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Abstract

We present a novel model reduction method which can significantly boost the

speed of stochastic simulation of a population continuous-time Markov chain

(PCTMC) model. Specifically, given a set of predefined target populations of

the modellers’ interest, our method exploits the coupling coefficients between

population variables and transitions with respect to those target populations

which are calculated based on a directed coupling graph constructed for the

PCTMC. Population variables and transitions which have high coupling coeffi-

cients on the target populations are exactly simulated. However, the remaining

population variables and transitions which have low coupling coefficients can ei-

ther be removed or approximately simulated in the reduced model. The reduced

model generated by our approach has significantly lower cost for stochastic sim-

ulation, but still retains high accuracy on the statistical properties of the target

populations. The applicability and effectiveness of our method is demonstrated

on two illustrative models.
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1. Introduction

Population models which consist of a large number of interacting individuals

each belonging to a particular population, have been widely used to study many

dynamic systems in different areas such as biology [1], ecology [2], the spread of

epidemics [3], chemical reaction networks [4], and more recently, smart trans-

portation like public biking-sharing systems [5, 6, 7]. These can considered with

either continuous or discrete time, leading to models specified in terms of the

rates or probabilities of events leaving a state, respectively. When exponentially

distributed rates are assumed for the events within such models, the models are

described as a subclass of Continuous Time Markov Chains (CTMCs) known

as Population CTMCs (PCTMCs). Despite their usefulness, PCTMC models

usually have a very large or even infinite state space, which has stimulated a

lot of work in the computer science community to craft efficient algorithms for

their analysis.

Fluid approximation techniques such as mean-field [8, 9] and moment ap-

proximation methods [10, 11] which approximate the large or infinite set of

Chemical Master Equations (CMEs) describing the probability distributions of

the populations over time by a much smaller set of ordinary differential equa-

tions (ODEs), can provide a means of rapid analysis of some specific metrics

such as the mean, variance, and possibly other higher order moments of the

populations in the models. However, when more sophisticated statistical prop-

erties need to be checked, a more generic and informative transient analysis is

needed. This is often achieved by employing statistical model checking based

on the Stochastic Simulation Algorithm (SSA) [12]. Specifically, the SSA is an

exact method to numerically solve the CMEs by simulating a large number of

possible trajectories of the model. Although the SSA is able to simulate any

PCTMCs, in practice, the inefficiency of SSA has become an obstacle for many

realistic models [13]. As a result, numerous approaches have been proposed to

improve the efficiency of SSA, ranging from many accelerated variants [14, 15]

to approximate methods such as tau-leaping [16, 17]. Since these methods have
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to simulate either all or a substantial part of the transition events within the

models, they are still not scalable enough for large models, i.e. models with large

populations, a large number of populations or populations in which individuals

have a large set of behaviours. A much more efficient approach is to exploit

the presence of different time scales for model reduction [18, 19, 20, 21, 22].

However, a downside for this approach is that the identification of separable

time scales is usually a manual process which is expensive and error-prone.

In this paper, we propose a novel approach which can significantly speed up

the stochastic simulation of PCTMCs without any prior knowledge of model

dynamics. This is achieved by automatically generating a reduced version of

the original PCTMC in which the key dynamics of the model are preserved.

Concretely, our method is based on the assumption that the modeller is only

interested in checking the statistical properties of a few target populations in

the PCTMC (which is often the case for statistical model checking). More

specifically, we first define a directed coupling graph for an arbitrary PCTMC

which quantifies the coupling between population variables and transitions in

the PCTMC. By utilizing the moment approximation technique, the graph can

be constructed at a relatively low computational cost compared with the total

stochastic simulation cost. Then, given a few user-defined target populations,

we propose a graph-based decoupling algorithm which splits the PCTMC into

a pivotal part and a trivial part based on their coupling with respect to those

target populations. Transitions in the pivotal part are those which have signifi-

cant impact on the evolution of target populations, thus these must be exactly

simulated. However, transitions in the trivial part are those whose impact is

negligible or minor, thus these can be either discarded from the simulation or

approximately simulated without causing significant deviation in the evolution

of the target populations. Specifically, for the transitions in the trivial part, we

define border transitions as those which can directly influence any population

variables in the pivotal part of the decoupled PCTMC. Then, the coupling of

the trivial part to the pivotal part of the decoupled PCTMC can be truncated by

approximating the firing rates of those border transitions by state-independent
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constants capturing their average behaviour, resulting in the removal of all the

other transitions and population variables in the trivial part as they no longer

influence the evolution of the target populations. Since all border transitions

are selected to be those which have rather limited impact on the target pop-

ulations, the approximation of their rates will be unlikely to cause significant

deviation in the target populations. Furthermore, we also propose a moment

approximation-based validation method to check the accuracy of the reduced

model before stochastic simulation runs are conducted. We demonstrate the

effectiveness of our method by applying it to two illustrative PCTMC mod-

els. The result shows that the reduced models generated by our method can

significantly bring down the cost of stochastic simulation runs but still produce

accurate statistical metrics on the target populations compared with the original

models.

Thus the contribution of this paper is a novel model reduction technique for

PCTMCs analysed via simulation. We present algorithms for automatically car-

rying out the model reduction according to a user-specified decoupling threshold

and for validation of the model with respect to an error threshold caused by the

reduction. This represents a substantial modification of our preliminary work

on this topic, which was presented in [23]. The current work makes a signifi-

cant improvement in the efficiency with which the number of transition firings

is estimated. In [23] we eliminated the non-influential parts of the model en-

tirely; now we retain border transitions so that the influence of the trivial part

of the model is not completely lost, improving the faithfulness of the reduced

model. Moreover a novel validation technique for estimating the accuracy of the

reduced model is presented.

The outline of the paper is summarised as follows. The next section will give

the background on the PCTMCs, their moment approximation and stochastic

simulation algorithms for analysing such models. Then, we present the decou-

pling method which splits a PCTMC into the pivotal part and trivial part in

Section 3. This is followed by the description of the reduction method for the

generation of the reduced version of the original PCTMC based on its decou-
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pled representation in Section 4. Section 5 describes how to validate the reduced

model before it is used for simulation. Section 6 gives the two case studies which

illustrate the applicability and power of our method for accelerating stochastic

simulation of PCTMCs. Finally, the last section presents our conclusion.

2. Background

2.1. PCTMC

A population continuous time Markov chain (PCTMC) is a stochastic pro-

cess whose states are captured by a numerical population vector, and transitions

between states are defined by changes in some of the populations, with expo-

nentially distributed rates expressed as functions of populations. The analysis

of interest for such models is often the evolution of different populations over

time. Formally, a PCTMC can be represented as a tuple P = (x, T ,x0), where:

• x = (x1, ..., xn) ∈ Zn≥0 is an integer vector with the ith (1 ≤ i ≤ n)

component representing the current population of an agent type Si. Each

xi takes values in a finite domain Di⊆Z≥0. Hence, D =
∏n
i=1Di is the

state space of the model.

