
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image optimization for chemical species tomography with an
irregular and sparse beam array

Citation for published version:
Terzija, N, Davidson, JL, Garcia-Stewart, CA, Wright, P, Ozanyan, KB, Pegrum, S, Litt, TJ & McCann, H
2008, 'Image optimization for chemical species tomography with an irregular and sparse beam array'
Measurement Science and Technology, vol. 19, no. 9, 094007, pp. 1-13. DOI: 10.1088/0957-
0233/19/9/094007

Digital Object Identifier (DOI):
10.1088/0957-0233/19/9/094007

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Measurement Science and Technology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 08. Jul. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/211021468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/0957-0233/19/9/094007
https://www.research.ed.ac.uk/portal/en/publications/image-optimization-for-chemical-species-tomography-with-an-irregular-and-sparse-beam-array(a98795de-4b7f-46da-a2e9-e1708cb10584).html


Image optimisation for chemical species tomography with an 
irregular and sparse beam array 

N Terzija1, J L Davidson1, C A Garcia-Stewart1, P Wright1, K B Ozanyan1, S 
Pegrum2, T J Litt3 and H McCann1 
1 School of Electrical and Electronic Engineering, University of Manchester, UK, 
2 Roush Technologies Ltd, Brentwood, UK, 3 AOS Technology Ltd, Melton 
Mowbray, UK. 
 
Email : Natasa.Terzija@manchester.ac.uk 
 
Abstract. High-speed tomographic imaging of hostile engineering processes using absorption-
based measurements presents a number of difficulties. In some cases, these challenges include 
severe limitations on the number of available measurement paths through the subject, and the 
process of designing the geometrical arrangement of those paths for best imaging performance. 
This paper considers the case of a chemical species tomography system based on near-IR 
spectroscopic absorption measurements, intended for application to one cylinder of a multi-
cylinder production engine. Some of the results, however, are applicable also to other hard-
field tomographic modalities in applications where similar constraints may be encountered. A 
hitherto unreported design criterion is presented for optimal beam geometry for imaging 
performance, resulting in an irregular array with only 27 measurement paths through the 
subject for the engine application. Image reconstruction for this severely limited geometry is 
considered at length, using both simulated and experimental phantom data.  Novel methods are 
presented for the practical generation of gaseous phantoms for calibration and testing of the 
system. The propane absorption coefficient at 1700nm is measured. Quantitative imaging of 
propane plumes in air is demonstrated, showing good localisation of circular plumes with 
diameter as small as 1/5 of the subject diameter and excellent imaging of multiple plumes.  

 
Keywords: image reconstruction, imager, hard-field tomography, limited view 
 
1. Introduction.  

For many years, research has been conducted into chemically selective optical tomography based on 
the principle of spectroscopic absorption by the target molecules. Examples include the imaging of 
methane (Santoro et al 1981), chlorine (Faris and Byer 1986), nitrogen (Faris and Byer 1987), acetone 
vapour (Yost et al 1994), sulphur hexafluoride (Drescher et al 1996), helium (Feng et al 2002a), water 
(Salem et al 2005), and long-chain hydrocarbons (Hindle et al 2001, Gillet et al 2004).  

We have recently reported on the use of the technique for high-speed imaging of hydrocarbon fuel 
vapour within one cylinder of multi-cylinder internal combustion engine (Wright et al 2005a, 2007). 
In addition to the more obvious problems of temperature, pressure and vibration, this application 
places very severe constraints on both the number and positioning of measurement paths (beams) 
through the subject. In particular, the need to retain the basic structural and thermal behaviour of the 
engine, and the proximity of the adjacent cylinder, preclude the placement of optical elements in some 
locations. Even in the comparatively favourable environment of single cylinder engines, previous 
studies (Barrag and Lawton 1993, Kramer et al 1998) have been restricted to no more than eight beam 
paths. An irregular, and almost certainly sparse, arrangement of beams is therefore characteristic of the 
application and any image reconstruction approach chosen must address this. Even if a spatially 
regular measurement grid were possible in an engine, the ability to perform image reconstruction 
based on a (generally irregular) subset of beams is of great value in this application; transient loss of 
individual beams, e.g. due to obscuration by thick films of oil or unburned fuel, is a frequent 
occurrence.  

