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Abstract 11 

 12 

Tropical grassy biomes are changing rapidly the world over through a coalescence of 13 

high rates of land use change, global change and altered disturbance regimes that 14 

maintain the ecosystem structure and function of these biomes. Our theme issue 15 

brings together the latest research examining the characterisation, complex ecology, 16 

drivers of change, and human use and ecosystem services of tropical grassy biomes. 17 

Recent advances in ecology and evolution have facilitated a new perspective on these 18 

biomes. However, there continue to be controversies over their classification and 19 

state dynamics that demonstrate critical data and knowledge gaps in our quantitative 20 

understanding of these geographically dispersed regions. We highlight an urgent need 21 

to improve ecological understanding in order to effectively predict the senstivity and 22 

resilience of tropical grassy biomes under future scenarios of global change. With 23 

human reliance on tropical grassy biomes increasing and their propensity for change, 24 

ecological and evolutionary understanding of these biomes is central to the dual goals 25 

of sustaining their ecological integrity and the diverse services these landscapes 26 

provide to millions of people.  27 
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1. Introduction 28 

Historically extensive across the global tropics, tropical grassy biomes (TGBs) 29 

are now changing rapidly through high rates of land clearance (1), increasing land use 30 

intensity (2, 3), woody encroachment (4) and disruption of the disturbance regimes 31 

(5, 6) that maintain ecosystem function. These biomes were the cradle of human 32 

evolution (7), and in our contemporary world, they support the livelihoods and 33 

wellbeing of over one billion people (8). With the population of Africa alone set to 34 

treble by 2050 (3), the continuing pace of climate change (9), increasing atmospheric 35 

CO2 concentrations (9), and the increasing agricultural development of TGBs (3, and 36 

Estes et al., in this issue (10)), there is an urgent need to understand the unique 37 

ecology of these systems. TGBs, like tropical forests, are subject to a complex set of 38 

pressures as a result of human actions. However, unlike other biomes, the contrasting 39 

life forms and physiologies of the dominant C3 woody plant species and grass species 40 

utilising the C4 photosynthetic pathway sees the future of this biome linked, in a 41 

profound way, to the ever-rising atmospheric CO2 concentration and the global 42 

political agenda to reduce these emissions. Further, TGBs have generally few policy 43 

and legislative mechanisms in place for their protection (11, see also the example 44 

provided by do Espirito Santo et al. (12)).  45 

TGBs contribute 30% of global terrestrial net primary productivity and store 46 

15% of the world’s carbon (13). While TGBs are less carbon dense than forests (by an 47 

order of magnitude or more), their productivity is such that large proportions of the 48 

carbon gained in a single year, are rapidly released back to the environment via fire, 49 

herbivory and human use (14, 15 and see analysis of this in Archibald and Hempson 50 

(16)). Indeed, the disequilibrium nature of TGB vegetation dynamics means that these 51 

biomes are highly sensitive to annual and decadal changes in environmental controls 52 

(14). The degree to which this dynamism will influence trajectories of vegetation 53 

change in grassy biomes into the future is unresolved. However, it is apparent that 54 

many intact savannas are now on a trajectory of increasing woody biomass, although 55 

the degree of gain varies regionally, with Australian savannas most stable over time 56 

(4).  57 

Tropical grassy biomes first arose approximately 10 million years ago and 58 

expanded such that by two million years ago, tropical savannas and grasslands were a 59 
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dominant biome covering the tropics (17). Today, these biomes, cover in excess of 60 

20% of the global land surface. At the last glacial maximum, TGBs extended more 61 

widely throughout Asia, Africa and the Americas than today (18-20). The extent of 62 

these vast biomes has shifted with glacial - inter-glacial cycles in response to changing 63 

atmospheric CO2 concentrations, rainfall, rainfall seasonality, temperature and fire 64 

(19, 21). Given that all of these aspects of our environment are now changing at 65 

unprecedented rates, extensive alterations in the distribution and dynamics of TGBs 66 

over the coming century will be inevitable and are likely already being observed (1, 4, 67 

22, see the analysis provided by Stevens et al. (23)). 68 

The last decade has seen a revolution in our understanding of the evolution 69 

(17, 24, 25), antiquity (26-28), distribution (29, 30) and ecosystem dynamics of TGBs 70 

