all design criteria (1-4): (1) the mu-

tual exclusivity of labels is by design and enforced through

having annotators only use the leaves of our hierarchy as

labels (Fig. 3). For the other criteria we need to look at

pixel-level frequencies after dataset collection: (2) only 6%

of the pixels are unlabeled, which is satisfactory; (3, 4) in-

terestingly, all our stuff classes have pixel frequencies in

the same range of the COCO thing classes (Fig. 5) and they

also follow a similar distribution and granularity (Fig. 3).

Intuitively, having both thing and stuff classes follow sim-

ilar distributions makes the dataset well suited to analyze

stuff-thing relations.

3.2. Annotation protocol and analysis

Protocol. We developed a very efficient protocol, special-

ized for labeling stuff classes at the pixel-level. We first par-

tition each image into 1,000 superpixels using SLICO [1],

which adheres very well to boundaries and gives superpix-

els of homogeneous size (Fig. 4). Superpixels remove the

need for manually delineating the exact boundaries between

two regions of different classes. As superpixels respect

boundaries, it is enough to mark which superpixels belong

to which class, which is a lot faster to do. Moreover, the

evenly spaced and sized SLICO superpixels result in a la-

beling task natural for humans (as opposed to superpixel al-

gorithms which yield regions that greatly vary in size [20]).



Figure 2: Annotated images from the COCO-Stuff dataset with dense pixel-level annotations for stuff and things. To emphasize the depth

ordering of stuff and thing classes we use bright colors for thing classes and darker colors for stuff classes.

We accelerate the annotation process by providing annota-

tors a size-adjustable paintbrush tool, which enables label-

ing large regions of stuff very efficiently (Fig. 4b).

We improve annotation efficiency even further by lever-

aging the highly accurate thing outlines available from

COCO [35] (Fig. 4c). We show annotators images with

thing overlays, and pixels belonging to things are clamped

and unaffected by the annotator’s brush. This results in a

lightweight experience, where the annotator merely needs

to select a stuff class (like snow) and brush over the fore-

ground object. In fact, because of the high annotation ac-

curacy of COCO things, our technique results in extremely

precise stuff outlines at stuff-thing boundaries, often beyond

the accuracy of superpixel boundaries.

As a final element in our protocol, we present our stuff

labels to the annotators using the full hierarchy. In initial

trials we found that, compared to presenting them in a list,

this reduces the look-up time of labels significantly. This

annotation protocol yields an annotation time of only three

minutes to annotate stuff in one of the COCO images, which

are very complex (Fig. 2). We release the superpixels and

the annotation tool online to allow for further analysis.

We annotated 10K images with our protocol using in-

house annotators. Afterwards, we collaborated with the

startup Mighty AI to adapt our protocol for crowdsourcing

and annotate all remaining images of COCO-Stuff.

Analysis of superpixels. We study here the quality-speed

trade-off of using superpixels. We ask a single annotator to

annnotate 10 COCO images three times, once for each of

three different modalities: (1) superpixel annotation, as we

do for COCO-Stuff; (2) polygon annotation, the de facto

standard [13, 38, 63] and (3) freedraw annotation, which

consists of directly annotating pixels with a very accurate

size-adjustable paintbrush tool, but without aid from super-

pixels. The freedraw annotations attempt to get as close

to pixel-level accuracy as possible, and we use them as

ground-truth reference in this analysis.

Table 2 shows the results for superpixel, polygon and

freedraw annotation. Compared to the freedraw reference,

polygons and superpixels are much faster (1.5x and 2.8x).

Computing pixel-level labeling agreement w.r.t. freedraw

reveals that both polygons and superpixels lead to very ac-

curate annotations (96%-97%). We also asked the annotator

to re-annotate the images with the same modality, enabling

to measure ‘self agreement’. Interestingly the self agree-

ment of freedraw is in the same range as the agreement of

superpixels and polygons w.r.t. freedraw. This shows that

the differences across annotation modalities are of similar

magnitude to the natural variations within a single modal-

ity, even by a single annotator. Hence, all three modalities

are about as accurate.

