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Efficient Testing and Matching of
Deterministic Regular Expressions

B. Groza, S. Manethb,∗

aLRI, Université Paris-Sud, France
bSchool of Informatics, University of Edinburgh, United Kingdom

Abstract

A linear time algorithm is presented for testing determinism of a regular expres-
sion. It is shown that an input word of length n can be matched against a determin-
istic regular expression of length m in time O(m + n log log m). If the deterministic
regular expression has bounded depth of alternating union and concatenation oper-
ators, then matching can be performed in time O(m + n). These results extend to
regular expressions containing numerical occurrence indicators.

Keywords: deterministic regular expression, matching time complexity, testing
determinism, numercial occurrence indicators

1. Introduction

Regular expressions are a fundamental concept in computer science. They were
introduced in the 1950’s by the mathematician Stephen Kleene [1]. Regular expres-
sions allow to represent regular languages in a succinct and natural way. They have
numerous applications, for instance, to search within a text editor (Ken Thomson’s
“ed” from 1971 already implements regular expression search, cf. [2]) or to find
lines of a file that match a given expression (as in Unix’s “grep” tool). Virtually all
modern programming languages support regular expressions (directly or through
libraries). Recent applications of regular expressions include validation of xml
documents against xml Schemas, or network intrusion detection where network
packages are compared against large collections of regular expressions to detect
cyber attacks (see, e.g., [3]).

Modern applications, such as the two just mentioned, have a particular demand
for efficient matching of an input word against a regular expression. For this reason,
new efficient libraries have been developed (e.g. re2 by Russ Cox [4]). In general
however, matching requires non-linear running time. This is often unacceptable,
especially when both the input word and the regular expression are large. For this
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reason, the document processing community when in the 1960s developing the
document markup language sgml [5] restricted the usage of regular expressions to
so called deterministic regular expressions. Recent web standards such as xml [6]
and xml Schema[7] have taken over this very same restriction (called “unique par-
ticle attribution” in xml Schema).

What is a deterministic regular expression? A regular expression is a well-
bracketed word over terminal letters, union, and star. The union operator (“+”)
represents choice and the star operator (“∗”) represents (zero or more) repetitions.
Brackets are used for grouping. As an example, consider the regular expression

e = a(a + b)∗b

This expression matches any word over the letters a and b that starts with an a and
ends with a b. To understand how a word can be matched against an expression,
consider the positions of the expression, i.e., all the occurrences of letters. The
expression e contains four positions. Matching can be achieved by moving from
positions to positions, while checking the letters of the current positions against
the current letter in the input word. But, how exactly can we determine the admis-
sible moves between positions? Consider the expression e. The only admissible
start move is to the first a-position. From this position, we can move to the next
a-position and then stay there (thus matching arbitrarily many a’s). From any a-
position we can also move to a b-position. From the first b-position we can stay,
move to the second a-position, or move to the second b-position. The only ad-
missible end position is the second b-position. Using these moves, let us match
the word w = ab against e: we start at the first a-position, obtaining a successful
match against the first letter of w. From this first a-position, we can move to all
positions of e except the first a. The two b-positions match successfully against
the next letter of w. Call these positions the currently “active” positions. Since the
second b-position is an admissible end position, w is successfully matched by e. It
should be intuitively clear that this matching process is simplified if at any given
moment, there is only at most one active position. The determinism restriction
requires exactly this: from any position, the possible successor positions must all
carry distinct labels. Thus, e is not deterministic because the first a-position admits
two successor b-positions. Note that the language of e can, however, be captured
by this deterministic regular expression:

d = aa∗b(a∗b)∗

In general, not every regular language can be captured by a deterministic regular
expression. Anne Brüggemann-Klein and Derick Wood [8] show that, for instance,
(a+b)∗a(a+b) has no equivalent deterministic expression. (Note that Brüggemann-
Klein and Wood use the term “1-unambiguous” to refer to deterministic regular
expressions.) Thus, we lose expressive power when moving from regular to deter-
ministic regular expressions.

How can it be decided for a given regular expression whether or not it is de-
terministic? There is a classical construction due to V. M. Glushkov [9], which
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Figure 1: The Glushkov automaton Ae.
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Figure 2: The Glushkov automaton Ad.

converts a regular expression e into a finite-state automaton. It turns out that the
resulting automaton AE (often called “Glushkov automaton” or “position automa-
ton”) is deterministic, if and only if the expression e is deterministic. The automa-
ton AE has one state for each position of e, plus an additional start state. If we can
move from position p to p′ and p′ is labeled a, then AE has an a-transition from
state p to state p′. For every possible start move there is a corresponding transi-
tion from the start state of AE . The admissible end positions are the final states
of AE . Figures 1 and 2 show the Glushkov automata for the regular expressions e
and D of above. Clearly, AE is not deterministic (viz. the second and fourth state
from the left: they both have two outgoing b-transitions), while the automata AD is
deterministic.

What is the time complexity of testing determinism of a regular expression
e? The best known algorithm constructs the Glushkov automaton and tests it for
determinism. As shown by Brüggemann-Klein [10], this can be achieved in time
O(m2), where m is the length of e. More precisely, the time complexity is O(|Σ|m)
where Σ is the set of letters occurring in e.

What is the complexity of matching a word (of length n) against a deterministic
regular expression? We construct the Glushkov automaton and run it on the input
word in time O(m2 + n). The most straightforward implementations of matching
based on the traditional constructions of dfas or nfas have a running time of either
O(2m + n) or O(mn), respectively, for matching unrestricted regular expressions
(there are of course many variants of automata-based matching algorithms which
can achieve trade-offs between these bounds).

Naturally, the questions arise whether one can do (i) better than time O(m2) for
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testing determinism, and (ii) better than time O(m2 + n) for matching. In this paper
we present the first linear time algorithm for testing determinism. We also present
linear time matching algorithms for several important subclasses of deterministic
regular expressions. Our results concerning regular expressions are summarized as
follows:

(1) Determinism of a regular expression (of length m) can be tested in time O(m).

(2) A deterministic regular expression e can be matched in time O(m+n) against
an input word of length n, if

(a) each letter occurs only a constant number of times in e, or

(b) the maximal depth of alternating union and concatenation operations
in e is constant.

(3) Star-free deterministic regular expressions can be matched against k input
words (of lengths n1, . . . , nk), in time O(m + n1 + · · · + nk).

(4) Arbitrary deterministic regular expressions can be matched in time O(m +

n log log m).

Before we explain the ideas behind these results, we give some examples of
expressions which exhibit the quadratic running time of the previously best known
method of testing determinism (namely to construct the Glushkov automaton).
Consider the expression

fm = (a1?)(a2?) . . . (am?)

where a1, . . . , am are distinct letters. The expression (a?) matches a or the empty
word. Thus, fm matches words in which each ai occurs at most once, and the index
i increases from left to right. The Glushkov automaton for fm (with m = 4) is

a1 a2 a3 a4

a4a3

a4

a2

a3

a4

Figure 3: The Glushkov automaton for the expression f4.

shown in Figure 3. Its number of transitions is m(m + 1)/2. As another example
consider the expression

gm = (a1 + · · · + am)(a1 + · · · + am)

4



which matches any two-letter word over the letters a1, . . . , am. The size (i.e., the
number of transitions) of the Glushkov automaton for gm is m(m + 1).

Testing Determinism. Since it is cost-prohibitive to construct the Glushkov
automaton, the obvious choice is to construct the parse tree te of e and to devise
an algorithm that tests determinism using te. It was observed already by Chang
and Paige [11] and by Ponty, Ziadi, and Champarnaud [12] that it can be tested in
a syntax-directed way over te, whether a position q of e follows a position p (i.e.,
whether or not there is a transition from q to p in Ae). Thus, we decorate te (during
preprocessing) with additional information that allows to answer efficiently basic
queries. For instance, checking if q follows p essentially amounts to checking if
the lowest common ancestor (LCA) of q and p is a concatenation operator or if
it has a star operator as its ancestor. Thus, we equip the parse trees with facilities
allowing to efficiently answer LCA queries (see, e.g., the works by Harel and Tarjan
and by Bender, Farach-Colton, Pemmasani, Skiena, and Sumazin [13, 14]) and
pointers leading to the nearest star-ancestor. This is an example of the methodology
that eventually allows us to test determinism in linear time. We use a variation of
skeleta trees [15] to overcome yet another obstacle. Bojańczyk and Parys [15] use
skeleta trees to give a linear time (data complexity) algorithm for evaluating regular
XPath queries. Interestingly, one can construct one fixed XPath query that, given
an expression e, tests determinism of e over te (we show this in Section 3.3).

Matching. Using a variation of skeleta trees that store additional informa-
tion in their nodes, it is possible to match a word against a deterministic regular
expression e by repeatedly asking so called “lowest colored ancestor” queries. A
tree t can be preprocessed with a randomized algorithm in expected linear time so
that arbitrary such queries can be answered in time O(log log |t|) by the results of
Muthukrishnan and Müller and by Farach and Muthukrishnan [16, 17]. This gives
us time O(m + n log log m) for matching a word of length m against e of length n. It
is straightforward, using our data structures, to match in time O(m + n) determin-
istic expressions in which each letter occurs only a constant number of time. It is
more involved to obtain an O(m + n) time algorithm for deterministic expressions
with constant alternation depth of concatenation and union operators. For this, the
parse tree te is decomposed into paths. Each such path is rooted by a concatenation
or by a union operator, and ends in a leaf (position). Roughly speaking, the match-
ing algorithm simulates the transitions of the Glushkov automaton, by repeatedly
jumping between the different paths. Through an amortized running time analy-
sis we obtain the linear bound. Finally, to match several words against a star-free
deterministic regular expression, we devise an algorithm that builds skeleton trees
dynamically, while traversing the expression once. We expect that our linear time
algorithm can well be applied in practise.

Note that the alternation depth is small in practice: Grijzenhout’s large collec-
tion of (thousands of) real-world dtds [18] does not contain a single regular expres-
sion with alternation depth larger than 4. Also in other domains, such as network
intrusion detection, we expect expressions to have small alternation depth.
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Expressions with Numerical Occurrence Indicators. Regular expressions
that appear in practical applications often use a richer syntax than the one we have
discussed until now. In particular, it is common to use a shorthand to denote the
k-fold repetition of a subexpression e. In xml Schema [7] this shorthand is called
“numeric occurrence indicator”, and it is of the form ei.. j, where i < j are non-
negative integers. The expression ei.. j is a shorthand for (ei + ei+1 + · · · + e j). Such
expression appear, for instance, also in the “interval expressions” of POSIX and
in the “patterns” of the programming language Perl [19, 20]. A recent study [21]
shows they are widely used in practice: a majority of expressions feature such in-
dicators in RegExLib, the main collection of regular expressions on the web, and
in Snort, a system for web intrusion detection. We extend our results of before
to regular expressions with numeric occurrence indicators. For such expressions,
two forms of determinism have been studied: weak and strong (see Kilpeläinen
and Tuhkanen [22]). Essentially, weak determinism only checks that we can deter-
mine the position in the regular expression while matching a word against a regular
expression, whereas strong determinism additionally checks that there is no ambi-
guity about how many iterations of every subexpression were required: expres-
sion (a1..3)2..2 is only weakly deterministic (a5 can be decomposed into (a3)(a2) or
(a2)(a3)) whereas (a2..2)3..4 is strongly deterministic.

Our results concerning regular expressions with numerical occurrence indica-
tors are summarized as follows. Let e be a regular expression (of size m) with
numeric occurrence indicators.

(5) Weak and strong determinism of e can be tested in time O(m).

(6) If e is strongly deterministic, then matching e against a word of length n
can be performed in time O(m + n) if (a) each letter occurs only a constant
number of times in e, or if (b) the maximal depth of alternating union and
concatenation operations in e is constant.

(7) If e is strongly deterministic, then e can be matched in time O(m+n log log m).

A preliminary version of this paper was presented at PODS 2012 [23].

2. Regular Expressions

Let Σ be an alphabet, i.e., a finite non-empty set of symbols. By Σ∗ we denote
the set of all words over Σ. The empty word is denoted by ε. Regular expressions
over Σ are defined by the following grammar:

e D a(e) � (e)(e) + (e)(e)?(e)∗,

where a ∈ Σ, � represents concatenation, + union, ? choice, and ∗ the Kleene star.
The language L(e) of e is defined recursively as usual (see, e.g., [24]): L(a) = a,
L((e1) � (e2)) = {uw | u ∈ L(e1),w ∈ L(e2)}, L((e1) + (e2)) = L(e1) ∪ L(e2),
L((e)?) = L(e) ∪ {ε}, and L((e)∗) = {wk | w ∈ L(e), k ≥ 0}, where w0 = ε and
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wn+1 = wwn. We observe that the languages {ε} and ∅ cannot be expressed with
this syntax (but these trivial languages are irrelevant for our study). We say that e is
nullable if ε ∈ L(e). In expressions, we often omit � symbols, and omit parentheses
as well when there is no ambiguity (e.g., around words in Σ). We require that our
alphabet Σ contains the symbols # and $, and we require of our regular expressions
e that:

(R1) e = (#e′)$ and # and $ do not appear in e′,

(R2) ((e′)∗)∗ does not appear in e,

(R3) if (e′)? appears in e, then ε < L(e′).

An arbitrary regular expression can be changed easily (in linear time) into an equiv-
alent one of the required form. In fact, our condition is a weaker version of the star
normal form by Brüggemann-Klein [25]. Note that # and $ are tacitly present and
required, but, for better readability, are omitted in most examples.

We identify a regular expression with its parse tree (as illustrated in Figure 4),
and define the positions Pos(e) of e as the leaves of e whereas Ne denotes the
set of all nodes from e. A position of the regular expression is thus viewed as a
“location” in the tree. For a node n ∈ Ne we denote by e/n the subexpression of
e rooted at n. Every tree t is implemented as a pointer structure, where Lchildt(n)
(resp. Rchildt(n)) returns the left (resp. right) child of node n in t and parentt(n)
returns the parent of n in t. The pointers return Null if the respective node does not
exist. In particular, for unary nodes Rchildt(n) returns Null. We denote by labt(n)
the label of n in t, and by 4t the (reflexive) ancestor relationship in t. If m 4t n then
we also say that n is a descendant of m. Thus, each node is ancestor and descendant
of itself. We finally define for each node n the pointer pStar(n) which points to the
lowest ∗-labeled ancestor of n. Our algorithms will exploit the property that all
pStar(n) pointers can be computed in linear time through a depth-first traversal of
the tree.