(14, 31), as well as their role in the global carbon cycle (32). Some of these advances 71 

have sparked controversies that are now active debates in the literature (e.g. ancient 72 

grasslands and afforestation policies (33-35); the existence or not of alternative 73 

vegetation states (29, 36, 37)). Indeed, insights and theory from savanna ecology have 74 

challenged long standing ecological assumptions of climate determinism in defining 75 

the limits of biomes (38).  76 

Over the coming decade, we anticipate important in-roads will be made in 77 

reconciling the complex ecology and biogeochemical cycling of these geographically 78 

dispersed biomes via integration of remote sensing, modelling, ecology and evolution. 79 

However, it will be critical to incorporate the role of people in shaping and responding 80 

to changing ecosystem dynamics and function across this global region, as in the 81 

Anthropocene people will be increasingly important agents of landscape change, 82 

directly and indirectly influencing the environmental controls and ecological processes 83 

that structure TGBs from global to local scales.  84 

 85 

2. This Issue 86 

Tropical Grassy Biomes are expansive and changing rapidly, yet our capacity to 87 

predict trajectories of change in these biomes is limited, despite their importance to 88 

human livelihoods, biodiversity and biogeochemical cycling. In this issue, we highlight 89 

the need for integration among research related to the ecology and dynamics of these 90 

biomes: characterization and definition of tropical grassy biomes; complex ecology; 91 
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patterns and drivers of change; and, human use and ecosystem services. For the first 92 

time, analyses are presented on the biogeography and potential distributions of Asian 93 

savannas (39). Other significant steps forward in our understanding include: methods 94 

for characterizing ancient versus derived grassy biomes (40, 41), comparative data on 95 

the species diversity of TGB regions across the globe (42), an improved understanding 96 

of the complex ecology of herbivory and fire (16, 43) and the context dependent 97 

response of vegetation to global change (44), and finally, tools to examine tradeoffs 98 

in biodiversity, carbon and agriculture to aid land use planning and policy (10).   99 

 100 

3. Defining Tropical Grassy Biomes 101 

Tropical grassy biomes include C4 grass dominated savannas and grasslands 102 

(following the definitions of (30, 45)). Definitions of tropical grassy biomes have 103 

historically been varied and fraught with problems. Functionally, TGBs are 104 

characterized by a grassy ground layer (generally dominated by grasses using the C4 105 

photosynthetic pathway - with a noted exception in Brazil (46) and Indochina (39)) and 106 

an overstorey varying from 0% up to 60 - 80% woody cover (45). The biota, depending 107 

on its biogeographic and environmental settings, is tolerant of any, or all of, fire, 108 

grazing and browsing (31). However, universally, the flora is shade intolerant, at least 109 

at the establishment phase, due to the open canopy overstorey (45). While the 110 

biodiversity value of these systems to-date has been typically overshadowed by that 111 

of tropical forests (26), Murphy et al. (2016) in this issue (42), illustrate the biodiversity 112 

value of TGBs, particularly of vertebrates and range-restricted species, and emphasize 113 

variation in diversity among the TGB regions (the South American region generally 114 

being the richest).  115 

The disequilibrium nature of tropical grassy biome vegetation dynamics, with 116 

varying levels of woody cover, has consistently posed problems for the categorization 117 

of these ecosystems (8). This problem has been compounded by a focus on trees, 118 

rather than ground layer composition and function; for example, the Millennium 119 

Ecosystem Assessment focuses on drylands and forests (47, 48), but does not explicitly 120 

consider tropical savannas. While tropical rainforests have been mapped globally, no 121 

accurate global map of the tropical grassy biomes exists. The most widely used general 122 

vegetation map and classification scheme is Olson et al.’s (2001) ecoregions (49), 123 
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although this biome classification is problematic because it does not recognize some 124 

of the world’s major savannas and grasslands, including those in Asia (e.g. India, 125 

Thailand, Burma) and Madagascar. Wide use of such maps for research, policy and 126 

conservation has the potential to have adverse impacts on landscape management 127 

and the perceived conservation value of these regions (e.g. conversion of TGBs, 128 

perceived as degraded land, for agriculture, see (50)). For the first time, Ratnam et al. 129 