• T = {τ1, ..., τm} is the set of transitions, of the form τ = (rτ (x),dτ ),

where:

1. rτ (x) : Zn≥0 → R≥0 is the rate function, associating with each transi-

tion the rate of an exponential distribution, depending on the global

state of the model.

2. dτ = (d1τ , . . . , d
n
τ ) ∈ Zn is the update vector which gives the net

change for each population variables in x caused by transition τ .

• x0 ∈ Zn≥0 is the initial state of the model.

For readability, transitions in PCTMCs can be expressed in the chemical re-

action style with Si being a specific molecular species/population, rτ (x) being

5



the reaction propensity function and dτ capturing the consumed and produced

population of species by the reaction:

N1S1 + . . .+NnSn −→τ N1S1 + . . .+NnSn at rate rτ (x)

where the net change on the population of agent type/species Si due to transi-

tion τ is given by diτ = Ni −Ni (1 ≤ i ≤ n).

The probability distribution of the populations over time is given by the

Chemical Master Equation (CME):

d

dt
P(x, t | x0) =

∑
τ∈T

[rτ (x− dτ )P(x− dτ , t | x0)− rτ (x)P(x, t | x0)]

where P(x, t | x0, t0) is the probability that x(t) = x given initial state x(0) =

x0. Solving the above CME requires us to compute the solution of a differential

equation for each possible state of the PCTMC. However, since the state space

of PCTMCs are generally extremely large, it is infeasible to solve the CME for

most cases.

2.2. Moment Approximation

Fortunately, if we are only interested in some particular moments (mean,

variance, covariance, skewness, kurtosis, etc.) of the population dynamics in

a PCTMC, we can solve a much smaller set of ODEs just for those moments.

Specifically, let M : Rn≥0 → R be a moment function, then the moment described

by M evolves according to the following differential equation [24]:

d

dt
E[M(x(t))] =

∑
τ∈T

E[(M(x(t) + dτ )−M(x(t)))rτ (x(t))] (1)

with E[M(x(0))] = M(x0). For example, if we set M(x(t)) = xi(t), M(x(t)) =

x2i (t), M(x(t)) = xi(t)xj(t), we get the following ODEs to describe the first

moment, the second moment and the second-order joint moment respectively,
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of population variables in an arbitrary PCTMC:

d

dt
E[xi] =

∑
τ∈T

E[(xi + diτ − xi)rτ (x)] =
∑
τ∈T

diτE[rτ (x)] (2)

d

dt
E[xi2] =

∑
τ∈T

E[((xi + diτ )
2 − xi

2)rτ (x)]

= 2
∑
τ∈T

diτE[xi × rτ (x)] +
∑
τ∈T

diτ
2E[rτ (x)] (3)

d

dt
E[xixj ] =

∑
τ∈T

E[((xi + diτ )(xj + djτ )− xixj)rτ (x)]

=
∑
τ∈T

diτE[xj × rτ (x)] +
∑
τ∈T

djτE[xi × rτ (x)] +
∑
τ∈T

diτ × djτE[rτ (x)] (4)

where we use xi as short for xi(t), and rτ (x) as short for rτ (x(t)) for convenience.

The above system of ODEs does not necessarily have a solution since the dy-

namics of lower-order moments can depend on higher-order moments if the rate

of any transition is a nonlinear function of population variables. For example, if

we let rτ (x) = xixj , then an infinite number of ODEs are required to describe

moment dynamics. In order to deal with this problem, various moment-closure

methods have been proposed in the literature to truncate the system of ODEs

at a certain order of moment.

The most common method to close the moment ODEs is to make a par-

ticular distribution assumption of the population variables. For example, the

normal moment closure method assumes that the population variables at each

point in time are approximately multivariate normal and therefore all third and

higher-order moments can be expressed in terms of means and covariances. This

relationship is captured by Isserlis’ theorem [25]: For x multivariate normal with

mean µ and covariance matrix σij , we have

E[(x− µ)(m)] = E[(x1 − µ1)(m1) · · · (xn − µn)(mn)] = 0 if o(m) is odd

E[(x− µ)(m)] =
∑∏

E[(xi − µi)(xj − µj)] if o(m) is even

where the notation
∑∏

means summing over all distinct ways of partition-

ing 1, . . . , n into pairs of i, j, o(m) = m1 + . . . + mn. For example, we can

approximate

E[x1x
2
2] ≈ 2E[x2]E[x1x2] + E[x1]E[x22]− 2E[x1]E[x2]2
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if multivariate normal distribution for population variables is assumed, which

yields E[(x1 − µ1)(x2 − µ2)2] = 0.

Apart from the normal closure method, there exist many other closure meth-

ods such as the moment expansion and central moment truncation method

[26], log-normal [27, 28], beta-binomial [29] and Possion [30] closures. In gen-

eral, computing moments of population variables using moment-closure approx-

imation is much more efficient than stochastic simulation. However when the

modelled system exhibits complex behaviour such as oscillations, the numeri-

cal result tends to be worse. It has been shown that increasing the number of

moments can improve the accuracy in these cases [26]. However, when higher

moments are required, the system of ODEs can be too large and sometimes

the resulting ODEs may also become very stiff which makes them hard to solve

numerically [24].

2.3. Stochastic Simulation Algorithms

The most generic and informative technique to analyse a PCTMC is to

use stochastic simulation to numerically compute individual realisations of the

underlying stochastic process. The idea is simply Monte Carlo: if we sample

enough realisations of the stochastic process, then the estimates of statistical

properties of the stochastic process will eventually converge to their true values.

Specifically, given a PCTMC P = (x, T ,x0) and the end time of simulation te,

a trace of the PCTMC x(t) for t ≤ te can be calculated by the Gillespie’s SSA

[12] shown in Algorithm 1.

We can repeatedly apply the above algorithm to compute a large number of

traces in order to estimate any statistical properties of a PCTMC such as the

distribution or moments of the population vector x at any time point t ≤ te.

In principle, Gillespie’s SSA is able to analyse all PCTMCs. However in

practice, due to the fact that the cost of SSA increases with the population size

as well as the number of transitions, the inefficiency of SSA can clearly become

an obstacle for many realistic models. As a consequence, numerous approaches

have been proposed to improve the efficiency of SSA, including the optimized
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Algorithm 1 Gillespie’s SSA

Require: P = (x, T ,x0), te

1: Set t = 0, x = x0,

2: while t ≤ te do

3: Generate two random numbers α, β uniformly distributed in (0, 1)

4: Compute r =
∑
τ∈T rτ (x)

5: Compute the time when the next transition fires as t + h, where h =

1
r ln[1/α] {sampling from an exponential distribution with rate r}

6: if t+ h > te then

7: break

8: end if

9: Compute which transition fires at time t+ h by finding τj such that

β ≥ 1

r

j−1∑
i=1

rτi(x) and β <
1

r

j∑
i=1

rτi(x)