Limited-view tomography has been considered quite extensively in the medical imaging literature 
but is essentially an incomplete data problem, in so far as some projections, or parts thereof, are 
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unavailable within an otherwise adequately sampled system. Notable analytical studies of such 
problems have been provided by Andersen (1989), Verhoeven (1993), Sato et al (1981), and Wan et al 
(2003). The literature regarding more acutely limited cases (e.g. less than 100 path integrals) is 
actually very sparse. In this context, the 27-beam system used in our most recent engine studies, and 
others like it (e.g. Fischer et al 2001), can be regarded as belonging to a category of systems with 
severely limited data, in which both the number of viewing angles and the number of measurements 
are small. Image reconstruction in such situations is typically reliant upon the availability of some 
prior knowledge of the form of the subject (a priori information). Such a priori information (e.g. 
smooth variation within the subjects or knowledge of the image value in some parts of the image) can 
be further understood as a form of regularization. In our case, a non-negativity constraint can 
obviously be applied to the fuel concentration but other a priori information is limited. Depending 
upon the engine type, its running conditions and the point in the engine cycle, a wide range of fuel 
vapour distributions are possible, from essentially homogeneous to quite complex, with multiple local 
maxima. Although any spatial inhomogeneities will typically be smooth, abrupt steps can occur, 
particularly following fuel injection or induction events. In some instances, it may be possible to 
selectively apply additional constraints but, in general, the reconstruction process must proceed with 
little knowledge of the true form of the fuel vapour distribution.  

Despite this combination of limited data and minimal a priori information, it is essential that the 
instrument responds in a predictable manner. Our adoption of a smoothness assumption (see Section 
2.2) is therefore not physically motivated. Rather, it is intended to make an essentially 
underdetermined problem tractable, albeit at the expense of any high spatial frequency content that 
may be present in the underlying distribution.  

In this paper we describe and test the process used to design the current 27-beam array that has been 
implemented on a 4-cylinder engine and the development of the associated image reconstruction 
algorithm. We will argue here that it is inappropriate to consider these problems in isolation as the 
sampling of the physical space determines our knowledge of the sinogram space and, ultimately, our 
ability to reconstruct successfully. Also presented here is a controlled laboratory validation of the 
resulting measurement grid, as subsequently used in the engine. The engine test results are described 
in Wright et al (2007). 

  In general, tomographic image reconstruction algorithms can be divided into two groups: iterative 
and non-iterative. The latter are numerically simple and computationally fast, but they can only be 
used to provide qualitative images. Various iterative algorithms have been developed to improve 
image quality and to provide quantitative images. Established techniques for image reconstruction 
include both series expansion algorithms and transform-based algorithms. Verhoeven (1993) made a 
comparative study of five well-known algorithms for limited-view problems, covering iterative and 
non-iterative, series expansion and transform-based approaches, and exploiting a priori information. It 
was concluded that the best performing algorithm in terms of good image quality and speed of 
convergence was the multiplicative algebraic reconstruction technique (MART), an iterative approach 
that allows the use of a priori information at each iteration step. Medoff et al (1983) developed an 
iterative convolution backprojection algorithm, estimating the missing projections in the sinogram 
space (see section 2.1). Andersen (1989) and Subbarao et al (1997) introduced methods similar to 
Medoff’s, using the iterative algebraic reconstruction technique (ART) and other algebraic methods. 
The ART technique was used by Barrag and Lawton (1993). Other researchers (Feng et al 2002b, 
Stark et al 1981, Peng and Stark 1989) have performed angular interpolation between the projections 
in the Fourier domain. Additionally, Feng and Bao (2002b) used the smoothness of the subject as a 
priori information. Constantino et al (2007) have also employed methods of interpolating in the 
sinogram space (see section 2.1) in order to improve image reconstruction quality. Other workers 
(Drescher et al 1997, Price et al 2001) used the reconstruction techniques which are dependent of 
significant a priori information. These techniques reconstruct the concentration field as a trade-off 
between matching the measured data and regularizing the solution, by prior information, resulting in 
smooth images. In the cases where the distribution of concentration field is known to some extent, e.g. 
assuming that the concentration distribution along a plane can be written as a superposition of two-
dimensional Gaussian distributions, the Smooth Basis Function Minimization (SBFM) technique 
developed by Drescher et al (1997) can be used. The Low Third Derivative method (LTD) introduced 
by Price et al (2001) calculates the concentrations with a single matrix multiplication which is 
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performed only once for a certain optical and prior information setup. In the LTD method, one prior 
information is that the third-derivative is assumed to be close to zero, resulting in locally quadratic 
concentration profiles. Besides these techniques, there are other image reconstruction concepts based 
on entropy formulation (Smith et al 1991, Gull and Newton 1986), where each projection is combined 
with an entropy function and the problem optimized with respect to maximum entropy. This approach 
was also used by Kramer et al (1998).  