(2016) focus on this issue in Asia (39) by reviewing the scattered literature on the 130 

distribution of Asian savannas and evidence for the antiquity and diversity of TGBs 131 

across this continent.  132 

In many regions, including Madagascar, south east Asia and South America, 133 

grassy biomes have historically been considered either to be a degraded form of forest 134 

of anthropogenic origin created via tree clearing, burning and grazing, or a subclimax 135 

or secondary successional stage (28, 39). While true in some locations (see Veldman 136 

2016, this issue (40)), in the majority of areas this perspective is misplaced (34). A 137 

wealth of new information including dated phylogenetic analyses demonstrates the 138 

antiquity of both tree and grass species (and lineages) specialised to these biomes (25, 139 

27, 28). The presence of endemic plant lineages and species, as well as species with 140 

unique life histories and architectures, including forbs with large underground storage 141 

organs, are strong indicators of the antiquity of TGBs (35, 41).  142 

The fauna of these regions also contains numerous endemic species 143 

specialized to open and grassy environments providing additional evidence for the 144 

origin and age of the tropical grassy systems. Fauna include species of granivorous 145 

birds (e.g. the Madagascan mannikin, Lonchura nana), a suite of grazing ungulates 146 

(e.g. the critically endangered Kouprey, Bos sauveli, from Cambodia, and the chital 147 

deer, Axis axis, from India) and a high diversity of small marsupials in Australia (42). 148 

Many of these species are endangered and threated with imminent extinction (51). 149 

Fire is a frequent disturbance in the TGBs and has been part of these systems for 150 

millions of years (17, 21); consequently the plants and animals they contain are 151 

generally adapted to its occurrence (25).  152 

To date it has been difficult to distinguish ancient, old-growth grasslands and 153 

savannas from secondary systems given superficial similarities in structure. Here, 154 

Veldman (2016) and Zaloumis & Bond (2016), examining the Neotropics and South 155 
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Africa respectively, differentiate ancient and secondary systems, noting differences in 156 

species composition with the former particularly rich in forbs, many with well-157 

developed underground storage organs that facilitate survival in seasonally dry 158 

climates with frequent fire. The challenge is to test the generality of these 159 

compositional characteristics across TGB regions. 160 

 161 

4. Ecology 162 

The ecology of TGBs is complex by virtue of the numerous environmental controls, 163 

acting across different scales of influence, both directly and indirectly to structure 164 

these ecosystems (Figure 1). The last decade has seen a shift from a long-standing 165 

view of deterministic relationships among vegetation, climate and soils, focused on 166 

niche separation between trees and grasses for water use, to one that integrates niche 167 

separation (e.g., phenological, water use) with the controls of fire and mammal 168 

herbivory structuring vegetation via the restriction of woody plant growth (31). 169 

Archibald and Hempson (16) explore trade-offs in fire and mammalian herbivory 170 

across the African continent where realms of influence can change through space and 171 

time. Complementing this research is that of Anderson et al. (43) who examine spatial 172 

associations of African mammalian herbivores relative to body size and influences on 173 

ecosystem function relative to species composition. Both of these studies raise 174 

important questions about the function or dysfunction of TGBs in the context of 175 

changing disturbance regimes. 176 

Integration of bottom up (e.g., climate and soils) and top down (e.g., fire and 177 

mammalian herbivory) controls in structuring TGB vegetation has significantly 178 

improved our process understanding of the dynamics and limits of these systems (14, 179 

52). But, it has also highlighted the degree to which contemporary dynamics of TGBs, 180 

from local to continental scales, are a function of historical contingencies (44, 53). In 181 

assessment of regional patterns and dynamics of vegetation, emergent patterns of 182 

woody cover can appear almost stochastic, due to the array of structural states 183 

possible for a given set of environmental conditions (29). At the heart of the current 184 

disagreement around alternate vegetation states prevalent in the tropical savanna 185 

and forest literature (all of state shifts between savanna and forest, grassland and 186 

savanna, and variation in tree cover within savannas) may be a lack of recognition of 187 
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both the role of contingency in influencing contemporary dynamics of TGBs, and that 188 

the relative role of environmental controls in structuring vegetation varies across 189 

savanna systems: i.e., some savannas likely exist due to soil barriers to woody plant 190 

growth, while others exist because of controls, such as prevalent fire, that also act to 191 

limit woody plant recruitment and growth. That is, the similarities in structure among 192 

