

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Rediscovering lessons of adaptation from the past

Citation for published version: Jackson, R, Dugmore, A & Riede, F 2018, 'Rediscovering lessons of adaptation from the past' Global Environmental Change, vol. 52, pp. 58-65. DOI: 10.1016/j.gloenvcha.2018.05.006

Digital Object Identifier (DOI):

10.1016/j.gloenvcha.2018.05.006

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: **Global Environmental Change**

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Rowan C. Jackson^{12*}, Andrew J. Dugmore¹³⁴ & Felix Riede²⁵⁶

- Geography, School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, Scotland, UK
- Centre for Environmental Humanities/Department of Archaeology and Heritage Studies, School of Culture and Society, Aarhus University, Moesgård Allé 20, 8270 Højbjerg, Denmark
- Human Ecodynamics Research Centre & Doctoral Program in Anthropology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016-4309, USA
- Department of Anthropology, Washington State University, College Hall 150, PO Box 644910, Pullman, WA 99164-4910, USA
- 5) Artic Research Center, Institut for Bioscience, Ny Munkegade 116, 8000 Aarhus, Denmark
- BIOCHANGE Center for Biodiversity Dynamics in a Changing World, Aarhus University, Ny Munkegade 116, 8000 Aarhus C, Denmark

Corresponding author:

Rowan C. Jackson Department of Geography School of Geoscience University of Edinburgh Drummond Street Edinburgh EH8 9XP Scotland, UK

rowan.jackson@ed.ac.uk (tel. +44(0)7807753217)

Author Contribution: All the authors of this work have contributed to writing, tables, figures and analysis involved in this paper.

Acknowledgements

We acknowledge the support of the ExEDE Doctoral Training Programme between the University of Edinburgh and Aarhus University (RJ), financial support provided by the National Science Foundation of America, (through grant 1202692 'Comparative Island Ecodynamics in the North Atlantic') (AJD). FR is generously supported by Aarhus University, especially the Faculty of Arts, and by the Danish Council for Independent Research grant 6107-00059B. We are grateful for comments on earlier drafts by Charles Withers, Timothy Kohler, Keith Kintigh and Jago Cooper and for the guidance of the two anonymous reviewers and editors at Global Environmental Change.

Abstract

We argue that the deep time perspectives offered by historical disciplines, such as archaeology and history, provide important human-scale data about climate-adaptation over long timescales, and that these insights are currently lacking in global change research and Intergovernmental Panel on Climate Change reports. Pre-modern societies are not comparable with contemporary societies, but the completed experiments they represent can offer evidence of the consequences of climate change, the challenges of uncertainty and socio-cultural limits to adaptation. The limited visibility of data on long-term human interactions with climate change in global change research could be overcome through a 'new social contract', a two-way movement between global change and historical disciplines to, 1) make use of, and apply, historical data to contemporary climate-related challenges; 2) to design robust interdisciplinary and transdisciplinary research, 3) publish synthesised research in high-impact climate-adaptation journals and 4) communicate research to the public in cultural history museums.

Title

1 2

1. Introduction

3 Anthropogenic climate change is having profound impacts on social and cultural practices, requiring 4 novel approaches to understand the interaction between culture and climate (Hulme, 2009, 2016). In 5 the last decade, numerous authors have highlighted the need for a critical integration of the social 6 sciences and humanities into Global Change Research (GCR) and associated institutional bodies, such 7 as the Intergovernmental Panel on Climate Change (IPCC; see Hulme, 2011; Castree et al. 2014). 8 Archaeology and history, however, have received little attention in mainstream the climate-adaptation 9 literature and institutional reports despite significant research at the interface between human and 10 natural systems (Riede, 2014a; Hudson et al., 2012; Hambrecht and Rockman, 2017). In this paper, 11 we address this lack by proposing a new social contract; a two-way movement by GCR and historical 12 disciplines to make use of and apply historical data to contemporary climate-related challenges. 13 14 2. Global Change Research

15 GCR examines the impacts of human activities on bio-geo-physical processes (IPCC, 2014). 16 Integrated monitoring efforts have recorded significant changes to these processes, and the crossing of 17 environmental thresholds that define safe operating spaces for humanity (Rockström et al., 2009). 18 While substantial progress has been made towards understanding physical changes to Earth system 19 processes since Assessment Report (AR) 1 (1990) of the IPCC, until IPCC AR4, the social sciences 20 and humanities had limited influence over the consideration of human dimensions within GCR 21 (Corbera et al., 2016). It is now recognised that successful responses to climate change need to 22 overcoming socio-cultural limits and barriers (Moser and Ekstrom, 2010; Barnett et al., 2015). This 23 highlights crucial issues, that include how to adjust social practices to avoid dangerous climate change 24 and to understand cultural capacities to adapt to change (Adger et al., 2013a).

25

The limited visibility of archaeology and history in GCR is perhaps unsurprising because recognisable changes to climate, driven by human activities, are a modern phenomenon and societies of the past differ from those of the present in terms of world views, technology, demography and governance structures. Hence, climate change adaptation might be considered solely a challenge for modern 30 societies and thus modern science. Indeed, global production, economic systems, demographic and 31 population trends, and-critically-modes of knowledge have changed dramatically since the 32 Enlightenment (Withers, 2005) and industrial revolutions (Urry, 2014). This development has been so 33 profound that in the case of Western societies, Hannah Arendt (1998) has characterised a new human 34 condition capable of ever-greater destruction. Linked to this, the 'Anthropocene' concept has sought 35 to define humanity's transformed relationship with the Earth system (Crutzen, 2006). The industrial 36 revolution's influence on global atmospheric composition (c. 1750-1800 AD), socio-economic trends of the post-1950 'great acceleration' (Steffen et al., 2015) and the creation of an artificial global 37 38 radionuclide marker horizon from atomic detonations (Zalasiewicz et al., 2008) are used as evidence 39 for a post-industrial global environmental threshold. But defining this threshold potentially shifts 40 attention from antecedent processes of cultural-ecological change (Erlandson and Braje, 2013) and 41 past human resource-use and decision-making in response to climate stimuli. As argued by Hartman 42 et al. (2017), the notion of the new human condition is in need of updating in light of past human-43 environment interactions, and how these impinge on the present and future of human planetary 44 stewardship.

45

46 Anthropologists Smith and Zeder (2013) have challenged the post-industrial designation of 47 Anthropocene, arguing "focus should be on cause rather than [a measurable] effect" (p.11), such as a 48 'golden spike'. The cause in question is, for Smith and Zeder (2013), the 'agricultural revolution' of 49 \sim 11,000-9000 yr BP. This period marked a significant transition in human impacts, from those of 50 hunter-gatherers to the domesticators of plants and animals (Zeder, 2015). The social and ecological 51 consequences of agriculture are significant, and their imprint is discernible today. The adoption of 52 agriculture increased and expanded human population and human-favoured taxa across the globe — 53 primarily the newly domesticated plant and animal species common to modern diets (Boivin et al., 54 2016). Major environmental impacts from Holocene agricultural expansion, such as the 55 transformation of central Eurasian forests and grasslands through grazing, are responsible for 56 engineering the familiar cultural landscapes of today (Miehe et al., 2009).

