
 
 
Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

 
 
 

Year : 2018 

 

 
Bayesian model selection in hydrogeophysics and hydrogeology 

 
Brunetti Carlotta 

 
 
 
 
 
 
Brunetti Carlotta, 2018, Bayesian model selection in hydrogeophysics and hydrogeology 

 
Originally published at : Thesis, University of Lausanne 
 
Posted at the University of Lausanne Open Archive http://serval.unil.ch 
Document URN : urn:nbn:ch:serval-BIB_384AF47B58ED0 
 
 
Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 
loi. Nous déclinons toute responsabilité en la matière. 
 
Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 
author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect.

http://serval.unil.ch/�


Faculté des géosciences et de l’environnement
Institut des sciences de la Terre

Bayesian model selection in
hydrogeophysics and hydrogeology

Thèse de doctorat

Présentée à la
Faculté des géosciences et de l’environnement

Institut des sciences de la Terre
de l’Université de Lausanne

par

Carlotta Brunetti

Diplôme (M.Sc.) en Physique du Système Terre
Université de Bologna

Jury
Prof. Dr. Niklas Linde, directeur de thèse

Prof. Dr. James Irving, expert interne
Prof. Dr. Wolfgang Nowak, expert externe
Prof. Dr. Christian Kull, président du jury

Lausanne, 2018





ll""L
UNIL I Université de Lausanne

Faculté des géosciences et de I'environnement
bâtiment Géopolis bureau 463i

Président de la séance publique :

Président du colloque :

Directeur de la thèse :

Expert interne :

Expert externe :

IMPRIMATUR

Vu le rapport présenté par le jury d'examen, composé de

M. le Professeur Christian Kull
M. le Professeur Christian Kull
M. le Professeur Niklas Linde
M. le Docteur James Irving
M. le Professeur Wolfgang Nowak

Le Doyen de la Faculté des géosciences et de l'environnement autorise I'impression de la
thèse de

Madame Carl otta BRUNETTI
Titulaire d'un

Master in Physics of Earth System
de I'Université de Bologne

intitulée

Bayesian model selection in hydrogeophysics
and hydrogeology

Lausanne, le 22 février 2019

Pour le de la des géosciences et de

Kull

iii





Acknowledgements

It is an honour to thank all the people who have contributed to the successful completion of
my PhD thesis and who have supported me all along the four years of this unique experience.
My special thanks go to:

• my supervisor Niklas Linde for teaching me how excellent and ethical scientific re-
search is done, for always being available, trustworthy and rigorous, for always helping
me whenever there was a need, for his sharp mind and vast knowledge and for making
my PhD experience so productive and stimulating. I could not have imagined having a
better supervisor and mentor for my doctoral studies

• the committee members Wolfgang Nowak and James Irving for the fruitful and inspir-
ing discussion during my private defense as well as the president of the jury Christian
Kull for his availability and kindness

• the Swiss National Science Foundation [grant number 200021_155924] for funding
this work

• the scientists involved in peer-reviewing the individual chapters of this thesis such
as the Editor Paolo D’Odorico, the Associated Editor Harrie-Jan Hendricks-Franssen,
Anneli Guthke, Jan Dettmer and all the anonymous reviewers for their very construc-
tive and insightful comments

• my coauthors Marco Bianchi, Jasper A. Vrugt and Guillaume Pirot for their enriching
collaboration

• Eric Laloy for making available the code used for building the multi-Gaussian mod-
els, John Peterson and Susan Hubbard for providing the crosshole GPR data from
the South Oyster Bacterial Transport site and Jasper A. Vrugt for making DREAM(ZS)

available and for providing an initial version of the code used for Gaussian mixture
importance sampling

• the system administrator Philippe Logean and my colleague Jürg Hunziker for helping
me with the clusters of the university

• my faithful PhD partner Giulia de Pasquale for sharing this four years adventure and
the field camps under (almost always) stormy and rainy weather with me

• my colleagues Corinna Koepke, Emily B. Voytek and Laureline Josset for sharing the
office and the good and hard times of the PhD with me

• my parents and my grandmother for their unconditional love and endless support. In
particular, to my mother for helping me with her pragmatism and strength that only a
woman can have and to my father for helping me with his thoughtful mind and sharp
wisdom that only a real yogi can achieve

• my boyfriend for his contagious optimism and for bringing me always in amazing
places in the Swiss Alps during the weekends where I could refresh my mind all along
my PhD

• the lac Léman for the energizing walks and runs along its shores

v





Contents

Acknowledgements v

List of figures xi

List of tables xiii

Abbreviations xv

Résumé xvii

Abstract xix

1 Introduction 1
1.1 Motivation: the Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Conceptual models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Bayesian model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Bayes Factors and Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.3 Evidence computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Petrophysical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Bayesian model selection in hydrogeophysics: Application to conceptual subsur-
face models of the South Oyster Bacterial Transport Site, Virginia, USA 23
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Theory and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Bayesian inference with MCMC . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Evidence and Bayes factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Evidence estimation in practice . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.4 Conceptual subsurface models . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Illustrative toy example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Field example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.1 Field site and available data . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.3 A synthetic experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vii



3 Impact of petrophysical uncertainty on Bayesian hydrogeophysical inversion and
model selection 51
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Theory and method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Bayesian inference and model selection . . . . . . . . . . . . . . . . . . . 55
3.3.2 MC and MCMC sampling of petrophysical prediction uncertainty . . . . 56
3.3.3 Petrophysical relationships and geophysical forward model . . . . . . . . 57
3.3.4 Model parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Synthetic examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Toy example: MC-within-MCMC versus full MCMC sampling . . . . . . . 59
3.4.2 The forward problem: impact of petrophysical prediction uncertainty . 60
3.4.3 The inverse problem: impact of assumptions on petrophysical predic-

tion uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.4 Inference of petrophysical prediction uncertainty . . . . . . . . . . . . . . 66

3.5 Field example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5.1 Field site and available data . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5.2 Results at the South Oyster Bacterial Transport Site . . . . . . . . . . . . . 71

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Hydrogeological model selection among complex spatial priors with application to
the MADE-5 tracer experiment 79
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Bayesian inference and model selection . . . . . . . . . . . . . . . . . . . 83
4.3.2 Evidence estimation by power posteriors . . . . . . . . . . . . . . . . . . . 84

4.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.2 Graph Cuts model proposals . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.3 Field site and available data . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.4 Evidence estimation in practice . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Results for the MADE-5 case study . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5.1 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5.2 Bayesian model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.8 Appendix A: Forward model: from 3D to 2D . . . . . . . . . . . . . . . . . . . . . 105
4.9 Supporting information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Conclusions 111
5.1 Limitations and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 130

viii



A Appendix A: Evidence estimation with POLYCHORD for hydrogeophysical applica-
tions 131
A.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.3.1 Nested sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.3.2 Multi-dimensional slice sampling . . . . . . . . . . . . . . . . . . . . . . . 134
A.3.3 Tuning parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.4 Illustrative toy example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.5 Field example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.5.1 Preliminary test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

ix





List of Figures

1.1 Examples of conceptual models of subsurface hydrogeological heterogeneity . 6
1.2 The principle of parsimony in the Bayesian approach to model selection . . . . 11
1.3 Simplified representation of a Markov chain . . . . . . . . . . . . . . . . . . . . . 16

2.1 Summary statistics of the posterior porosity distribution for different subsurface
conceptualisation used in the synthetic crosshole-GPR experiment . . . . . . . 34

2.2 Mean evidence estimates in log10 space and their associated uncertainty for the
synthetic crosshole-GPR experiment . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Difference in the evidence estimates derived from different pairs of methods as
a function of model complexity for the synthetic crosshole-GPR experiment . . 37

2.4 Prior porosity realisations for different conceptual models at the South Oyster
Bacterial Transport site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Posterior porosity realisations and their summary statistics for different con-
ceptual models at the South Oyster Bacterial Transport site . . . . . . . . . . . . 41

2.6 Posterior and prior distributions of the inferred parameters at the South Oyster
Bacterial Transport site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7 Mean evidence estimates in log10 space and their associated ranges for the
South Oyster Bacterial Transport site . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 Twice the natural logarithm of the Bayes factors of the competing conceptual
models of the South Oyster Bacterial Transport site . . . . . . . . . . . . . . . . . 46

3.1 Summary statistics of the posterior porosity distribution using different ap-
proaches to account for the petrophysical uncertainty . . . . . . . . . . . . . . . 61

3.2 Impact of the correlation in the petrophysical uncertainty on the GPR travel
time data residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Posterior distributions of the inferred porosity mean and variance obtained
from four different assumptions about petrophysical uncertainty . . . . . . . . 64

3.4 Summary statistics of the posterior porosity distribution using four different
assumptions about petrophysical uncertainty and scatter plots . . . . . . . . . . 65

3.5 Mean evidence estimates in log10 space and log-likelihood posterior distribu-
tions using four different assumptions about petrophysical uncertainty . . . . . 67

3.6 Posterior distributions of the inferred porosity mean and variance and of the
inferred geostatistical parameters of the petrophysical uncertainty . . . . . . . . 69

3.7 Summary statistics of the posterior porosity, petrophysical uncertainty and
velocity models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Posterior realisations of the petrophysical uncertainty . . . . . . . . . . . . . . . 71
3.9 Posterior and prior distributions of the inferred parameters at the South Oyster

Bacterial Transport site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.10 Posterior mean hydraulic conductivity, velocity and petrophysical uncertainty

for three petrophysical relationships at the South Oyster Bacterial Transport site 75

xi



3.11 Scatter plots of the mean posterior hydraulic conductivity against GPR velocity
estimates assuming three petrophysical relationship . . . . . . . . . . . . . . . . 76

3.12 Mean evidence estimates in log10 space for three petrophysical relationships . 76

4.1 Model proposal workflow of Graph cuts . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Training images used to represent spatial hydraulic conductivity distribution of

the aquifer at the MADE site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 Prior hydraulic conductivity realisations generated with Graph Cuts from the

training images proposed at the MADE site . . . . . . . . . . . . . . . . . . . . . . 95
4.4 Summary statistics and Gelman-Rubin statistics of the posterior hydraulic

conductivity distribution for each conceptual model at the MADE site . . . . . 96
4.5 Simulated and measured breakthrough curves from the MADE-5 experiment . 97
4.6 Natural logarithm of the evidence estimates as a function of the number of

MCMC iterations for each conceptual model at the MADE site . . . . . . . . . . 98
4.7 Mean of the natural logarithm of likelihoods as a function of power coefficient β100
4.8 Percentage ratio of the effective number of MCMC samples and discretisation

and sampling errors as functions of β . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.9 Twice the natural logarithm of the Bayes factors of the competing conceptual

models at the MADE site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.10 Grids used for simulations of the MADE-5 tracer experiment with MODFLOW/

MT3DMS and MaFloT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.11 Hydraulic head profiles arising from 2D and 3D flow simulations and simulated

breakthrough curves with and without model error correction . . . . . . . . . . 107
4.12 Simulated and measured breakthrough curves from the MADE-5 experiment in

the monitoring well MLS-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.13 Simulated and measured breakthrough curves from the MADE-5 experiment in

the monitoring well MLS-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.1 Slice sampling in d dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.2 Illustration of slice sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.3 The "true" porosity field used in the synthetic crosshole-GPR experiment . . . 137
A.4 Mean evidence estimates in log10 space and their associated uncertainty for the

GMIS, LM and PC estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.5 Difference in the evidence estimates derived from different pairs of methods as

function of model dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.6 Linear relationship between the number of forward simulations and nl i ve and

nr epeat s for the PC estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.7 Difference in the evidence estimates with PC derived from different test cases . 141
A.8 Marginal posterior distributions of the inferred porosity using PC . . . . . . . . 142
A.9 Mean evidence estimates in log10 space for the PC estimator as a function of

nl i ve and nr epeat s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
A.10 Marginal posterior distributions of the inferred model parameters using PC . . 145
A.11 Evidence in log10 space derived from the GMIS, LM and PC estimators . . . . . 146
A.12 Evidence in log10 space derived from the GMIS, LM and PC estimators with

different settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.13 Number of forward simulations for evidence estimation as a function of model

dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xii



List of Tables

1.1 Interpretation for the Bayes factor of Kass and Raftery (1995) . . . . . . . . . . . 10
1.2 Overview of technical details used in the different chapters of the thesis . . . . 21

2.1 Interpretation for the Bayes factor of Kass and Raftery (1995) . . . . . . . . . . . 29
2.2 Parameters subject to inference of the layered conceptual models at the South

Oyster Bacterial Transport site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Geostatistical parameters of the multi-Gaussian conceptual models at the South

Oyster Bacterial Transport site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Parameters subject to inference of the multi-Gaussian conceptual models used

at the South Oyster Bacterial Transport site . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Ranking of the conceptual models at the South Oyster Bacterial Transport site . 45
2.6 Evidence estimates of the conceptual models considered for the synthetic

crosshole-GPR experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Standard deviation of the measurements errors, acceptance rate and number
of iterations of the full MCMC and MC-within-MCMC methods . . . . . . . . . 59

3.2 Geostatistical parameters subject to inference of the multi-Gaussian conceptual
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Bayes factors in log10 space of the competing conceptual models . . . . . . . . . 66
3.4 Geostatistical parameters subject to inference of the petrophysical uncertainty 68
3.5 Parameters subject to inference at the South Oyster Bacterial Transport sfite . . 72

4.1 Geostatistical parameters of the multi-Gaussian training image proposed by
Bianchi et al. (2011a) for the MADE site . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Hydrogeological facies and their hydraulic conductivity values (Rehfeldt et al.,
1992) observed in the MADE site outcrop . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Hydrogeological facies and their hydraulic conductivity values identified from
lithological data from the MADE site (Bianchi and Zheng, 2016) . . . . . . . . . 92

4.4 Summary of MCMC results using the MADE-5 tracer data for three MCMC
chains for each conceptual model . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Estimates of the natural logarithm of the evidence with corresponding standard
errors for each conceptual model at the MADE site . . . . . . . . . . . . . . . . . 99

A.1 nl i ve and nr epeat s used in the crosshole-GPR experiment . . . . . . . . . . . . . 140
A.2 nr epeat s and nl i ve used at at the South Oyster Bacterial Transport site . . . . . . 142
A.3 Setting of the conceptual models at the South Oyster Bacterial Transport site

for evidence estimation with PC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.4 Computational time for evidence estimation by GMIS, LM and PC . . . . . . . . 146

xiii





Abbreviations

ABC . . . . . . . . . . . . . Approximate Bayesian Computation

AIC . . . . . . . . . . . . . Akaike’s Information Criterion

AR . . . . . . . . . . . . . . Acceptance Rate

BFMC . . . . . . . . . . Brute-Force Monte Carlo

BIC . . . . . . . . . . . . . Bayesian Information Criterion

BTC . . . . . . . . . . . . . Breakthrough Curve

DIC . . . . . . . . . . . . . Deviance Information Criterion

EM . . . . . . . . . . . . . . Expectation-Maximization

GMIS . . . . . . . . . . . Gaussian Mixture Importance Sampling

GPR . . . . . . . . . . . . Ground Penetrating Radar

HM . . . . . . . . . . . . . Harmonic Mean

KIC . . . . . . . . . . . . . Kashyap’s Information Criterion

LM . . . . . . . . . . . . . . Laplace-Metropolis

MADE . . . . . . . . . . MacroDispersion Experiment

MAP . . . . . . . . . . . . Maximum A-Posteriori

MCMC . . . . . . . . . . Markov chain Monte Carlo

MLS . . . . . . . . . . . . Multi-Level Sampler

MPS . . . . . . . . . . . . Multiple-Point Statistics

PC . . . . . . . . . . . . . . POLYCHORD

pdf . . . . . . . . . . . . . . posterior density function

RMSE . . . . . . . . . . . Root Mean Square Error
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Résumé

Les eaux souterraines sont une ressource fondamentale. Avec la croissance démographique,
le changement d’utilisation du sol, les activités économiques, l’urbanisation et le changement
climatique, une gestion sûre et durable des ressources en eau souterraine devient de plus
en plus cruciale. Cela doit reposer sur une caractérisation précise de l’hétérogénéité des
propriétés hydrogéologiques du sous-sol, tâche qui représente toutefois un défi. Première-
ment, le sous-sol est caché et la collecte locale de données renseignant sur les propriétés
hydrogéologiques est difficile ou trop coûteuse. Deuxièmement, les méthodes géophysiques
peuvent permettre une acquisition efficace de telles mesures, elles nécessitent néanmoins la
définition des relations pétrophysiques qui sont souvent incertaines et mal connues. Troisiè-
mement, la structure géologique des systèmes hébergeant les eaux souterraines est complexe
et la définition d’un modèle conceptuel correspondant n’est pas unique. Cela conduit à
l’une des sources d’incertitude majeure (et souvent ignorée) dans les études de modélisation,
appelée incertitude conceptuelle. La sélection bayésienne de modèles, reposant sur le calcul
de l’évidence et sur les facteurs de Bayes, fournit une approche quantitative permettant de
comparer et de classer des modèles conceptuels alternatifs et, par conséquent, de prendre
en compte l’incertitude conceptuelle. Dans cette thèse, nous étudierons l’utilisation de la
sélection bayésienne de modèles en hydrogéophysique et en hydrogéologie en répondant aux
questions de recherche suivantes : (1) Les données géophysiques sont-elles appropriées pour
guider la sélection de modèles en hydrogéologie ? (2) L’incertitude pétrophysique et sa struc-
ture spatiale peuvent-elles être déduites dans des études hydrogéophysiques et quel impact
ont-elles sur l’inversion bayésienne et la sélection de modèles ? (3) Comment pouvons-nous
réaliser la sélection de modèles lorsque nous ciblons des modèles conceptuels aux structures
géologiques réalistes représentés par des images d’entraînement ? Ces objectifs seront traités
en utilisant une approche bayésienne complète basée sur les algorithmes de Monte Carlo
par chaînes de Markov. Les objectifs de la recherche seront ensuite explorés via des études
de cas synthétiques et réels, dans le but de caractériser spatialement les champs de porosité
ou de conductivité hydraulique dans les aquifères. Dans notre première étude de sélection
bayésienne de modèles en hydrogéophysique, nous concluons que les méthodes géophy-
siques peuvent être utiles pour choisir la représentation hydrogéologique du sous-sol qui
est la plus étayée par les données disponibles, parmi un ensemble de modèles conceptuels
concurrents. Nous proposons une méthode pour prendre en compte et déduire l’incertitude
pétrophysique et sa corrélation spatiale. Nous constatons que cette approche conduit à une
diminution du biais et à une quantification plus réaliste de l’incertitude et du classement des
modèles conceptuels. De plus, nous proposons et appliquons avec succès une nouvelle mé-
thodologie pour effectuer la sélection bayésienne de modèles parmi des modèles conceptuels
géologiquement réalistes.

Mots clefs : Sélection bayésienne de modèles, hydrogéophysique, évidence, incertitude
pétrophysique, incertitude conceptuelle, méthode de Monte Carlo par chaînes de Markov,
image d’entraînement
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Abstract

Groundwater is a fundamental source of drinking water. With population growth, land use
changes, economic activities, urbanisation and climate change, a safe and sustainable man-
agement of groundwater resources is becoming more and more critical. This needs to rely on
an accurate characterisation of the hydrogeological heterogeneity in the subsurface, which
is a challenging task. First, the subsurface is hidden from sight and collecting local hydro-
geological measurements is difficult or too expensive. Second, geophysical methods can
effectively support such measurements but, at the same time, they require the definition of
petrophysical relationships that are often uncertain and poorly known. Third, the spatial geo-
logical structure of groundwater systems is complex and the definition of the corresponding
conceptual model is non-unique. This leads to one of the main (and often ignored) sources of
uncertainty in modelling studies, namely conceptual uncertainty. Bayesian model selection
relying on evidence computation and Bayes factors provides a quantitative approach for com-
paring and ranking alternative conceptual models and, therefore, accounting for conceptual
uncertainty. In this thesis, we will investigate the use of Bayesian model selection in hydrogeo-
physics and hydrogeology by answering the following research questions: (1) Are geophysical
data suitable for guiding model selection in hydrogeology? (2) Can petrophysical uncertainty
and its spatial structure be inferred in hydrogeophysical studies and how do they impact
Bayesian inversion and model selection? (3) How can we achieve model selection when
targeting geologically-realistic hydrogeological conceptual models represented by training
images? These objectives will be addressed using a full Bayesian approach based on Markov
chain Monte Carlo algorithms. The research goals will be then explored in light of synthetic
and field-based case studies with the purpose of characterising spatially-distributed porosity
or hydraulic conductivity fields in aquifers. From the first comparative study of Bayesian
model selection in hydrogeophysics ever, we conclude that geophysical methods can be
valuable in providing guidance about which hydrogeological representation of the subsurface
is the most supported by the available data among a set of competing conceptual models.
We then propose a method to account for and infer the spatially-correlated uncertainty of
petrophysical relationships. We find that this approach leads to less bias, more realistic
uncertainty quantification and less overconfident model selection. Moreover, we propose
and successfully apply a new methodology for performing Bayesian model selection among
geologically-realistic conceptual models represented by training images.

Key words: Bayesian model selection, hydrogeophysics, evidence, petrophysical uncertainty,
conceptual uncertainty, Markov chain Monte Carlo, training image
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Chapter 1

Introduction

Water is essential for human life and nature. Population growth, land use changes, economic
activities, urbanisation and climate change contribute to both a decreasing water supply
and an increasing water demand (IPCC report by Jiménez Cisneros et al. (2014)). These
combining factors are expected to lead to an estimated 40% global water supply shortage by
2030 as reported by the European Commission (2012). Over 95% of the freshwater on the
planet, excluding glaciers and ice caps, is found underground and it is a fundamental source
of drinking water. Groundwater systems are prone to over-pumping and contamination
from agricultural and industrial activities and they are vulnerable to extreme events such as
droughts and floods. Over the past 30 years, European water policy has been focused on water
resources protection (e.g., quality and sufficient quantity of water). A safe and sustainable
management of groundwater resources, as well as reliable assessment of water policies, are
becoming more and more critical and they should, in fact, rely on quantitative subsurface
modelling studies (Scheidt et al., 2018) that are able to simulate past and present conditions
and predict future responses of aquifers to natural and anthropogenic stresses (Maliva, 2016).

An aquifer is a geological unit that can store useable amounts of water. The characterisa-
tion of the (hydro)geological heterogeneity of an aquifer is fundamental because, at small
scales, it is a key controlling factor in flow and transport of contaminants and, at larger
scales, it influences the rate, position and magnitude of recharge and discharge areas (Maliva,
2016). The properties, structure and processes taking place in an aquifer are difficult to
characterise and not fully understood. Indeed, the subsurface is hidden from sight and
collecting local measurements of aquifer hydraulic and transport parameters (e.g., porosity,
hydraulic conductivity) is challenging or too expensive. Conventional methods in the field of
hydrogeology to gather such measurements consist, for instance, by drilling boreholes for
collecting soil samples, logging the penetrated geological formations and/or installing fluid
sampling instruments to be used, for example, in pumping and tracer tests (Maliva, 2016).
These techniques are invasive, costly and provide only point measurements. Geophysical
methods (e.g., ground penetrating radar (GPR), direct current resistivity, electromagnetics,
seismics) can effectively support the conventional hydrogeological techniques by collecting
complementary information over more extended areas and at a lower cost. This combined
approach of using hydrogeological and geophysical data forms since the 1990s the discipline
of hydrogeophysics (Rubin and Hubbard, 2005; Vereecken et al., 2006). Hydrogeophysics
explores the potential of using geophysical methods to infer, with high resolution, hydrologic
parameters and processes and the spatial structure of the subsurface relevant for hydrolog-
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ical investigations. The combination of geophysical and hydrogeological investigations is
valuable to improve the mapping and the understanding of subsurface systems.

However, the underlying geology and corresponding hydrogeological parameters will never be
exactly known, the processes taking place in subsurface systems will never be fully understood
and data are noisy and sparse. Quantifying and acknowledging the degree of "ignorance" is
fundamental to reliably manage groundwater systems and to effectively support decision-
making (Scheidt et al., 2018).

1.1 Motivation: the Bayesian approach

Studies of subsurface systems are often formulated and solved as inverse problems (Tarantola,
2005). Solving an inverse problem consists in using observed data (measurements collected
in the field) and prior information to infer the parameters of interest that describe the system
under study and their uncertainties. The scientific approach to tackle such problems involves
three steps.

(i) Parameterization: the natural system is conceptualised and parametrised when defining a
conceptual model (e.g., simplified representation of the geological structure of an aquifer)
and assigning the model parameters values that characterise the system (e.g., hydraulic
conductivity values of each lithofacies).

(ii) Forward modelling: simulation of the response of a given conceptual model and values of
the model parameters using a forward model. A forward model is often a numerical solver
implementing physical laws. For instance, if the data are solute concentrations measured
during a tracer experiment, the forward model may consist of a set of equations that are
solved on a discretised mesh to simulate flow and transport of a solute in a porous medium.

(iii) Inverse modelling: the observed data are compared with the simulated ones and model
parameter values are updated in order to infer the actual values of the model parameters.

The accuracy of any inference about underlying parameters of interest is affected by sev-
eral sources of uncertainty. We can distinguish between the uncertainty in the data, the
forward model, the petrophysical relationship and the choice of the conceptual model and
its assumptions (i.e., values and parameters associated to it). Indeed, the data are noisy and
has a limited spatial coverage. The forward model is a simplified physical description of
the system and capture only the main processes of the system that are relevant to the study
at hand. Geophysical methods are directly sensitive to physical properties of the subsur-
face and petrophysical (also called rock physics) relationships need to be defined to link
these properties to the hydrogeological parameters and state variables of interest (Binley
et al., 2010). One challenge in hydrogeophysics is that the petrophysical relationships in
shallow subsurfaces are often non-stationary, non-unique and poorly understood (Rubin and
Hubbard, 2005; Linde et al., 2006b), thereby, affecting the predictive power of the inferred
parameters of interest. The identification and conceptualisation of the geological structure of
groundwater systems are challenging due to their high heterogeneity and spatial variability.
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The definition of a conceptual model for representing a subsurface system is non-unique
(Backus and Gilbert, 1967) and it is one of the main sources of uncertainty in modelling
studies (Refsgaard et al., 2006; Bond et al., 2007; Rojas et al., 2008; Pirot et al., 2015; Scheidt
et al., 2018); it is often referred to as conceptual uncertainty. The predominant practice in
most hydrogeophysical and hydrogeological studies is to estimate the parameters of interest
under the assumption of one single (often rather simple) representation of the subsurface
and to ignore the uncertainty associated with this choice. Testing alternative conceptual
models should be promoted to account for conceptual uncertainty (Refsgaard and Henriksen,
2004; Linde, 2014; Linde et al., 2015b; Nilsson et al., 2006; Refsgaard et al., 2012).

The Bayesian approach is a powerful tool to solve inverse problems and to account for differ-
ent sources of uncertainty that affect natural system investigations. The main advantages
and limitations of the Bayesian approach are listed below.

Advantages
Uncertainty quantification. The Bayesian approach provides a general and flexible proba-
bilistic framework for solving inverse problems (Bayesian inference, Section 1.3.1) that fully
quantifies uncertainty. The Bayesian approach allows to simultaneously account for different
sources of uncertainty such as those mentioned above.

Clarity. As opposed to a "black box", the Bayesian approach requires that each source of
uncertainty is explicitly described and that each step in the inverse problem solution is clearly
stated.

Easy interpretation. The uncertainty is quantified in terms of a probability distribution that
represents the degree of belief about an unknown parameter of interest. This Bayesian
interpretation of probability is more straightforward than the classical (frequentist) point of
view (Gelman et al., 2013). Indeed, the uncertainty in classical statistics is expressed in terms
of confidence intervals that quantify the probability of a certain parameter value in terms of
the fraction of times that value occurred after an infinitely repeated number of inferences.

Conceptual uncertainty. The Bayesian approach enables inclusion of conceptual uncertainty.
Bayesian model selection (Section 1.3) addresses this type of uncertainty using results from
Bayesian inference and the computation of Bayes Factors to answer questions as: Which
model among a set of competing conceptual models is most supported by the available data?
How well does it perform relative to the other conceptual models in the set?.

Definition of a prior. The Bayesian approach requires an explicit description of prior knowl-
edge. This stimulates scientists to think, discuss and delve deeper into this aspect, thereby,
contributing to a better understanding of the system at hand. For instance, in subsurface
modelling, significant effort has been dedicated in recent years to build more geologically-
realistic priors using, for example, multiple-point statistics (MPS). Moreover, describing
properly the prior knowledge about a system is a process that may involve different experts
and stakeholders, thereby, possibly increasing the confidence in the decision-making process.

Limitations
Definition of a prior. There is ongoing research and discussions on how to properly describe
the prior knowledge and how the choice of the prior impacts the inference and model selec-
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tion results. The definition of a prior is problem specific, subjective, non-trivial and general
guidelines on how to choose it does not exist when dealing with spatial hydrogeological
property fields. In subsurface system studies, this issue becomes acute when no or only little
prior information is available and the scientist is often pushed to choose possibly inadequate
prior descriptions, such as, uniform and multi-Gaussian distributions (Scheidt et al., 2018;
de Pasquale and Linde, 2017).

Computationally intensive. The Bayesian approach is known to be computationally demand-
ing, especially when using large datasets, complex models and many parameters that are to
be estimated. The need for integrating competences and increasing collaboration between
computational and statistical science in this domain has been identified by the International
Society for Bayesian Analysis (Jordan, 2011).

Note that the definition of a prior in Bayesian approaches is controversial and it can been
seen both as an advantage and a limitation.

1.2 Conceptual models

A conceptual model is a simplified representation of a real system that is built in order to
achieve an improved understanding of that reality and to meet the goals of the modelling
study at hand. Conceptual models are built based on the prior knowledge that is avail-
able about the system using equations, assumptions, governing relationships and spatial
parametrisation in order to make interpretations about the system. "The conceptual model in
other words constitutes the scientific hypothesis or theory that we assume for our particular
modelling study" (Refsgaard and Henriksen, 2004).

In the field of subsurface systems and in this thesis, a conceptual model is a geological
interpretation of the subsurface through the definition of (i) the spatial discretisation and
parameterisation of the (hydro)geological heterogeneity, (ii) the prior probability density
functions (pdf) that represent all the possible values that each model parameter can take. The
model parameters can be assumed to be known or unknown (inferred from the data). If they
are unknown, the most probable values and the associated uncertainties given the data are
derived by Bayesian inference (Section 1.3.1). In the field of hydrogeophysics, a conceptual
model can also include the definition of a petrophysical model and the prior pdf of their
parameters if they need to be inferred. Appropriate conceptual models of (hydro)geological
heterogeneity in the subsurface are crucial for a reliable and accurate groundwater modelling
(Maliva, 2016).

In this thesis, the subsurface heterogeneity is spatially discretised on regular grids. The choice
of the grid cell size is driven, for example, by the scale at which we are interested to investi-
gate the system heterogeneity, the purpose of the study and computational limitations. The
spatial parameterisation of the subsurface heterogeneity is here carried out using a zonation
approach, a variogram-based (or two-point) geostatistical approach and a MPS approach. In
the zonation approach, the subsurface is subdivided into zones within which the value of the
parameter of interest is assumed constant because its variation is negligibly small compared
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to the variations between different zones. The zonation approach is adequate for represent-
ing sharp discontinuities in the subsurface geological structure. However, poorly defined
locations of the boundaries may lead to biased model parameter estimation (Vanrolleghem,
2010; Linde et al., 2006b). A very simple example of a conceptual model parametrised with
the zonation approach is a horizontally layered model (Figure 1.1a ).

The variogram-based geostatistical approach describes the spatial distribution of the pa-
rameters of interest as a random field with a correlation structure defined by means and
covariances that convey information on the variance and the integral scales of spatial param-
eter correlation in different directions (i.e., anisotropy). A classical example of conceptual
models built from two-point geostatistics are the multi-Gaussian fields in Figure 1.1b-d. This
type of conceptualisation is widely used. However, it is well recognised that they may be
simplistic and inadequate to capture the complexity of the subsurface geological structure
and, thus, to properly reproduce and predict flow and transport processes in subsurface
systems (Gómez-Hernández and Wen, 1998; Journel and Zhang, 2006; Kerrou et al., 2008).

Training images offer a means to conceptualise the prior geological knowledge of the system
under study and MPS allows to effectively reproduce the complex geological patterns (e.g.,
curvilinear features) found in the training image (Guardiano and Srivastava, 1993; Strebelle,
2002; Hu and Chugunova, 2008; Mariethoz and Caers, 2014). The first simulation algorithm
based on training images and MPS is SNESIM (Strebelle, 2002) that is limited to categorical
fields. Efficient and computationally fast simulation algorithms that are able to sample from
both categorical and continuous images are, for example, the direct sampling (Mariethoz
et al., 2010b) and the recent graph cuts (Zahner et al., 2016) methods. Examples of conceptual
models built using graph cuts are shown in Figure 1.1e-h. The prior geological understand-
ing is informed by expert knowledge, outcrops and geophysical and borehole data. These
informations are then used to create a training image from sketches drawn by hand, digi-
talised outcrops, process-imitating, structure-imitating or descriptive simulation methods
(Koltermann and Gorelick, 1996; De Marsily et al., 2005).

Conceptual models built with zonation or variogram-based geostatistics imply explicit for-
mulas for the prior pdfs (e.g., parametric priors such as Gaussian or exponential functions) of
the model parameters. On the other hand, the conceptual models obtained from training
images circumvent the definition of parametric priors by using a pseudo-random process
(e.g., sequential geostatistical resampling) that produces samples according to the prior distri-
bution (Mosegaard and Tarantola, 1995). From this prospective, the prior pdf is represented
by a series of simulation steps rather than an explicit formula (Ruggeri et al., 2015) and a
specific acceptance criterion in the Markov chain Monte Carlo (MCMC) algorithm is needed
in these cases (Section 1.5). For a criticism of this type of approach, the reader is referred
to Emery and Lantuéjoul (2014), in which it is suggested that the training image must be of
infinite extent to enable a complete uncertainty quantification.
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Figure 1.1 – Examples of conceptual models of subsurface (hydro)geological heterogene-
ity parameterised with the (a) zonation, (b-d) variogram-based and (e-h) multiple-point
geostatistics approaches. The different spatial parameterisations consist of (a) horizontal
layers, (b) multi-Gaussian with isotropy, (c) multi-Gaussian with horizontal anisotropy, (d)
multi-Gaussian with vertical anisotropy and (e) conductive channels overlapped on a multi-
Gaussian field (i.e., combination of continuous and categorical fields) and (f-h) categorical
fields (i.e., each facies has a specific value of the hydrogeological property).

1.3 Bayesian model selection

Suppose that an aquifer needs to be characterised in order to perform groundwater model
predictions. As previously explained (Section 1.1), direct investigations of the subsurface
is challenging, the geological structure is heterogeneous and it has high spatial variability.
Several experts, such as geologists and hydrogeologists, can be consulted and asked to pro-
vide their insights about the expected aquifer structure based on their experience (prior
knowledge). In this process, we might come up with several plausible conceptualisations of
the aquifer (hydro)geological structure (e.g., layered, multi-Gaussian, outcrop-based) that
span a wide range of groundwater predictions. In many real applications, this conceptual
uncertainty is a dominant source of uncertainty and ignoring it may imply a drastic underes-
timation of uncertainty on model predictions (Refsgaard et al., 2006; Bond et al., 2007; Rojas
et al., 2008; Pirot et al., 2015; Scheidt et al., 2018). How can we deal with such conceptual
uncertainty? Bayesian model selection based on Bayes factors (Jeffreys, 1935, 1939; Kass
and Raftery, 1995) provides a quantitative approach for comparing and ranking alternative
hypotheses relative to each other (probability of one hypothesis to another) in the light of the
observed data. Note that the term hypothesis and conceptual model (as defined in Section
1.2) are here used interchangeably.
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This approach of quantifying and improving the state of knowledge about reality by testing
and comparing different perceptions of that reality based on the information at hand (data) is
fully in line with the concept of falsificationism introduced in Popper’s scientific philosophy
(Popper, 2005). All conceptual models are wrong (Box, 1979) and they are not verifiable in the
sense that the true conceptual model is never possible to be proven (Konikow and Bredehoeft,
1992; Oreskes et al., 1994). On the other hand, a hypothesis can be corroborated (confirmed)
or falsified (refuted) depending on wether or not it is in agreement with the current scientific
knowledge (Popper, 2005). If a hypothesis predicts the observed data much more poorly than
the other hypothesis, then it is falsified, otherwise, it is retained and tested against new data
and hypotheses. This is one view of how science progresses.