Furthermore we simulate our stuff annotation protocol

on two other datasets which were originally annotated with

polygons: SIFT Flow [36] and PASCAL Context [38]. For

each image we label each superpixel with the majority stuff

label in the ground-truth annotations. We then overlay the

existing thing annotations. This protocol achieves 98.3%

agreement with the ground-truth on SIFT Flow and 98.4%

on PASCAL Context. These findings show that superpixel

annotation is faster than conventional polygon annotation,

while providing almost the same annotations.

We found that a dominant factor for the differences in

annotation time across images is their boundary complex-

ity. Boundary complexity is defined as the ratio of pixels

that have any neighboring pixel with a different semantic la-

bel (as in the boundary evaluation in [8, 32, 33]). Fig. 6 ana-

lyzes the relationship between boundary complexity and an-

notation time of an image using different annotation modal-

ities. The linear trendlines show that there is a clear correla-

tion between annotation time and boundary complexity. We
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Figure 3: The stuff label hierarchy of the COCO-Stuff dataset.

Stuff classes are divided into outdoor and indoor, each further di-

vided into super-categories (e.g. floor, plant), and finally into leaf-

level classes (e.g. marble floor, grass). The labels used by the

annotators form the leaf nodes of the tree. Furniture classes can

be interpreted as either things or stuff, depending on the imaging

conditions. A full list of descriptions is available online1.

person

snow

Figure 4: Example of a) an image, b) the superpixel-based stuff

annotation and c) the final labeling. The annotator can quickly

annotate large stuff regions (snow) with a single mouse stroke us-

ing a paintbrush tool. Thing (person) annotations are copied from

the COCO dataset. The transparency of each layer can be regu-

lated to get a better overview. This approach dramatically reduces

annotation time and yields a very accurate labeling, especially at

stuff-thing boundaries.
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Figure 5: Pixel-level frequencies for some of the classes in the

trainval set of COCO-Stuff. For clarity, we show about 1/8 of all

classes. We can see that stuff and thing classes follow a similar

pixel frequency distribution.

Modality Speedup
Reference

agreement

Self

agreement

Superpixels 2.8 96.1% 98.7%

Polygons 1.5 97.3% 97.0%

Freedraw 1.0 - 96.6%

Table 2: A quantitative comparison of different stuff anno-

tation modalities. We use freedraw annotation as a reference

in the ’Speedup’ and ’Reference agreement’ columns. The self-

agreement between repeated runs of the same annotation modality

decreases with weaker constraints on the possible labelings.

can see that the slopes of the freedraw and polygon annota-

tion trendlines are 3.4x and 2.0x steeper than for superpix-

els. This is one of the main reasons why superpixels yield

such big improvements in annotation time on average.

https://github.com/nightrome/cocostuff/blob/master/labels.md
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Figure 6: Annotation time versus image boundary complex-

ity. Each circle indicates an image annotated using one of three

modalities. The trendlines show that annotation time for some mo-

dalities increases faster with boundary complexity than for others.

Analysis of thing overlays. We analyze thing overlays in

terms of the annotation speedup they bring and the quality

they lead to. For this we perform superpixel and freedraw

annotation with and without thing overlays. We achieve

significant speedups when using thing overlays with free-

draw annotation (1.8x) and also with superpixel annotation

(1.2x). Furthermore, the agreement of superpixel annota-

tion w.r.t. the freedraw reference is identical with and with-

out thing overlays (96.1% in both cases). This shows that

thing overlays achieve a significant speedup without any

loss in quality.

Moreover, 46.8% of the boundary pixels in COCO-Stuff

have a neighboring pixel that belongs to a thing class.

Therefore using thing overlays significantly decreases the

boundary complexity and leads to a larger speedup for free-

draw annotation than for superpixel annotation.

Across-annotator agreement. Following [63, 13] we an-

notate 30 images by 3 annotators each. For each image we

compute the label agreement between each pair of anno-

tators and average over all pairs. The mean label agree-

ment in COCO-Stuff is 73.6%, compared to 66.8% for

ADE20K [63].