10: Set t = t+ h, x = x + dτj

11: end while
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direct method [14], the next reaction method [15], and the composition rejec-

tion algorithm [31]. However, all these approaches are exact methods which

means they have to simulate every transition event, thus their acceleration is

rather limited. The tau-leaping methods [16, 17] speed up SSA by firing mul-

tiple transitions during a selected time interval instead of firing one transition

at each step in the SSA given that the transition rates remain relatively con-

stant during the selected time interval. However, tau-leaping methods are still

not efficient enough for large models since they still try to capture a substan-

tial proportion of the transition events in the PCTMC. Other approximate

approaches mostly focus on exploiting the presence of different time scales in

the model [18, 19, 20, 21, 22]. The common idea behind these approaches is to

construct abstracted models, by decomposing a model into a fast and a slow

subsystem (in some cases, even more time scales can be considered, but the

general decomposition idea is the same). The fast subsystem is assumed to

reach an equilibrium state at a time scale which is much faster than the time

scale of the slow subsystem. Hence, the fast subsystem does not need to be

simulated once it reaches its equilibrium state, and the system dynamics are

dominated by the slow subsystem which can be simulated solely based on the

equilibrium state of the fast subsystem. However, a common downside for these

approaches is that the identification of fast and slow subsystems is usually a

manual process, and requires expert knowledge of the dynamic behaviour of the

model. This process is expensive and error-prone which significantly hinders the

usage of these approaches. Although some pioneering work has been done to

automate the separation process by obtaining the knowledge of the time scales

through some experimental simulation runs of the entire model [32, 33], the

strong precondition of the existence of clearly separable multiple time scales is

still an obstacle for using the approaches on general PCTMC models.

Instead of utilizing the possible existence of multiple time scales within

the models, we seek a different approach to speed up stochastic simulation of

PCTMCs through an automatic model reduction method exploiting the cou-
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pling coefficients of the transitions and population variables with respect to a

set of predefined target populations which the modellers are interested in. Sim-

ilar to our work is the directed relation graph (DRG)-based methods for skele-

tal mechanism reduction for the simulation of hydrocarbon oxidation, where a

graph-based model reduction approach is also used for removing unimportant

species and reactions whose contribution to species of interest is negligible [34].

The approach has since been improved by researchers in the combustion re-

search domain such as DRG with error propagation [35], DRG with sensitivity

analysis [36], etc. Our work is inspired by the DRG-based methods, however,

there are some key differences. First, the DRG-based methods are used to re-

duce deterministic models whereas our work is applied to stochastic simulation.

Second, since our goal is to speed up stochastic simulation, our primary focus

is on transition reduction instead of the species (population) reduction that is

the focus of the DRG-based methods. Moreover, instead of simply discarding

less important dynamics in the DRG-based methods which can cause signifi-

cant error, our approach is more robust since we still keep those less important

dynamics but simulate them in a much less costly way. Lastly, although the

DRG-based methods work well in the combustion simulation domain, they are

still heuristics since no accuracy can be guaranteed for reductions. Our work

has a validation step where the error on the target population dynamics can be

estimated before it is used for future simulation, which makes our work more

convincing and easier to apply.

3. The Decoupling Method

The model decoupling method is used to split a PCTMC into the pivotal

part and the trivial part. Specifically, the pivotal part consists of transitions and

population variables which have significant impact on the evolution of the target

populations, whereas the trivial part consists of the remaining transitions and

population variables whose contribution to evolution of the target populations

is insignificant. This is achieved by defining appropriate coupling coefficients
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as a measure of the influence of the transitions and population variables on the

target populations.

3.1. Direct Coupling Coefficients

Transitions and population variables are coupled through direct and indirect

influence on each other. The direct coupling coefficients are defined as a measure

of the direct influence of a transition on the evolution of a population variable,

or the other way around. The direct influence of a transition on a population

variable is measured differently to the direct influence of a population variable

on a transition. Thus, their definitions are also given separately.

Definition 1. Given an arbitrary transition τj and a population variable xi,

the direct coupling coefficient of τj on xi is defined as:

cxi,τj =
|diτj Nτj |∑
τ∈T |diτ Nτ |

(5)

where diτ is the update of xi caused by the firing of transition τ , Nτ is the firing

count of transition τ during a simulation run.

Intuitively, cxi,τj measures the proportional contribution of the transition τj

to the evolution of population variable xi during a simulation run. With smaller

values of cxi,τj , the removal of transition τj from simulation will be less likely to

immediately induce a significant impact on the evolution of population variable

xi.

Definition 2. Given an arbitrary transition τj and a population variable xi,

the direct coupling coefficient of xi on τj is defined as:

cτj ,xi
=

1, if population variable xi contributes to transition τj

0, otherwise

(6)

where we say xi contributes to τj if and only if agent Si appears at the reactant

side of τj (assuming expressing transitions in the chemical reaction style) or the

rate of τj depends on xi.
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Since removing a population variable which contributes to a transition will

immediately invalidate the transition, the direct coupling coefficient of a popu-

lation variable on a transition is either 1 or 0.

The direct coupling coefficients between two population variables or two

transitions are always defined to be zero because we assume they are never

directly coupled:

cxi,xj = 0, ∀(xi, xj)

cτi,τj = 0, ∀(τi, τj)

3.2. Evaluating the Firing Count of Transitions

A key point for the computation of direct coupling coefficients is the eval-

uation of Nτ , the firing count of transitions during a simulation run (all other

factors in the definitions of direct coupling coefficients in Equations 5 and 6 can

be directly obtained from the PCTMC description). The most straightforward

way to evaluate Nτ is to simulate the PCTMC for a few experimental runs, and

use the average firing count of each transition over those experimental simula-

tion runs for the computation of direct coupling coefficients. However, the direct

coupling coefficients computed in this way can be biased to the experimental

simulation runs. Thus, in order to avoid the bias, we compute the expected

firing count of transitions over infinite simulation runs through a deterministic

model. This is achieved by moment approximation of a PCTMC with additional

dummy population variables representing the counter of the firing of transitions.

Specifically, based on a PCTMC P =
(
x = (x1, . . . , xn), T = (τ1, . . . , τm),x0 =(

x1(0), . . . , xn(0)
))

for stochastic simulation, we can construct another PCTMC

P ′ = (x′, T ′,x′0), in which:

• x′ = (x1, . . . , xn, xn+1, . . . , xn+m), where xn+i (1 ≤ i ≤ m) is a dummy

population variable representing the counter of the firing of transition τi.

• T ′ = (τ ′1, . . . , τ
′
m), where for 1 ≤ i ≤ m, τ ′i = (rτ ′

i
(x′),dτ ′

i
) such that
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rτ ′
i
(x′) = rτi(x), dτ ′

i
= (d1τ ′

i
, . . . , dnτ ′

i
, dn+1
τ ′
i
, . . . , , dn+mτ ′

i
) in which

djτ ′
i

=


djτi if 1 ≤ j ≤ n

0 if n+ 1 ≤ j ≤ n+m ∧ j 6= n+ i

1 if j = n+ i

• x′0 =
(
x′1(0), . . . , x′n(0), x′n+1(0), . . . , x′n+m(0)

)
where

x′i(0) =

xi(0) if 1 ≤ i ≤ n

0 if n+ 1 ≤ i ≤ n+m

Intuitively, the above PCTMC will increase the counter for a transition by one

whenever the transition is fired. Then, by computing the first moments of the

population variables using moment approximation as described in Section 2.2,

we can evaluate Nτi = E[xn+i](te) for 1 ≤ i ≤ m, where te is the end time of

the simulation. Note that if all the transition rates of the PCTMC are con-

stants or linear functions of population variables, then we only need to compute

the first moments of population variables by numerically solving Equation (2).