Some important aspects should be kept in mind when comparing different conceptual
models.

Purpose. The formulation of the research question is the crucial starting point. It should
address the final practical purpose or effectively inform the decision makers and it should
drive hard thinking about prior knowledge, conceptual model-building and data collection.
"A good answer to a poor question [...] is little better than a poor answer to a poor question"
(Burnham and Anderson, 2003). Most of the real investigations have an inferential purpose,
that is, obtaining the most reliable inferences about the quantities of interest. In these cases, a
set of carefully defined conceptual models may be used. On the other hand, if very little prior
knowledge (e.g., geological structure, model parameters, governing equations) is available
for the system under study, the comparison of alternative conceptual models may be used
for exploratory purposes (Burnham and Anderson, 2003) and for guiding the conceptual
model-building process based on falsifications. In such a case, the conceptual models should
differ as much as possible from each other. For both exploratory and inferential purposes,
the set of competing conceptual models should be ideally as large as possible (while staying
within the limits of computational constraints).

Importance of data. Data should be of high quality and they should carry information that
is relevant specifically to the practical purposes at hand and to the process of decision-
making. Therefore, conceptual model selection is useful only if they are compared using such
informative data sets. Scheidt et al. (2018) stress the need for more data of higher quality in
groundwater management.

Consistency. If enough data are available and if the true conceptual model is part of the set of
the competing conceptual models, then Bayesian model selection guarantees the selection
of the true model (Berger et al., 2001).

Interpretation of the "best" conceptual model in the set. The conceptual model that performs
the best in the set does not mean that it is the one that best represent the full reality; it just
suggests that it is the hypothesis in the set that is the most supported by the information
in the data (Refsgaard and Henriksen, 2004). Moreover, since the Bayesian approach to
model selection naturally honour the principle of parsimony (Section 1.3.2), the "best" model
will not be too simple (underfitting) and not too complex (overfitting) and, consequently,
estimates and predictions based on this model will not be too overly optimistic (Berger et al.,
2001).
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As shown in the following sections, Bayesian model selection based on Bayes factors consists
in applying Bayesian inference at two different levels: at the level of the model parameters
and at the level of the conceptual model.

1.3.1 Bayesian inference

Bayesian inference is the process of drawing conclusions from data in terms of probability
statements about quantities of interest that are not directly observed. This is accomplished
by Bayes’ theorem, a learning rule that expresses how prior knowledge about the system
under study is updated by a data-dependent term, called the likelihood function, resulting in
a posterior pdf that depends both on the prior state of knowledge as well as the data.

Assume that we want to apply Bayesian model selection on a set of m conceptual models, η=
{η1, . . . ,ηm} and that each model ηk , with k = 1, . . . ,m, is described by a vector of parameters
θk . At the first level of inference, we infer what the model parameters, θk , of the conceptual
model ηk might be, given n data, Ỹ = {ỹ1, . . . , ỹn}. Applying Bayes’ theorem, we obtain the
posterior pdf, p(θk |Ỹ,ηk ), of the parameters of interest θk as:

p(θk |Ỹ,ηk ) = p(θk |ηk )p(Ỹ|θk ,ηk )

p(Ỹ|ηk )
. (1.1)

The prior pdf, p(θk |ηk ), quantifies probabilistically the initial state of knowledge about what
values the model parameters might take before considering the observed data. The likelihood
function, L(θk ,ηk |Ỹ) ≡ p(Ỹ|θk ,ηk ), quantifies the plausibility of the model parameters given
the data. Bayesian inference can be performed with any type of likelihood function. However,
a Gaussian likelihood function is often used (out of convenience) by assuming uncorrelated
and normally distributed data errors with constant standard deviation, σỸ,

L(θk ,ηk |Ỹ) =
(√

2πσ2
Ỹ

)−n
exp

[
−1

2

n∑
h=1

(
Fh(θk )− ỹh

σỸ

)2
]

. (1.2)

The larger the likelihood the better the forward model, F (θk ), predicts the observed data, Ỹ.
The evidence, p(Ỹ|ηk ), also called marginal likelihood, evaluates the support provided by the
observed data to the conceptual model, ηk . The evidence is the normalising constant in Bayes’
theorem and, in the case of discreteθk , is defined as p(Ỹ|ηk ) =∑

θk
p(θk |ηk )L(θk ,ηk |Ỹ) where

the sum is over all possible values of θk . However, in most applications, θk is continuous
and, therefore, the evidence is defined as the (multidimensional) integral of the likelihood
function over the prior distribution,

p(Ỹ|ηk ) =
∫

p(θk |ηk )L(θk ,ηk |Ỹ)dθk . (1.3)

In other words, we can define the evidence as the average (integral) over the parameter space
of the likelihood function weighted by the prior pdf. In the first level of inference that focuses
on parameter values, the posterior pdf of the model parameters of each conceptual model
are inferred and the evidence is neglected because it is solely a normalising constant.
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At the second level of inference, the Bayes’ theorem is applied a second time in order to infer
which conceptual model in the set is most plausible given the data. We obtain the posterior
probability of the conceptual model ηk as:

p(ηk |Ỹ) = p(ηk )p(Ỹ|ηk )∑m
i=1 p(ηi )p(Ỹ|ηi )

. (1.4)

The prior probability, p(ηk ), of the conceptual model ηk quantifies the prior plausibility that
we assign to ηk before considering the data. However, specifying the prior probability for
each conceptual model is often not necessary and we assume here that all the competing
conceptual models in the set have the same prior probability. This implies that the con-
ceptual model ranking is based merely on the evidence estimates. The denominator is the
normalising factor of Equation 1.4 and the sum is over all the competing conceptual models
in the set, η. It is clear from Equation 1.4 that the evidence is how the observed data update
our prior beliefs about a conceptual model.

1.3.2 Bayes Factors and Evidence

The usefulness of a conceptual model to predict data relative to other hypotheses is assessed
by Bayes factors (Jeffreys, 1935, 1939; Kass and Raftery, 1995; Morey et al., 2016). If we want to
compare two conceptual models of the set, η1 and η2, the Bayes’ theorem in Equation 1.4 can
be rewritten in terms of posterior and prior odds of η1 compared to η2:

p(η1|Ỹ)

p(η2|Ỹ)
= p(η1)p(Ỹ|η1)

p(η2)p(Ỹ|η2)
. (1.5)

The posterior odds, p(η1|Ỹ)
/

p(η2|Ỹ) , is the ratio of the posterior probability of η1 and η2

and it quantifies the degree of belief in favour of η1 over η2 after observing the data. The
prior odds, p(η1)

/
p(η2) , is the ratio of the prior probability of η1 and η2 and it quantifies

the degree of belief a-priori (before considering the data) in favour of η1 over η2. We are
interested in comparing the performance of η1 against η2 and this information is carried
by the ratio of the evidence of the two competing model (last ratio in Equation 1.5) and it is
termed the Bayes factor. The Bayes factor of conceptual model η1 with respect to conceptual
model η2 is defined as the ratio between the posterior and prior odds of η1 compared to η2:

B(η1,η2) = p(η1|Ỹ)

p(η2|Ỹ)

/
p(η1)

p(η2)
= p(Ỹ|η1)

p(Ỹ|η2)
, (1.6)

and it expresses how well the observed data were predicted by η1 compared to η2.

Jeffreys (1939) and Kass and Raftery (1995) proposed a scale to interpret the Bayes factor
(Table 1.1). If Bayes factors, B(η1,ηi ), of η1 compared to each competing conceptual model, ηi ,
are all > 150, we may select η1 as the best conceptual model in the set; otherwise, if all the
B(η1,ηi ) are < 1, we may discard η1 from the set. The scale proposed by Jeffreys (1939) and Kass
and Raftery (1995) is helpful and it can be used as a guideline, however, the interpretation
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may depend on the context and on the judgement of the modeller based on the practical
purposes addressed.

Table 1.1 – Interpretation of Kass and Raftery (1995) (slightly different from the original
interpretation of Jeffreys (1939)) for the Bayes factor of two conceptual models η1 and η2.

2 logB(η1,η2) B(η1,η2) Evidence for η1

< 0 < 1 negative (supports η2)
0 to 2 1 to 3 barely worth mentioning
2 to 6 3 to 20 positive
6 to 10 20 to 150 strong
> 10 > 150 very strong

The evidence is the cornerstone of Bayesian model comparison, model ranking, model
selection and model averaging. Bayesian model ranking consists in listing the conceptual
models of the set from the best one to the worst one according to the decreasing value of the
evidence. Bayesian model selection chooses one single (the "best") model from the set that is
the one with the highest evidence and uses that conceptual model for inferring the parameter
of interest. Bayesian model selection may be justified when Bayes factors in favour of the best
conceptual model compared to the other conceptual models in the set are all larger than 150
(Table 1.1). If this is not the case and the evidence values are within two orders of magnitude,
then Bayesian model averaging is preferred. Bayesian model averaging (Hoeting et al., 1999)
retains all the conceptual models and derives a composite estimation of a quantity of interest,
φ, as:

p(ϕ|Ỹ) =
m∑

k=1
p(ϕ|Ỹ,ηk )p(ηk |Ỹ), (1.7)

that is, the average of the posterior probability of ϕ under each of the conceptual models con-
sidered, p(θ|Ỹ,ηk ), weighted by the posterior probability of each conceptual model, p(ηk |Ỹ)
(Equation 1.4). Bayesian model averaging provides a rigorous assessment of conceptual
uncertainty. However, keeping all the conceptual models may not be practical for communi-
cation or descriptive purposes (Berger et al., 2001) and, in these cases, selecting the "best"
conceptual model of the set may be useful (Clyde and George, 2004).

A powerful property of the evidence is that it intrinsically honours the Occam’s razor principle
(Jefferys and Berger, 1992; MacKay, 2003). The Occam’s razor (Thorburn, 1918) refers to what
William of Occam suggested in the fourteenth century, "shave away all that is unnecessary",
that is the principle of parsimony. When comparing and ranking alternative hypotheses, it
is advisable to honour the concept of parsimony, which can be seen as a trade-off between
model complexity and goodness of fit. For instance, if two (or more) conceptual models,
η1 and η2, fit (almost) equally well the observed data, Ỹ, then the simplest one, say η1, is
preferred over the more complex one, η2, thereby, avoiding the well known problem of
overfitting. The complexity of a conceptual model is not easily definable (van der Linde, 2012;
Guthke, 2017; Höge et al., 2018), however, for the sake of simplicity, we may refer to it as the
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Figure 1.2 – The principle of parsimony in Bayesian model selection. The evidence is here
interpreted as the normalised probability distribution, p(D|η), on the space of all possible
data sets of fixed size n, D. A more simple conceptual model, η1, spreads the probability
distribution, p(D|η1) (red line), over a smaller range of data sets than a more complex model,
η2, (blue line). Given the observed data set, Ỹ (dotted black line), then it is clear that the
simpler model η1 receives a higher evidence than η2 provided that the two conceptual models
fit (almost) equally well Ỹ and they have equal prior probability. (Figure inspired by the figures
from MacKay (2003); Ghahramani (2013).

number of degrees of freedom (i.e., number of independent model parameters). A more
complex conceptual model has more adjustable parameters that allows for a larger range of
predictions; vice-versa, simpler models generate a more narrow range of predictions. As a
consequence, if η1 and η2 fit (almost) equally well the observed data and they have equal
prior probability, then the more complex model, η2, will not predict the observed data set as
strongly as η1, and η1 will be favoured (higher evidence) over η2 (Figure 1.2). One challenge
in using the evidence for Bayesian model selection is that its computation is difficult and
expensive. In most applications of interest, the parameter space is rather high-dimensional
and the computation of the integral that defines the evidence (Equation 1.3) has not an
analytical solution. Different methods exist to estimate the evidence and we detail some of
them in the next section.

1.3.3 Evidence computation

Model selection can either be performed based on analytical expressions based on strong
mathematical approximations or numerical estimations of the evidence. The most common
approximations are: Akaike’s information criterion (AIC) (Akaike, 1973), deviance information
criterion (DIC) (Spiegelhalter et al., 2002; Steininger et al., 2014), Bayesian information
criterion (BIC) (Schwarz et al., 1978), Kashyap’s information criterion (KIC) (Kashyap, 1982)
and Laplace-Metropolis method (LM) (Lewis and Raftery, 1997) that is closely related to
KIC (i.e., KIC=-2logLM). All these mathematical approximations are easy to implement and
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fast to compute, but when the forward model is non-linear and the conceptual models are
described by many parameters, most of them (AIC, DIC, BIC) provide poor and inconsistent
results (e.g., Lu et al. (2011); Schöniger et al. (2014); Pooley and Marion (2018)).

The LM method evaluated at the maximum a-posteriori (MAP) point is the one that performs
the best among the mathematical approximations listed above, (Schöniger et al., 2014). The
LM method estimates the evidence by approximating the integrand in Equation 1.3 with a
quadratic Taylor series expansion around the MAP estimate, θ∗:

pLM(Ỹ|η) ≈ (2π)d/2|H(θ∗)|1/2p(θ∗|η)L(θ∗,η|Ỹ), (1.8)

where d is the number of parameters in the conceptual model η and |H(θ∗)| is the determi-
nant of minus the inverse Hessian matrix evaluated at θ∗. The LM is computationally fast
but it is built on the strong assumption that the posterior distribution of each parameter of
interest is well approximated by a Gaussian distribution that peaks on the corresponding
MAP estimate. This underlying assumption should be kept in mind when interpreting the
results provided by the LM method.

An alternative to the mathematical approximation of the evidence is to use numerical evalua-
tions such as the Brute-force Monte Carlo sampling (BFMC) (Hammersley and Handscomb,
1964), Harmonic mean estimator (HM) (Newton and Raftery, 1994), importance sampling
(Hammersley and Handscomb, 1964), thermodynamic integration (TH) (also called path
sampling) (Gelman and Meng, 1998; Friel and Pettitt, 2008), stepping stone sampling (SS)(Xie
et al., 2011) and nested sampling (Skilling, 2004; Skilling et al., 2006).

The BFMC method consists in drawing randomly N samples of the model parameters, θ,
from their corresponding prior distributions and, as the sum of the prior probabilities of the
samples equals 1 in this case, the integral of Equation 1.3 can be simply approximated by the
average of the likelihood of their prior samples:

pBFMC(Ỹ|η) ≈ 1

N

N∑
i=1

L(θi ,η|Ỹ). (1.9)

The accuracy of the BFMC method is ensured by the law of large numbers and the central
limit theorem. The BFMC method is an accurate estimator if a very large number of samples
is considered and if a large fraction of the prior range has a significant likelihood. For
most real-world applications, it suffers from the curse of dimensionality meaning that the
computational cost prevent the use of an appropriate number of samples, which leads to
underestimation of the evidence. The computational requirements of the BFMC method,
thereby, becomes rather impractical for parameter-rich models as many millions or even
billions of model evaluations are required to average the likelihood surface.

As opposed to the BFMC, the harmonic mean estimator draws samples from the posterior
distribution (e.g., through MCMC methods) and approximates the evidence as the harmonic
mean of the likelihood of the posterior samples. This estimator has been proven unreliable
(e.g., Newton and Raftery (1994); Liu et al. (2016)). In particular, as this estimator relies only
on samples from the posterior distribution (area of high likelihoods) it tends to overestimate
the evidence.
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Another numerical approach to evidence estimation is importance sampling. The basic idea
of importance sampling is to generate samples from an importance distribution instead
of drawing them from the prior distributions as done by the BFMC method. The aim of
importance sampling is to focus the sampling to the regions of the distribution that are of
most "importance". The resulting bias in the sampling is corrected by attributing a weight
to each sample. However, the choice of the importance distribution is not straightforward
and it influences the efficiency and robustness of the evidence estimates (Perrakis et al.,
2014). Gaussian mixture importance sampling (GMIS) (Volpi et al., 2017) uses as importance
distribution an optimal mixture of normal distributions that fit the posterior distribution. The
evidence is estimated as a weighted average based on N samples drawn from this importance
distribution:

pGMIS(Ỹ|η) ≈ 1

N

N∑
r=1

p(θimp
r |η)L(θimp

r ,η|Ỹ)

q(θimp
r )

, (1.10)

where q(θimp
r ) are the importance probability pdf. The GMIS method addresses the problem

concerning the choice of an appropriate importance distribution in importance sampling at
the expense of an increased computational time. The GMIS works well even in presence of
complex multimodal distributions.

A recent approach to evidence estimation that is not based on MCMC algorithms is nested
sampling that considers p(θ)dθ in Equation 1.3 as equal to the element of prior mass, d X .
In this method, a transformation is made from θ to the prior mass X , thereby, reducing
Equation 1.3 into a one-dimensional integral over unit range in the likelihood space:

p(Ỹ|η) =
∫ 1

0
L(X )d X . (1.11)

The estimation procedure consists in drawing i = 1, . . . , N samples from the prior distribution
under the constraint of a lower bound of the log-likelihood function that increases with time.
The one-dimensional integral in Equation 1.11 is then approximated by the weighted mean
wi L(Xi ) where the weights are defined as wi = Xi −Xi+1. Nested sampling is well suited for
high-dimensional parameter spaces and complex multimodal distributions. However, the
exploration of the parameter space based on the likelihood constraint imposed by nested
sampling is less efficient than MCMC methods based on the Metropolis-Hastings rule (Section
1.5, Equation 1.20).

Recent studies in hydrology suggest that nested sampling is less accurate and stable than
thermodynamic integration (Liu et al., 2016; Zeng et al., 2018). Thermodynamic integration
(path sampling) and stepping-stone sampling are based on sampling from a sequence of
so-called power posterior distributions, pβ(θ|Ỹ), that create a path in the probability density
space connecting the prior to the posterior distribution:

pβ(θ|Ỹ) ∝ p(θ)L(θ|Ỹ)β. (1.12)

The power coefficient, β, varies between 0 and 1. For β=0, the prior distribution is sampled
and for β=1, the posterior distribution is sampled. The normalising constant of Equation 1.12
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is:

p(Ỹ|η,β) =
∫

p(θ)L(θ|Ỹ)βdθ. (1.13)

Assuming a proper prior, Equation 1.13 evaluated at β=0 is the integral of the prior distribu-
tion and it is equal to 1. Equation 1.13 evaluated at β=1 correspond to the evidence. As a
consequence, the thermodynamic integration approach estimates the log-evidence as the
integral of the expectations of the log-likelihoods over the interval [0,1] with respect to β:

log p(Ỹ|η) = p(Ỹ|η,β= 1)

p(Ỹ|η,β= 0)
=

∫ 1

0
Eθ|Ỹ,β

[
logL(θ|Ỹ,η)

]
dβ. (1.14)

The one-dimensional integral in Equation 1.14 is then approximated by quadature rule (e.g.,
composite trapezoidal rule). Stepping-stone sampling is based on a different idea, that is,
using importance sampling to acurately approximate the ratio in Equation 1.14. In this
context the evidence is estimated as:

p(Ỹ|η) =
K∏

k=2

1

N

N∑
j=1

L(θk−1, j |Ỹ)(βk−βk−1), (1.15)

where K is the number of the power coefficients β. The evidence estimators based on power
posteriors are quite easy to implement. However, their accuracy is strongly influenced by the
discretisation scheme used for the β values. The general idea is to place most of them close
to zero where the log-likelihood increases the most.

1.4 Petrophysical models

In hydrogeophysics, the effective use of geophysical data for hydrogeological investigations is
strongly linked to the reliability of the underlying relationship between estimated geophysical
attributes (e.g., permittivity, electrical conductivity, bulk density) and the hydrogeological
properties and states variables of interest (e.g., porosity, hydraulic conductivity, water con-
tent). The definition of a proper petrophysical relationship is one of the main challenges in
hydrogeophysics (Binley et al., 2015) because they are often non-unique and non-stationary,
that is, their parameter values and their analytical form can vary drastically between different
types of lithologies (Hubbard and Rubin, 2005). Indeed, petrophysical relationships are often
treated as site-specific because they depend on the geological structures of the subsurface
and this implies that corresponding parameter values need to be calibrated for each site
under study. Many relationships have been explored for hydrogeological studies (Mavko
et al., 1998; Lesmes and Friedman, 2005; Pride, 2005). The petrophysical relationships can
be physically or empirically-based (Linde et al., 2006b). In this thesis, we link GPR data
to porosity and hydraulic conductivity properties using a physically and empirically based
petrophysical relationship, respectively. The physically based relationship is built using
volume-averaging to link the effective relative permittivities, ε [-], to porosity values,Φ [-],
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and to radar slownesses, s [s/m], (Pride, 1994):{
ε=Φm [εw + (Φ−m −1)εs]

ε= s2c2 (1.16)

where εw [-] and εs [-] are the relative permittivities of water and mineral grains, respectively;
m [-] is the cementation index and c = 3 ·108 [m/s] is the speed of light in vacuum. The
slowness, s, is defined as the inverse of the velocity, v.

Combining the equations in 1.16, the petrophysical relationship reduces to:

v =
√
Φ−mc2[εw + (Φ−m −1)εs]−1 (1.17)

The empirically-based relationships are obtained by fitting polynomial functions. In our case,
we test linear and quadratic petrophysical relationships to link the GPR velocities, v [m/s], to
the natural logarithm of the hydraulic conductivities, K = log K [log(m/h)]:

v = a0 +a1K (1.18)

v = a0 +a1K +a2K
2 (1.19)

where a0, a1 and a2 are the polynomial coefficients.

The petrophysical model consist in the definition of a functional form for the petrophysical
relationship and the parameter values needed to describe such relationship. The petrophysi-
cal parameter values (e.g., m and εs in Equation 1.17 and a0, a1 and a2 in Equations 1.18-1.19)
may be inferred within the Bayesian inversion.

1.5 Markov chain Monte Carlo

How can we evaluate the posterior distribution of Equation 1.1? In most applications, the
posterior distribution cannot be analytically estimated and sampling schemes are needed
to numerically approximate it. The MCMC method (Gilks et al., 1995) provides a means
to sample high-dimensional and very complicated posterior distributions by combining
random sampling (Monte Carlo integration) with a "clever" search within the parameter
space by building Markov chains. The resulting Markov chain is a sequence of random
variables, {θ0,θ1,θ2, ...}, that are drawn from the model parameter space proportionally to
the posterior distribution such that, at each iteration t , the probability of θt+1 depends only
on the value of θt . This lack of memory is the Markov property. The posterior distribution
is approximated by the stationary distribution of the Markov chain, that is, the chain will
gradually "forget" its initial state and converge to a unique and stationary distribution (i.e.,
which does not change with t ). This property is ensured by the fulfilment of the ergodicity and
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Figure 1.3 – Simplified representation of a Markov chain for a model parameter, θ, drawn
from an uniform prior distribution U (Lb ,Ub). The circles indicate the states of the chain
and the arrows indicate the moves from one state to another. The dotted arrows and circles
represent the proposed moves and samples that were not accepted based on the acceptance
criterion, α (Figure modified from Lee et al. (2015)).

detailed balance (reversibility) conditions. The states of the chain drawn from this stationary
distribution are samples of the posterior distribution, p(θ|Ỹ,η).

Most MCMC algorithms perform the following steps to build a Markov chain (Figure 1.3):

1. Start the chain at an initial position in the model parameter space, θ0, and define the
desired (possibly large) number of posterior samples, T , that we want to obtain

2. Set iteration t = 1
3. Set θcurr =θt−1

4. Propose a move in the model parameter space based on a proposal distribution that
generates θprop

5. Randomly draw a value u from the uniform distribution between 0 and 1, U (0,1)
6. Accept or reject θprop based on an acceptance criterion, α: if u < min{1,α}, then θprop

is accepted and the chain moves to the new position, θt = θprop; otherwise, θprop is
rejected and the chain does not move, θt =θcurr

7. Set t = t +1
8. If t < T return to step 3; otherwise, stop the chain

The Markov chains can be constructed based on different acceptance criteria (Step 6). For
the popular Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953), we have:

α= min

{
1,

L(θprop,η|Ỹ)p(θprop|η)Q(θcurr|θprop)

L(θcurr,η|Ỹ)p(θcurr|η)Q(θprop|θcurr)

}
. (1.20)
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The proposal distribution Q(·|·) generates, at each iteration, the model perturbation of Step 4.
The proposal distribution can have different forms and may be asymmetric but they are often
defined as multivariate normal distributions. The choice of the proposal distribution and
its scale (e.g, standard deviation in a multivariate normal proposal distribution) is critical.
A proposal distribution that generates too small moves, θprop −θcurr, will lead to a high
acceptance rate and very slow mixing (i.e., moving around the model parameter space). A
proposal distribution that generates large steps will often result in a too low acceptance rate
and slow mixing. A number of algorithms has been proposed in the literature to allow for
an automatic tuning of the scale of the proposal distribution, such as, the DREAM family of
algorithms (Vrugt, 2016).

In this thesis, we will focus on two special cases of the Metropolis-Hastings algorithm: the
Metropolis rule (Metropolis et al., 1953) and the Extended Metropolis rule (Mosegaard and
Tarantola, 1995; Hansen et al., 2012). The Metropolis rule is a Metropolis-Hastings algo-
rithm that considers symmetric proposal distributions, that is Q(θcurr|θprop) =Q(θprop|θcurr).
According to the Metropolis rule, the proposed sample θprop is accepted with probability:

α= min

{
1,

L(θprop,η|Ỹ)p(θprop|η)

L(θcurr,η|Ỹ)p(θcurr|η)

}
. (1.21)

Both the Metropolis-Hastings and the Metropolis algorithms require the evaluation of the
prior pdf at each iteration. However, in the case of conceptual models and model parameters
generated from complex prior information (e.g., geologically-realistic patterns) based on
MPS (Section 1.2), the prior density of a given model proposal is not described by a formula
and, therefore, cannot be quantified. For solving this issue, Mosegaard and Tarantola (1995)
suggest a proposal distribution chosen to simulate directly the prior distribution and detailed
balance is fulfilled if:

Q(θcurr|θprop)

Q(θprop|θcurr)
= p(θcurr)

p(θprop)
. (1.22)

This equation reduces the Metropolis rule to a simple likelihood ratio and the corresponding
method is in geophysics often referred to as the Extended Metropolis rule:

α= min

{
1,

L(θprop,η|Ỹ)

L(θcurr,η|Ỹ)

}
. (1.23)

Different aspects need to be considered when running MCMC algorithms, such as, how many
chains to run or how to assess convergence to the stationary distribution. Whenever possible,
running multiple chains is preferred rather then running one single chain. Using multiple
chains allows to better explore the parameter space, to avoid being stuck in certain areas
of the parameter space and to better detect a lack of convergence. A lack of convergence
of the Markov chains to the stationary distribution can be assed by (i) visual inspection of
plots (i.e., the parameter value as a function of number of iterations), (ii) high autocorrelation

17



between the states of the chain indicating slow mixing and, therefore, slow convergence,
(iii) acceptance rates that are too high or too low (Gelman et al., 1996), (iv) quantitative
diagnostics such as the Gelman-Rubin statistic for multiple chains (Gelman and Rubin, 1992)
or the Geweke method for one chain (Geweke, 1992).

The number of iterations needed before drawing a representative sample of the stationary
distribution defines the so-called burn-in period. The samples in the burn-in are discarded
before approximating the posterior distribution. As soon as a sufficiently large number
of posterior samples is collected, in Bayesian inference, it is common to visualise a few
individual posterior realisations and to summarise the posterior distribution in terms of
means, standard deviations and credible intervals.

It should be pointed out that the MCMC method is not only used for the evaluation of the
posterior distribution, but it is also an important component of the techniques employed
herein for evidence estimation (Section 1.3.3).

1.6 Objectives

Geophysics has contributed to important advances in hydrological sciences in the last 20
years (National Research Council, 2012). However, numerous challenges need to be addressed
to take full advantage of the potential offered by hydrogeophysical studies (National Research
Council, 2012; Hubbard and Rubin, 2002; Binley et al., 2015, 2010; Linde, 2014). Bayesian
model selection relying on evidence computation and Bayes factors provides a valuable tool
to account for conceptual uncertainty in hydrogeological systems and, therefore, to inform
and increase the reliability of subsurface modelling and management. In this thesis, we will
investigate the use of Bayesian model selection in hydrogeophysics and hydrogeology by
answering the following research questions:

1. Are geophysical data suitable for guiding model selection in hydrogeology (Chapter 2)?
2. Can petrophysical uncertainty, including its spatial structure, be inferred in hydro-

geophysical studies and how does it impact Bayesian inversion and model selection
(Chapter 3)?

3. How can we achieve model selection when targeting geologically-realistic hydrogeolog-
ical conceptual models represented by training images (Chapter 4)?

Even if conceptual uncertainty is often the predominant source of uncertainty in model pre-
dictions (Section 1.1,1.3), most hydrogeophysical and hydrogeological studies ignore it. One
approach to account for conceptual uncertainty is to implement Bayesian model selection
based on evidence estimation and Bayes factors (Section 1.3.2,1.3.3). The first objective is
to explore to which extent geophysical data can effectively be used to discriminate among
alternative hydrogeological conceptual models through Bayesian model selection. For this
purpose, we will explore different approaches to estimate the evidence in hydrogeophysical
settings (Chapter 2, Appendix A).
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A common goal in hydrogeophysics is to infer quantitative hydrogeological models from
geophysical data. This implies the use of petrophysical relationships (Section 1.4) that are
often uncertain and poorly known. The uncertainty associated with these relationships need
to be accounted for in hydrogeophysical inversions in order to properly assess the capa-
bility of geophysical data to provide reliable information about hydrogeological properties.
Therefore, the second objective is to investigate the possibility to infer spatially-correlated
uncertainty associated with petrophysical relationships and how this source of uncertainty
impacts hydrogeological parameters and Bayes factors (Chapter 3).

Geologically-realistic conceptual models are often essential for reliable subsurface system
studies. Such conceptual models can be built from training images and prior realisations
of them can be sampled using concepts from multiple point statistics (Section 1.2). When
considering conceptual models in the form of training images, the prior pdf cannot be
computed as it does not have a parametric form and, therefore, many MCMC-based methods
for evidence estimation cannot be used for Bayesian model selection. Hence, the third
objective is to propose a methodology for Bayesian model selection among conceptual
models built from complex spatial priors (training images) using concepts from MPS (Chapter
4).

These objectives will be addressed using a Bayesian approach (Section 1.1) to uncertainty
quantification, parameter inference and model selection and the work rely on Markov chain
Monte Carlo algorithms (Section 1.5). The objectives will be explored in light of synthetic and
field case studies with the purpose of characterising spatially-distributed porosity or hydraulic
conductivity fields in aquifers. We will compare various evidence computation methods
applied to very different conceptualisation of the subsurface hydrogeological heterogeneity.

1.7 Outline

We present work that has been published in peer-reviewed journals (Chapters 2-3) or will
soon be submitted (Chapter 4).

Chapter 2 presents a first comparative study of Bayesian hydrogeophysical model selection
in the context of a synthetic example and a real case study of aquifer characterisation at the
South Oyster Bacterial Transport site, Virginia (USA). We compare the evidence estimates
provided by three methods: Brute-force Monte Carlo, Laplace-Metropolis and Gaussian-
mixture importance sampling. The case-studies considered focus on the estimation of the
spatial porosity distribution using first-arrival travel time data from crosshole GPR.

Chapter 3 proposes a methodology to account for and infer the spatially-correlated petro-
physical prediction uncertainty in hydrogeophysical inversion and model selection. Results
in the context of synthetic examples and a real case study of aquifer characterisation at the
South Oyster Bacterial Transport site are presented. The case-studies considered in this
chapter focus on porosity and hydraulic conductivity estimation using first-arrival travel time
data from crosshole GPR.
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Chapter 4 proposes a new full Bayesian methodology for performing Bayesian model selec-
tion among conceptual hydraulic conductivity models with high geological realism that are
represented by training images. A comparison is made between different published concep-
tual models of the heterogeneous alluvial aquifer at the Macrodispersion Experiment (MADE)
site, Mississippi (USA). We consider a small-scale tracer test (MADE-5) and its multilevel
solute concentration data.

Chapter 5 concludes with a summary of this thesis, some remarks on current limitations and
an outlook. Further details on the settings used in each chapter are listed in Table 1.2.

Appendix A consists in a report that will not be published but that brings worthwhile results
that motivate our choice of not using nested sampling for evidence computations. The
study in Appendix A explores the potential of the POLYCHORD (PC) algorithm to provide
reliable evidence estimates based on nested sampling as compared to LM and GMIS methods.
A synthetic example and a real case study of aquifer characterisation at the South Oyster
Bacterial Transport site, Virginia (USA) are considered. First-arrival travel time data from
crosshole GPR are used to infer the spatial porosity distribution.
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Table 1.2 – Overview of technical details used in the different chapters and in the appendix of
the thesis, such as, the type and number of data; the type and number of unknown parameters;
the size of the grid cell (resolution) and the model size; the type of spatial parameterisation
as described in Section 1.2; the method used to estimate the evidence as explained in Section
1.3.3.

Chapter 2 Chapter 3 Chapter 4 Appendix A

Data type Geophysical Geophysical, Hydrogeological Geophysical
Hydrogeological

N◦ data 100 up to 3248 100 up to 936 266 100 up to 3248

Parameter of porosity porosity, hydraulic porosity
interest hydraulic conductivity

conductivity

N◦ unknown 16 up to 105 102 up to 211 MPS 103
parameters

Resolution [m] 0.04 0.04 0.1 0.04

Model domain [m] 7.2 × 7.2 7.2 × 7.2 8.1 × 6.3 7.2 × 7.2

Type of spatial zonation, zonation variogram MPS
parameterisation variogram

Method for BFMC, LM, GMIS TH, SS LM, GMIS,
evidence GMIS PC
estimation
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Chapter 2

Bayesian model selection in hydrogeophysics:
Application to conceptual subsurface mod-
els of the South Oyster Bacterial Transport
Site, Virginia, USA

Carlotta Brunetti, Jasper A. Vrugt and Niklas Linde.
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2.1 Abstract

Geophysical data can help to discriminate among multiple competing subsurface hypotheses
(conceptual models). Here, we explore the merits of Bayesian model selection in hydro-
geophysics using crosshole ground-penetrating radar data from the South Oyster Bacterial
Transport Site in Virginia, USA. Implementation of Bayesian model selection requires com-
putation of the marginal likelihood of the measured data, or evidence, for each conceptual
model being used. In this paper, we compare three different evidence estimators, including
(1) the brute force Monte Carlo method, (2) the Laplace-Metropolis method, and (3) the
numerical integration method proposed by Volpi et al. (2017). The three types of subsurface
models that we consider differ in their treatment of the porosity distribution and use (a) hori-
zontal layering with fixed layer thicknesses, (b) vertical layering with fixed layer thicknesses
and (c) a multi-Gaussian field. Our results demonstrate that all three estimators provide
equivalent results in low parameter dimensions, yet in higher dimensions the brute force
Monte Carlo method is inefficient. The isotropic multi-Gaussian model is most supported
by the travel time data with Bayes factors that are larger than 10100 compared to conceptual
models that assume horizontal or vertical layering of the porosity field.