TGBs (open canopied vegetation with a predominantly C4 grassy ground layer) have 193 

led to an unfounded assumption in the literature that the processes regulating 194 

vegetation structure across these varied and geographically dispersed ecosystems are 195 

directly equivalent. Finally, the presence of numerous, well-documented, feedbacks 196 

structuring TGBs where the species composition can influence the strength and 197 

direction of effects (Figure 1; tree cover - fire; fire - grazing; grazing - browsing), 198 

combined with the importance of historical contingencies means that multiple states 199 

influencing both the limits and structure of TGBs are highly likely. In this issue, Oliveras 200 

and Malhi (54) examine the shades of green in our understanding of the processes 201 

structuring the limits of TGBs highlighting how biotic and abiotic processes operate at 202 

different scales and that nature of vegetation dynamics is context dependent.  203 

Savanna vegetation dynamics have been shown to vary as a function of plant traits 204 

that aggregate from the individual to ecosystem level (14, 55). However, current 205 

model simulations generally represent TGBs as functionally identical, in contrast to 206 

ecological knowledge (although see Moncrieff et al. in this issue (44)). TGBs constitute 207 

a geographically dispersed set of regions, where the flora and fauna representing 208 

unique evolutionary and environmental histories (14). The relative importance of 209 

environmental controls in structuring these systems varies across these geographic 210 

regions, and relative to the environmental niche of each region (14). For example, the 211 

high rainfall Australian savannas dominated by tall, fast growing, narrow canopied 212 

evergreen Eucalyptus species are less sensitive to fire than the wide canopied 213 

deciduous Brachystegia and Julbernardia species that dominate a savanna region 214 

equivalent in area across southern Africa (56, 57). Thus, for a given set of 215 

environmental conditions, similar fire frequencies and intensities could produce 216 

different vegetation structures, and the difference in sensitivity to fire of these floras 217 

is highly likely underpinned by the functional traits of the plant species themselves 218 

(55). It is increasingly appreciated that the functional biogeography of TGBs has critical 219 
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implications for our capacity to determine the sensitivity and resilience of TGB regions 220 

to global change (e.g., Moncrieff et al., this issue (44)), and yet, our quantitative 221 

understanding of functional biogeography of TGBs remains limited. This information 222 

is needed as our capacity to predict future change will rely on a quantitative 223 

representation of the aggregation the traits that characterize these floras in 224 

influencing ecosystem dynamics and responding to environmental variation.  225 

Across tropical grassy biomes, vegetation composition, woody cover and grass 226 

biomass are considered key determinants of ecosystem function. However, 227 

quantitative links between structure and function, ultimately, remain poor and there 228 

is no consensus of these relationships among TGB regions (8). Despite, the 229 

antagonistic dynamics between tree and grass dominance being central to savanna 230 

ecology, we retain a limited predictive capacity of vegetation structure. It could be 231 

argued that our current lack of knowledge about the physio-ecological responses of 232 

TGBs to global change is hindered by both the functional differences among the TGB 233 

regions and our weak quantitative understanding of the processes that structure 234 

vegetation due to the complexity of interactions and scales of feedbacks in operation 235 

(Figure 1). To aid the management of global change impacts for both people and 236 

biodiversity, we need to determine the relative sensitivities of savanna vegetation 237 

types to key environmental controls – CO2, water availability, and disturbance 238 

dynamics – and identify structural thresholds where critical ecosystem functions 239 

change. 240 

  241 

5. Drivers of Change 242 

 Tropical vegetation is changing at broad spatial scales but there is a limited 243 

understanding of current trends. On one hand, rates of land use change are increasing 244 

(3, 11), and on the other, woody encroachment is widespread across savannas 245 

especially in Brazil and South Africa (in this issue, see Honda & Durigan, 2016 and 246 