57

58 The spread of agriculture is significant to modern GCR because it fundamentally altered human 59 adaptive responses to climate variability. Whereas hunter-gatherer societies used mobility to respond 60 to climate-induced shifts in wild resource distribution, agriculturalists use past experience to inform 61 local economic decisions (Kennett and Marwan, 2015). Decisions about cropping, harvesting, 62 grazing, irrigation, grain storage, trade and political-economic integration require the navigation of 63 economic constraints and memory of climatic variability as important today as long ago. Likewise, 64 managing private and local common-pool resources is as much a socio-environmental and economic 65 challenge of the present as it was in the past (Ostrom et al., 1994, 2007).

66

Climate change, political and economic stability, food security and human migration have been major
concerns to past as well as contemporary societies, but examples of how these problems become
interrelated, and 'wicked', are missing from future scenario planning (Palmer and Smith, 2014).
History can tell us how vulnerable societies functioned before and after disaster events (Riede,
2014b), what impact cultural limits played in long-term adaptation to climate variability (Dugmore et al., 2012; Speilmann et al., 2016), and how multiple exposures undermined societal resilience
(Dugmore et al., 2013).

74

75 *3.* The Use of the Past in the Present

In the 21st century, archaeology and history have increased their efforts to apply long-term data to contemporary social and environmental challenges—including climate-adaptation and sustainability (Redman, 2005; Costanza et al., 2007). New and expanded archaeological methods, such as those using stable isotopes, statistical models and microfossil analysis, have enhanced reconstructions of human-environment interaction, human dietary response to changing resource abundance, human migration and settlement abandonment (Boivin et al., 2016; d'Alpoim Guedes et al., 2016); historians have shown how culture shapes changing ideas of climate (Adamson et al., 2018; Hulme, 2008).

84 Developing more effective interdisciplinary collaborations can provide holistic information on

85 climate-adaptation using extended timescales to explain how vulnerabilities develop across different

86	spatial and socio-cultural contexts-to reconstruct a global perspective on climate impacts and
87	adaptation in the past. Box 1 provides six well-known examples of environmental and social change.
88	North Atlantic researchers from the geosciences, historical ecology, environmental humanities and
89	social sciences have outlined the benefits of long-term integrative approaches using the comparative
90	cases of Medieval Greenland and Iceland (Box 2). In the following subsections we explore two
91	further cases of societal transformation (Classic Maya and the pre-Hispanic US Southwest) to
92	illustrate the potential of historical records and their completed experiments to inform contemporary
93	and future climate-adaptation scenario planning.
94	
95	
96	Box 1
97	
98	
99	Box 2
100	
101	
102	3.1. Classic Maya: Climate Variability, Uncertainty and Conflict
103	The decline of Classic Maya (~750-1050 AD) is among the most widely discussed cases of societal
104	"collapse" (Middleton, 2017). Recent comparative climate and archaeological research supports the
105	hypothesis that prolonged, multiyear drought triggered regional political disintegration during the
106	Terminal Classic (9th-10th centuries CE) (Kennett et al., 2012; Hoggarth et al., 2016). In wealthy Maya
107	polities, conflict and tribute-based status encouraged population agglomeration. This escalated
108	environmental stress, increasing the chance of local-scale soil erosion and reduced crop yields (Turner
109	and Sabloff, 2012). In the elevated interior of the Yucatan, an extensive dry season made settlements
110	dependent on household and urban reservoirs to store water (Dunning et al., 2012). Multiyear drought
111	increased resource stress, triggering conflict for political and economic gain over neighbouring
112	polities (Kennett and Beach, 2013). This resulted in increased political disintegration and population

decline as resource stress and conflict reinforced one another in a 'risk spiral' (Hoggarth et al., 2016,
2017; Dunning et al., 2012).

115

116 3.2. US Southwest: Climate Variability and Infrastructure Rigidity

117 Research focused on the pre-Hispanic ancestral Puebloan communities of the US Southwest has 118 examined decision-making and actions that contributed to both vulnerability and adaptive capacity 119 (Nelson et al., 2016). Using archaeological records and climate reconstructions, multidisciplinary 120 approaches have compared long-term records of social-ecological stability and change across the US 121 Southwest (Kohler et al., 2012). In the Mesa Verde region, there is a strong correlation between 122 maize-niche size and ancestral Puebloan populations. From 1200 AD, declining maize productivity 123 contributed to food shortages followed by violence and regional social collapse (Schwindt et al., 124 2016). In the Phoenix basin, Hohokam, communities successfully managed interannual water scarcity using large-scale canal networks. The irrigation capacity they generated for agricultural productivity 125 126 supported the creation of a regional-scale economy, but over-dependence on a predictable water supply formed *rigidity traps*. Extreme climatic events in the 14th century, including floods that 127 128 disrupted channel-head connections to the river, devastated irrigation infrastructures that supported 129 agriculture (Nelson et al., 2012). At a broader scale, regional networks became balkanized by social-130 ecological change, triggering depopulation and the collapse of trade networks. A comparative study 131 by Hegmon et al. (2008) found more rigidly organised settlements-including those of Mesa Verde 132 and the Phoenix Basin-to be more prone to severe transformation than less integrated and less 133 hierarchical societies such as Mimbres (and Zuni; see Speilmann et al., 2016).

134

These case studies illustrate how unanticipated and unprecedented low-frequency, multiyear drought undermined powerful institutions that managed predictable, high-frequency variability with substantial infrastructure investment (Kennett and Marwan, 2015; Nelson et al., 2012). Systems that attempt to manage social-ecological variation are more likely to become rigid and homogenous (Scheffer et al., 2012; Carpenter et al., 2015). Flexibility and redundancy is integral to socialecological resilience; helping societies withstand low frequency, high-magnitude events (Carpenter and Brock, 2008). In both Central America and the southwestern USA, medieval climate variability
exacerbated food shortage, leading to conflict and the decentralization of power. In the contemporary
world, changing patterns of resource access driven by climate have caused human displacement and
violent conflict (Barnett and Adger, 2010; Eriksen and Lind, 2009), but there remain major gaps in
climate-conflict research—and a timely opportunity for collaboration between GCR and historical
disciplines (Solow, 2013; Adger et al., 2013b; Hsiang et al., 2013; Ide, 2015).

147

148 3.3. Scenario Planning: Historical Data and QSS

149 Within archaeology and history, an increasing number of publications consider the use of historical

data for scenario-based planning and risk reduction (Riede, 2014b, 2017a, 2017b; Kennett and

151 Marwan, 2015; Rohland, 2017; Adamson et al., 2018). Many suggest that coupled climate models are

required to understand human-environment interaction (Riede, 2014a; Palmer and Smith, 2014), but

153 few focus on direct channels of engagement in existing GCR frameworks (Beckage et al., 2018).

154 Qualitative Scenario Storylines (QSS) are used by global change researchers in IPCC reports, to add

information about the potential social effects of modelled climate impacts (Rounsevell and Metzger,

156 2010). The addition of history's long-term perspective would provide valuable extra information on

157 potential outcomes of multiple, complex changes for human populations.