The size of a tree t, denoted |t|, is the number of nodes in t, whereas the depth
of t, denoted depth(t), is the length of the path (number of edges) from the root
to the deepest node in t. Our restrictions (R2) and (R3) guarantee that |e| is linear
in |Pos(e)|. We denote by e the regular expression obtained from e by marking
the i-th position (when traversing the regular expression (tree) from left to right)
with subscript i. For instance, (a � b)∗(a + b) = (a1 � b2)∗(a3 + b4). We denote
by Σ the set of symbols obtained from Σ by adding subscripts below symbols. By
definition, the trees e and e are the same except for this relabeling of positions so
we will identify each position from e with its corresponding position in e.

Given a position p of e, Followe(p) is the set of positions that may follow p in
e:

Followe(p) = {q | ∃u, v ∈ Σ
∗
.u � labe(p) � labe(q) � v ∈ L(e)}. (1)

The expression e is deterministic if for all p, q, q′ ∈ Pos(e) with q, q′ ∈ Followe(p):
q , q′ implies that labe(q) , labe(q′). Whenever the regular expression or the tree
is clear from context, we drop the subscript and write Follow, lab, and 4.
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Example 2.1. Let e1 = (ab+b(b?)a)∗ and e2 = (a∗ba+bb)∗. Denote by p1, . . . , p5
the positions of e1 in left-to-right order, and by q1, . . . , q5 those of e2. Then e1 =

(a1b2 + b3(b4?)a5)∗ and Followe1(p3) = {p4, p5}. Similarly, e2 = (a∗1b2a3 + b4b5)∗,
and Followe2(q3) = {q1, q2, q4}. Expression e1 is deterministic, while e2 is non-
deterministic because labe2(q2) = labe2(q4) = b.

2.1. Structure of Regular Expressions

The First and Last-positions of a regular expression e are

First(e) = {p | ∃u ∈ Σ
∗
.labe(p) � u ∈ L(e)}

Last(e) = {p | ∃u ∈ Σ
∗
.u � labe(p) ∈ L(e)}.

We also define, for a node n of e, First(n) and Last(n) as First(e/n) and Last(e/n),
respectively. Note that First(n) and Last(n) are non-empty for every node n of e.
For instance, for the expression e0 in Figure 4, First(n2) = {p1, p2} and Last(n2) =

{p5}.
Given two nodes u, v of e, let LCA(u, v) denote the lowest common ancestor of

u and v in e. The next lemma was stated before, e.g., in [11, 12], but not in terms
of LCA.

�

∗

�

?

c

�

�

a ∗

b

�

?

a

c

�

b a

[a, c]

[b]

[a]

#

�

�

$

Regular expression (#e0)$

n1

n2

n3

n4

n5

p1

p2

p3 p4

p5

p6 p7

�

∗

�

�

a

?

a

�

a

a-skeleton
n1

n2

n3

n5

[a, c]: color = [a, c]

n : IsSupFirst(n)

n : IsSupLast(n)

Figure 4: Expression e0 = (c?((ab∗)(a?c)))∗(ba).

Lemma 2.2. Let p, q ∈ Pos(e) and n = LCA(p, q). Then q ∈ Follow(p) iff

(1) lab(n) = �, q ∈ First(Rchild(n)), p ∈ Last(Lchild(n)), or
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(2) q ∈ First(s) and p ∈ Last(s) where s is the lowest ∗-labeled ancestor of n.

Lemma 2.2 says that there are only two ways in which positions follow each other:
(1) through a concatenation, or (2) through a star. We write q ∈ Follow�e (p) if (1) is
satisfied, and q ∈ Follow∗e(p) if (2) is satisfied. For instance, in e0 (Figure 4), we
have p4 ∈ Follow�e0

(p3) and p1 ∈ Follow∗e0
(p5). Note, however, that there may exist

positions p and q that satisfy simultaneously (1) and (2).
It was also observed earlier, e.g., [11, 12, 26], that First and Last-sets (and

nullability) can be defined in a syntax-directed way over the parse tree of e. For
instance, if lab(n) = � and Lchild(n), Rchild(n) are non-nullable then First(n) =

First(Lchild(n)) and Last(n) = Last(Rchild(n)). We define now the Boolean prop-
erties IsSupFirst and IsSupLast for every node n, where n′ denotes parent(n):

IsSupFirst(n) iff lab(n′) = �, n = Rchild(n′), and Lchild(n′) is non-nullable

IsSupLast(n) iff lab(n′) = �, n = Lchild(n′), and Rchild(n′) is non-nullable.

If IsSupFirst(n) then the First-set changes at n’s parent: First(parent(n))∩First(n) =

∅. Otherwise the First-set of n’s parent is a superset: First(parent(n)) ⊇ First(n).
For instance, in e0 (Figure 4), IsSupFirst holds at n4 since First(n3) = {p2} and
First(n4) = {p4, p5}. This explains the name “IsSupFirst”: a node with this prop-
erty is “maximal” with respect the First-sets of its direct descendants (without the
property). The same holds for IsSupLast and Last. We define for any node n,
the pointers SupFirst(n) and SupLast(n) as the lowest ancestors x of n such that
IsSupFirst(x) and IsSupLast(x), respectively. Recall that by (R1), e = (#e′)$; this
implies that for every node of e′, both SupFirst(n) and SupLast(n) are defined. We
do not define pointers SupFirst and SupLast for the “help nodes” of e that are not in
e′ (such as the root node of e). Note however, that IsSupFirst holds at the node n1
in Figure 4 because of the phantom position #. From now on we omit in examples
the two phantom positions and their parent nodes. Together with ancestor queries,
the pointers SupFirst and SupLast allow to check membership in First and Last,
according to the following Lemma:

Lemma 2.3. Let p ∈ Pos(e) and n ∈ Ne.

(1) p ∈ First(n) iff SupFirst(p) 4 n 4 p, and

(2) p ∈ Last(n) iff SupLast(p) 4 n 4 p.

It is well-known, see [13, 14], that arbitrary LCA queries on a tree t can be
answered in constant time, after preprocessing of t in linear time. And ancestor
queries a fortiori: n 4 n′ can be checked, e.g., by testing if LCA(n, n′) = n. For
positions p and q, define the Boolean checkIfFollow(p, q) as true iff q ∈ Follow(p).

Theorem 2.4. After preprocessing of e in O(|e|) time, checkIfFollow(p, q) can be
answered in constant time for every p, q ∈ Pos(e).
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Proof. We preprocess e for LCA queries, and compute the three pointers SupLast(n),
SupFirst(n), and pStar(n) for each node n of e . After this linear time preprocess-
ing we can compute checkIfFollow(p, q) in constant time for any p and q: first
obtain n = LCA(p, q). By Lemma 2.2 we should return true if and only if one of
the following two conditions are satisfied: (1) lab(n) = �, q ∈ First(Rchild(n)),
p ∈ Last(Lchild(n)), or (2) q ∈ First(s) and p ∈ Last(s) where s is the low-
est ∗-labeled ancestor of n. By Lemma 2.3, (1) is equivalent to lab(n) = �,
SupFirst(q) 4 Rchild(n), Rchild(n) 4 q, SupLast(p) 4 Lchild(n) and Lchild(n) 4
p. Furthermore, (2) is equivalent to SupFirst(q) 4 n′ and SupLast(p) 4 n′ where
n′ = pStar(n). These conditions can all be checked in constant time.

The following technical lemmas state relationships between positions and their
SupFirst and SupLast nodes.

Lemma 2.5. Let p, q ∈ Pos(e) such that q ∈ Followe(p). Let n = LCA(p, q).

(1) parent(SupFirst(q)) 4 n and

(2) parent(SupLast(p)) 4 n.

Proof. Let p, q, n satisfy the Lemma’s conditions. If Case (1) of Lemma 2.2 holds,
then q ∈ First(Rchild(n)) so parent(SupFirst(q)) 4 n. If not, then Case (2) of
Lemma 2.2 holds, hence parent(SupFirst(q)) 4 pStar(n) 4 n. In both cases we
proved that parent(SupFirst(q)) 4 n. Point (2) can be proved similarly.

Lemma 2.6. Let p, q ∈ Pos(e) such that q ∈ Followe(p). If SupLast(p) 4 parent(SupFirst(q))
then SupFirst(q) is nullable.

Proof. Before we proceed with the proof, we first observe that for any pair of nodes
y 4 x in e such that x is nullable and every node on the path from x to y (y excluded)
satisfies neither IsSupFirst nor IsSupLast, then all nodes on this path from x to y are
nullable. This property follows immediately from the definitions, by induction. Let
p, q ∈ Pos(e) such that q ∈ Follow(p) and SupLast(p) 4 parent(SupFirst(q)), and
let n = LCA(p, q). By Lemma 2.5, SupLast(p)SupLast(p) 4 parent(SupFirst(q)) 4
n. Assume first that q ∈ Follow�(p). Then lab(n) = �, Lchild(n) 4 p and
Rchild(n) 4 q. By definition of SupLast, the nodes on the path from p to SupLast(p)
(except SupLast(q), of course) do not satisfy IsSupLast. This is true in particular for
Lchild(n), hence Rchild(n) is nullable. If SupFirst(q) is Rchild(n), we just proved
it is nullable. Otherwise, SupFirst(q) is an ancestor of n by Lemma 2.5. In that
case, there are no nodes satisfying IsSupFirst on the path from q to SupFirst(q) by
definition of SupFirst, so that in particular Lchild(n) is nullable. Consequently, n is
nullable, and there are no nodes satisfying IsSupFirst or IsSupLast between n and
SupFirst(q). Therefore, SupFirst(q) is nullable.

The case q ∈ Follow∗(p) is handled similarly: pStar(n) is nullable and satisfies
SupFirst(q) 4 pStar(n) 4 n. Moreover there are no nodes satisfying IsSupFirst
or IsSupLast between n and SupFirst(q), except SupFirst(q). Thus, SupFirst(q) is
nullable.
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2.2. Regular Expressions with Numeric Occurrence Indicators

Definition and Notations. Regular expressions occurring in XML Schema may
contain numeric occurrence indicators. Following the definitions of Kilpeläinen
and Tuhkanen in [22], regular expressions with counting extend regular expressions
with ei.. j where i ≤ j are non-negative integers and j may also equal ∞. The
expression em..n denotes the union of all L(e � e · · · � e), where e appears k times
in the latter expression and m ≤ k ≤ n. The syntax of regular expressions with
numeric occurrence indicators is therefore:

e D a(e) � (e)(e) + (e)(e)?(e)m..n

with a ∈ Σ, m ∈ N, n ∈ N>0 ∪ {∞}, m ≤ n and n ≥ 2. We also use em as a shorthand
for em..m.

We first observe that the Kleene star is unnecessary when numeric occurrence
indicators are allowed: e∗ can be expressed as e0..∞. Moreover, we can also assume
that in every numeric occurrence indicator m..n the value of n is at least 2: this is
because e0..1 is equivalent to e?, and e1..1 to e. We again assume the presence of
the extra nodes # and $ at the beginning and end of the expression. We extend the
definition of the First- and Last-sets, and of nullability in a natural fashion. In the
sequel, we identify each node of the parse tree with the subexpression it represents.
An iterative expression (or node) is an expression of the form s = (e)m..n. Finally,
we denote the bounds of s by min(s) = m and max(s) = n.

Matching with Numeric Occurrences. In the absence of numeric indicators, our
matching algorithms map each letter of an input word w to some position of an
expression e. Then w ∈ L(e) if and only if there is a mapping for which each
pair of consecutive positions belongs to the Follow relation, and such that the po-
sitions corresponding to the first and last symbol belong to First(e) and Last(e)
respectively. To determine whether w ∈ L(e) in presence of numeric occurrences,
however, it is not enough to map input symbols to positions and check indepen-
dently pairs of consecutive positions. Indeed, if we match a word against a2..2b, the
b-labeled position can follow the a-labeled position only after two a-labeled posi-
tions have been read. In order to take this phenomenon into account, our matching
algorithms in presence of numeric occurrences map each input symbol to a config-
uration. A configuration consists of a position together with a valuation function
c mapping each iterative subexpression to some integer. For technical reasons we
initialize this counter to the value 1; and the value of the counter remains 1 for
every iterative subexpression that is not an ancestor of the current position. For
every iterative subexpression s that is an ancestor of the current position, however,
the counter has value k if we have just matched k − 1 consecutive occurrences of s,
and we are currently matching the kth while processing the position.

We first extend the Follow relation to configurations. We will then show in
Lemma 2.7 that transitions between configurations (i.e., which relation can fol-
low another one) play a similar role as the transitions of the Glushkov automaton
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between positions (i.e., the Follow relation) in the setting without numeric occur-
rences. These transitions between configurations are further illustrated in Figure 5
of Example 2.8.

We first define Follow�e and Follows
e that extend the Follow relation. Let p and

q be positions, n = LCA(p, q), let s 4 n be an iterative subexpression of e, and let
c, c′ be two valuations for the counters.

(1) (q, c′) ∈ Follow�e (p, c) iff lab(n) = �, SupLast(p) 4 n, SupFirst(q) 4 n,
every iterative subexpression n 4 x 4 p satisfies min(x) ≤ c(x), and c′ is ob-
tained from c by resetting (to “1”) the counters of every iterative expression
n 4 x 4 p.

(2) (q, c′) ∈ Follows
e(p, c) iff the following five conditions are satisfied: (1)

c(s) < max(s), (2) SupLast(p) 4 s, (3) SupFirst(q) 4 s, (4) every itera-
tive expression s ≺ x satisfies min(x) ≤ c(x), and (5) c′ is obtained from
c by incrementing c(s) and resetting (to “1”) the counters of every iterative
expression s ≺ x 4 p.

Those relations are illustrated in Example 2.8. We say that (q, c′) follows (p, c)
iff (q, c′) ∈ Follow�e (p, c) or (q, c′) ∈ Follows

e(p, c). We observe that p, q and s ∈
{�} ∪ Ne determine c′: there is at most one c′ such that (q, c′) ∈ Follows

e(p, c).

Lemma 2.7. A non-empty word w = a1 . . . an is accepted by a regular expres-
sion e with numeric occurrence indicators iff there exist n positions p1, . . . , pn and
valuations c1, . . . , cn satisfying the following conditions:

(1) p1 ∈ First(e) and c1(x) = 1 for every iterative subexpression x of e

(2) pn ∈ Last(e) and cn(x) ≥ min(x) for every x 4 pn

(3) lab(pi) = ai for each i ≤ n

(4) (pi+1, ci+1) follows (pi, ci) for every i < n

Proof. The correctness follows from the results of Gelade, Gyssens, and Martens [27]:
A configuration can follow another one if and only if there is a transition between
the corresponding configurations of the counter automaton built from the expres-
sion in [27], whereas Conditions 1 and 2 guarantee that configurations (p1, c1) and
(pn, cn) are respectively initial and final in the counter automaton. The correctness
thus follows from [27, Theorem 9] where the equivalence between an expression
e and its counter automaton is established through a relatively straightforward but
lengthy induction on e.