2.2 Introduction

Geophysical methods are used widely in near-surface applications, because of their innate
ability to infer, with high resolution, the properties and spatial structure of the subsurface.
Geophysical data, for instance, warrant a detailed characterization of the hydrologic prop-
erties of the vadose zone and aquifers (Binley et al., 2010, 2015; Hubbard and Linde, 2011;
Hubbard and Rubin, 2005). Most published studies in the hydrogeophysical literature rely on
a single conceptual representation of the subsurface, without recourse to explicit treatment
of the actual uncertainty associated with the choice of a single conceptual model (Linde,
2014; Linde et al., 2015b). Geophysics-based model selection has received relatively limited
attention, which is somewhat surprising, as geophysical data contain a wealth of informa-
tion about the structure of the subsurface. In contrast to current practice, we should not
rely only on a single conceptualization and parameterization of the subsurface, but instead
determine as well the proper spatial arrangement of variables of interest such as porosity
and moisture content. One approach of doing this is to implement model selection, and use
the geophysical data to provide guidance about which representation of the subsurface is
most supported by the available data among a set of competing conceptual models (Linde,
2014). Such an approach will not only enhance the fidelity of our subsurface investigations,
but will also further promulgate and disseminate the importance of geophysical data in
hydrologic and environmental studies. By providing knowledge about suitable geostatistical
descriptions of the subsurface, model selection might also help in closing the gap in scale
between plot-based geophysical investigations and the much larger spatial domains relevant
to water resources management, contaminant transport and risk assessment. In this way,
geophysics is used to define an appropriate geostatistical model that can later be used to
produce unconditional geostatistical realizations at larger scales.
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Many different approaches have been suggested in the statistical literature to help select
the "best" model among a group of competing hypotheses. This includes frequentist and
Bayesian solutions. The application of such approaches to geophysical studies has its own
special challenges. For instance, a parameter-rich, but geologically-unrealistic model may
fit the data equally well or perhaps even better than a more parsimonious model with more
appropriate conceptualization of the subsurface (Rosenkrantz, 1977). What is more, the
decision about which model is favoured, is also heavily influenced by the choice of the
models’ prior parameter distribution, even for geophysical data comprised of many different
measurements. With the use of an inappropriate prior the model can be made to fit the
data arbitrarily poorly, changing fundamentally our opinion about which model should
be favoured, a phenomenon known as the Jeffreys-Lindley paradox (Jeffreys, 1939; Lindley,
1957).

To describe accurately this trade-off between model complexity and goodness of fit, we here
use Bayesian model selection, and investigate in detail the denominator in Bayes theorem.
This normalizing constant, referred to as the evidence, marginal likelihood or integrated
likelihood, conveys all information necessary to determine which of the competing subsur-
face models (given their prior parameter distributions) is most supported by the geophysical
data. The conceptual model with the largest evidence over the prior model space is the
one that is most supported by the experimental data. The foundation of Bayesian model
selection originates from Jeffreys (1935, 1939) and builds on the principles of Occam’s razor,
that is, parsimony is favoured over complexity. In other words, if two models exhibit a (nearly)
equivalent fit to the data, the model with the least number of "free" parameters is preferred
statistically (Gull, 1988; Jeffreys, 1939; Jefferys and Berger, 1992; MacKay, 1992). Statisticians
prefer the use of so-called Bayes factors (Kass and Raftery, 1995) to quantify the odds of each
model with respect to every other competing model. This Bayes factor of two models A and B,
is equivalent to the ratio of the evidences of both models. The larger the value of this ratio,
the stronger the support for hypothesis A. In cases when the evidence values are of similar
magnitude (e.g., within the same one or two orders of magnitude), then it is recommended to
use Bayesian model averaging to combine predictions from different conceptual models and,
thus, obtain a more appropriate description of posterior parameter uncertainty (Hoeting
et al., 1999).

Another distinct advantage of Bayesian model selection is that model comparison is relative
to the existing conceptual models at hand, and consequently, the "true" model does not have
to be part of the ensemble considered for hypothesis testing. To paraphrase Box and Draper
(1987): All our conceptual models are wrong, but some are useful. It is the task of Bayesian
model selection to determine which of the considered conceptual models is the most useful.
Of course, the answer to which model is most useful depends critically on the purpose and
intended goal of model application. Within the realm of model selection we can, however,
answer the question of which model is most supported by the available data. Yet, this task
is not particularly easy for subsurface models, as the integral of the posterior parameter
distribution is, in general, high-dimensional and without analytic solution. This probably
explains why Bayesian model selection is seldom used in hydrogeophysics and near-surface
geophysics. Instead, we have to resort to numerical methods to approximate the value
of the evidence for each competing conceptual model. Gelfand and Dey (1994) suggest

25



that the integral of the posterior distribution can be estimated via numerical integration
using, for instance, Monte Carlo methods (Hammersley and Handscomb, 1964), asymptotic
solutions (e.g., Bayesian information criterion, BIC) (Schwarz et al., 1978) or Laplace’s method
(De Bruijn, 1970). In the field of geophysics, BIC (Dettmer et al., 2009), annealed importance
sampling (Dettmer et al., 2010) and the deviance information criterion, DIC, (Steininger et al.,
2014; Spiegelhalter et al., 2002) have been used for calculation of the evidence.

In a separate line of research, transdimensional (or reversible jump) Markov chain Monte
Carlo (MCMC) methods (Green, 1995) are receiving a surge of attention to determine the
optimal complexity (number of parameters) in geophysical modeling investigations (e.g.,
Bodin and Sambridge (2009); Bodin et al. (2012); Sambridge et al. (2006); Steininger et al.
(2014)). In reversible jump MCMC, the number of model parameters is treated as an un-
known and parsimony is preferred as this method incorporates directly the evidence in its
calculations which makes it extremely efficient for model selection. Notwithstanding this
progress made, transdimensional MCMC is poorly adaptable to situations with multiple
different conceptual models that each use a different geologic description (structure) of the
target of interest (Chib and Jeliazkov, 2001). Moreover, this method performs relative ranking
of the considered conceptual models, which implies that the whole inversion procedure must
be re-run if additional candidate models are to be considered at a later stage.

In the field of hydrology, metrics such as Akaike’s information criterion (AIC) (Akaike, 1973),
BIC, and Kashyap’s information criterion (KIC) (Kashyap, 1982) are used widely to select the
most adequate model (Li and Tsai, 2009; Marshall et al., 2005; Tsai and Li, 2008; Ye et al., 2010).
A recent study by Schöniger et al. (2014) elucidates that AIC and BIC do a rather poor job in
ranking hydrologic models. The authors of this study therefore concluded that AIC and BIC
are a relatively poor proxy of the evidence. The same study found that the brute force Monte
Carlo method provides the most accurate and bias-free estimates of the evidence. Yet, this
method is not particularly adequate in high dimensions and for peaky posteriors. What is
more, the brute force Monte Carlo method is known to be affected by the so-called curse
of dimensionality which degenerates the evidence estimates and make them unusable in
high dimensions (Lewis and Raftery, 1997). In cases where reliable brute force Monte Carlo
integration is infeasible, Schöniger et al. (2014) promote the use of KIC for model selection,
evaluated at the maximum a-posteriori (MAP) density parameter values of the posterior
distribution. Note that the KIC is a simple transform of evidence estimates obtained by the
Laplace-Metropolis method (Lewis and Raftery, 1997).

The purpose of this study is twofold. In the first place, we investigate to what extent evi-
dence estimates and Bayes factors derived for moderately high parameter dimensionalities
(i.e., up to 105 unknowns) can be used to perform Bayesian model selection in synthetic
and real-world case studies. For this purpose, we compare evidence estimates computed
by (1) the brute force Monte Carlo method (Hammersley and Handscomb, 1964), (2) the
Laplace-Metropolis method (Lewis and Raftery, 1997) and (3) the Gaussian mixture impor-
tance sampling (GMIS) estimator of Volpi et al. (2017). This latter method approximates the
evidence by importance sampling from a Gaussian mixture model fitted to a large sample
of posterior solutions generated with the DREAM(ZS) algorithm (Vrugt, 2016; Vrugt et al.,
2008; Laloy and Vrugt, 2012). Then, we present an application of Bayesian model selection to
subsurface modeling using geophysical data from the South Oyster Bacterial Transport Site in
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Virginia (USA) (Chen et al., 2001, 2004; Hubbard et al., 2001; Linde et al., 2008; Linde and Vrugt,
2013). These data consist of travel time observations made by crosshole ground-penetrating
radar (GPR), and exhibit small measurement errors typical of most near-surface geophysical
sensing methods.

2.3 Theory and Methods

2.3.1 Bayesian inference with MCMC

Given n measurements, Ỹ = {ỹ1, . . . , ỹn}, and a d-dimensional vector of model parameters,
θ= {θ1, . . . ,θd }, it is possible to back out the posterior probability density function (pdf) of
the parameters, p(θ|Ỹ), via Bayes theorem

p(θ|Ỹ) = p(θ)p(Ỹ|θ)

p(Ỹ)
, (2.1)

where, p(θ) signifies the prior pdf, L(θ|Ỹ) ≡ p(Ỹ|θ), denotes the likelihood function, and p(Ỹ)
is equivalent to the marginal likelihood, or evidence. The larger the likelihood the better
the model, F (θ), explains the observed data, Ỹ. Bayesian model selection can be carried
out for any type of likelihood function. However, in this work, we conveniently assume that
the error residuals, E(θ) = {e1(θ), . . . ,en(θ)}, are normally distributed with constant variance
and negligible covariance. These three assumptions lead to the following definition of the
likelihood function:

L(θ|Ỹ,σỸ) =
(√

2πσ2
Ỹ

)−n
exp

[
−1

2

n∑
h=1

(
Fh(θ)− ỹh

σỸ

)2
]

, (2.2)

where σỸ denotes the standard deviation of the measurement data error. This entity can be
fixed a-priori by the user if deemed appropriate, or alternatively, the measurement data error
can be treated as nuisance variable and the value of σỸ is inferred jointly with the d-vector of
model parameters, θ. The Gaussian likelihood function of Eq. (2.2) has found widespread
application and use in the field of geophysics, nevertheless it is important to stress that the
error residuals hardly ever satisfy the rather restrictive assumptions of normality, constant
variance, and lack of serial correlation. The Gaussian likelihood in Eq.(2.2) is sufficient,
though, to illustrate the power and usefulness of Bayesian model selection.

The prior pdf, p(θ), quantifies our knowledge about the expected distribution of the model
parameters before considering the observed data. The evidence, p(Ỹ), acts as a normalization
constant of the posterior distribution, and for fixed model parameterizations, is therefore
often ignored in Bayesian inference. The posterior pdf, p(θ|Ỹ), for a given conceptual model,
quantifies the probability density of a vector with parameter values given the initial knowledge
embedded in the prior distribution and the information provided by the measurement
data via the likelihood. In the absence of closed-form analytic solutions of the posterior
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distribution, MCMC methods are often used to approximate this distribution using sampling
(Hastings, 1970; Metropolis et al., 1953; Robert and Casella, 2013; Vrugt, 2016).

2.3.2 Evidence and Bayes factor

Bayesian hypothesis testing uses Bayes factors (Kass and Raftery, 1995) to determine which
conceptual model is most supported by the available data, and prior distribution. These
Bayes factors quantify the odds of two competing models. For the time being, let us assume
that we have two competing hypotheses, η1 and η2, that differ in their spatial description
of the main variable of interest, say porosity. The first hypothesis (model) could assume
horizontal layering of the porosity field, whereas the second model adopts a multi-Gaussian
description of the spatial configuration of the porosity values. Now the Bayes factor ("odds")
of η1 with respect to the alternative hypothesis, η2, or B(η1,η2), can be calculated using

B(η1,η2) = p(Ỹ|η1)

p(Ỹ|η2)
, (2.3)

which is simply equivalent to the ratio of the evidences, p(Ỹ|η1) and p(Ỹ|η2), of the two
conceptual models. It then logically follows that the Bayes factor of model two, or the
alternative hypothesis η2, is equal to the reciprocal of B(η1,η2).

The evidence (scalar) of a given conceptual model, ηl , is defined as the (multidimensional)
integral of the likelihood function over the prior distribution

p(Ỹ|ηl ) =
∫

L(θl ,ηl |Ỹ)p(θl |ηl )dθl l = 1,2. (2.4)

In practice, it is often not necessary to integrate over the entire prior distribution, as large
portions of this space are made up of areas with a negligible posterior density whose contri-
butions to the integral of Eq. (2.4) are negligibly small. Instead, we can restrict our attention
to those areas of the parameter space occupied by the posterior distribution.

It should be evident from the above that models with large Bayes factors are preferred statis-
tically. Indeed, the subsurface conceptual model with largest value of its evidence is most
supported by the geophysical data, Ỹ. In practice, however the computed Bayes factors might
not differ substantially from unity and each other to warrant selection of a single model.
Bayes factors differ most from each other if relatively simple models are used with widely
different characterizations of the subsurface as their flexibility is insufficient to compensate
for epistemic errors due to improper system representation and conceptualization. This
inability introduces relatively large differences in the models’ quality of fit, and consequently
their Bayes factors, which simplifies model selection. Highly parameterized models on the
contrary, have a much improved ability to correct for system misrepresentation, thereby mak-
ing it more difficult to judge which hypothesis is preferred statistically. Nevertheless, poor
conceptual models should exhibit relatively low Bayes factors in response to their relatively
low likelihoods.
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The Bayes factor is a sufficient statistic for hypothesis testing, yet renders necessary the
definition of "formal" guidelines on how to interpret its value before we can proceed with
model selection. Table 2.1 articulates an interpretation of the Bayes factor as advocated by
Kass and Raftery (1995). This interpretation differentiates four (increasing) levels of support
for proposition η1 relative to η2. In general, the evidence in favor of η1 increases with the
value of its Bayes factor. Thus, the larger the value of B(η1,η2), the more the data Ỹ supports the
hypothesis η1 relative to η2, and the easier it becomes to reject this alternative hypothesis. It
is suggested that the Bayes factor must be larger than 3 (or smaller than 1/3) to discriminate
positively among two competing hypotheses.

Table 2.1 – Interpretation of Kass and Raftery (1995) for the Bayes factor of two conceptual
models η1 and η2.

2 logB(η1,η2) B(η1,η2) Evidence against η2

0 to 2 1 to 3 barely worth mentioning
2 to 6 3 to 20 positive
6 to 10 20 to 150 strong
> 10 > 150 very strong

Unfortunately, the integral in Eq. (2.4) cannot be derived by analytic means nor by analytic
approximation, and we therefore resort to numerical methods to calculate the evidence
of each conceptual model. In the next section, we review briefly three different methods
for estimating the evidence, including the brute force Monte Carlo method (BFMC), the
Laplace-Metropolis (LM) method and the Gaussian mixture importance sampling (GMIS)
approach recently developed by Volpi et al. (2017).

Brute force Monte Carlo method

The BFMC method (Hammersley and Handscomb, 1964) approximates the evidence in
Eq. (2.4) as an average of the likelihoods of N different samples drawn randomly from the
(multivariate) prior distribution (Kass and Raftery, 1995)

pBFMC(Ỹ) ≈ 1

N

N∑
i=1

L(θi |Ỹ). (2.5)

The validity of this estimator is ensured by the law of large numbers, and the standard
deviation of the evidence can be monitored using the central limit theorem (James, 1980).
Many published studies have shown that this estimator works well for rather parsimonious
models with relatively few fitting parameters. Indeed, for such models it is not that difficult to
sample exhaustively the prior parameter distribution, and to evaluate the likelihood function
for each of these points. Unfortunately, the computational requirements of this BFMC
method become rather impractical for parameter-rich models as many millions or even
billions of model evaluations are required to characterize adequately the likelihood surface.
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Laplace-Metropolis method

The LM method (Lewis and Raftery, 1997) builds on the assumption that the posterior
parameter distribution is characterized adequately with a (multi)normal distribution

pLM(Ỹ) ≈ (2π)d/2|H(θ∗)|1/2p(θ∗)L(θ∗|Ỹ), (2.6)

where θ∗ denotes the mean of this distribution, and |H(θ∗)|1/2 signifies the determinant of
the Hessian matrix at θ∗. The two terms (2π)d/2 and p(θ∗)L(θ∗|Ỹ) scale the density of the
normal distribution so as to consider explicitly the effect of parameter dimensionality, and
quality of fit, on the evidence, respectively. This estimator is derived from an asymptotic
approximation of the evidence and uses a quadratic Taylor series expansion around θ∗. This
derivation appears in Lewis and Raftery (1997), and interested readers are referred to this
publication for further details. The mean of the multinormal distribution, θ∗, is assumed
equivalent to the MAP solution of the posterior parameter distribution, and the Hessian
matrix, H(θ∗), is computed from the J posterior samples, θ j , as follows (Rousseeuw and
Van Zomeren, 1990)

H(θ∗) = 1

J −1

J∑
j=1

(θ j −θ∗)T (θ j −θ∗). (2.7)

For a large enough sample, the Hessian matrix converges to the posterior covariance matrix.

The KIC (Kashyap, 1982)

KICθ∗ =−2log(pLM(Ỹ)) (2.8)

is closely related to the LM approach, with θ∗ assumed equivalent to the MAP solution.

Gaussian mixture importance sampling

As third and last method we consider the GMIS evidence estimator developed recently by
Volpi et al. (2017). This method uses multidimensional numerical integration of the posterior
parameter distribution via bridge sampling (a generalization of importance sampling) of a
mixture distribution fitted to samples of the target derived from MCMC simulation with the
DREAM algorithm (Vrugt, 2016). This approach has elements in common with the BFMC
method, yet draws samples directly from the posterior distribution, rather than the prior
distribution (as in BFMC) to approximate the evidence. One would therefore expect a much
higher sampling efficiency of the GMIS method. The use of a Gaussian mixture distribution
allows GMIS to approximate as closely and consistently as possible the actual posterior target
distribution. Indeed, this distribution can be multimodal, truncated, and "quasi-skewed"
- properties that can be emulated with a mixture model if a sufficient number of normal
components is used. The Expectation-Maximization (EM) algorithm is used to construct
the Gaussian mixture distribution (Dempster et al., 1977; Hoogerheide et al., 2012). Let us
assume that MCMC simulation with DREAM has produced J realizations,Θ= {θ1, . . . ,θJ }, of
the d-variate posterior parameter distribution under hypothesis, η1. We approximate these
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samples’ probability density function, p(θ|Ỹ), with a mixture distribution

q(θ,K ) =
K∑

k=1
αk fk (θ;µk ,Σk ), (2.9)

of K > 0 multivariate normal densities, fk (·|µk ,Σk ) in Rd , where αk , µk and Σk signify the
scalar weight, the d-dimensional mean vector, and the d ×d-covariance matrix of the kth
Gaussian component. The weights, or mixing probabilities, must lie on the unit Simplex, ∆K ,
that is, αk ≥ 0 and

∑K
k=1αk = 1, and the Σk ’s must be symmetric, Σk (θi ,θ j ) =Σk (θ j ,θi ), and

positive semi-definite.

The EM algorithm (Dempster et al., 1977; Hoogerheide et al., 2012) is used to determine the
values of the dmix-variables of the mixture distribution, Φ = {α1, . . . ,αK ,β1, . . . ,βK }, where
eachβk = {µk ,Σk } characterizes the mean and covariance matrix of a different normal density
of the mixture, and k = {1, . . . ,K }. This algorithm maximizes the log-likelihood, log{L(Φ|Θ,K )},
of the mixture density

log{L(Φ|Θ,K )} =
J∑

j=1
log

{
K∑

k=1
αk fk (θ j ;µk ,Σk )

}
, (2.10)

by alternating between an expectation (E) step and a maximization (M) step, until conver-
gence of the values of Φ is achieved for a given number of components, K . The optimum
complexity of the mixture distribution is determined via minimization of the Bayesian infor-
mation criterion, or BIC

BIC(K ) =−2log{L(Φ|Θ,K )}+dmix(K ) log(J ). (2.11)

This criterion strikes a balance between quality of fit (first-term) and the complexity of the
mixture distribution (second term). In practice, we use different values for K and then select
the "optimal" mixture distribution by minimizing the value of the BIC criterion, or

K̂ = arg min
K∈N+

BIC(K ), (2.12)

whereN+ is the collection of strictly positive integer values.

The optimal mixture distribution now serves as importance density, q(θ, K̂ ), in GMIS to esti-
mate the marginal likelihood, pGMIS(Ỹ). To this end, we draw at random from the importance
distribution, Q(θ, K̂ ), a total of N different samples, {θimp

1 , . . . ,θimp
N }. We then evaluate each of

these N parameter vectors in our hypothesis (conceptual model), and calculate their unnor-
malized posterior densities, p(θimp

r )L(θimp
r |Ỹ), where r = {1, . . . , N }. The evidence, pGMIS(Ỹ),

is now computed by GMIS as a weighted mean of the ratios of the samples’ unnormalized
posterior densities and corresponding importance densities (Perrakis et al., 2014)

pGMIS(Ỹ) ≈ 1

N

N∑
r=1

p(θimp
r )L(θimp

r |Ỹ)

q(θimp
r )

. (2.13)
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This concludes our description of the GMIS estimator. We refer interested readers to Volpi
et al. (2017) for a more detailed treatment and explanation of the theory, concepts, and main
building blocks of GMIS. This paper also documents a diverse set of case studies (up to
d = 100) which evaluate and benchmark the performance of GMIS against other commonly
used evidence estimation methods.

2.3.3 Evidence estimation in practice

The posterior distribution and the MAP solution that is used by the LM and GMIS methods
(Section 2.3.2) are derived from MCMC simulation using the DREAM(ZS) algorithm (Laloy and
Vrugt, 2012; Vrugt, 2016; Vrugt et al., 2008). This multi-chain method creates proposals on
the fly from an historical archive of past states using a mix of parallel direction and snooker
updates. We refer the reader to Linde and Vrugt (2013); Lochbühler et al. (2014a, 2015);
Rosas-Carbajal et al. (2013, 2015) for various geophysical case-studies in which this algorithm
is used. For the actual field application, we use a hierarchical Bayesian formulation, in which
the data error, σỸ in Eq. (2.2) is jointly estimated with the model parameters (e.g., Rosas-
Carbajal et al. (2013)). For numerical reasons we work with a log-likelihood formulation of Eq.
(2.2). A total of four chains were deemed sufficient for 25 parameters, five chains were used
for model dimensions between 26 and 64, and eight chains for models with more than 65
parameters. The number of generations varied between 200000 and 500000 depending on the
dimensionality of the target distribution. The scaling factor, β0 of the jump rate was tuned to
achieve an adequate acceptance rate and the univariate R̂-diagnostic (Gelman and Rubin,
1992) was used to judge when convergence had been achieved of the DREAM(ZS) algorithm
to a limiting distribution.

We report the evidence estimates of the BFMC method using three different sample sizes
involving N = 105, N = 106 and N = 107 samples in Eq. (2.5). In GMIS, we use a total of
N = 105 importance samples (Eq. (2.13)). We repeat each of these two numerical experiments
ten times, and summarize the mean evidence and associated range in the results section.
Lastly, in the case of the LM method, we report the evidence computed as the mean of the
estimates on the different Markov chains (Van Haasteren, 2013) together with the range.

2.3.4 Conceptual subsurface models

To demonstrate the usefulness of model selection in a hydrogeophysical setting, we consider
two common parameterizations for the porosity structure, (a) horizontal layering with fixed
thickness of each layer, hereafter referred to as Lh, and (b) a multi-Gaussian model, coined
MG. In addition to these, we also consider vertical layering of the porosity, using fixed layer
thicknesses, abbreviated Lv. This parameterization is rather unusual and uncommon, but
serves herein to illustrate that a poor conceptual model exhibits low odds. We also compare
and juxtapose much finer discretizations of the two layered models and considered three
different variants of the multi-Gaussian model involving horizontal anisotropy (MGha),
vertical anisotropy (MGva) and isotropy (MGis). The multi-Gaussian model we use herein
is adopted from Laloy et al. (2015), but under the assumption of a known geostatistical
model. The method developed by Laloy et al. (2015) generates a zero-mean stationary

32



multi-Gaussian field through the circulant embedding method of the covariance matrix
together with a dimensionality reduction which is useful when dealing with finely discretized
fields. The dimensionality is reduced by generating two low-dimensional vectors of standard
normal random numbers (i.e., in our case, each vector has 50 dimensionality reduction
(DR) variables) which are subsequently resampled to the original dimension through a
one-dimensional Fast Fourier Transform interpolation (Laloy et al., 2015). This method
decreases substantially model dimensionality, and, as a consequence, lowers significantly
the computational cost of MCMC simulation to sample the target distribution.

Petrophysics and forward modelling

The case-studies considered herein focus on porosity estimation using first-arrival travel
time data from crosshole GPR. We use the petrophysical relationship by Pride (1994) to link
the geophysical properties (i.e., radar slowness, s) to the hydrologic properties of primary
interest (i.e., porosity, φ) in a water saturated media

s =
√
φmc−2[εw + (φ−m −1)εs], (2.14)

where εw = 81 (-) denotes the relative permittivity of water, c = 3 ·108 (m/s) is the speed of
light in a vacuum, εs (-) signifies the relative permittivity of the mineral grains and m is a
unitless cementation index. We use the non-linear 2D travel time solver (time 2d) of Podvin
and Lecomte (1991) to compute first-arrival travel times from slowness fields obtained by
applying the petrophysical relationship of Eq. (2.14) to each porosity field.

2.4 Illustrative toy example

To benchmark the different evidence estimators of Section 2.3.2, we first consider an illus-
trative example involving a simple crosshole GPR experiment. A total of 10 transmitter and
receiver antennas are placed at multiple different depths (uniform intervals) in boreholes
located in the left and right side of the domain, respectively (see Fig. 2.1a). This results
in a total of 100 different transmitter-receiver antenna pairs. The spatial domain that ne-
cessitates porosity characterization covers an area of 7.2 m × 7.2 m. To warrant accurate
model simulations, a spatial discretization of 0.04×0.04 m is considered. We contaminate
the n = 100 first-arrival travel time data with Gaussian white noise using a measurement
error, σỸ = 2 ns. This comparatively high error level was chosen to facilitate comparison with
the BFMC method, which is known to work better in the presence of large measurement
errors. This leads to a likelihood function that is less peaked, and, consequently, a posterior
distribution that is more dispersed as it will distribute more evenly the probability mass over
the parameter space. The "true" porosity field of the subsurface is made up of four different
layers of equal thickness with porosity values of 0.3, 0.45, 0.35 and 0.4, in the downward
direction, respectively (see Fig. 2.1a). We varied the number of horizontal layers of constant
thickness from d = 1 to d = 16, and assume a uniform prior distribution for the porosity, φ, of
each respective layer using upper and lower bound values of 0.25 and 0.50, respectively. The
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petrophysical parameters of Eq. (2.14) are assumed fixed using values of m = 1.5 and εs = 5,
respectively.

Figure 2.1b-e presents the posterior mean porosity field derived from the DREAM(ZS) algo-
rithm for four different model conceptualizations. The two layer model (Fig. 2.1b) is an
overly simplistic representation of the true porosity field which is, by construction, perfectly
described by the conceptual model with four layers shown in Fig. 2.1c. The posterior mean
porosity field of the six layers model presented in Fig. 2.1d exhibits a relatively poor agree-
ment with the reference porosity field. Finally, the porosity values for the eight layer model
(Fig. 2.1e) correspond rather closely with their counterparts of the reference field (Fig. 2.1a).
The bottom panel, in Fig. 2.1f-i, display the posterior standard deviation of the porosity
estimates for the different layers of our four model conceptualizations. As expected, the
uncertainty of the porosity estimates increases with the number of layers that are used in our
subsurface characterizations.
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Figure 2.1 – a) The "true" subsurface porosity model used in our synthetic crosshole-GPR
experiment. The different measurement depths of the transmitter antenna (black crosses)
and receiver antenna (black circles) are separately indicated. Mean porosity fields of the
posterior distribution derived from MCMC simulation with the DREAM(ZS) algorithm using
four different conceptualizations of the subsurface involving (b) two, (c) four, (d) six, and
(e) eight horizontal layers. The corresponding posterior standard deviations of the porosity
estimates for the four different conceptualizations of the subsurface are shown in (f), (g), (h)
and (i), respectively.

Now we calculate the marginal likelihood of each hypothesis using the BFMC, LM, and GMIS
estimators. The results of this analysis are presented in Fig. 2.2 using at the left hand-side
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a plot of the mean evidence computed by each method against model complexity, and at
the right-hand-side a graph of the associated uncertainty of each estimator. We consider
subsurface models with up to d = 16 horizontal porosity layers of equal thickness. To simplify
graphical interpretation of the results, we plot log10 transformed values of the evidence, and
refer to this entity as P (Ỹ). Colour coding is used to differentiate between the results of the
three different methods. The results highlight several important findings. In the first place,
the evidence estimates confirm that the model with four different porosity layers, that is d = 4,
is most supported by the available data (Fig. 2.2a). This finding is not surprising as this model
uses the exact same layering of the porosity field as used in the synthetic GPR experiment that
was used to create the "measured" travel time data. Secondly, the BFMC (black), the LM (blue)
and the GMIS (red) estimators are in excellent agreement and provide nearly identical values
of the evidence for conceptual models with just a few parameters (horizontal layers)(Fig.
2.2a). Thirdly, the BFMC starts to deviate from the LM and GMIS methods at seven model
dimensions and substantial differences appear for models with more than nine layers (Fig.
2.2a). This behavior is explained by the fact that the BFMC estimates did not converge for
model dimensions higher than six. The convergence analysis was performed by a bootstrap
analysis with 1000 bootstrap estimates (results not shown herein). In the fourth place, notice
in Fig. 2.2b that the LM and GMIS estimators exhibit a negligible uncertainty compared to
the range of evidence values considered and that the upper and lower bound values of the
evidence derived from both methods appear rather similar. Evidence estimates derived from
the BFMC method, on the contrary, exhibit a much larger uncertainty due to the fact that
the BFMC does not reach convergence for model dimensions higher than six. This provides
further support for the claim that, in our implementation and algorithmic settings, the BFMC
method is inefficient when applied to models of high dimensionality since large numbers
of samples (implying prohibitively large CPU-costs) are needed to properly characterize the
likelihood surface and obtain reliable results.

We now investigate in more detail the discrepancies between the results of the three esti-
mators, and plot in Fig. 2.3 the differences between the logarithmic values of the marginal
likelihoods, P (Ỹ), computed by the methods for the competing models used in this study.
The solid black line depicts the difference in the mean evidence estimates derived by com-
paring each pairs of methods, and the grey shaded region quantifies the range associated
with the differences in evidence estimates (i.e., the upper and lower boundaries of the grey
shaded region are, respectively, the maximum and minimum difference in evidence estimate
computed by each pairs of methods). Note, we use N = 107 in the BFMC method and report
results for subsurface models with number of horizontal porosity layers (equal thickness)
that ranges from d = 1 to d = 16.

The results in Fig. 2.3 provide further evidence for our earlier conclusions. Indeed, the three
methods provide rather similar evidence values (Fig. 2.3a) for the simpler subsurface models
(i.e., up to d = 6 different porosity layers). For larger model complexities the LM and the GMIS
estimators differ a bit from each other - but this difference is very small in comparison to their
mean estimates. It is now evident that the difference in the evidence estimates derived from
LM and GMIS increases with model complexity. Note that the maximum deviation between
both methods is on the order of 0.7 unit in P (Ỹ) space, which, with mean estimates on the
order of one-hundred (see Fig. 2.2a), equates to a difference smaller than 1%. However, it
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Figure 2.2 – Mean values of the evidence in log10 space, P (Ỹ) (a: left graph), and their
associated uncertainty (b: right graph) derived from the BFMC, LM, and GMIS estimators
for each model complexity, d used herein. Color coding is used to differentiate among the
different methods. The evidence estimates of the LM and GMIS estimators are in excellent
agreement and their uncertainty is negligibly small.

is important to stress here that there is no reason to expect that the two methods provide
equivalent results since they are based on very different assumptions (details in Section 2.3.2).
Results from Fig. 2.3 also confirm that the evidence values derived from the BFMC method
start to deviate from the other two methods for model dimensions higher than six since
the method does not reach convergence for those models (Fig. 2.3b-c). These differences
grow as large as 6-7% in P (Ỹ) space for the most complex subsurface models with d = 14
and d = 16 porosity layers. It is worth noting that we are primarily interested in an accurate
model ranking, while the accuracy of the evidence estimates themselves are of secondary
importance. In light of this, we find that the differences in the evidence estimates obtained
by the three different estimators do not have an impact on which models are ranked first and
second in the presented synthetic example.

This illustrative toy example shows that results from the three methods successfully agree on
which model is most supported by the available data. The LM and GMIS methods provide
similar values of the evidence, with associated uncertainty that appears rather small. The
evidence estimates derived from the BFMC method, on the contrary, are trustworthy only
for the most parsimonious subsurface conceptualizations (models) consisting only of a
few porosity layers. Beyond this complexity, the 10 million BFMC samples used herein
are insufficient to declare convergence and obtain reliable evidence estimates. Of course,
we could further increase BFMC’s sample size, yet this would increase further its already
prohibitive computational time. Based on these findings, we discard the BFMC method
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Figure 2.3 – Difference in the evidence estimates derived from different pairs of two methods
as function of model complexity, (a) GMIS and LM, (b) BFMC and LM, and (c) BFMC and
GMIS. The solid black line in each graph portrays the difference in the mean evidence
estimates, and the grey shaded region quantifies the range associated with the difference in
the mean evidence estimates of each method. Note, we use log10 transformed value of the
evidence estimates.

and carry forward to the next case study the LM and GMIS estimators that are relatively
CPU-efficient.

2.5 Field example

2.5.1 Field site and available data

We now focus our attention on the South Oyster Bacterial Transport Site in Virginia, USA,
and use geophysical data measured at this experimental site to determine which model of
the subsurface is preferred statistically. The geological characteristics of the South Oyster
Bacterial Transport Site are described in Hubbard et al. (2001). GPR travel time data were
measured at the S14-M13 borehole transect using a PulseEKKO 100 system with a 100-
MHz nominal-frequency antenna. A domain of 7.2×7.2 m was measured with a total of
57 sources and 57 receivers, leading to a data set of 3248 observations of first-arrival travel
times (one value is missing). We assume the measurement errors of the travel time to be
uncorrelated and normally distributed with constant standard deviation, σỸ. A relatively fine
spatial discretization consisting of square cells with length 0.04 m was used in our forward
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simulations with the non-linear 2D travel time solver (time 2d) of Podvin and Lecomte (1991)
to compute the first-arrival travel times for the 7.2×7.2 m domain of interest. The models used
in this study differ in their conceptual representation of the subsurface, and use horizontal
and vertical layering of the porosity. The numbers of porosity layers (equal thickness) is
varied between 1 to 60, thereby providing a large array of competing hypotheses. Table 2.2
lists the parameters of both spatial porosity configurations which are subject to inference
with the DREAM(ZS) algorithm. This includes, the porosity, φ, of each individual layer, and
the values of m, εs and σỸ. We list their symbol, unit, range, type of prior distribution, and
respective number of unknowns.

Table 2.2 – Parameters of the conceptual subsurface models with horizontal and vertical
porosity layering. The last three columns summarize the range, prior distribution, and
number, of each parameter, respectively as used in our MCMC inversion with the DREAM(ZS)

algorithm. The variable nlayer defines the number of layers that is used in each conceptual
model.

Parameter Units Prior range Prior n◦ parameters

φ - 0.25-0.5 Uniform nlayer
∗

m - 1.3-1.7 Uniform 1
εs - 2-6 Uniform 1
σỸ ns 0.3-2 Log-uniform 1

* 1 ≤ nlayer ≤ 60

The use of horizontal and vertical layering of the porosity is perhaps convenient computa-
tionally, but might not describe properly the subsurface of an actual field site. Indeed, the
subsurface might exhibit much more complex porosity structure. We therefore augment the
ensemble of hypotheses with a model that assumes a multi-Gaussian porosity field. This
field is generated over a regular 2D grid of size 180 × 180 with geostatistical properties and
spatial structure described with the Matérn variogram. Fortunately, the values of the integral
scales in the x and z-direction, Ix and Iz , respectively, anisotropy angle, ϕ, and smoothness
parameter, ν, of this variogram have been reported in the literature for the South Oyster
Bacterial Transport Site (Chen et al., 2001; Hubbard et al., 2001). Their values are listed in
the second column of Table 2.3, and assume horizontal anisotropy of the porosity field, that
is ϕ = 90◦. This model is referred to as MGha. For completeness, we also consider herein
a multi-Gaussian model with vertical anisotropy, ϕ= 0◦ (third column), coined MGva, and
include an isotropic description of the porosity (fourth column), hereafter referred to as MGis,
and enforced by setting Ix and Iz equal to the geometric mean of the integral scales of the
first two multi-Gaussian models. We fix the value of ν= 0.5 in the Matérn variogram, as we
expect an exponential variogram model. Interested readers are referred to Laloy et al. (2015)
for a more detailed description of the Matérn variogram.