158

159 QSS are used to explore uncertainties about the impacts of climate model projections on societal 160 resilience (Rounsevell and Metzger, 2010). The scenario method offers plausible impact narratives in 161 the storyline and simulation approach (Metzger et al., 2010). In IPCC AR5, a range of temperature 162 and precipitation scenarios are modelled using the Special Report on Emissions Scenarios (SRES) and 163 Representative Concentration Pathway (RCP) frameworks. Model outputs are used to indicate 164 potential social-ecological impacts, such as those from heatwaves, droughts, flooding and land-use 165 change (Kovats et al., 2014). The potential outcomes of model projects are then explored using the 166 QSS method (Rounsevell and Metzger, 2010). For example, temperature and precipitation scenarios have been used to inform potential impacts on the European wine industry (Metzger and Rounsevell, 167 168 2011), flood risk (Rojas et al., 2013) and transport and infrastructure hazards (Palin et al., 2013).

- Qualitative scenarios are not predictions, but potential outcomes of climate change, based on hitherto
 observed phenomena (Bryson et al., 2010). Historical data cannot be incorporated in the same way but
 could have great relevance as 'possibilistic' scenarios (Clarke, 2007; Riede, 2014b).
- 172

173 As some archaeologists have argued, without sufficient time-depth, contemporary scenarios can be 174 constrained by the lack of diachronicity (Redman, 2005). A combination of hazard frequency and how 175 they are remembered—in collective memory and cultural knowledge (Riede, 2017a)—is likely to 176 influence society's preparedness and capacity to absorb and adjust to impacts (Wisner et al., 2004). 177 Icelanders, for example, are alert to the effects of volcanic eruptions on aviation, settlements, and 178 economic activities (Donovan and Oppenheimer, 2011). As a result of both long experience and 179 effective memory (Dugmore and Vésteinsson, 2012), Icelandic society has developed suitable crisis 180 management protocols. In contrast, continental Europe was ill-prepared for the synergistic effects of 181 the 2010 eruption of Eyjafjallajökull, persistent winds towards Europe and limited crisis management 182 (Alexander, 2013). This illustrates a key limitation of short-term datasets—they are unlikely to 183 include synergistic or conjunctive impacts of low-frequency, high-magnitude events (Dugmore and 184 Vésteinsson, 2012; Riede, 2017b). Completed experiments of the past can, however, provide effective 185 knowledge of far-reaching impacts on vulnerable social groups, critical infrastructure and resources 186 systems.

187

188 Historical data could be incorporated into QSS as examples of long-term human response to climate 189 impacts. For example, food shortages in the Medieval Norse settlements of the North Atlantic and the 190 pre-Hispanic US Southwest resulted as a consequence of socio-political and demographic instability 191 and limited access to dependable resources (Nelson et al., 2016). In these long-term cases, high 192 adaptive capacity is not equal to low vulnerability. The Greenland Norse, for example, adjusted to 193 declining home-field yields by utilising abundant marine and terrestrial wild resources (Dugmore et 194 al., 2012). Rare periods of climate variation and cooling, however, created unanticipated barriers to 195 domestic and wild resources. Unanticipated hazards, such as these, can also be reinforced by the 196 conjuncture of social, economic and political uncertainty (see Box.2). Long-term records could

10

hereby provide qualitative information for considering potential vulnerabilities arising from theinteraction of human and biophysical processes.

199

201

200 A New Social Contract for Archaeology and History

There are concerns that GCR requires better communication of 'matters of fact' to reach politically uncomfortable conclusions and cultivate 'solution-oriented' research regarding 'matters of concern' (O'Brien, 2012; Stewart and Lewis, 2017). Designing research that attends to societal concerns and engages with policy-makers, demands changes to practices of GCR (Castree, 2016). These arguments are not new, and stem from earlier calls for a 'social contract in science' that engages with public

207 concerns (Lubchenco, 1998). Disciplinary social contracts have encouraged open-access

208 communication of research (Björk et al., 2010), interdisciplinary collaboration to embolden holistic

thinking (Barnes et al., 2013), and problem-based knowledge transfer to policy-makers (Turner et al.,

210 2016).

211

In environmental archaeology and history, similar questions have been raised, about what historical disciplines can offer and what obligation there is to "engage with debates... at [the] interface between politics, public affairs and science." (Riede et al., 2016a: 1; Armstrong et al., 2017). The (sub)sections that follow form the basis for a 'new social contract'; a two-way movement in GCR and historical disciplines to (i) make use of and apply historical data to contemporary climate-related challenges, and (ii) for archaeology and history to increased engagement with GCR and climate-adaptation research.

219

220 Research design and collaboration

A key challenge for global change researchers is to use climate change as an opportunity to engage in new collaborations with archaeologists and historians, and vice versa. Many disciplines, including history and archaeology, already engage in interdisciplinary research with the natural sciences—to understand human interactions with changing environments—and with the humanities—to examine environmental knowledge through art, literature and historical texts (Hartman et al., 2017; Holm and 226 Brennan, 2018). Existing research frameworks of historical ecology and environmental humanities,

227 have forged integrated projects that combine past climate, environment and human datasets—for

example, IHOPE (Integrated History and Future of People on Earth, <u>http://ihopenet.org</u>) and PAGES

229 (Past Global Changes, <u>http://www.pastglobalchanges.org</u>). Organisations such as these aim to build

understanding of the past to inform future projections and strategies for sustainability (Costanza et al.,

2012), but more could be done to design projects that integrate historical disciplines and GCR.

232

233 Field-based research, for example, offers opportunities for engagement across disciplines (e.g.

Normand et al. 2017) and with local and indigenous groups (Barnes et al., 2013). Protecting heritage

sites from the impacts of climate change—such as rain, frost damage or sea-level rise— is both a

cultural and academic concern, and also offers an opportunity to engage and educate the public using

tangible evidence of climate impacts on their heritage (Dawson et al., 2017). Likewise,

anthropologists (including archaeologists) and geographers can learn from traditional knowledges of

climate-adaptation in indigenous communities, such as Inuit communities in the circumpolar north, by

engaging in reciprocal information exchange (Ford et al., 2015; Krupnik, 2002).

241

242 Historical social perspectives in GCR Journals

243 While many archaeologists and historians have turned their attention to contemporary climate 244 challenges, their studies still lack visibility in climate-adaptation journals and thus connections with 245 global change researchers. In AR5, for instance, 'historical perspectives' are limited to a single-page 246 box with a broad overview of climate-induced stress in past societies (IPCC, 2014: 920). Historical 247 perspectives of human interactions with environmental change are framed around the 'collapse' thesis 248 and research papers cited in this section are mostly collected from Butzer and Enfield's (2012) special 249 feature in PNAS about historical transformation in pre-modern societies. Several historical case 250 studies are cited, but restrictions on space limit a full appraisal of what historical perspectives offer to 251 climate-adaptation research.