Example 2.8. Figure 5 shows one possible way of matching the word a8b against
the expression e5 = ((a2..3 + b)2)2b (taken from [22]). Configurations are rep-
resented vertically, with the position on top and the value of the three counters
below. For instance, if we define c1 as the first valuation (x → 1, x′ → 1, x′′ → 1)
and c2 as the second (x→ 2, x′ → 1, x′′ → 1) we have (a1, c2) ∈ Followx′

e (a1, c1).

12



((a2..3 + b)2)2b

a a a a a a a a ba1 a1 a1 a1 a1 a1 a1 a1 b3

c(x) 1 1 1 1 12 2 2 2
c(x′) 1 1 1 1 12 2 2 2
c(x′′) 1 1 1 1 12 2 2 2

final configuration

x, x′, x′′ : iterative subexpressions
e.g., x′ = (a2..3 + b)2

a1, b2, b3 : positions
a1 b2 b3

x x′ x′′

e5 =

Figure 5: Sequence of consecutive configurations while matching e5.

Determinism with Numeric Occurrence Indicators. In the absence of numeric oc-
currences, an expression is deterministic if and only if for each position p and
letter a there is at most one a-labeled position q following p. In presence of nu-
meric occurrences determinism comes in two flavours: weak and strong. Strong
determinism requires determinism with respect to configurations whereas weak de-
terminism only requires determinism with respect to positions. More formally, a
regular expression e is weakly deterministic iff for each letter a and configuration
(p, c), there exists at most one position p′ such that there exists c′ with (p′, c′)
following (p, c). A regular expression e is strongly deterministic iff for each let-
ter a and configuration (p, c), there exists at most one position p′ and valuation c′

such that (p′, c′) follows (p, c). In other words, strong determinism dictates that
(in addition to weak determinism) for every value of p, q and c, there is at most
one s ∈ {�} ∪ Ne (and therefore one c′) such that (q, c′) ∈ Follows

e(p, c). We
observe that for strongly deterministic expressions, (q, c′) ∈ Follows

e(p, c) implies
max(x) = c(x) for every s ≺ x 4 n.

Example 2.9. For both definitions of determinism, e = (ab)2..2a(b+d) is determin-
istic, but e′ = (ab)1..2a is not, because w = aba can lead to two a-labeled positions
in e′. To see that nested iterative expressions can interact with each other, consider
the expression e5 = ((a2..3 + b)2)2b from Example 2.8. This expression is not even
weakly deterministic because the word w = a8b can lead to the two b-labeled po-
sitions: to the second one (b3) if we decompose it into ((a2)2)2b as illustrated in
Figure 5, and to the first one (b2) with decomposition (a3)2a2b.

Our adoption of a “constructive” definition of weak and strong determinism
results in non-standard definitions, but one can check easily that these definitions
are reformulations on the parse tree of the standard characterizations of determin-
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ism with numeric occurrences [28, 27]. In particular the equivalence between the
usual semantic definition and determinism for automata with counters is presented
in [27]. It should be noted that, in the absence of numeric occurrences, every
weakly deterministic expression can be converted into a strongly deterministic one
in polynomial time, but weakly deterministic expressions are exponentially more
succinct and more expressive in presence of numeric occurrences [27].

3. Testing Determinism

To test determinism we need to check for every a ∈ Σ and positions q , q′

labeled a whether there exists a p such that q and q′ follow p. The challenge of a
linear time algorithm is to deal with the quadratically many candidate pairs (q, q′).

3.1. Candidate Pair Reduction

We define the following condition:

(P1) for all q , q′ in Pos(e), SupFirst(q) = SupFirst(q′) implies lab(q) , lab(q′).

Clearly, if (P1) is false then e is not deterministic. To see this, let q , q′ and
n = SupFirst(q) = SupFirst(q′). Since the First- and Last-sets of any node are
non-empty, there exists a p in Last(Lchild(parent(n))). Note that parent(n) =

LCA(p, q) = LCA(p, q′). By Lemma 2.2, q, q′ ∈ Followe(p), and hence by defini-
tion of determinism, lab(q) , lab(q′). Testing (P1) in linear time is straightforward:
during one traversal of e we group the positions with the same SupFirst-pointer; for
each group we check that all contained positions have distinct labels. This can eas-
ily be achieved in linear time, using an adapted bucket sorting algorithm. Therefore
we assume from now on that (P1) is true.

We define the set FollowAftere(n) which extends Follow to internal nodes n of
e:

FollowAftere(n) = {q | n 64 q and ∃p ∈ Last(n).q ∈ Followe(p)}.

We next present a data structure used in our algorithm testing determinism. For
each position p labeled a, we

• assign color a to the node parent(SupFirst(p)) and

• say that position p is a witness for color a in the node parent(SupFirst(p)).

Observe that each node may be assigned several colors, but, since (P1) holds, each
node has at most one witness per color. In Figure 4, node n3 has colors a and c.
The witness for color a (resp. c) in n3 is p4 (resp. p5).

We say that a node n ∈ Ne has class a if n has color a, or n is a position labeled
a, or n is the lowest common ancestor of two nodes of class a. The a-skeleton ta of
e consists of all nodes n of class a plus their SupLast and pStar nodes (as defined
in Section 2). The node labels in ta are taken over from e, and the tree structure is
inherited from e: n′ is the left (resp. right) child of n in ta if (1) n′ is in the subtree
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of the left (resp. right) child of n in e, (2) n 4 n′, and (3) there is no n′′ in ta with
n 4 n′′ 4 n′. If a node has no left (resp. right) child defined in this way, then the
corresponding pointer is set to Null. Note that a node in ta can be labeled � or +

and have its left (or right) child point to Null. Figure 4 presents a regular expression
and its a-skeleton.

Lemma 3.1. The collection of a-skeleta for all a ∈ Σ can be computed in time
O(|e|).

Proof. The size of the a-skeleton is linear in the number of positions labeled a in
e. Hence the size of the collection of a-skeleta is linear in |e|. The skeleta can
be constructed in linear time by simply applying LCA repeatedly, inserting each
position from e in left-to-right order using the linear preprocessing so that the LCA
of two nodes of e is obtained in constant time. This construction is detailed in
Proposition 4.4 of [15].

In the a-skeleton ta, we equip each node n with three pointers: Witness(n, a),
FirstPos(n, a), and Next(n, a). For every node n in ta,

• if n has color a then Witness(n, a) is the witness for color a in n (and is
undefined otherwise)

• FirstPos(n, a) is the position p labeled a such that p ∈ First(n) if it exists
(and is undefined otherwise); note that property (P1) guarantees that there is
at most one such position p

• Next(n, a) is the set of all positions in FollowAftere(n) labeled a.

Constructing the data structures FirstPos and Witness is straightforward: Witness
is built simultaneously with the a-skeleton; FirstPos can for instance be computed
in a single bottom-up traversal of each a-skeleton, using pointers SupFirst from
e and ancestor queries in e. Let n be the root node of the a-skeleton. Then
BuildNext(a, n,∅) in Algorithm 1 constructs the data structure Next(n′, a) for all
nodes n′ of the a-skeleton.

Lemma 3.2. Executing BuildNext(n, a,∅) for each a ∈ Σ and root node n of ta
takes in total time O(|e|). If any call returns false then e is non-deterministic. Oth-
erwise, the set Next(n, a) defined during the execution consists of all positions in
FollowAftere(n) labeled a, for n ∈ Nta and a ∈ Σ.

Proof. The O(|e|) time is achieved because (1) BuildNext is called at most m times,
where m is the number of nodes of all skeleta, and m ∈ O(|e|) by Lemma 3.1,
and (2) each line of the algorithm runs in constant time because |Y | ≤ 2 at each
call, due to Line 10. To see the correctness consider the execution along a path in
ta. If at Line 7 the current node n has an ancestor u labeled ∗ with no IsSupLast-
node on their path, then Y contains FirstPos(u, a); if n is in the left subtree of
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Algorithm 1: Computing Next(n, a), if e is deterministic.
procedure BuildNext(a : Σ, n : Node, Y : Set(Node)) : Bool

1 if IsSupLast(n)
2 then Y ← ∅
3 if n is the left child in ta of a �-node and
4 n has a right sibling n′ in ta and
5 (¬IsSupLast(n) or parentta(n) = parente(n))
6 then Y ← Y ∪ {FirstPos(n′, a)}
7 Next(n, a)← {p ∈ Y | n 64 p}
8 if lab(n) = ∗

9 then Y ← Y ∪ {FirstPos(n, a)}
10 if |Y | > 2
11 then return false
12 if Lchildta(n) = Null
13 then return true
14 else B← BuildNext(a,Lchildta(n),Y)
15 if Rchildta(n) = Null
16 then return B
17 else return B ∧ BuildNext(a,Rchildta(n),Y)
end procedure

an ancestor u labeled � with no IsSupLast-node on their path, and n has a right
sibling n′ in ta, then Y contains FirstPos(n′, a). These conditions imply that the
set defined in Line 7 holds all a-labeled positions in FollowAftere(n). Clearly, e is
non-deterministic if |Y | > 2 in Line 10.

We define another condition:

(P2) for every a ∈ Σ and n ∈ Nta , Next(n, a) contains at most one element.

Clearly, (P2) can be tested in linear time (for instance by incorporating it into Algo-
rithm 1). If (P2) is false, then e is non-deterministic. Thus, from now on we assume
that both (P2) and (P1) are true. We identify Next(n, a) with q if Next(n, a) = {q}
and let it be undefined otherwise.

Lemma 3.3. Let p, q ∈ Pos(e) with labe(q) = a. If q ∈ Followe(p) then the
lowest ancestor n of p having color a exists and satisfies q = Witness(n, a) or
q = FirstPos(n, a) or q ∈ Next(n, a).

Proof. Lemma 2.5 states that a position q labeled a that follows p is a witness for
color a in some ancestor of p. Thus, if two positions labeled a follow p, then
each of them is witness for color a in ancestors of p. By Lemma 2.2, Lemma 2.5
(1), and Lemma 3.2: q = Witness(n, a) if Rchild(n) 4e q, q = FirstPos(n, a) if
Lchild(n) 4e q, and q = Next(n, a) if n 64e q.
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From Lemma 3.3 and the definition of (P1) and (P2) we obtain the following result.

Lemma 3.4. The expression e is non-deterministic iff (P1) or (P2) is false, or there
exist a ∈ Σ, n ∈ Nta of color a, and q, q′ ∈ {FirstPos(n, a), Witness(n, a),Next(n, a)}
such that q , q′ and Follow−1

e (q) ∩ Follow−1
e (q′) , ∅.

Proof. By definition, e is non-deterministic if the above conditions are satisfied.
Reciprocally, if e is non-deterministic and does not satisfy properties (P1) and (P2),
there exists a ∈ Σ and positions p, q, q′ such that q , q′, labe(q) = labe(q′) = a
and q, q′ ∈ Followe(p). Let then n denote the lowest ancestor of p with color a. By
Lemma 3.3, q and q′ belong to {FirstPos(n, a), Witness(n, a),Next(n, a)}.

3.2. Determinism Testing Algorithm
To check determinism using Lemma 3.4 we need to check for a ∈ Σ and n ∈ Nta

of color a, and for every pair of distinct positions q and q′ in {FirstPos(n, a),Witness(n, a),
Next(n, a)} whether or not

Follow−1
e (q) ∩ Follow−1

e (q′) , ∅.

Three combinations can occur for a position p:

(1) Witness(n, a) and Next(n, a) follow p, or

(2) Witness(n, a) and FirstPos(n, a) follow p, or

(3) FirstPos(n, a) and Next(n, a) follow p.

The third combination, however, reduces to the other two and therefore does not
need to be considered:

Lemma 3.5. Let n, p, a be such that N = FirstPos(n, a) and F = Next(n, a) follow
p as in Combination (3) above. Then there exists some node n′ ∈ Nta of color a
such that one of the two following properties is satisfied:

(1) F = FirstPos(n′, a) and N = Witness(n′, a)

(2) F = Witness(n′, a) and N = FirstPos(n′, a)

Proof. Let N and F denote the nodes Next(n, a) and FirstPos(n, a), respectively,
and let nN and nF denote the parent of their respective IsSupFirst-nodes. By def-
inition, both nN and nF are strict ancestors of n. Furthermore, n 4 F but n 64 F
by definition so that N , F, which by (P1) implies nN , nF . If nF 4 nN 4 n,
F = FirstPos(nN , a) as F ∈ First(x) for every SupFirst(F) 4 x 4 n. Furthermore,
N = Witness(nN , a) by definition, so this configuration corresponds to combina-
tion (2) with n′ = nN . Otherwise nN 4 nF 4 n, in which case N is one of
FirstPos(nF , a) or Next(nF , a). Furthermore, F = Witness(nF , a), which concludes
our proof by setting n′ = nF .
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We next illustrate the two combinations:

Example 3.6 (Combination (1)). Let e = (c(b?a?))a, and let n be the parent of
the c node in e. Thus, n is of color a, with the left a in e as witness. Clearly e is
non-deterministic: take p as the c position, then both Witness(n, a) and Next(n, a)
follow p. The same holds for the expressions e′ = (c(a?b?))a and e′′ = (c(b?a)∗)a.
However, expression e′′′ = (c(b?a))a is deterministic; this is because n’s right sub-
tree is non-nullable, which prevents that Next(n, a) and Witness(n, a) both follow a
same position p.

It is not hard to see, and is formally shown in the proof of Theorem 3.8, that Com-
bination (1) occurs if and only if the right-child of n is nullable. Combination (2)
can only occur if there is a ∗-node S = pStar(n) above n, and SupLast(n) is above
this node S .

Example 3.7 (Combination (2)). Let e = (a(b?a))∗ and let n be the parent of the
first a-position. As we can see, this expression is deterministic. This is for a
similar reason as before: because the right child of n is non-nullable. If we consider
e′ = (a(b?a?))∗ then this expression is indeed non-deterministic and it holds that
both FirstPos(n, a) and Witness(n, a) follow position p, where p is for instance the
b-position. Thus, combination (2) requires that the right child of n is nullable, and
also that FirstPos(S , a) = FirstPos(n, a). The latter guarantees that on the path
from S to FirstPos(n, a) there is nothing non-nullable “to the left”, and hence, that
FirstPos(n, a) follows the same position p that Witness(n, a) follows.

To check determinism of e we check (P1), (P2), and then we execute for every
a ∈ Σ and every node n with color a, CheckNode(n, a) of Algorithm 2; if any call
returns false, then e is non-deterministic.

Theorem 3.8. Determinism of a regular expression e can be decided in time O(|e|).