Stevens et al. 2016). The extent to which drivers that enhance tree growth (e.g., 247 

increasing atmospheric CO2 concentrations [CO2]a), reduced disturbance, improved 248 

plant water use efficiencies), prevail over drivers of enhanced tree mortality (e.g., 249 

reduced rainfall, increasing intensity of El Niño, increased temperature, increased 250 

harvesting) is unknown, but this is the key to the future management and integrity of 251 



 10 

the biome.  252 

 Rising [CO2]a has long been hypothesised to be a key driver in the re-organisation of 253 

tropical vegetation, specifically in savannas where the contrasting life forms and 254 

physiologies of the dominant C3 trees and C4 grasses are expected to respond 255 

differently (58). While modelling of the proposed mechanisms underpinning shifts in 256 

the competitive interactions between C3 trees and C4 grasses is improving (i.e. 257 

increased plant water use efficiencies of C3 plant species, specifically woody plant 258 

species; carbon allocation and storage patterns that vary between life forms; reduced 259 

photorespiration in C3 grasses), demonstrating the potential for regional shifts in 260 

biome extent and woody biomass (59), there is a major gap in the experimental 261 

evidence of the responses of tropical plant species to altered CO2 concentrations, 262 

especially with regards to interactions with other environmental controls (8). In 263 

particular, dominant woody taxa in each savanna region have different life histories, 264 

allocation strategies, and architectures (14, 55, 60). Increasingly, functional traits are 265 

recognised as phylogenetically conserved (61), and differential responses to CO2 266 

would likely be expected relative to both ecological and environmental settings. 267 

Looking across a rainfall gradient and landuse types in South Africa, Stevens et al. 268 

(2016) report large increases in woody cover in just a few decades providing support 269 

for a global driver (23), while also noting the interaction with megaherbivores 270 

(elephants). Woody encroachment may provide carbon benefits, but will undoubtedly 271 

come at a biodiversity cost (62). 272 

 Tropical grassy biomes are characterised by seasonally dry and hot climates (30). 273 

While climates across this swath of the world are changing, particularly in terms of the 274 

frequency and intensity of El Niño drought events, disagreement among model 275 

predictions contributes to the lack of certainty for climate change predictions across 276 

tropical regions (63). Novel climates, in combination with rising CO2 will generate 277 

novel interactions among organisms, where small shifts in the season and timing of 278 

rainfall may have large consequences for the phenological cycles of plants and 279 

animals, and stark consequences for crop production (3). In contrast, small changes in 280 

total rainfall may be of limited consequence, where increasing [CO2]a will drive 281 

improvements in plant water use efficencies (64). Temperature is assumed important 282 

in determining plant distributions and function primarily based on assumptions from 283 
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the Northern Hemisphere. Yet the importance of temperature in the dynamics of TGBs 284 

is poorly understood. The small body of research suggests if there is sufficient water, 285 

a warming climate may enhance plant success through improved germination (65, 66) 286 

and sapling growth rates (67), and an extended growing season (68).   287 

 Yet, across TGBs, rates of land use and cover change appear to exceed the effects 288 

of climate change (1, 11). With increasing global scarcity of lands for agriculture and 289 

increasing food demands (69), land use intensity is only likely to increase. There are a 290 

multitude of land use types across TGBs, many of which are context dependent, from 291 

shifting cultivation and grazing lands to commercial agriculture (see Ryan et al., in this 292 

issue). However, all affect the continuity of ecosystems and, some land use types more 293 

so than others (see Estes et al., in this issue). Increasing land use intensity and 294 

fragmentation disrupts disturbance regimes and vegetation dynamics (70), potentially 295 

amplifying encroachment by further reducing tree mortality. To date, 50% of the 296 

Brazilian cerrado has been transformed for agriculture, a rate of land use change 297 

roughly double that of the Amazon forest (71, 72). Land has historically been 298 

perceived as being of marginal agricultural value across TGBs (see Estes et al. and Ryan 299 

et al. in this issue). However, technical innovations in managing highly weathered 300 

tropical red soils and the breeding of suitable crop varieties have transformed 301 

agriculture in Brazil (3). This tropical agricultural revolution has been proposed as a 302 

viable development model for wetter African savannas (Estes et al. 2016 and (3)). do 303 