252

253	Following the lead of Butzer and Enfield (2012), we consider it necessary for historians,
254	archaeologists and anthropologists to publish in high-impact GCR journals cited in the IPCC reports.
255	A challenge in this type of publication is to ensure that papers are framed and written in a suitable
256	way to synthesise historical and natural scientific data into concise research articles that highlight the
257	relevance of long-term perspectives and the lessons learned from past societies (Altschul et al., 2017).
258	This provides some exciting opportunities for new collaborative research between GCR and historical
259	disciplines. Table 1 shows a rank of journals publishing climate-adaptation research. Journals
260	highlighted in dark grey have aims and scope suitable for historical perspectives relevant to global
261	change, and so present a suitable opportunity to enhance these perspectives in GCR and IPCC
262	Assessment Reports.
263	
264	
265	Table 1
266	
267	
268	GCR and Public Engagement – Museums
269	In the last 30 years, museums have shifted focus from collection to educational and public
270	engagement (Black, 2005), but focus on contemporary environmental issues remains rare (Payne,
271	2015). As scientific evidence alone is insufficient to overcome public inaction, public communication
272	and inspiring action requires evidence presented as practical and relatable 'matters of concern'
273	(Marshall, 2011; Stewart and Lewis, 2017). Museums are trusted educational spaces with large public
274	attendance figures (Cameron et al., 2013). The British Museum (6.42M, <u>http://www.alva.org.uk</u>),
275	Smithsonian Museum of Natural History (7.1M, https://newsdesk.si.edu/about/stats) and National
276	Museum of China (7.55M, TEA, 2017) each engaged in excess of 6 million visitors in 2016. But
277	museums continue to play a limited role at engaging the public with the human impacts of climate
278	change (Rees, 2017; Cameron et al., 2013). Cultural history museums have the potential to exhibit
278 279	change (Rees, 2017; Cameron et al., 2013). Cultural history museums have the potential to exhibit meaningful information (matters of fact and concern) to the public because they communicate
278 279 280	change (Rees, 2017; Cameron et al., 2013). Cultural history museums have the potential to exhibit meaningful information (matters of fact and concern) to the public because they communicate tangible stories—using material evidence—of human history (Hebda, 2007).

281

282 Cultural history museums could seize a much-needed opportunity to use their potential as spaces for 283 critical thinking about current societal concerns (Cameron, 2011; Sandell, 2011), rather than 284 following linear narratives—such as the rise and fall of civilizations. Material artefacts together with 285 historical research have been used to construct accessible climate narratives, offering 'windows into 286 the past' (Hebda, 2007: 329). The 'Mild Apocalypse' exhibition at Moesgaard Museum (Denmark), 287 for example, invited visitors to explore artefacts dating from the 1950s 'golden spike', as an entry 288 point into the Anthropocene debate (Riede et al., 2016b, http://anthropocene.au.dk/exhibitions/mild-289 apocalypse-2016/). Exhibitions at Moesgaard Museum use multi-media displays to examine material 290 artefacts. This is also an essential tool for communicating climate-impacts and adaptation. The 291 Preserving Maya Heritage project between the British Museum and Google Arts and Culture, used 292 virtual reality to engage the public with archives and 'what the Maya story tells us about global 293 warming and urbanisation' (https://artsandculture.google.com/theme/HgIy1yrF4KwFJg). Narratives 294 and storylines that trace human interaction with climate, and its punctuated history, have been widely 295 discussed (Nikoleris et al., 2017), but have seen little explicit application in museums (Cameron et al., 296 2013). This presents a major opportunity to communicate matters of concern through themed 297 exhibitions showing diachronic evidence of socio-cultural and environmental change imprinted on 298 materials, texts and other records.

299

300 *Conclusion*

301 To date, historical perspectives have limited influence in GCR, and this seems to relate in part to the 302 disjunction between pre-industrial and modern societies, and the limited visibility of historical data to 303 global change researchers. Historical data has the potential to offer lessons and practical examples for 304 scenario planning, but to offer this critical perspective research must be more visible to key audiences: 305 global change researchers, policy-makers and the public. To promote this, we suggest a social 306 contract is necessary, a two-way movement in GCR and historical disciplines to make use of and 307 apply historical data to contemporary climate-related challenges, in order for (1) for new 308 collaborations between the humanities, social sciences, natural sciences to engage archaeologists and

14

- 309 historians and to connect with the public, (2) to gain visibility for historical perspectives by targeting
- 310 high-impact climate-adaptation journals, cited in the IPCC reports and across GCR, and (3) to
- 311 communicate GCR through museums of cultural history to offer the public critical and tangible
- 312 evidence of climate-adaptation and human modification of environments over human history.

Bibliography

- Adamson, C.D., Hannaford, M.J. and Rohland, E.J. (2018) Re-thinking the present: The role of historical focus in adaptation research, *Global Environmental Change* 48: 195-205.
- Adger, N., Lorenzoni, I. and O'Brien, K.L. (eds.) (2009) Adapting to Climate Change: Thresholds, Values, Governance. Cambridge: Cambridge University Press.
- Adger, N., Barnett, J., Brown, K., Marshall, N. and O'Brien, K. (2013a) 'Cultural dimensions of climate change impacts and adaptation', *Nature Climate Change* 3(2): 112-117.
- Adger, N., Barnett, J. and Dabelko, G. (2013b) Climate and war: A call for more research, *Nature* 498: 171.
- Alexander, D.E. (2013) 'Volcanic ash in the atmosphere and risks for civil aviation: A study in European crisis management', *International Journal of Disaster Risk Science* 4(1): 9-19.
- Altschul, J.H., Kintigh, K.W., Klein, T.H., Doelle, W.H., Hays-Gilpin, K.A., Herr, S.A., Kohler, T.A., Mills, B.J., Montgomery, L.M., Nelson, M.C., Ortman, S.G., Parker, J.N., Peeples, M.A. and Sabloff, J.A. (2017) Fostering Synthetic Research in Archaeology. *Proceedings of the National Academy of Sciences* 114(42): 10999-11002.

Anderson, K. (2015) Duality in climate science, *Nature Geoscience* 8: 898-900.
Arendt, H. (1998) *The Human Condition* 2nd Edn. Chicago: University of Chicago Press.

Armstrong, C.G., Shoemaker, A.C., McKechnie, I., Ekblom, A., Szabó, P., Lane, P.J., McAlvay,
A.C., Boles, O.J., Walshaw, S., Petek, N., Gibbons, K.S., Morales, E.Q., Anderson, E.N.,
Ibragimow, A., Podruczny, G., Vamosi, J.C., Marks-Block, T., LeCompte, J.K., Awâsis,
S., Nabess, C., Sinclair, P. and Crumley, C.L. (2017) Anthropological Contributions to
historical ecology: questions, infinite prospects, *PLOS ONE*<u>https://doi.org/10.1371/journal.pone.0171883</u>