Proof. Let S , W, N, and F denote the sets of nodes pStar(n), Witness(n, a), Next(n, a),
and FirstPos(n, a) respectively. Since (P1) and (P2) can be tested in O(|e|) time, it
suffices, by Lemma 3.4, to prove the following two statements.

(i) Follow−1
e (W) ∩ Follow−1

e (N) , ∅ iff Rchilde(n) is nullable and N , Null,

(ii) Follow−1
e (W) ∩ Follow−1

e (F) , ∅ iff F , Null, S , Null, Rchilde(n) is
nullable, FirstPos(S , a) = F, and SupLast(n) 4 S .

Let us prove statement (i) first. If N , Null and Rchilde(n) is nullable then
Lchilde(n) is not an IsSupLast-node. Therefore any position in Last(Lchilde(n))
belongs to Follow−1

e (W) ∩ Follow−1
e (N). For the only-if direction, let q be a po-

sition in Follow−1
e (W) ∩ Follow−1

e (N). Then in particular N , Null. Node n is a
strict ancestor of q since q ∈ Follow−1

e (W) and n = parente(SupFirst(W)). As q
belongs to Follow−1

e (N), SupLast(q) is an ancestor of n. This implies that Rchild(n)
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is nullable according to Lemma 2.6, since Rchild(n) = SupFirst(W) and W follows
q.

Proof of (ii): If F , Null, S , Null, Rchilde(n) is nullable, FirstPos(S , a) = F,
and SupLast(n) 4 S , then any q in Last(Lchild(n)) is in (Follow�e )(W)∩(Follow∗e)−1(F).
Conversely, let q be a position in Follow−1

e (W) ∩ Follow−1
e (F). As q belongs

to Follow−1
e (W), node n is a strict ancestor of q. If Rchilde(n) 4e q then q ∈

(Follow∗e)−1(F), hence FirstPos(S , a) = F and SupLast(n) 4 S , and furthermore
SupLast(q) 4 S , so that Rchilde(n) is nullable according to Lemma 2.6. As-
sume now that Lchilde(n) is an ancestor of q and let x = LCA(q, F). As an an-
cestor of both q and F, Lchilde(n) is an ancestor of x. Furthermore, there is no
IsSupLast-node between q and Lchilde(n), except possibly Lchilde(n), and there
is no IsSupFirst-node between F and Lchilde(n). Consequently, x is non-nullable
because Lchilde(n) is, and, there is no ∗-labeled node between x and Lchilde(n).
Hence q < (Follow�e )−1(F), and, more generally, Follow−1

e (W) ∩ (Follow�e )−1(F)
is empty. This means that q ∈ (Follow∗e)−1(F). Thus S = pStar(x) is not Null,
satisfies FirstPos(S , a) = F, and is an ancestor of n since there is no ∗-labeled node
between x and Lchilde(n). Accordingly, SupLast(q) 4 S and hence Rchilde(n) is
non-nullable.

Algorithm 2: Checking determinism.
procedure CheckNode(n : Node, a : Σ) : Bool

1 F ← FirstPos(n, a)
2 S ← pStar(n)
3 if Rchilde(n) is nullable and
4 (Next(n, a) , Null or
5 (FirstPos(S , a) = F and SupLast(n) 4 S ))
6 then return false
7 return true

end procedure

3.3. Alternative Determinism Test

Determinism of e can be formulated as follows:

¬(∃p, p1, p2 ∈ Pos(e). labe(p1) = labe(p2) ∧ p1 ∈ Followe(p) ∧ p2 ∈ Followe(p)).

A natural question arises: Is there a logic that allows to capture determinism and,
at the same time, has efficient model checking that yields a procedure for checking
determinism in linear time? The answer is positive: It is possible with X=

reg, the
language of Regular XPath expressions with data equality tests for binary trees
with data values as defined in [15].

Trees with data values allow to store with every node its label, drawn from
a finite set, and additionally, a data value, drawn from an infinite set. Regular
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XPath allows to navigate the nodes of the tree using regular expressions of simple
steps (e.g., parent to the left child) and filter expressions. Filter expressions with
data equality allow essentially to test whether two nodes have the same data value.
In [15] Bojańczyk and Parys show that an X=

reg-expression ϕ can be evaluated over
a tree t in time 2O(|ϕ|)|t|.

We wish to construct an X=
reg-expression ϕdet that captures determinism and

whose size is constant i.e., does not depend on the regular expression e. The main
challenge is to handle position labels of e that can be drawn from an alphabet of
arbitrary size. This is accomplished by: 1) storing the labels of positions of e as
data values and 2) using data equality to check whether two positions have the
same label.

Theorem 3.9. There exists an X=
reg-expression ϕdet such that for any regular ex-

pression e, ϕdet is satisfied in e if and only if e is deterministic.

Proof. We present only the construction of the formula ϕdet. Let IsSupFirst and
IsSupLast denoteX=

reg-expressions that are satisfied only in IsSupFirst- and IsSupLast-
nodes, respectively.

D = (⇓/[ not IsSupFirst])∗/[ not ⇓]

U = ([ not IsSupLast]/⇑)∗ F = ([lab()=�])/to-right/D

ϕ�� = ⇓∗/[ not IsSupLast]/from-left/[F = (U/from-left/F)]

ϕ∗∗ = ⇓∗/[lab()=∗]/

[D= (U/[IsSupFirst]/⇑/U/[lab()=∗]/D)]

ϕ�∗ = ⇓∗/[ not IsSupLast]/from-left/

[(to-right/[IsSupFirst]/D)= (⇑/U/[lab()=∗]/D)]

∪ ⇓∗/[lab()=∗]/[D= (U/from-left/F)]

ϕP1 = ⇓∗/[(to-left/[ not IsSupFirst]/D) =

(to-right/[ not IsSupFirst]/D)]

ϕdet = [ not(ϕP1 or ϕ�� or ϕ�∗ or ϕ∗� or ϕ∗∗)].

When evaluated from some node n, the auxiliary expression D retrieves all the po-
sitions in First(n). Similarly, F selects the ancestors x of n such that Last(n) ⊆
Last(x). Using these expressions, ϕP1 checks if (P1) is violated in e and the expres-
sion ϕ``′ for {`, `′} ⊆ {∗,�} checks whether there exist two distinct positions p1 and
p2 of e such that lab(p1) = lab(p2) and (Follow`

e)−1(p1) ∩ (Follow`′

e )−1(p2) , ∅.

3.4. Testing Determinism in Presence of Numeric Occurrence Indicators
In order to deal with those interactions between iterations, Kilpeläinen and

Tukhanen [22] define the flexibility of f in e, for every iterative subexpression f of
e. They explain how to annotate, in time O(|e|), every node n of e with a Boolean
value indicating the flexibility of n. Essentially, flexible expressions are the only
iterative expressions we have to consider when assessing determinism (in particular
∗ expressions are flexible).
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3.4.1. Flexibility
We first recall from [22, 29] the definitions and useful properties of flexibility.

An illustration of flexibility will be provided in Example 3.13 at the end of this
subsection.

Definition 3.10 ([22, 29]). Let e be a non-nullable regular expression with nu-
meric occurrence indicators. A subexpression f of e is flexible in e if and only
if it is marked as flexible when executing markFlexible(e, 1), where markFlexible
is the procedure from [29] reproduced in Algorithm 3 below.

We adopt for Algorithm 3 the convention that∞× r = ∞ for any rational r, and of
course∞×∞ = ∞.

Algorithm 3: Marking flexible subexpressions of e
procedure markFlexible( f : Subexpression of e, N : Integer) : Rational
number or∞

1 case f = x for x ∈ Σ: return 1
2 case f = g? : markFlexible(g,N) return∞
3 case f = g + h : return max(markFlexible(g,N),markFlexible(h,N))
4 case f = g � h:
5 if ε ∈ L(h)
6 then fg ← markFlexible(g,N)
7 else fg ← markFlexible(g, 1)
8 if ε ∈ L(g)
9 then fh ← markFlexible(h,N)

10 else fh ← markFlexible(h, 1)

11 if ε ∈ L(g) and ε ∈ L(h) return∞
12 if ε ∈ L(g) and ε < L(h) return fh
13 if ε < L(g) and ε ∈ L(h) return fg
14 if ε < L(g) and ε < L(h) return 1
15 case f = gm..n :
16 fg ← markFlexible(g,N × n)
17 if m < n or fg ≥ (N × n)/(N × n − 1)
18 then Mark f as flexible in e
19 return fg × (n/m)

Flexibility is illustrated in Example 3.13 below. Kilpeläinen and Tukhanen also
define the relation folle which essentially adapts the Follow relation of Equation 1
to expressions with numeric occurrence indicators, taking flexibility into account.
The relation depends on the global expression e, but we drop the subscript to sim-
plify the notations, since its value is always e in the following:

Definition 3.11 ([22]). Let e be a regular expression with numeric occurrence in-
dicators. The relation foll( f ) ⊆ Pos( f ) × Pos( f ) is defined for each subexpression
f of e inductively as follows.
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(1) If f = a (a ∈ Σ), then foll( f ) = ∅.

(2) If f = g?, then foll( f ) = foll(g).

(3) If f = g + h, then foll( f ) = foll(g) ∪ foll(h).

(4) If f = g � h, then foll( f ) = foll(g) ∪ foll(h) ∪ (Last(g) × First(h)).

(5) If f = gm..n then

foll( f ) =

{
foll(g) ∪ (Last(g) × First(h)) if f is flexible in e
foll(g) otherwise.

We also define the subrelation foll� replacing Case 5 with foll( f ) = foll(g).

The determinism of regular expressions with numeric occurrence indicators can be
characterized in terms of the following proposition.

Proposition 3.12 ([22]). Let e a regular expression with numeric occurrence indi-
cators. Then e is non-deterministic if and only if there are two distinct positions
x, y ∈ Pos(e) such that lab(x) = lab(y) and:

(1) (z, x), (z, y) ∈ foll(e) for some position z ∈ Pos(e), or

(2) (z, x) ∈ foll(g), y ∈ First(g) and z ∈ Last(g) for position z and some subex-
pression of the form f = gm..n in e.

Example 3.13. Let e =
(
(b?)a2..3

)3..3
b. We label positions in e as b1, a2, b3 from

left to right. In this expression, the subexpression h = a2..3 is marked flexible. So
is also the subexpression f =

(
(b?)a2..3

)3..3
, because at line 17 of Algorithm 3 we

have N = 1,m = n = 3 so that 3/2 ≥ (N ×n)/(N ×n−1) = 3/2. As a consequence,
(a2, b3) belongs to foll( f ) and hence to foll(e). As (a2, b3) also belongs to foll(e), e
is non-deterministic by Proposition 3.12.

The intuition behind the notion of flexibility is the following: as f is flexible,
we can “loose track” of how many iterations through f have been processed; the
word a6b, for instance, can be decomposed into (a2)3(a2)3b1 or (a2)2(a2)2(a2)2b3.
In e′ =

(
(b?)a2..3

)2..2
b, a contrario, f is not flexible, so that e′ is deterministic.

In Proposition 3.12 we essentially distinguish two situations that provide a witness
for non-determinism. A third situation was actually considered in [22, 29]: when
both x and y belong to First(e) they also form a witness for non-determinism, but
this situation is ruled out in our setting by the introduction of the virtual nodes #
and $.
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3.4.2. Results that Carry over from Standard Expressions
We do not modify the definitions of SupFirst and SupLast in presence of nu-

meric occurrence indicators. Lemma 2.3 still holds and Lemma 2.5 can be adapted
as follows: if q belongs to foll(p) then we have the two following properties: (1)
parent(SupFirst(q)) 4 p and (2) parent(SupLast(p)) 4 q. Lemma 2.6, however,
does not hold in presence of numeric occurrence indicators: consider for instance
the positions p and q with label b and c in (a((b+c)2..3))d. Then SupFirst(q) is non-
nullable, although q ∈ foll(p) and SupLast(p) 4 parent(SupFirst(q)). However, we
can weaken Lemma 2.6:

Lemma 3.14. Let p and q be two positions of e such that q ∈ Follow�(p). If
SupLast(p) 4 parent(SupFirst(q)) then SupFirst(q) is nullable.

Proof. Let n = LCA(p, q). From q ∈ Follow�(p) we deduce that SupLast(p) 4 n
and SupFirst(q) 4 n, hence n is nullable. If SupLast(p) 4 parent(SupFirst(q)) then
there are no SupFirst nor SupLast nodes between n and SupFirst(q), which implies
that SupFirst(q) also is nullable.

We again observe that an expression must satisfy property (P1) to be deter-
ministic, and henceforth assume the expression satisfies (P1) because the property
can be tested in linear time. The definitions of FirstPos(n, a) and Witness(n, a)
are not modified. In the definition of Next(n, a) we need only a minor modifi-
cation: star expressions are replaced by flexible iterative expressions: instead of
testing lab(n) = ∗ at Line 8 of Algorithm 1, one tests if n is a flexible iterative ex-
pression in e. Then every deterministic regular expression again satisfies property
(P2), which is tested within Algorithm 1. Instead of pStar we maintain a pointer
NextFlex(n) storing the closest ancestor of n that is a flexible iterative expression
and such that SupFirst(n) 4 NextFlex(n) and SupLast(n) 4 NextFlex(n). If there is
no such ancestor then NextFlex(n) = Null

Then Lemma 3.3 carries over (using foll instead of Follow). However, Propo-
sition 3.12 tells us that one must also consider non-flexible iterations in addition
to the foll relation (Case 2). We therefore define NextNFlex(n, a) to take those into
account. For every node n with color a, NextNFlex(n, a) is defined as the lowest
ancestor n′ of n that satisfies the following three conditions:

(1) n′ is a non-flexible iterative expression,

(2) there exists an a-labeled position in First(n′), and

(3) SupLast(n) 4 n′.

Note that the a-labeled position may belong to First(n). We can easily compute in
linear time a pointer NextNFlex(n, a) for all n of color a.

We observe that it is simultaneously possible that NextNFlex(n, a) , Null and
Next(n, a) , Null, even within deterministic expressions. To see this, consider the
expression e = ((aa)2..2)a, with p1, p2, p3 denoting the a-labeled positions from
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left to right, and with the node n denoting the subexpression (aa), with witness p2.
Then NextNFlex(n, a) is the parent of n, Next(n, a) = p3 and yet e is deterministic.

We adapt Lemma 3.4 according to Proposition 3.12:

Lemma 3.15. An expression e with numeric occurrence indicators is non-deterministic
iff one of the following four conditions is satisfied:

(1) (P1) is false,

(2) (P2) is false,

(3) there exist a ∈ Σ, a node n ∈ Nta of color a, and a position q in {FirstPos(n, a),Next(n, a)}
such that foll−1(q) ∩ foll−1(Witness(n, a)) contains at least one position, and

(4) there exist a ∈ Σ, a node n ∈ Nta of color a such that Last(NextNFlex(n, a))∩
foll−1(Witness(n, a)) contains at least one position.