3.3. Comparison to other datasets.

COCO-Stuff has the largest number of images of any se-

mantic segmentation dataset (164K). In particular, MSRC

21 [46], KITTI [23], CamVid [7], SIFT Flow [36] and

NYUD [47] all have less than 5,000 images (Table 1).

COCO-Stuff is also much richer in both the number of

stuff and thing classes than MSRC 21 [46], KITTI [23],

CamVid [7], Cityscapes [13] and SIFT Flow [36]. Com-

pared to the Barcelona [50] and LM+SUN [52] datasets, it

has 3× and 2× more stuff classes, respectively.

PASCAL Context [38] and ADE20K [63] are the most

similar datasets to COCO-Stuff. On the surface they appear

to have a very large numbers of classes (540 and 2,693),
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Figure 7: The number of stuff classes occurring in at least x

images for varying thresholds of x. Solid lines indicate the full

datasets, dashed lines the versions with only usable classes. Statis-

tics are computed on the trainval sets of three datasets.

but in practice most classes are rare. The authors of those

datasets define a set of classes deemed usable for experi-

ments (i.e. the most frequent 60 classes in PASCAL Context

and 150 classes in ADE20K). In Fig. 7 we show the number

of stuff classes that occur in at least x images, for varying

thresholds x, on the trainval sets of three datasets. COCO-

Stuff has more usable stuff classes than PASCAL Context

and ADE20K for any threshold, e.g. for x = 1, 000, there

are 5 stuff classes in PASCAL Context, 20 in ADE20K and

84 in COCO-Stuff. This means that 92% of the stuff classes

in COCO-Stuff occur in at least 1, 000 images. Further-

more, both PASCAL Context and ADE20K use free-form

label names, which lead to annotations at different granu-

larities and hence ambiguities, as discussed in Sec. 3.1. In

contrast, in COCO-Stuff all labels are mutually exclusive

and at a comparable level of granularity. Finally, PASCAL

Context and ADE20K are annotated with overlapping poly-

gons. Hence some pixels have multiple conflicting labels

at the boundaries between things and stuff. In COCO-Stuff

instead, each pixel has exactly one label.

To conclude, COCO-Stuff is a very large dataset of

highly complex images. It has the largest number of usable

stuff and thing classes with pixel-level annotations. More-

over, by building on COCO it also has natural language cap-

tions, further supporting rich scene understanding.

4. Analysis of stuff and things

In this section we leverage COCO-Stuff to analyze var-

ious relations between stuff and things: we analyze the

relative importance of stuff and thing classes (Sec. 4.1);

study spatial contextual relations between stuff and

things (Sec. 4.2); and analyze the behavior of semantic seg-

mentation methods on stuff and things (Sec. 4.3). To pre-

serve the integrity of the test set annotations, all experiments

in this section are run on the trainval set of COCO-Stuff.



Level Stuff Things

Pixels 69.1% 30.9%

Regions 69.4% 30.6%

Caption nouns 38.2% 61.8%

Table 3: Relative frequency of stuff and thing classes in pixel-

level annotations and caption nouns in COCO-Stuff.

4.1. Importance of stuff and things

We quantify the relative importance of stuff and things

using two criteria: surface cover and human descriptions.

Surface cover. We measure the frequencies of stuff and

thing pixels in the COCO-Stuff annotations. Table 3 shows

that the majority of pixels are stuff (69.1%). We also com-

pute statistics for the labeled regions in COCO-Stuff, i.e.

connected components in the pixel annotation map. We use

such regions as a proxy for class instances, as stuff classes

do not have instances. We see that 69.4% of the regions are

stuff and 30.6% things.

Human descriptions. Although stuff classes cover the

majority of the image surface, one might argue they are just

irrelevant background pixels. The COCO dataset is anno-

tated with five captions per image [35], which have been

written explicitly to describe its content, and therefore cap-

ture the most relevant aspects of the image for a human. To

emphasize the importance of stuff for scene understanding,

we also analyze these captions, counting how many nouns

point to things and stuff respectively. We use a Part-Of-

Speech (POS) tagger [54] to automatically detect nouns.