  Early research in our laboratory employed ART for image reconstruction from 32 beams in a 
regular arrangement of four projections, each with 8 parallel beams (Hindle et al 2001). Subsequently, 
novel reconstruction algorithms for this system have been reported in (Garcia-Stewart et al 2003, 
Wright et al 2005a), including (a) the case where interpolation was performed in the linear dimension 
between beams within each projection and in the angular direction between projections (i.e. in the 
sinogram space), with filtered back projection and iteration, and (b) exploration of the use of spatial 
filter-based approaches that did not exploit any regular geometric relationship between beams, in 
conjunction with iteration. Within each iteration, a priori information was applied, in terms of further 
smoothing (by either of the methods above) and asserting non-negativity constraints. That work 
employed the Landweber iteration method that was initially applied to process tomography problems 
by Yang et al (1999), and has been found to be robust for small numbers of measurement data. 
     The paper is organized as follows: section 2 deals with the irregular and sparse beam geometry of 
system considered here, and describes the enhanced Landweber image reconstruction algorithm, since 
they are strongly coupled. Section 3 presents the necessary details of the measurement system and of 
the experimental procedures for homogeneous propane and propane plume measurements. 
Experimental validation of the overall imaging system, including quantitative calibration and 
estimation of the propane absorption coefficient, are presented in Section 4. Concluding remarks are 
given in section 5. 

 
2. Measurement geometry design and image reconstruction 

 The choice of image reconstruction algorithm is not independent of the choice of beam geometry 
arrangement. In particular, the choice of numerical parameters for some methods may be critically 
dependant of the properties of the beam array. Generally, to achieve the best image reconstruction 
results, the measurement space should be sampled evenly in spatial and angular dimensions (Rattey 
and Lindgren 1981). Regular beam arrangements are often impractical in particular applications, 
including the multi-cylinder engine case studied here. The question then arises, given a limited set of 
possible sampling geometries in a given application, which of them is most suited for image 
reconstruction? To the best of the authors’ knowledge, there is no literature available which addresses 
randomly sampled problems along with guidance on any associated design criteria. 
 
2.1  Beam arrangement 

One way of visualizing the properties of any beam geometry is to plot the position of all the beams 
in the so-called sinogram (or Radon) space, which is a two-dimensional space described by one linear 
variable, s, and one angular variable, θ. In the sinogram space, each beam can be represented by a 
single point (s, θ), where s is the length of its perpendicular distance from the origin when drawn in 
normal cartesian coordinates, and θ  is  the angle that it subtends to the vertical cartesian axis. We 
believe that the sinogram space representation of a given beam geometry can provide valuable insight 
into its potential sensitivity coverage. Figure 1(a) shows a measurement space sampled using four 
projections of eight beams, as used by Hindle et al (2001) for laboratory tests. The sampling of the 
physical space is regular in both the angular and linear dimensions; the resulting sinogram plot (also 
regular) is shown in figure 1(b). 

Given the impracticality of such a regular grid in a real engine, our initial efforts were directed at 
maximising the number of beams, subject to the limits imposed by the physical size of the collimators 
and the available regions of the cylinder wall. The resulting 32-beam irregular measurement grid is 
shown in figure 1(c). Performance simulation of this grid, using a set of phantoms intended to 
represent the full range of possible in-cylinder conditions, yielded disappointing results. In seeking to 
maximise the number of beams, the arrangement of figure 1(c) uses typically small angles between 
adjacent collimators, so as to make efficient use of the available cylinder wall space. This tends to 
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produce adjacent beams with relatively similar (s, θ) and so leads to clustering of the beam positions 
within the sinogram space (figure 1(d)).  
 

     
         (a)   (b)           (c) 

     
         (d)   (e)           (f) 
 
Figure 1. Three limited beam arrangements and the associated sinogram plots. Beam arrangements are for; (a) 
32-beam regular geometry, (c) 32-beam irregular and un-optimized geometry and (e) reconstruction optimized 
irregular 27-beam geometry. The corresponding sinogram plots are shown in (b, d and f) respectively. 

   
Although it is trivial to propose alternative 32-beam grids that are better balanced in terms of  s 

and θ, and therefore more uniformly sampled in the sonogram space, these are unlikely to be viable 
solutions in practice if they disregard the mechanical constraints. In order to develop the desired 
ranges in s and θ, we found it necessary to reduce the number of beams, thus allowing additional space 
for positioning of optical elements. Short chord paths, for example, are particularly expensive in terms 
of usage of the combustion chamber perimeter but correspond to (otherwise unobtainable) information 
at high s values, i.e. close to the cylinder wall.  