Proof. By definition, the conditions are obviously sufficient to guarantee non-
determinism. We next show they are necessary. Let e be a non-deterministic
expression that satisfies (P1) and (P2). According to Proposition 3.12 (2), there
are necessarily positions z, x and y with x , y and lab(x) = lab(y) matching
one of the next two options. Let x, y, z be as in Proposition 3.12 (1). Let n =

parent(SupFirst(x)) and n′ = parent(SupFirst(y)). According to Lemma 2.5, n 4 z
and n′ 4 z. We assume w.l.o.g. that n′ 4 n. If n 4 y then y ∈ FirstPos(n, a)
because n′ 4 n. Otherwise, y ∈ Next(n, a) because y ∈ foll(z) and n 4 z. Let
now x, y, z be as in Proposition 3.12 (2), and let n = parent(SupFirst(x)). Then
NextNFlex(n, a) , Null and SupLast(z) 4 NextNFlex(n, a), which concludes the
proof.

3.4.3. Algorithm Testing Weak Determinism
In presence of numeric occurrences, it becomes more complicated to determine

if Conditions (3) and (4) of Lemma 3.15 are satisfied, because we do not have an
equivalent for Lemma 2.6. We therefore define a function HighestFlex(n, n′) which
takes as input two nodes n and n′ in e such that n′ 4 n, and returns the highest
flexible iteration n′′ such that n′ 4 n′′ 4 n and n′ , n′′. If there is no such n′′, then
HighestFlex(n, n′) = Null. For instance in a(b(((c0..4)d)0..∞)), if the nodes n and
n′ stand for the subexpressions c and b(((c0..4)d)0..∞), then HighestFlex(n, n′) is the
node corresponding to the subexpression ((c0..4)d)0..∞. Using techniques from [15],
we can preprocess the parse tree of the expression in linear time so that each query
HighestFlex(n, n′) can be answered in constant time:

Lemma 3.16. After a linear preprocessing of the expression e, each query HighestFlex(n, n′)
can be answered in constant time.

Proof. We compute in a simple traversal of e a pointer from each node in e to its
lowest ancestor that is a flexible iteration (or the root of the tree if there is no such
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ancestor). Then we compute in linear time the skeleton tflex of e, i.e., the tree whose
nodes are the root of e plus all nodes of e that represent a flexible iteration. The
tree tflex is defined as an unranked tree, with ancestorship relations inherited from
e: the number of children below each node in tflex may be arbitrarily larger than 2,
and may also obviously be smaller. Instead of left and right children, the siblings
are ordered through a binary next-sibling relation in order to preserve the ordering
of nodes (according to, say, pre-order traversal) from e.

We additionally keep a pointer LC(x) from each node x of tflex to the last (right-
most) child of x in tflex. We can view tflex as a binary tree, since the “first-child/next-
sibling” encoding Bflex of tflex can be computed in linear time. In this encoding the
first child of a node becomes the left child in the binary tree, and the next sibling of
a node becomes the right child. We then index Bflex for LCA queries. As observed
in Fact 9.1 of [15], LCABflex(LC(x), y) returns the child of x that is an ancestor of y
in tflex, for all nodes x 4 y in tflex.

This allows us to compute HighestFlex(n, n′) in constant time: we follow the
precomputed pointers to retrieve the lowest ancestors y (resp. x) of n (resp. n′)
that are flexible iterations. If y = x then HighestFlex(n, n′) = Null. Otherwise
HighestFlex(n, n′) is obtained as LCABflex(LC(x), y).

We finally provide a characterization of weak determinism that can be checked
efficiently.

Theorem 3.17. An expression e with numeric occurrence indicators is not weakly
deterministic if and only if it does not satisfy (P1) or (P2), or there exists a ∈ Σ and
a node n with color a such that one of the following conditions is satisfied:

(1) Next(n, a), NextNFlex(n, a) and NextFlex(n) are not all equal to Null, and one
of the following two conditions is satisfied

• Rchild(n) is nullable or

• SupLast(HighestFlex(Witness(n, a), n)) 4 n,

(2) or SupLast(HighestFlex(FirstPos(n, a), n)) 4 Lchild(n).

Proof. The claim follows from Lemma 3.15. We analyze below all possible cases
that arise from the lemma and show each of them satisfies our claim.

1. foll−1(Next(n, a)) ∩ foll−1(Witness(n, a)) , ∅ iff Next(n, a) , Null and one of
the following two conditions is satisfied:

(A1) Rchild(n) is nullable or

(A2) SupLast(HighestFlex(Witness(n, a), n)) 4 n.

2. Last(NextNFlex(n, a)) ∩ foll−1(Witness(n, a)) , ∅ iff NextNFlex(n, a) , Null
and one of the following conditions is satisfied:

(B1) Rchild(n) is nullable
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(B2) SupLast(HighestFlex(Witness(n, a), n)) 4 n.

3. foll−1(FirstPos(n, a))∩ foll−1(Witness(n, a)) , ∅ iff FirstPos(n, a) , Null and
one of the following conditions is satisfied:

(C1) SupLast(HighestFlex(FirstPos(n, a), n)) is an ancestor of Lchild(n)

(C2) NextFlex(n) , Null and one of the following two conditions is satisfied:
(1) Rchild(n) is nullable or (2) SupLast(HighestFlex(Witness(n, a), n)) 4
n

We next prove the characterization. Actually, we only prove the “if” direction as
the reverse implications are obvious.

1. Let p ∈ foll−1(Next(n, a)) ∩ foll−1(Witness(n, a)). We deduce n 4 p from the
fact that p ∈ foll−1(Witness(n, a)) and SupLast(p) 4 n from p ∈ foll−1(Next(n, a)).
According to Lemma 3.14, if Witness(n, a) ∈ foll�(p) then Rchild(n) is
nullable because SupLast(p) 4 n. Otherwise there exists some flexible
expression x such that p ∈ Last(x) and Witness(n, a) ∈ First(x). Then,
SupLast(x) = SupLast(p) 4 n which implies (A2).

2. The proof is exactly the same as for case 1, replacing Next(n, a) ∈ foll(p)
with p ∈ Last(NextNFlex(n, a)).

3. Let p ∈ foll−1(FirstPos(n, a)) ∩ foll−1(Witness(n, a)) , ∅. We first observe
that the position FirstPos(n, a) is not in foll�(p). Otherwise x = LCA(p,FirstPos(n, a))
would necessarily be a descendant of Lchild(n) because Witness(n, a) ∈ foll(p)
precludes x 4 n. We deduce that x would be nullable since SupLast(p) 4 x
and SupFirst(FirstPos(n, a)) 4 x. But SupLast(x) 4 Lchild(n) and SupFirst(x) 4
n which would imply that Lchild(n) is nullable, a contradiction.

If (p,FirstPos(n, a)) belongs to foll(Lchild(n)), then we deduce from the pre-
ceding observation that (C1) is satisfied. Otherwise, p ∈ foll−1(Witness(n, a))
implies that n 4 p, and therefore NextFlex(n, a) , Null and SupLast(p) 4 n.
In turn, SupLast(p) 4 n and p ∈ foll−1(Witness(n, a)) implies that

SupLast(HighestFlex(Witness(n, a), n)) 4 n

or Rchild(n) is nullable.

From this theorem we get immediately a linear algorithm to test determinism.

Theorem 3.18. Weak determinism of a regular expression e with numeric occur-
rence indicators can be tested in linear time O(|e|), for an arbitrary alphabet.
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3.4.4. Testing Strong Determinism
We next extend our algorithm to test strong determinism. Actually, most of the

difficulty lies with testing weak determinism. The additional conditions that must
be satisfied by strongly deterministic expressions can very easily be tested with our
data structures.

Theorem 3.19. Strong determinism of a regular expression e with numeric occur-
rence indicators can be tested in linear time O(|e|), for an arbitrary alphabet.

Proof. By Theorem 3.18 we can already assume that e is weakly deterministic.
Therefore, we only need to check that for every pair of positions p and q, there is
at most one way for q to follow p. Only two cases need to be considered:

(1) q follows p through a concatenation and through an iterative expression, and

(2) q follows p through two distinct iterative expressions

The first case occurs iff e contains a node n satisfying the following conditions:
(1) lab(n) = �, (2) SupLast(Lchild(n)) 4 s, and (3) SupFirst(Rchild(n)) 4 s where
s is the closest iterative ancestor of n. The second case occurs iff e contains a
node n satisfying the following three conditions: (1) lab(n) = k..l with k < l,
(2) SupLast(Lchild(n)) 4 s, and (3) SupFirst(Rchild(n)) 4 s where s is the clos-
est iterative ancestor of n. It is clear that one can check the existence of nodes
satisfying those conditions in linear time.

Gelade, Gyssens, and Martens [27] check essentially the same conditions (mixed
with the verification that no pair of distinct positions sharing the same label can fol-
low p). However, they base their algorithm on the follow relation instead of using
pointers in the tree and so their algorithm has cubic time complexity. Their algo-
rithm does not mention explicitly flexibility, but Algorithm 1 in [27] is only correct
(modulo a typo in l.6 where first(s1) should be first(s2)) if weak determinism has
been checked beforehand, which actually involves flexibility. This is because other-
wise the algorithm does not identify correctly an expression like e5 = ((a2..3+b)2)2b
as non-deterministic. The algorithm was improved by Chen and Lu [30] into a lin-
ear time test for strong determinism that again relies on flexibility to compute the
follow relations.

4. Matching

In this section we present a collection of algorithms matching a word w against
a deterministic expression e. First, we present an algorithm for arbitrary deter-
ministic regular expressions that uses the constructions from Section 3 and lowest
color ancestor queries to achieve expected time complexity O(|e| + |w| log log |e|).
Next, we present a matching algorithm for k-occurrence regular expressions in time
O(|e| + k|w|), which is linear if k is a constant. The most intricate matching algo-
rithm that we present in this paper is the path-decomposition algorithm. It works in
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time O(|e|+ ce|w|), where ce is the maximal depth of alternating union and concate-
nation operators in e. The three algorithms above perform matching by providing
a transition simulation procedure: given a position p and a symbol a return the
position q labeled a that follows p, or Null if no such position exists. If e = (#e′)$,
matching a word w against e′ is straightforward: begin with position #, use the
transition simulation procedure iteratively on subsequent symbols of w, and finally
test if the position obtained after processing the last symbol of w is followed by $.

The algorithms above allow to match multiple input words w1, . . . ,wN against
one regular expression e: the corresponding running times are obtained by replac-
ing the factor |w| by |w1|+ . . .+ |wN |. We also present an algorithm that runs in time
O(|e|+ |w1|+ . . .+ |wN |) for star-free deterministic regular expressions e, a setting in
which none of the previously mentioned algorithms guarantee linear complexity.

In the remainder of this section, we fix a deterministic regular expression e.
Whenever we discuss positions and nodes, we implicitly mean positions and nodes
of e.

4.1. Lowest Colored Ancestor Algorithm

Our previous construction that tests determinism in linear time provides an
efficient procedure for transition simulation. Recall that we color the parent of
any IsSupFirst-node n with the labels of the positions that belong to First(n). By
Lemma 3.3, given a position p and a symbol a, the a-labeled position q that follows
p is one of: Witness(n, a), FirstPos(n, a), and Next(n, a), where n is the lowest
ancestor of p with color a. We use the checkIfFollow test (Theorem 2.4) to select
the correct following position q among the three candidates.

Example 4.1. Consider the expression in Figure 4, position p3, and the symbol
c. The lowest ancestor of p3 with color c is n3. Here, Witness(n3, c) = p5,
Next(n3, c) = p1, and FirstPos(n3, c) = Null. Using checkIfFollow we find that
it is p5 that follows p3. This ends the transition simulation procedure. Now, at
position p5 we read the next symbol a. The lowest ancestor of p5 with color a is
again n3. This time it is FirstPos(n3, a) = p2 that follows p5.

The basic ingredient of this procedure is an efficient algorithm for answering lowest
colored ancestor queries. Recall the following result from Muthukrishnan et al.,
that will be discussed further at the end of this section:

Lemma 4.2 ([16, 17]). Given a tree t with colors assigned to its nodes (some nodes
possibly having multiple colors), we can preprocess t with a Las Vegas randomized
algorithm in expected time O(|t| + C), where C is the total number of color assign-
ments, so that any lowest colored ancestor query is answered in time O(log log |t|).

Using Lemma 4.2, the transition simulation is accomplished in time O(log log |e|),
which gives us the following result.
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Theorem 4.3. For any deterministic regular expression e, after preprocessing in
expected time O(|e|), we can decide for any word w whether w ∈ L(e) in time
O(|w| log log |e|).

The nearest color ancestor algorithm is crucial for Theorem 4.3, and uses
skeleta techniques similar to ours. We consequently briefly discuss this algorithm
from [16, 17]. During preprocessing, the algorithm will:

- assign Euler tour numbers to each node of t

- build for each color c the tree Rc formed by the closure under LCA of all
c-colored nodes

- attach to each node of Rc a pointer toward its nearest ancestor in Rc having
color c (because nodes obtained through LCA closure do not have color c)

- preprocess Rc for LCA queries

- record in a Van Emde Boas (vEB) priority queue the c-colored nodes of t
according to their Euler tour numbers

To answer a nearest ancestor query at node n ∈ Nt with color c , we then:

- compute the predecessor and successor of n in the priority queue for color c.

- compute the LCA l of these nodes in Rc

- return the lowest ancestor of l with color c (using the pointer attached to l)

Our description diverges from the original algorithm [16, 17] in some minor (incon-
sequential) aspects: instead of building ancestor pointers through a linear traversal
of Rc, the original algorithm attaches pointers to leaves, etc. The collection of
all trees Rc (with the ancestor pointers in Rc) can be built in deterministic time
O(|t| + C). The vEB priority queues can be built in expected time O(|t| + C) us-
ing a randomized Las Vegas algorithm, and the ancestor queries are answered in
deterministic time O(log log |t|).

Lemma 4.4 ([31, 32]). We can preprocess k integers in the range 1..U in expected
time O(k) so that predecessor and successor queries are supported in deterministic
time O(log log U).