Otherwise, we must obtain the ODEs for the first and second order moments

according to Equations (2,3,4), and apply moment-closure methods to close the

system at the second order (applying moment-closure methods at the first order

usually does not work well). Furthermore, we can also apply moment ODE

reduction methods to significantly reduce the number of ODEs for the joint

moments which can tremendously reduce the cost of moment approximation

[37]. Since we only need to compute the moments up to the first order or the

second order of the PCTMC, the computational cost of moment approximation

is typically fairly low compared with the total stochastic simulation cost.

3.3. Directed Coupling Graph

With the evaluation of direct coupling coefficients, we can construct a di-

rected coupling graph (DCG) for an arbitrary PCTMC. The definition of DCG

is given as follows:
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Definition 3. The directed coupling graph for a PCTMC with n population

variables and m transitions is a graph consisting of m + n nodes, in which

each node represents a population variable or a transition in the PCTMC, and

there exists a weighted directed edge from node i to node j if the direct coupling

coefficient ci,j > 0. In this case, ci,j is the weight for the edge.

A point to note is that the arrow direction in the DCG is from the im-

pacted node to the influencing node. This is due to its convenience for the

calculation of coupling coefficients (which will be described later) starting from

the nodes representing the target populations following the arrow directions.

For example, consider a PCTMC which consists of five population variables

(x1, x2, x3, x4, x5) for agent types S1, S2, S3, S4, S5 respectively, and five transi-

tions (τ1, τ2, τ3, τ4, τ5) as follows:

S1 −→τ1 S4 at rate α1 × x1

S1 + S2 −→τ2 2S1 at rate α2 × x1 × x2

S2 + S3 −→τ3 2S3 at rate α3 × x2 × x3

S3 −→τ4 S4 at rate α4 × x3

S4 −→τ5 S5 at rate α5 × x4

where α1, α2, α3, α4, α5 are five constants. Assuming Nτ1 = 70, Nτ2 = 30,

Nτ3 = 10, Nτ4 = 30, Nτ5 = 100, then the corresponding DCG is depicted in

Figure 1. As can be seen from the graph, there is an edge from node x1 to node

τ1 since cx1,τ1 = Nτ1/(Nτ1 +Nτ2) = 0.7, an edge from node τ1 to node x1 since

x1 contributes to τ1 (S1 appears in the reactant side of τ1 and the rate function

of τ1 depends on x1), thus cτ1,x1 = 1. There is no edge from node τ1 to node

x4 because cτ1,x4 = 0 since x4 makes no direct contribution to τ1 (S4 does not

appear on the reactant side of τ1 nor does the rate function of τ1 depends on

x4).

In the above example, if x1 is a target population, then removing transitions

τ3, τ4 and τ5 will not induce a direct impact on the evolution of x1, since

cx1,τ3 = cx1,τ4 = cx1,τ5 = 0. But, from the model definition, we can clearly
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Figure 1: The directed coupling graph for the example PCTMC

see that removing τ5 will make zero impact on x1 either directly or indirectly,

whereas removing τ3 and τ4 can affect x1 through an indirect coupling with

population variable x2 and x3. This indirect coupling effect can be captured by

a propagation method based on the DCG.

3.4. Coupling Propagation

Transitions can influence the evolution of population variables by coupling

propagation through intermediate populations and transitions. Moreover, the

further away from the target population a transition is, the smaller the effect of

changing or removing this transition should be. Thus, for a target population xt

and a transition τ which are not directly connected in the DCG, we quantify the

indirect coupling coefficient of the transition τ to the target population xt

by a path dependent coefficient cγxt,τ , which is the product of the direct coupling

coefficients along an acyclic path γ from node xt to node τ in the DCG:

cγxt,τ =
∏
ij∈γ

ci,j .

Intuitively, cγxt,τ measures the estimated influence of transition τ on the evolu-

tion of the target population xt through the coupling propagated along the path

16



γ. Take the DCG in Figure 1 as an example, suppose x1 is the target popula-

tion, then the influence of τ3 on the evolution of x1 has to propagate through

its direct influence on x2, x2’s influence on τ2, and finally reach x1 through the

influence of τ2. Doing so, this indirect influence is estimated by the product

of the direct coupling coefficients along the path x1, τ2, x2, τ3 to capture this

diminishing propagation effect, such that cγx1,τ3 = cx1,τ2 × cτ2,x2
× cx2,τ3 , where

γ = {x1τ2, τ2x2, x2τ3}.

Furthermore, for the purpose of model decoupling, we assume all coupling

(both direct and indirect) with respect to the target populations which are less

than a specific threshold ε can be ignored. This means that if the maximum of

path dependent coefficients over all possible paths from a target population to

a transition is less than ε, then all the coupling of that transition to the target

population can be ignored. Therefore, if we characterize the influence of an

arbitrary transition τ on the evolution of a target population xt by a coupling

coefficient Cxt,τ , which is defined as follows:

Definition 4. Given an arbitrary transition τ and a target population variable

xt, the coupling coefficient of τ on xt is defined as the maximum of the path

dependent coefficients from node xt to node τ in the DCG:

Cxt,τ =


max

all paths γ
cγxt,τ , if there exists a path from xt to τ in the DCG

0, otherwise

Then, we can specify whether a transition is coupled with a target population

by simply checking if Cxt,τ > ε. Take the DCG in Figure 1 as an example,

again if x1 is a target population, then we can obtain Cx1,τ1 = 0.7, Cx1,τ2 = 0.3,

Cx1,τ3 = 0.3 × 1 × 0.25 = 0.075, Cx1,τ4 = 0.3 × 1 × 0.25 × 1 × 0.75 = 0.05625,

Cx1,τ5 = 0. Therefore, if we set ε = 0.01, only τ5 can be decoupled. However,

if we set ε = 0.1, then τ3 and τ4 will also be decoupled. Thus, the decoupling

threshold ε can be thought of as a parameter to control the extent of model

decoupling.

Apart from the above intuition, there is an important point to note that

the coupling coefficients, which are characterized by the maximum of the path

17



dependent coefficients, have the nice property that if Cxt,τ > ε and Cxt,τ = cγxt,τ ,

then for a node v which is on the path γ, it is certain that Cxt,v > ε. Thus

node v will definitely not be decoupled. As a result, for all transitions which

have a significant path dependent coefficient from the target population, the

transitions and populations along this path will certainly be captured in the

pivotal part of the decoupled PCTMC as derived subsequently. This guarantees

that the coupling coefficient of any transition to the target population will not

be changed in the decoupled PCTMC. In contrast, this property would not

be preserved if we were to use other metrics, e.g., the sum of path dependent

coefficients, to characterize coupling coefficients.