Espírito Santo et al. (this issue) document land abandonment and encroachment in 304 

secondary savannas of the cerrado (12), where this development policy has been to 305 

the detriment of the integrity of the system and where, globally, rates of 306 

encroachment are highest (4).  307 

 Finally, people also directly influence disturbance regimes at broad scales (6, 70). 308 

Active suppression of fire in the savanna regions of Asia and Brazil in particular has 309 

facilitated woody or weed encroachment (see Honda & Durigan, 2016 and (73)).  The 310 

increasing extent of roads and fences act as fire breaks and also prohibit large scale 311 

animal movements (6). These changes to the major savanna processes of fire and 312 

herbivory, combined the effects of the poaching crisis of Africa and Asia, are likely to 313 

have profound consequences for ecosystem function (Archibald and Hempson; 314 

Anderson et al. in this issue).  315 
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   316 

6. Human use and value  317 

Quantifying and understanding the value of TGBs to humans is challenging 318 

because in many regions, particularly in Asia, data on the value of TGBs to human 319 

livelihoods are limited. TGBs are sometimes described as “unused” or “degraded”, 320 

although these systems provide fundamental resources and ecosystem services 321 

supporting the livelihoods of the millions of people living in these regions. Further, the 322 

people of these regions are among the worlds poorest and most vulnerable (74), and 323 

global change will inevitably affect ecosystem services and resource availability. 324 

Perhaps more so than any other TGB region, direct use by local communities is 325 

greatest in Afrca and Asia (see Ryan et al. 2016, this issue), given the urbanization of 326 

Latin America and the sparse population densities of Australia. Ryan et al. (2016, this 327 

issue) highlight the diversity and number of ecosystem services (supporting, 328 

regulating and cultural services) provided by TGBs (specifically in relation to southern 329 

Africa) that, to-date, have typically been either overlooked or considered at small 330 

spatial scales. Critical resources provided include food (wild fruits, tubers, nuts, edible 331 

insects, bushmeat), NTFPs for sale (e.g. honey, beeswax, insects), fuel (fire wood and 332 

charcoal), construction materials (e.g. thatching grass, timber), water, nutrient cycling 333 

and medicinal plants (Ryan et al. this issue).  334 

Across Africa, Asia and even South America, fuel wood harvesting is a significant 335 

activity (see Woollen et al. and do Espirito-Santo et al. in this issue). Although the fuel 336 

wood crisis predicted in the 1970s has not materialized, projections surrounding levels 337 

of fuel wood sustainability are varied (75). In some regions (e.g. South Africa) fuel 338 

wood harvesting is considered sustainable due to regeneration after coppicing (76), 339 

possibly facilitated by CO2 fertilization (e.g. (77)). Elsewhere, wood demand is 340 

anticipated to increase due to increasing populations and a switch to charcoal, which 341 

has an increasing international market (75). The implications of changing wood 342 

demands are raised by Woollen et al. (2016, in this issue (78)): wood for construction 343 

material is now traded off against wood for charcoal. How changes in wood resources 344 

in the context of global change will influence the integrity and functioning of TGBs 345 

needs urgent attention.  346 

Water availability will change with growing populations, altered landscapes and 347 
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global change, and in the seasonally dry climates of these regions water availability is 348 

critical to both ecosystem dynamics and human use of landscapes, yet understanding 349 

of the nature of this change and the implications is restricted to a few regions (75). 350 

Honda and Durigan (2016, this issue (79)) provide, for the first time, estimates of 351 

rainfall partitioning in the cerrado and demonstrate how fire suppression, indirectly 352 

via woody encroachment, can reduce rain interception. Given many TGB regions are 353 

experiencing woody encroachment, this is a reminder of the functional role of 354 

disturbance in the provision of water resources. Across TGBs, afforestation (often of 355 

exotic species) is common (8), in part, to meet fuel wood needs; improved 356 

examination of the trade-offs between fuel wood and woody encroachment with 357 

water are desperately required. Further, much needed are examinations of the 358 

biophysical and biogeochemical consequences of woody encroachment and land 359 

cover change, such as albedo and nutrient cycling.  360 

People and institutional structures can strongly influence and affect TGBs - their 361 

biodiversity, functioning and services (8). For example, in many areas declines in 362 

mammal species have been reported due to bushmeat hunting and poaching, 363 

savannas have become degraded through overgrazing, land abandonment, and 364 

afforested monocultures (80-82). The economic importance of the wildlife across 365 