Randomization is only used in the vEB tree to replace the arrays of the tra-
ditional vEB structure with (perfect) hash functions. If we consider memory al-
location (without initialization) to come for free and use the lazy array technique
described in Section 4.3 instead of hashing, the construction of the vEB tree in
Lemma 4.4 becomes deterministic, and therefore also the nearest color ancestor
datastructure and the matching algorithm of Theorem 4.3.
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4.2. Bounded Occurrence Algorithm

A regular expressions e is called k-occurrence (k-ore for short) if each symbol
a ∈ Σ occurs at most k times in e. While every regular expression is k-ore for a
sufficiently large k, Bex, Neven, Schwentick, and Vansummeren [33] report that the
majority of regular expressions in real-life XML schemas are in fact 1-ores. Given
a position p and a symbol a, to find the following a-labeled position q we only
need to perform the checkIfFollow test (Theorem 2.4) on all a-labeled positions
in e, which are gathered into a designated list during preprocessing of e. Thus,
transition simulation is performed in time O(k), which proves the following result:

Theorem 4.5. For any deterministic k-ore e, after preprocessing in time O(|e|), we
can decide for any word w whether w ∈ L(e) in time O(k|w|).

We note that an analogous technique can be used to match a word w against a
non-deterministic k-ore e: we maintain a set P of at most k positions and when
reading symbol a we identify among the a-labeled positions those that follow any
of the positions in P. Here, reading one symbol requires O(k2) time, and thus, the
matching can be done in time O(k2|w|) after O(|e|) preprocessing.

4.3. Path Decomposition Algorithm

Next, we describe an algorithm for matching a word w against a regular ex-
pression e in time O(|e|+ ce|w|), where ce is the maximal depth of alternating union
and concatenation operators in e. As mentioned at the end of the Introduction, ce

is bounded by 4 in real-life dtds [18].
First, we extend the function FirstPos from Section 3 to arbitrary nodes rather

than skeleta nodes: for a node n ∈ Ne and a symbol a, FirstPos(n, a) returns the
unique a-labeled position in First(n) and Null if it does not exist. Queries of the
form FirstPos(n, a) can be answered in constant time after preprocessing in time
O(|e|), but since FirstPos is not used in the final algorithm, we omit the implemen-
tation details.

Climbing Algorithm. We first present a simple transition simulation procedure
that uses FirstPos and later improve it to obtain the desired evaluation algorithm.
Given a position p and a symbol a, it suffices to find an ancestor n of p such that
q = FirstPos(Rchild(n), a) follows p (tested with checkIfFollow). If such an an-
cestor does not exist, then p has no a-labeled following position. The soundness
of this procedure follows from that of checkIfFollow and the completeness from
Lemma 2.5. A naı̈ve implementation seeks the ancestor in question by climbing
up the parse tree starting from p, which yields O(depth(e)) time per transition sim-
ulation and overall O(|e| + depth(e) · |w|) time for matching.
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Path Decomposition. Our algorithm speeds up climbing the path using jumps that
follow precomputed pointers. The precomputed pointers lead to nodes where we
store an aggregation of the values of FirstPos for several nodes skipped during the
jump. The pointers are defined using the notion of path decomposition of the parse
tree.

Recall that a path decomposition of a tree is a set of pairwise disjoint paths
covering all nodes of the tree, and here, a path means a sequence of nodes n1, . . . , nk

such that ni is the parent of ni+1. Note that a path decomposition of a tree can be
specified by the set of the topmost nodes of the paths, which is how we define the
path decomposition of e. A node y of e is the topmost node of a path if it is the root
of e, or satisfies one of the following conditions:

(i) IsSupLast(y),

(ii) IsSupFirst(y),

(iii) y is the nullable right child of its parent, or

(iv) y is the right child of a +-labeled node.

For a position p we define top(p) as the topmost node of the path of the left sibling
of SupFirst(p).

Example 4.6. Consider the regular expression presented in Figure 6 together with
its path decomposition. For this expression, ce = 4 because there are at most
4 alternations of union and concatenation operators on any path of the expression
and, in particular, it is 4 on the path from p1 to the root node. Note that top(p1) = n3
and top(p2) = n1.

We now define the function h, which is similar to FirstPos but defined for
topmost nodes only: h(n, a) points to the a-labeled position p with n = top(p), i.e.,
we assign h(top(p), lab(p)) = p for every position p. For instance, in the expression
in Figure 6, h(n3, a) = p1 and h(n1, d) = p2.

There exists a subtle connection between h and FirstPos. If we consider a top-
most node n, then the values of h assigned to n can be viewed as an aggregation of
values of FirstPos of several nodes n1, . . . , nk, which are gathered from around the
path (but not from the path). The decomposition of e ensures that the aggregation is
collision-free, i.e., if FirstPos(ni, a) , Null for some i, then FirstPos(n j, a) = Null
for all j , i. Formally, we state this property as follows.

Lemma 4.7. For any two different positions p and p′, if top(p) = top(p′), then p
and p′ have different labels.

Proof. Let y denote the lowest node in the path of top(p) and let p0 denote some
position in Last(y). We show that p follows p0. By definition of top(p), the left sib-
ling of SupFirst(p) is on the path between y and top(p). Therefore, SupLast(p0) =

SupLast(y) is an ancestor of the left sibling of SupFirst(p) because there is no
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Figure 6: Path decomposition.

IsSupLast-node on a path except for the topmost node of the path. Moreover, we
observe that the parent of SupFirst(p) is labeled with �. Thus, by Lemma 2.2
we get p ∈ Follow(p0). Similarly, we show that p′ ∈ Follow(p0). Because e
is deterministic, there cannot be two different positions with the same label in
Follow(p0).

Lazy Arrays. To store the values of h we use lazy arrays, which we describe in de-
tail next. This interesting data structure is known in programmer’s circles [34, 35];
its first mention is, as far as we know, in Exercise 2.12 of [36]. The data structure
provides the functionality of an associative array with constant time initialization,
assignment, and lookup operations. The finite set of keys K needs to be known
prior to initialization of the data structure. Furthermore, every key needs to be as-
sociated with a unique element from a continuous fragment of natural numbers,
and here for simplicity, we assume that K = {1, . . . ,N} for some N ≥ 1.

A lazy array consists of an array A that stores the values associated with the
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keys, a counter C of active keys having a value assigned, and additionally two
arrays B and F that store the set of active keys. At initialization, C is set to 0 and
uninitialized memory of length N is allocated for each of the arrays A, F, and B
(an operation assumed to work in O(1) time). To assign value v to key k, we add
k to the set of active keys (if k is not in that set already), and assign A[k] = v. To
lookup key k, we return A[k] if k is active and return Null otherwise. To add a key
k to the set of active keys, we increment C, set F[C] = k, and set B[k] = C. In this
way a key k is active if and only if 1 ≤ B[k] ≤ C and F[B[k]] = k. Note that the
first condition alone is insufficient to check if a key k is active because B has been
allocated with uninitialized memory.

We found out that in practice, hash arrays offer compatible functionality with
superior performance while theoretically providing only expected O(1) time for
the assignment and lookup operations. As a side note, we point out that lazy arrays
stand on their own merit because they allow a constant time reset operation (by
simply setting C = 0), unmatched by hash arrays (but not needed by our algorithm).

Preprocessing. We construct and fill the lazy array h in one bottom-up traversal of
e. In the same traversal we also compute an additional pointer nexttop for every
position and every topmost node of a path, defined as follows. We set nexttop(n) to
the lowest topmost node y of a path above parent(n) that is either the root of e or
satisfies one of the following conditions:

(1) IsSupLast(y)

(2) IsSupFirst(y)

(3) there exists a non-nullable �-labeled ancestor of n in the path of y.

For instance, in the expression in Figure 6, it holds that nexttop(p3) = n5, nexttop(p4) =

n6, and nexttop(p5) = n4. We point out that nexttop(n) is always the topmost node
of some path, and furthermore, nexttop(n) is a strict ancestor of n.

Transition Simulation. FindNext in Algorithm 4 follows nexttop pointers on the
path from p to the node SupLast(p) while attempting to find a-labeled follow posi-
tions stored in h at the visited nodes.

If this does not succeed, then FindNext checks in First(parent(SupLast(p)))
(Lines 8–14) to find follow positions. This task would be easy to accomplish
with FirstPos through FirstPos(parent(SupLast(p)), a). Since we wish to use h
instead, we need to locate the node n such that h(n, a) returns the position we
look for. The location of this node depends on whether or not the node y =

parent(SupLast(p)) is nullable. If y is nullable, we perform a single nexttop jump
from y to reach n. Otherwise, n is the left sibling of y. Finally, we remark that if
FirstPos(parent(SupLast(p)), a) is not Null, then h(n, a) returns the same node.

Example 4.8. Consider the expression in Figure 6, position p1, and symbol d. The
computation of FindNext(p1, d) follows the jump sequence: p1, parent(p1), n3, n2, n1.
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Algorithm 4: Transition simulation.
procedure FindNext(p : Position, a : Σ) : Position

1 x← p
2 while SupLast(p) , x
3 if checkIfFollow(h(x, a), p)
4 then return h(x, a)
5 x← nexttop(x)
6 if checkIfFollow(h(x, a), p)
7 then return h(x, a)
8 y← SupFirst(parent(x))
9 if y is nullable

10 then q← h(nexttop(y), a)
11 else q← h(Lchild(parent(y)), a)
12 if checkIfFollow(q, p)
13 then return q
14 else return Null
end procedure

At node n1, h(n1, d) yields position p2, and since p2 follows p1, the procedure re-
turns p2.

Correctness. To reason about iterations of the main loop of FindNext, we introduce
this notation: nexttop0(n) = n, and nexttopi+1(n) = nexttop(nexttopi(n)) for i ≥ 0.
Also, the jump sequence of p is the sequence

nexttop0(p), nexttop1(p), . . . , nexttopK(p),

where K is such that nexttopK(p) = SupLast(p). We call K the length of the jump
sequence of p. We first show that the main loop performs a sufficient number of
nexttop jumps.

Lemma 4.9. Let p be a position. For every position q that follows p, either top(q)
belongs to the jump sequence or q belongs to First(parent(SupLast(p))).

Proof. By Lemma 2.5, top(q) is an ancestor of p or the left sibling of a non-nullable
IsSupFirst-ancestor of p. Furthermore, if SupFirst(q) is nullable then top(q) is
the top of the path containing parent(SupFirst(q)). From the definition of top and
nexttop, the jump sequence of p visits every IsSupFirst- and IsSupLast-ancestor of
p, as well as every ancestor y of p such that y is the topmost node of a path and
there exists some non-nullable �-labeled ancestor of p on that path.

We assume that q < First(parent(SupLast(p))) (Assumption (A)) and show that
in this case top(q) belongs to the jump sequence. Let n = LCA(p, q). We claim that
SupFirst(q) is the right sibling of SupLast(p), or satisfies

SupLast(p) 4 parent(SupFirst(q)) 4 p.
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By Lemma 2.2, one of the three following cases must hold:

(i) lab(n) = �, q ∈ First(Rchild(n)), SupLast(p) = Lchild(n).

(ii) lab(n) = �, q ∈ First(Rchild(n)), SupLast(p) 4 n.

(iii) q ∈ First(s) and p ∈ Last(s) where s is the lowest ∗-labeled ancestor of n.

If q < First(n) case (iii) is obviously ruled out. and SupFirst(q) = Rchild(n). The
claim is then satisfied in both cases (i) and (ii). Otherwise we have q ∈ First(n)
and case (i) is ruled out by Assumption (A). We then have SupLast(q) 4 n and
SupFirst(q) 4 n so that SupLast(p) 4 parent(SupFirst(q)) by Assumption (A).
This concludes the proof of our claim.

If SupFirst(q) is the right sibling of SupLast(p), then top(q) is equal to SupLast(p)
and is therefore visited by the jump sequence. Otherwise, SupLast(p) 4 parent(SupFirst(q)).
By Lemma 2.6, SupFirst(q) is nullable. Consequently, its parent belongs to the path
of top(q). Furthermore, the left sibling of SupFirst(q), and therefore its parent, are
non-nullable. It follows that the parent of SupFirst(q) is a non-nullable �-labeled
ancestor of p that belongs to the path of top(q). Hence top(q) belongs to the jump
sequence.

We now show the correctness of FindNext.

Lemma 4.10. For any position p and any symbol a, the procedure FindNext(p, a)
returns q iff q ∈ Follow(p) and lab(q) = a.

Proof. The soundness of FindNext follows from the use of checkIfFollow prior
to returning a position. Reciprocally, let q ∈ Follow(p) with lab(q) = a. Then
according to Lemma 4.9 FindNext returns q at Lines 4 or 7 if q does not belong to
First(parent(SupLast(p))), and at Line 13 otherwise.

Complexity. We show that the amortized running time of the transition simulation
procedure in Algorithm 4, when matching a word w against the deterministic reg-
ular expression e, is proportional to ce, the maximal depth of alternating union and
concatenation operators in e.

Lemma 4.11. Procedure FindNext(p, a) works in amortized time O(ce), when match-
ing a word against a deterministic regular expression e.

Proof. We use the potential pot of the data structure defined as a function of the
current position:

pot(p) = |{v 4 p | IsSupFirst(v)}|.

At the phantom position #, the initial potential is set to zero. The potential is
increased by at most one each time the transition simulation procedure is executed.
Now, let q be the position returned by FindNext(p, a), i.e., the a-labeled position
that follows p in e. We prove that FindNext(p, a) executes at most 2(pot(q) −
pot(p)) + ce + O(1) iterations of the loop (nexttop jumps) before returning q.
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By definition of top, there are no IsSupFirst-nodes between SupFirst(q) and
top(q), hence

pot(q) ≤ pot(top(q)) + 1. (2)

Let K be the length of the jump sequence of p and let ni = nexttopi(p) for 0 ≤
i ≤ K. Now, from the sequence n0, . . . , nK we remove every node that is the non-
nullable right child of a +-labeled node and obtain a subsequence ni0 , ni1 , . . . , niK′ .
We show that for every 1 ≤ j ≤ K′ − 2, one of n j or n j+1 is an IsSupFirst node.
If ni j is not an IsSupFirst node then by definition of the sequence it is the nullable
right child of some �-labelled node, which is therefore also nullable. Then ni j+1 is
an IsSupFirst-node by definition of nexttop. Hence, for every 0 ≤ j ≤ K′,

j ≤ 2(pot(ni0) − pot(ni j)) + 2.

Thus, for every 0 ≤ j ≤ K,

j ≤ 2(pot(p) − pot(n j)) + 2 + K − K′. (3)

Let ` be the natural number such that n` = top(q). Combining equations (2) and (3),
as ce is an upper bound for K − K′, we obtain the result claimed before:

` ≤ 2(pot(p) − pot(q)) + 4 + ce. (4)

From this result, establishing the amortized complexity is straightforward. Given a
word w = a1 · · · an, let p1, . . . , pn be the sequence of positions with pi = FindNext(pi−1, ai)
for 1 ≤ i ≤ n and p0 = #. Then, the number of iterations through the loop of
FindNext while matching w against e is at most:

n(4 + ce) + 2
n∑

i=1

(pot(pi−1) − pot(pi))

= n(4 + ce) + 2(pot(p0) − pot(pn))

≤ n(4 + ce).