Then we manually categorize the 600 most frequent nouns

as stuff (e.g. street, field, water, building, beach) or things

(e.g. man, dog, train), ignoring nouns that do not represent

physical entities (e.g. game, view, day).

Table 3 shows the relative frequency of these nouns.

Stuff covers more than a third of the nouns (38.2%). This

clearly shows the importance of stuff according to the

COCO image captions.

4.2. Spatial context between stuff and things

Methodology. We analyze spatial context by considering

the relative image position of one class with respect to an-

other. For simplicity, here we explain how to compute the

spatial context for one particular reference class, i.e. car

(Fig. 8, second column). The explanation is analogous for

all other classes. For every image containing a car, we ex-

tract a set of car regions, i.e. connected components of car

pixels in the annotation map. Next we compute a histogram

of image pixels surrounding the car regions, with two spa-

tial dimensions (distance, angle) and one dimension for the

class label. To determine in which spatial bin a certain pixel

lands, we (1) compute the distance between the pixel and

the nearest point in the car region (normalized by image

size); (2) compute the relative angle with respect to the cen-

ter of mass of the car region.

Results. Fig. 8 shows the spatial context of eight refer-

ence classes. This visualization reveals several interest-

ing contextual relations. Trains are typically found above

railroads (thing-stuff). TVs are typically found in front

of persons (thing-thing). Tiled walls occur above tiled

floors (stuff-stuff), and roads are flanked by persons on both

sides (stuff-thing). Note that these contextual relations are

not necessarily symmetric: most cars appear above a road,

but many roads have other things above them.

For each reference class and spatial bin we also show

the conditional probability of the most likely other class as

a measure of confidence (Fig. 8, bottom). In most cases

the highest confidence is in regions above (sky, wall, ceil-

ing) or below (road, pavement, snow) the reference region,

but rarely to the left or right. Since vertical relations are

mostly support relations (e.g. ‘on top of’), this suggests that

support is the most informative type of context. For some

classes the highest confidence region is also very close to

the reference region, often indicating that another object is

attached to the reference one (person close to backpack).

As the figure shows, some classes have a rich and diverse

context, composed of many other classes (e.g. tv, road),

while some classes have a simpler context (e.g. snow-

boards always appear in the middle of snow). We quan-

tify the complexity of a reference class as the entropy of the

conditional probability distribution, averaged over all other

classes and spatial bins. The classes with highest mean en-

tropy are wood, metal and person, and those with the lowest

are snowboard, airplane and playingfield. On average, we

find that stuff classes have a significantly higher mean en-

tropy than things (3.40 vs. 3.02), showing they appear in

more varied contexts. We also find that the mean entropy is

rather constant over distances (small: 3.21, big: 3.23) and

directions (left: 3.19, right: 3.18, down: 3.20, up: 3.15).

Comparing the mean entropy of different datasets, tak-

ing into account all classes, we find that COCO-Stuff

has the highest (3.22), followed by the 60 usable classes

of PASCAL Context (2.42), the 150 usable classes of

ADE20K (2.18) and SIFT Flow (1.20). This shows the con-

textual richness of COCO-Stuff.

4.3. Semantic segmentation of stuff and things

We now analyze how a modern semantic segmentation

method [11] performs on COCO-Stuff. We compare the

performance on stuff and thing classes and hope to establish

a baseline for future experiments on this dataset.

Protocol. We use the popular DeepLab V2 [11] based on

the VGG-16 network [48] pre-trained on the ILSVRC clas-

sification dataset [43]. We use the following experimental

protocol: train on the 118K training images and test on the

5K val images. To evaluate performance we use four cri-

teria commonly used in the literature [37, 16, 8]: (1) pixel

accuracy is the percentage of correctly labeled pixels in the



train car tv person road wall-tile backpack snowboard

Figure 8: Spatial context visualizations. (Top) Each disc is for a different reference class and shows the most likely other class at each

direction and distance bin. (Bottom) The conditional probabilities of the most common class in each bin, as a measure of confidence.