Simulation was carried out on a number of candidate grids, of which the best performing was that 
shown in figure 1(e). The simulations included hard-edged (top hat), soft-edged (Gaussian) and 
homogeneous phantoms to represent the full range of expected conditions. Despite having only 27 
beams, this arrangement showed more consistent performance than that in figure 1(c), which we 
believe is due to the improved coverage of (s, θ) as evidenced by the sinogram plot (figure 1(f)). We 
believe that, in this case at least, the deficiencies of the arrangement in figure 1(c) are more apparent 
from the sinogram plot than from the physical space representation, making the former a valuable aid 
to the design process.  
     It is surprising that an apparent reduction in the available data, in an already severely limited data 
situation, can improve the quality of the resulting image reconstructions. However, beams that are 
closely spaced in s and θ traverse similar regions of physical space and they become essentially 
repeated measures of a single point in the sinogram space. In the uniformly sampled case, all beams 
contribute equally to the reconstruction process. In contrast to this, the redundancy that may be present 
in irregular arrangements means that the effective data gathering capability of a grid may not vary 
linearly, or even monotonically, with the number of beams. For this reason, the spatial distribution of 
beams is just as important as their number. We find the sinogram representation of the measurement 
grid itself to be useful in understanding these issues. 
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2.2  Image reconstruction 
The quality of reconstructed images from sparse data sets usually suffers from fuzziness, loss of 

resolution and the presence of artefacts (Feng and Bao 2002b, Andersen 1989). This is due to the 
highly ill-posed and undetermined nature of the problem; small changes are amplified, leading to 
inaccurate image representation. A traditional approach to overcome limited data problems, involves 
the interpolation of missing projections prior to solving the inverse Radon transform. The use of 
transform-based inversion techniques is only applicable to beam arrangements described by 
projections arranged at regularly spaced viewing angles, with each projection comprising many ray-
sums. In the case where the beam arrangement is not described in such a regular manner, use of a 
transform technique is not viable. Additionally, relatively little is known about the concentration 
distributions within an engine pre-combustion. For this reason, it is desirable that the image 
reconstruction method is capable of reconstructing a wide variety of distributions including hard-
edged, soft-edged (Gaussian) and homogeneous distributions. Therefore it was decided to use a 
reconstruction technique which is independent of significant a priori information. The adopted 
algorithm is based on an enhanced iterative Landweber method. This technique offers generality and it 
has the interesting feature that it can be modified in order to take into account additional a priori 
information about the solution, such as smoothness of the subject and value constraints within each 
iteration. A smoothing process can provide the regularization necessary to render the inherently ill-
posed problem tractable. A non-negativity constraint was also applied to maintain physically 
meaningful concentrations.   

The algorithm is shown schematically in figure 2 and is implemented in Matlab on a standard PC. 
The first two steps of the algorithm are presented in greater detail in figure 3. The 27-beam 
measurement geometry is presented in figure 3(a), while figure 3(b) shows the corresponding circular 
imaging space as a subset of a 50 x 50 Cartesian grid. The sensitivity map S in figure 3(c) is based on 
calculation of the exact pixel to beam intersection lengths throughout all the pixels and for all beams. 
This means that some pixels which are crossed by several beams will have greater magnitude in the 
sensitivity map compared to those pixels which are only partially crossed by a beam. The beams in our 
measurement system are less than 1mm wide. Since the beams pass through only a small fraction of 
pixels in the imaging space, the sensitivity map is very sparse.  

Considering the sensitivity map , an initial estimate  used for the  Landweber method is found 
by solving the forward problem: 

S 1g

vSg T
1 =        (1) 

where  is the estimate of concentration distribution vector  in each of N pixels in the imaging 

space, is the measurement vector of  independent measurements,  is the N x L transpose of the 
sensitivity matrix which is here used as an approximation to , and S  is defined from .   

1g

v

c

1
L TS

−S Scv =
The iterative Landweber method can be described as: 

( )kkk SgvSgg −+=+
T

1 α      (2) 
where is the iterative step number,  represents the solution in the image space and k g α  is the 
relaxation parameter. An upper limit for α  can generally be determined from (Yang et al 1999): 

1

2
T20

−
⎟
⎠
⎞⎜

⎝
⎛<< SSα       (3) 

where the bracketed term is the reciprocal of the Euclidean matrix norm.  
The method repeatedly compares the original measurements with those that would be expected 

with the updated estimate  of the concentration distribution. As long as the current approximation 
of the solution  is not close to the true solution, the residual 

kg

kg ( )kSgv −  is quite large and the data 
error is negligible as compared to the size of the residual. As the iteration process continues the value 
of the residual decreases while the data error component gradually increases.  As shown in figure 2, 
the non-negativity constraint is applied by setting all the calculated negative values of the solution 

 to zero within each iteration. Additionally, the median filter which uses a window of specific size 
is applied in order to regularize the solution and to provide a degree of smoothing appropriate to 
typical subjects for the required image resolution. By this mechanism, the estimate of each pixel value 

1+kg
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in the solution  is determined by the median value of the neighboring pixels within the median 
filter window. This is further discussed in section 4.1.2. 