- Barnes, J., Dove, M., Lahsen, M., Mathews, A., McElwee, P., McIntosh, R., Moore, F., O'Reilly, J., Orlove, B., Puri, R., Weiss, H. and Yager, K. (2013) Contribution of anthropology to the study of climate change, *Nature Climate Change* 3: 541-544.
- Barnett, J. and Adger, W.N. (2010) 'Environmental change, human security and violent conflict'. In: Matthew, R.A., Barnett, J., McDonald, B. and O'Brien, K. (Eds.) *Global environmental change and human security: Understanding Environmental Threats to Wellbeing and Livelihoods*. Cambridge: MIT Press. Pp. 119-136.
- Barnett, J., Evans, L.S., Gross, C., Kiem, A.S., Kingsford, R.T., Palutikof, J.P., Pickering, C.M. and Smithers, S.G. (2015) From barriers to limits to climate change adaptation: path dependency and the speed of change, *Ecology and Society* 20(3): 5.
- Bassett, T.J. and Fogelman, C.F. (2013) Déjà vu or something new? The adaptation concept in the climate change literature, *Geoforum* 48: 42-53.
- Beckage, B., Gross, L.J., Lacasse, K., Carr, E., Metcalf, S.S., Winter, J.M., Howe, P.D., Fefferman,
 N., Franck, T., Zia, A., Kinzig, A. and Hoffman, F.M., 2018. Linking models of human
 behaviour and climate alters projected climate change. Nature Climate Change 8 (1), 79-84.
- Björk, B-C, Welling, P. Laakso, M., Majlender, P., Hedlund, T. and Gudnason, G. (2010) Open Access to the Scientific Journal Literature: Situation 2009, *PLOS ONE* 5(6) https://doi.org/10.1371/journal.pone.0011273
- Black, G. (2005) *The Engaging Museum: Developing Museums for Visitor Involvement*. Abingdon: Routledge.
- Boivin, N. L., Zeder, M.A., Fuller, D.Q., Crowther, A., Larson, G., Erlandson, J.M., Denham, T. and
 Petraglia, M.D. (2016) 'Ecological consequences of human niche construction:
 Examining long-term anthropogenic shaping of global species distributions',

Proceedings of the National Academy of Science of the United States of America 113(23): 6388-6396.

- Buckley, B.M., Fletcher, R., Wang, S.S., Zottoli, B. and Pottier, C. (2014) Monsoon extremes and society over the past millennium on mainland Southeast Asia, *Quaternary Science Reviews* 95(1): 1-19.
- Butzer, K.W. (2012) Collapse, environment, and society, *Proceedings of the National Academy of Sciences* 109(10): 3632-3639.
- Butzer, K.W. and Enfield, G.H. (2012) Critical Perspectives on Historical Collapse, *Proceedings of the National Academy of Sciences* 109(10): 3628-3631.
- Cameron, F. and Deslandes, A. (2011) 'Museums and science centres as sites for deliberate democracy on climate change', *Museum and Society* 9(2): 136-153.
- Cameron, F., Hodge, B. and Salazar, J.F. (2013) 'Representing climate change in museum space and places', *Wiley Interdisciplinary reviews: climate change* 4(1): 9-21.
- Carleton, W.C., Campbell, D. and Collard, M. (2014) A reassessment of the impact of drought cycles on the Classic Maya, *Quaternary Science Reviews* 105: 151-161.
- Carpenter, S.R. and Brock, W.A. (2008) Adaptive Capacity and Traps, Ecology and Society 13(2): 40.
- Carpenter, S.R., Brock, W.A., Folke, C., van Nes, E.H. and Scheffer, M. (2015) Allowing variance may enlarge the safe operating space for exploited ecosystems, *Proceedings of the National Academy of Sciences* 112(46): 14384-14389.
- Castree, N. (2016) 'Geography and the new social contract for global change research', *Transactions* of the Institute of British Geographers 41(3): 328-347.
- Castree, N., Adams, W.M., Barry, J., Brockington, D., Büscher, B., Corbera, E., Demeritt, D., Duffy,
 R., Felt, U., Neves, K., Newell, P., Pellizzoni, L., Rigby, K., Robbins, P., Robin, L.,
 Rose, D.B., Ross, A., Schlosberg, D., Sörlin, S., West, P., Whitehead, M. and Wynne, B.
 (2014) 'Changing the intellectual climate', *Nature Climate Change* 4: 763-768.
- Clarke, L. (2007) 'Thinking possibilistically in a probabilistic world', Significance 4(4): 190-192.

- Corbera, E., Calvet-Mir, L., Hughes, H. and Paterson, M. (2016) 'Patterns of authorship in the IPCC Working Group III report', *Nature Climate Change* 6: 94-99.
- Costanza, R., Graumlich, L., Steffen, W., Crumley, C., Dearing, J., Hibbard, K., Leemans, R., Redman, C. and Schimel, D. (2007) 'Sustainability or collapse: what can we learn from integrating the history of humans and the rest of nature?', *AMBIO: A Journal of the Human Environment* 36(7): 522-527.
- Costanza, R., van der Leeuw, S., Hibbard, K., Aulenbach, S., Brewer, S., Burek, M., Cornell, S.,
 Crumley, C., Dearing, J., Folke, C., Graumlich, L., Hegmon, M., Heckbert, S., Jackson,
 S.T., Kubiszewki, I., Scarborough, V., Sinclair, P., Sörlin, S. and Steffen, W. (2012)
 'Developing an Integrated History and Future of the People on Earth (IHOPE)', *Current Opinion in Environmental Sustainability* 4: 106-114.
- Crumley, C.L. (1994) *Historical Ecology: Cultural Knowledge and Changing Landscapes*. School of America Research Press: Santa Fe.
- Crutzen, P.J. (2006) The "Anthropocene". In: Ehlers, E. and Krafft, T. (eds) Earth System Science in the Anthropocene. Springer: Berlin.
- d'Alpoim Guedes, J., Crabtree, S.A., Bocinsky, R.K. and Kohler, T.A. (2016) 'Twenty-first century approaches to ancient problems: Climate and society', *Proceedings of the National Academic of Sciences of the United States* 113(51): 14483-14491.
- Dawson, T., Hambly, J. and Graham, E. (2017) A central role for communities: Climate change and coastal heritage management in Scotland. In Dawson, T., Nimura, C., Lopez-Romero, E. and Daire, M-Y. (Eds.) *Public Archaeology and Climate Change*. Oxford: Oxbow Books. pp. 50–68.

Diamond, J. (2005) Collapse: How Societies Choose to Fail or Survive. London: Penguin.

- Donovan, A. and Oppenheimer, C. (2011) 'The 2010 Eyjafjallajökull eruption and the reconstruction of geography', *The Geographical Journal* 177(1): 4-11.
- Dugmore, A. J., McGovern, T.H., Streeter, R., Madsen, C.K., Smiarowski, K. and Keller, C. (2013) "Clumsy Solutions' and 'Elegant Failures': Lessons on Climate Change Adaptation from

the Settlement of the North Atlantic.' In Sygna, L., O'Brien, K. and Wolf, J. (Eds.) *A Changing Environment for Human Security: Transformative Approaches to Research, Policy and Action.* London: Routledge.