We now focus our attention to the "unknown" parameters in each model (see Table 2.4),
which are subject to inference using the observed travel time data. In our MCMC inversions
we infer jointly the petrophysical parameters, εs and m of Eq. (2.14), mean porosity, φ, and
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Table 2.3 – Integral scales in x- and z-direction, Ix and Iy , respectively, anisotropy angle,
ϕ, and smoothness parameter, ν for the multi-Gaussian model with horizontal anisotropy
(second column, MHha), vertical anisotropy (third column, MGva), and isotropy (last column,
MGis).

MGha MGva MGis

Ix 1.5 m 1.5 m
p

1.5 ·0.2 m
Iz 0.2 m 0.2 m

p
1.5 ·0.2 m

ϕ 90◦ 0◦ 90◦

ν 0.5 0.5 0.5

its associated variance, v , the measurement data error, σỸ, of the travel time data, and 100
dimensionality reduction variables, DR (details in Section 2.3.4).

Table 2.4 – Parameters of multi-Gaussian models (first column) and their respective units
(second column), range (third column), prior distribution (fourth column), and number (last
column).

Parameter Units Prior range Prior n◦ parameters

DR - - Normal 100
φ - 0.3−0.4 Uniform 1
v - 10−4 −2.5 ·10−3 Log-uniform 1
m - 1.3−1.7 Uniform 1
εs - 2−6 Uniform 1
σỸ ns 0.3−2 Log-uniform 1

2.5.2 Results

We first display in Fig. 2.4 five realizations of the prior porosity field (columns) for each
of the conceptual models (different rows) used in this case study. This includes the three
multi-Gaussian models with (a) isotropy, (b) horizontal anisotropy, and (c) vertical anisotropy,
and more simplistic models that assume (d) horizontal and (e) vertical layering of the porosity
values. It is evident that these five model types provide very different descriptions of the
porosity field of the subsurface at the experimental site. The multi-Gaussian models exhibit
most spatial diversity with realizations that differ substantially in their mean porosity and
associated variance. The porosity values of the layered models change abruptly from one
depth to the next.

We now move on to our inversion results and present in Fig. 2.5 for each model of the ensem-
ble (different rows), four different draws of the posterior distribution (first four columns),
the posterior mean porosity field (fifth column) and the associated standard deviation (last
column) derived from the DREAM(ZS) algorithm. The order of the presentation matches
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Realizations drawn randomly from the prior distribution for the (a) isotropic multi-Gaussian
model, (b) multi-Gaussian model with horizontal anisotropy, (c) multi-Gaussian model with
vertical anisotropy, (d) horizontally layered model with 37 layers of equal thickness, and (e)

vertically layered model with 12 layers of equal thickness.

Figure 2.4 – ]

exactly Fig. 2.4, that is, the first three rows presents the results of the multi-Gaussian models
with (a) isotropy, (b) horizontal anisotropy, and (c) vertical anisotropy of the porosity val-
ues, and the bottom two rows illustrate the results of the models with (d) horizontal and
(e) vertical layering. The different conceptual models provide quite different characteriza-
tions of the porosity field. Some commonalities can be observed, though. For instance, the
isotropic multi-Gaussian model, the multi-Gaussian model with horizontal anisotropy and
the horizontally layered model (Fig. 2.5a-b-d) all depict the presence of a low-porosity zone
just below the surface and at a depth of 4-5 m. They also demonstrate high-porosity zones
at depths of 2 m and 6 m, and at 3 m below the ground surface a small high-porosity area
is also visible, although this is not so evident for the isotropic multi-Gaussian model. The
porosity fields parametrized by these three conceptual models are estimated with relatively
low uncertainties (i.e., maximum of posterior standard deviations equals to or less than
±0.01), especially, in the case of the horizontal layering. Also, the conceptual subsurface
model with vertically oriented porosity structures (i.e., the vertically layered model and the
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multi-Gaussian model with vertical anisotropy) exhibit more variation in their porosity values
(first four columns in Fig. 2.5c-e) and characterized by larger uncertainties (last column in
Fig. 2.5c-e) than the other models.

Note that the posterior mean porosity field of the multi-Gaussian model with horizontal
anisotropy (fifth column in Fig.2.5b) is in good agreement with the velocity field obtained by
Linde et al. (2008) and Linde and Vrugt (2013) for the exact same data set.
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Figure 2.5 – Four realizations drawn randomly from the posterior distribution (first four
columns), the posterior mean porosity field (fifth column) and the standard deviations of
the posterior porosity estimates (last column) for the (a) isotropic multi-Gaussian model, (b)
multi-Gaussian model with horizontal anisotropy, (c) multi-Gaussian model with vertical
anisotropy, (d) horizontally layered model with 37 layers of equal thickness, and (e) vertically
layered model with 12 layers of equal thickness.

To provide more insights into the posterior parameter distributions of each model, Fig. 2.6
plots histograms of the marginal distributions of the cementation index, m (first column),
the relative permittivity of the mineral grains, εs (second column), and the inferred data error,
σỸ (third column) for the multi-Gaussian (top three rows) and layered (bottom two rows)
subsurface models. The prior distribution is separately indicated in each plot with the red
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line. Note, to simplify graphical notation, the density of all the distributions was scaled to be
between 0 and 1. This figure highlights several interesting findings. In the first place, notice
that the three parameters appear to be well defined in each of the five conceptual models with
posterior distributions that occupy only a small portion of their respective prior distributions.
This is particularly true for the marginal distribution of σỸ, the measurement error of the
travel time data. Secondly, notice that the use of a vertically layered porosity (Fig. 2.6e) results
in truncated histograms of the parameters m and εs and a large inferred data error, σỸ > 1.5
ns. These are possible signs of model malfunctioning, a claim that we will investigate next by
looking in detail at the evidence estimates of each model, but supported thus far by the much
larger posterior values of σỸ for the vertically layered model than the other four competing
subsurface models. Thirdly, notice that the histograms of the petrophysical parameters m
and εs differ quite substantially between the conceptual models. These parameters probably
compensate in different ways for imperfections in each model’s porosity structure. The
histograms of the nuisance parameter σỸ appear almost similar with the exception of the
model with vertically layered porosity values. Altogether, the lowest value of the measurement
data error, σỸ = 0.457 ns, is found for the isotropic multi-Gaussian model (Fig. 2.6a), which
should suggest that this model most closely matches the observed travel time data.

We now turn our attention to the evidence of each model. Fig. 2.7 presents the results of
this analysis using a log10 transformation of the evidence values. The left graph (Fig. 2.7a)
displays the results for the three multi-Gaussian models with isotropy (circle), horiziontal
anisotropy (square) and vertical anisotropy (triangles), respectively, using a single complexity
involving d = 105 parameters. The graph in the middle (Fig. 2.7b) and on the right (Fig. 2.7c)
depict the results for the conceptual models with horizontal and vertical layering, respectively,
using between 1 to 60 different porosity layers. Colour coding is used in all the three plots to
differentiate between the LM (blue) and GMIS (red) estimators. The vertical bars in Fig. 2.7a
and shaded regions in Fig. 2.7b-c depict the uncertainty of the evidence estimates derived
from the different trials with the LM and GMIS methods.

The most important conclusions are as follows. In the first place, the evidence estimates de-
rived from both methods appear similar for model complexities with less than 30 (unknown)
parameters. Beyond this, the difference between the marginal likelihoods derived from both
methods grows up to 2% in log10 space for d = 105. Secondly, the evidence estimates derived
from the different trials are quite similar, particularly for the GMIS method. Thirdly, the
use of a larger number of layers in the two layered models does not necessarily increase the
statistical support for this model. Indeed, the value of the evidence is maximized when using
37 horizontal porosity layers or 15 vertical porosity layers. Beyond this number of porosity
layers, the evidence values deteriorate slowly but with the exception of a sudden increase
in P (Ỹ) at d = 40 for the vertically layered model. This spike is observed in the empirical
P (Ỹ) functions of both evidence estimators (LM and GMIS), inspiring confidence in their
results. Notice that the GMIS estimator produces a secondary peak at d = 63 (sixty layers),
which causes the LM and GMIS methods to diverge in the rightmost part of their P (Ỹ) curves.
Since it is not particularly clear which of the two estimators is at fault, we further test this case
with GMIS by using 106 instead of 105 posterior realizations to construct the d = 63-variate
importance distribution. The results (not shown herein) confirm the presence of the peak at
d = 63 which suggests that the secondary peak is real. Fortunately, this does not affect at all
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Figure 2.6 – Marginal posterior distributions of the inferred cementation index, m (first
column), the relative permittivity of the mineral grains εs (second column), and the inferred
data error, σỸ (third column) for the multi-Gaussian models with (a) isotropy, (b) horizontal
anisotropy, and (c) vertical anisotropy of the porosity values, and the two models with (d)
horizontal and (e) vertical layering. The prior distribution is indicated separately in each plot
using the red lines. The densities in each plot are normalized so that they all share the units
of the y-axis on the left.

model ranking as the evidence values of the vertically layered porosity model are many orders
of magnitude smaller than their counterparts of the multi-Gaussian models. These results
illustrate the importance of hypothesis testing and highlight the need for (statistical) methods
that help us to determine, in an efficient and robust manner, an appropriate model com-
plexity. In fact, the marginalization approach that is used to determine the model evidence
can be viewed as a formalization of Occam’s razor and leads to a subsurface characterization
that is not too simple nor too complex. Furthermore, and perhaps most important from the
perspective of the present paper, the isotropic multi-Gaussian model receives the largest
evidence values. This is true for both methods. Note, also that the vertically layered model
exhibits very low evidence values. Indeed, the best vertically layered model has an evidence in
log10 units of about -2757, much lower than the values of approximately -1025 and -1178 for
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the multi-Gaussian and horizontally layered models, respectively. This latter result confirms
our earlier conclusion that the vertically layered model is deficient and inadequate.

Figure 2.7 – Mean values of the evidence in log10 space, P (Ỹ), derived from the LM (blue)
and GMIS (red) methods for (a) the multi-Gaussian models with isotropy (circles), horizontal
anisotropy (squares), and vertical anisotropy (triangles), and the two models with (b) hor-
izontal, and (c) vertical layering of the porosity. The error bars in (a) and the shaded areas
in (b) and (c) summarize the ranges of the evidence estimates as derived from the different
independent trials with both methods.

Table 2.5 shows the five top-ranking conceptual models based on their evidence estimates
derived from the LM (first column), and GMIS (second column) methods. The conceptual
model that is most supported by the experimental data appears on top of the list (first row).
For completeness, we also present in the third column the ranking of the models using as
metric the posterior values of the measurement data error,σỸ. All three rankings demonstrate
conclusively that the isotropic multi-Gaussian model is preferred. This model receives the
highest evidence with both estimators and lowest value of the measurement data error,
σỸ = 0.457 ns. Note, that the LM and GMIS methods disagree in their assessment of the
second best model. The more approximate LM method achieves the second highest support
for the horizontally layered model with 37 layers (d = 40), whereas GMIS favours instead the
multi-Gaussian model with horizontal anisotropy.

We now calculate the Bayes factor ("odds") for the best model (isotropic multi-Gaussian) of
the ensemble in relationship to each conceptual model. The "odds" of the isotropic multi-
Gaussian model are on the order of 10118 and 10151 relative to the second best model of the
ensemble according to the LM and GMIS estimators (Table 2.5; Fig. 2.8). Figure 2.8a depicts
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Table 2.5 – Ranking of the different conceptual models for the South Oyster Bacterial Transport
Site based on evidence estimates derived from the LM (first column) and GMIS (second
column) methods. The third column ranks the models based on their respective values of the
measurement data error inferred from MCMC simulation using the DREAM(ZS) algorithm.

Ranking of conceptual models

PLM(Ỹ) PGMIS(Ỹ) σỸ [ns]

MGis MGis MGis
L40 MGha MGva
L39 L40 MGha
L43 L41 L43
L41 L43 L41

twice the natural logarithm of the Bayes factors with respect to the multi-Gaussian model
with horizontal anisotropy (square symbol), and vertical anisotropy (triangle symbol), and
Fig. 2.8b-c displays the same entity with respect to the horizontally and vertically layered
models, respectively. Colour coding is used to differentiate between the LM (blue) and GMIS
(red) evidence estimators. It is evident that the isotropic multi-Gaussian model receives
most support by the data - the values listed on the y-axis in each plot are all larger than 600,
which according to Table 2.1 suggests that there is very strong evidence against each of these
alternative hypotheses.

The results presented thus clearly favour the use of an isotropic multi-Gaussian model for
the porosity structure of the subsurface at the South Oyster Bacterial Transport Site. This
conclusion is at odds with findings presented in the literature Chen et al. (2001); Hubbard
et al. (2001) using geostatistical analysis of the porosity structure. The results of these studies
support the use of a multi-Gaussian model with horizontal anisotropy.

2.5.3 A synthetic experiment

To shed some more light on the selection of the isotropic multi-Gaussian model, we proceed
with a synthetic experiment. We use the exact same domain (7.2×7.2 m) and setup as in
our real-world study (Section 2.5.1), and simulate first-arrival travel times for a multi-offset
GPR experiment with 57 transmitter and 57 receiver antennas using as reference porosity
a multi-Gaussian field with horizontal anisotropy. This "true" porosity field is constructed
without the use of dimensional reduction using values of the integral scales and smoothness
parameter listed in Table 2.3. The mean of this porosity field is, φ= 0.39 and the variance
is, v = 2 ·10−4. The 57×57 = 3249 simulated travel times are corrupted with Gaussian white
noise using σỸ = 0.5 ns, and these distorted values are now used for numerical inversion
using the DREAM(ZS) algorithm.

Table 2.6 presents the evidence estimates of the LM (first row) and GMIS (bottom row)
methods using as competing hypotheses multi-Gaussian models with horizontal anisotropy
(second column), isotropy (third column) and vertical anisotropy (right column). The numer-
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Figure 2.8 – Twice the natural logarithm of the Bayes factors of the best model (isotropic
multi-Gaussian) of the ensemble with respect to the (a) multi-Gaussian model with horizontal
anisotropy (squares) and vertical anisotropy (triangles), and the two conceptual models with
(b) horizontal and (c) vertical layering of the porosity. Results are shown for the LM (blue)
and the GMIS (red) methods.

ical setup of these three conceptual models follows exactly Tables 2.3 and 2.4. The results of
Table 2.6 demonstrate that both evidence estimators provide a similar ranking of the three
subsurface models. As is to be expected, the most support is found for the multi-Gaussian
model with horizontal anisotropy (second column). This is followed by the isotropic multi-
Gaussian model (third column) and the multi-Gaussian model with vertical anisotropy (last
column). This latter model, though, receives rather low evidence values. These results il-
lustrate that both evidence estimators correctly identify the "best" model of the ensemble.
We thus feel confident with the main conclusions of our real-world experiment, that the
porosity field of the subsurface at the South Oyster Bacterial Transport Site is best described
with an isotropic multi-Gaussian model. This conclusion is different from Chen et al. (2001)
and Hubbard et al. (2001) whose results favoured the use of a multi-Gaussian model with
horizontal anisotropy. These works considered the geophysical tomogram as data within a
geostatistical analysis. Possible reasons for this discrepancy is that previous studies relied on
forward modeling with straight ray paths and geophysical tomograms with inversions that
did not consider an explicit underlying geostatistical model.
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Table 2.6 – Synthetic experiment: Evidence estimates derived from the LM and GMIS methods
for the multi-Gaussian models with isotropy (MGis), horizontal anisotropy (MGha) and
vertical anisotropy (MGva).

MGha MGis MGva

PLM(Ỹ) -1325.39 -1413.53 -1562.47
PGMIS(Ỹ) -1293.94 -1371.91 -1516.72

2.6 Discussion

The transdimensional (or reversible jump) MCMC algorithm (Green, 1995) is not suitable for
comparing conceptual models that are based on completely different model parameteriza-
tions (e.g., layered vs. multi-Gaussian). In this study, we investigated to what extent evidence
estimates with BFMC (Hammersley and Handscomb, 1964), LM (De Bruijn, 1970) and GMIS
(Volpi et al., 2017) can be used to perform Bayesian model selection in the context of synthetic
and real-world case studies. This is the first comparative study of evidence estimation in
hydrogeophysics and we consider realistically high parameter dimensions (i.e., up to 105),
large data sets (several thousands) and small data errors.

The BFMC method is known to provide the most reliable and unbiased evidence estimates
in the limit of infinite sample sizes. Schöniger et al. (2014, 2015a,b) found reliable evidence
estimates with the BFMC method for different case-studies in hydrology. For our set-up with
small errors and high data and model dimensions, we found that reliable evidence estimation
with the BFMC method would need prohibitive computation times. If the assumption of a
multi-Gaussian posterior density is fulfilled (a reasonable assumption in our test cases), the
LM method should provide reliable evidence estimates (see also case-studies by Schöniger
et al. (2014)). This is confirmed in our synthetic study in Section 2.4 by the strong agreement
at low model dimensions between BFMC and LM estimates evaluated around the MAP
estimate. The comparison of the LM and the more general (but more time-consuming) GMIS
method shows that evidence estimates are similar for simpler subsurface conceptual models
but that the difference between them increases with model complexity. Indeed, we do not
expect to obtain equivalent results since the two methods are built on different assumptions
(see details in Section 2.3.2). For instance, the LM method is built on the assumption that a
Gaussian model can properly describe the posterior distribution. This is different for GMIS
(or BFMC for that matter) that is based on importance sampling within the prior parameter
bounds. It is clear then that the more the posterior distributions are far from being Gaussian,
the more the LM and GMIS methods will provide different estimates.

In our application to the South Oyster Bacterial Transport Site (Section 2.5), we found that
the isotropic multi-Gaussian model has the highest evidence (Fig. 2.7a). The corresponding
Bayes factors (Eq. (2.3)), computed with respect to each tested conceptual models, are all
larger than 10100. This result is in agreement with the findings by Schöniger et al. (2014): one
decisive winning conceptual model is often obtained when using large data sets and small
data errors. We also considered the field example described in Section 2.5.1, but using less
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data (i.e., n = 224 instead of n = 3248) and we found (results not shown) that: (1) the isotropic
multi-Gaussian model is still the winner, (2) all the evidence estimates are much larger (e.g.,
in the case of the isotropic multi-Gaussian model, the evidence increases from about 10−1000

to 10−100) and that (3) the Bayes factors are much smaller (e.g., when comparing the multi-
Gaussian model with vertical anisotropy and the one with isotropy, the Bayes factor decreases
approximately from 10190 to 1010). Hence, even if we can still identify one clear winning
conceptual model, the magnitudes of the Bayes factors have been drastically decreased.

Among the layered models, the GMIS and the LM method both suggest that the conceptual
model with 37 layers has the highest evidence (Fig. 2.7b). Moreover, the model type with
the least expected geological realism (i.e., vertically layered model) has, by far, the lowest
evidences (Fig. 2.7c).

Based on previous geostatistical analysis at the South Oyster Bacterial Transport Site (Chen
et al., 2001; Hubbard et al., 2001) one would expect that the multi-Gaussian model with
horizontal anisotropy would be the one with the highest evidence. To better understand
why the isotropic multi-Gaussian model has a higher evidence than the one with horizontal
anisotropy, we performed a synthetic example (Section 2.5.3) in which the true porosity
field is described by a multi-Gaussian model with horizontal anisotropy. We found that this
conceptual model had the highest evidence, which suggests that the LM and GMIS methods
allow us to identify the right conceptual model (Table 2.6). This suggests that this field-
site might display less anisotropy than previously thought or that modeling (e.g., ray-based
modeling instead of waveform modeling) and geometrical (e.g., uncertainties in borehole
and antenna positions) errors bias the evidence estimates.

Below, we outline three avenues for future research:

• It is necessary to consider conceptual subsurface models with higher geological realism.
Multi-Gaussian models are used extensively, but they are poor descriptions of many
geological settings. There are many approaches to create more geologically realistic
conceptual models (Linde et al., 2015b), for example, multiple-point statistics (MPS)
(Strebelle, 2002).

• It is essential to account for uncertainty in petrophysical relationships and model errors
in order to not overstate the value of geophysical data. This could be accomplished
by Approximate Bayesian Computation (ABC) (Beaumont et al., 2002; Marjoram et al.,
2003; Pritchard et al., 1999; Tavaré et al., 1997) and lithological tomography (Bosch,
1999). ABC does not require a formal likelihood function and we suspect that this may
help to decrease the sensitivity to model errors. Lithological tomography is a formal
Bayesian procedure that integrates with the inference process a statistical description
of the petrophysical relationships and geological concepts. This approach should
spread out more evenly over the parameter space the posterior distribution, thereby
decreasing the magnitude and range of the candidate models’ Bayes factors, and en-
hancing the support and evidence for simpler conceptual models. We also highlight
that incorporating model errors and petrophysical uncertainty is essential to enable
model selection in integrated (joint) earth imaging (Moorkamp et al., 2016). It is also
important to better elucidate and understand the relationship between a candidate
model’s prior ranges and its evidence estimates. Much work on this topic can be found
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in the statistical literature (e.g. see Lindley’s paradox), but comparatively little work
has been done on high-dimensional priors as frequently encountered in subsurface
characterization and geophysical inference.

• It would also be fruitful to investigate alternative approaches to evidence computa-
tion. In particular, nested sampling algorithms that are suitable to high-dimensional
problems, such as the POLYCHORD algorithm (Handley et al., 2015a) and the Galilean
Monte Carlo algorithm (Skilling, 2012). Initial investigations with POLYCHORD suggest
that evidence estimates are consistent with those obtained by LM and GMIS.

2.7 Conclusions

Hydrogeophysical methods are well suited to guide the critical choice of the most suitable
conceptual subsurface hydrological model. Despite its importance, this topic has largely been
ignored in the hydrogeophysical literature to date. We have performed a first comparative
study of evidence estimation in hydrogeophysical settings. We consider realistically high
model dimensions (i.e., about 100 unknowns), large data sets and small data errors that typify
hydrogeophysical investigations. In the context of an illustrative synthetic example, we find
that the brute force Monte Carlo method provides reliable estimates at low model dimensions
but, when applied to higher model dimensions (i.e., in our case, higher than 6), the BFMC
method is inefficient since a prohibitively large number of samples (and thus CPU-time) is
required to obtain accurate results. This implied that the brute force Monte Carlo method
was unsuitable to address our field example from the South Oyster Bacterial Transport
Site (Virginia, USA). We find that the Laplace-Metropolis and the recent Gaussian mixture
importance sampling estimator by Volpi et al. (2017) provide overall consistent relative
evidence estimates and with rather small errors in both the synthetic cases where simple and
low-dimensional (Section 2.4) and more complex and high-dimensional conceptual models
(Section 2.5.3) were considered. Application of the Laplace-Metropolis and the Gaussian
mixture importance sampling estimator to conceptual subsurface models of the South Oyster
Bacterial Transport Site in Virginia, USA, revealed that the isotropic multi-Gaussian model
was most supported by the available GPR travel time data. This model had the largest evidence
and its Bayes factors were all larger than 10100 relative to all other plausible conceptualizations
of the subsurface. Finally, the model with the least geological realism (i.e., vertically layered
model) has extremely low evidence values for all of its discretizations (i.e., more than 101500

times smaller than the evidences computed for the horizontally layered or multi-Gaussian
models). Future research will focus on including the statistical nature of petrophysical
relationships, model errors, and more realistic conceptual models of the subsurface.
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3.1 Abstract

Quantitative hydrogeophysical studies rely heavily on petrophysical relationships that link
geophysical properties to hydrogeological properties and state variables. Coupled inversion
studies are frequently based on the questionable assumption that these relationships are
perfect (i.e., no scatter). Using synthetic examples and crosshole ground-penetrating radar
(GPR) data from the South Oyster Bacterial Transport Site in Virginia, USA, we investigate the
impact of spatially-correlated petrophysical uncertainty on inferred posterior porosity and
hydraulic conductivity distributions and on Bayes factors used in Bayesian model selection.
Our study shows that accounting for petrophysical uncertainty in the inversion (I) decreases
bias of the inferred variance of hydrogeological subsurface properties, (II) provides more real-
istic uncertainty assessment and (III) reduces the overconfidence in the ability of geophysical
data to falsify conceptual hydrogeological models.

3.2 Introduction

A primary goal in hydrogeophysical studies is often to infer quantitative hydrogeological mod-
els from geophysical and any available hydrogeological data. Unfortunately, petrophysical
relationships describing links between geophysical properties and hydrogeological param-
eters and state variables are uncertain and the information content of hydrogeophysically-
inferred estimates is significantly affected by their predictive power. We distinguish here
between three types of uncertainty in petrophysical (also called rock physics) models: (1)
petrophysical model uncertainty refers to uncertainty about the most appropriate parametric
form (e.g., Archie’s law, time propagation model, Wyllie’s formula), (2) petrophysical pa-
rameter uncertainty relates to uncertainty about the most appropriate parameter values
(e.g., cementation index, saturation exponent), and (3) petrophysical prediction uncertainty
describes the scatter and bias around the calibrated petrophysical model (e.g., dispersion
around predictions based on Archie’s law). These three types of uncertainty are clearly not
independent of each other. For instance, petrophysical prediction uncertainty is described by
the residuals between the actual prediction quantity (e.g., porosity, hydraulic conductivity)
and the predictions for a given petrophysical model and parameter values.

To date, most focus in hydrogeophysical inversion has been on petrophysical parameter
uncertainty (e.g., Kowalsky et al. (2005); Lochbühler et al. (2014a)) with the petrophysical
parameter values being inferred (deterministically or probabilistically) as a part of the in-
version process. However, ignoring the other two types of uncertainty may lead to biased
estimates and unrealistically low uncertainty estimates. For instance, Brunetti et al. (2017)
suggest that ignoring petrophysical prediction uncertainty when using Bayesian model se-
lection to discriminate among conceptual hydrogeological models will likely lead to over
confidence in the ability of geophysical data to falsify and discriminate between alternative
conceptual hydrogeological models (Linde, 2014). Furthermore, it also implies that ad hoc
data weighting schemes are needed when jointly inverting geophysical and hydrogeological
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data (e.g., Lochbühler et al. (2013) in which each data type was given an equal weight in the
objective function).

One approach to partly circumvent these issues is to avoid the use of explicit petrophysical
relationships altogether. For instance, this can be achieved using structural approaches to
joint inversion (Haber and Oldenburg, 1997). The cross-gradient method of Gallardo and
Meju (2003) is a widely employed approach to penalize structural dissimilarity between any
two parameter fields (defined as the cross-product of the spatial gradients of two parame-
ter fields). Hydrogeophysical adaptations and applications of this method can be found in
Doetsch et al. (2010); Linde et al. (2006a, 2008); Lochbühler et al. (2013). Unfortunately, mini-
mizing the cross-gradient function is an inappropriate approach when both hydrogeological
properties and state variables vary (e.g., Doetsch et al. (2010); Linde et al. (2006a)). Among a
multitude of cluster-based approaches, we highlight the works by Sun and Li (2016, 2017)
who develop a multidomain joint clustering inversion method that uses the fuzzy c-means
clustering technique to constrain the statistical behaviour of inverted physical property val-
ues in the parameter domain. This approach overcomes the problem of determining a priori
the appropriate petrophysical model as it is allowed to exhibit different forms in different
regions of the model domain. For time-lapse applications, Vasco et al. (2014) circumvent the
use of an explicit petrophysical model by relating the time at which a significant change in
geophysical data occurs to the time of a saturation and/or pressure change within a reservoir
or aquifer. Alternative approaches are presented by Hermans et al. (2016) and Oware et al.
(2013). They link geophysical properties to hydrogeological parameters by physically-based
regularization operators or direct multivariate statistical models but, unlike other methods,
they adopt an explicit petrophysical relationship to create a prior set of subsurface model
realizations or training images. This is done to ensure geologically realistic results.

Explicit petrophysical relationships can be integrated in hydrogeophysical inversions using
two types of work flows: two-step (or sequential) inversion approaches (Chen et al., 2001;
Copty et al., 1993; Doyen, 1988, 2007; Rubin et al., 1992) and coupled inversion approaches
(Hinnell et al., 2010; Kowalsky et al., 2005).

The two-step inversion approach consists of two sequential steps: first, the geophysical
properties (e.g., electrical permittivity) are inferred from geophysical data (e.g., first-arrival
ground-penetrating radar (GPR) travel times) through deterministic or stochastic inversions;
second, petrophysical relationships are used to classify and map the inferred geophysical
properties into probability density functions (Mukerji et al., 2001) or deterministic estimates
of hydrogeological or reservoir properties. This is achieved by different statistical techniques,
such as, co-kriging, discriminant analysis, neural networks and Bayesian classification/es-
timation. In reservoir geophysics, the two-step inversion approach has been favoured in
conjunction with sophisticated statistical rock physics models. For instance, Shahraeeni
and Curtis (2011); Shahraeeni et al. (2012) use neural networks to map inferred seismic
wave impedances into posterior distributions of porosity, clay content, and water saturation.
Grana and Della Rossa (2010); Grana et al. (2012) sample the posterior distribution of reservoir
properties using the Monte Carlo method for a given seismic model. They conceptualize
petrophysical prediction uncertainty as Gaussian random fields with zero mean and a co-
variance matrix estimated by comparing predictions with well-log data. In hydrogeophysics,
the Bayesian two-step approaches are also used, for instance, by Chen et al. (2001, 2004) to
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estimate hydraulic conductivity conditioned to GPR velocity, GPR attenuation, and seismic
velocity tomograms. In hydrogeophysics, the two-step approach has been criticized as it can
lead to inconsistent estimates (apparent mass loss) and spatially-dependent bias (Day-Lewis
et al., 2005).

The coupled inversion approach is often formulated within a Bayesian framework in which
hydrogeological properties are estimated by inversion of geophysical and, possibly, hydro-
geological data. A pioneering work on coupled inversion is Bosch (1999) who develops a
formal Bayesian procedure, referred to as lithological tomography or lithological inversion.
In this approach, Markov chain Monte Carlo (MCMC) is used to integrate geophysical data,
geological concepts and uncertain petrophysical relationships. The coupled inversion ap-
proach is well suited to integrate multiple geophysical datasets and arbitrary petrophysical
relationships. Also, when confronted with non-linear physics and non-linear petrophysical
relationships, the coupled inversion approach is preferable to a two-step inversion approach
(Bosch, 2004). Most hydrogeophysical works based on coupled inversion approaches assume
that the petrophysical relationship is perfect with known or unknown parameter values (Chen
et al., 2006; Kowalsky et al., 2005; Lochbühler et al., 2015). When petrophysical parameter
values are unknown, they are inverted for simultaneously with the hydrogeological proper-
ties of interest. Petrophysical prediction uncertainty has received less attention in coupled
inversion. In the rare circumstances it is included at all, it is commonly conceptualized with
a multivariate Gaussian distribution with known mean and covariance matrix (Bosch, 2004;
Bosch et al., 2009; Bosch, 2016; Chen and Dickens, 2009). The petrophysical prediction uncer-
tainty is then typically sampled using the brute force Monte Carlo method by adding random
multivariate Gaussian realizations to the petrophysical model outputs at each iteration of the
MCMC inversion.

In this study, we address the following research questions using a coupled Bayesian hydro-
geophysical inversion approach:

1. How can we efficiently incorporate petrophysical prediction uncertainty in MCMC
inversions?

2. What are the consequences of ignoring or making incorrect assumptions on petrophys-
ical prediction uncertainty (including its correlation structure) on inferred posterior
distributions of interest?

3. Can we reliably infer a geostatistical model of petrophysical prediction uncertainty
within the inversion?

4. What are the impacts of petrophysical uncertainty on Bayesian model selection results?

After introducing the theory and method (Section 3.3), we start out by exploring the above-
mentioned research questions by means of porosity estimation using synthetic crosshole
GPR travel time data and an explicit well-known petrophysical relationship with known
parameters (Section 3.4). We then present a field case-study (Section 3.5) aiming at hydraulic
conductivity estimation from GPR travel time and hydraulic conductivity (flowmeter) data
measured at the South Oyster Bacterial Transport site in Virginia, USA (Chen et al., 2001;
Hubbard et al., 2001; Scheibe et al., 2011). Here, we solely assume to know the parametric
form of the petrophysical relationship and we infer for its petrophysical parameters (i.e., the
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petrophysical parameter uncertainty is considered in addition to petrophysical prediction
uncertainty).

3.3 Theory and method

3.3.1 Bayesian inference and model selection

We present below a short summary of Bayesian inference and model selection.

Given n measurements, Ỹ = {ỹ1, . . . , ỹn}, and a d-dimensional vector of model parameters,
θ= {θ1, . . . ,θd }, Bayes’ theorem defines the posterior probability density function (pdf) of the
model parameters, p(θ|Ỹ), as

p(θ|Ỹ) = p(θ)L(θ|Ỹ)

p(Ỹ)
. (3.1)

The posterior pdf describes the state of knowledge about the model parameters given the
observed data and prior knowledge. The prior pdf, p(θ), quantifies the initial state of knowl-
edge about the model parameters before considering the observed data. We consider a
likelihood function, L(θ|Ỹ), that is Gaussian in shape by imposing uncorrelated and normally
distributed measurement errors with constant standard deviation, σỸ,

L(θ|Ỹ) =
(√

2πσ2
Ỹ

)−n
exp

[
−1

2

n∑
h=1

(
Fh(θ)− ỹh

σỸ

)2
]

. (3.2)

The larger the likelihood, the lower is the data misfit between the simulated forward responses,
F (θ), and the data, Ỹ. The evidence, p(Ỹ), evaluates the support provided by the observed
data to a given model parametrization and prior pdf (conceptual model), η, and it is defined
as the (multidimensional) integral of the likelihood function over the prior distribution,

p(Ỹ|η) =
∫

L(θ,η|Ỹ)p(θ|η)dθ. (3.3)

Computing the evidence is challenging as, in general, the integral in Eq. (3.3) can not be
evaluated analytically and it must be approximated by numerical means.

The evidence is used to calculate Bayes factors and is, thus, the cornerstone of Bayesian
model selection (Kass and Raftery, 1995). Bayesian model selection (Jeffreys, 1935, 1939) aims
at determining the competing conceptual model that is the most supported by the observed
data while honouring the principle of Occam’s razor. This implies that if multiple conceptual
models fit the data nearly equally well, then the simplest model (e.g., with the least number of
unknown parameters or the smallest prior parameter ranges) is favoured over more complex
ones (Gull, 1988; Jeffreys, 1939; Jefferys and Berger, 1992; MacKay, 1992). Conceptual models
could refer to different spatial parametrizations of the subsurface (e.g., multi-Gaussian fields
with isotropy or vertical anisotropy) or alternative petrophysical relationships. Bayes factors
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are simply the ratio of the evidences of two competing conceptual models, η1 and η2. For
instance, the Bayes factor of η1 with respect to η2, or B(η1,η2), is defined as

B(η1,η2) = p(Ỹ|η1)

p(Ỹ|η2)
. (3.4)

Subsurface conceptual models with large Bayes factors are preferred statistically and the
conceptual model with the largest evidence is the one that best honours the data on average
over the prior pdf. This implies that there is no guarantee that the "correct" conceptual model
will be favoured if a simpler model allows for similar degrees of data misfit.

In this work, we perform coupled Bayesian hydrogeophysical inversion based on MCMC
sampling (Robert and Casella, 2013) using the DREAM(ZS) algorithm (Laloy and Vrugt, 2012;
Vrugt, 2016) to estimate p(θ|Ỹ). This multi-chain method creates symmetric model proposals
from an historical archive of past states and automatically tunes the scales and orientation
of the proposal distribution on the fly to the target posterior distribution. Each proposal is
accepted or rejected based on the Metropolis acceptance ratio (Hastings, 1970; Metropolis
et al., 1953). If the proposal is accepted, the chain moves to the new location, otherwise the
chain remains at its current location. Acceptance ratios between 15% - 40% usually indicate
good performance of the MCMC simulation (Gelman et al., 1996). The convergence to the
target posterior distribution is monitored with the analysis of variance by Gelman and Rubin
(1992). Approximate convergence is declared when the variance between the different chains
is lower than the variance within each single chain (Gilks et al., 1995).