1+kg

 

 
 
Figure 2. Schematic of the Landweber method which applies median filtering and value contraints. 
 

      
     (a)              (b)         (c) 

         
Figure 3. Defining the imaging space for the 27 beam geometry: (a) system geometry; (b) image solution space; 
(c) sensitivity map.  

 
Iterative techniques widely use the residual to define a practical convergence criterion. Here the 

mean normalized difference e  between the current and previous solution, calculated by   
kkke ggg /1 −= +       (4) 

is used to stop the iteration process when it is less than a predetermined threshold. In the case of our 
measurement system it was found that consistent results were obtained using threshold values between 
1% and 4%. 

Suitable selection of α  continues to be a matter of great interest in tomography research. Large 
values of α  lead to rapid convergence but increase the risk of instability. Conversely, small values of 
α  provide slow but reliable convergence. For this reason, our initial efforts to reconstruct laboratory 
data have used relaxation parameters ranging from 0.001 to 0.01.  

Various simulated data were used to test the effectiveness of the reconstruction method and to 
investigate the effect of varying reconstruction input parameters. Such parameters included: the 
number of pixels in the image space, the window filtering size, number of iterations, and the relaxation 
parameter, α. The main aim of using simulated data was to perform a simple initial assessment of the 
enhanced Landweber technique prior to a more thorough evaluation using real experimental data. 
Simulations consisted of single and double inhomogeneities describing absorption phantoms either by 
hard or soft edges. Typical examples are shown in figure 4 using 27 beams and applying 20 iterations. 
Figure 4(a-c) refers to a hard-edged inhomogeneity positioned approximately in the 2 o’clock position 
which gave a maximum absorption of approximately 5% to a small subset of the total number of 
beams. Figure 4(d-f) shows an example using two hard-edged inhomogeneities. In this case, the first 
phantom positioned towards 4 o’clock presents twice the absorption of the second phantom in the 10 
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o’clock position. Finally, figure 4(g-i) gives a typical example using a hard-edged inhomogeneity with 
a second soft-edged inhomogeneity towards the 8 o’clock position being simply defined by a cosine 
function. For this simulation, the maximum presented absorption of the soft-edged phantom was 50% 
compared with that of the hard-edged phantom. Similar simulations using the same enhanced 
Landweber reconstruction method have also used Gaussian shaped inhomogeneities and have been 
reported by Constantino et al (2007). In all cases, our reconstructions strongly suggest that the adopted 
reconstruction method has the ability to give good sensitivity and spatial resolution using a highly 
sparse and irregular beam array. 

 

   
            (a)  (b)  (c) 

   
            (d)  (e)  (f) 

    
            (g)  (h)  (i) 

 
Figure 4. Typical examples of image reconstruction using the described enhanced Landweber method and 
simulated data. The initially generated inhomogeneities are shown in the left column, whilst the associated 
reconstructions are shown in the middle (plan view) and right (side view) columns. All reconstructions use 20 
iterations and the IMAGER 27 beam arrangement. 
 
 
3. Experimental methods 
 
3.1  Tomography instrumentation and OPAL 

The opto-electronics system developed for the IMAGER project is described more fully elsewhere 
(Wright et al 2005a). The optical interface comprises an OPtical Access Layer (OPAL), which defines 
the measurement beam layout within the engine, and a rack-mounted optoelectronic measurement 
system. The sensing field diameter, D, of the OPAL was 89 mm. Collimation optics within the OPAL 
control the launch and acceptance angles sufficiently well to allow hard-field reconstruction, even in 
the presence of significant scattering. A dual wavelength ratiometric transmission measurement 
( ) is implemented on each measurement path using current-modulated diode laser 
sources driving a 2 by 32 fibre coupler. The dual wavelength ratiometric technique developed by 
Hindle et al (2001) is used throughout this paper. Although the OPAL used in this study featured 27 
optical channels, only 26 were operational during these tests. The data reported here were time-
averaged over 4ms. 