- Dugmore, A.J. and Vésteinsson, O. (2012) 'Black Sun, High Flame, and Flood: Volcanic Hazards in Iceland' In Cooper, J. and Sheets, P. (Eds.) Surviving Sudden Environmental Change: Answers from Archaeology. Boulder: University of Colorado Press.
- Dugmore, A.J., McGovern, T.H., Vésteinsson, O., Arneborg, J., Streeter, R. and Keller, C. (2012)
 'Cultural adaptation, compounding vulnerabilities and conjunctures in Norse Greenland',
 Proceedings of the National Academy of Sciences, 109 (10): 3658-3663.
- Dunning, N.P., Beach, T.P. and Luzzadder-Beach, S. (2012) Kax and kol: Collapse and resilience in lowland Maya civilization, *Proceedings of the National Academy of Sciences* 109(10): 3652-3657.
- Erlandson, J.M. and Braje, T.J. (2013) Archaeology and the Anthropocene, Anthropocene 4: 1-7.
- Fletcher, R., Evans, D., Pottier, C. and Rachna, C. (2015) Angkor Wat: an introduction, *Antiquity* 89(348): 1388-1401.
- Ford, J.D., McDowell, G. and Pearce, T. (2015) The adaptation challenge in the Arctic, *Nature Climate Change* 5: 1046-1053.
- Girod, B., Wiek, A., Mieg, H. and Hulme, M. (2009) The evolution of the IPCC's emissions scenarios, *Environmental Science and Policy* 12(2): 103-118.
- Hambrecht, G. and Rockman, M. (2017) International approaches to climate change and cultural heritage, *American Antiquity* 82 (4): 627-641.
- Hartman, S., Ogilvie, A.E.J., Ingimundarson, J.H., Dugmore, A.J., Hambrecht, G. and McGovern,
 T.H. (2017) 'Medieval Iceland, Greenland and the New Human Condition: A case study in integrated environmental humanities', *Global and Planetary Change* [E-pub ahead of print].

- Hebda, R.J. (2007) Museums, Climate Change and Sustainability, *Museum Management and Curatorship* 22(4): 329-336.
- Hoggarth, J.A., Culleton, B.J., Ebert, C.E., Kennett, D.J. (2016) The Political Collapse of Chichén Itzá in Cultural and Climatic Context, *Global and Planetary Change* 138: 25-42.
- Hoggarth, J.A., Restall, M., Wood, J.W., Kennett, D.J. (2017) Drought and its Effects on Demography in the Maya Lowlands, *Current Anthropology* 58(1): 82-113.
- Holm, P. and Brennan, R., 2018. Humanities for the Environment 2018 Report—Ways to Here, Ways Forward. Humanities 7 (1).
- Hsiang, S., Burke, M. and Miguel, E. (2013) Quantifying the Influence of Climate on Human Conflict', *Science* 341: 1235367
- Hudson, M.J., Aoyama, M., Hoover, K.C. and Uchiyama, J. (2012) Prospects and challenges for an archaeology of global climate change, *Wiley Interdisciplinary Reviews: Climate Change* 3: 313-328.
- Hulme, M. (2008) 'The conquering of climate: discourses of fear and their dissolution', *Geographical Journal* 174(1): 5-16.
- Hulme, M. (2009) Why we disagree about climate change. Cambridge: Cambridge University Press.
- Hulme, M. (2011) 'Meet the humanities', Nature Climate Change 1(4): 177-179.
- Hulme, M. (2016) Weathered: Cultures of Climate. London: Sage.
- Ide, T. (2015) 'Why do conflicts over scarce renewable resources turn violent? A qualitative comparative analysis', *Global Environmental Change* 33: 61-70.
- IPCC (2014) Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: UK.
- Kennett, D. J., Breitenbach, S.F.M., Aquino, V.V., Asmersom, Y., Awe, J., Baldini, J.U.L., Bartlein,P., Culleton, B.J., Ebert, C., Jazwa, C., Macri, M.J., Marwan, N., Polyak, V., Prufer, K. M.,Ridley, H.E., Sodemann, H., Winterhalder, B. & Haug, G. H. (2012) Development

and Disintegration of Maya Political Systems in Response to Climate Change, *Science* 338: 788-791.

- Kennett, D.J. and Beach, T. (2013) Archaeological and environmental lessons for the Anthropocene from the Classic Maya collapse, *Anthropocene* 4: 88-100.
- Kennett, D.J. and Marwan, N. (2015) Climate volatility, agricultural uncertainty, and the formation, consolidation and breakdown of preindustrial agrarian states, *Philosophical Transactions of the Royal Society A* 373: 20140458. <u>http://dx.doi.org/10.1098/rsta.2014.0458</u>
- Kohler, T.A., Bockinski, R.K., Cockburn, D., Crabtree, S.A., Varien, M.D., Kolm, K.E., Smith, S., Ortman, S.G. and Kobti, Z. (2012) Modelling prehispanic Pueblo societies in their ecosystems, *Ecological Modelling* 241: 30-41.
- Koepfler, J.A., Heimlich, J.E. and Yocco, V.S. (2010) Communicating climate change to visitors of information science environemnts, *Applied Environmental Education and Communication* 9(4): 233-242.
- Kovats, R.S., Valentini, R., Bouwer, L.M., Georgopoulou, E., Jacob, D., Martin, E., Rounsevell, M. and Soussana, J-F. (2014) Europe. In: *Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.* [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge: United Kingdom and New York, NY, USA, pp. 1267-1326.
- Krupnik, I. (2002) *The Earth is fast now: Indigenous observations of Arctic environmental change.* Arctic Research Consortium of the United States.

Kwok, R. (2017) Historical data: Hidden in the past, Nature 549: 419-421.

- Lichenko, R.M. and O'Brien, K.L. (2008) *Environmental Change and Globalization: Double Exposures.* New York: Oxford University Press.
- Lorenz, S., Berman, R., Dixon, J. and Lebel, S. (2014) Time for a systematic review: A response to Bassett and Fogelman's "Déjà vu or something new? The adaptation concept in the climate change literature", *Geoforum* 51L 252-255.
- Lubchenco, J. (1998) 'Entering the century of the environment: a new social contract for science', *Science* 279: 491-7.
- Marshall, G. (2014) *Don't Even Think About It: Why our brains are wired to ignore climate change.* Bloomsbury.
- Metzger, M.J. and Rounsevell, M.D.A. (2011) A need for planned adaptation to climate change in the wine industry, *Environmental Research Letters* 6: 031001.
- Metzger, M.J., Rounsevell, M.D.A., van de Heiligenberg, H.A.R.M., Perez-Soba, M. and Soto Hardiman, P. (2010) How Personal Judgement Influences Scenario Development: an Example for Rural Development in Europe, *Ecology and Society* 15(2): 5 [online].
- Middleton, G.D. (2017) Understanding Collapse: Ancient History and Modern Myths. Cambridge University Press: Cambridge.
- Miehe, G., Miehe, S., Kaiser, K., Reudenbach, C., Behrendes, L., Duo, L. and Schlütz, F. (2009) How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape, *Palaeogeography, Palaeoclimate, Palaeoecology* 276(1): 130-147.
- Moser, S.C. and Ekstrom, J.A. (2010) 'A framework to diagnose barriers to climate change adaptation', *Proceedings of the National Academy of Sciences of the United States of America* 107(51): 22026-22031.
- Nelson, M.C., Hegmon, M., Kintigh, K.W., Kinzig, A.P., Nelson, B.A., Anderies, J.A., Abbott, D.A., Speilmann, K.A., Ingram, S.E., Peeples, M.A., Kulow, S., Strawhacker, C.A. and Meegan, C. (2012) 'Long-Term Vulnerability and Resilience: Three Examples from Archaeological Study in the Southwestern United States and Northern Mexico' In

Cooper, J. and Sheets, P. (Eds.) *Surviving Sudden Environmental Change: Answers from Archaeology*. Boulder: University of Colorado Press.