TGBs, particularly in African and some Asian regions (and to a lesser extent Australia), 366 

is a unique economic advantage that contributes to the tourism industries of these 367 

regions. Major ecological changes driven by the global changes set out above, 368 

combined with human pressures could threaten these economic benefits. Human 369 

usage needs to be reconciled with ecological values in these areas, including 370 

biodiversity; human activity has already reduced the richest botanical savanna region, 371 

the Brazilian cerrado, to a series of, arguably, dysfunctional fragments. Finally, the 372 

climate change mitigation agenda could represents a threat to TGBs, as there is 373 

increasing talk of the need for “negative emissions” to meet the emissions targets set 374 

out at the Paris climate conference (COP21) in 2015 where inappropriate application 375 

of these targets could lead to afforestation of TGBs (34). 376 

 377 

7. Conclusions 378 

The pace and scale of change in TGBs is astonishing and will affect human livelihoods, 379 
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biodiversity, carbon and biogeochemical cycling. Yet, our capacity to predict the 380 

direction and extent of change, as well as the consequences, is currently limited. 381 

Research will improve our ecological understanding of TGBs, and it is clear that our 382 

capacity to effectively predict the sensitivity and resilience of each TGB region is 383 

dependent upon understanding the cascading and interacting effects of ecological, 384 

socioeconomic and global drivers across contrasting contexts. This is no easy task even 385 

from a purely ecological perspective as these systems are complex, ecosystem 386 

dynamics are context dependent and uncertainty surrounds the influence of global 387 

change drivers.  388 

In order to better conserve and manage TGBs for the future, we must look 389 

beyond a simplified view considering only the tree layer, to a perspective that 390 

embraces the grassy ground layer and the unique functions associated with this. Only 391 

with this broader perspective will we be in a position to consider the range of 392 

trajectories and possible states that are likely across the different regions and how the 393 

influence of key drivers may vary. To apply the most appropriate conservation and 394 

management efforts in the right place, field studies are needed to characterize and 395 

determine the antiquity and value of TGBs more broadly. Additionally, field studies 396 

will help us understand how the multiple pathways for structural (and compositional) 397 

change links to the functioning of these biomes.   398 

Experiments manipulating global change drivers (e.g. water availability, 399 

temperature, and CO2) will help unravel the complexities of savanna process and 400 

dynamics so we are in a stronger position to understand how different TGB regions 401 

may respond to future change. We need to work with land managers and politicians 402 

to ensure that processes critical to the healthy functioning of TGBs (i.e. fire, herbivory) 403 

are maintained. This will mean revisiting carbon mitigation initiatives, taking a more 404 

nuanced approach to applying REDD+ in TGBs, and ultimately recognizing TGBs are 405 

wholly different to forests in terms of ecosystem function. Many of the world’s 406 

poorest live in the TGBs; it is therefore essential that the dual goals of sustaining the 407 

ecological integrity of this biome and supporting the people who live in these 408 

landscapes must not be viewed as competing demands. 409 

 410 
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Figure 1: The complex ecology of tropical grassy biomes. The network of interactions 644 

governing the structure of tropical grass biomes, adapted and expanded from (83) and 645 

of particular relevance is the extent of consumer centred feedbacks in structuring 646 

these ecosystems. Direction of effects are indicated as positive (+) or negative (-) 647 

based on literature (summarised in 14 and throughout this issue), and where the 648 

literature is sparse or poorly reconciled, uncertainty of effects are indicated with (?). 649 

With respect to interactions between CO2 and plants, estimated effects are positive, 650 

but there is uncertainty associated with the strength of interactions due to a lack of 651 

experimental evidence and the potentially hysteretic effects of consumer centred 652 

feedbacks. It must be noted that in some instances, species and their traits can modify 653 

the direction and strength of effects, as is the case with interactions between fire and 654 

grazing as outlined in (16) and relative to the ecological and environmental setting. 655 

Hence, not all interactions are present across all TGBs and not all interactions are of 656 

equal relative influence across ecological and environmental settings.  657 
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