nm1651nm1700 / TT

 
3.2  Homogeneous propane-air mixture measurements 

In order to assess the performance of the OPAL under homogeneous conditions, a clamping block 
arrangement was constructed which enabled the OPAL to be stressed in a way similar to placement of 
the OPAL in an internal combustion engine block. Experiments using such an arrangement allow for 
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an evaluation of the coupling efficiency between all optical transmission and receive channels in a 
well-controlled environment, over ranges of pressure and temperature. The sensing field was filled 
with a known homogeneous mixture of propane and air to allow the relevant absorption coefficient to 
be determined. Additionally, such experimental data can be compared with predicted data in order to 
provide calibration constants for image reconstruction which takes into account the measured 
differences in coupling efficiencies across all 27 beams. Such knowledge is necessary for quantitative 
image reconstruction. 

The OPAL and the clamping block arrangement are shown in figure 5. The clamping system 
consists of four blocks, each measuring 180 x 250 mm2 and 30 mm in thickness. The sensing end of 
the OPAL was sandwiched between the blocks (two below and two above) using a pair of standard 
engine metal gasket seals compressed by a clamping torque typical of an engine bolt down. The two 
outermost blocks were machined from aluminium, and each housed 3 electrical rod heating elements, 
whilst the 2 innermost blocks were machined from steel. The heating elements were positioned 
equidistantly along the short axis of the aluminium blocks, so as to provide uniform heating of the 
outer faces of the innermost steel blocks. This arrangement provided an essentially isothermal sensing 
field. The lower steel block included an internally drilled hole to allow pressure relief via a safety 
valve. The upper steel block featured two smaller internal channels to provide inlet and outlet ports for 
the filling gas. The whole arrangement was mounted on four cylindrical aluminium supports which 
positioned the setup above a 100 mm high bund which enabled the safe capture of any escaping 
propane gas (heavier than air) during gas removal from the OPAL and filling lines. The OPAL 
positioned on the two lower blocks prior to clamping down can be seen in figure 5(a) which also 
clearly shows the relief valve. Figure 5(b) shows the completed setup with wiring to the electrical 
heating elements being clearly visible. 

A number of experiments investigated the effect of varying propane concentration (at fixed 
temperature) on the optical measurement data. Initially, the clamping block arrangement and all gas 
flow lines were purged with compressed air followed by filling with propane gas to a concentration 
level of 100%. Experiments were carried out for a total of 15 concentrations over a range starting from 
the initial 100% fill of propane down to an estimated 0.2% of propane. Each concentration within the 
range was achieved via successive dilutions of the previous concentration with compressed air. During 
these experiments the temperature of the setup was measured to be 34°C with approximately 1°C 
uniformity. 

           
    (a)       (b) 
Figure 5. Arrangement for homogeneous propane measurements showing (a) initial build up with the OPAL 
positioned on the two lower clamping blocks, and (b) fully built arrangement as used for homogeneous 
measurements. 
 
3.3 Propane plume measurements 

The spatial resolution of the system was tested using various diameters of propane plume, either 
singly or in pairs. Near laminar flow plumes, of circular cross-section, were generated using a plenum 
chamber, diffuser and flow conditioning nozzle, suspended just above the OPAL as shown in figure 
6(a). Available nozzle configurations included D/3, D/4, D/5 and combinations thereof e.g. figure 
6(b). The OPAL itself was mounted on pillars to prevent recirculation of propane through the sensing 
field. The plumes could be positioned as desired using an X-Y translation stage and 45° rotational 
indexing. 
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          (a)           (b) 
 
Figure 6. Arrangement for plume generation showing (a) nozzle arrangement suspended above the OPAL, and 
(b) close up of flow conditioning nozzle. 
 
4. Results and discussion. 
 The objective of this section is to show spatial localization of various diameters of propane plumes 
within the sensing field. In order to produce the quantitative image reconstruction results the 
absorption coefficient must be known and all parameters of the image reconstruction algorithm (e.g. 
relaxation parameter, number of iteration and size of the median filter) have to be appropriately 
selected. The analyses below show the optimisation of the image reconstruction parameters and 
validation of the reconstruction algorithm using the experimental data. 
 