- Nelson, M.C., Ingram, S.E., Dugmore, A.J., Streeter, R., Peeples, M.A., McGovern, T.H., Hegmon, M., Spielmann, K.A., Simpson, I.A., Strawhacker, C., Comeau, L.E., Torvinen, A., Madsen, C.K., Hambrecht, G. And Smiarowski, K. (2016) Climate Changes, Vulnerabilities, and Food Security, *Proceedings of the National Academy of Sciences* 113(2): 298-303.
- Nikoleris, A., Stripple, J. and Tenngart, P. (2017) Narrating climate futures: shared socioeconomic pathways and literary fiction, *Climatic Change* 143: 307-319.
- Normand, S., Høye, T.T., Forbes, B.C., Bowden, J.J., Davies, A.L., Odgaard, B.V., Riede, F., Svenning, J.-C., Treier, U.A., Willerslev, R. and Wischnewski, J., 2017. Legacies of Historical Human Activities in Arctic Woody Plant Dynamics. Annual Review of Environment and Resources 42 (1), 541-567.
- O'Brien, K. (2012) 'Global Environmental Change II. From Adaptation to Deliberate Transformation', *Progress in Human Geography* 36(5): 667-676.
- O'Brien, K. and Liechenko, R.M. (2000) Double exposure: assessing the impacts of climate change within the context of economic globalization, *Global Environmental Change* 10(3): 221-232.
- O'Brien, K., Sygna, L. and Wolf, J. (2013) 'A changing environment for human security'. In Sygna,
 L., O'Brien, K. and Wolf, J. (Eds.) A Changing Environment for Human Security:
 Transformative approaches to research, policy and action. London: Routledge.
- Ostrom, E., Gardner, R and Walker, J. (1994) *Rules, Games and Common-Pool Resources*. University of Michigan Press.

Palin, E., thornton, H.E., Mathison, C.T., McCarthy, R.E., Clark, R.T. and Dora, J. (2013) Future projections of temperature-related climate change impacts on the railway network of Great Britain, *Climatic Change* 120(1-2): 71-93.

Palmer, P.I. and Smith, M.J. (2014) Model human adaptation to climate change, Nature 520: 365-366.

Payne, K. (2015) Portraying the Political: Contemporary Art Exhibitions and their Engagement with Climate Change Politics. In Cameron, F.R. and Neilson, B. (Eds.) *Climate Change and Museum Futures*. Abingdon: Routledge.

Redman, C.L. (2005) Resilience theory in archaeology, American Anthropologist 107: 70-77.

Rees, M. (2017) 'Museums as catalysts for change', Nature Climate Change 7: 166-167.

Riede, F. (2014a) 'Climate models: use in archaeology', Nature 513(7518): 315.

Riede, F. (2014b) 'Towards a science of past disasters', Natural Hazards 71(1): 335-362.

- Riede, F. (2017a) 'Splendid isolation. The eruption of the Laacher See volcano and southern Scandinavian Late Glacial hunter-gatherers'. Aarhus University Press.
- Riede, F. (2017b) 'Past-Forwarding Ancient Calamities. Pathways for Making Archaeology Relevance in Disaster Risk Reduction Research', *Humanities* 6, 79.
- Riede, F., Andersen, P and Price, N. (2016a) 'Does archaeology need an ethical promise?', *World* Archaeology 48(4): 466-481.
- Riede, F., Vestergaard, C. and Frensborg, K.H. (2016b) A field archaeological perspective on the Anthropocene, *Antiquity* 90(354): 1-5.
- Rockström, J., Steffen, W., Noon, K., Persson, A., Chapin, F.S., Lambin, E.F., Lenton, T.M.,
 Scheffer, M., Folke, C., Schellnhuber, H.J., Nykvist, B., de Wit, C.A., Hughs, T., van der
 Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P.K., Costanza, R., Svedin, U., Falkenmark,
 M., Karlberg, L., Corell, R.W., Fabry, V.J., Hansen, J., Walker, B., Liverman, D.,
 Richardson, K., Crutzen, P. and Foley, J.A. (2009) A safe operating space for humanity. *Nature* 46: 472–475.

- Rohland, E. (2017) Adapting to hurricanes. A historical perspective on New Orleans from its foundation to Hurricane Katrina, 1718-2005, *Wiley Interdisciplinary Reviews: Climate Change* 9(1): e488.
- Rojas, R., Feyen, L. and Watkiss, P. (2013) Climate change and river floods in the European Union: socio-economic consequences and the costs and benefits of adaptation, *Global Environmental Change* 23(6): 1737-1751.
- Rounsevell, M.D.A. and Metzger, M.J. (2010) Developing qualitative scenario storylines for environmental change assessment, *Wiley Interdisciplinary Reviews: Climate Change* 1: 606-619.
- Sandell, R. (2011) Ethics and Activism. In Marstine, J. (Ed.) *The Routledge Companion to Museum Ethics: Redefining Ethics for the Twenty-First Century Museum*. London: Routledge.
- Scheffer, M., Carpenter, S.R., Lenton, T.M., Bascompte, J., Brock, W., Dakos, V., van de Koppel, J., van de Leemput, I.A., Levin, S.A., van Nes, E.H., Pascual, M. and Vandermeer, J. (2012) Anticipating Critical Transitions, *Science* 338: 344-248.
- Schwindt, D.M., Bocinsky, R.K., Ortman, S.G., Glowacki, D.M., Varien, M.D. and Kohler, T.A. (2016) The Social Consequences of Climate Change in the Central Mesa Verdi Region, *American Antiquity* 81(1): 74-96.

Smith, B.D. and Zeder, M.A. (2013) The onset of the Anthropocene, Anthropocene 4: 8-13.

Solow, A.R. (2013) Global warming: A call for peace on climate and conflict, Nature 497: 179-180.

- Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. and Ludwig, C. (2015) The trajectory of the Anthropocene: The Great Acceleration, *The Anthropocene Review* 2(1): 81-98.
- Stewart, I.S. and Lewis, D. (2017) Communicating contested geoscience to the public: Moving from 'matters of fact' to 'matters of concern', *Earth Science Reviews* 174: 122-133.
- TEA/AECOM (2017) Theme Index and Meums Index: The Global Attractions Attendance Report. <u>http://www.teaconnect.org/images/files/TEA_235_103719_170601.pdf</u> [Accessed 9/3/2018]