This implies the amortized cost of O(ce), because each line of FindNext runs in
constant time.

Note that in the previous proof it suffices to take a smaller value of ce, the
maximum number of ancestors of a position of e that are labeled with +, are non-
nullable, and have a parent labeled with �. Lemmas 4.10 and 4.11 thus respectively
guarantee the correctness and analyze the complexity of our algorithm that simu-
lates successive transitions. This proves the following result:

Theorem 4.12. For any deterministic regular expression e, after preprocessing in
time O(|e|), we can decide for any word w whether w ∈ L(e) in time O(ce|w|), where
ce is the maximal depth of alternating union and concatenation operators in e.
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4.4. Star-Free Algorithm
Finally, we present an algorithm that matches simultaneously several words

w1, . . . ,wN against a star-free deterministic regular expression e (i.e., one that con-
tains no Kleene star). Note that the language defined by a star-free regular expres-
sion is finite. For a single word this is trivial: in a star-free regular expression,
q ∈ Follow(p) implies that position q is after p in the preorder traversal of e, and
therefore, to simulate a transition it suffices to run the checkIfFollow test on sub-
sequent positions until a match is found. In fact, the checkIfFollow tests can be
hard-coded into the traversal to avoid lowest common ancestor queries. Obtaining
linear complexity O(|e|+|w1|+· · ·+|wn|) when matching several words w1, . . . ,wN is
much more challenging. We first outline our algorithm, then show how this outline
can be implemented to achieve linear complexity.

Algorithm Outline. Our matching algorithm performs a single preorder traversal
of the expression e, similarly to the algorithm above for the trivial single word
problem. More accurately; after some preprocessing (which may involve more
traversals), the algorithm iterates over the positions of e in a single pass from left
to right. We maintain during this traversal:

• an index ji for every word wi

• a special data structure, which we call the dynamic a-skeleton for each letter
a ∈ Σ.

The index ji indicates the prefix of wi matched so far during the preorder traversal
of e: with every position visited in the traversal we increment the relevant indices
j1, . . . , jN . The dynamic a-skeleton introduced hereafter allow to determine effi-
ciently which indices are to be incremented.

Before defining the skeleta, we first introduce some terminology. We say that
the word wi at index ji expects the symbol a if the symbol of wi at index ji + 1
is a. We also say that wi at ji reaches position p if after simulating transitions
on the corresponding prefix of wi we arrive at p (or more precisely, the Glushkov
automaton of e reaches p after reading the prefix of wi). The dynamic a-skeleton ta
is a tree. At any point in the traversal, the leaves of this tree are the set of positions
p such that there exists some wi that reaches p and expects the symbol a at ji. With
each position p in ta we associate a list of (pointers to) those words (i.e. p has a
pointer to wi iff wi at index ji reaches the position p and expects the symbol a).
The internal nodes of the dynamic a-skeleton are obtained by closing the set of
positions under lowest common ancestors.

During the preorder traversal of the positions in e, we update the dynamic
skeleta as follows. When processing a position p labeled a, we remove from the
dynamic a-skeleton ta every position q that is followed by p, update indices of all
words wi on the list associated with q, and insert p into some dynamic skeleta.
More accurately, if the letter in wi at the new index ji is a, then we insert p in the
dynamic a-skeleton, with wi attached to its list. We illustrate the procedure in the
following example.
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Example 4.13. We consider the deterministic regular expression

e = (#(((a + ba)(c?))(d?b)))$,

where # and $ are two phantom positions that do not need to be matched. The
expression e has 8 positions: #, a1, . . . , b6, $. We match against e the words w1 =

bcdb, w2 = acdba, w3 = acb, and w4 = bada. The evolution of skeleta through the
algorithm is illustrated in Figure 7 and described below.

Initially, all indices are j1 = j2 = j3 = j4 = 0. When describing dynamic a-
skeleta, we write 〈p,W〉 to indicate that a position p has an associated list of words
W. Initially, ta = 〈#, [w2,w3]〉, tb = 〈#, [w1,w4]〉, and all other dynamic a-skeleta
are empty.

In the first step, we read position a1 (labeled a). Because a1 follows #, we re-
move from ta the position 〈#, [w2,w3]〉, increment j2 and j3, and insert 〈a1, [w2,w3]〉
to tc.

Next, we read position b2. Because b2 follows #, we remove from tb the posi-
tion 〈#, [w1,w4]〉, increment j1 and j4, and insert 〈b2, [w4]〉 to ta and 〈b2, [w1]〉 to
tc. Because we keep the dynamic a-skeleta closed under lowest common ancestors,
tc becomes 〈a1, [w2,w3]〉+ 〈b2, [w1]〉, where + is a binary node whose children are
a1 and b2.

At the position a3, because a3 follows b2, we remove 〈b2, [w4]〉 from ta, in-
crement j4 and add 〈a3, [w4]〉 to td. At the position c4 labeled with c, because c4
follows a1, we remove from tc the position 〈a1, [w2,w3]〉, increment j2 and j3, and
insert 〈c4, [w2]〉 to td and 〈c4, [w3]〉 to tb. Although b2 is not followed by c4, we
also remove 〈b2, [w1]〉 from tc and discard it because we observe that b2 will not
be followed by any of the subsequent positions. After this step, tb = 〈c4, [w3]〉, tc
is empty, and td = 〈a3, [w4]〉 � 〈c4, [w2]〉.

The next position, d5, follows both a3 and c4. Therefore, we remove from td
both 〈a3, [w4]〉 and 〈c4, [w2]〉, increment j2 and j4, and insert 〈d5, [w4]〉 to ta and
〈d5, [w2]〉 to tb. This way, tb is 〈c4, [w3]〉 � 〈d5, [w2]〉.

In the last step we move to the position b6 labeled with b. Because b6 follows
both c4 and d5, we remove 〈d5, [w2]〉 and 〈c4, [w3]〉 from tb and increment j2 and
j3. We insert 〈b6, [w2]〉 to ta. Because j3 = |w3| and $ follows b6, w3 matches e.
Since there are no further positions to process, the words w1, w2, and w4 do not
match d.

Implementation Details. Details on how to efficiently handle dynamic skeleta fol-
low. We assume that the positions p1, . . . , pm of e are given in the traversal order of
e and that e has been preprocessed for LCA and ancestor queries, and that pointers
SupLast and SupFirst are computed. This preprocessing can be performed in time
O(|e|).

In every dynamic a-skeleton ta we assume we can access in constant time
the rightmost position pa, i.e., the position most recently added to ta (for this
we can maintain a pointer to pa). Our algorithm will also rely on a procedure
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Figure 7: Dynamic skeleta while matching w1, . . . ,w4 against e = (#(((a + ba)(c?))(d?b)))$

findLCA(ta, pi) to insert new positions as well as to identify and to remove relevant
positions from the dynamic a-skeleta. The findLCA procedure returns the location
in ta of the lowest common ancestor nLCA between pa and pi. Note that nLCA needs
not be present in ta and findLCA(ta, pi) returns the topmost descendant of nLCA

present in ta (which may be nLCA itself if ta contains it).
Our implementation takes advantage of two assumptions on the calls to findLCA

by our algorithm:

(i) findLCA(ta, pi) is only called with a position pi that comes after pa in the
traversal of e (there exists some j < i such that pa = p j)

(ii) positions involved in successive calls to findLCA form an increasing subse-
quence of p1, . . . , pm (if a call findLCA(ta, pi) is followed by a call findLCA(ta, p j),
then i < j).

Due to (i) we can implement findLCA by simply climbing the rightmost path in ta
until the desired node is found. Due to (ii) we can save the result of the previous
call and begin to climb the rightmost path of ta from the saved node (if no new
nodes have been added in between). We will see below that this implementation
reduces the amortized cost of a call to findLCA in our algorithm to O(1).
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When processing a position pi labeled a, our matching algorithm first find the
lowest common ancestor nLCA of na and pi in e. Then we use findLCA(ta, pi) to find
the location of nLCA in ta (Step 1). Using this location, we first retrieve all leaves
〈p, L〉 in ta such that p is a position followed by pi. Then for every word wh in L,
if we denote by b the letter at index jh in wh:

• we insert pi in the dynamic b-skeleton tb (unless of course pi has already
been inserted for another word w′h in which case it would already be in tb so
insertion would be redundant)

• we attach wh to pi in the dynamic b-skeleton tb (i.e., append wh to the list
associated with pi in tb)

• we increment jh

We name this set of operations “Step 2”. Finally, we remove from ta nodes that
have become irrelevant after inserting pi (Step 3).

To perform the retrieval and removal operations in Steps 2 and 3, we climb the
path from findLCA(ta, pi) to ni = parent(SupFirst(pi)). At every �-labeled node
n along this path, we pick the subtree t′ rooted at the left child of n. In a single
traversal of t′ we collect every position p of t′: if SupLast(p) 4 Lchilde(nLCA),
then p is followed by pi according to Lemma 2.2 (so we perform the retrieval steps
described above). Otherwise, the words associated with p fail to match the expres-
sion and can be discarded (this is because p cannot be followed by any position
ph, h > i as our left to right order implies LCA(p, ph) 4 LCA(p, pi)). After all po-
sitions in t′ have been processed, we discard the subtree t′ from ta. This concludes
the description of our implementation. We next analyze its running time.

Complexity Analysis. First, we observe that for every consumed word symbol (i.e.,
every increment of a word counter), we add into dynamic skeleta a constant amount
of nodes and words: at most one position, one additional word in the list of a
position, and one additional LCA node into some dynamic skeleton, then remove
the position to which the word ws attached. Consequently, at any time, there is
in the whole data structure (i.e. over the whole set of dynamic skeleta) at most
one pointer to every word. Our second observation is that the number of calls to
Procedure findLCA is |e| in Step 1 and |w1|+ · · ·+ |wN | in Step 2. As a consequence,
the cumulative execution time of findLCA is bounded by O(|w1| + · · · + |wN | + |e|)
over the whole execution of the algorithm: the nodes traversed by climbing the
rightmost path in procedure findLCA leave the rightmost path and therefore the
algorithm may only traverse O(|w1| + · · · + |wN |) such nodes in total. The costs
of the retrieval/removal/insertion operations add up to O(|w1| + · · · + |wN |), which
justifies the following theorem:

Theorem 4.14. For any star-free deterministic regular expression e and words w1, . . . ,wN ,
we can decide which words belong to L(e) in time O(|e| + |w1| + · · · + |wN |).
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5. Matching Strongly Deterministic Regular Expressions

Consider an expression e with numerical occurrence indicators. For each node
n of e we define NextIter(n) as a pointer to the closest iterative node among the strict
ancestors of n (and to Null otherwise). We now adapt our three matching algorithms
from the previous section to support numeric occurrence indicators, using pointer
NextIter to examine and update the counters in relevant iterative subexpressions.
The main difficulty is to maintain the efficiency while additionally traversing the
pointers NextIter. Our matching algorithms in presence of numeric occurrence
indicators rely again on an algorithm that tests if a configuration can follow another
one.

Algorithm 5 presents a general procedure to check if some position follows
another one, given a valuation c and the lowest iterative ancestor x of the current
position for which c(x) < min(x). We recall from Section 2.2 that c(x) denotes the
value of the counter attached to x and min(x) the minimal number of repetitions
required by subexpression x while matching e – i.e., the numeric occurrence in-
dicators over x are xmin(x)..max(x). To simplify algorithms using this procedure, we
require from the procedure that it also returns the iterative expression correspond-
ing to the transition if any, and � otherwise.

Proposition 5.1. Let y<min be the lowest y 4 p for which c(y) < min(y), and y<min

is Null if there is no such y. Then Algorithm 5 returns false on (p, q, c, y<min) if
and only if there are no s, c′ such that (q, c′) ∈ Follows(p, c), returns (true,�) if
and only if there exists c′ such that (q, c′) ∈ Follow�(p, c), and otherwise returns
(true, s) where s is the lowest iterative expression such that (q, c′) ∈ Follows(p, c).

Proof. It is clear that the algorithm checks the characterization above.

Algorithm 5: Checking a candidate position
procedure checkIfFollow(p, q : Positions, c : valuation, y<min) : Bool×
Iterative expr.

1 n← LCA(p, q)
2 if y<min , Null and n 4 y<min then return (false,Null)
3 if lab(n) = � and SupLast(p) 4 n and SupFirst(q) 4 n then return

(true,�)
4 s← NextIter(n)
5 while s , Null and SupLast(p) 4 s and SupFirst(q) 4 s and

max(s) = c(s)
6 s← NextIter(s)
7 if s = Null or max(s) = c(s)
8 then return (false,Null)
9 else return (true, s)

end procedure
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5.1. Bounded Occurrence Expressions

We describe an efficient algorithm for k-ores. Assume that e is a k-ore (as
defined in Section 4.2). We first introduce some data structure that helps us process
iterative subexpressions efficiently in our algorithm.

Stacks and Pointers. We store two stacks in addition to the counters. The first,
StackMin, keeps a pointer to the counter of every ancestor n of the current position
such that c(n) < min(n). The second stack Stackc≥2 keeps a pointer to every ances-
tor n of the current position such that c(n) ≥ 2 (these are the counters that may be
reset during the execution of the algorithm). The stack operations in Algorithm 6
guarantee that both stacks are ordered by decreasing depth of the nodes, so that the
deepest nodes come on top. During preprocessing, we also build for each node n a
pointer NextIter(n) toward the closest iterative node among the strict ancestors of
n, and another pointer NextItermin≥2(n) toward the lowest iterative node among the
strict ancestors of n such that min(n) ≥ 2.

Algorithm Outline. We gather for each letter a ∈ Σ all a-labeled positions of e into
a designated list during preprocessing, following the preorder. Our matching algo-
rithm then starts from the initial configuration (#, counters set to 1). It processes
the symbols of the input word in order and updates the configuration as follows.
When reading letter a from position p, we first reorder the list of a-labeled posi-
tions into q1 . . . qk such that q comes before q′ when LCA(p, q′) is a strict ancestor
of LCA(p, q). This reordering can clearly be obtained with O(k) operations. We
then execute procedure FindNextPosK to compute the next configuration. This pro-
cedure relies on the procedure checkIfFollow to check successively the candidate
positions qi, and then updates the counters using StackMin and Stackc≥2.

In the end, either the procedure fails at some point to produce a following con-
figuration, or the sequence of configurations produced testifies that e matches the
input word according to Lemma 2.7. The correctness of the algorithm is guaranteed
by Proposition 5.1: using Lemma 2.7 we can show that the counters and the two
stacks are correctly updated. More interesting is the complexity of the algorithm.