Furthermore, given the DCG of a PCTMC and a set of target populations,

we can easily calculate the coupling coefficients of all the transitions on these

target populations by a modified version of Dijkstra’s algorithm [38]. Dijkstra’s

algorithm was originally introduced by Dijkstra, and many variants have been

proposed to enhance its efficiency for calculating the shortest paths from a single

source node to all other nodes in a graph [39]. Calculating coupling coefficients

is a shortest path problem where the “shortest” path is that with the maximum

product of direct coupling coefficients representing edge weights. This is the only

modification needed to apply Dijkstra’s algorithm to our problem. The detail of

our modified version of Dijkstra’s algorithm for calculating coupling coefficients

is given in Algorithm 2, where we use a max-priority queue [39] to efficiently

search nodes with maximum path dependent coefficients. Let M be the number

of target populations, V and E be the number of nodes and edges in the DCG,

respectively, the time complexity of the algorithm is O(M(V + E) log V ).

3.5. The Decoupling Algorithm

Given an arbitrary PCTMC P = (x, T ,x0), a set of target populations xt,

and a decoupling threshold ε, the decoupling algorithm splits the PCTMC into

the pivotal part P̂ = (x̂, T̂ ) and the trivial part P̌ = (x̌, Ť ). Specifically, transi-

tions whose coupling coefficients with respect to any target population variable

is larger than ε are classified as belonging to the pivotal part. Population vari-

18



Algorithm 2 Algorithm for Calculating Coupling Coefficients

Require: The DCG G, target population variables xt

1: for all xt in xt do

2: Cxt,xt ← 1 {initialize the coupling coefficient of a target population on itself

to the maximum value 1}

3: Create an empty max-priority queue Q

4: for all node v in G do

5: if v 6= xt then

6: Cxt,v ← 0 {initialize the coupling coefficient of all other nodes on the

target population to the minimum value 0}

7: end if

8: Q.add(v, Cxt,v) {add node v to Q with priority Cxt,v}

9: end for

10: while Q is not empty do

11: u← Q.extract max() {remove and return node with maximum priority}

12: for all neighbour v of u {v is a neighbour of u iff cu,v > 0} do

13: if v is still in Q then

14: Ctmp ← Cxt,u × cu,v

15: if Ctmp > Cxt,v then

16: Cxt,v ← Ctmp

17: Q.update priority(v, Cxt,v) {update node v’s priority to Cxt,v}

18: end if

19: end if

20: end for

21: end while

22: end for

23: return Cxt,τ ∀xt ∈ xt, τ ∈ T
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ables which directly contribute to any transitions in the pivotal part also belong

to the pivotal part. The remaining transitions and population variables are de-

coupled, and so belong to the trivial part. The whole algorithm is summarised

in Algorithm 3.

4. The Reduction Method

In this section, we present our model reduction method based on the de-

coupled representation of a PCTMC. Specifically, transitions and population

variables in the pivotal part must be preserved since their contributions to the

evolution of target populations are significant. Therefore, our strategy is to

reduce the simulation cost for the trivial part of the decoupled PCTMC but

without causing significant deviation on the evolution of the target populations.

This is achieved by firstly truncating the coupling coefficients of the population

variables and transitions in the trivial part with respect to the target popula-

tions.

4.1. Coupling Truncation

First of all, let us call any transitions in the trivial part which can directly

influence any population variables in the pivotal part of the decoupled PCTMC,

border transitions. Specifically, the set of border transitions are defined as fol-

lows:

Definition 5. Let Tb denote the set of border transitions, then for any tran-

sition τ ∈ Ť , we let τ ∈ Tb ⇐⇒ ∃xi such that xi ∈ x̂ ∧ cxi,τ > 0.

More intuitively speaking, these border transitions are the border nodes of

the trivial part of the PCTMC with respect to the pivotal part of the PCTMC

in the DCG. More importantly, they are the only links through which the

transitions and population variables in the trivial part can affect the evolution

of target populations, either directly and indirectly. Therefore, we make these

border transitions independent of any population variables in the trivial part of

the decoupled PCTMC, whilst retaining their influence on target populations.
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Algorithm 3 Model Decoupling Algorithm

Require: The original PCTMC P = (x, T ,x0), target population variables xt, de-

coupling threshold ε

1: Define x̂ = ∅, T̂ = ∅, x̌ = ∅, Ť = ∅

2: for all τ in the transition set T of P do

3: βτ ← 0 {indicate whether τ can be decoupled}

4: for all xt in xt do

5: if Cxt,τ > ε then

6: βτ ← 1

7: break

8: end if

9: end for

10: if βτ = 1 then

11: add τ to T̂

12: else

13: add τ to Ť

14: end if

15: end for

16: for all xi in the population vector x of P do

17: βi ← 0 {indicate whether xi can be decoupled}

18: for all τ in T̂ do

19: if xi contributes to τ directly then

20: βi ← 1

21: break

22: end if

23: end for

24: if βi = 1 then

25: add xi to x̂

26: else

27: add xi to x̌

28: end if

29: end for

30: return The pivotal part P̂ = (x̂, T̂ ), the trivial part P̌ = (x̌, Ť )
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Subsequently all the couplings of population variables and other transitions in

the trivial part with the target populations are truncated, meaning that they

no longer impact the evolution of target populations, and so can be removed

from the simulation without causing any deviation in the evolution of target

populations.

Coupling truncation is achieved by transforming the border transitions us-

ing the following approach: let τ = (rτ (x),dτ ) ∈ Tb be an arbitrary border

transition, and n be the number of population variables in x. Then for all

i ∈ [1, 2, . . . , n], we set diτ = 0 if xi ∈ x̌. Moreover, we approximate rτ (x) by

a constant value Nτ/te if there is any population variable in the trivial part

that contributes to the transition directly. After the above transformation, the

border transition will not involve any population variables in the trivial part but

its influence on the pivotal population variables are approximately preserved.

Moreover, since the influence of the border transitions on the evolution of target

populations are rather limited (their coupling coefficients on any target popu-

lation must be less than ε), the approximation of their rates will be unlikely to

cause significant deviation on the target populations.

4.2. Reduction Algorithm

We summarise the reduction process in Algorithm 4 in which steps 2 to 6

derive border transitions; Steps 7 to 12 truncate coupling of population variables

and transitions in the trivial part by transforming border transitions. Steps 13

to 16 aggregate transformed border transitions with the same update vectors.