- Turner II, B.L. and Sabloff, J.A. (2012) Classic Period Collapse of the Central Maya Lowlands: Insights about human-environment relationships for sustainability, *Proceedings of the National Academy of Sciences* 109(35): 13908-13914.
- Turner II, B.L., Esler, K.J., Bridgewater, P., Tewksbury, J., Sitas, N., Abrahams, B., Chapin III, F.S., Cowdhury, R.R., Christie, P., Diaz, S., Firth, P., Knapp, C.N., Kramer, J., Leemans, R., Palmer, M., Pietri, D., Pittman, J., Sarukhán, J., Shackleton, R., Seidler, R., van Wilgen, B. and Mooney, H. (2016) Socio-Environmental Systems (SES) Research: what have we learned and how can we use this information in future research programs, *Current Opinion in Environmental Sustainability* 19: 160-168.
- Turner, B.L. and Sabloff, J.A. (2012) Classic Period collapse of the Central Maya Lowlands: Insights about human-environment relationships for sustainability, *Proceedings of the National Academy of Sciences* 109(35): 13908-13914.
- Turnhout, E., Bloomfield, B., Hulme, M., Vogel, J. and Wynne, B. (2012) Conservation policy: Listen to the voices of experience, *Nature* 488: 454-455.
- Urry, J. (2014) The Problem of Energy, Theory, Culture and Society 31(5): 3-20.
- Wisner, B., Blaikie, P., Cannon, T. and Davis, I. (2004) *At Risk: Natural hazards, people's vulnerability and disasters* (2nd Edn.). Routledge: London.
- Withers, C. (2005) Geography and the Scientific Revolution. In Livingstone, D. and Withers, C.(Eds.) *Geography and Revolution*. Chicago: University of Chicago Press.
- Zalasiewicz, J., Williams, M., Smith, A., Barry, T.L., Coe, A.L., Bown, P.R., Brenchley, P., Cantrill,
 D., Gale, A., Gibbard, P., Gregory, F.J., Hounslow, M.W., Kerr, A.C., Pearson, P., Knox, R.,
 Powell, J., Waters, C., Marshall, J., Oates, M., Rawson, P. and Stone, P. 'Are we now living in the Anthropocene?', *Geological Society of America* 18 (2): 4-8.
- Zeder, M.A (2015) Core questions in domestication research, *Proceedings of the National Academy of Sciences* 112(11): 3191-3198.

Box 1: An example of a global perspective on climate change adaptation in the past. Here we offer just a few examples, but archaeological and historical data has the potential for long-term global coverage. Base map: World Physical Map (US National Parks Service) created using ArcGIS* software by Esri.

Integrated Historical Research in the North Atlantic Context

Integrated historical research in the North Atlantic can help us address research questions about long-term climate impacts, cultural limits to adaptation and exposures to multiple climate-related environmental and socio-political challenges. Treating these examples as 'completed experiments' of the past offers empirical evidence of extended exposure to social and environmental stressors. Examples such as this could offer scenarios of political, economic and environmental uncertainty that are equally possible in integrated market economies.

Box 2

Norse societies in Greenland and Iceland, both settled in the Viking Age (793-1066), had a shared cultural

and biological heritage (Jesch, 2015). Icelandic society has survived environmental, economic and demographic transformations to become a highly developed 21st century economy (Karlsson, 2000). Norse Greenland, by contrast, came to an end in the mid-15th century (Arneborg, 2003). Evidence of the impacts of climate on subsistence/resource management have become increasingly resolved through modern archaeological investigations and climate reconstructions (Hartman et al., 2017). Zooarchaeological studies and stable isotope analyses provide evidence of a changing diet at the settlement scale-evidence of adaptation to food scarcity (Smiarowski et al., 2017; Arneborg et al., 2012). Multidisciplinary studies have combined human-scale data from Greenland with regional-scale environmental and political-economic data. This suggests that the Norse became increasingly dependent on a narrow marine-focused diet, which increased vulnerability to food shortage in the mid-15th century (Nelson et al., 2016). Historical evidence indicates that this coincided with Greenland's isolation from the Norwegian crown, an essential trade partner, as walrus ivory become devalued on European markets (Frei et al., 2015). The combination of declining food security with economic isolation to support subsistence failure left the Norse with few options in the 15th century. Modern societies could learn from such scenarios playing out in contemporary political economies. Declining trade, energy security and political instability at national and regional scales, in tandem with the social and physical impacts of climate change, could present major adaptive challenges for policy and governance.

In the last 10 years, researchers from the North Atlantic Biocultural Organisation (NABO) have increased engagement with global change researchers; examining historical data through concepts of 'human security' (Dugmore et al., 2013; O'Brien et at., 2013), social and cultural limits to adaptation (Dugmore et al., 2009; Adger et al., 2009), and multiple exposures (Dugmore et al., 2012; Liechenko and O'Brien, 2008). North Atlantic researchers have applied GCR concepts to studies of the past to better understand complex human-environment interaction and, in turn, to extend the scope of human climate-adaptation using deep-time perspectives. Contemporary studies, for example, warn that exposure to multiple stressors are likely to produce winners and losers as societies experience global environmental change (O'Brien and Liechenko, 2000). In Medieval Greenland, the climate-economy conjuncture undermined the capacity of Norse settlers to adapt subsistence and resort to imports for food provisions (Dugmore et al., 2012). This lesson from the Greenland case is although the Norse adjusted to climate change, cultural practices limited the level of adaptive flexibility in response to climate volatility and economic change.

North Atlantic researchers have more recently outlined channels for integration with global change research programmes (Hartman et al., 2017; Holm and Brennan, 2018). Integrating research from a number of disciplines and spatial-temporal scales has provided opportunities for long-term analysis across local and regional scales (Hambrech and Rockman, 2017). Long-term historical-archaeological records and historical literatures have been combined with natural and earth science data to understand how humans understood environmental change and influenced terrestrial and marine environments (Kwok, 2017).

IPCC AR5 WG2 Part A – Global and Sectoral Aspects			Scopus Search				
Rank	Journal Name	Citation Frequency	Rank	Journal Name	Publications: '*adapt*' & 'Climate Change'	Journal	Overall Rank
1	Climatic Change	481	1	Climatic Change	648	Climatic Change	1
2	Global Environmental Change	426	2	PLoS ONE	378	Global Environmental Change	2
3	PNAS	267	3	Global Environmental Change	326	PLoS ONE	3
4	Global Change Biology	260	4	Regional Environmental Change	289	Global Change Biology	3
5	Nature Climate Change	175	5	Global Change Biology	288	PNAS	5
6	Mitigation & Adaptation Strategies for Global Change	116	6	Mitigation & Adaptation Strategies for Global Change	286	Mitigation & Adaptation Strategies for Global Change	5
7	PLoS ONE	83	7	Environmental Science & Policy	211	Regional Environmental Change	7
8	Environmental Science & Policy	80	8	Climate & Development	182	Environmental Science & Policy	8
9	Ecological Economics	75	9	PNAS	167	Climate & Development	9
10	Regional Environmental Change	70	10	Climate Research	165	Nature Climate Change	10
11	Climate Research	66	11	Forest Ecology & Management	158	Climate Research	10
12	Natural Hazards	58	12	Ecology and Society	152	Climate Policy	12
12	Climate Policy	58	13	Shengta Xuebao Acta Ecologica Sinica	131	Ecology and Society	13
12	Climate & Development	58	14	Climate Policy	124	Natural Hazards	14
15	Ecology and Society	54	15	Environmental Research Letters	121	Wiley Interdisciplinary Reviews: Climate Change	15

Table 1: Journal citation frequency analysis of IPCC Assessment Report 5, Working Group 2, Global and Sectoral Aspects and journal publication frequency in Scopus research results [TITLE-ABS-KEY("*adapt*" AND "climate change")]. Using a comparative methodology for selecting high-impact climate change adaptation literatures applied by Bassett and Fogelman (2013) and Lorenz et al. (2014), journal citation and publication results were ranked and an average rank across both fields was used as a measure of impact. Journals in dark grey have sufficient aims and scope and publication history to include historical perspectives.