For purposes of Bayesian model selection, we estimate the evidence with the Gaussian mix-
ture importance sampling approach recently developed by Volpi et al. (2017). This approach
allows for four different sampling methods: reciprocal importance sampling, importance
sampling and bridge sampling with geometric and optimal bridge. Following Brunetti et al.
(2017), we rely on importance sampling from a Gaussian mixture model that is fitted to the
estimated posterior probability density function.

3.3.2 MC and MCMC sampling of petrophysical prediction uncer-
tainty

As mentioned in Section 3.2, in the rare cases when petrophysical prediction uncertainty
is included in coupled inversion, it is sampled through the brute force Monte Carlo (MC)
method (Hammersley and Handscomb, 1964) while the inference of model parameters of
interest is achieved through MCMC. This method draws independent samples from the
(multivariate) prior distribution of petrophysical prediction uncertainty and we refer to it as
MC-within-MCMC. In Section 3.4.1, we will demonstrate that the MC-within-MCMC method
turns out to be very inefficient because of acceptance rates that are prohibitively low. As an
alternative, we make use of the DREAM(ZS) proposal mechanism (see details in Laloy and
Vrugt (2012); Vrugt (2016)) to infer the petrophysical prediction uncertainty together with
the other parameters by MCMC (full MCMC). In essence, this implies that petrophysical
prediction uncertainty is parameterized and treated in the same way as the other unknowns
that are inferred in the MCMC inversion. Both the MC-within-MCMC and the full MCMC
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approaches should converge to the same result. An alternative to such explicit treatments of
petrophysical prediction uncertainty as "nuisance" parameters is to incorporate their effects
in the likelihood function. However, efficient and theoretically-consistent ways to achieve
this for non-linear problems remains an open research question (see Section 5.2 in Linde
et al. (2017)).

3.3.3 Petrophysical relationships and geophysical forward model

We consider synthetic test cases for known and theoretically-based petrophysical relation-
ships for which petrophysical prediction uncertainty is comparatively low. For the field study,
we consider an unknown, empirically-based and comparatively weak petrophysical relation-
ship. The synthetic example concerns predictions of the porosity field and the field study
aims at predicting hydraulic conductivity. These two types of problems were chosen to span
typical applications, as well as different strengths and types of petrophysical relationships.

The synthetic examples (Section 3.4) used in this study rely on the following petrophysical
relationship to link GPR velocities, v [m/s], to porosities,Φ [-]:

v =
√
Φmc−2[εw + (Φ−m −1)εs]

−1

, (3.5)

where εw = 81 [-] and c = 3 ·108 [m/s] are the relative permittivity of water and the speed
of light in vacuum, respectively. We assume the relative permittivity of the mineral grains,
εs [-], equal to 5 and the cementation index, m [-], equal to 1.5. In order to incorporate the
petrophysical prediction uncertainty, Eq. (3.5) is computed in three steps. The effective
relative permittivities, ε, are first found for a given porosity model (Pride, 1994):

Step 1 : ε= εs +Φmεw −Φmεs, (3.6)

then the petrophysical prediction errors, ∆p, describing the residual for each model cell are
added

Step 2 : ε′ = ε+∆p, (3.7)

and the corresponding GPR velocities are derived

Step 3 : v =
√

c−2ε′
−1

. (3.8)

In the context of the field study (Section 3.5) at the South Oyster Bacterial Transport Site, we
compare linear and quadratic petrophysical relationships to link the GPR velocities, v [m/s],
to the natural logarithm of the hydraulic conductivities, K = log K [log(m/h)]:

Step 1 : v′′′ = a0 +a1K (3.9)

or

Step 1 : v′′′ = a0 +a1K +a2K
2 (3.10)
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where a0, a1 and a2 are the polynomial coefficients. We then add ∆p:

Step 2 : v = v′′′+∆p. (3.11)

Chen et al. (2001) and Hubbard et al. (2001) demonstrate at the South Oyster Bacterial
Transport Site that the GPR velocities inferred by linear tomographic inversion are correlated
to the logarithm of hydraulic conductivities with a correlation coefficient of 0.68. This suggests
that the true underlying correlation is equal or stronger than this value. However, we stress
that any relationship between GPR velocity and hydraulic conductivity is site-specific and
typically weak.

The spatial model domain of interest covers an area of 7.2 m × 7.2 m below the ground surface.
We consider multi-Gaussian models of porosity, hydraulic conductivity and petrophysical
prediction uncertainty over a regular 2D grid of size 180 × 180. We use the non-linear 2D
traveltime solver (time 2d) of Podvin and Lecomte (1991) to compute first-arrival travel times
from velocity fields obtained by applying the petrophysical relationships of Eqs. (3.5), (3.8)
and (3.9)-(3.11) to each porosity or hydraulic conductivity field.

3.3.4 Model parameterisation

We generally describe the petrophysical prediction uncertainty, ∆p, the porosity,Φ, and the
log-hydraulic conductivity, K , fields as multi-Gaussian random fields. The only exception
is the illustrative synthetic example of Section 3.4.1, in which the Φ and ∆p fields corre-
spond to independent horizontal layers. We parameterise our multi-Gaussian fields using
the method by Laloy et al. (2015). This method generates stationary multi-Gaussian fields
by employing circulant embedding of the covariance matrix. To decrease the number of
unknowns inferred during the inversion process, the dimensionality is reduced by resampling
two low-dimensional vectors of standard normal random numbers to the original size of the
model using the one-dimensional Fast Fourier Transform interpolation. We refer to Laloy
et al. (2015) for more details. In our case, we generate each vector with 50 dimensionality
reduction (DR) variables (i.e., 100 instead of 32400 unknowns), which substantially decrease
the MCMC computational cost. The multi-Gaussian model is described by the Matérn vari-
ogram model and associated geostatistical parameters, including the mean and the variance,
the integral scale along the major axis of anisotropy, I , the anisotropy angle, ϕ, the ratio of
the integral scales along the minor and major axis of anisotropy, R, and the shape parameter
of the Matérn variogram model, ν. We jointly infer the geostatistical parameters and the DR
variables describing the hydrogeological properties (i.e., porosity or hydraulic conductivity)
with the corresponding parameters and variables characterising the petrophysical prediction
uncertainty.
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3.4 Synthetic examples

3.4.1 Toy example: MC-within-MCMC versus full MCMC sampling

Historically (see Section 3.3.2), petrophysical prediction uncertainty has been addressed by
drawing independent proposals of ∆p from the prior while parameters of interest have been
inferred by MCMC (MC-within-MCMC). As an alternative, petrophysical prediction uncer-
tainty is here parameterized and inferred as any other parameter in the MCMC inversion (full
MCMC). We consider a toy example to demonstrate the advantage of using an appropriate
model proposal distribution to infer the petrophysical prediction uncertainty (full MCMC)
when considering moderately large or large data sets with high signal-to-noise-ratios. The
set-up of this simple synthetic example consists of 10 GPR transmitters and 10 receivers
placed at uniform depth intervals on the right and left side of the model domain, respectively
(Fig. 3.1a). Considering all possible transmitter-receiver pairs yields 100 first-arrival travel
time data. The true porosity field is characterized by four layers of equal thickness with values
of 0.3, 0.45, 0.35 and 0.4 starting from the ground surface (Fig. 3.1a). We consider synthetic
travel time data that are contaminated with uncorrelated and normally distributed measure-
ment errors with standard deviation, σỸ, equal to 0.5 ns (i.e., typical of crosshole GPR) and 2
ns, respectively. We consider a uniform prior distribution of porosity in the range [0.25,0.50]
and the prior distribution of the petrophysical prediction uncertainty, ∆p, is Gaussian with
zero-mean and standard deviation of 0.8, chosen according to the experimental study of Roth
et al. (1990). The ∆p values are added following Eq. 3.7 and integrated in the inversion with
the MC-within-MCMC and the full MCMC methods (see Section 3.3.2). The latter draws the
parameters from the DREAM(ZS) proposal distribution that gradually update ∆p.

We obtain appropriate acceptance rates of 20% (with σỸ = 0.5 ns) and 22% (with σỸ = 2.0 ns)
when considering full MCMC (Table 3.1). For MC-within-MCMC, the acceptance ratio is
0.002% when σỸ = 0.5 ns and 0.31% when σỸ = 2.0 ns. Convergence to the target distribution
is consequently much faster for full MCMC than for MC-within-MCMC, especially when
σỸ = 0.5 ns (i.e., 5 ·103 forward simulations needed instead of 9.5 ·106, Table 3.1). That is,
the MCMC-derived method allows for an almost 2000-fold decrease in sampling time with
respect to the MC-within-MCMC method. This ratio grows further when using smaller σỸ
and more data.

Table 3.1 – First column, method used to sample ∆p; second column, standard deviation of
the measurement errors used to contaminate the data; third column, average acceptance
rate; fourth column, number of iterations needed to reach convergence.

Method σỸ [ns] AR [%] T [-]

Full MCMC
0.5 20.1 5.0 ·103

2.0 21.9 4.0 ·103

MC-within-MCMC
0.5 0.002 9.5 ·106

2.0 0.31 9.6 ·104
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For the case of σỸ = 0.5 ns, we compare the posterior mean porosity fields and associated
standard deviations obtained when ignoring ∆p (Fig. 3.1b and 3.1e), when using the full
MCMC (Fig. 3.1c and 3.1f) and the MC-within-MCMC estimated ∆p (Fig. 3.1d and 3.1g).
The posterior mean porosity fields obtained in the three cases (Fig. 3.1b-d) are very similar
and agree very well with the true porosity field shown in Fig. 3.1a. The incorporation of
the petrophysical prediction uncertainty results in a standard deviation (Fig. 3.1f-g) that is
ten times higher than for the case without petrophysical prediction uncertainty (Fig. 3.1e).
These results suggest that petrophysical prediction uncertainty has a strong effect on the
inferred model uncertainty and that the full MCMC approach is much more efficient than
MC-within-MCMC. In the following, we will only present results obtained by the full MCMC
approach and recommend it over MC-within-MCMC.

3.4.2 The forward problem: impact of petrophysical prediction
uncertainty

For a given study area, geological facies and properties change in space (e.g., porosity, specific
surface area, tortuosity) such that the optimal parameters describing any petrophysical
relationship are likely to vary in space. This implies that, when relying on the common
assumption of a stationary petrophysical relationship (i.e., the parameter values are the same
everywhere), the petrophysical prediction uncertainty is likely to have a spatially-correlated
structure at a scale similar to the geological variability.

In this section, we investigate the impact of spatially-correlated petrophysical prediction
uncertainty on data residuals by considering forward responses obtained with and without
spatially-correlated petrophysical errors. In this section, we do not perform any inversion,
but simply demonstrate the impact of the correlation scale of petrophysical prediction uncer-
tainty. We consider 841 synthetic crosshole GPR travel times that are related to the porosity
field in Fig. 3.2a. The porosity field is described by a multi-Gaussian field with horizontal
anisotropy with: ϕ = 90◦, mean, Φ = 0.39, variance, σ2

Φ = 2 · 10−4, integral scale, IΦ = 1.5
m, integral scales ratio, RΦ = 0.13 and the shape parameter, νΦ = 0.5 that corresponds to
an exponential variogram. In the absence of any petrophysical prediction uncertainty, we
obtain the velocity field by applying Eq. 3.5 with known petrophysical parameters. After
calculating the corresponding forward response (Section 3.3.3), we add uncorrelated Gaus-
sian observational noise with σỸ = 0.5 ns, which leads to a root mean square error (RMSE)
of 0.5 ns. For the case of uncorrelated petrophysical prediction errors, we apply Eq. (3.6),
(3.7) and (3.8) and draw ∆p realizations from an uncorrelated Gaussian distribution with
σ∆p = 0.8. On the resulting simulated travel time data, we add the same observational noise
realization. This yields a RMSE of 0.64 ns (Fig. 3.2b); a comparatively small increase in RMSE
compared with the previous case. We then describe the petrophysical prediction uncertainty
with zero-mean isotropic (R∆p = 1) multi-Gaussian models with σ∆p = 0.8 and ν∆p = 0.5.
To assess the impact of the spatial correlation of the petrophysical prediction uncertainty,
we draw ∆p realizations for isotropic multi-Gaussian distributions with increasing integral
scales. For the corresponding forward responses, we observe a sharp increase of RMSE with
increasing integral scales (Fig. 3.2b). For example, it is higher than 1.20 ns for an integral
scale of 1.5 m. The RMSE reaches a plateau slightly above 1.36 ns when the integral scale

60



0
1
2
3
4
5
6
7

D
ep

th
[m

]

0
1
2
3
4
5
6
7

D
ep

th
[m

]

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

D
ep

th
[m

]

0 1 2 3 4 5 6 7
Distance [m]

25

30

35

40

45

50

)
[%

]

0 1 2 3 4 5 6 7
0

0.5

1

1.5

P
os

te
ri
or

st
an

d
a
rd

d
ev

ia
ti
on

[%
]

a)

b) c) d)

e) f) g)

.

Figure 3.1 – (a) The "true" subsurface porosity model used in our toy example with the differ-
ent measurement depths of the GPR transmitters (black crosses) and receivers (black circles)
indicated. Mean porosity fields of the posterior distribution derived from MCMC simulation
with the DREAM(ZS) algorithm using a conceptual model with four layers in the case where
(b) the petrophysical prediction uncertainty is not taken into account, (c) the petrophysical
prediction uncertainty is sampled by MCMC and (d) the petrophysical prediction uncertainty
is sampled by MC-within-MCMC. The corresponding posterior standard deviations of the
porosity estimates are shown in (e), (f) and (g), respectively. All these plots were obtained
with σỸ = 0.5 ns

approaches the size of the model domain (7.2 m). These results suggests that uncorrelated
petrophysical prediction uncertainty (i.e., described by a nugget model) will have a relatively
weak impact on inversion results when considering finely-discretized models. However, we
suspect petrophysical prediction uncertainty to be spatially-correlated and this correlation
increase the effect on the observed data. If these effects are ignored in the inversion, one
would expect negative impacts on the inversion results. This is studied in the following
section.
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Figure 3.2 – (a) The true porosity model used in our synthetic examples. The 29 GPR trans-
mitter (black crosses) and 29 receiver (black circles) locations are indicated. (b) Root mean
square error of GPR travel time data as a consequence of observational errors and petro-
physical prediction uncertainty with increasing correlation. In the absence of petrophysical
prediction uncertainty, the RMSE is 0.5 ns.

3.4.3 The inverse problem: impact of assumptions on petrophysi-
cal prediction uncertainty

In this section, we investigate the consequences of making incorrect assumptions about
petrophysical prediction uncertainty when inferring posterior distributions and Bayesian
model selection. We consider the same "true" porosity field (Fig. 3.2a) as in Section 3.4.2
and 841 first-arrival GPR travel time data contaminated with uncorrelated and normally-
distributed measurement errors with standard deviation,σỸ = 0.5 ns. In the MCMC inversions,
we infer multi-Gaussian porosity fields with horizontal anisotropy and DRΦ, Φ, σ2

Φ being
"unknown" parameters drawn from the associated prior distributions listed in Table 3.2,
while all the other geostatistical parameters affecting the porosity structure are kept fixed.
The petrophysical prediction uncertainty (if considered) is described as a zero-mean multi-
Gaussian field with horizontal anisotropy and known geostatistical parameters (i.e., only
DR∆p variables are inferred in the inversion, see Table 3.2). As before, the standard deviation,
σ∆p, was set equal to 0.8 according to the experimental study of Roth et al. (1990). The
addition of DR∆p leads to a decrease in the magnitude of the correlation coefficient (from -1
to -0.81) between the "true" porosity and the "true" GPR velocity values.

We consider four cases: ∆p is not present in the data (i.e., it is not used to generate the
synthetic data) and it is not inferred in the MCMC inversion (Case 1); ∆p is inferred but it is
not present in the data used for inversion (Case 2); ∆p is present in the data, but not inferred
(Case 3); ∆p is present in the data and inferred (Case 4). Cases 1 and 4 represent situations
where the assumptions are consistent with the "field" situation, while Cases 2 and 3 are based
on inconsistent assumptions. We suggest that Case 3 represent the most common situation
in the hydrogeophysics literature (i.e., petrophysical prediction uncertainty exists, but it is
ignored).
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Table 3.2 – Geostatistical parameters of the multi-Gaussian models subject to inference (first
column), their respective units (second column), range (third column), prior distribution
(fourth column), and number (last column). Dimensionality reduction variables, DRΦ, mean,
Φ, and variance, σ2

Φ, of the porosity field; dimensionality reduction variables, DR∆p, of the
petrophysical prediction errors.

Parameter Units Prior range Prior No.
DRΦ - - Normal 100
Φ - [0.3,0.5] Uniform 1
σ2
Φ - [10−4,2.5 ·10−3] Log-uniform 1

DR∆p - - Normal 100

All cases considered provide accurate estimates of the mean porosity (Fig. 3.3a), but only
the consistent cases (Case 1 and 4) give significant probability to the actual variance (i.e.,
sill) describing the porosity field (Fig. 3.3b), with (as expected) Case 4 providing less precise
estimates (i.e., parameter uncertainty is higher). For the inconsistent cases, we find for
Case 2 that the standard deviation of the porosity field is greatly underestimated, while it is
overestimated in Case 3 (Fig. 3.3b).

We now consider the resulting mean porosity fields and the standard deviations for the
consistent cases. For Case 1, we find a mean porosity field (Fig. 3.4a) that is very close to
the true field (Fig. 3.2a). The standard deviation is low (Fig. 3.4e), the scatter between the
mean model and the true model follows the 1:1 trend line (Fig. 3.4i) and the correlation
coefficient is high (0.9). For Case 4, we find a slightly less precise mean model (Fig. 3.4d),
which is reflected in the standard deviation being twice as large (Fig. 3.4h). Nevertheless, the
corresponding scatter plot (Fig. 3.4l) indicates that there is no bias (the scatter falls on the 1:1
trend line) and the correlation coefficient is 0.75.

We now turn our attention to the inconsistent cases. When considering Case 2, we find a less
variable mean field (Fig. 3.4b) and standard deviations that are in-between the two consistent
cases (Fig. 3.4f). The correlation coefficient is high (0.88), but the estimates are biased as they
do not follow the 1:1 trend line (Fig. 3.4j). For Case 3, we find an overly variable mean field
(Fig. 3.4c), rather small standard deviations (Fig. 3.4g) and a moderate correlation coefficient
(0.75) with a scatter plot above the 1:1 trend line (Fig. 3.4k). These results suggest different
outcomes. First, including a known petrophysical prediction uncertainty in the inversion
leads to consistent estimates, but a wider posterior distribution than if petrophysical predic-
tion uncertainty is absent. Second, the correlation coefficient with the true model is mainly
determined by the petrophysical prediction uncertainty. Third, the estimated petrophysical
prediction uncertainty (that does not exist) in Case 2 accounts for some of the variability
due to porosity variations, which leads to a too smooth mean porosity field. Lastly, ignoring
actual petrophysical prediction uncertainty in the inversion process (Case 3; the common
case) leads to overly variable fields in order to accommodate data variability caused by both
porosity variations and petrophysical prediction uncertainty. From these first inversion
examples, we conclude that ignoring petrophysical prediction uncertainty leads to overly
confident parameter inference and that some of the estimated parameters might be biased.
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Figure 3.3 – (a) Posterior distributions of the inferred mean of the porosity field. (b) Posterior
distributions of the inferred variance (i.e., sill) of the porosity field. The vertical blue lines
depict the values of the true model. The posterior distributions are derived from MCMC
simulation with the DREAM(ZS) algorithm using 8 chains with 2.5·105 iterations.

We now focus our attention on Bayesian model selection. For each of the four cases, we also
use the data to infer porosity fields assuming (erroneously) a multi-Gaussian conceptual
model with isotropy or vertical anisotropy. We compute the evidence for each of these
conceptual models (the case of the true horizontal anisotropy and the incorrect cases of
isotropy and vertical anisotropy) by approximating the integral in Eq. (3.3) with the Gaussian
mixture importance sampling estimator (Section 3.3.1). For each case, we use a total of 105

importance samples and repeat the evidence computation 10 times. The mean evidences
and associated ranges are presented in Fig. 3.5.

We find that the ranking of the different conceptual models is the same for all cases. As
expected, the multi-Gaussian model with horizontal anisotropy (true conceptual model)
has the largest evidence followed by the isotropic model (Fig. 3.5a). The evidence values
are the largest when no petrophysical prediction uncertainty is present in the data or in the
inversion (Case 1, Fig. 3.5a). When we include ∆p in the inversion, the evidence estimates
(Case 2, Fig. 3.5a) decrease drastically with respect to Case 1. For instance, we find a 29
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Figure 3.4 – (a-d) Mean porosity fields of the posterior distribution derived from MCMC
simulation with the DREAM(ZS) algorithm using 8 chains with 2.5·105 iterations for Cases
1-4, respectively. The corresponding posterior standard deviations of the porosity estimates
for the four different cases are shown in (e-h), respectively. From (j) to (l), scatter plots of
the "true" porosity values versus the mean posterior porosity estimates obtained in the four
cases. In each plot, from (j) to (l), the Pearson correlation coefficients, r, are reported and the
red lines depict the theoretical 1:1 trend line (i.e., Pearson correlation coefficient equal to 1).

orders of magnitude decrease of the evidence estimates for the best model (multi-Gaussian
model with horizontal anisotropy). When petrophysical prediction uncertainty is absent in
the data (Cases 1 and 2), we find thus that Bayesian model selection clearly indicates that the
conceptual model with horizontal anisotropy and no petrophysical prediction uncertainty
is superior (the consistent case). Note that this is the case despite the fact that we find the
highest log-likelihoods for Case 2 (black dotted lines in Fig. 3.5b-d). The addition of 100
"unnecessary" degrees of freedom in Case 2 leads to a much decreased ability to differentiate
among the different geostatistical models. The error bars of the evidence estimates overlap
for Case 2 and the Bayes factors (Table 3.3) are much smaller than for Case 1, which imply
that it is much more difficult to judge which geostatistical model is preferred statistically.
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We have seen above that the Bayesian model selection clearly favours the consistent Case
1 when comparing Cases 1 and 2. Unfortunately, this is not the case when comparing
Cases 3 and 4. The consistent Case 4 (petrophysical prediction error in data and model
parameterization) has a much lower evidence (Fig. 3.5a) for the multi-Gaussian model with
horizontal anisotropy and much lower Bayes factors (Table 3.3) than the inconsistent Case 3
(petrophysical prediction errors in the data only). The reason for this is that Case 3 has similar
log-likelihoods (i.e., data misfit) as Case 4 (Fig. 3.5b), but half as many model parameters.
The ability to fit the data so well with this inconsistent model is probably a consequence of
the petrophysical prediction uncertainty having the same geostatistical model as the porosity
field. This implies that formal Bayesian model selection will favour a lower-dimensional
model parameterization that fits the data well, regardless of if it is the "correct" model or not.
This is a characteristic of Bayesian model selection (e.g., Schöniger et al. (2015b)). Additional
tests were performed (not shown) with conditioning to 17 porosity values along each borehole.
This decreased the evidence for Case 3 somewhat and increased it for Case 4. However, Case
3 was still strongly favoured when calculating the corresponding Bayes factor.

Table 3.3 – Bayes factors in log10 space of the best conceptual model, MGha, (horizontal
anisotropy) with respect to the isotropic one, MGis, (first column) and to the vertically
anisotropic one, MGva (last column).

Cases log10B(MGha,MGis) log10B(MGha,MGva)

Case 1 18.36 29.09
Case 2 0.58 1.94
Case 3 35.65 78.38
Case 4 10.19 15.37

3.4.4 Inference of petrophysical prediction uncertainty

We have shown (Section 3.4.3) that ignoring petrophysical prediction uncertainty in MCMC
inversions leads to over confident parameter estimates and biased estimates of geostatistical
properties (e.g., the sill). In practical field situations, it is difficult to determine a priori the
appropriate geostatistical model that governs petrophysical prediction uncertainty. In this
section, we explore to which extent it is possible to infer for both ∆p and its underlying
geostatistical model. We consider the same overall setting as in Sections 3.4.2 and 3.4.3 and
the same "true" porosity field (Fig. 3.2a). Here, the true petrophysical prediction uncertainty
is a zero-mean isotropic multi-Gaussian field with σ∆p = 0.8, I∆p=0.8 m, R∆p=1, and ν∆p=0.5.
We then infer for the mean and variance of the porosity field and for all the geostatistical
parameters of∆p described above and the corresponding DR∆p variables. The corresponding
prior distributions of these "unknown" parameters are listed in Tables 3.2 and 3.4. The
petrophysical relationship used is Eq. (3.5) and the petrophysical prediction uncertainty is
accounted for following Eq. (3.7).

The inferred posterior distributions of the mean (Fig. 3.6a) and variance (Fig. 3.6b) of
the porosity field are in general quite well recovered, even if they show a slight tendency
to underestimate the true values. Overall, the geostatistical properties of the reference
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Figure 3.5 – (a) Mean values of the evidence in log10 space, P (Ỹ), and corresponding uncer-
tainty (error bars) derived from the Gaussian mixture importance sampling method for the
multi-Gaussian conceptual models with horizontal anisotropy (squares), isotropy (circles)
and vertical anisotropy (triangles). Posterior distribution of the log-likelihood, L (θ|Ỹ), for the
multi-Gaussian model with (b) horizontal anisotropy, (c) isotropy and (d) vertical anisotropy
in Case 1 (black solid line), Case 2 (black dotted line), Case 3 (red dotted line) and Case 4 (red
solid line).

petrophysical prediction uncertainty field are captured in the sense that the corresponding
"true" values are included in the posterior distributions (Fig. 3.6c-g). However, some of
the parameters are poorly recovered. For instance, the inferred standard deviation of ∆p is
centered on the value of 1 instead of 0.8 (Fig. 3.6c) and the inferred shape parameter of the
Matérn variogram peaks on a value that is half of the corresponding "true" value (Fig. 3.6g).
The anisotropy angle is poorly estimated, which is a consequence of the "true" ∆p field being
isotropic (Fig. 3.6e). The integral scale along the major axis of anisotropy and the ratio of the
integral scales peak on the "true" values, but their posterior distributions are relatively wide
(Fig. 3.6d and 3.6f).

The dominant structures in the reference porosity field (Fig. 3.7a), such as the low-porosity
zones at a depth of 0.5 m, 4 m and 6 m, are well represented by the posterior mean porosity
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Table 3.4 – Geostatistical parameters of the multi-Gaussian model of the petrophysical predic-
tion uncertainty subject to inference (first column), their respective units (second column),
range (third column), prior distribution (fourth column), and number (last column). Stan-
dard deviation, σ∆p, integral scale along the major axis of anisotropy, I∆p, anisotropy angle,
ϕ∆p, ratio of the integral scales, R∆p, and shape parameter of the Matérn variogram, ν∆p, of
the petrophysical prediction uncertainty field.

Parameter Units Prior range Prior No.
σ∆p - [0.2,3.6] Log-uniform 1
I∆p m [0.6,3] Uniform 1
ϕ∆p

◦ [0,180] Uniform 1
R∆p - [0.05,1] Uniform 1
ν∆p - [0.1,5] Log-uniform 1

field (Fig. 3.7b). The posterior standard deviations on the inferred porosity field span a range
between 0.6% and 1% (Fig. 3.7c). We find that the inferred mean petrophysical prediction
uncertainty field (Fig. 3.7d) and the "true" field (Fig. 3.7e) have a rather low correlation
coefficient (0.55). The posterior standard deviations of ∆p span a range between 0.6 and 1
(Fig. 3.7f). These large uncertainties are also reflected in the ∆p posterior realizations (Fig.
3.8) that appear to be rather isotropic but with integral scales that vary significantly. Overall,
the structural features of the GPR velocity field are well inferred even if their values span
a wider range than the reference field (Fig. 3.7g-h). In particular, the high-velocity zone
in the bottom right corner of the model domain are enhanced and characterized by large
uncertainties (Fig. 3.7i).

We performed also a test with the petrophysical prediction uncertainty field conceptualized by
a multi-Gaussian field with anisotropy at 45◦ (not shown). For this case, we find a significant
improvement in the ability to infer for the standard deviation, angle of anisotropy and the
shape parameter of ∆p. These results suggest that ∆p is best resolved when its geostatistical
properties are markedly different from the underlying porosity field. However, Bayesian
model selection between the two conceptual models that include and not include ∆p in
the inversion still favours the case in which petrophysical prediction uncertainty errors are
ignored (not shown).

3.5 Field example

3.5.1 Field site and available data

We now focus our attention on field data from the South Oyster Bacterial Transport Site in
Virginia, USA (Hubbard et al., 2001). In Section 3.4, we considered a well known and strong
petrophysical relationship, while here we consider a case of an unknown and only moderately
strong petrophysical relationship. A PulseEKKO 100 GPR system with a 100-MHz nominal-
frequency antenna was used and we consider 841 crosshole GPR first-arrival travel time data
between 29 transmitter and 29 receiver locations in boreholes S14 and M3, respectively. A
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Figure 3.6 – Posterior distributions (black lines) derived from MCMC simulation with the
DREAM(ZS) algorithm using 8 chains with 2.5·105 iterations of the (a) inferred mean,Φ, and
(b) variance, σ2

Φ, of the porosity field and of the geostatistical parameters of the petrophysical
prediction uncertainty field: (c) standard deviation, σ∆p, (d) integral scale along the major
axis of anisotropy, I∆p, (e) anisotropy angle, ϕ∆p, (f) ratio of the integral scales along the
minor and major axis of anisotropy, R∆p, and (g) shape parameter of the Matérn variogram,
ν∆p. The red and blue lines depict the corresponding prior distributions and values of the
reference field, respectively. The densities in each plot are normalized.

total of 95 hydraulic conductivity estimates along boreholes S14, T2 and M13 obtained from
an electromagnetic flowmeter were used for point conditioning following the methodology
outlined by Laloy et al. (2015). We use the GPR data to infer the underlying log-hydraulic
conductivity field, K , assuming a multi-Gaussian model with horizontal anisotropy. Its
integral scales, the anisotropy angle, and the shape parameter of the Matérn variogram are
set based on previous investigations at the site (Chen et al., 2001; Hubbard et al., 2001). These
fixed parameters include, IK = 1.5 m, ϕK = 90◦, RK ≈ 0.13 and νK = 0.5. The dimensionality
reduction variables, DRK , the mean, K , and standard deviation, σK , of the log-hydraulic
conductivity field are subject to inference and the corresponding prior ranges are listed in
Table 3.5. The prior range on σK is set to include the 0.42 log(m/h) standard deviation of
the available flowmeter data. The petrophysical prediction uncertainty is described by a
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Figure 3.7 – (a) The "true" subsurface porosity model used in our synthetic example; (b)
mean porosity field of the posterior distribution derived from MCMC simulation and the
corresponding (c) standard deviations. (d) The "true" petrophysical prediction uncertainty
model; (e) mean petrophysical prediction uncertainty field of the posterior distribution
derived from MCMC simulation and the corresponding (f) standard deviations. (g) The
"true" GPR velocity model; (h) mean velocity field of the posterior distribution derived
from MCMC simulation and the corresponding (i) standard deviations. The mean fields are
obtained from MCMC simulation with the DREAM(ZS) algorithm using 8 chains with 2.5·105

iterations.

zero-mean multi-Gaussian field with prior distributions outlined in Table 3.5. The upper
bound on the prior range of σ∆p is chosen such that the resulting correlation coefficient
between GPR velocities and log-hydraulic conductivities is equal or stronger than 0.68, which
corresponds to the value reported by Chen et al. (2001) and Hubbard et al. (2001). We also
jointly infer the petrophysical parameters a0, a1 and a2 in Eqs. (3.9)-(3.10) and the standard
deviation of the measurement errors, σỸ (Table 3.5). The overall number of parameters
subject to inference is 211.
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Figure 3.8 – Nine realizations of the petrophysical prediction uncertainty field drawn ran-
domly from the posterior distribution obtained from MCMC simulation with the DREAM(ZS)

algorithm using 8 chains with 2.5·105 iterations. The petrophysical prediction uncertainty is
conceptualized by a multi-Gaussian field with isotropy.

3.5.2 Results at the South Oyster Bacterial Transport Site

In Section 3.4, we considered a synthetic example and a known petrophysical relationship. In
the present field example, we only assume to know the parametric form of the petrophysical
relationship and we estimate its petrophysical parameters. We infer the underlying log-
hydraulic conductivity field and compare the results obtained by assuming three different
petrophysical models: a perfect linear petrophysical relationship (Eq. (3.9)) in which the
petrophysical prediction uncertainty is ignored (Model 1), a linear petrophysical relationship
with scatter∆p taken into account by following Eqs. (3.9) and (3.11) (Model 2), and a quadratic
petrophysical relationship with scatter ∆p accounted for as in Eqs. (3.10)-(3.11) (Model 3).

After MCMC inversion, we obtain similar posterior distributions of the mean log-hydraulic
conductivity when using a perfect linear (-1.58 log(m/h)) and a scattered linear (-1.57
log(m/h)) petrophysical relationship and a slightly lower value (-1.68 log(m/h)) when using a
scattered quadratic petrophysical relationship (Fig. 3.9a). When ignoring ∆p, the inferred
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Table 3.5 – Parameters subject to inference at the South Oyster Bacterial Transport Site (first
column), their respective units (second column), range (third column), prior distribution
(fourth column), and number (last column). Dimensionality reduction variables, DRK ,
mean, K , and standard deviation,σK , of the natural log-hydraulic conductivity field; dimen-
sionality reduction variables, DR∆p, standard deviation, σ∆p, integral scale along the major
axis of anisotropy, I∆p, anisotropy angle, ϕ∆p, ratio of the integral scales, R∆p, and shape
parameter of the Matérn variogram, ν∆p, of the petrophysical prediction uncertainty field;
standard deviation of the measurement errors on the travel time data, σỸ, and polynomial
coefficients of the constant, a0, the linear, a1, and quadratic, a2, terms used to describe linear
or a quadratic petrophysical relationships.

Parameter Units Prior range Prior No.
DRK - - Normal 100
K log(m/h) [−2,−1] Uniform 1
σK log(m/h) [0.4,0.5] Log-uniform 1

DR∆p - - Normal 100
σ∆p m/µs [0,0.8] Uniform 1
I∆p m [0.6,3] Uniform 1
ϕ∆p

◦ [0,180] Uniform 1
R∆p - [0.05,1] Uniform 1
ν∆p - [0.1,5] Log-uniform 1
σỸ ns [0.3,2] Log-uniform 1
a0 m/µs [40,100] Uniform 1
a1 log(h/m)· m/µs [0,80] Uniform 1
a2 log(h2/m2)· m/µs [0,5] Uniform 1

standard deviation of the log-hydraulic conductivity field peaks close to the upper bound
(black line, Fig. 3.9b). When using a scattered linear or quadratic petrophysical relationship,
the inferred posterior distribution of the standard deviation is truncated on the lower bound
of the prior range (green and blue lines, Fig. 3.9b). The highest inferred standard deviation of
the measurement errors, 0.56 ns, is obtained when ignoring ∆p in the inversion (black line,
Fig. 3.9c). When considering the scattered linear or quadratic petrophysical relationship, the
corresponding estimates are 0.37 ns and 0.36 ns, respectively (Fig. 3.9c).