The values are normalized for each reference class and range from low (blue) to high (red). We also show examples for classes with

high (person) and low (snowboard) mean entropy.

dataset, (2) class accuracy computes the average of the per-

class accuracies, (3) mean Intersection-over-Union (IOU)

divides the number of pixels of the intersection of the pre-

dicted and ground-truth class by their union, averaged over

classes [18], (4) frequency weighted (FW) IOU is per-class

IOU weighted by the pixel-level frequency of each class.

Results for all images and classes. Table 4 shows the

results using all images (row “118K (train)”). DeepLab

achieves an mIOU of 33.2% over all classes. A detailed

comparison of leading methods can be found online1.

Benefits of a large dataset. One reason for the recent suc-

cess of deep learning methods is the advent of large-scale

datasets [43, 29, 63]. Inspired by [49], we want to test

whether the performance of semantic segmentation models

plateaus at current dataset sizes or whether it benefits from

larger datasets. Following the above protocol, we train mul-

tiple DeepLab models with different amounts of training

data, keeping all training parameters fixed. Table 4 shows

the resulting performance on the validation set (rows from

1K to 118K). We can see that for all metrics, performance

significantly increases as the training set grows. We hy-

pothesize that even deeper network architectures [26] could

benefit even more from large training sets.

Is stuff easier than things? Several works found that

stuff is easier to segment than things [50, 28, 36, 51, 53, 62,

60, 63]. We argue that this is due to their choice of dataset,

rather than a general observation. Most datasets only in-

clude a small number of very frequent and coarse-grained

stuff classes, such as sky and grass (Table 1). In contrast,

COCO-Stuff features a larger number of relevant stuff la-

bels at a similar level of granularity as the existing thing la-

bels. It has a similar number of stuff and thing classes, and

a similar pixel frequency distribution for both (see Fig. 5).

As Table 4 (bottom) shows, on COCO-Stuff DeepLap

performs substantially better on thing classes than on stuff.

This shows that stuff is harder to segment than things in

COCO-Stuff, a dataset where both stuff and things are sim-

ilarly distributed. Therefore we argue that stuff is not gen-

Training

images

Class

accuracy

Pixel

accuracy

Mean

IOU

FW

IOU

1K 24.1% 46.1% 15.9% 31.0%

5K 33.8% 52.7% 23.1% 37.5%

10K 36.9% 54.6% 25.5% 39.6%

20K 40.2% 57.5% 28.6% 42.6%

40K 43.0% 61.1% 31.4% 45.7%

80K 44.9% 63.4% 32.9% 47.4%

118K (train) 45.1% 63.6% 33.2% 47.6%

stuff 33.5% 58.2% 24.0% 45.6%

things 58.3% 75.7% 43.6% 58.4%

Table 4: Rows 1K to 118K: Performance of Deeplab V2 with

VGG-16 with varying amounts of training data. We can see

that for all metrics, performance significantly increases for larger

datasets. Last two rows: Performance of the same model on stuff

and thing classes using all 118K training images in COCO.

erally easier than things.

5. Conclusion

We introduced the large-scale COCO-Stuff dataset.

COCO-Stuff enriches the COCO dataset with dense pixel-

level stuff annotations. We used a specialized stuff annota-

tion protocol to efficiently label each pixel. Our dataset fea-

tures a diverse set of stuff classes. In combination with the

existing thing annotations in COCO it allows us to perform

a detailed analysis of stuff and the rich contextual relations

that make our dataset unique. We have shown that (1) stuff

is important: Stuff classes cover the majority of the image

surface and more than a third of the nouns in human descrip-

tions of an image; (2) many classes show frequent patterns

of spatial context, and stuff classes appear in more varied

contexts than things; (3) stuff is not generally easier to seg-

ment than things; (4) the larger training set that COCO-Stuff

offers improves the semantic segmentation performance.
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