Steps 17 to 19 remove any update of population variables in the trivial part

caused by transitions in the pivotal part to zero (these population variables do

not contribute to the transitions directly but can nevertheless appear in the

production side of the transitions).
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Algorithm 4 Model Reduction Algorithm

Require: The pivotal part P̂ = (x̂, T̂ ), the trivial part P̌ = (x̌, Ť )

1: Define Tb = ∅

2: for all τ in Ť do

3: if ∃xi such that xi ∈ x̂ ∧ cxi,τ > 0 then

4: Add τ to Tb
5: end if

6: end for

7: for all τ in Tb do

8: if ∃xi such that xi ∈ x̌ ∧ cτ,xi = 1 then

9: Set rτ = Nτ/te

10: end if

11: ∀i, set diτ = 0 if xi ∈ x̌

12: end for

13: while ∃ τi ∈ Tb, τj ∈ Tb such that i 6= j ∧ dτi = dτj ∧ rτi ∈ R ∧ rτj ∈ R do

14: Create a new τ , set dτ = dτi and rτ = rτi + rτj

15: Remove τi and τj from Tb, and add τ to Tb
16: end while

17: for all τ in T̂ do

18: ∀i, set diτ = 0 if xi ∈ x̌

19: end for

20: Set T̂ = T̂ ∪ Tb
21: return The reduced PCTMC P̂ = (x̂, T̂ , x̂0) for simulation where x̂0 is a

subvector of x0 which gives the corresponding initial value for x̂

After the reduction algorithm is applied, only transitions and population

variables in the pivotal part, together with the aggregated border transitions,

are retained; all the other population variables and transitions are discarded.

As an illustration, for the example PCTMC in Section 3.3, let x1 be the target

population, ε = 0.1, then the pivotal part of the decoupled PCTMC consists

of {x1, x2, τ1, τ2}, the trivial part consists of {x3, x4, x5, τ3, τ4, τ5} where τ3 is a
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border transition because cx2,τ3 = 0.25. After the model reduction algorithm

is applied, the PCTMC only consists of {x1, x2, τ1, τ2, τ3} where the transitions

are transformed as follows:

S1 −→τ1 ∅ at rate α1 × x1

S1 + S2 −→τ2 2S1 at rate α2 × x1 × x2

S2 −→τ3 ∅ at rate Nτ3/te

Here the only approximation we make which will impact the evolution of x1 is

the transition rate of τ3. However, since the contribution of τ3 to the evolution

of x1 is minor, the approximation is unlikely to cause significant deviation in

the dynamics of x1.

5. Reduced Model Validation

We also note that the extent of the reduction can vary significantly when

choosing different values of the decoupling threshold parameter ε. Specifically,

with a larger value of ε, more transitions and population variables will be re-

moved from the stochastic simulation. However, a larger deviation in the evo-

lution of target populations is also expected. On the other hand, when ε tends

to zero, the deviation caused by the approximation of the rate of border transi-

tions tends to be smaller, thus the dynamics of target populations in the reduced

model will converge to be the same as in the full model. Thus, we expect that

if xt is the set of target populations, and ε is the decoupling threshold, then

for 0 < t < te:

lim
ε→0

D
(
P(xt, t | P),P(xt, t | P̂)

)
= 0

where P(xt, t | P) and P(xt, t | P̂) are the probability distributions of the target

populations at time t given the full model and the reduced model, respectively;

D : P× P→ R+ is a suitable statistical distance between the two probability

distributions. Accordingly, in general, when we choose a small value for ε, the

model will behave well. However, there is still no direct estimate of the amount

of error which will be caused by the reduction. Therefore, we also propose an
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efficient validation method to estimate the error caused by model reduction.

Specifically, instead of computing the statistical distance between the probabil-

ity distributions of the target populations in the full and reduced models, we

estimate the error on the mean dynamics of target populations which is more

computationally efficient to evaluate. Again, this is achieved by computing the

first moment of target populations using the moment approximation method.

Note that the first moment of target populations of the full model can be ob-

tained while evaluating the firing count of transitions for the computation of

direct coupling coefficients. Thus, we only need to compute the first moment of

the target populations in the reduced model for validation.

Concretely, after obtaining the first moment of the target populations through

moment approximation in both models, we can evaluate the error caused by

model reduction on an arbitrary target population xt at time t by:

err(xt, t) =
| E[xt, t | P]− E[xt, t | P̂] |

E[xt, t | P]
(7)

where E[xt, t | P] and E[xt, t | P̂] are the first moment of the target population

xt at time t in the full model and the reduced model, respectively; err(xt, t) is

the validation error of the target population xt at time t.

Overall, validation errors increase monotonically with ε. Therefore, we can

choose a maximal value of ε below a validation error to achieve the largest level

of reduction, but still retain acceptable accuracy on target populations.

6. Case Studies

In this section, we apply our technique to two case studies: a multi-class ver-

sion of the well-known SIR (Susceptible-Infected-Recovered) model for disease

spread and a bike-sharing model whose parameters are fitted with historical

data from Santander Cycles, the public bike-sharing system in London. In the

experiments for both case studies, we run Gillespie’s SSA on the full models

and the reduced models with different values of ε. The applicability and power

of our technique is evaluated by the size of the reduced model, the decrease in
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simulation time, and the statistical accuracy on the target populations. In order

to allow a fair statistical accuracy evaluation, we also require enough simulation

runs to allow the simulation sample means to converge. More specifically, we

require the width of the 95% confidence interval of the simulation sample mean

to be less than 1% of the value of the simulation sample mean at any point in

time. All the experiments were run on a Linux machine with 16 GB memory

size and 3.4 GHz Intel core i7 CPU.

6.1. The Multi-class SIR Model

We first consider the well-known SIR model. The SIR model studies the

spread of disease by considering the dynamics of three types of individuals who

are susceptible (S), infected (I) and recovered (R) with respect to the disease.

Susceptible individuals are those who have not contracted the disease; they may

get infected by an encounter with another individual who currently carries the

disease; finally, infected individuals recover after some time. The model can be

studied by a PCTMC containing the following transitions:

S → I at β #(S) #(I)

I → R at γ #(I)

where β and γ are positive reals describing the infection rate and the recovery

rate, respectively; #(S) and #(I) denote the population of suspectibles and

infected individuals, respectively. Here we consider a multi-class variant with

N classes of individuals with class-specific infection rates and recovery rates

[40, 41]. Specifically, the transitions for the PCTMC of the multi-class SIR

model are extended as follows:

Si + Ij → Ii + Ij at βi,j #(Si) #(Ij) ∀i, j ∈ [1, N ]

Ii → Ri at γi #(Ii) ∀i ∈ [1, N ]

where Si, Ii, Ri represent a susceptible, infected and recovered individual of

class i; βi,j denotes the rate for a susceptible individual of class i to be infected

by an infected individual of class j.
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6.1.1. Experiment Setup

In our experiments, we consider a multi-class SIR model with N = 30. Fur-

thermore, experiments are carried out on 30 randomly chosen different instan-

tiations of the SIR model in order to avoid the bias caused by a particular set

of parameters. Specifically, in each instantiation, βi,j and ri are set to different

values sampled from a uniform distribution between [0, 1], the initial population

for susceptibles of each class is set to be a different integer sampled from a uni-

form distribution between [0, 50], the initial infected population of each class is

set to be a random value generated from a uniform distribution between [0, 5],

the recovered populations of all classes are set to zero.

For each model instantiation, suppose we are interested in how many indi-

viduals of a randomly chosen class are infected by the disease before the disease

is extinguished, thus the population of recovered individuals of that class is set

as the target population. Then, we conduct stochastic simulation for both the

full/original model and the reduced model after applying our reduction method.