The parameters describing the three petrophysical relationships are well defined (Fig. 3.9d-e-
f). The inferred standard deviation of the petrophysical prediction uncertainty peak on the
upper bound of the prior range (Fig. 3.9g). The other geostatistical parameters describing
the ∆p field have similar posterior distributions regardless of if a linear (green lines) or a
quadratic (blue lines) petrophysical relationship is used (Fig. 3.9h-k). In particular, we find
that the petrophysical prediction uncertainty field is characterized by an integral scale along
the major axis of anisotropy centred around 2.4 m (Fig. 3.9h), an almost horizontal anisotropy
(Fig. 3.9i) and a ratio of the integral scales of 0.30 (Fig. 3.9j). The posterior distribution of the
Matérn shape parameter is truncated by the upper bound, thereby, suggesting a smooth field
(Fig. 3.9k).
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Figure 3.9 – Posterior distributions derived from MCMC simulation with the DREAM(ZS)

algorithm using 8 chains with 5·105 iterations of the (a) mean, K , and (b) standard devia-
tion, σK , of the log-hydraulic conductivity field. Posterior distributions of the (c) standard
deviation of the measurement errors, σỸ, and the polynomial coefficients of the (d) constant,
a0, (e) linear, a1 and (f) quadratic, a2, terms describing the petrophysical relationships of
Eqs. (3.9)-(3.11). Posterior distributions of the geostatistical parameters of the petrophysical
prediction uncertainty field: (g) standard deviation, σ∆p, (h) integral scale along the major
axis of anisotropy, I∆p, (i) anisotropy angle, ϕ∆p, (j) ratio of the integral scales along the
minor and major axis of anisotropy, R∆p, and (k) shape parameter of the Matérn variogram,
ν∆p. The results for the perfect linear, scattered linear and scattered quadratic petrophysical
relationship are depicted with black, green and blue lines, respectively. The red lines indicate
the corresponding prior distributions. The densities in each plot are normalized.

In Fig. 3.10a-c, we display the mean posterior hydraulic conductivity fields in linear scale.
The three fields show similar values close to the boreholes where flowmeter data are avail-
able but, away from these locations, the different petrophysical models lead to different
subsurface structures and estimates (e.g., within the first meter below the ground surface and
between borehole T2 and M3, Fig. 3.10a-c). Nevertheless, all the three hydraulic conductivity
mean models depict a low-hydraulic conductivity zone at a depth of 1-2 m.b.s.l. and at 5-6
m.b.s.l. (Fig. 3.10a-c). When the petrophysical prediction uncertainty is ignored, the inferred
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hydraulic conductivity (Fig. 3.10a) and GPR velocity (Fig. 3.10g) fields are characterized by
a high variability. On average, the standard deviations of the posterior hydraulic conduc-
tivity estimates are higher when petrophysical prediction uncertainty is accounted for (Fig.
3.10d-f).

We observe similarities between the corresponding posterior GPR mean velocities (Fig. 3.10g-
i). For instance, they all show a low-velocity zone within the first 2 m.b.s.l, at 3 m.b.s.l. and at
5-6 m.b.s.l and a high-velocity zone at 4-5 m.b.s.l. As expected, the inferred velocity fields
derived from scattered petrophysical relationships (Fig. 3.10h-i) are smoother than the case in
which this uncertainty is ignored (Fig. 3.10g). The mean posterior fields of the petrophysical
prediction uncertainty distributions (Fig. 3.10k-l) are very similar and correlated with the
posterior velocity means.

The red lines in Fig. 3.11a-c depict the inferred mean petrophysical relationships and the
scatter (black dots) around them represents the inferred mean petrophysical prediction
uncertainty. The GPR velocity range appears to be overestimated whether ∆p is ignored (Fig.
3.11a) or accounted for together with a quadratic petrophysical model (Fig. 3.11c), while a
scattered linear petrophysical relationship (Fig. 3.11b) provides a velocity range in agreement
with previous studies (Hubbard et al., 2001; Chen et al., 2001; Linde et al., 2008; Linde and
Vrugt, 2013; Brunetti et al., 2017).

We now turn our attention to the Bayesian model selection results. We find that Model 2
(scattered linear relationship) has the largest evidence value (-260.20 in log10 units ) and
Model 1 (∆p are ignored) has the lowest one (-361.00) (Fig. 3.12). The Bayes factor for the
"best" petrophysical model (Model 2) with respect to Model 1 and Model 3 is 10100.80 and
109.38, respectively. These results confirm that the perfect petrophysical model (Model 1) is
erroneous. Furthermore, the results suggest that the use of a more complex petrophysical
relationship is not necessarily favoured. Even if predictions based on the quadratic petro-
physical model (Model 3) fits the data slightly better than the linear petrophysical model
(Model 2) (Fig. 3.9c), the highest evidence is found for Model 2. This is a consequence of the
trade-off between parsimony and goodness of fit typical of the Occam’s razor principle on
which Bayesian model selection is based.

3.6 Discussion

Our coupled Bayesian hydrogeophysical inversion approach with explicit inference of spatially-
correlated petrophysical prediction uncertainty leads to less bias (e.g., in the inferred variance
of the inferred hydrogeological property field), more realistic uncertainty quantification and
less over confident model selection compared to the common choice of ignoring this type
of uncertainty. Even if our approach to infer petrophysical prediction uncertainty doubles
the number of parameters in the inversion problem, we observe dramatic gains in sampling
efficiency compared to MC-within-MCMC (e.g., Bosch (1999, 2016)). Moreover, DREAM(ZS)

allows for parallel evaluation of the different Markov chains and, therefore, enables feasible
computational times even in high (e.g., in our case, more than 200) model dimensions. Our
synthetic and field-based case-studies suggest that it is not always possible to independently
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Figure 3.10 – Mean of the posterior hydraulic conductivity, K, realizations obtained using a
(a) perfect linear, (b) scattered linear and (c) scattered quadratic petrophysical relationship
with the corresponding (d)-(f) standard deviation of the posterior hydraulic conductivity
estimates, respectively. Mean of the posterior GPR velocity realizations obtained using (g)
perfect linear, (h) scattered linear and (i) scattered quadratic petrophysical relationships.
Mean of the posterior petrophysical prediction uncertainty estimates for the (k) linear and (l)
quadratic petrophysical relationship. The different measurement depths of the flowmeter
data (black points) are indicated for boreholes S14 (on the left), T2 (in the middle) and M3
(on the right). The posterior distributions are computed from MCMC simulation with the
DREAM(ZS) algorithm using 8 chains with 2.5·105 iterations.

constrain hydrogeological and petrophysical properties. This trade-off is particularly acute
when the petrophysical prediction errors have similar geostatistical properties (e.g., orien-
tations and integral scales) as the hydrogeological property field of interest (Fig. 3.7). A
manifestation of this trade-off is given by the field application at the South Oyster Bacterial
Transport Site, for which it was necessary to constrain the standard deviation of petrophysical
prediction uncertainty and the standard deviation of the logarithm of hydraulic conductivity.
Without such constraints, the inversion yields largely uncorrelated log-hydraulic conductiv-
ity and GPR velocity fields, results that are inconsistent with previous studies (Chen et al.,
2001; Hubbard et al., 2001; Linde et al., 2008). This suggests that a careful petrophysical
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Figure 3.11 – Scatter plots of the mean posterior hydraulic conductivity estimates against the
mean posterior GPR velocity estimates assuming a (a) perfect linear, (b) scattered linear and
(c) scattered quadratic petrophysical relationship. The red lines depict the inferred mean
petrophysical relationship, while the scatter represents the inferred mean petrophysical
prediction uncertainty.
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Figure 3.12 – Mean values of the evidence in log10 space, P (Ỹ), and corresponding uncertainty
(error bars) derived from the Gaussian mixture importance sampling method for (Model 1)
a perfect linear petrophysical relationship as shown in Eq. (3.9), (Model 2) scattered linear
petrophysical relationship such that∆p is taken into account as shown in Eqs. (3.9) and (3.11),
(Model 3) scattered quadratic petrophysical relationship where ∆p is taken into account as
shown in Eqs. (3.10)-(3.11).

analysis involving borehole data or literature reviews are needed to define constraining prior
information when performing coupled hydrogeophysical inversion of field data.

In a previous study on Bayesian hydrogeophysical inversion model selection that ignored
petrophysical prediction uncertainty (Brunetti et al., 2017), it was found that the typically
large data sets encountered in geophysics and the assumption of small uncorrelated data
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errors (Gaussian likelihood) lead to very strong confidence in the ability of geophysical data to
discriminate between alternative conceptual hydrogeological models. By including spatially-
correlated petrophysical prediction uncertainty, we find for a synthetic example (Fig. 3.5) that
the magnitude of the Bayes factor of the "best" conceptual model relative to the worse one
decreases by 63 orders of magnitude. Nevertheless, the comparison between Case 3 (petro-
physical prediction errors ignored) and Case 4 (petrophysical prediction errors accounted
for) in Fig. 3.5a and Table 3.3 still indicates high Bayes factors and a practically-speaking
unique ability of geophysical data to find the most appropriate conceptual hydrogeological
model among a set of candidates. In the future, one should also account for the effect of
modelling errors (i.e., the discrepancy between actual physical responses and those simulated
with simplified physics; here, a ray-based approximation in the present study instead of a
full solution of the Maxwell’s equations). A number of promising approaches to address
modelling errors are available (Brynjarsdóttir and O’Hagan, 2014; Hansen et al., 2014; Xu and
Valocchi, 2015). Accounting for modelling errors is an essential next step to achieve reliable
Bayesian hydrogeophysical model selection; we anticipate that this will further decrease the
range of Bayes factors.

Bayesian model selection at the South Oyster Bacterial Transport Site (Section 3.5) demon-
strates clearly that the relationship between log-hydraulic conductivity and GPR velocity is
not a perfect relationship. That is, the petrophysical model with a scattered linear relationship
has a much higher evidence than results obtained by assuming a perfect linear relationship.
However, contrasting results were obtained in the synthetic example of Section 3.4.3 that did
not involve any hydrogeological point measurements. In that case, formal Bayesian model
selection erroneously favoured a conceptual model that ignored petrophysical prediction
uncertainty. This happens because this conceptual model has fewer parameters and is still
able to fit the data well, albeit with a porosity model with biased variance. At the South
Oyster Bacterial transport Site, we condition all model proposals to point data (flowmeter
estimates of hydraulic conductivity) and it is then not possible to propose a biased model
close to the boreholes. Hence, the scattered petrophysical relationship is preferred. However,
even if the inclusion of point conditioning in the synthetic example (not shown) decreased
the Bayes factor, the model selection still favoured the wrong conceptual model. In the
synthetic example, we considered boreholes at the left and right sides of the model domain,
and the relative petrophysical prediction uncertainty was much smaller than for the field
example. This could explain why the inconsistency between point data and GPR data is
more evident for the field example, which led the Bayesian model selection to favour a model
with petrophysical prediction uncertainty. These findings suggest that MCMC inversion
and model selection is not always able to identify the "right" model and that their outputs
need to be treated with some caution. The more prior information that is available (e.g., on
petrophysical prediction uncertainty in terms of variance and correlation scale), the more
reliable are the results. Indeed, Bayesian model selection is built on the principle of Occam’s
razor and a problem-specific and conceptual-model specific level of informative data is
needed to overcome this tendency to favour a simpler, but erroneous conceptual model (e.g.,
Schöniger et al. (2015a)).

In this study, we have made the choice to infer for petrophysical prediction uncertainty,
instead of accounting for its effects in the likelihood function. For linear theory, it is indeed
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possible to propagate the impact of (multi-Gaussian) petrophysical errors and add the cor-
responding covariance matrices to the data covariance matrix (Bosch (2004); Bosch et al.
(2009); Bosch (2016); Chen and Dickens (2009)). This is not possible for non-linear theory,
as the resulting impact of petrophysical uncertainty on the data leads to model-dependent
non-Gaussian distributions. The corresponding problem formulation and ways to address
this problem was recently discussed by Linde et al. (2017) in their Section 5.2. In the future, it
would be interesting to compare these two approaches (i.e., inferring for petrophysical uncer-
tainty (this study) or accounting for the effect of petrophysical uncertainty in the likelihood
function).

3.7 Conclusions

We have demonstrated the importance of accounting for petrophysical prediction uncertainty
in coupled hydrogeophysical inversion and highlighted the critical role played by its spatial
correlation. As MCMC inversions are primarily performed to enable accurate uncertainty
quantification, we suggest that petrophysical prediction uncertainty should be accounted
for in future hydrogeophysical studies. In this work, we parameterize the petrophysical
prediction uncertainty as a multi-Gaussian field that is inferred together with hydrogeological
target properties. To decrease model dimensionality, future work should also focus on
developing computationally efficient and accurate approaches to account for this uncertainty
in the likelihood function.

Inferring petrophysical prediction uncertainty with MCMC leads to dramatic performance
gains compared to previous work, in which it has been accounted for by Monte Carlo sam-
pling. In our examples, we show that ignoring petrophysical prediction uncertainty and
(above all) its spatial correlation causes bias in the inferred variance of the hydrogeological
properties, which implies overly variable fields. Accounting for this error source allows for
consistent hydrogeological estimates and widens the estimated posterior distributions. How-
ever, the geostatistical model describing petrophysical prediction uncertainty is only partially
recoverable by the inversion. When performing Bayesian model selection, accounting for
petrophysical prediction uncertainty reduces overconfidence in the ability of geophysical
data to discriminate between conceptual hydrogeological models of the subsurface. When
considering geophysical data alone, there is a risk that Bayesian hydrogeophysical model
selection will favour a model parameterization that ignores petrophysical prediction uncer-
tainty provided that the resulting overly variable hydrogeological estimates can explain the
geophysical data well. This highlights the importance of including constraining prior infor-
mation about petrophysical prediction uncertainty and the value of combining geophysical
and hydrogeological data in the inversion.
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4.1 Abstract

Hydrogeological field studies rely often on a single conceptual representation of the subsur-
face. This is problematic since the impact of a poorly chosen conceptual model on predictions
might be significantly larger than the one caused by parameter uncertainty. Furthermore,
conceptual models often need to incorporate geological concepts and patterns in order
to provide meaningful uncertainty quantification and predictions. Consequently, several
geologically-realistic conceptual models should ideally be considered and evaluated in terms
of their relative merits. Here, we propose a full Bayesian methodology based on Markov
chain Monte Carlo (MCMC) to enable model selection among conceptual models that are
sampled using training images and concepts from multiple-point statistics (MPS). More
precisely, power posteriors for the different conceptual subsurface models are sampled using
sequential geostatistical resampling and Graph Cuts. To demonstrate the methodology, we
compare and rank five alternative conceptual geological models that have been proposed in
the literature to describe aquifer heterogeneity at the MAcroDispersion Experiment (MADE)
site in Mississippi, USA. We consider a small-scale tracer test (MADE-5) for which the spatial
distribution of hydraulic conductivity impacts multilevel solute concentration data. The
thermodynamic integration and the stepping-stone sampling methods were used to compute
the evidence and associated Bayes factors using the computed power posteriors. We find that
both methods are compatible with MPS-based inversions and provide a consistent ranking
of the competing conceptual models considered.

4.2 Introduction

The geological structure of the subsurface is a key controlling factor on groundwater flow
and solute transport in aquifers (Maliva, 2016; Renard and Allard, 2013; Zheng and Gorelick,
2003) and, therefore, it needs to be properly represented and accounted for in modelling
studies. The needs for quantitative and reliable subsurface modelling and management
(Refsgaard and Henriksen, 2004; Scheidt et al., 2018) are driving hydrogeologists to con-
sider conceptual models with increasing geological realism and complexity (e.g., see reviews
by Linde et al. (2015b); Hu and Chugunova (2008)). Traditionally, (hydro)geological sub-
surface heterogeneity has often been described in terms of mean values and covariances
of the relevant physical properties (e.g., through the widely used multi-Gaussian models).
However, such conceptualisations may be too simplistic in certain subsurface systems and,
therefore, insufficient to accurately reproduce and predict flow and transport processes
(Gómez-Hernández and Wen, 1998; Zinn and Harvey, 2003; Journel and Zhang, 2006; Kerrou
et al., 2008). Multiple-point statistics (MPS) (Guardiano and Srivastava, 1993; Strebelle, 2002;
Hu and Chugunova, 2008; Mariethoz and Caers, 2014) offers a means to effectively repro-
duce complex geological structures such as curvilinear features. By using a training image,
MPS enables geostatistical simulations that honour point data and the higher-order spatial
statistics that are captured in the training image. The training image is a conceptual represen-
tation summarising prior geological understanding about the system under study. It can be
constructed from sketches drawn by hand, digitalised outcrops or generated by, for example,
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process-imitating, structure-imitating, or descriptive simulation methods (Koltermann and
Gorelick, 1996; De Marsily et al., 2005).

In many real world applications, generally because of the sparsity of direct observations,
several alternative conceptualisations of subsurface heterogeneity (e.g., describing the spatial
distribution of hydraulic conductivity) might be plausible and proposed by one or several
experts. Unfortunately, uncertainty pertaining to the choice of the conceptual model is often
ignored in modelling studies, even if it might be a dominant source of uncertainty (Bond
et al., 2007; Rojas et al., 2008; Refsgaard et al., 2012; Lark et al., 2014; Scheidt et al., 2018;
Randle et al., 2018). Indeed, geostatistical model realisations generated from one training
image might lead to a vastly different range of predictions than those generated from another
training image, as shown, for example, by Pirot et al. (2015). Conceptual uncertainty should,
therefore, be integrated in modelling and inversion studies. Ideally, this should be achieved
by using formal methods to test and rank alternative conceptual geological models based on
available hydrogeological and geophysical data (Linde, 2014; Linde et al., 2015b; Schöniger
et al., 2014; Dettmer et al., 2010). Bayesian model selection (Jeffreys, 1935, 1939; Kass and
Raftery, 1995) offers a quantitative approach to perform such comparisons by computing
the so called evidence (i.e., the denominator in Bayes’ theorem) which allows to identify
the conceptual model, in a chosen set, that is the most supported by the data. However, a
complication arises when performing Bayesian model selection with complex spatial priors
that are represented by training images. Most MPS-based inversions are non-parametric
which implies that they rely on samples being drawn proportionally to the prior distribution,
while it is generally not possible within a MPS framework to evaluate the prior probability
of a given model proposal. Hence, MPS-based inversions cannot build on many state-of-
the-art concepts to enhance the performance of the MCMC (e.g., Laloy and Vrugt (2012))
and associated approaches for calculating the evidence (Volpi et al., 2017; Brunetti et al.,
2017). Similarly, it is not possible within a MPS-framework to calculate approximate evidence
estimates using the Laplace-Metropolis method (Lewis and Raftery, 1997).

It is only recently that MPS-based inversions have been proposed (see review by Linde et al.
(2015b)). Markov chain Monte Carlo (MCMC) inversions with MPS (e.g., Mariethoz et al.
(2010a); Hansen et al. (2012)) generally rely on model proposals obtained by sequential
geostatistical resampling of the prior (Gibbs sampling) that are used within the extended
Metropolis algorithm to accept model proposals based on the likelihood ratio (Mosegaard
and Tarantola, 1995). Sequential geostatistical resampling generates model proposals of
the spatially-distributed parameters of interest by conditional resimulations of a random
fraction of the current field proportionally to the prior as defined by the training image. There
exist several MPS methods to sample complex spatial priors with sequential Gibbs sampling.
Examples include the versatile direct sampling method (Mariethoz et al., 2010b) or the recent
Graph Cuts approach (Zahner et al., 2016; Li et al., 2016) that enables speed-ups by one to
two orders of magnitude. Since high-dimensional MCMC inversions necessitate many evalu-
ations of model proposals by forward modelling, it is essential that the geostatistical model
proposal process is fast compared to the forward simulation time while ensuring model
realisations of high quality that honour geological patterns in the training image. Various ad-
vances have been made to enhance MPS-based inversions both in a non-parametric MCMC
framework (e.g., parallel tempering by Laloy et al. (2016)) and in a parametric framework
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using, for example, spatial generative adversarial neural networks (Laloy et al., 2018). Also,
ensemble-based exploration schemes have been explored (Jäggli et al., 2017).

State-of-the-art evidence estimators that are compatible with non-parametric spatial pri-
ors include thermodynamic integration (Gelman and Meng, 1998; Friel and Pettitt, 2008),
stepping-stone (Xie et al., 2011) and nested sampling (Skilling, 2004; Skilling et al., 2006).
Thermodynamic integration and the stepping-stone method sample from a sequence of
so-called power posterior distributions that connect the prior to the posterior distribution.
The nested sampling method is based on a constrained local sampling procedure in which
the prior distribution is sampled under the constraint of a lower bound on the log-likelihood
function that increases with time. Thermodynamic integration and nested sampling trans-
form the evidence, that is, a multi-dimensional integral over the parameter space, into a
one-dimensional integral over unit range in the log-likelihood space. The stepping-stone
sampling estimator approximates the evidence by importance sampling using the power pos-
teriors as importance distributions. To the best of our knowledge, thermodynamic integration
and stepping-stone sampling have never been used to estimate the evidence of subsurface
models built with MPS in the context of Bayesian model selection, while this is the case for
nested sampling (Elsheikh et al., 2015). Recent studies in hydrology suggest that nested sam-
pling is less accurate and stable than thermodynamic integration (Liu et al., 2016; Zeng et al.,
2018) and that it is strongly dependent on the efficiency of the constrained local sampling
procedure. Unfortunately, MPS-based inversions cannot benefit from recent improvements
in constrained local sampling approaches as they require parametric (analytical) forms of
the prior (Schöniger et al., 2014; Liu et al., 2016; Zeng et al., 2018; Cao et al., 2018). Even if
thermodynamic integration and stepping-stone sampling are computationally expensive,
they are easily parallelised such that the computational time is equivalent to the time needed
to run a single MCMC chain. Moreover, these two methods are easy to implement and flexible
in the sense that any suitable MCMC method can, provided minimal changes, be used to
explore the power posterior distributions.

One way to circumvent the challenges of non-parametric priors in Bayesian model selection
is to reduce the model parameter space, for example, by cluster-based polynomial chaos
expansion (Bazargan and Christie, 2017) or by truncated discrete cosine transform combined
with summary metrics from training images (Lochbühler et al., 2015). Bayesian inference and
model selection is then applied on the reduced dimension space whose prior distribution is
parametric (e.g., multivariate Gaussian distribution). The main drawback of such approaches
is that truncation may smoothen sharp interfaces found in the training images.

In this study, we propose the first full Bayesian method that enables Bayesian model selection
among geologically-realistic conceptual subsurface models. To do so, we combine sequential
geostatistical resampling based on Graph Cuts, the extended Metropolis acceptance criterion
and evidence estimation by power posteriors using either thermodynamic integration or
stepping-stone sampling. The advantages and the drawbacks of this new methodology are
assessed using a challenging application. In this study, we compare and rank five alternative
conceptual geological models that have been proposed in the literature to characterise
the spatial heterogeneity of the aquifer at the Macrodispersion Experiment (MADE) site in
Mississippi, USA (Zheng et al., 2011). Among this set of five conceptual models of hydraulic
conductivity spatial distribution, we aim to identify the one that is in the best agreement with
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multilevel concentration data acquired during a small-scale tracer test (MADE-5) (Bianchi
et al., 2011a).

4.3 Theory

4.3.1 Bayesian inference and model selection

Bayesian inference approaches express the posterior pdf, p(θ|Ỹ), of a set of unknown model
parameters, θ= {θ1, . . . ,θd }, given n measurements, Ỹ = {ỹ1, . . . , ỹn}, via Bayes’ theorem

p(θ|Ỹ) = p(θ)L(θ|Ỹ)

p(Ỹ)
. (4.1)

The prior pdf, p(θ), quantifies all the information that is available about the model param-
eters before considering the observed data. Typically, p(θ) is represented by multivariate
analytical functions (e.g., Gaussian, uniform, exponential) describing marginal distributions
of each parameter and their spatial correlation. With the advent of MPS methods, higher-
order spatial statistics of θ can be incorporated in inversions by means of training images.
In this case, the description of prior knowledge is typically non-parametric and sequential
geostatistical resampling techniques are used to sample p(θ). The likelihood function, L(θ|Ỹ),
summarises in a single scalar value the probability that the observed data has been generated
by a proposed set of model parameters. We consider a Gaussian likelihood characterised by
uncorrelated and normally distributed measurement errors with constant standard deviation,
σỸ,

L(θ|Ỹ) =
(√

2πσ2
Ỹ

)−n
exp

[
−1

2

n∑
h=1

(
Fh(θ)− ỹh

σỸ

)2
]

. (4.2)

As the residuals between the simulated forward responses, Fh(θ), and the observed data,
ỹh , becomes smaller, the likelihood increases. The denominator in Bayes’ theorem is the
evidence (or marginal likelihood), p(Ỹ), and it is the cornerstone quantity in Bayesian model
selection problems. The conceptual model with the highest evidence (Jeffreys, 1935, 1939) is
the one that is the most supported by the data. A noteworthy feature of the evidence is that
it implicitly accounts for the trade-off between goodness of fit and model complexity (Gull,
1988; Jeffreys, 1939; Jefferys and Berger, 1992; MacKay, 1992). More precisely, the evidence
quantifies how likely it is that a given conceptual model, η, with model parameters, θ, and
prior distribution, p(θ|η), has generated the data Ỹ,

p(Ỹ|η) =
∫

L(θ,η|Ỹ)p(θ|η)dθ. (4.3)

The evidence is used to calculate Bayes factors (Kass and Raftery, 1995), that is, evidence
ratios of one conceptual model with respect to an other. For instance, the Bayes factor of η1

83



with respect to η2, or B(η1,η2), is defined as

B(η1,η2) = p(Ỹ|η1)

p(Ỹ|η2)
. (4.4)

Conceptual models with large Bayes factors are preferred statistically and the conceptual
model with the largest evidence is the one that best honours the data on average over its prior.
However, the evidence computation is analytically intractable for most problems of interest
and the multi-dimensional integral in Eq. 4.3 must be approximated by numerical means. In
this work, the different conceptual models represent alternative spatial representations of
hydraulic conductivity in the subsurface.

4.3.2 Evidence estimation by power posteriors

Thermodynamic integration, also called path sampling (Gelman and Meng, 1998), and
stepping-stone sampling (Xie et al., 2011) are two methods to estimate the evidence (Eq.
4.3) numerically. The key idea behind both methods is to sample from a sequence of so-called
power posterior distributions, pβ(θ|Ỹ), in order to create a path in the probability density
space that connects the prior to the posterior distribution (Friel and Pettitt, 2008). The power
posterior distribution is proportional to the prior pdf multiplied by the likelihood function
raised to the power of β ∈ [0,1]:

pβ(θ|Ỹ) ∝ p(θ)L(θ|Ỹ)β. (4.5)

Decreasing β has the effect of flattening the likelihood function. For β = 1, the posterior
distribution is sampled, p1(θ|Ỹ) ∝ p(θ)L(θ|Ỹ); for β= 0, the prior distribution is sampled,
p0(θ|Ỹ) ∝ p(θ). In thermodynamic integration and stepping-stone sampling, a sequence
of β-values are defined (see Section 4.3.2). For each β value, one (or more) MCMC runs
are used to draw N samples from the corresponding power posterior distribution and the
corresponding likelihood values are recorded. The Markov chains for the different β-values
can be run independently in parallel or sequentially from β = 0 to β = 1 (serial MCMC)
as described in Friel and Pettitt (2008). Thermodynamic integration and stepping-stone
sampling have several attractive characteristics: (1) the total computing time is equivalent
to a normal MCMC inversion provided that all MCMC runs are carried out in parallel, (2)
they can be applied for any MCMC inversion method with only minimal intervention (it is
only necessary to add the exponent β to the likelihood function) and (3) the only information
needed is the series of likelihoods obtained from MCMC simulations with different β-values.
Once the power posterior distributions have been sampled, the thermodynamic integration
and stepping-stone sampling methods use the recorded likelihood values in two different
ways to estimate the evidence (Sections 4.3.2-4.3.2).
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Thermodynamic integration

Thermodynamic integration reduces the multi-dimensional integral of Eq. 4.3 into a one-
dimensional integral of the expectation of the log-likelihood, L (θ|Ỹ) ≡ logL(θ|Ỹ), as:

log p(Ỹ|η) =
∫ 1

0
Eθ|Ỹ,β

[
L (θ|Ỹ,η)

]
dβ. (4.6)

For the derivation of Eq. 4.6, we refer to Friel and Pettitt (2008) and Lartillot and Philippe
(2006). The integral in Eq. 4.6 is estimated by a quadrature approximation over a discrete set
of β-values, 0=β1 < ·· · <β j < ·· · <βJ =1. To simplify the notation, we define the expectations
of the log-likelihood functions as ` j ≡ Eθ|Ỹ,β j

[
L (θ|Ỹ,η)

]
and their corresponding variances

as σ2
j ≡ Vθ|Ỹ,β j

[
L (θ|Ỹ,η)

]
. In this work, we use the corrected composite trapezoidal rule:

log p(Ỹ|η) ≈
J∑

j=2

(β j −β j−1)

2
(` j +` j−1)−

J∑
j=2

(β j −β j−1)2

12
(σ2

j −σ2
j−1), (4.7)

which provides more accurate estimates compared with the classical composite trapezoidal
rule (first term in Eq. 4.7) as it also considers the second-order correction term (second term
in Eq. 4.7). This corrected composite trapezoidal rule was originally employed by Friel et al.
(2014) and later used by other authors including Oates et al. (2016) and Grzegorczyk et al.
(2017).

The accuracy of the resulting evidence estimates depends on how the β-values are discretised,
their number, J , (details provided in Section 4.3.2) and the number and the correlation of
samples, N , of the power posteriors obtained by MCMC. These uncertainties are often
summarised by two error types: the sampling error, es , and the discretisation error, ed

(Lartillot and Philippe, 2006; Calderhead and Girolami, 2009). The sampling error is related
to the standard errors of the MCMC posterior expectations of the log-likelihoods obtained for
each β j . To avoid underestimation of these errors, the autocorrelation in the MCMC samples
should be accounted for in order to calculate the effective sample size, Neff, (i.e., number
of independent samples within each MCMC chain) as suggested by Kass et al. (1998). The
effective sample size is defined as:

Neff, j =
N j

1+2
∑∞

z=1ρ j (z)
, (4.8)

where ρ j (z) is the autocorrelation at lag z. Applying the rules for uncertainty propagation
to the first leading term in Eq. 4.7 and assuming the errors of ` j to be independent of those
associated to ` j−1, the sampling error is:

σ2
s =

J∑
j=2

(β j −β j−1)2

4

(
σ2

j

Neff, j
+

σ2
j−1

Neff, j−1

)
. (4.9)

Discretisation errors arise as the continuous integral of Eq. 4.6 is estimated using a finite
number of evaluation points (Eq. 4.7). Following Lartillot and Philippe (2006), Baele et al.
(2013) and Friel et al. (2014), we define ed as the worst-case discretisation error that arises
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from the approximation of Eq. 4.6 with a rectangular rule. Hence, ed is half the difference
of the areas between the upper and lower step functions and it can be interpreted as the
variance of the trapezoidal rule:

σ2
d =

J∑
j=2

(β j −β j−1)2

4
(` j −` j−1)2. (4.10)

As a consequence, the variance on the evidence estimates can be summarised as V̂ar log p(Ỹ|η) =
σ2

d +σ2
s .

Stepping-stone sampling

Stepping-stone sampling (Xie et al., 2011) computes the evidence by combining power
posteriors with importance sampling. The key underlying idea is to write the evidence as the
ratio, r , of the normalising factors in Bayes’ theorem for β=1 (posterior sampling) and β=0
(prior sampling):

r = p(Ỹ|η,β= 1)

p(Ỹ|η,β= 0)
. (4.11)

Since the prior integrates to one, the evidence is equivalent to r as p(Ỹ|η,β= 0) equals 1. The
ratio can be expressed as a product of J ratios, r j :

r =
J∏

j=2
r j−1 =

J∏
j=2

p(Ỹ|η,β j )

p(Ỹ|η,β j−1)
. (4.12)

Then, importance sampling is applied to the numerator and denominator of Eq. 4.12 using
the power posterior pβ j−1 (θ|Ỹ) as the importance distribution:

r j−1 = 1

N

N∑
i=1

L(θ j−1,i |Ỹ)β j−β j−1 (4.13)

and, finally, the log-evidence is computed as:

log p(Ỹ|η) =
J∑

j=2
logr j−1 =

J∑
j=2

log

{
1

N

N∑
i=1

exp
[
(β j −β j−1) ·L (θ j−1,i |Ỹ)

]}
. (4.14)

In contrast to thermodynamic integration, the evidence estimated by stepping-stone sam-
pling does not suffer from discretisation errors. The sampling error can be evaluated as:

V̂ar log p(Ỹ|η) =
J∑

j=2

1

Neff, j−1 ·N

N∑
i=1

(
L(θ j−1,i |Ỹ)β j−β j−1

r j−1
−1

)2

. (4.15)

The derivation of Eq. 4.14 and 4.15 appears in Xie et al. (2011), and interested readers are
referred to this publication for further details. The only difference in our Eq. 4.15 is that we
consider the effective sample size as defined in Eq. 4.8.
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Discretisation scheme for β-values

For small increases of β close to 0, l j increases dramatically and the corresponding power
posteriors quickly turn from being similar to the prior to being similar to the posterior
distribution. This rapid change is enhanced when large and informative data sets are used.
As a consequence, the accuracy of the evidence estimates increases when placing most of the
β-values close to 0. This is especially true for the thermodynamic integration method that
estimates the evidence as the area below the curve of the expectation of the log-likelihood, l j ,
as a function of β j (Eq. 4.6). Starting from an initial set of sampling points, Liu et al. (2016)
use an empirical method that places additional β-values based on a qualitative search for
locations where l j changes strongly in order to target additionalβ-values to use. However, this
method is subjective and it increases the computing time when using parallel computations
as the β-values are not defined at the outset. Friel and Pettitt (2008) are the first to employ a
discretisation scheme of β-values that follows a power law spacing as:

β j =
(

j −1

J −1

)c

with j = 1,2. . . , J . (4.16)

Calderhead and Girolami (2009) demonstrate that this scheme significantly improve the
accuracy of the evidence estimates with respect to the uniform spacing used by Lartillot and
Philippe (2006).

4.4 Method

4.4.1 General framework

It is common to sample the unnormalised posterior pdf of Eq. 4.1 with MCMC simulations.
This is here achieved by combining the extended Metropolis acceptance criterion (Mosegaard
and Tarantola, 1995) with a sequential geostatistical resampling technique (e.g., Graph Cuts)
that provides conditional model proposals at each iteration featuring similar geological
patterns as those found in the corresponding training image. For each proposed model, θprop,
we calculate the forward response and compare it with the observed data and, according to
the extended Metropolis algorithm, accept θprop with probability:

α= mi n

{
1,

L(θprop|Ỹ)

L(θcur|Ỹ)

}
. (4.17)

To sample the power posteriors, we simply modify the extended Metropolis acceptance
criteria by raising the likelihoods in Eq. 4.17 with the corresponding βk -values. We report
below the overall algorithm (Algorithm 1), in which we combine model proposals based on
MPS with the extended Metropolis acceptance criteria followed by evidence estimation using
power posteriors.
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Algorithm 1: MCMC inversion workflow based on MPS and the extended Metropolis
algorithm to enable evidence estimation using power posteriors.

Input: T , maximum number of MCMC iterations; J , number of power coefficients β
distributed according to Eq. 4.16; a training image

Output: Λ j , matrices containing power posteriors and log-likelihoods; log p(Ỹ|η),
evidence

Set t = 1;
Draw θ1 from the training image;
Solve the forward problem;
Compute likelihood (e.g., Eq. 4.2);
for j = 1,..., J do

for t = 2,..., T do
Set θcur = θt−1;
Draw θprop based on MPS (e.g., using Graph Cuts proposals);
Solve the forward problem;
Compute likelihood (e.g., Eq. 4.2);

Accept θprop with probability, α= mi n

{
1,

L(θprop|Ỹ)
β j

L(θcur|Ỹ)
β j

}
;

if θprop accepted then
Set θt =θprop;

else
Set θt =θcur;

end
Store θt and the corresponding log-likelihood in matrixΛ j ;
Set t=t+1;

end
end
Compute log p(Ỹ|η) (Eqs. 4.7 and 4.14) and corresponding variances (Eqs. 4.9-4.10 and

4.15) using the information stored inΛ j after the removal of the burn-in period.