4.1.1 Estimation of absorption coefficient for propane 

The homogeneous laboratory data (described in section 3.2) were analyzed to determine the 
absorption coefficient for propane at 1700nm. Figure 7 shows the measured ratio  for 
each of the 26 operating beams at each of the 5 homogeneous propane concentrations. In fact, 
measurements were taken at 15 concentrations but only 5 are shown for the sake of clarity. Most 
beams show the expected progressive reduction in  with increasing propane 
concentration, although some anomalies are evident, most obviously with beams 10, 20 and 26. These 
may be due in part to small changes in beam alignment that occur during each successive dilution 
cycle. Considering only the 100% propane data, to eliminate this possibility, and treating each 
individual beam path as an absorption cell it is possible to derive 26 independent estimates of the 
absorption coefficient. This is shown in figure 8. Once again beams 10, 20 and 26 give rise to outliers 
and are excluded from the subsequent calculation of the mean. Despite the substantial standard 
deviation (7.48) of the estimated absorption coefficient, the mean (77.7 L.mol-1.m-1, 1 bar, 304 K) is 
consistent with the 76.8 L.mol-1.m-1 reported by Kjaergaard et al (1990), under broadly similar 
conditions (0.446 bar, 295K). From this estimated absorption coefficient the expected 

 value for each beam in the 100% propane case was calculated. Comparison of this 
experimentally derived data with our initially predicted data is shown in figure 9. The discrepancy in 
each case provides a useful indicator of the performance of each measurement. The absorption 
coefficient value found here for propane at 1 bar compares reasonably with the 127 ± 12 L.mol-1.m-1 
reported by Wright et al (2005b) for iso-octane at 1 bar and 353K, once the larger number of available 
C-H vibrations per molecule of iso-octane compared with propane is taken into account. 

nm1651nm1700 / TT

nm1651nm1700 / TT

nm1651nm1700 / TT

 
4.1.2 Algorithm parameter optimization  

Various inhomogeneous experimental data for propane plumes (as discussed in section 3.3) were 
used to further validate the effectiveness of the image reconstruction technique discussed in section 
2.2. The effects of varying the input parameters of the reconstruction algorithm were investigated. The 
measurements were taken using the 25 operating beams (beams 4 and 20 were excluded). Figure 10(a) 
shows the IMAGER system with 25 beams, with the corresponding sensitivity map presented in figure 
10(b). All of the parameter optimization results presented here are for experimental, rather than 
simulated, data.  

A D/5 propane plume was placed either in the centre of the sensing field or in one of four different 
positions around this central position, as shown in figure 10(c). Using these experimental data, three 
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different input parameters were considered: window size of the median filter, the relaxation parameter 
and the number of iterations.  

Median filtering is similar to a spatial averaging filter, in that it uses a window of specified size, 
but a given pixel value is determined by the median (rather than the mean) of the pixel values within 
the window. The use of the median reduces the sensitivity to extreme values, which allows removal of 
erroneous values in the inverse solution without reducing the sharpness in the reconstruction. Among 
all tested standard window sizes (3x3, 7x7, 9x9 or 11x11), 7x7 was chosen as the most appropriate 
window size with respect to the 50x50 grid. 

 
 

 
 
Figure 7. Measurements of , for 26 beams of various lengths, for 100% propane at 1bar 
pressure and 307K temperature, and for 4 different dilutions of the propane with air, under the same 
homogeneous mixing and thermodynamic conditions. 

nm1651nm1700 / TT

 

 
Figure 8. Estimation of the absorption coefficient for propane for each beam, derived from the 100% propane 
data of figure 7. The broken line corresponds to a value of 77.7 L.mol-1.m-1. 

 
 

Figure 9. Predicted ratiometric data, using the measured absorption coefficient, compared with the actual 
measurements obtained.  
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          (a)   (b)              (c) 
 
Figure 10. The IMAGER beam arrangement with 25 beams, used for image reconstruction is shown in (a) whilst 
the corresponding sensitivity map is given in (b). Illustration of approximate D/5 plume positions are given in 
(c). 

 

 
 

Figure 11. Normalized convergence parameter as a function of iteration number. The results for three different 
relaxation parameters are presented and compared.  
 

 
 
Figure 12. Image reconstruction with 25 iterations of a D/5 propane plume showing the effect of using three 
different relaxation parameters.  
 