The final time of a simulation run is set to 10, which allows the disease to be

extinguished. The number of stochastic simulation runs for each model instan-

tiation is set to 1000 for both the full and reduced models which allows the

sample means to converge. Furthermore, in each experiment with respect to

a model instantiation, we set ε to different values from 0.001 to 0.1 to see the

performance of our reduction method with different decoupling thresholds.

6.1.2. Evaluation Metrics

To evaluate the level of reduction by our method, we outline the average

number of populations and transitions, the time cost per simulation run for the

reduced models compared with their counterparts for the full models as well

as the time cost of the reduction process (the time costs of model decoupling,

reduction and validation are all included). The accuracy of the reduced models

are evaluated by four metrics: the validation error on the target populations

using moment approximation, the relative error on the mean and standard de-

viation of target populations in the stochastic simulation runs of the reduced
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models compared with the corresponding values in the simulation runs of the

full models, the Bhattacharyya distance of the probability distributions of the

target populations in the stochastic simulation runs of the reduced models and

their corresponding full models. Specifically, all the four metrics are calculated

for 200 time points evenly distributed in the simulation time duration for each

experiment. The relative error in the mean and standard deviation at each time

point are calculated by the distance between their values in the reduced and full

models divided by the value in the full model which is similar to Equation 7,

such that:

errf (xt, t) =
| f(xt, t | P)− f(xt, t | P̂) |

f(xt, t | P)

where f denotes the mean or std function, f(xt, t | P) and f(xt, t | P̂) denote

the mean or the standard deviation of the target population xt at time t in

the simulation of the full model and the reduced model, respectively. The

Bhattacharyya distance is a statistical distance which measures the similarity

of two probability distributions [42]. Concretely, let Dt be the value domain

of a target population xt, then the Bhattacharyya distance of the probability

distributions of xt in the full and reduced models at time t is defined as:

DB(xt, t) = − ln
∑
z∈Dt

√
P(xt = z, t | P)× P(xt = z, t | P̂) (8)

where 0 ≤ DB(xt, t) ≤ ∞, and DB(xt, t) = 0 if P(xt, t | P) and P(xt, t | P̂)

perfectly overlap. Lastly, we call err(xt, t) (the validation error), errf (xt, t)

and DB(xt, t) error metrics. Thus since there is only one target population

in each experiment of this case study, each experiment will generate 200 error

samples along the simulation time duration for each error metric.

6.1.3. Experiment Results

We give the average number of populations and transitions, average time

cost per simulation run with 95% confidence interval with different values of

ε on the 30 instantiations of the multi-class SIR model in Table 1. The time

cost of the reduction process for all scenarios is similar, which is 1428 ± 102ms

28



ε
Number of Number of time cost

populations transitions per run (ms)

Full model N/A 90 930 245± 8

Reduced

1× 10−3 43 ± 1.1 883 ± 20 113 ± 8

2.5× 10−3 30 ± 1.5 745 ± 54 62 ± 7

5× 10−3 25 ± 0.5 558 ± 24 40 ± 4

7.5× 10−3 23 ± 0.9 448 ± 40 30 ± 5

1× 10−2 21 ± 1.1 384 ± 42 23 ± 4

model 2.5× 10−2 11± 1.4 93± 28 4± 1

5× 10−2 4 ± 0.9 12 ± 5 0.7 ± 0.2

7.5× 10−2 3 ± 0.6 3 ± 2.1 0.3 ± 0.1

1× 10−1 2 ± 0 2 ± 0 0.2 ± 0.03

Table 1: Reduction metrics of our method on the multi-class SIR model case study

(millisecond) on average with 95% confidence interval. Table 2 gives the corre-

sponding average (also with 95% confidence interval) for the error metrics over

all the error samples generated in the experiments on the 30 instantiations of

the multi-class SIR model.

It can be seen that our method can significantly reduce the number of pop-

ulation variables and transitions as well as the simulation time cost even with

a small decoupling threshold. With larger thresholds, more transitions are re-

moved and thus the simulation time is further reduced. The overhead of the

reduction process for the multi-class SIR model is approximately the time cost of

6 simulation runs of the full model. This means the overhead cost of the reduc-

tion process is almost negligible if a large number of simulation runs is required

for checking the statistical properties of the target populations. From Table 2,

we can see that the error caused by model reduction on the target populations is

well approximated by the validation error. We observe that the deviation of the

statistical properties on the target population is rather low when ε ≤ 2.5×10−2.

However, we find that setting ε > 2.5 × 10−2 will cause significant error. This

means that when ε ≤ 2.5 × 10−2, the transitions and population variables we
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ε
Validation Simulation error Simulation error Bhattacharyya

error (err) on mean (errmean) on std (errstd) distance (DB)

1× 10−3 5.2± 0.5 × 10−3 5.8± 0.4 × 10−3 3.2± 0.2 × 10−2 8.7± 1.1 × 10−4

2.5× 10−3 6.2± 0.6 × 10−3 6.4± 0.5 × 10−3 3.4± 0.2 × 10−2 1.1± 0.1 × 10−3

5× 10−3 8.4± 1.0 × 10−3 8.3± 0.7 × 10−3 3.6± 0.2 × 10−2 1.2± 0.1 × 10−3

7.5× 10−3 8.7± 1.1 × 10−3 8.8± 0.7 × 10−3 3.6± 0.2 × 10−2 1.3± 0.3 × 10−3

1× 10−2 1.0± 0.1 × 10−2 8.9± 0.8 × 10−3 3.9± 0.2 × 10−2 1.5± 0.2 × 10−3

2.5× 10−2 1.4± 0.2 × 10−2 1.4± 0.1 × 10−2 4.0± 0.2 × 10−2 1.6± 0.1 × 10−3

5× 10−2 1.3± 0.1 × 10−1 1.2± 0.1 × 10−1 1.7± 0.1 × 10−1 1.1± 0.2

7.5× 10−2 5.0± 0.2 × 10−1 5.4± 0.1 × 10−1 4.8± 0.2 × 10−1 3.6± 0.2

1× 10−1 6.2± 0.1 × 10−1 6.0± 0.1 × 10−1 5.1± 0.1 × 10−1 3.6± 0.2

Table 2: Validation and simulation errors of our reduction method on the multi-class SIR

model case study

removed or abstracted all have minor impact on the evolution of target pop-

ulations. In contrast, if ε is set to be larger than 2.5 × 10−2, the model will

no longer retain enough of the original transitions to remain a faithful repre-

sentation of the full model: transitions have been removed or abstracted that

do have a significant influence on the target population. We believe the point

at which this happens will depend on the structure of the particular model,

and our validation step can be used to find this critical point before stochastic

simulation runs are conducted. In this case, by setting ε = 2.5 × 10−2, we can

simulate the model with a significantly lower computational cost (from 245ms

per run to 4ms per run) whilst still achieving very high accuracy.