4.4.2 Graph Cuts model proposals

In this work, to sample spatially correlated parameters, we rely on model proposals based on
the Graph Cuts algorithm introduced by Zahner et al. (2016) with some of the improvements
proposed by Pirot et al. (2017b,a). The main steps in the Graph Cuts algorithm are depicted
in Figure 4.1. Basically, a section of the same size as the model domain, θnew (Figure 4.1b),
is randomly drawn from the training image and the absolute difference between θnew and
the current model realisation, θcur (Figure 4.1a), is computed and raised to the power of
the cost power, δcp , (Pirot et al., 2017a) to obtain the cost image, δ = |θcur-θnew|δcp (Figure
4.1d). Two distinct regions of high cost, similar size and containing at least p pixels are
randomly selected (Figure 4.1e). To choose these terminals, Pirot et al. (2017b) introduce the
cutting threshold, δth ∈ [0,100], defined as a percentile of max(δ), which limits the possible
terminals to those regions where δ> δth ·max(δ). A patch is defined as the region enclosed
by a minimum cost line separating the two terminals using the min-cut/max-flow algorithm
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by Boykov and Kolmogorov (2004) (Figure 4.1f) and the new model proposal, θprop (Figure
4.1c), is built by cutting the patch from θnew and replacing the corresponding area in θcur.
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Figure 4.1 – Illustration of how model proposals are obtained using the Graph Cuts algorithm.
(a) Current model realisation, θcur, (b) section drawn randomly from the training image,
θnew, and (c) the resulting model proposal, θprop. This model proposal is obtained as follows:
(d) the cost image, δ, is defined as the absolute difference raised to the cost power, δcp , that
is δ = |θcur-θnew|δcp , (e) two disconnected regions of high differences (light blue and orange
areas) of similar size are randomly selected and (f) the cut of minimum cost that separates
the two regions is calculated and the resulting dark red region is cut from (b) θnew and pasted
into (a) θcur to create (c) θprop.

We manually tune three algorithmic parameters to obtain model proposals that preserve the
patterns found in the training image: the minimum number, p, of pixels in each of the two
terminals, the cutting threshold, δth , and the cost power, δcp . We have set the cost power to 1
or 2 depending on the type of conceptual model considered. The main reason for using graph-
cut proposals in this work is its computational speed relatively to other MPS algorithms (see
comparisons by Zahner et al. (2016)). However, slower pixel-based geostatistical resimulation
strategies that implement sequential Gibbs sampling, such as, those presented by Mariethoz
et al. (2010b) or Hansen et al. (2012) could also be used.
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4.4.3 Field site and available data

The MADE site is characterised by an unconsolidated shallow alluvial aquifer composed
by a mixture of gravel, sand, and finer sediments. The high heterogeneity at the MADE
site got the attention of the hydrogeological community in the mid-1980s and numerous
studies have been carried out since then (see Zheng et al. (2011) for a review). The structure
is thought to be made up of a highly permeable network of sediments embedded in a less
permeable matrix (Harvey and Gorelick, 2000; Feehley et al., 2000; Bianchi and Zheng, 2016).
The case-study considered herein focuses on determining the most appropriate conceptual
model of hydraulic conductivity in a reduced set given the multilevel solute concentration
data collected during the MADE-5 tracer experiment (Bianchi et al., 2011a). Before tracer
injection, a steady-state dipole flow field was established by injecting clean water into a well
and by simultaneously abstracting groundwater from another well located 6 m apart form
the injection well. Then, a known volume of bromide solution was injected along the entire
vertical profile of the aquifer for 366 min followed by continuous injection of clean water
for 32 days. The flow rates at both the injection and extraction wells were kept practically
constant during all the steps of the test. Between the injection and extraction wells, two multi-
level sampler (MLS) wells are installed for monitoring the temporal and spatial evolution
of the tracer plume. In particular, bromide concentrations were recorded at 19 different
times and at seven depth levels (sampling ports) in each of the two MLS wells resulting in
266 concentration measurements. Full technical details about the experiment can be found
in Bianchi et al. (2011a). The forward model used to simulate the flow and transport during
the MADE-5 experiment and a simple 3D to 2D transformation of the data is described in
Section 4.8.

Conceptual models at the MADE site and corresponding training images

We consider five training images that may represent spatially distributed hydraulic conductiv-
ity fields at the MADE site (Figure 4.2). The multi-Gaussian training image in Figure 4.2a was
created as a 2D unconditional realisation obtained with the Sequential Gaussian SIMulation
(SGSIM) algorithm of the Stanford Geostatistical Modeling Software (SGeMS) (Remy et al.,
2009). The corresponding variogram parameters (Table 4.1) were calculated by Bianchi et al.
(2011a) from the analysis of more than 1000 hydraulic conductivity values estimated by
means of borehole flowmeter tests (Rehfeldt et al., 1992). According to Bianchi et al. (2011a),
the mean and variance in log10(cm/s) is set equal to -2.37 and 1.95, respectively.

The training images in Figure 4.2b-d were generated following Linde et al. (2015a). The highly
conductive and connected channels in an homogeneous matrix (Figure 4.2b) is built from
the original training image of Strebelle (2002) modified according to the channel properties
proposed by Ronayne et al. (2010) for the MADE site. The channel hydraulic conductivity is
equal to -0.54 in log10(cm/s), the channel thickness is 0.2 m and the channel fraction is 3.25
%. The training image in Figure 4.2c is based on hydrogeological facies and their hydraulic
conductivity values correspond to those of an outcrop located near the MADE site (Rehfeldt
et al., 1992) and reported in Table 4.2.

The training image in Figure 4.2d is chosen solely on the knowledge that the aquifer at the
MADE site is constituted by alluvial deposits (Boggs et al., 1992). Linde et al. (2015a) and
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Figure 4.2 – Training images used in the MPS-based inversion to represent spatial hydraulic
conductivity of the MADE site: (a) multi-Gaussian field (Bianchi et al., 2011a), (b) highly
conductive channels in an homogeneous matrix (Strebelle, 2002; Ronayne et al., 2010; Linde
et al., 2015a), (c) model based on a mapping study of a MADE outcrop (Rehfeldt et al., 1992;
Linde et al., 2015a), (d) model based on a mapping study at the Herten site in Germany
(Bayer et al., 2011; Comunian et al., 2011; Linde et al., 2015a) featuring representative alluvial
deposit structures and (e) model based on lithological borehole data collected at the MADE
site (Bianchi and Zheng, 2016).

Lochbühler et al. (2014b) used the training image of Figure 4.2d as derived from a detailed
mapping study at the Herten site in Germany (Bayer et al., 2011; Comunian et al., 2011)
featuring representative alluvial deposit structures and adapted it to the hydrogeological
facies observed at the MADE site (Table 4.2).

The training image of Figure 4.2e is built based on five hydrogeological facies identified from
lithological borehole data at the MADE site (Bianchi and Zheng, 2016) and reported in Table
4.3. This training image is a stochastic unconditional realisation that was generated following
Bianchi and Zheng (2016).
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Table 4.1 – Geostatistical parameters of the multi-Gaussian training image (Figure 4.2a)
proposed by Bianchi et al. (2011a) for the MADE site. The actual variogram model was a
linear combination of a spherical and an exponential model.

Variogram model
Variogram parameters Spherical Exponential
Maximum range [m] 76 21
Minimum range [m] 4.6 5
Nugget 0.2 -
Sill 1.75 3.0

Table 4.2 – Hydrogeological facies and their hydraulic conductivity values (Rehfeldt et al.,
1992) observed at the MADE site outcrop and used for the training images in Figure 4.2c-d.

Facies log10 K [cm/s]
Open framework gravel -6.83·10−4

Sand -2.00
Undifferentiated sandy gravel -3.00
Sandy, clayey gravel -5.00

Table 4.3 – Hydrogeological facies and their hydraulic conductivity values based on lithologi-
cal data from the MADE site (Bianchi and Zheng, 2016) and used for the training image in
Figure 4.2e.

Facies log10 K [cm/s]
Highly conductive gravel -0.45
Sand and gravel -2.05
Gravel with sand -2.11
Well-sorted sand -2.18
Sand gravel and fines -2.53
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Training images should be stationary and approach ergodicity (Caers and Zhang, 2004). This
implies that the type of patterns found should not change over the domain covered by the
training image (stationarity). Moreover, the size of the training image should be sufficiently
large (at least the double) compared to the largest pattern to enable adequate simulations
(ergodicity). Small training images lead to large ergodic fluctuations that deteriorates pattern
reproduction (Renard et al., 2005). Note that the smallest training image considered herein
(Figure 4.2b) is four times wider than the size of the model domain in the horizontal direction.

In this work, we compare the five conceptual models of hydraulic conductivity that, in the
following, we refer to as (1) multi-Gaussian as built from the training image in Figure 4.2a;
(2) hybrid that consists of the highly conductive channels of Figure 4.2b overlaid on the
multi-Gaussian background of Figure 4.2a; (3) outcrop-based built from the training image in
Figure 4.2c; (4) analog-based built from the training image in Figure 4.2d; (5) lithofacies-based
built from the training image in Figure 4.2e. This selection of conceptual models allows us to
compare very different parameterisations of the spatial heterogeneity at the MADE site. Note
that a full assessment of all conceptual models that has been published for the MADE site is
outside the scope of this study. Instead, the focus is on a versatile methodology that enables
comparison of widely different conceptual models.

4.4.4 Evidence estimation in practice

We discretise the power coefficients β using the commonly used power law of Eq. 4.16 (Grze-
gorczyk et al., 2017; Höhna et al., 2017; Baele and Lemey, 2013; Xie et al., 2011; Calderhead and
Girolami, 2009; Friel and Pettitt, 2008). According to these studies, the parameter c should
be set equal to 3 or 5 and J as large as possible with the common choice of 20 ≤ J ≤ 100.
In this study, we chose c = 5 and J = 40. For each β value, we run one MCMC chain of 105

iterations. These choices are dictated by computational constraints. The most challenging
power posterior to sample is for β=1, for which we run 3 chains to better explore the posterior
distribution. Consequently, we run 42 MCMC chains for each conceptual model. Given
that the log-likelihoods obtained from the MCMC simulations are the basis for evidence
estimations by power posteriors, we define the burn-in period (i.e., number of MCMC itera-
tions required before reaching the target distribution) by considering the evolution of the
log-likelihoods. To assess when the log-likelihood values start to oscillate around a constant
value, we apply the Geweke method (Geweke, 1992) on the log-likelihoods of each chain.
This diagnostic compares the mean computed on the last half of the considered chain length
against the one derived from a smaller interval in the beginning of the chain (in our case,
20% of the chain length). At first, the Geweke’s method is applied to the whole chain (no
burn-in), and if its statistics is outside the 95% confidence interval of the standard normal
distribution, we apply it again after discarding the first 1%, 2%, ...,95% of the total chain
length. The burn-in is determined in this way for β=1, as this is the most challenging case
for which burn-in takes the longest time to achieve. The evidence estimates are computed
using the thermodynamic integration method based on both the corrected trapezoidal rule
(Eq. 4.7), as well as with the stepping-stone sampling method (Eq. 4.14). In order to correctly
estimate the uncertainty of the evidence estimates, the effective sample size (Eq. 4.8) in each
chain needs to be assessed. When evaluating Eq. 4.8, we truncate the sum in the denominator
at the lag at which ρ j (z) is within 95% confidence interval of the normal distribution with
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Table 4.4 – Summary of MCMC results using the MADE-5 tracer data for three MCMC chains of
105 steps for each conceptual model with β = 1. First column, conceptual model considered;
second column, average acceptance rate (AR); third to fifth column, burn-in percentage based
on the Geweke method for each of the three chains (when no value is displayed, the chain
failed to reach burn-in); last two columns, means and standard deviations of the standard
deviation of the measurement errors inferred with MCMC.

Burn-in [%] σỸ [mg/L]
Conceptual model AR [%] Chain 1 Chain 2 Chain 3 Mean Std
Hybrid 0.6 - 58 87 5.81 0.27
Multi-Gaussian 8.0 48 45 62 7.14 0.33
Analog 4.1 - 64 84 7.22 0.34
Lithofacies 1.2 55 38 74 8.92 0.60
Outcrop 5.5 76 97 - 9.36 0.35

standard deviation equal to the standard error of the sample autocorrelation. The evidence
estimates are updated continuously after burn-in to visualise their evolution with the number
of MCMC iterations. The uncertainty associated with the evidence estimates are summarised

by standard errors, SE =
√

V̂ar log p(Ỹ|η) with corresponding 95% confidence intervals. The

variances V̂ar log p(Ỹ|η) are computed using Eqs. 4.9-4.10 for the thermodynamic integration
and using Eq. 4.15 for the stepping-stone sampling method.

4.5 Results for the MADE-5 case study

4.5.1 Bayesian inference

For each of the conceptual models considered, we first show prior MPS-realisations (i.e.,
β= 0) of hydraulic conductivity fields that are generated with the Graph Cuts method (Figure
4.3). Each set of prior realisations shows considerable spatial variability and is in broad
agreement with the original training image (Figure 4.2). This is valid for both continuous
(Figure 4.3b), categorical (Figures 4.3c-e) and hybrid conceptual models (Figure 4.3a).

The posterior distributions (i.e., β= 1) are obtained by assuming that the standard deviation
of the measurement errors, σỸ [mg/L], follows a log-uniform prior distribution in the range
[1,10] mg/L (last column of Table 4.4). The lowest mean of the inferred σỸ is obtained for the
hybrid conceptual model (5.8 mg/L) suggesting that this model enables the best match with
the data. The highest σỸ is found for the outcrop-based model (9.4 mg/L). The acceptance
rates are lower (second column in Table 4.4) than the ideal range between 15% and 40%
proposed by Gelman et al. (1996), which suggests a slow convergence of the Markov chains.
The burn-in time for each chain is obtained by the Geweke method (Table 4.4) as described
in Section 4.4.4.
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Figure 4.3 – Five prior realisations of hydraulic conductivity fields generated from the training
images of Figure 4.2 with the Graph Cuts algorithm for the (a) hybrid, (b) multi-Gaussian, (c)
analog-based, (d) lithofacies-based and (e) outcrop-based conceptual model of the MADE
site.

The different conceptual models provide quite different posterior distributions of the hy-
draulic conductivity field (Figure 4.4), even if certain commonalities are observed. For
instance, all the posterior models have a high-conductive zone at a depth of 7 m that extends
to a depth of 8 m on the right hand-side of the model domain. These features are visible in
both the posterior mean and the maximum a-posteriori fields (first and second column of
Figure 4.4). The analog- and outcrop-based conceptual models exhibit more variability in the
inferred hydraulic conductivity values (Figures 4.4c and 4.4e) with respect to the others and
the lithofacies-based conceptual model is characterised by the smallest posterior standard
deviations (Figure 4.4d). The Gelman-Rubin statistic (Gelman and Rubin, 1992) is commonly
used to assess if the MCMC chains has adequately sampled the posterior distribution, which
is generally considered to be the case if this statistic is below 1.2. We see in the last column
of Figure 4.4 that this is not the case for all pixel values, especially in the high-conductivity
region, and that a larger number of iterations is required for a full convergence. However, we
note that the evidence estimates are valid as long as the MCMC chains reach burn-in, while
enhanced sampling decreases the estimation error.
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Figure 4.4 – Mean (first column), maximum a-posteriori (second column), and standard
deviation (third column) of the posterior hydraulic conductivity realisations for the (a) hybrid,
(b) multi-Gaussian, (c) analog-based, (d) lithofacies-based and (e) outcrop-based conceptual
model at the MADE site. In the last column, the Gelman-Rubin statistic for each pixel
is reported. Dark-blue regions represent values equal or less than 1.2 and indicate that
convergence has been reached for those pixels.

In Figure 4.5, we show some of the simulated and observed breakthrough curves. We have
chosen the ones at a depth of 7 m in the monitoring wells MLS-1 (Figure 4.5a) and MLS-2
(Figure 4.5b) because they correspond to a region of high conductivity (high concentrations)
and the ones at a depth of 11 m that correspond to low concentrations in MLS-1 (Figure
4.5c) and MLS-2 (Figure 4.5d). Note that the range of measured concentration values spans
two orders of magnitude (Figure 4.5). In general, the outcrop-based conceptual model
is the worst in reproducing the observed breakthrough curves while the hybrid model is
the best performing one; this is particularly clear in Figure 4.5d. Corresponding plots at
all measurement locations are found in Section 4.9. The Pearson correlation coefficients
between the simulated posterior mean concentrations and the observed ones are 0.96 for the
hybrid model, 0.94 for the multi-Gaussian and analog-based models, 0.91 for the lithofacies-
and outcrop-based models.
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Figure 4.5 – Simulated (solid lines) and measured (black dots) bromide breakthrough curves
from the MADE-5 experiment in the two monitoring wells MLS-1 and MLS-2 at a depth of 7
m (a-b) and 11 m (c-d), respectively. The simulated breakthrough curves are summarised by
the mean of the posterior realisations (solid lines) and their 95% confidence intervals (shaded
areas).

4.5.2 Bayesian model selection

In this section, we present the estimated evidence values for each conceptual model con-
sidered. Overall, the evidence values obtained using stepping-stone sampling and thermo-
dynamic integration based on the corrected trapezoidal rule are in good agreement with
each other considering their 95% confidence intervals (Figure 4.6). Moreover, except for
some fluctuations at the early stage after burn-in, the evidence estimates evolve only slowly
as a function of the number of MCMC iterations after burn-in (Figure 4.6). We find that
stepping-stone sampling provides evidence values that are always lower than the ones esti-
mated with the thermodynamic integration. This behaviour is somewhat surprising as the
stepping-stone sampling technique is not based on a discretisation, while this is the case for
thermodynamic integration leading to an expected underestimation of the evidence. The
uncertainty associated with the stepping-stone evidence estimator decreases at a sustained
pace when increasing the number of MCMC iterations and it is lower than the one associated
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with thermodynamic integration (Figure 4.6 and Table 4.5). Thermodynamic integration is
more affected by discretisation errors, an error source that is independent of the number
of MCMC iterations, than by sampling errors (Figure 4.8). For this reason, the width of the
confidence intervals obtained by thermodynamic integration does not reduce significantly
with increasing numbers of MCMC iterations (Figure 4.6).

Figure 4.6 – Natural logarithm of the evidence estimates, log p(Ỹ|η), as a function of the num-
ber of MCMC iterations. Evidences are computed with the stepping-stone sampling method
(red line) and the thermodynamic integration method based on the corrected trapezoidal
rule (black line) for the (a) hybrid, (b) multi-Gaussian, (c) analog-based, (d) lithofacies-based
and (e) outcrop-based model at the MADE site. The evidence computation starts after a
different number of MCMC iterations because each of the conceptual models has a specific
burn-in period. The shaded areas represent the 95% confidence interval of the evidence
estimates (pink for stepping-stone sampling and grey for thermodynamic integration).

Both evidence estimators lead to the same ranking of the conceptual models with the hybrid
conceptual model having the largest evidence and the outcrop-based conceptual model hav-
ing the lowest one (Table 4.5). The multi-Gaussian and the analog-based conceptual models
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have very similar evidence estimates and they are the second-best performing conceptual
models (Table 4.5).

Table 4.5 – Estimates of the natural logarithm of the evidence, log p(Ỹ|η), with corresponding
standard errors, SE, for each conceptual model (first column) based on the stepping-stone
sampling method (second and third column) and on the thermodynamic integration method
with the corrected trapezoidal rule (last two columns).

Stepping-stone Thermodynamic
sampling integration

Conceptual model log p(Ỹ|η) [-] SE [-] log p(Ỹ|η) [-] SE [-]
Hybrid -903.99 1.17 -902.68 4.02
Multi-Gaussian -939.43 0.64 -939.15 0.93
Analog -941.48 0.87 -941.40 1.30
Lithofacies -1009.01 1.18 -1008.76 3.90
Outcrop -1037.58 1.11 -1036.45 1.47

For each conceptual model, the means of the log-likelihood functions, `, increase with
increasingβ as we move from sampling the prior distribution (β= 0) to sampling the posterior
distribution (β = 1) (Figure 4.7). From β = 0 to β = 0.1, the `-estimates span three orders
of magnitude. At very small values of β (i.e., < 10−6), the outcrop-based conceptual model
(green line in Figure 4.7) has mean log-likelihoods that are almost one order of magnitude
higher than the other models. With increasing β, the outcrop-based model shows a much less
steep increase of ` and at β= 10−3, they start to be lower than the log-likelihood means of the
other models. At higher power posteriors (β> 0.1), the `-estimates for the hybrid conceptual
model are the highest (red line in Figure 4.7), which explains why the highest evidence value
is found for the hybrid conceptual model. We also note that the mean log-likelihood is not
increasing continuously when β is close to one, which we attribute to random fluctuations of
the MCMC chains (Figure 4.7).

The percentage ratio of independent MCMC samples after burn-in is never above 10% and
it decreases to values as low as 0.01% for β = 1 (Figure 4.8). This is a consequence of the
slow mixing of the MCMC chains and it explains the increase of the sampling errors with
increasing β for both thermodynamic integration (Figure 4.8c) and stepping-stone sampling
(Figure 4.8d). The sampling errors of the stepping-stone sampling method are always at
least two orders of magnitude higher than the ones related to the thermodynamic method,
but this method is devoid of discretisation errors, which constitutes the dominant error
type for thermodynamic integration. As mentioned before, using a power law to distribute
β-values (Eq. 4.16) ensures that the discretisation errors for small β are relatively small (i.e.,
between 10−10 and 10−3, Figure 4.8b). The pronounced fluctuations of the discretisation
errors especially for β > 0.1 (Figure 4.8b) are related to the fact that the mean of the log-
likelihoods does not increase monotonically for high β-values.

We now compute the Bayes factors for the best conceptual model (hybrid) with respect
to each of the other competing conceptual models. In particular, we follow the guideline
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Figure 4.7 – Mean (line) of the natural logarithm of the likelihood functions, `, computed for
each β value and the 95% confidence interval of the `-estimates (shaded areas). Note that
the x- and y-axes are in log10 scale.

proposed by Kass and Raftery (1995) and we present twice the natural logarithm of the Bayes
factors (Figures 4.9a-b). The Bayes factors of the hybrid conceptual model are on the order
of 1015 and 1016 relative to the second best models (multi-Gaussian and analog-based) and
1058 relative to the worst model (outcrop-based) for both thermodynamic integration and
stepping-stone sampling. Note that the measure of twice the natural logarithms of the Bayes
factors are all larger than 50 (Figures 4.9a-b). According to the interpretation of Kass and
Raftery (1995), we can safely claim that the hybrid model shows very strong evidence of
being superior to the other considered conceptual models. The Bayes factors computed with
the stepping-stone sampling method have smaller uncertainties (Figure 4.9b) than the ones
based on thermodynamic integration (Figure 4.9a). We note that the relative rankings of the
competing models obtained with the thermodynamic integration and the stepping-stone
sampling methods are consistent and stable as long as the MCMC chains has reached burn-in.
Practically, this suggests that we can perform and obtain reliable Bayesian model selection
results at less computational cost and, again, that formal convergence of the MCMC chains
are not necessary.
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Figure 4.8 – (a) Percentage ratio between the effective and the total number of MCMC samples,
(b) discretisation errors in the thermodynamic integration method (square root of Eq. 4.10),
(c) sampling errors in the thermodynamic integration method (square root of Eq. 4.9) and
(d) sampling errors in the stepping-stone sampling method (square root of Eq. 4.15) as a
function of β-values. Note that all the x- and y-axes are in log10 scale.

4.6 Discussion

We have proposed a new methodology targeted at Bayesian model selection among geologically-
realistic conceptual models that are represented by training images. For MCMC inversions,
we use sequential geostatistical resampling through Graph Cuts that is two orders of mag-
nitude faster than the forward simulation time (i.e., 0.08 versus 8.35 sec). In addition to
being fast, the model realisations based on Graph Cuts are of high quality and honour the
geological patterns in the training images. This is true for the five different types of concep-
tual models considered (Figures 4.3-4.4). Moreover, the Graph Cuts algorithm can include
point conditioning (Li et al., 2016) even if this is not considered herein. We find that the
hybrid conceptual model allows for the best fit of the observed breakthrough curves (Figure
4.5). The inclusion of highly conductive channels in a multi-Gaussian background enables
enhanced simulations of the maximal concentrations and it is in general agreement with the
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Figure 4.9 – Twice the natural logarithm of the Bayes factors of the "best model" (hybrid)
with respect to the outcrop-based (green line), lithofacies-based (blue line), analog-based
(magenta line) and multi-Gaussian (black line) conceptual model at the MADE site. Results
are shown for (a) the thermodynamic integration method based on the corrected trapezoidal
rule and for the (b) stepping-stone sampling method. The shaded areas represent the 95%
confidence interval of the 2logBη1,η2 measures.

expected subsurface structure at the MADE site (i.e., highly permeable network of sediments
embedded in a less permeable matrix (Harvey and Gorelick, 2000; Zheng and Gorelick, 2003;
Liu et al., 2010; Ronayne et al., 2010; Bianchi et al., 2011a,b)). We find that the outcrop model
has not enough degrees of freedom to properly fit the solute concentration data (Figure
4.5). However, all conceptual models have difficulties in fitting the observed BTCs. This is
probably related to the fact that we ignore 3D heterogeneity. Furthermore, we expect that an
improved data fit would have been possible if we additionally would have inferred certain
model parameter values (e.g., hydraulic conductivity for each facies and for the geostatistical
parameters of the multi-Gaussian field).

In the light of the MADE-5 solute concentration data considered, the best fitting model
(hybrid) is also the one that has the highest evidence, while the outcrop-based conceptual
model has a Bayes factor of 10−58 with respect to the hybrid one, the lowest evidence and the
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lowest data fit (Table 4.4, Figure 4.6, Table 4.5). Linde et al. (2015a) rank different conceptual
models (only the analog- and outcrop-based models are exactly the same as in the present
work) of the region between the MLS-1 and MLS-2 wells using the maximum likelihood
estimate based on geophysical data (cross-hole ground-penetrating radar data). In agreement
with our results, Linde et al. (2015a) find that the analog-based conceptual model explains
the data much better than the outcrop-based conceptual model and that the latter is the
worst performing one in the considered set.

Our results suggest that when comparing complex conceptual models represented by train-
ing images in data-rich environments, it may sometimes be possible to simply rank the
performance of the competing conceptual models based on the inferred standard deviation
of the measurement errors, σỸ (Table 4.4), or the maximum likelihood estimate. Similar
results for more traditional spatial priors were also found in other studies (Schöniger et al.,
2014; Brunetti et al., 2017). However, note that maximum likelihood-based model ranking
will sometimes fail miserably as Bayesian model selection considers the trade-off between
parsimony and goodness of fit. For instance, we expect that if we would have considered an
uncorrelated hydraulic conductivity field, it would have produced the best fitting model but
not the highest evidence. Moreover, it is also clear from these results that simply sampling
the prior (β= 0) and then ranking the competing conceptual models based on the mean of
the sampled likelihoods may provide misleading results. Indeed, the outcrop-based model
has mean likelihoods of the prior model that are almost one order of magnitude higher than
the ones of the other models (Figure 4.7) and, therefore, such a ranking would suggest that
the outcrop-based conceptual model is the best one in describing the data while it is actually
the worst one. It is also worth noting that the lithofacies-based conceptual model provided
an excellent description of a large-scale tracer experiment (MADE-2) (Bianchi and Zheng,
2016) but did not perform equally to describe the small-scale heterogeneity involved in the
MADE-5 test.

We find that stepping-stone sampling almost always provides slightly lower evidence esti-
mates than thermodynamic integration (Table 4.5). This is in disagreement with the theory
and with results by Xie et al. (2011) and Friel et al. (2014). We attribute these unexpected
results to the facts that (1) the MCMC chains for β close to 1 do not reach full convergence
and the stepping-stone sampling is sensitive to poor convergence (Friel et al., 2014) and
(2) most of the contribution to the total evidence estimate comes from the terms of Eq. 4.7
computed for β> 0.1, a region where the mean log-likelihood does not increase monotoni-
cally due to random fluctuations of the MCMC chains (Figure 4.7). We also highlight that the
comparison between the uncertainty estimates of the evidence values provided by thermody-
namic integration and stepping-stone sampling (Figure 4.6) is not completely fair since the
discretisation errors affecting thermodynamic integration are based on a worst-case scenario
that arises from the approximation of Eq. 4.6 with a rectangular rule.

Future work should better account for model errors caused by the 3D to 2D flow and transport
approximation described in Section 4.8. How to properly account and represent model errors
is a challenging task especially in problems involving many data, high-dimensional parameter
spaces and non-linear forward models (e.g., Linde et al. (2017)). Another interesting topic that
could be explored is to apply parallel tempering and use the resulting chains for computing
the evidence with thermodynamic integration or stepping-stone sampling (Vlugt and Smit,
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2001; Bailer-Jones, 2015; Earl and Deem, 2005). Parallel tempering allows swapping between
chains and, thereby, improving sampling efficiency. This may contribute to more robust
results, faster convergence and, thereby, increase the number of effective samples (Figure
4.8a).

4.7 Conclusions

Inversions with geologically-realistic priors can be performed using training images and
model proposals that honour their multiple-point statistics. Unfortunately, such inversions
cannot rely on many state-of-the-art inversion methods and associated approaches for cal-
culating the evidence needed when performing Bayesian model selection. In this work, we
introduce a new full Bayesian methodology to enable Bayesian model selection among com-
plex geological priors. To demonstrate this methodology, we have evaluated its performance
in the context of determining, in a reduced set, the most suitable conceptual model of the
MADE aquifer using a small-scale tracer test (MADE-5). Our methodology is applicable
to both continuous and categorical conceptual models (e.g., a geologic facies image) and
it could be used at other sites, scales and for different data types. Among the conceptual
models considered for the MADE site, we find that the hybrid (highly conductive channels
in a multi-Gaussian background) conceptual model is the best-performing one, followed by
the multi-Gaussian and the analog-based conceptual model that is built based on outcrop
studies at the Herten site in Germany. Thermodynamic integration and stepping-stone sam-
pling methods are used for evidence computation using a series of power posteriors obtained
from MPS-based inversions. They provide a consistent ranking of the competing conceptual
models regardless of the number of MCMC iterations after burn-in. This suggests that one
can perform and obtain reliable Bayesian model selection results with MCMC chains that
have only achieved limited sampling after burn-in. Both thermodynamic integration and
stepping stone sampling are suitable evidence estimators. However, we recommend the
stepping-stone sampling method because it is not affected by discretisation errors and its
uncertainty (sampling errors) is significantly decreased with increasing numbers of MCMC
iterations. This is not the case for the thermodynamic integration because it is affected by
discretisation errors that dominate over the sampling errors. From the power posteriors
derived from the MADE-5 tracer test, we find that (1) ranking the conceptual models based
on prior sampling only (β= 0) favours the conceptual model with the lowest evidence and (2)
model ranking based on the maximum posterior likelihood estimates (β= 1) provides, for this
specific example, the same results as the formal Bayesian model selection methods consid-
ered herein. For improved sampling, we suggest that future work should investigate the use
of parallel tempering results for evidence computations. Moreover, a more formal treatment
of model errors due to the considered 3D to 2D approximation needs to be considered.
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4.8 Appendix A: Forward model: from 3D to 2D

The forward model used by Bianchi et al. (2011a) to simulate the bromide concentrations
during the MADE-5 experiment is a 3D block-centred finite-difference model based on
MODFLOW (3D flow simulator) (Harbaugh, 2005) and MT3DMS (3D transport simulator)
(Zheng, 2010). We initially consider a fine spatial discretisation of 0.1 m in the area around
the wells (Figure 4.10a-b). However, running such a 3D model is computationally prohibitive
for evidence computations (i.e., 15 minutes of computing time to get one forward response
and we need 105 forward evaluations for each MCMC chain and power posterior considered).
To reduce the computing time, we perform a simple 3D to 2D correction of the data followed
by 2D flow and transport simulations using the finite-volume algorithm MaFloT (Künze
and Lunati, 2012). Moreover, we restrict the simulations to the best fitting cross section
(red segment in Figures 4.10a-b) between the positions of the injection, extraction and the
two MLS wells, which results in an area of 6.3 m × 8.1 m (Figure 4.10c). For the transport
equation, we set Dirichlet boundary conditions with the normalised concentration to the
given fluxes on the left side of the model domain (Figure 4.10c) corresponding to the injection
well location. For the pressure equation, we set Dirichlet boundary conditions at the west
and east sides (i.e., pressure difference), and Neumann boundary conditions at the north and
south sides of the model domain (Figure 4.10c).
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Figure 4.10 – (a) Aerial view of the 3D grid used for simulations with MODFLOW/MT3DMS; (b)
zoom in the tracer test area, in which the grid size was refined to 0.1 m; (c) cross section used
for simulations with MaFloT. The width of the lines in (c) is representative of the diameter of
the four wells.
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Formal approaches to account for model errors in MCMC inversions exist (e.g., Cui et al.
(2011)), but they are outside the scope of the present contribution. In the following, we
introduce a simple error model that allows us to correct for the leading effects of the 3D to 2D
transformation. These modelling errors stem primarily from the 2D linear approximation
of the 3D radial distribution of the hydraulic heads, which results in a time shift in the
breakthrough curves at the MLS wells. To estimate the correction factors, we consider a
uniform hydraulic conductivity model with the geometric mean hydraulic conductivity at the
MADE site (i.e., 4.3·10−5 m/s (Rehfeldt et al., 1992)). For this model, we perform 3D and 2D
simulations of the MADE-5 experiment with MODFLOW/MT3DMS and MaFloT, respectively.
As expected, the 3D simulated hydraulic heads between the injection and extraction wells
does not change linearly as for the 2D simulation (Figure 4.11). We tune the injection rate
in the MODFLOW simulations to achieve simulated hydraulic heads that are as close as
possible to the measured ones. We then perform MaFloT simulations using the MODFLOW
simulated hydraulic heads at the injection and extraction wells as boundary conditions and
we compute correction factors at the MLS wells. These multiplicative correction factors are
those that maximise the correlation between the concentrations simulated with MT3DMS
and MaFloT. The mean correction factors over the seven sampling ports in each of the two
MLS wells are 1.09 and 1.92. Once the correction factors have been applied, the earlier time
shifts (Figures 4.11b-c) are removed (Figures 4.11d-e). These correction factors are used in
all subsequent simulations. Note that no attempt is made to correct for tracer movement
due to 3D heterogeneity; the correction is a simple geometrical correction to account for
the transformation of a uniform 3D to 2D flow field. We acknowledge that this is a crude
approximation, but we deem it sufficient for the purposes of the present paper.
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Figure 4.11 – (a) Hydraulic head profiles between the injection and extraction wells arising
from 2D and 3D flow simulations in a uniform hydraulic conductivity field. Simulated
breakthrough curves at 7 m depth in (b) MLS-1 and (c) MLS-2 without corrections. The shifts
in the 2D simulations are removed when (d-e) applying the correction factors.

4.9 Supporting information

This supporting information provides the same figures as Figure 4.5 in the main article but at
all measurement locations in the two monitoring wells MLS-1 and MLS-2. They show the
simulated and measured bromide breakthrough curves from the MADE-5 experiment.

107



0

5

10

15

20
MLS-1: Depth 4.8 m

0

5

10

15

20
MLS-1: Depth 6.0 m

0

50

100

150

200
MLS-1: Depth 7.2 m

0

10

20

30

B
ro

m
id

e 
co

nc
en

tr
at

io
n 

[m
g/

L
] MLS-1: Depth 8.5 m

0.1 1  10 30 
Time [days]

0

10

20

30
MLS-1: Depth 9.7 m

0.1 1  10 30 
Time [days]

0

10

20

30

40
MLS-1: Depth 10.9 m

0.1 1  10 30 
Time [days]

0

20

40

60

80
MLS-1: Depth 12.0 m

Figure 4.12 – Simulated (solid lines) and measured (black dots) bromide breakthrough curves
from the MADE-5 experiment in the monitoring well MLS-1 at different depths. The simulated
breakthrough curves are summarised by the mean of the posterior realisations and their
thicknesses depict the 95% confidence intervals for the hybrid (red line), multi-Gaussian
(black line), analog-based (magenta line), lithofacies-based (blue line) and outcrop-based
conceptual model (green line).
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Chapter 5

Conclusions

Bayesian model selection based on evidence computation and subsequent computation of
Bayes factors provides a valuable tool to account for and minimise conceptual uncertainty in
Bayesian inference and, therefore, to inform and increase the reliability of subsurface systems
modelling and management. In this thesis, we have explored the potential of Bayesian model
selection in hydrogeophysics and hydrogeology.