The relaxation parameter α plays an important role in the stability of the solution and speed of 
convergence. As a measure of convergence a relative image error (see equation 4) was adopted. Figure 
11 shows the normalized convergence parameter  as a function of iterations calculated using three 
different relaxation parameters: 0.001, 0.005 and 0.01. Only the results for “position 1” and “position 
4” are presented for clarity. It can be seen that in both cases where the relaxation parameter was set to 
0.01, the convergence parameter e, reaches the threshold of 3% after 25 iterations. The influence of 
different relaxation parameters for 25 iterations and a 7 x 7 median filter can be seen more clearly 
from the actual reconstructions shown in figure 12. 

e

 
4.2 Validation of image reconstruction algorithm 
Figures 13-15 show the image reconstruction results for various diameters of propane plume (D/3, 

D/4 and D/5, where D is diameter of the sensing field). All the reconstructions use a pixel image space 
based on a 50 x 50 grid but the inverse solution is only calculated in the highlighted circular region 
which comprises 1844 pixels. This is a further attempt to improve the accuracy of solution by 
improving the conditioning of the problem. All these reconstructions use the same 7 x 7 median filter, 
the same relaxation parameter (0.01) and 25 iteration steps.  
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Qualitative image reconstruction results for a D/5 propane plume in each of 5 positions are shown 
in figure 13(a-e). The reconstructions are individually scaled to emphasise the successful localization 
of the single plume in each case. Quantitative reconstructions of the same data are given in figure 13(f-
j), with all reconstructions globally scaled. Comparing figures 13(a-e) and 13(f-j), relatively poor 
sensitivity is apparent in position 5 (figure 13(j)). The origin of this lower sensitivity can be seen by 
comparing figure 10(b) with figure 10(c); this region of the sensitivity map is generally sparser and 
has fewer beam intersections than those regions of the grid relevant to figure 13(f-i). 
 

 
 

Figure13. Qualitative and quantitative image reconstructions of a D/5 propane plume in 5 different positions 
(see figure 10(c)). All reconstructions which are given in (a)-(j) use the same relaxation parameter 0.01, same 
median filtering, 25 iterations and data from 25 beams. The qualitative reconstructions, which are presented (a)-
(e), are locally scaled. The quantitative reconstructions are shown in (f)-(j) whilst the corresponding profiles are 
given in (k)-(o). All quantitative reconstructions are globally scaled. 

 
       (a)       (b)   (c) 

 

Figure 14. Quantitative image reconstructions of a D/4 propane plume in 3 different positions. In this case, the 
plume generator was shifted from the original position in (a) by two consecutive 10 mm increments in a vertical 
downward direction relative to this page.  Reconstructions of these new positions are shown in (b) and (c). 
 

 
             (a)      (b)       (c) 

 
   
Figure 15. Quantitative image reconstruction examples of D/4 and D/3 propane plumes produced 
simultaneously. Approximate positions of the plumes are shown in (a) and the corresponding reconstruction is 
shown in (b-c). 
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Figure 14 shows quantitative reconstructions from measurements of single D/4 propane plume in 
three positions at 10 mm intervals. Good spatial localisation of the propane plume is evident. An 
example of the ability of the system to resolve multiple simultaneous plumes is given in figure 15. 
This is a quantitative reconstruction derived from measurements of an asymmetric double plume 
phantom (one D/4 and one D/3 plume, D/4 apart).  

It can be seen from these figures that the reconstructions represent the approximate size and 
locality of the propane plumes with fewer artefacts than might be expected considering the highly 
sparse nature of the beam array. 
 
 
5. Conclusions 

For hard-field tomographic imaging of subjects not amenable to regular sampling geometry, the 
design of the array of measurement paths (beams) presents a substantial challenge. In such cases, 
design priority should be given to achieving the best possible coverage of the sinogram space, in both 
the linear and angular dimensions. A solution to this problem has been presented for the task of in-
cylinder hydrocarbon fuel imaging in operating multi-cylinder gasoline engines. A reduced number of 
beams (27) has been adopted compared to the physically available maximum that could have been 
installed (32 or more), in order to improve the sinogram coverage. 

For image reconstruction of the resulting data, the iterative Landweber method has been used, 
with regularization provided by median filtering and non-negativity constraint. A systematic study has 
been made of the trade-off between the value of the relaxation parameter and the number of iterations. 
With the chosen parameters, the image reconstruction algorithm was found to offer stable and reliable 
phantom localization, for both simulated and experimental data, with normalized image error values 
around 3% after 25 iterations. 

Experimental tests were carried out on homogeneous gaseous propane at various pressures. The 
resulting estimate of the absorption coefficient extends the very limited published data for propane 
close to STP. This phase of testing also served to show that a small number (10%) of beams did not 
yield reliable measurements of concentration path integral, and these were excluded from imaging 
tests.  
 A method has been described for the laboratory creation of steady-state gaseous phantoms with 
non-uniform concentration of the target species. Quantitative images of such phantoms, each 
containing one or two propane plumes, have been successfully reconstructed, with good localisation 
being achieved for plumes ranging from 1/5 to 1/3 of the overall diameter of the phantom subject. 
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