6.2. The Bike-sharing Model

The second example is a PCTMC which models a public bike-sharing sys-

tem. Bike-sharing systems are becoming more and more important for urban

transportation. In such systems, users arrive at a station, pick up a bike, use

it for a while, and then return it to another station of their choice. Recently,

PCTMCs have been used to model bike-sharing systems [5, 6, 7]. Here, we

consider a model of N stations. We use a PCTMC containing the following
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transitions to represent the model:

Bikei → Sloti + Journeyij at λi p
i
j ∀i, j ∈ [1, N ] ∧ i 6= j

Journeyij + Slotj → Bikej at #(Journeyij) µ
i
j ∀i, j ∈ [1, N ] ∧ i 6= j

where Bikei and Sloti denote an available bike or slot in station i, respectively;

Journeyij denotes a bike in transit from station i to station j. λi is the pickup

rate of bikes in station i, pij is the probability to choose station j as the desti-

nation of a trip when picking up a bike from station i. 1/µij is the mean trip

time from station i to station j. Note that since the focus of this paper is not

the accuracy of bike availability prediction in stations, for simplicity, we assume

journey durations are also exponentially distributed in the model. Although the

assumption is generally not true in practice, it will not cause any problem on

the demonstration of our model reduction method here.

6.2.1. Experiment Setup and Evaluation Metrics

We use the above PCTMC to model the journey dynamics from 8am to 9am

in weekday mornings between 50 bike stations near Russell Square in central

London. All the parameters in the model are calculated by journey data which

is available online1. In total, 50 experiments are conducted for the bike-sharing

model, where in each we choose the number of available bikes in one station and

the number of available slots in another station as our target populations for

model reduction. The number of stochastic simulation runs for the full model

and the reduced model in each experiment is set to 10,000 in order to allow

the simulation sample means to converge. Lastly, the same metrics as in the

multi-class SIR model case study are used to evaluate the level of reduction and

the error caused by reduction in this case study.

1https://tfl.gov.uk/info-for/open-data-users/our-feeds?intcmp=3671#

on-this-page-4
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6.2.2. Experiment Results

We give the reduction and error metrics on the bike-sharing model case study

in Tables 3 and 4, respectively. The time cost of the reduction process in all the

experiments is 3663 ± 141ms on average with 95% confidence interval. From the

results, again, we observe that a large number of population variables and tran-

sitions can be removed, the time cost per simulation run can be tremendously

reduced for the bike-sharing model even with a small decoupling threshold. The

time cost of the reduction process is only about the cost of 20 simulation runs

of the full model. Furthermore, we notice that even with ε = 1× 10−3, most of

the transitions in the bike-sharing model can be removed or abstracted whilst

still retaining a high simulation accuracy on the target populations. The time

cost per simulation run can be reduced from 189ms to 6.8ms on average in this

case. This indicates that in order to evaluate the probability distribution of

bike and slot numbers in some particular stations, only some key journey dy-

namics need to be captured, other journey dynamics between stations in the

bike-sharing model need not to be simulated explicitly. Increasing the value of

ε will also increase the level of reduction, as well as the simulation error caused

by reduction, steadily, and this trend (on the simulation error) is captured well

by the validation error. This means that the modeller can decide the value of ε

by the trade-off between level of reduction and error caused by reduction before

stochastic simulation runs are conducted.

7. Conclusion

In this paper, we proposed an automatic model reduction method which can

significantly accelerate stochastic simulation of PCTMCs assuming that only

the statistical properties of a few target populations are to be checked. Our

model reduction method exploits the coupling between population variables and

transitions in the PCTMC. A decoupling threshold is used to control the extent

of reduction. Population variables and transitions which have larger coupling

coefficients than the decoupling threshold on the target populations are exactly
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ε
Number of Number of time cost

populations transitions per run (ms)

Full model N/A 914 1733 189± 27

Reduced

1× 10−3 61 ± 6 85 ± 9 6.8 ± 0.9

2.5× 10−3 54 ± 5 74 ± 7 5.9 ± 0.9

5× 10−3 36 ± 4 55 ± 6 4.0 ± 0.5

7.5× 10−3 27 ± 3 42 ± 5 3.0 ± 0.4

1× 10−2 22 ± 2 34 ± 4 4.0 ± 0.3

model 2.5× 10−2 10 ± 1 15 ± 2 0.9 ± 0.1

5× 10−2 5.7 ± 0.6 7.4 ± 1.0 0.4 ± 0.06

7.5× 10−2 4.4 ± 0.3 5.1 ± 0.6 0.3 ± 0.05

1× 10−1 4.1 ± 0.3 4.1 ± 0.4 0.2 ± 0.03

Table 3: Reduction metrics of our method on the bike-sharing model case study

ε
Validation Simulation error Simulation error Bhattacharyya

error (err) on mean (errmean) on std (errstd) distance (DB)

1× 10−3 1.1± 0.4 × 10−2 1.0± 0.3 × 10−2 1.2± 0.3 × 10−2 1.6± 0.1 × 10−4

2.5× 10−3 2.1± 0.5 × 10−2 1.5± 0.5 × 10−2 1.3± 0.3 × 10−2 2.5± 0.1 × 10−4

5× 10−3 2.5± 0.8 × 10−2 2.3± 0.8 × 10−2 2.0± 0.6 × 10−2 7.8± 0.5 × 10−4

7.5× 10−3 2.9± 0.7 × 10−2 2.4± 0.7 × 10−2 2.0± 0.5 × 10−2 8.1± 0.7 × 10−4

1× 10−2 2.9± 0.7 × 10−2 2.6± 0.7 × 10−2 2.5± 0.6 × 10−2 1.1± 0.5 × 10−3

2.5× 10−2 5.3± 0.1 × 10−2 4.7± 0.1 × 10−2 4.2± 0.1 × 10−2 3.9± 0.2 × 10−3

5× 10−2 5.7± 0.1 × 10−2 5.4± 0.1 × 10−2 5.3± 0.1 × 10−2 5.8± 0.3 × 10−3

7.5× 10−2 6.7± 0.1 × 10−2 6.5± 0.1 × 10−2 6.2± 0.1 × 10−2 6.7± 0.3 × 10−3

1× 10−1 8.0± 0.1 × 10−2 7.5± 0.1 × 10−2 1.2± 0.3 × 10−1 2.8± 0.1 × 10−2

Table 4: Validation and simulation error of our reduction method on the bike-sharing model

case study
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simulated. However, the remaining population variables and transitions in the

PCTMC are either removed or approximately simulated.

As modellers we know that a model is an abstraction of the system in the

real world. Thus it inevitably contains some deviation from the real system due

to details that are omitted in the abstraction process. Consequently, except

for the case of particular safety critical systems, it is generally acceptable to

allow some minor noise to be introduced into a model during construction.

Taking this perspective a little further, we can consider the transitions and

population variables that we removed from the simulation as noise factors which

have negligible impact on the evolution of populations of interest.

We have demonstrated the power of our method by applying it to the stochas-

tic simulation of two PCTMC models in the disease spread and public trans-

portation area. The result shows that our method can achieve significant accel-

eration of stochastic simulation but still retain high statistical accuracy on the

dynamics of the target populations.
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