We conclude that much more reliable Bayesian uncertainty quantification, parameter in-
ference and model selection results are obtained in hydrogeophysical and hydrogeological
inversions based on MCMC when (i) combining informative geophysical and hydrogeological
data; (ii) accounting for the petrophysical prediction uncertainty and its spatial correlation;
(iii) considering geologically-realistic conceptual models represented by training images.
These three aspects can enhance the fidelity of the subsurface characterisation that is funda-
mental for safe and sustainable management of groundwater resources, reliable assessment
of water policies and effective support to decision-making.

In Chapter 2, we find that geophysical methods can be valuable in providing guidance about
which hydrogeological representation of the subsurface is the most supported by the available
data given a set of competing conceptual models. Our first comparative study of evidence
estimation in hydrogeophysical settings suggests that the Brute-force Monte Carlo (BFMC)
method cannot be used because it is too computationally expensive when confronted with
many parameters and data. We find that the Laplace-Metropolis (LM) approximation and the
Gaussian mixture importance sampling (GMIS) method provide overall consistent evidence
estimates with rather small errors. When these two latter evidence estimators were applied to
conceptual subsurface models of the South Oyster Bacterial Transport Site in Virginia (USA),
we find that the isotropic multi-Gaussian model is the most supported by the GPR travel time
data.

In Chapter 3, we demonstrate the critical role of spatial correlation in petrophysical errors
and how sampling this uncertainty with a full MCMC technique allow for dramatic gains in
sampling efficiency compared with previously published implementations. Our approach in
which we explicitly infer spatially-correlated petrophysical prediction uncertainty leads to
less bias, more realistic uncertainty quantification and less overconfident model selection
compared to the common choice of altogether ignoring this type of uncertainty. In particular,
ignoring petrophysical prediction uncertainty leads to bias in the form of too high variance
in the inferred hydraulic conductivity fields.
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In Chapter 4, we propose a new methodology for performing Bayesian inversion and model
selection with geologically-realistic priors (training images). We find that thermodynamic
integration and the stepping-stone sampling provide consistent rankings of the competing
conceptual models regardless of the number of MCMC iterations after burn-in. For practi-
cal purposes, both thermodynamic integration and stepping-stone sampling are suitable
evidence estimators. We suggest to use the stepping-stone sampling method because it is
not affected by discretisation errors and its uncertainty (sampling errors) can be significantly
decreased with increasing numbers of MCMC iterations. This is not the case for the ther-
modynamic integration because its discretisation errors dominate over the sampling errors.
Thermodynamic integration and stepping-stone sampling applied to conceptual subsurface
models of the Macrodispersion Experiment Site in Mississippi (USA) suggest that, among the
conceptual models considered, the hybrid (highly conductive channels in a multi-Gaussian
background) model is the most supported by the MADE-5 solute concentration data.

The methods explored and developed in this thesis have been applied to aquifer characterisa-
tion but they also offer the potential of being used in other fields with different types of data
and scales. Notably, many of these methods can handle both continuous and categorical
conceptual models (e.g., geologic facies image).

5.1 Limitations and outlook

Even if hydrogeophysical methods can provide valuable guidance about the selection of the
conceptual subsurface model, they also reveal some limitations. Hydrogeophysical inves-
tigations are typically characterised by large geophysical data sets (several thousands) and
small uncorrelated data errors (Gaussian likelihood function) with the consequence that the
likelihoods for each data residual are multiplied together. If a proposed conceptual model
performs only slightly better (worse) on average, then the total likelihood and the evidence
will be remarkably higher (lower) than the one of the other competing models. This effect
grows when increasing the size of the data set. In such a case, Bayesian model selection
results in a ranking where the best-performing conceptual model is strongly supported by
the data and it may suggests that considering only the "best" model is worthwhile for future
studies (Chapter 2) and all the other competing conceptual models in the set can be rejected.
This very marked preference for one conceptual model should not be interpreted only in
term of performance of the selected model but it may rather highlight that significant sources
of uncertainty are ignored in the formulation of the problem. Indeed, this overconfidence in
the ability of geophysical data to falsify and discriminate between alternative conceptual hy-
drogeological models can be decreased, for instance, by properly accounting for uncertainty
in the petrophysical relationship and the model errors.

In Chapter 3 in which we account for the uncertainty on petrophysical relationships, we
identify mainly three issues: (i) the geostatistical model describing petrophysical prediction
uncertainty is only partially recoverable by the inversion, especially when the petrophysical
prediction uncertainty has similar geostatistics as the hydrogeological property field of inter-
est; (ii) prior constrains on the standard deviations of the hydrogeological and petrophysical
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fields are needed to avoid inferring geologically-unrealistic hydrogeological fields; (iii) the
geophysical data alone may favour a simpler (102 instead of 205 unknowns in our case), but
erroneous model that ignores petrophysical errors over the one that accounts for petrophysi-
cal errors. Future work should focus on developing a computationally efficient and accurate
approach to account for petrophysical uncertainty in the likelihood function. In this way,
the geostatistical model describing petrophysical errors requires less parameters, the model
dimension is reduced and, thereby, Bayesian model selection would be more efficient.

In Chapters 2 and 3, model errors are ignored in the inversion. They arise from the use of
the 2D ray-based approximation instead of a full solution of the Maxwell’s equations in the
three spatial directions when computing first-arrival GPR travel times from velocity fields. In
Chapter 4, model errors are related to the 3D to 2D approximation of the flow and transport
of a solute in a porous medium and we partially account for them in the inversion. We
emphasise the need to account for and describe model errors, but it is a very challenging
task for problems involving many data, high-dimensional parameter spaces and non-linear
forward solvers.

Bayesian inversion and model selection based on MCMC are very time-consuming and
this is a main reason behind the limited use of Bayes factors in hydrogeophysics and hy-
drogeology. Indeed, hydrogeophysical and hydrogeological investigations attempt to infer
spatially-distributed hydrogeological properties of the subsurface for problems that may
involve many thousands of unknowns and high-dimensional parameter spaces, for which
the likelihood function is very peaky. In Chapter 2 and 3, we resort to model reduction of
multi-Gaussian fields (100 instead of 32400 unknowns) and we use the DREAM(ZS) algorithm
that efficiently explores high-dimensional space. In Chapter 4, the inversion is made tractable
by the use of sequential geostatistical resampling based on MPS. All these choices allow us to
achieve feasible computational times and to successfully perform Bayesian inversion and
model selection in moderately challenging hydrogeophysical and hydrogeological settings.
However, we needed a computational cluster and to run the Markov chains in parallel. In
Chapter 4, the sampling can possibly be improved by applying parallel tempering and using
the resulting chains for evidence computation with methods based on power posteriors.

A possible alternative could be to explore model selection with approximate Bayesian com-
putation (ABC) methods. These algorithms replace the definition of the likelihood function
(pair-wise comparisons of the observed and simulated data) with summary statistics such as
the variance of the data. This could offer advantages: the assumption about uncorrelated
Gaussian measurement errors is relaxed, less computational time is needed, the sensitivity to
model errors in the inversion is decreased.

Future work need to be done for better elucidate and understand the relationship between
the choice of the priors and the evidence estimate for a given conceptual model, especially in
the case of comparatively high-dimensional priors. The sensitivity of the Bayes factors to the
choice of different prior distributions and ranges need to be investigated and assessed. In the
ideal case, the ranking of the conceptual models do not change when using slightly different
prior ranges.
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A potential extension of this work would be to explore the impact of Bayesian model selection
outcomes within an integrated modelling framework for groundwater management. The
prediction about a parameter of interest and its uncertainty provided by the "best" conceptual
model selected (Bayesian model selection) or by a combination of the competing conceptual
models (Bayesian model averaging) could be propagated within, for instance, socio-economic
and climatic models and it may significantly alter the process of decision-making.
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A.1 Abstract

Bayesian model selection requires computation of the marginal likelihood of the measured
data, or evidence, for each conceptual model being considered. This task is not particularly
easy for subsurface models, as the evidence is, in general, a high-dimensional integral of
the posterior parameter distribution without analytic solution. The purpose of this study
is to investigate the potential of the POLYCHORD algorithm to provide reliable evidence
estimates in high dimensions in the context of hydrogeophysical case studies. We compare
the evidence estimated by POLYCHORD with the ones computed with the Gaussian mixture
importance sampling estimator (GMIS) and the Laplace-Metropolis (LM) method for both
a synthetic case and a real-world case that uses crosshole ground-penetrating radar data
of the South Oyster Bacterial Transport Site in Virginia, USA. The main finding is that the
POLYCHORD algorithm is faster in evaluating one single forward simulation than GMIS and
LM methods but it requires a number of forward simulations that is at least one order of
magnitude larger than the ones used by GMIS and LM methods for evaluating the evidence
to a similar level of accuracy. For this reason, we can not fully benefit from the potential of
POLYCHORD.

A.2 Introduction

Computing the evidence by traditional means implies integration over a high-dimensional
parameter space. Large portions of this space are made up of areas with a negligible posterior
density whose contributions to the integral are negligibly small. Algorithms need to be able
to quickly focus exploration in the parameter space from the prior onto the posterior. Nested
sampling (Skilling et al., 2006) is a recent methodology for computing evidences and posterior
distributions simultaneously. Nested sampling has been popular to compute the evidence in
high-dimensional parameter spaces in cosmology and astroparticle physics. Adaptation of
this methodology has been implemented in algorithms such as POLYCHORD (Handley et al.,
2015b,a). The POLYCHORD algorithm utilises slice sampling (Neal, 2003) at each iteration to
draw a new point from the prior subject to the hard likelihood constraint of nested sampling.
We compare the evidence estimated by POLYCHORD (PC) with the ones computed with the
Gaussian mixture importance sampling (GMIS) estimator (Volpi et al., 2017) and the Laplace-
Metropolis (LM) method (De Bruijn, 1970) in the context of a synthetic and a real-world case
study that uses crosshole ground-penetrating radar data from the South Oyster Bacterial
Transport Site in Virginia, USA. We explore parameter spaces of up to 100 dimensions. In
Section A.3, we summarize the main features of POLYCHORD. A detailed description of the
algorithm can be found in Handley et al. (2015a).
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A.3 Theory

A.3.1 Nested sampling

Nested sampling maintains a population of nl i ve live points within a region of the parameter
space. These points are sequentially updated so that the region that they occupy contracts
around the peak(s) of the posterior. In the following, the nested sampling algorithm is
explained in steps.

Step 1: nl i ve points are drawn uniformly from the prior distribution, p(θ).

At each iteration i , the following steps are performed:

Step 2: The likelihoods of each live point are evaluated and the lowest value, Li , is recorded.

Step 3: The fraction of prior volume, Xi , covering all likelihoods greater than Li is computed.
Initially, the prior volume is 1 and then it decreases exponentially, tending towards 0 as
Xi = exp(−i /nl i ve ).

Step 4: The weights, wi , are computed as wi = Xi−1 −Xi .

Step 5: The discarded points (i.e., the points with minimum likelihood) that are named
dead points are used to update the evidence as a weighted sum, p(Ỹ) ≈∑

i∈dead wi Li . The
remaining posterior mass left in the live points is estimated as p(Ỹ)l i ve ≈ Ll i ve Xi , where Ll i ve

is the mean of the likelihoods of the live points. The algorithm terminate when p(Ỹ)l i ve is
some small fraction of p(Ỹ). Providing that this small fraction is less than 1, this should not
have any appreciable effect on results.

Step 6: The point with the lowest likelihood, Li , is deleted and then replaced by a new point
drawn from the prior, subject to the constraint that its likelihood is greater than Li . The new
live point is generated by slice sampling (Section A.3.2).

The nested sampling algorithm (Skilling et al., 2006) can be summarized as:

Algorithm 2: Nested sampling

Start with nl i ve points θ1, ...,θnl i ve from prior;
initialise p(Ỹ) = 0, X0 = 1.

Repeat for i = 1,2, ..., j ;
record the lowest of the current likelihood values as Li ,
set Xi = exp(−i /nl i ve ),
set wi = Xi−1 −Xi ,
increment p(Ỹ) by Li wi ,
then replace point of lowest likelihood by a new one drawn from within
L(θ) > Li , in proportion to the prior, p(θ).

Increment p(Ỹ) by n−1
l i ve (L(θ1)+ ...+L(θnl i ve ))X j .
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At each iteration i of the nested sampling algorithm, the new sample is drawn from the prior
by inverse transform sampling since, in general, the priors are simple analytic functions, f (θ),
(e.g., uniform and Gaussian distributions). This method is based on the concept that, if a
random variable x has a uniform distribution in [0,1] and if θ has a cumulative distribution
function F (θ), then, the random variable F−1(x) has the same distribution as θ. In the general
d-dimensional case, d uniform variables {xk : k = 1, ...,d} drawn from the unit hypercube
are transformed into {θk : k = 1, ...,d} in the physical space distributed according to f (θ).
As a consequence, the nested sampling is performed in the unit d-dimensional hypercube,
x ∈ [0,1]d , with the likelihood redefined as L(θ) = L(F−1(x)).

A.3.2 Multi-dimensional slice sampling

POLYCHORD implements new features on the original Markov-Chain based procedure with
slice sampling by Neal (2003). In particular, POLYCHORD performs slice sampling in the unit
d-dimensional hypercube (Figure A.1) using information present in the live and phantom
points (i.e., the points that constitutes the Markov chain before an independent point from
the initial one is accepted).

Figure A.1 – Slice sampling in d dimensions. The unit hypercube is whitened by linearly
transforming a degenerate contour into one with dimensions ∼O (1) in all directions. (Figure
from Handley et al. (2015a))

At each iteration i , the following slice sampling steps are performed:

Step 1: One of the live points is randomly choosen as start point for a new chain with
hypercube coordinates x0.

Step 2: One-dimensional slice sampling is performed in a random direction n̂0 chosen from
a probability distribution P(n̂) according to Figure A.2. This step generates the new point x1

which is uniformly sampled in the hypercube but is correlated with x0.

This procedure is appropriate if some optimal estimate of P(n̂) and w is known. This infor-
mation is provided in POLYCHORD by the sample covariance of the live and phantom points
that are already uniformly sampled within the contour. The covariance matrix is used to
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P0

P(x0)

Figure A.2 – Illustration of slice sampling. a) Sample a P0 slice (probability level) uniformly
between 0 and P(x0) and draw a horizontal line across the curve at this P0 position. b) An
interval of width w is randomly positioned around x0, and then expanded in steps until both
ends are outside the slice. Then, sample uniformly a point x1 in w until a point within the
slice is found. Points picked outside the slice are used to shrink the interval by replacing
one of the interval ends with this point. Repeat the process using the new x1 value. (Figure
modified from Neal (2003))

construct an affine transformation which whitens the contour. Sampling is then performed
in this whitened space called sampling space. In this space, the contour size is ∼O (1) in every
direction so that w can be set equal to 1.

Step 3: Repeat Step 2 nr epeat s times; the length of the chain nr epeat s should be large enough
so that the final point of the chain is decorrelated from the start point. This final point can be
considered a new uniformly sampled point from the prior distribution subject to the hard
likelihood constraint.
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A.3.3 Tuning parameters

The POLYCHORD algorithm has mainly two tuning parameters: nl i ve and nr epeat s .

nl i ve is the number of live points that are maintained during the algorithm and it defines
the resolution of the results. Increasing nl i ve increases the accuracy of the inference of the
evidence since the evidence error scales ∼O (n−1/2

l i ve ).

nr epeat s is the length of the slice sampling chain used to generate a new live point and it
defines the reliability of the results. Increasing nr epeat s decreases the correlation between live
points and increases the reliability of evidence estimations. For reliable posteriors nr epeat s

∼ O (d) is suggested and for reliable evidences nr epeat s ∼ O (5d). However, setting nr epeat s

∼O (3d) is typically sufficient (Handley et al., 2015b).

A.4 Illustrative toy example

To compare the evidence estimated by POLYCHORD with the ones computed with the
Laplace-Metropolis method and the Gaussian mixture importance sampling estimator, we
first consider an illustrative example involving a simple crosshole GPR experiment. A total
of 10 transmitter and receiver antennas are placed at multiple different depths (uniform
intervals) in boreholes located in the left and right side of the domain, respectively (see
Figure A.3). This results in a total of 100 different transmitter-receiver antenna pairs. The
spatial domain that necessitates porosity characterization covers an area of 7.2 m × 7.2 m. To
warrant accurate model simulations, a spatial discretization of 0.04×0.04 m is considered.
We contaminate the n = 100 first-arrival travel time data with Gaussian white noise using
a measurement error of the traveltime observations, σỸ = 2 ns. The "true" porosity field of
the subsurface is made up of four different layers of equal thickness with porosity values of
0.3, 0.45, 0.35 and 0.4, in the downward direction, respectively (see Figure A.3). We varied
the number of horizontal layers of constant thickness from d = 1 to d = 16, and assume a
uniform prior distribution for the porosity, φ, of each respective layer using upper and lower
bound values of 0.25 and 0.50, respectively.

Now we calculate the marginal likelihood of each subsurface conceptual model using the
GMIS, LM and PC estimators. The evidences computed by PC are obtained using nl i ve = 25d
and nr epeat s = 5d as suggested by Handley et al. (2015b,a). The results of this analysis are
presented in Figure A.4 using at the left hand-side a plot of the evidence computed by each
method against model dimension, and at the right-hand-side a graph of the associated
uncertainty of each estimator. We consider subsurface models with up to d = 16 horizontal
porosity layers of equal thickness. To simplify graphical interpretation of the results, we plot
log10 transformed values of the evidence, and refer to this entity as P (Ỹ). Colour coding is
used to differentiate between the results of the three different methods. The results highlight
several findings. In the first place, the evidence estimates from the three methods confirm
that the model with four different porosity layers, that is d = 4, is the most supported by
the available data. This finding is not surprising as this model uses the exact same layering
of the porosity field as used in the synthetic GPR experiment that was used to create the
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Figure A.3 – The "true" subsurface porosity model used in our synthetic crosshole-GPR ex-
periment. The transmitter (black crosses) and receiver antennas (black circles) are indicated.

"measured" traveltime data. Secondly, all the three estimators are in excellent agreement and
provide very similar values of the evidence for each of the conceptual models used. Thirdly,
notice that all the three estimators exhibit a negligible uncertainty compared to the range of
evidence values considered. The upper and lower bound values of the evidence derived from
the three methods appear rather similar, demonstrating further the robustness of these three
estimators.

We now investigate in more detail the discrepancies between the results of the three estima-
tors, and plot in Figure A.5 the differences between the logarithmic values of the marginal
likelihoods, P (Ỹ), computed by the methods for the competing models used in this study.
The solid black line depicts the difference in the evidence estimates derived from the three dif-
ferent methods and report results for subsurface models with number of horizontal porosity
layers (equal thickness) that ranges from d = 1 to d = 16.

The results in Figure A.5 provide further evidence for our earlier conclusions. Indeed, the
GMIS, LM and PC methods provide rather similar evidence values. In particular, we observe
a stronger agreement between the PC and GMIS evidence (Figure A.5a) values at higher
dimensions (d > 8) in comparison with the LM estimates (Figure A.5b). On the other hand,
for the simpler subsurface models with up to d = 8 different porosity layers, the results from
the GMIS and LM estimators are the most consistent with each other (Figure A.5c).

Different tests were performed to investigate the impact of the choice of nl i ve and nr epeat s

on the PC evidence values considering that the number of forward simulations scales down
linearly with decreasing nl i ve and nr epeat s (Figure A.6). All the different tests are listed in
Table A.1.

In Figure A.7a and A.7b is shown respectively the effect of decreasing nl i ve (i.e., from 25d to
d) and nr epeat s (i.e., from 5d to d) by plotting the differences of evidence estimates obtained
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Figure A.4 – Evidence values in log10 space, P (Ỹ) (a: left graph), and their associated un-
certainty (b: right graph) derived from the GMIS, LM and PC estimators for each model
dimension, d , used herein. Colour coding is used to differentiate among the different meth-
ods. The evidence estimates of the GMIS, LM and PC estimators are in excellent agreement
and their uncertainty is small.

from tests T1 up to T5 with respect to the "best" case, B, for all the model dimensions
considered. The results suggest that a decrease in nl i ve has an higher impact on the evidence
estimates than a decrease in nr epeat s . When decreasing nl i ve , we get differences in the
evidence estimates of up to 1.5 log10 units and, when decreasing nr epeat s , the differences
are, at maximum, 0.5 log10 units. The evidence estimates start to significantly diverge from
the "best" setting when decreasing nl i ve to 5d (case T2). Since we have changed nl i ve and
nr epeat s proportionally to the model dimension, d , there is not any appreciable trend of the
evidence differences with increasing model dimensions.

Even if we are mainly focused on evidence estimation rather than parameter estimation, it
might be interesting to compare the posterior distributions obtained by MCMC and PC (Fig-
ure A.8). The posterior distributions of the inferred porosities obtained by the two methods
match very nicely for both the cases where the layered model with two layers (Figure A.8a)
and ten layers (Figure A.8b) are considered.
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Figure A.5 – Difference in the evidence estimates derived from different pairs of two methods
as function of model dimension, (a) GMIS and PC, (b) LM and PC, and (c) GMIS and LM.
Note, we use log10 transformed value of the evidence estimates.

A.5 Field example

We now focus our attention on the South Oyster Bacterial Transport Site in Virginia, USA,
and use geophysical data measured at this experimental site to determine the potential of
POLYCHORD algorithm in providing reliable evidence values at high dimensions (i.e., d ∼ 100)
in a real case study. The geological characteristics of the South Oyster Bacterial Transport
Site are described in (Hubbard et al., 2001). GPR traveltime data were measured at the S14-
M13 borehole transect using a PulseEKKO 100 system with a 100-MHz nominal-frequency
antenna. A domain of 7.2×7.2 m was measured with a total of 57 sources and 57 receivers,
leading to a data set of 3248 observations of first-arrival traveltimes (one value is missing). We
assume the measurement errors of the traveltime to be uncorrelated and normally distributed
with constant standard deviation, σỸ. A relatively fine spatial discretization consisting of
square cells with length 0.04 m was used in our forward simulations with the non-linear
2D traveltime solver (time 2d) of Podvin and Lecomte (1991) to compute the first-arrival
traveltimes for the 7.2×7.2 m domain of interest.
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Figure A.6 – Linear relationship between the number of forward simulations and (a) nl i ve

and (b) nr epeat s in the case of the layered model with 16 layers.

Table A.1 – In the column on the left, the abbreviations used to indicate the different tests are
reported. d is the model dimension. Test B refers to the "best" case where nl i ve and nr epeat s

are set as suggested by Handley et al. (2015b,a). Tests from T1 to T3 maintain a constant value
of nr epeat s while decreasing nl i ve from 15d to d . Tests T4 and T5, instead, maintain nl i ve

constant while decreasing nr epeat s up to d . Test W refers to the "worst" case in which both
the nl i ve and nr epeat s are set quite low.

Test name nl i ve nr epeat s

B 25d 5d
T1 15d 5d
T2 5d 5d
T3 d 5d
T4 25d 3d
T5 25d d
W d d

A.5.1 Preliminary test

The conceptual subsurface model used in this preliminary test is a uniform 5×5 grid (d = 28)
of the underlying porosity field at the South Oyster Bacterial Transport Site in Virginia. We
estimate the evidence for this conceptual model by PC with different setting of nl i ve and
nr epeat s as reported in Table A.2.
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Figure A.7 – Difference in the evidence estimates derived from tests T1, T2, T3, T4, T5 (Table
A.1) with respect to the "best" case, B, where nl i ve and nr epeat s are set as suggested by Handley
et al. (2015b,a). (a) effect of decreasing nl i ve from 25d to d while keeping nr epeat s constant
and (b) effect of decreasing nr epeat s from 5d to d while keeping nl i ve constant . The red
line depicts the differences in evidence estimates between the "best" setting, B, and "worst"
setting, W. Note, we use log10 transformed differences of the evidence estimates.

In Figure A.9, we show the effect of a decrease in nl i ve and nr epeat s on the evidence values.
The earlier conclusions on the illustrative synthetic case are here reconfirmed: a decrease
in nl i ve has an higher impact on the evidence estimates than a decrease in nr epeat s . When
decreasing nl i ve , we get a range (i.e., the difference between the largest and smallest evidence
value) of about 107 log10 units (Figure A.9a) and, when decreasing nr epeat s , the range is 30
log10 units (Figure A.9b).

In Figure A.9a, we observe that a large number of live points (i.e., at least nl i ve = 20d) is
required to have negligible effect of the decrease of nl i ve . However, even if the evidence
values appear to reach a plateau for nl i ve ≥ 20d , the PC estimates do not approach the
ones computed with the GMIS and LM. This is probably due to the fact that we set very low
nr epeat s = 1 and this introduces a bias on the evidence estimates as clearly shown in Figure
A.9b. In the case of Figure A.9b, the plateau region where the evidence estimated with the
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Figure A.8 – Marginal posterior distributions of the inferred porosity, φ, for the horizontally
layered model with (a) 2 layers and (b) 10 layers. The posterior distributions inferred by PC
refer to the setting with nl i ve = 25d and nr epeat s = 5d (Test B). The densities in each plot are
normalized and colour coding is used to differentiate among the different methods to infer
the posterior distributions.

Table A.2 – In the column on the left, the abbreviations used to indicate the different tests are
reported. d is the model dimension. Tests from R1 to R6 maintain a constant low value of
nr epeat s while decreasing nl i ve from 25d to d . Tests from R7 to R11 and R5, instead, maintain
nl i ve constant while decreasing nr epeat s from 5d to 1.

Test name nl i ve nr epeat s

R1 25d 1
R2 20d 1
R3 15d 1
R4 10d 1
R5 5d 1
R6 d 1
R7 5d 5d
R8 5d 4d
R9 5d 3d
R10 5d 2d
R11 5d d

three methods are quite similar is reached already in the case R11 where nl i ve = 5d and
nr epeat s = d .

142



Figure A.9 – Evidence values in log10 space, P (Ỹ), as function of (a) nl i ve and (b) nr epeat s for
a uniform gridded conceptual model with 5×5 grid cells. The evidence estimated by GMIS
and LM methods are indicated with the red line and the blue line, respectively.

A.5.2 Results

The conceptual models used in this study are uniform grids which differ in their discretization
of the subsurface. The numbers of porosity grid cells is varied between 1 to 100, thereby
providing a large array of competing hypotheses. In this real hydrogeological setting where
we consider relatively high dimensions, large data sets and small measurement errors, the
computation of the evidences by PC is limited by the high computational cost. For this
reason, we could not perform the PC algorithm with the "best" choice of nl i ve and nr epeat s

(i.e., nl i ve = 25d and nr epeat s = 5d), as previously done in the illustrative synthetic case. We
compute, instead, the evidences with PC, setting nl i ve at least equal or greater than 4d and
nr epeat s = d (Table A.3), since they are the smallest values that we can set for not having too
degraded evidence values, as we show in the preliminary test in Section A.5.1. Chosing nl i ve

at least 4d is quite low but we attempt to find a trade-off between nl i ve and nr epeat s that still
allows us to get reliable and accurate evidence estimates in a feasible computational time.

Before showing the results of the evidence estimations, the posterior distributions obtained
by MCMC and PC are compared in the case of the gridded model with 5×5 grid cells (Figure
A.10). The posterior distributions of the inferred porosities obtained by the two methods
match quite nicely (Figure A.10a). The posterior distributions obtained by PC and MCMC
show some differences in the case of the inferred cementation index, m, (Figure A.10b):
where the MCMC gives the highest probability the PC algorithm gives the lowest probability.
However, both methods suggest that values of m < 1.4 are more probable than higher ones.
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Table A.3 – The first column shows the number of grid cells of each conceptual model
considered herein; the second column lists the model dimension of each conceptual model;
in the third and fourth columns, the values of nl i ve and nr epeat s used for computing the
evidence are listed.

n◦ grid cells d nl i ve nr epeat s

2×2 7 200 d
3×3 12 200 d
4×4 19 300 d
5×5 28 300 d
6×6 39 400 d
9×9 84 400 d

10×10 103 500 d

The overall trend of the posterior distributions of the inferred relative permittivity of the
mineral grains, εs and the inferred data error, σỸ, is quite similar (Figure A.10c-d).

We now turn our attention to the evidence of each model. Figure A.11 depicts the results of
this analysis using a log10 transformation of the evidence values of each uniform gridded
conceptual model which uses between 4 to 100 different porosity grid cells. Colour coding is
used to differentiate between the GMIS (red), LM (blue) and PC (black) estimators.

The evidence estimates derived from all three methods appear almost similar for model
complexities with less than 39 (unknown) parameters. Beyond this, the marginal likelihoods
derived from the three methods diverge from each others reaching differences of the order of
102 in log10 space for d = 103.

In general, it is not possible to know exactly the evidence value for a given conceptual model.
However, comparing different methods, we can find the one that provides possibly the most
correct evidence estimation. In order to asses this issue, we compare the evidence estimates
obtained by different setting of the GMIS and PC methods and by the LM method (Figure
A.12). We have already mentioned that in order to increase the accuracy and reliability of
the evidence estimates by the PC algorithm, we need to increase as much as possible nl i ve

and nr epeat s . In the case of the GMIS method, we can get better results by increasing the
number of importance samples, N , and the number of evidence estimates, Nr ep , used to
compute the mean evidence. We find that increasing the accuracy of the evidence estimates
by increasing N and Nr ep in the GMIS method and by increasing nl i ve and nr epeat s in the PC
method, we obtain higher evidence values. This result lead us to assume that the method that
provides lower evidence estimates (i.e., the LM method) is less accurate in comparison with
the other methods. We also notice that the evidence estimates provided by PC with different
settings are characterized by a much higher variability in comparison with the GMIS method
for which, instead, the evidence estimates are quite similar even if the settings used are quite
different.

We now investigate the reasons why the PC algorithm is computationally costly in our setting.
If we focus on the number of forward simulations required for computing the evidence for
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Figure A.10 – Marginal posterior distributions of (a) the inferred porosity, φ, (b) the inferred
cementation index, m, (c) the inferred relative permittivity of the mineral grains, εs and
(d) the inferred data error, σỸ, for the gridded model with 5× 5 grid cells. The posterior
distributions inferred by PC refer to the setting with nl i ve = 300 and nr epeat s = d (i.e., in this
case d is equal to 28). The densities in each plot are normalized and colour coding is used to
differentiate among the different methods used to infer the posterior distributions.

each model dimension, it is clear that the number of forward simulations performed with PC
increase exponentially with model dimension. For d ≥ 84, the number of forward simulations
required by PC is at least one order of magnitude larger than the ones required by the other
two estimators.

As a consequence, if we now look at the computational time of each of the three estimators for
each model dimension considered herein (Table A.4), we observe that the time for estimating
the evidence by PC may last up to 11 days for d = 103.

However, if we consider the time for performing one single forward simulation, all the three
methods require comparable computational time but we notice that the PC is faster (i.e.,
0.024 s) than the GMIS or LM (i.e., 0.034 s).
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Figure A.11 – Evidence in log10 space, P (Ỹ) derived from the GMIS, LM and PC estimators
for each model dimension, d , used herein. Colour coding is used to differentiate among the
different methods.

Table A.4 – Computational time expressed in hours for estimating the evidence by GMIS, LM
and PC. The LM method uses the same computational time as the MCMC run and the GMIS
method requires a MCMC run and sampling from the importance distribution which, in our
setting, requires from 3 to 4 hours more.

Computational time
n◦ grid cells tPC [h] tMCMC [h] tLM [h] tGMIS [h]

2×2 1.0 9.5 tMCMC tMCMC +3
3×3 10.0 10.0 tMCMC tMCMC +3
4×4 18.5 9.0 tMCMC tMCMC +3
5×5 22.0 9.5 tMCMC tMCMC +3
6×6 89.0 9.5 tMCMC tMCMC +3
9×9 288.5 36.0 tMCMC tMCMC +4

10×10 267.0 38.0 tMCMC tMCMC +4

A.6 Discussion

We investigate the potential of POLYCHORD algorithm in providing reliable evidence esti-
mates in high model dimensions in the context of synthetic and real-world hydrogeophysical
settings and the main observations are as follows.
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Figure A.12 – Evidence in log10 space, P (Ỹ) derived from the GMIS, LM and PC estimators
using different setting as shown in the legend. In the case of the GMIS method, N indicates
the number of importance samples and Nr ep is the number of evidence estimates used to
compute the mean evidence. Colour coding is used to differentiate among the different
methods.

In the illustrative synthetic case (Section A.4) where we use 100 GPR traveltimes data, rel-
atively low model dimensions (from d = 1 to d = 16) and quite simple conceptual models
(horizontally layered model), the results suggest that GMIS, LM and PC are in excellent agree-
ment and provide nearly similar values of the evidence for each of the competing conceptual
models considered herein. Moreover, all the three estimators exhibit a small uncertainty
compared to the range of evidence values considered underlying the robustness of these
three methods.

In both the illustrative synthetic case (Section A.4) and the preliminary test on the field
case (Section A.5.1), we find that a decrease in nl i ve has an higher impact on the evidence
estimates than a decrease in nr epeat s . In particular, we find that in the field case study, setting
nr epeat s = d is reasonably sufficient to achieve reliable evidence estimates with PC. On the
other hand, it is clear that keeping a large number of live points is important for avoiding
biased evidence values. Unfortunately, in the context of the real case study at the South Oyster
Bacterial Transport Site in Virginia (Section A.5.2) where we consider many GPR traveltimes
data (i.e., 3248), relatively high model dimensions (from d = 7 to d = 103) and more complex
conceptual models (uniform grid models), it is not possible to set large nl i ve values due to the
high cost of the computational time. As a consequence, the evidence estimates derived from
GMIS, LM and PC appear almost similar for d < 39 but, beyond this, the marginal likelihoods
derived from the three methods diverge from each other reaching differences of the order of
102 in log10 space for d = 103.

147



5 25 45 65 85 105
d

0

0.5

1

1.5

2

2.5

3

3.5

4

n
/

fo
rw

a
rd

si
m

u
la

ti
o
n
s

#107

GMIS
LM
PC

Figure A.13 – Number of forward simulations required for estimating the evidence by GMIS
(red), LM (blue) and PC (black) as a function of model dimension. At high model dimensions,
the number of forward simulations required by PC is at least one order of magnitude larger
than the ones required by GMIS and LM estimators.

The high computational cost of PC is explained by the fact that, for d ≥ 84, the number
of forward simulations required by PC is at least one order of magnitude larger than the
ones required by the other two estimators. However, PC results in almost 42% decrease
in computational time for evaluating one single forward simulation with respect to the
corresponding time required by the GMIS or LM methods.

We find that increasing the accuracy of the evidence estimates by increasing N and Nr ep in
the GMIS method and by increasing nl i ve and nr epeat s in the PC method, we obtain higher
evidence values. This suggests that the method that provides higher evidence estimates
(i.e., the PC algorithm) is more accurate in comparison with the other methods in providing
evidence estimates.

A.7 Conclusions

When using POLYCHORD, the accuracy and reliability of the evidence estimates are easy
to control by the user by setting appropriate nl i ve and nr epeat s . However, in our real-world
hydrogeophysical setting, POLYCHORD is computationally costly since it requires many more
forward simulations than the other two methods. For this reason, we can not fully benefit
from the potential of POLYCHORD since, to get feasible computational time, we have to set
smaller nl i ve and nr epeat s than the values suggested by Handley et al. (2015b,a) which results
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in less accurate evidence estimates. However, we need to underline the fact that in order
to obtain a robust model selection we do not necessarily need accurate absolute estimates
of the evidence but we need a method which provides reliable relative evidence estimates
among a competing set of conceptual models.
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