Complexity Analysis. Given a valuation c for the counters and a node n, we define
the first potential of n as potc(n) = |{x 4 nc(x) ≥ 2}|. The iterations of the while
loop inside checkIfFollow visit distinct nodes for every candidate position qi. More
importantly, each visited node n satisfies c(n) = max(n) ≥ 2. As the candidates are
ordered by ascending order of LCA(p, qi), the counter of every node thus visited
is reset in the subsequent loops (Line 12). Furthermore, at most one counter is
incremented while simulating the transitions (Line 16). Consequently, the overall
complexity of the calls to procedure checkIfFollow is bounded by C1(k + potc(p) −
potc′(qi) + 2) for some constant C1, where p and c (resp. qi and c′) are the current
state and valuation before (resp. after) simulating the transition. Similarly, the
number of operations for updating Stackc≥2 (Lines 13,17,18) can be bounded by
C2(potc(p) − potc′(qi) + 2) for some constant C2.

42



Algorithm 6: Transition Simulation for k-ore
//uses: StackMin, Stackc≥2 : Stacks of iterative nodes, c : valuation
procedure FindNextPosK(p, q1, q2 . . . , qk : Positions, a : Σ) : Position

1 i← 0; b← false
2 while i < k and b = false
3 i← i + 1
4 (b, x)← checkIfFollow(p, qi, c, top(StackMin))
5 if b = false then return false
6 else
7 UpdateCounters(p, qi, x)
8 return qi

procedure UpdateCounters(p, qi, x):
9 L1 ← empty stack

10 s← x
11 while Stackc≥2 is not empty and top(Stackc≥2) 64 s
12 c(top(Stackc≥2))← 1
13 pop(Stackc≥2)
14 if x , �
15 then
16 c(x)← c(x) + 1
17 if top(Stackc≥2) , x
18 then push(x, Stackc≥2)
19 if c(x) = min(x)
20 then pop(StackMin) //removes x from StackMin
21 z← NextItermin≥2(qi)
22 while z , Null and z 64 s
23 push(z, L1)
24 z← NextItermin≥2(z)
25 while L1 is not empty
26 z← pop(L1)
27 push(z, StackMin)
end procedure

updates StackMin
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Let us define the second potential of a node n as pot′c(n) = |{x 4 nc(x) <

min(x)}|. We observe that when a node is inserted into StackMin, its counter has
value 1 and its minimal value is at least 2 so that it contributes to the second po-
tential for all its descendants. Furthermore, the second potential can decrease by
at most one during a transition simulation since procedure checkIfFollow guaran-
tees that nodes contributing to the second potential of p are above LCA(p, qi), and
even above x if x , Null. Thus, the number of operations for updating StackMin
(Lines 21 to 27) can be bounded by C3(pot′c′(qi) − pot′c(p) + 2) for some constant
C3.

For a large enough constant C, this gives an overall complexity of C(potc(p) −
potc′(qi)+pot′c′(qi)−pot′c(p)+4) for the cost of one transition simulation. From this
result, establishing the amortized complexity is straightforward. Given a word w =

a1 · · · an, let p1, . . . , pn be the sequence of positions with pi = FindNextPosK(pi−1, ai)
and c1, . . . , cn the corresponding valuations, for 1 ≤ i ≤ n and p0 = #. The results
before show that for a large enough constant C, the number of operations while
matching w against e is at most:

Ckn + 4Cn + C
n−1∑
i=0

(potci
(pi) − potci+1

(pi+1)) + C
n−1∑
i=0

(pot′ci+1
(pi+1) − pot′ci

(pi))

= Ckn + 4Cn + C(potc0
(p0) − potcn

(pn) + pot′cn
(pn) − pot′c0

(p0))

≤ Ckn + 6Cn ∈ O(kn).

We have thus established that deterministic k-ore expressions can still be evaluated
in linear time (for fixed k) even in presence of counters:

Theorem 5.2. For every strongly deterministic k-ore with numerical occurrence
indicators, after preprocessing in time O(|e|), we can decide if w ∈ L(e) in time
O(k|w|).

5.2. Lowest Color Ancestor
Instead of reordering the list of a-labeled positions into q1 · · · qk prior to veri-

fying the certificates, we can can traverse the a-colored ancestors of p using low-
est color ancestor queries in time O(log log |e|), and take advantage of pointers
FirstPos(n, a) and Witness(n, a) to check these positions in the order specified in
Section 5.1, i.e., such that q comes before q′ when LCA(p, q′) is a strict ancestor
of LCA(p, q). Lemma 3.3 does not carry over in presence of numeric occurrence
indicators, but it is obvious that the next position qi is still among FirstPos(n, a) or
Witness(n, a) for some a-colored ancestor n of p. To visit the qi in desired order,
we can consider the candidates from

⋃
n4p with color a{Witness(n, a),FirstPos(n, a)}

by height of n. We compute in constant time lowest common ancestors of p with
FirstPos(n, a) and Witness(n, a) in order to decide which of these two positions
should be considered first. One proves easily that with this approach the evalua-
tion of deterministic expressions with counters has cost O(|w| log log |e|) after the
preprocessing:
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Theorem 5.3. For every strongly deterministic expression with counters, after pre-
processing in expected time O(|e|), we can decide if w ∈ L(e) in time O(|w| log log |e|).

5.3. Path Decomposition

Instead of resorting to lowest color ancestor queries, we can use the path de-
composition idea to enumerate the candidates that need to be checked. The path
decomposition algorithm for standard expressions enumerates the candidates qi in
increasing order of parent(SupFirst(qi)). To restore the proper order for our nu-
meric indicators algorithms (namely, q comes before q′ when LCA(p, q′) is a strict
ancestor of LCA(p, q)), we combine this enumeration with pointers FirstPos(n, a)
as for the lowest color ancestor algorithm. We slightly alter the definition of the
nexttop pointers to preserve the property that all relevant ancestors are traversed by
the jump sequence (a property whose proof depends on Lemma 2.6 in the absence
of numeric occurrence indicators). For every node n such that n is not nullable and
n is an IsSupFirst-node, nexttop(n) is redefined as the left sibling of n. The tran-
sition simulation procedure must then be modified accordingly, so that the jump
sequence only concludes on node n if the two following conditions are satisfied
simultaneously: IsSupLast(n) and n 4 p. We can easily prove that after those
modifications all relevant candidates are visited.

Theorem 5.4. For any deterministic expression e with numeric occurrence indi-
cators, after preprocessing in time O(|e|), we can decide for any word w whether
w ∈ L(e) in time O(ce|w|), where ce is the maximal depth of alternating union and
concatenation operators in e.

Proof. To prove the correctness we only need to show that the jump sequence in
FindNext(pi, a) with the alterations described above traverses top(q) for every a-
colored ancestor n of pi such that SupLast(pi) is a strict ancestor of n, and ev-
ery q ∈ {FirstPos(n, a),Witness(n, a)} such that q < First(parent(SupLast(pi))).
The only case that differs from the proof of Lemma 4.9 is when SupLast(pi) 4
parent(SupFirst(qi)). Then, if SupFirst(qi) is nullable the argument follows as in
Lemma 4.9, but SupFirst(qi) may also be non-nullable (and still be a candidate in
our list). If SupFirst(qi) is non-nullable, then its left sibling is an IsSupLast node,
and therefore is visited by our modified jump sequence, which concludes our proof.

For the complexity analysis, we observe that some IsSupFirst ancestor of pi

is visited every three iterations, instead of two for the jump sequence analyzed
in Lemma 4.11. As a consequence, the total cost over all transition simulations
remains O(ce|w|) since our ordering of the candidates guarantees the total cost of
processing counters is in O(|w|) .

6. Related Work

Our results rely on preprocessing and traversing the parse tree of a regular
expression. Definitions and constructions of the First and Last sets based on the
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parse tree already appeared in works by Chan and Paige [11], Ponty, Ziadi, and
Champarnaud [12], and Hagenah and Muscholl [26].

The idea of our algorithm for star-free regular expressions is similar to that
of Hagenah and Muscholl [37] in their algorithm that computes for any regular
expression an ε-free nfa in time Ω(|e| log2 |e|). They decompose the transitions
leaving each state into a few sets and group states sharing such sets of outgoing
transitions. This decomposition is based on a heavy path decomposition of the
parse tree of e. We use another decomposition of this parse tree in order to amortize
the evaluation cost.

Czerwiński, David, Losemann, and Martens [38] prove that checking deter-
minism of nfas and regular expressions is Pspace-complete. Lu, Bremer, and
Chen [39] give an alternative proof of this result, and also prove that for dfas with
limited alphabet size, checking determinism is NL-complete. Lu, Peng, Chen, and
Zheng [40] show that checking determinism of regular expressions over a unary
alphabet is coNP-complete.

Gelade, Gyssens, and Martens [27] present a cubic time algorithm for testing
strong determinism of regular expressions with numerical occurrence indicators.
They also show that strongly deterministic expressions are strictly less expressive
than weakly deterministic expressions. Their algorithm is improved by Chen and
Lu [30] to a linear time algorithm. For weak determinism, Kilpeläinen and Tuhka-
nen [22] present a quadratic testing algorithm, for expressions over a fixed alpha-
bet. Kilpeläinen [29] improves this result to linear time in the fixed alphabet case,
and to time O(|e|2 log |e|) in the arbitrary alphabet case. Chen and Lu [30] improve
that result to time O(|Σ||e|), where Σ is the set of symbols that appear in e. It is
shown by Latte and Niewerth [41] that a weakly deterministic regular expression
is at most exponentially larger than an equivalent dfa, which implies that testing if
a given regular expression is definable by a weakly deterministic expression can be
decided in Expspace.

An orthogonal direction of research involves algorithms for the efficient val-
idation of huge documents against a small dtd. Several works [42, 43] focused
on obtaining space efficient algorithms in a streaming framework. This is chal-
lenging when document trees are deep. Konrad and Magniez [44] provide stream-
ing algorithms in sublinear space for the validation against dtds. They consider a
framework where the algorithm has access to a read-only input stream and several
auxiliary read/write streams. The algorithm is allowed to perform read or write
passes on the streams. At the beginning of each pass on a stream, the algorithm
decides in which direction the stream is processed, and also decides if the pass is
a write or a read pass. The authors propose an algorithm that validates a tree t
against a constant-size dtd in O(log2 |t|) passes, using space O(log |t|) and 3 aux-
iliary streams, with O(log |t|) processing time per symbol. Note that the validator
checks the sibling sequences of t against the corresponding deterministic regular
expression.

In the context of dtd inference, Bex et al. [45] identify two classes of regular
expressions which account for most of the regular expressions in real schemas: the
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single occurrence regular expressions (1-ore) and the chain regular expressions
(chare). An expression is an 1-ore iff no symbol appears more than once in e,
therefore 1-ore are always deterministic. chare are a subclass of 1-ore, and contain
the 1-ore that consist of a sequence of factors of the form (a1 + a2 + · · · + an)
where every ai is a symbol, each factor being possibly extended with a Kleene
star, Kleene plus, or a question mark. The class of 1-ores account for 98% of
the regular expressions in real schemas, while chare account for 90% of them.
Bex, Neven, and van den Bussche [46] also define simple regular expressions,
which generalize chare in that symbols ai in factors can appear with a star or
question mark, and the number of occurrences of a symbol is not restricted. It
should be noted that deterministic simple regular expressions have bounded depth
of alternating union and concatenation operators, and thus is covered by our linear
time algorithm for that class. Moreover although stars are allowed in simple regular
expressions, which makes them unfit for our star-free algorithm, those stars can
occur only above a single symbol, or above a union of strings (with possibly a star
or question mark above the strings). Therefore, our star-free algorithm can also be
extended to handle simple deterministic regular expressions.

7. Conclusions

We have presented a linear time algorithm for testing if a regular expression
is deterministic, an efficient algorithm for matching words against deterministic
regular expressions, and linear time algorithms for matching against k-occurrence,
∗-free (multiple words), and bounded +-depth expressions.

It was our original motivation for this work, but remains an open theoretical
problem, whether matching for deterministic regular expressions can be carried
out in time O(|e| + |w|). We note that our O(|e| + |w| log log |e|) matching algorithm
is not optimal because of the O(log log |e|) cost of lowest color ancestor queries.
We plan to find out if the cost of those lowest colored ancestor queries can be
amortized and if the particular order of the queries can be used to devise better
data structures. Can other approaches solve the problem in O(|e| + |w|) time, e.g.,
by giving up the the streaming aspect of using transition simulation? Which larger
classes of regular expressions, exceeding the deterministic ones, can be matched
efficiently? An example of such class is mentioned after Theorem 4.5, the k-ores.

Another interesting and largely open problem is the one of matching under lin-
ear time preprocessing of w (“indexing”). Very simple matching problems such as
substring search have time O(|e|) solutions; can those be extended to more general
regular expressions? The only related reference in this direction that we are aware
of is the work by Baeza-Yates and Gonnet [47]. Finally, can lower bounds match-
ing the upper bounds be shown? Note that for general regular expressions and nfas,
it is known that no approach relying on constructing an equivalent epsilon-free nfa
can achieve linear complexity. This follows from the fact that all epsilon-free nfas
equivalent to a1?a2? . . . am? have at least m log2 m transitions [48].
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Finally we show that our linear algorithm for testing determinism extends to
regular expressions with numeric occurrence indicators. Both weak and strong de-
terminism can therefore be decided in linear time. Our matching algorithms also
extend to strongly deterministic expressions in presence of numeric occurrence
indicators, but we leave the complexity of matching for weakly deterministic ex-
pressions for future work.
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[10] A. Brüggemann-Klein, Regular expressions into finite automata, Theor. Com-
put. Sci. 120 (2) (1993) 197–213. (Cited page 3)

48



[11] C.-H. Chang, R. Paige, From regular expressions to DFA’s using compressed
NFA’s, TCS 178 (1–2) (1997) 1–36. (Cited pages 5, 8, 9, and 46)

[12] J.-L. Ponty, D. Ziadi, J.-M. Champarnaud, A new quadratic algorithm to con-
vert a regular expression into an automaton, in: Workshop on Implementing
Automata, 1996, pp. 109–119. (Cited pages 5, 8, 9, and 46)

[13] D. Harel, R. E. Tarjan, Fast algorithms for finding nearest common ancestors,
SIAM J. Comput. 13 (2) (1984) 338–355. (Cited pages 5 and 9)

[14] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, P. Sumazin,
Lowest common ancestors in trees and directed acyclic graphs, J. Algorithms
57 (2) (2005) 75–94. (Cited pages 5 and 9)
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